Por favor, use este identificador para citar o enlazar este ítem: https://ri-ng.uaq.mx/handle/123456789/3397
Título : Monocular Depth Estimation with Convolutional Neural Networks on Embedded Systems
Autor(es): Edgar Rodrigo Lopez Silva
Palabras clave: monocular
depth
low-latency
convolutional
Área: OTRAS
Fecha de publicación : 7-sep-2021
Facultad: Facultad de Ingeniería
Programa académico: Maestría en Ciencias en Inteligencia Artificial
Resumen: Monocular depth estimation is becoming a very interesting problem in computer vision to solve due to the several tasks that require as an input the spatial structure of a scene, such as 3D reconstruction, 3D object detection, localization and mapping. The most effective techniques for monocular depth estimation are based on large deep learning-based architectures that cannot be deployed on systems with limited computational resources and therefore preventing its use in application fields where the advantages of monocular cameras (i.e., low cost, small size, low weight and low-energy consumption) could also be exploited. Under this context, the research of low-latency deep learning architectures for monocular depth estimation is a very promising topic for which just a few methods have been proposed until now. In this master thesis, a very low-latency fully convolutional network is proposed. The quantitative results on the NYU-Depth V2 dataset show that the proposed method is 1.6x faster than the state-of-the art related method while also reducing the RMSE metric by 1.16%.
URI: http://ri-ng.uaq.mx/handle/123456789/3397
Aparece en: Maestría en Ciencias en Inteligencia Artificial

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RI006438.pdf1.89 MBAdobe PDFPortada
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.