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Resumen 

La secuenciación de genomas antiguos nos permite trazar mejor nuestra historia 

mediante el estudio conjunto de genomas de individuos del presente y del pasado. 

El análisis de estos genomas requiere de la aplicación y desarrollo de métodos 

estadísticos y computacionales que nos permitan inferir la historia que mejor explica 

los patrones de diversidad genética observada en los genomas estudiados. Un 

estadístico de diversidad genética muy utilizado para la inferencia de la historia es 

el espectro de frecuencias por sitio. Este estadístico ha sido ampliamente utilizado 

para inferir el pasado empleando genomas modernos. Sin embargo, todavía no se 

ha analizado a profundidad la posibilidad de utilizar este estadístico para inferir la 

historia demográfica en el pasado mediante el análisis conjunto de genomas 

modernos y antiguos. En esta tesis realizo un análisis computacional para evaluar 

si el espectro de frecuencias por sitio es informativo para inferir un parámetro 

demográfico muy informativo sobre la historia en el pasado, el tiempo de divergencia 

entre poblaciones. Para llevar esto a cabo, se desarrolló una metodología que 

permite calcular el espectro de frecuencias por sitio a través de un conjunto de 

genomas simulados. Las simulaciones que se llevan a cabo muestran que el 

espectro de frecuencias por sitio es sensible a cambios del tiempo de divergencia 

entre poblaciones y del tamaño de muestra en una población antigua. Los análisis 

muestran que el tiempo de divergencia es ligeramente subestimado bajo 

simulaciones con tiempos de divergencia que son cercanos al tiempo de divergencia 

entre distintas poblaciones en América. Se encuentra que un aumento en el tamaño 

de muestra mejora los estimados del tiempo de divergencia. Los resultados 

muestran que es conveniente realizar simulaciones para validar si, dado un cierto 

diseño de estudio con tamaños específicos de muestra en una población antigua, 

es posible realizar estimaciones certeras de parámetros demográficos de interés 

como el tiempo de divergencia.   

Palabras clave: Simulaciones, Inferencia, Genética de poblaciones, Historia 

demográfica.   
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Abstract 

The genome sequencing of ancient genomes allows us to understand our history 

based on the joint study of present-day and ancient genomes. The analysis of those 

genomes requires the application and development of statistical and computational 

methods that allow us to infer the past history that better explains genetic diversity 

patterns on the studied genomes. A widely used statistic for the study of past 

population history is the site frequency spectrum. This statistic is used to elucidate 

the past using present-day genomes. However, we currently do not know if this 

statistic can be used to infer the past demographic history through the joint analysis 

of ancient and present-day genomes. In this dissertation I perform a computational 

analysis to evaluate if the site frequency spectrum is informative to analyze a very 

informative demographic parameter about the past history of different individuals, 

the divergence time between populations. To do this, I develop a methodology that 

allows me to calculate the site frequency spectrum in a set of simulated genomes. 

The simulations performed show that the site frequency spectrum depends on 

divergence time changes between populations and to changes in the sample size in 

an ancient population. The analysis shows that the divergence time is slightly 

underestimated in simulations where the divergence time employed is close to the 

divergence time between different populations in America. It is found that increases 

in the sample size in an ancient population improves estimates of the divergence 

time. The results show that it is convenient to perform simulations in order to validate 

if, given a certain study design with specific sample sizes in an ancient population, it 

is possible to perform accurate estimations of parameters of interest such as the 

divergence time between populations. 

 

Keywords: Simulations, Inference, Population Genetics, Demographic history 
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Introduction 

The information contained in ancient genomic DNA allows us to obtain new 

perspectives on human history based on inferences from the genomic comparisons 

between ancient and modern individuals. Ancient DNA has led to the discovery of 

previously unknown populations of archaic hominins (Carlhoff et al., 2021). It has 

also allowed us to discover information about the migration patterns between 

different populations across the world (Figure 1) (Nielsen, Akey, & Jakobsson, 2017). 

For example, it is commonly accepted that America's ancestral population started 

from migration events across the Bering land bridge (Meltzer, 2009). However, the 

details are not clear, and the analysis of genomic data has provided evidence about 

the history and divergence of ancient Beringians and ancient Native Americans 

(Moreno-Mayar, Potter, et al., 2018). Additionally, ancient DNA gave evidence that 

Native Americans descend from at least three migration events from Asian 

populations (Reich et al., 2012). More surprisingly, genomic evidence shows that 

some South American individuals descend in part from a population that has a close 

association to present-day Australians and other populations from that geographic 

area (Skoglund et al., 2015). 

The study of genomics to infer past demographic history from ancient 

samples has taken an important role during the last two decades (Figure 2). Although 

genomic material has been obtained since the last 30 years (Pääbo, 1985), the 

introduction of Next-generation sequencing (NGS) methods permits DNA 

sequencing at a large scale, increasing throughput dramatically (Schuster, 2008). 

Next-generation sequencing can allow us to obtain genomic information from 300 kb 

using 10 ng of DNA, a significant number compared to Sanger sequencing that 

would provide 1 kb for that DNA quantity (Illumina, 2021b). Additionally, 

improvements in the NGS technology have dramatically reduced the cost of DNA 

sequencing in the last 20 years. As an example, the cost of sequencing a human 

genome has been reduced from $340,000 USD in 2008 to $4,200 USD in 2015 

(Muir et al., 2016).  



 4 

 

 

 

 

 

Figure 2.- Cumulative number of sequenced ancient individuals, including modern humans and 
archaic hominins (Figure taken from Marciniak and Perry, 2017). 

Figure 1.- Migration of humans throughout the world (Figure taken from Nielsen et al., 2017) 
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Ancient DNA characteristics 
Ancient DNA (aDNA) has characteristics that make its study challenging. These 

include fragmentation, low coverage, degradation, and contamination (Günther & 

Jakobsson, 2019). Fragmentation is a caused by depurination by hydrolysis, where 

water breaks chemical bonds in the DNA structure, and by b-elimination (Figure 3). 

The result of this reaction is that the DNA strand is broken into small fragments 

(Lindhal, 1993). On the other hand, coverage is defined by how many times a 

position of the genome is read on average by the NGS sequencing machine. A low 

coverage takes place when each genomic position is read on average less than one 

time by the NGS sequencing machine.  Low coverage and fragmentation are two 

factors that make a bad combination in terms of determining the genetic content of 

an ancient sample (Figure 4).  Older samples yield lower coverages when 

sequenced, preventing the determination of the genomic DNA sequence correctly. 

The low coverage is due to DNA fragmentation, which degrades DNA sequences 

over time, and, ultimately, does not allow the NGS sequencing machine to 

reconstruct the DNA sequences. 

