Mostrar el registro sencillo del ítem
dc.rights.license | http://creativecommons.org/licenses/by-nd/4.0 | es_ES |
dc.contributor | Jesús Carlos Pedraza Ortega | es_ES |
dc.creator | Raul David Palma Olvera | es_ES |
dc.date | 2015-04 | |
dc.date.accessioned | 2018-12-06T19:50:12Z | |
dc.date.available | 2018-12-06T19:50:12Z | |
dc.date.issued | 2015-04 | |
dc.identifier.uri | http://ri-ng.uaq.mx/handle/123456789/265 | |
dc.description | "En este trabajo se propone la mejora del desempeño del algoritmo de extracción de características SIFT (Scale Invariant Feature Transform) para el reconocimiento de edificios en condiciones de iluminación no controladas al aire libre. Para ello se propone establecer una comparación entre la cantidad de características extraídas con el algoritmo SIFT original y la propuesta planteada que añade una etapa de preprocesamiento basada en realce de histogramas con ayuda del algoritmo CLAHE (Contrast Limited Adaptive Histogram Equalization). Dicho algoritmo será utilizado para mejorar las imágenes tomadas con variaciones de iluminación drásticas, es decir, con una cantidad de iluminación precaria y también con una gran cantidad de iluminación. Este proceso mejorara la extracción de características en dichas condiciones lo cual favorecerá al algoritmos SIFT para el reconocimiento y emparejamiento de las estructuras a encontrar en la escena. Se probara esta metodología propuesta con imágenes tomadas a distintas horas del día lo cual nos dará a conocer en qué momento es más viable la extracción de características o si el comportamiento es el mismo aun con los cambios de iluminación. Una vez que se halla comprobado la metodología propuesta se hará una implementación del método propuesto en un dispositivo basado en el sistema operativo Android logrando una mayor movilidad en el sistema para la realización de las pruebas al aire libre." | es_ES |
dc.description | "In this work a performance improvement to the feature extraction algorithm SIFT (Scale Invariant Feature Transform) is proposed for the recognition of buildings in uncontrolled lighting conditions, at outdoors. For it is proposed to establish a comparison between the amount of features extrated with the original SIFT algorithm and the proposed method that adds a preprocessing stage based on enhanced histograms using the CLAHE (Contrast Limited Adaptive Histogram Equalization) algorithm. This algorithm will be used to improve the images taken with drastic ligthing variations, ie, with precarious lighting conditions and also with a great amount of lighting. This process will improve the feature extraction in these lighting conditions which will favor the SIFT algorithm for the recognitions and matching of buildings at the scene. The proposed methodology will be tested with images taken at different times of days which will give us to know at what point is most feasible the feature extraction or if the behavior is the same even with changes in the lighting conditions. Once the proposed methodology is verified, an implementation of this will be developed on a mobil device based on the Android operative system to achieve greater mobility in the system for testing outdoors." | es_ES |
dc.format | Adobe PDF | es_ES |
dc.language.iso | Español | es_ES |
dc.relation.requires | Si | es_ES |
dc.rights | Acceso Abierto | es_ES |
dc.subject | Algoritmo CLAHE | es_ES |
dc.subject | Algoritmo SIFT | es_ES |
dc.subject | CLAHE Algorithm | es_ES |
dc.subject | Ecualización de Histogramas | es_ES |
dc.subject | Histogram Equalization | es_ES |
dc.subject | SIFT Algorithm | es_ES |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA | es_ES |
dc.title | Procesamiento y análisis de imágenes en Smartphone mediante una mejora del algoritmo SIFT | es_ES |
dc.type | Tesis de maestría | es_ES |
dc.creator.tid | curp | es_ES |
dc.contributor.tid | curp | es_ES |
dc.creator.identificador | PAOR890221HQTLLL05 | es_ES |
dc.contributor.identificador | PEOJ691222HSPDRS07 | es_ES |
dc.contributor.role | Director | es_ES |
dc.degree.name | Maestría en Ciencias de la Computación | es_ES |
dc.degree.department | Facultad de Informática | es_ES |
dc.degree.level | Maestría | es_ES |