Descripción:
La agricultura en México desempeña un papel crucial tanto a nivel económico como alimentario y social, contribuyendo significativamente a la economía global y la seguridad alimentaria. México, con su diversidad de climas y suelos, es un productor importante de una amplia variedad de cultivos, abasteciendo tanto al mercado interno como el global. Sin embargo, el mantenimiento de cultivos saludables es esencial para evitar daños por enfermedades y plagas, que pueden afectar la calidad y rendimiento de los productos. Las técnicas tradicionales de manejo agrícola son ineficientes y consumen muchos recursos, por lo que se buscan soluciones innovadoras. El aprendizaje automático surge como una opción viable para detectar plagas y enfermedades en cultivos, aunque enfrenta desafíos en el procesamiento de imágenes debido a factores como sombras y cambios de iluminación. Este trabajo se enfoca en desarrollar un algoritmo basado en técnicas de procesamiento de imágenes y redes neuronales artificiales para identificar daños en las hojas del frijol que pueden ser causados por alguna plaga del orden Coleoptera: Coccinellidae y/o Chrysomelidae. Los resultados muestran una precisión de 0.792 para la clase ”sana” y 0.658 para la clase ”infectada”. A pesar de que el algoritmo demuestra un desempeño satisfactorio, se identifican áreas de mejora como el manejo del desequilibrio de clases y la prevención del sobre ajuste.