 

 

Figure 3.- Ancient DNA damage. 
Ancient DNA can be damaged by chemical reactions. The first one is depurination by hydrolysis, 
where a water molecule breaks a bond (N-glycosyl) with a purine. From the four bases of a DNA 
strand, adenines (A) and guanines (G) are purines, while cytosines (C) and thymines (T) are 
pyrimidines. After losing its base, another chemical reaction (β elimination), degrades the contents 
even further. This causes fragmentation (Figure taken from Dabney, Meyer, & Pääbo, 2013). 
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Figure 4.- Comparison between modern and ancient DNA samples. 
(A) The reads obtained for the sequenced DNA samples are represented in blue. The diagram shows 
a modern-day sample with high coverage and an ancient sample with low coverage and 
fragmentation. The amount of data extracted from a fresh sample is high, even from a small sample. 
Also, the reads obtained will be long and abundant. In comparison, the amount of data obtained from 
an ancient DNA sample is considerably less and the reads very short. (B) Ancient DNA samples can 
have high levels of contamination due to environmental and handling factors. Grey squares represent 
microbial contamination. Ancient DNA is usually found in fossils that are exposed to heat, humidity, 
and other environmental factors for a long time, making it prone to contamination. Ancient DNA 
samples can also be easily contaminated by other individuals during extraction. Contamination by 
modern DNA is represented by the red rectangles (Figure taken from Pääbo, 2018). 
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Degradation is a process that changes the DNA sequences over time. 

Hydrolysis can cause post-mortem damage by breaking the amino bond (NH2) in 

cytosines present in a DNA strand. When deamination of cytosines occur, these 

bases are converted to uracils (U). (Figure 5). As uracils are not present in DNA 

samples, sequencing machines misinterprets them as thymines (T) (Briggs et al., 

2007). C to T misincorporations can result in incorrect inferences about the 

genotypes present in each position of the genome (Ho, Heupink, Rambaut, & 

Shapiro, 2007). 

 
Figure 5.- Deamination of cytosines (C) to uracils (U). 
Molecules of water (H2O) can break the bond with NH2 in cytosines and form new ones to convert 
into uracil. This causes sequencing errors because uracils are not usually present in DNA, causing a 
false thymine (T) incorporation. Nowadays, the abundance of thymines at the ends of a strand helps 
authenticate a sample as ancient (Figure taken from Briggs et al., 2007).  
 

Finally, contamination is the mixture of the DNA sample with genomic material 

from other individuals and even other species. Microbes, multiple handling and even 

dust contamination can overwhelm ancient DNA samples, distorting the contents of 

the sequences (Richards, Sykes, & Hedges, 1995). (Figure 4B).  

Working with fossils and obtaining ancient DNA from them is a complicated 

process that must be thoroughly planned because they are often unique and very 

fragile. Extraction can also be difficult because the specimen can get destroyed, 

losing valuable material forever. Also, as mentioned above, samples are easily 

contaminated (Orlando et al., 2021).  
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The challenges of extracting and sequencing an ancient sample is an area of 

constant new developments. Apart from this topic, the analysis of these samples 

requires analysis that consider the features of ancient DNA explained in this section 

(fragmentation, low coverage, degradation, and contamination). Currently the field 

is working on creating statistical methods that model these features. A review of the 

methods to analyze ancient DNA data to infer past demographic history will be taken 

in chapter II.  

 

Motivation 
The number of sequenced genomes of ancient modern humans and archaic 

hominins in the Americas is still very low compared to other regions in the world. 

Figure 6 shows that until the publication of the data, the number of genomes in the 

Americas was 64, compared to 882 in Europe and 85 in the Middle East. Also, the 

samples are considerably less ancient than in other regions. Overall, the region is 

understudied and there is a need for more research on archeological sites and 

caves. 

The oldest culture known in the Americas is the Clovis culture. The most 

ancient archeological evidence of Clovis people was estimated to be 13,000 to 

12,600 calendar years BP (before present) and is located in North America 

(Rasmussen et al., 2014). However, evidence of human activity in a pre-Clovis era 

has been found in different sites in the region. These findings include tools, bones, 

and footprints (Table 1).  In Mexico, researchers have found evidence of inhabitants 

from previous periods known to the region (Acosta Ochoa, 2010; Ardelean et al., 

2020; Chatters et al., 2014; Des Lauriers, Davis, Turnbull, Southon, & Taylor, 2017; 

González et al., 2014; Sanchez et al., 2014). These findings could be useful to 

understand better the past history of ancient populations in the region (Table 2). 
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Figure 6.- Genome samples across the world (Figure taken from Marciniak & Perry, 2017). 
This diagram shows the number of genomes of ancient samples according to location and age of the 
samples. Time periods are expressed in years BP (before present) that is an approximation 
established with radiocarbon dating (Taylor, 1985). Regions outside of Europe are clearly 
understudied.  
 
 

The reconstruction of past human history requires an interdisciplinary 

approach that considers both Archaeology and Genetics. However, genetic analysis 

that use ancient DNA require statistical methods that model its features. The aim of 

this project is to contribute in the development of methods that infer our history using 

ancient DNA. Particularly, to continue developing methods for inferences of 

population parameters such as the divergence time between populations. Advances 

in this area will hopefully provide researchers in Mexico with more resources for the 

study of recently discovered ancient fossils. 
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Table 1.- Published evidence findings from Pre-Clovis Era in the Americas. 
Approximate number of 

years ago 
Evidence found Site name Location References 

13,200 - 15,500 
Projectile points, 
blades, and other 

tools 

The Buttermilk 

Creek Complex 
Texas, USA 

(Waters et al., 

2011) 

16,560 - 15,280 
Stone artifacts and 

bones 
Cooper's Ferry Idaho, USA 

(Davis et al., 

2019) 

23,000 - 21,000 Human footprints 
White Sands 

National Park 

New Mexico, 

USA 

(Bennett et al., 

2021) 

26,500 - 19,000 Stone tools Chiquihuite Cave 
Zacatecas, 
Mexico 

(Ardelean et 
al., 2020) 

 
 
Table 2.- Examples of published evidence findings from Mexico. 

Approximate number of 

years ago 
Evidence 

found 
Importance 

Site name and 

location 
References 

11,300 - 10700 Fishhooks  

Possible alternative 

Pacific coastal route 

from Asia. 

Isla de Cedros, 
Baja California 

(Des Lauriers et 
al., 2017) 

12,500 
Stone tools 

and arrow 
points 

Evidence suggests a 
more complex behavior 

of inhabitants than 

previously known. 

Santa Marta 

Cave, Chiapas 

(Acosta Ochoa, 

2010) 

13,000 and 9,000 
Human 
skeletons 

Largest databases on 

bones of early humans 

in Mexico 

Different caves 

and cenotes in 

Quintana Roo. 

(González et al., 

2014) 

(Chatters et al., 
2014) 

13,390 
Bones, stone 

and bone 

artifacts 

Oldest and southern 

most site from Clovis 

era. 

El Fin del 
Mundo, Sonora 

(Sanchez et al., 
2014) 

26,500 - 19,000 Stone tools Oldest Pre-Clovis era 

site  

Chiquihuite 

cave, Zacatecas 

(Ardelean et al., 

2020) 
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Thesis structure 
 
Chapter 1 introduces the impact of research involving ancient DNA studies in our 

knowledge of ancient populations. It also highlights the growth of human and archaic 

hominin genomes thanks to the evolution in sequencing techniques and lower costs. 

This chapter also describes the problem and motivation that led to this project.  

 

Chapter 2 includes a description of preliminary concepts to understand the project 

and a review of different statistical techniques that have been used for genomic 

analysis.  

