Descripción:
La tesis que se muestra a continuación es un trabajo de investigación y desarrollo sobre planeación de trayectorias para evasión de obstáculos con un enfoque a vehículos autónomos, la investigación surge a partir de la problemática que existe actualmente sobre la gran cantidad de información que obtienen los vehículos autónomos y la dificultad de procesarla en poco tiempo.
En el desarrollo del trabajo se implementaron dos enfoques para solucionar
el problema de planeación de trayectorias con restricciones locales y globales, el primer enfoque se basado en la simulación de campos magnéticos virtuales (CMV), mismo enfoque que a pesar de tener una buena efectividad al momento de generar trayectorias, el tiempo de solución fue demasiado grande por lo que el enfoque se consideró inviable.
Debido a lo anterior, se desarrolló el algoritmo Magnetic Ants (MA), un
algoritmo que toma conceptos de CMV y Ant System, el algoritmo MA presentó
mejoras considerablemente superiores a CMV en cuanto al tiempo de solución, por lo que los resultados finales se consideraron viables para su futura implementación en un vehículo autónomo de pruebas.