Descripción:
El monitoreo y detección de los daños en aerogeneradores reduce el costo de mantenimiento y alarga su tiempo de vida útil. Si el daño es detectado en una etapa temprana, el daño ligero o incipiente puede ser reparado antes de que este empeore. Por esta razón, el presente documento muestra una metodología basada en redes neuronales convolucionales y señales de vibraciones para la detección de daños en aspas (3 niveles de severidad) y rodamientos. En general, la metodología empleada consiste en la adquisición de las señales de vibraciones de cada condición de daño y la condición sana. Entonces se calcula su espectrograma para obtener una imagen del plano tiempo-frecuencia de las vibraciones. Esta imagen es segmentada y analizada mediante redes neuronales convolucionales para la detección automática de los daños. Los resultados obtenidos muestran una efectividad del 100% en la detección.