 

Chapter 3 and 4 contains the hypothesis and the objectives of this project, 

respectively. 

 

Chapter 5 describes the methods that I followed to test the hypothesis and fulfill the 

objectives from chapters 3 and 4. The methodology is based on a shell script pipeline 

that will simulate ancient and modern-day DNA samples. It will also be the main 

vehicle to infer their joint site frequency spectrum and the divergence time between 

the two populations. 

 

Chapter 6 presents the results obtained after following the methodology presented 

in chapter 5. This chapter also includes an analysis of these results.  

 

Finally, in chapter 7 we describe the conclusions of this project. 
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Background 

General concepts 
This section introduces definitions that are relevant to this research project, 

assuming that most readers are not familiar with terminology related to genomic 

studies.  

DNA sequencing 
The nucleotide bases in DNA samples can be determined by a process called 

sequencing. In a human DNA strand, there are four possible nucleotides: A, C, G 

and T representing adenine, guanine, cytosine, and thymine respectively. After 

sequencing, this genomic information is presented as a list of letters (nucleotide 

bases) in a specific order. To establish the correct base, it is necessary to sequence 

a region multiple times and obtain several reads. The reads obtained after 

sequencing are compared with a reference. The average number of reads that align 

with the same base in a particular position is the coverage. A high coverage helps 

to determine confidently the bases of a DNA strand. To sequence a human whole 

genome, a coverage of 30× - 50× per base pair is recommended (Illumina, 2021a) 

(Figure 7). 

 

  

 
Figure 7.- Example of sequencing reads alignment and the depth. 
The average depth across every position of the genome is the coverage of the sample. A 
coverage of 30× or more is recommended to correctly infer the genotype present in each 
position of a human genome. 
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Site Frequency Spectrum 

The unfolded allele frequency spectrum or unfolded site frequency spectrum (SFS) 

represents the number of genomic positions that contain a certain number of derived 

alleles in a particular sample. The alleles are the nucleotide bases that are present 

in a sample of individuals for each position of the genome. The possible bases in 

each position of the genome are adenine, thymine, guanine, or cytosine. 

Segregating sites are the places in the genome where the bases differ between 

samples. The ancestral allele is determined by the ancestral state, present in the 

most recent common ancestor of all the samples collected for that particular 

segregating site (Nielsen & Slatkin, 2013). The derived allele is the other possible 

base that is not present in the ancestral state. If the ancestral allele is known it is 

possible to calculate the unfolded SFS, which is the frequency distribution of the 

positions with a certain number of derived alleles in the segregating sites of a given 

sample.   

For example, given the following samples and ancestral state from the same 

population:  

The segregating sites are used to estimate the allele frequency spectrum: 



 14 

Since the ancestral state is available for this population, then the unfolded site 

frequency spectrum can be represented with a histogram (Figure 8). 

 
Figure 8.- Unfolded Site Frequency spectrum. 
This unfolded sfs summarizes the segregating (different) sites compared to the ancestral state 
provided for the samples presented above. The number of derived alleles counts how many samples 
have a different nucleotide base (represented by letters A, C, G and T) to each position in the 
ancestral state. The Unfolded sfs graph shows the number of times the derived alleles have a count 
of 1, 2, 3, 4 or 5. For example, the first orange bar shows that there are 3 sites where the number of 
derived alleles is 1.   
 
 
If the ancestral state is unknown, using the same samples from above, the site 

frequency spectrum can count the minor allele frequencies for all segregating sites: 
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See Figure 9 for the graphic representation of the folded sfs for these samples. 

 

 
Figure 9.- Folded site frequency spectrum. 
This folded sfs represents the number of segregating sites which have specific number count of minor 
(less frequent) alleles for the samples presented above. For the unfolded sfs, all the samples are 
compared between them. From the sites that have differences, the alleles that have less quantities 
are the ones counted. In the graph, the first purple bar shows that there are 3 sites where the number 
of minor alleles is 1. 
 
 
 

Joint site frequency spectrum 
The previous examples showed the allele frequencies for samples from the same 

population. However, to compare more populations, a joint frequency spectrum is 

needed. The 2D joint frequency spectrum represents the proportions of derived 

(unfolded) or minor (folded) alleles between populations. For two populations, it can 

be represented by a heat diagram. For more populations, it can be challenging to 

visualize it.  

To build an unfolded joint frequency spectrum, two or more samples are compared 

to their ancestral state. The number of derived alleles is counted for each population 

(Figure 10).  
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Figure 10.- Comparison of samples from two different populations to an ancestral state. 
Each of the samples is compared to the ancestral state to determine the number of derived alleles 
for each segregating site. This process is the same as the one shown previously for the unfolded sfs 
for one population. The difference is that the results will be compared between populations. 
 
 

 

 

Table 3 summarizes the number of segregating sites according to frequencies 

between the two populations. The most common representation for two populations 

is a heat map instead of a table (Figure 11 and 12). Heat maps provide visual 

representations between different demographic scenarios (Figure 13). 
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Table 3.- Comparison of derived allele frequencies between populations. 
This table shows the segregating site number with a certain derived allele count. For example, the 
first row shows the number of segregating sites in which population 2 has 0 derived alleles and the 
number of segregating sites in which population 1 has 0, 1, 2, 3, 4, or 5 derived alleles respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

This heatmap shows the unfolded joint frequency spectrum from the samples presented above for 
Population 1 and 2. Each square shows the number of sites in which Population 1 has a specific 
number of derived alleles compared to Population 2 and vice versa. The axes show the number of 
alleles for the specified population. The heatmap represents numbers with different colors to visually 
identify them easily 

 
 
 

Figure 11. - Joint site frequency spectrum for two populations from example. 
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Figure 13.- Expected joint site frequency spectra for different evolutionary scenarios.  
(Figure taken from Sousa & Hey, 2013). These jsfs have a different distribution according to the 
migration patterns between two populations. In a), the evolution between two populations occurred 
with them being isolated from each other. Therefore, there is little or none geneflow between them. 
The other scenarios, have more geneflow. 

Figure 12.- Joint frequency spectrum for two populations. 
Usually, joint site frequency spectra are more complex than the one shown from the previous 
example. This heatmap is an example of a more common situation when the samples are much 
larger (Figure taken from Noskova, Ulyantsev, Koepfli, O’brien, & Dobrynin, 2020). There are 
multiple colors in the diagram and must have a scale of values to interpret them. The values in the 
heatmap represent the number of derived alleles. 
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All representations of the site frequency spectrum (folded site frequency spectrum, 

unfolded site frequency spectrum, joint unfolded site frequency spectrum and joint 

folded site frequency spectrum) can be used to infer past population history as in 

Excoffier et al (2013). The main idea of the methodologies that use the site frequency 

spectrum to infer past population history is to find the past history that produces 

genetic data with a site frequency spectrum similar to what is seen in the analyzed 

data. In my thesis I will use a folded site frequency spectrum between two 

populations (an ancient population and a modern population), which creates a matrix 

stating the number of positions with i copies of the less frequent allele in the ancient 

population and j copies of the less frequent allele in a modern population. 

 

Hardy-Weinberg Equilibrium 
The Hardy-Weinberg equilibrium model is based on the assumption that individuals 

mate with each other randomly in a population. The outcome is that the genetic 

variation will remain constant across generations. If the allele frequencies are equal 

among the population and there are only two alleles possible in a site, then the 

probability of having a specific genotype is the same as having a random 

independent experiment, such as flipping two equal coins.  

If there were only two possible alleles, A and a for a specific locus, the 

possible genotypes would be AA, Aa and aa. If the probability of having an allele A 

is denoted by 𝑝(𝐴) 	= 	𝑝 and for allele a by 𝑝(𝑎) 	= 	𝑞. Considering all the possible 

genotypes then: 

𝑝! + 2𝑝𝑞	 +	𝑞! = 	1	
	

There are several factors that disrupt genetic equilibrium. Some of the causes 

include inbreeding, natural selection, mutations, genetic flow between populations, 

non-random mating, and population structure (Mayo, 2008). The Hardy-Weinberg 

equilibrium is an ideal model, frequently used as a starting point for other models. 

Disruptions in the Hardy-Weinberg equilibrium changes the site frequency spectrum 

which, in turn, changes the estimates of past population history. 
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Divergence time 
Divergence is when a population splits into two or more populations (Nielsen & 

Slatkin, 2000). The original population is referred to as ancestral. One main 

parameter of interest in a divergence model between two populations is the 

divergence time. The divergence time is the estimated time from the split to the 

present, and is commonly expressed in number of generations, rather than years 

(Edwards & Beerli, 2000). 

The divergence time is useful for understanding the origins of populations 

over the world and the evolution of humans. The study of Neanderthal fossils in Sima 

de los Huesos site in Spain, concluded that Neanderthals and modern humans had 

a much larger divergence time than previously thought. The new estimated time is 

between 550,000 and 765,000 years ago (Gómez-Robles, 2019). Previous 

estimations determined the divergence time to be between 260,000 years ago to 

350,000 years ago (Schlebusch et al., 2017). 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 14.- Divergence of an ancestral population split into two populations 
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Review of statistical analysis methods 
Research based on DNA samples has several steps such as extraction, sequencing, 

pre-processing, and analysis. There have been considerable advances for each of 

these stages. This review focuses on the analysis based on samples that have been 

either already sequenced or simulated using software programs.  

 

Genotype callers based on Bayesian probability models 
After a DNA sample is sequenced, the base of each site is called with a quality score 

based on the sequencing error rate. Then, the sequence is aligned to a reference 

genome and recalibrated. Two important processes take place afterwards. The first 

one is SNP calling, the process of determining which sites have a different allele 

from the reference sequence. The other one is genotype calling, the establishment 

of a genotype. Human beings are diploid, meaning that cells have paired 

chromosomes, one from each parent. Genotypes are the two alleles contained at a 

specific genomic site.  

Genotype calling for ancient DNA on raw data is difficult because most have 

low coverages. Older genotype callers require coverages higher than 20× and very 

high-quality scores (Nielsen, Paul, Albrechtsen, & Song, 2011), making them 

unsuitable for ancient sample analysis. Another theoretical framework to perform 

genotype calling is to use genotype likelihoods. Genotype likelihoods use the Bayes' 

Theorem to determine which genotype has the highest probability at a site. The 

genotype likelihood can be represented as 𝑝(𝑋"|𝐺), where Xi are the alleles read at 

a site for all individuals and G is a genotype. The highest probability 𝑝(𝑋"|𝐺) will 

determine the more probable genotype at that position.  

BCFtools is one of the most used genotype callers based on genotype 

likelihoods. BCFtools is part of the SAMtools package (H. Li et al., 2009), used in 

this research project for data alignment. BCFtools calculates genotype likelihoods 

considering the possible alleles in each position, qualities of the reads and base 

calling, and errors during alignments. The package determines the genotype based 
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on the genome with the highest probability assuming Hardy-Weinberg equilibrium 

(Danecek et al., 2021). Other software packages that use genotype likelihoods for 

genotype calling that are commonly used are SOAP2 (R. Li et al., 2009) as well as 

the Genome Analysis Toolkit (GATK) (McKenna et al., 2010) and. Correct genotype 

calling on ancient samples is challenging due to their low coverage (Figure 4) but is 

always used with modern samples. In ancient samples it is common to only sample 

one allele from each position in the genome based on one read and use that 

information to perform further analysis. In this work we will assume that the ancient 

DNA information is perfectly known and see if the inferences are perfectly known 

instead of relying on information from one read in each position of the genome which 

could give imperfect inferences.  

Methods for structure analysis 
Population structure occurs when individuals located in places where a geographical 

division exists, such as remote islands or mountains. Individuals located in these 

areas are more likely to mate, creating subgroups with different levels of genetic 

similarity within the main population. (Novembre & Ramachandran, 2011). These 

subgroups can be used to define the populations that will be used for demographic 

analysis and inferences of parameters such as the divergence time. There are two 

main approaches to analyze population structure, Principal component analysis 

(PCA) and Admixture proportion inference. 

Structure (Pritchard, Stephens, & Donnelly, 2000) is a software based on the 

Pritchard-Stephens-Donelly model for Admixture proportion inference that uses a 

Bayesian clustering method to infer the proportions of the genomic data that belong 

to K predefined ancestral clusters. A cluster represents a population, and each 

population has a set of allele frequencies by locus. Individuals are given a 

percentage that represents how much of their genome comes from each of the 

populations (Figure 15). The genotypes are observed from the individual's data while 

the source population and the population allele frequencies are inferred from a 

probabilistic distribution. The exact probability distribution is difficult to obtain, 
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therefore, approximations of samples are found using Markov chain Monte Carlo 

(MCMC) methods (Pritchard et al., 2000). 

FRAPPE and ADMIXTURE are other approaches for admixture proportion 

inferences are FRAPPE and Admixture (Tang, Peng, Wang, & Risch, 2005; 

Alexander, Novembre, & Lange, 2009). Both software programs calculate population 

allele frequencies and proportions from K populations. Instead of sampling using 

MCMC method they use maximum likelihood, speeding the processing times. 

FRAPPE uses an Expectation-Maximization (EM) algorithm (Tang et al., 2005). 

ADMIXTURE implemented a block relaxation algorithm and a quasi-Newton 

acceleration of convergence to yield accurate results in less time than structure 

(Alexander et al., 2009). Figure 16 shows an example of an ADMIXTURE run for 

938 unrelated individuals form different regions and K = 6 populations. 

A popular method to analyze population structure is principal component 

analysis (PCA). This method reduces the genomic information down to a set of 

meaningful components. The genetic information of a set of individuals, which is 

represented as a large matrix where the rows are the genomic information of each 

individual and the columns are genetic markers such as SNPs. The reduction of data 

is done by calculating the eigenvectors and eigenvalues of the covariances of the 

columns and then finding the most significant components. The result is the 

generation of coordinates for visual representation (Novembre & Ramachandran, 

2011). Populations with lower levels of admixture are usually clustered in a specific 

location. Admixed individuals are located in areas between the clusters. PCA was 

first introduced by Menozzi et al. (1978). Subsequently, SMARTPCA, a software 

package based on the Cavalli approach for fast and precise results was developed 

by Patterson et al. (2016) (Figure 17). 
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The bars show proportions of the individual's genomic data associated with clusters representing 
populations. The results are useful to determine if there is substantial evidence of structure in the 
samples. For each individual, there is a vector of length K describing the proportions of their genetic 
ancestry. Given the observed genetic information, a matrix with these vectors is inferred using 
software programs with admixture proportion inference models 

 
 
 
Figure 16.- Example of admixture proportions using ADMIXTURE (Figure taken from Liu, 
Shringarpure, Lange, & Novembre, 2020). 
(A) Admixture proportions obtained from ADMIXTURE software run using 938 samples from 
unrelated individuals. Each bar represents an individual and the admixture proportion from 6 
populations. (B) This diagram is a plot from the same run form (A) using pong (Figure taken from 
Behr, Liu, Liu-Fang, Nakka, & Ramachandran, 2016), a visualization tool. The samples are organized 
by region and by level of admixture. 
 

Figure 15.- Admixture proportions in sampled individuals. 
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Figure 17.- SmartPCA plot from three East Asian Populations (Figure taken from Patterson et al., 
2006). 
This is an example of a plot from the two first eigenvectors for population samples from Thailand, 
China, and Japan. The circled area shows some admixture from Japanese samples. Samples from 
Thailand are more dispersed as they present more gene flow with the Chinese population. Japanese 
and Chinese samples are clustered a lot closer.  

 
Useful statistics to analyze past demographic history 
Apart from the site frequency spectrum, there are other statistics that can be used 

to perform demographic inferences that I will mention here. The D-statistic is one of 

those statistic and can be used to develop a method to determine if there is 

admixture between individuals from different species. To calculate if samples from 

different populations share gene flow, it is necessary to have 4 samples from 

populations with a tree-like relationship (Green et al., 2010). Two of the samples (H1 

and H2) are from populations from the same species. The third (H3) and fourth (H4) 

population samples must have a more distant relationship with H1 and H2 (Figure 

18A). Green et al. (2010) introduced D-statistics to determine if there was admixture 

between Neandertals and present-day individuals from different geographic areas 

(Figure 18B). 
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Figure 18.- Samples in a population tree for D-statistics. 
(A) H1, H2, H3 and H4 are samples with different levels of relatedness and are used to calculate D-
statistic. D can detect geneflow between H1 and H3 or H2 and H3 (depicted in the diagram). H4 is 
an outgroup, or a species very far related with the rest of the samples. T2, T3 and Tgf is the time passed 
since these species separated (Figure taken from Zheng & Janke, 2018). (B) (Figure taken from 
Slatkin, 2016) This population tree represents the model that Green et al. (2010) used to prove 
admixture between Neandertals and humans. N and C were samples from Neanderthal and 
Chimpanzee while H1 and H2 were samples from modern-day populations from different geographic 
areas. The analysis included comparisons between populations from Asia, Europe, and Africa.  
 
 

Using samples with the structure shown in Figure 18A, we calculate 

𝐷(𝐻1,𝐻2, 𝐻3, 𝐻4)	to determine if there is gene flow between H1 and H3 or H2 and 

H3. For diploid individuals (such as humans and hominins), from the two alleles at 

each site, one is randomly chosen and later used for counts. H4 is the outgroup 

population and determines the ancestral allele. Equation 2 shows the formula to 

calculate D. For example, to determine if there was admixture between H2 and H3, 

NABBA would be site number where H1 and H4 have an ancestral allele and H2 and 

H3 have a derived allele. Therefore, NBABA would be the site number where H2 and 

H4 have an ancestral allele and H1 and H3 have a derived allele. If there had been 

no admixture between H3 and both H1 and H2, then 𝐷(𝐻1,𝐻2, 𝐻3, 𝐻4) is expected 

to be zero. If there was admixture between H3 and H2, then D would be positive 

(Slatkin, 2016).  

 

𝐷(𝐻1,𝐻2, 𝐻3, 𝐻4) =
𝑁#$$#(𝐻1,𝐻2, 𝐻3, 𝐻4) − 𝑁$#$#(𝐻1,𝐻2, 𝐻3, 𝐻4)
𝑁#$$#(𝐻1,𝐻2, 𝐻3, 𝐻4) + 𝑁$#$#(𝐻1,𝐻2, 𝐻3, 𝐻4)
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F-statistics are methods used to quantify genetic drift in a population 

phylogeny (population tree). Reich et al introduced these measures to study Indian 

populations and their relationship to two local ancient populations. Patterson et all 

summarized f-statistics and introduced ADMIXTOOLS, a software package that 

incorporates these and other methods for admixture analysis. 

There are four f-statics, f2, f3 and f4. f2 measures the time separating two 

populations. It is defined as the average cross loci of (a - b) where a and b represent 

allele frequencies on populations A and B (Slatkin, 2016). The expected value of f2 

(A, B) can be calculated as: 

 

𝐹!(𝐴, 𝐵) = 	𝐸[(𝑎 − 𝑏)(𝑎 − 𝑏)]	
 

𝐹!(𝐴, 𝐵) = 𝐸[(𝑎 − 𝑏)!]	
 

f3 is a three-population test that can provide unambiguous evidence of 

admixture and quantify genetic drift using an outgroup (Orlando et al., 2021). For the 

SNP allele frequencies of the A, B and C populations, calculating the average of (c 

- a) (c - b) over SNPs, would result in a negative value if population C is admixed 

from A and B (Reich, Thangaraj, Patterson, Price, & Singh, 2009).  

 

The expected value of f3 (C; A, B) to test admixture of C from A and B would be: 

 

𝐹%(𝐶; 𝐴, 𝐵) 	= 	𝐸[(𝑐 − 𝑎)(𝑐 − 𝑏)]		
 

f4 is a four-population method that measures the length of the branch that 

connects two pairs of populations. In Figure 19, F4 is the estimation of the length of 

the red branch connecting populations A and B with C and D.  
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Figure 19.- Population tree to illustrate branch (Figure taken from Peter, 2016). 
f4 represents the red branch that connects populations A and B with C and D. The branches on each 
side don't need to be symmetrical, as depicted on the figure. 
 

The estimated value of f4 is the average of the SNP allele differences: 

 

𝐹&(𝐴, 𝐵; 𝐶, 𝐷) 	= 	𝐸[(𝑎 − 𝑏)(𝑐 − 𝑑)]		
 

f4 is also used to calculate the ancestry proportion for admixed populations. 

Figure 20 also includes visual examples and calculations of F2, F3, and F4 for the 

phylogenies shown. 
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Figure 20.- Calculations of f-statistics (Figure taken from Patterson et al., 2012). 
Each of the examples shows the procedures to calculate f2, f3, f4, and α for the given population 
trees. The procedures take all the possible routes to get from one point to the other. 
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Another statistic commonly used to analyze past population demography is 

Wright's FST. In nature it is common to have some population structure because 

individuals that live close by have a higher probability to mate (Nielsen & Slatkin, 

2013). Wright's FST is the most common measure for quantifying population 

differentiation within and among populations due to genetic structure. FST represents 

the allele correlation within a subpopulation compared to the whole sample 

(Holsinger & Weir, 2009). A FST value < 0.05 means that there is negligible or no 

differentiation between populations. In contrast, FST > 0.25 implies very great 

differentiation (Wright, 1951). A drawback of calculating FST values is that the 

definition in Wright's paper is ambiguous. FST is defined as the allele correlation of 

from one population compared to the whole sample. However, different sources 

interpreted the "total population" in various ways (Cockerham, 1969; Nei, 1973), 

leading to confusion about the correct estimation of FST. Bhatia, Patterson, 

Sankararaman, & Price (2013) clarified how to calculate FST and gave some 

guidelines. 

Simulation and inference methods 

Researchers working with ancient DNA face several challenges, as described in the 

introduction. Simulations provide an important aid for research on theories and 

techniques involving genetics.  Simulation tools can simulate large number of DNA 

samples and countless demographic scenarios. Kelleher and Lohse (2020) highlight 

the importance of comparing observed and simulation results and describe it "as an 

important sanity check for both".  

This project relies on simulation software heavily as it is a necessary step to 

prove the utility of the method before using real data. This section describes three 

software tools: msprime, ANGSD and fastsimcoal2. msprime and fastsimcoal2 were 

used for simulations and inferences in this project. The method section has detailed 

information of their use. 
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The coalescent model was introduced by Kingman (Kingman, 1982) to 

describe the genealogical history of a sample. It is commonly used to simulate 

different population scenarios for data analysis and population parameters 

inferences (Rosenberg & Nordborg, 2002). The coalescent process consists in 

determining the closest ancestor of a group of samples in previous generations. 

When two lineages meet, it is called a coalescent event. If a sample has n 

individuals, then there are n - 1 coalescent events. All lineages meet eventually, 

finding the most common ancestor (MRCA) for the individuals in the sample 

(Wakeley, 2009) (Figure 21).  

 

 
Figure 21.- Principle of the coalescent model (Figure taken from Rosenberg & Nordborg, 2002). 
a) Genealogy for a population of ten individuals. Highlighted in black is the sample genealogy of n = 
3, in each past generation the ancestors are depicted with a blue circle. In this case, all the samples 
coalesce 7 generations ago. b) Coalescent genealogies are commonly graphed as a simple tree 
showing only the coalescent events. The two upper branches meet at the MRCA defined as the most 
recent common ancestor. Here T2 and T3 are times between coalescent events. 
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msprime is a Python library that simulates genealogies using the coalescent 

model. It can simulate large quantities of data using different demographic scenarios. 

The main advantages are high customization level, very efficient processing, and the 

integration with other software tools for genomic analysis. msprime simulates the 

ancestral history as coalescent trees (Figure 22). The results of these simulations 

are expressed in a data structure called succinct tree sequence (Kelleher & Lohse, 

2020). Succinct tree sequences provide full ancestral histories with compact data 

storage (Kelleher, Etheridge, & McVean, 2016). 

 

 
Figure 22.- Simulation of coalescent tree using msprime. 
This coalescent tree shows branches of different lengths, depicting their generation. The samples at 
the lowest level (0-4) are present-day, while samples 5-7 are from a previous generation. Numbers 8 
- 14 are coalescent events. Number 14 represents the most recent common ancestor. 

 
 

ANGSD stands for Analysis of Next Generation Sequencing Data, a software 

tool for population genetic data analysis. It can make error estimates, calculate 

different summary statistics, D-statistics, genotype likelihoods and call SNPs and 

genotypes among other population estimators. An important feature of ANGSD is 

the capacity to estimate the SFS (site frequency spectrum) and the joint site 
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frequency spectra for two or more populations (Korneliussen, Albrechtsen, & 

Nielsen, 2014).  

A two-population joint site frequency spectrum (2D-SFS) contains the site 

number with specific counts of derived alleles in both populations. The frequencies 

are the elements of a matrix (2𝑛' + 1) 	×	(2𝑛! + 1)	, where 𝑛' and 𝑛! are samples 

of individuals from population 1 and 2 respectively. The matrix structure can be 

expressed as: 

γ	 = 	

⎝

⎜
⎛

𝛾(( 𝛾(' ⋯ 𝛾(!)! 𝛾(!)!*'
𝛾'( 𝛾'' ⋯ 𝛾'!)! 𝛾'!)!*'
⋮ ⋮ ⋮ ⋮ ⋮

𝛾!)"( 𝛾!)"' ⋯ 𝛾!)"!)! 𝛾!)"!)!*'
𝛾!)"*'( 𝛾!)"*'' ⋯ 𝛾!)"*'!)! 𝛾!)"*'!)!*'⎠

⎟
⎞

 

 

For example, if 𝛾'( 	= 	3, then there are three sites where population 1 samples have 

1 derived allele and population 2 has zero. 

The calculation of a 2D-SFS based on low or medium coverage NGS data is 

likely to be biased, based on analysis of a 1D-SFS (Han, Sinsheimer, & Novembre, 

2014). Instead, ANGSD uses a maximum likelihood approach to infer the SFS which 

is a matrix 𝛾. The likelihood for a site s given the SFS 𝛾 is: 

𝐿(𝑋	|	𝛾) 	= 	M𝐿(𝑋+	|	𝛾) 	= 	MN N 𝛾", 	𝑝(𝑋+'|𝐷' = 	𝑖)	𝑝(𝑋+!|𝐷! = 	𝑗)
!)!

,	.	(

!)"

"	.	(

/

+	.	(

/

+	.	(

 

 
Where 𝑝(𝑋+'|𝐷' = 	𝑖) is the likelihood of having the sequencing data 𝑋+' in the site s 

in population 1 given that there are i derived alleles in population 1 (Korneliussen, 

Moltke, Albrechtsen, & Nielsen, 2013). The maximum likelihood value of 𝐿(𝑋|	𝛾)	is 

found via an expectation-maximization algorithm (Korneliussen et al., 2014). In 

ancient samples with a low coverage, the use of ANGSD is preferred to correctly 

estimate the site frequency spectrum. In this project, we will assume that the site 

frequency spectrum is estimated perfectly, and we will focus the work on the power 

of this statistic to estimate past demographic history. 
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fastsimcoal2 is a software program that uses a site frequency spectrum 

(SFS), to estimate demographic parameters of a given demographic model. 

fastsimcoal2 also uses the coalescent model and can make estimations for various 

demographic scenarios. Given an SFS, it estimates the expected SFS using a 

composite likelihood method. Demographic parameters are inferred from the 

estimated SFS (Excoffier et al., 2021). For a single population with a sample size of 

n and a SFS equal to 𝑋	 = 	 {𝑚', ⋯	,𝑚)0'}, the composite likelihood of a given model 

with its set of parameters 𝜃 is: 

 

𝐶𝐿	 = 	𝑃𝑟(𝑋|𝜃) ∝ 𝑃(102(1	 − 𝑃()2 	M 𝑝̂"
3#

)	0'

"	.	'

 

 

 

𝑋 is the data 

S is the polymorphic site number,  

L is the number of positions analyzed 

P0 is the probability of a site displaying no variation. 

𝑝̂" is the estimated probability of a given derived allele frequency i 

 

The composite likelihood can be extended for more populations. For a joint SFS for 

two populations, as used in this work, the estimation is done using the following: 

𝐶𝐿'! ∝ 𝑃(102(1	 − 𝑃()2MM𝑝̂",
3#$

)!

,.	(

)"

"	.	(

 

Both 𝑝̂" and 𝑝̂",3#$ are calculated via a large number of simulations (100,000 in this 

work) under a particular demographic model that contains a certain set of 

parameters  𝜃. 

fastsimcoal2 uses a greedy algorithm to maximize its likelihood. The algorithm starts 

at a random set of values for the parameters and tries to optimize the values of the 

parameters given the starting set of values for the parameters. The starting set of 

values for the parameters determines the local optima set of values for the 
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parameters. In practice, you must start at many different points and then keep the 

parameter values where you reached a higher likelihood value. In my work I started 

from 100 different parameter values and picked the parameter values where the 

likelihood had a highest value as my estimate for the parameter. In each run, the 

parameter values are optimized using a conditional maximization algorithm where 

we used 40 cycles of optimization as recommended by the authors (Excoffier et al., 

2013).   
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Hypothesis 

The joint site frequency spectrum (jsfs) is a statistic that provides useful information 

to infer demographic parameters. This statistic will be sufficient to infer the 

divergence time between populations, an important demographic parameter to 

understand the relationship between different populations. 

A two-population (2D) joint site frequency spectrum from ancient and modern 

genomic samples from the same region will allow us to infer an unbiased divergence 

time between those populations. 

Objectives 

● To analyze if the joint site frequency spectrum contains sufficient information 

to make inferences of demographic history, particularly of the divergence time 

between populations. 

. 

Specific objectives 
● To determine if the number of samples plays a role in the correct inference of 

the divergence time. 

● To compare the joint site frequency spectra obtained in simulations with 

different sample sizes and divergence times between populations          . 
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Methods 

Pipeline overview 
We developed a Bash pipeline to analyze if the joint site frequency spectrum 

contains sufficient information to infer the divergence time, a demographic parameter 

that is of high interest in the studies of aDNA. Our bash pipeline calls several Python 

and Shell scripts. It also uses previously developed software that is commonly used 

for genomic data research. The main software tools used are msprime, Seq-Gen, 

and fastsimcoal2. msprime, developed by Kelleher & Lohse (Baumdicker et al., 

2022; Kelleher & Lohse, 2020), is a very efficient coalescent simulator that uses the 

coalescent model to generate a set of coalescent trees that reflect the relationships 

between a set of genomes. msprime was used to simulate ancient and modern 

genomic samples. Then, Seq-Gen uses the coalescent trees to generate a genomic 

region with nucleotide bases for both the present day and ancient samples (Rambaut 

& Grassly, 1997). Then, we developed a python script to estimate the jsfs, which is 

a highly informative summary statistic that is applied to infer the past demographic 

history of many samples. Finally, we used fastsimcoal2 (Laurent Excoffier et al., 

2021) to estimate the divergence time of two populations using the jsfs calculated 

before. 

 

Computational Pipeline 
The process consists of several steps that are represented in Figure 23 and are 

described in the following sections.  

 

 
Figure 23.- Methods stages 
The diagram shows the main stages that represent the steps to implement the proposed method.  
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Sample simulation 
The samples are generated using two python scripts. The first one is a user 

customizable script in which it is possible to create different demographic scenarios. 

Some of the input variables that are possible to modify are: effective population size, 

sample number, the sequence length, recombination rate, mutation rate, number of 

modern samples, number of ancient samples and time difference between the 

modern and ancient samples. The second python script calls the first one to use it 

as input for sample simulation.  

The main reasons to use simulated samples are, to tailor them for a specific 

scenario and to be able to know their precise contents. For this project, we simulated 

scenarios in which we varied two variables, time of divergence and number of 

ancient samples (Table 4).  

The times of divergences are 0, 288 and 600 generations ago. The generation 

time is approximately 25 years. Time of divergence = 0 is when the ancient and 

modern samples are from the same population. The second case, Time of 

divergence = 288 generations ago is approximately 7,200 years of divergence 

between the population of the modern samples and the population of the ancient 

sample. This divergence time has previously been estimated as the split time 

between some northern and southern ancient populations from Mexico (Ávila-Arcos 

et al., 2020). The last time of divergence I used was 600, used for populations that 

split 15,000 years ago. This is an estimation of the divergence time between northern      

and southern North American populations (Moreno-Mayar, Vinner, et al., 2018). The 

ancient sample comes from 20 generations ago (500 years) in all the simulations 

performed. 

The simulation script takes the parameter inputs and uses msprime to 

simulate coalescent trees that represent possible genealogies in a particular region 

based on the given values. After obtaining the trees, the Seq-Gen program converts 

the coalescent trees into sets of nucleotide sequences in a region and delivers them 

in FASTA format files (Rambaut & Grassly, 1997). FASTA format is a text file that 

contains letters representing the four possible bases that form DNA (Figure 24).  
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Table 4.- Simulation scenarios for different sample sizes and divergence time 
Scenario Time of 

divergence 
Number of ancient 
diploid samples  

Number of modern 
diploid samples 

Outputs 

0 0 5 30 10 ancient sequences 
60 modern sequences 

1 0 25 30 50 ancient sequences 
60 modern sequences 

2 0 50 30 100 ancient sequences 
60 modern sequences 

3 288 5 30 10 ancient sequences 
60 modern sequences 

4 288 25 30 50 ancient sequences 
60 modern sequences 

5 288 50 30 100 ancient sequences 
60 modern sequences 

6 600 5 30 10 ancient sequences 
60 modern sequences 

7 600 25 30 50 ancient sequences 
60 modern sequences 

8 600 50 30 100 ancient sequences 
60 modern sequences 

 
 
 

 
 
Figure 24.- Simulated DNS sequences in FASTA format 
Seq-Gen simulates the genomic sequences from the coalescent tree from msprime. Seq-Gen 
provides a file that contains letters that simulate the four nucleotide bases that can be present in a 
genome. 
 

 

Each of the simulated scenarios is run 100 times and each one is saved in a 

different file. The output of this step are sequences with 1,000,000 bases that 

represent the DNA samples of modern individuals and ancient individuals 

according to each scenario (Figure 25). 
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Figure 25.- Inputs/Outputs from sample simulation stage 
The input for the sample simulation script are the demographic parameters for a specific scenario. 
These are included in a separate Python script, exclusively used for input selection. The outputs for 
this process are the simulated DNA sequences that will be used to calculate the joint site frequency 
spectrum. 
 
 
Calculation of joint frequency spectrum (jsfs) 
The folded jsfs is calculated using a python script that counts the minor allele 

frequencies in a population for all the sites that have different alleles, also known as 

segregating sites. Each segregating site can have one of two possible nucleotide 

bases, which are added across all the sequences of a population. In this case, we 

will consider the modern samples one population and the ancient samples another 

population. The base with a lower count in each site in each population is the minor 

allele for that population in that site. 

The accumulated number of sites with minor alleles for the ancient and 

modern sequences is saved in a list. The list has the shape of a matrix m x n, where 

m is the chromosome number of the present-day samples and n is the chromosome 

number for the ancient samples. The matrix is the folded joint site frequency 

spectrum. The output from this stage (Figure 26) is a matrix that represents the 

folded joint site frequency spectrum from the given samples (Figure 27). This 

process is repeated for each scenario and each run. 

