Buscar


Mostrar el registro sencillo del ítem

dc.rights.license http://creativecommons.org/licenses/by-nc-nd/4.0 es_ES
dc.contributor Juan Manuel Ramos Arreguín es_ES
dc.creator Tomás Emmanuel Juárez Vallejo es_ES
dc.date 2023-01-22
dc.date.accessioned 2023-02-16T20:13:52Z
dc.date.available 2023-02-16T20:13:52Z
dc.date.issued 2023-01-22
dc.identifier.uri http://ri-ng.uaq.mx/handle/123456789/4384
dc.description Las carreteras pueden presentar distintas condiciones climáticas o alteraciones como suciedad o desgaste lo cual dificulta la visibilidad de las líneas carriles pudiendo causar accidentes, estos se pueden disminuir mediante sistemas de ayuda al conductor los cuales realizan una detección de las líneas de carril y se emite una alarma en caso de un abandono de carril accidental. En los últimos años se han propuesto diversos métodos de detección siendo una de ellas la detección mediante visión artificial con el uso de redes neuronales. En este trabajo se propusieron dos redes neuronales las cuales fueron entrenadas para la base de datos Tusimple, el primero modelo entrenado fue una red generativa adversarial llamada Pix2pix para esta red se utilizaron dos preprocesamientos: cambios en el espacio de color y un algoritmo de agrupamientos llamado Superpixel, con este modelo se obtuvo un índice Dice de 0.41. El segundo modelo consiste en una U-net modificada, se utiliza- ron distintas técnicas de preprocesamiento: Cambios en el espacio de color y diferente nu´mero de canales en la imagen. Se propuso una nueva función de perdida llamada Focal Tversky + L1, en los resultados se obtuvo un valor en el índice Dice de 0.83 y en las métricas oficiales de Tusimple se logró una precisión de 0.92 mientras que su tiempo de entrenamiento fue de 15 segundos por época. Finalmente se llevó a la implementación en una tarjeta Raspberry Pi 3 utilizando la librería TensorFlow lite. es_ES
dc.format Adobe PDF es_ES
dc.language.iso spa es_ES
dc.publisher Ingeniería es_ES
dc.relation.requires Si es_ES
dc.rights Acceso Abierto es_ES
dc.subject Ingeniería y Tecnología es_ES
dc.subject Ciencias Tecnológicas es_ES
dc.subject Ciencia de los ordenadores es_ES
dc.title Detección automática de líneas de carril basada en Inteligencia Artificial orientada a la asistencia del conductor. es_ES
dc.type Tesis de maestría es_ES
dc.creator.tid ORCID es_ES
dc.contributor.tid curp es_ES
dc.creator.identificador 0000-0002-8601-2605 es_ES
dc.contributor.identificador RAAJ710606HGTMRN01 es_ES
dc.contributor.role Director es_ES
dc.degree.name Maestría en Ciencias en Inteligencia Artificial es_ES
dc.degree.department Facultad de Ingeniería es_ES
dc.degree.level Maestría es_ES


Ficheros en el ítem

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem