Descripción:
"El procesamiento de biopotenciales es parte fundamental de la investigación médica, ya que brinda la posibilidad de desarrollar nuevos dispositivos y técnicas para el diagnóstico, tratamiento, cuidado y rehabilitación de los pacientes, en la mayoría de los casos de forma no invasiva. Por lo tanto, la creación de nuevos métodos de análisis para bioseñales ayuda a mejorar la seguridad, la eficiencia y la calidad de los procesos. Las bioseñales deben entenderse como la actividad eléctrica que presentan algunas células, como las células cardíacas, las células nerviosas o las células musculares. Por lo anterior, el estudio de las señales musculares o señales EMG (electromiografía) resulta en una de las fuentes de conocimiento más importantes sobre la función de los tejidos que componen el sistema, brindando información sobre el flujo de datos que atraviesa el sistema nervioso y la consiguiente activación de diferentes músculos. Esta señal puede apoyar en la detección de algunas enfermedades relacionadas con la actividad eléctrica, como distrofia muscular, esclerosis y neuropatías. Además, esta señal se puede implementar en sistemas de control, por ejemplo, en robótica, prótesis o incluso en áreas como la telemedicina e interfases humano-máquina. Las señales EMG son aleatorias, no estacionarias, no lineales. Por tanto, es necesario encontrar un patrón que englobe la señal en general y no los datos independientes que la componen; por ello, los sistemas de entre ellos se encuentran
las máquinas reconocimiento de patrones EMG de última generación suelen contener bloques de preprocesamiento, segmentación, extracción de características, reducción de dimensionalidad, selección de características y clasificación. El siguiente trabajo se centra en la selección de características, el cual es uno de los principales problemas en la clasificación de señales EMG, ya que al reducir el número de predictores necesarios para distinguir entre clases es posible disminuir la complejidad del sistema de clasificación. Debido a esto recientemente se han experimentado con diversos métodos de selección, sin embargo, el espacio de características inicial suele estar limitado lo que no permite comprobar el verdadero potencial de los algoritmos de selección \cite{computation7010012}. En este estudio, se aplican algoritmos genéticos para la selección de un espacio de características de entre las veintiséis características más utilizadas del dominio del tiempo."