 

 
Figure 26.- Inputs/Outputs from calculation of joint site frequency stage 
The input for the sample simulation script are the simulated sequences representing ancient and 
present-day DNA samples. The output is the jsfs calculated from the sequences. The matrix is useful 
to provide a visual representation of the relationship between the samples provided.  
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Expansion of joint site frequency spectra 
The folded jsfs calculated in last step are for samples with 1,000,000 bases. This is 

a small number to make demographic analysis. Gronau, Hubisz, Gulko, Danko, & 

Siepel (2011) estimated ancestral population sizes, divergence time and migration 

rates from inferences using 37,574 regions of 1,000 nucleotide bases that are not 

affected by natural selection. Based on this number, we calculated 20 joint site 

 
Figure 27.- Example of a joint site frequency spectrum (jsfs) from a pipeline run. 
This matrix is the jsfs of the samples obtained from a simulation run. The number in each cell is the  
site number with a minor allele count. Here the rows have the counts for modern samples and the 
columns for ancient samples. Counts start at zero. Therefore, the first row are all the sites in which 
modern samples have 0 minor alleles and the number of segregating sites in which ancient samples 
have 0, 1, 2, 3, etc. minor alleles, according to the column. 
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frequency spectra for 38,000,000 bases by sampling with replacement all the 100 

jsfs found for each of the demographic scenarios (Figure 28).  

 

 
 
Figure 28.- Inputs/Outputs from Expansion of joint frequency spectra stage 
The inputs for the Perl script are the 100 jsfs calculated for each demographic scenario. Then they 
are sampled with replacement to generate 20 expanded jsfs of 38,000,000 bases each. The outputs 
are 20 expanded jsfs per scenario for the 8 demographic scenarios considered (check Table 4 to see 
the list of the eight demographic scenarios considered). 
 

 
Exploring differences in aspects of the expanded jsfs as a function of the 
divergence time and the sample size in the ancient population 
We calculated a set of small summary statistics from the 20 expanded jsfs 

produced for every demographic scenario. Those statistics are: 

- The number of nonvariable sites. Those are the sites in the expanded jsfs 

where there is only one allele present in the modern and the ancient 

population. 

- The number of differences between sites that contain an allele fixed in one 

population but variable in the other population between pairs of expanded 

jsfs. This is equal to: 

𝐷𝑖𝑓𝑓 =N |𝑆𝐹𝑆1(," − 𝑆𝐹𝑆2(,"|
#36789)	+:3;<8+

".'
 

𝐷𝑖𝑓𝑓 =N |𝑆𝐹𝑆1",( − 𝑆𝐹𝑆2",(|
#:)="8)>	+:3;<8+

".'
 

Where 𝑆𝐹𝑆1",, refers to the site number with i allele copies at a lower frequency in 

the ancient population and j copies of the allele at a smaller frequency in the 

modern population. 

- The difference number between two jsfs is: 

𝐷𝑖𝑓𝑓 =N N |𝑆𝐹𝑆1,," − 𝑆𝐹𝑆2,,"|
#:)="8)>	+:3;<8+

,.'

#36789)	+:3;<8+

".'
 

8 8 
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Inference of demographic parameters 
We analyzed if the joint frequency spectrum (jsfs) can be used to infer demographic 

parameters when employing ancient DNA data. We tested this using fastsimcoal2 

(Laurent Excoffier et al., 2021) which employs the joint site frequency spectrum to 

infer demographic parameters under any model. Particularly, we analyzed the 

inference of the divergence time for the 9 demographic scenarios. We particularly 

chose to analyze the inference of one demographic parameter of interest, the 

divergence time, based on data from the jsfs on the 9 demographic scenarios. In our 

analysis I compared how the number of samples and the time of divergence itself 

would impact the precision of the fastsimcoal inference. 

To infer demographic parameters using fastsimcoal2, we need to determine an 

evolutionary model scenario that fits best the data including a set of parameters 

according to a maximum likelihood approach. To do this, we ran the fastsimcoal2 

software with each expanded jsfs and the model template file 100 times. 

fastsimcoal2 uses a greedy algorithm to estimate the demographic parameters, that 

is why we need to run the software 100 times to find the best parameter estimate 

after running the program from 100 different starting points. The output of each run 

of fastsimcoal2 are the maximum likelihood estimates, the expected sfs from the 

demographic parameters that include the parameter values, and the parameter 

estimates.  We can compare the expected jsfs (input) vs the expected jsfs (output) 

visually to see the fit of the model (Figure 29). 

 

Each run of fastsimcoal2 employed the following parameters: 

./fsc2709 -t output0.tpl -n 100000 -e output0.est -M -L 40 -q -c0 -r $i --logprecision 

18 -m 

Where: “-t output0.tpl” represent the demographic model ran. In this case the 

demographic model represents two populations that became split at a certain 

divergence time that will be inferred. 
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“-n 100000” The number of simulations that will be used to create the expected SFS 

given the demographic model and a certain value for the parameters (in this case 

the only parameter is the divergence time). 

“-e output0.est” contains the list of parameters and its likely range. In this case it is 

only the divergence time, and we used a range of 0-10000 and that represents the 

values of the parameters that fastsimcoal2 can use. 

“-M” Infer the demographic parameter via a maximum likelihood approach. 

 “-L 40” Number of iterations used in the ECM optimization scheme adopted by 

fastsimcoal2. 

“-q” Do not print too many messages to the terminal. 

“-c0” Let fastsimcoal2 choose the best core usage scheme to run the program. 

“-r $i” random seed used, where different numbers of $i are used in each run. 

“--logprecision 18” number of decimal numbers used when running the program. 

“-m” use the folded site frequency spectrum to do the analysis. In this case, the joint 

folded site frequency spectrum will be used to perform the inferences. 

  

 

Figure 29.- fastsimcoal2 process to determine best model (Figure taken from a PowerPoint 
presentation by Meier and Joana) 
Genomic data are the DNA sequences that are summarized in the site frequency spectrum. The sfs 
and the evolutionary model is the input for fastsimcoal2. fastsimcoal2 infers an expected SFS. Both 
sfs are compared to determine the fit of the model. 
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Results 

Visualization of the jsfs as a function of the divergence time 
We inspected the form of the expanded folded joint site frequency spectrum (jSFS) 

and how it varies due to changes in the divergence time between a present-day 

population and an ancient population. As a first step, we visualized the expanded 

joint site frequency spectrum of one simulation made out of 38,000,000 base pairs 

for three different values of the divergence time when the sample size in the ancient 

population is equal to 5 individuals (or 10 chromosomes) (Table 5-7). The visual 

representation of the tables if helpful to analyze broad properties of the jsfs. First, 

we find that most of the sites in the jsfs are fixed for one allele in both populations in 

the jsfs generated with the three different divergence times. The number of sites with 

a 0 minor-allele count in the modern and ancient population is 37977079, 37976043 

and 37976043 under the simulations performed with a divergence time of 0, 288 and 

600, respectively. Note that the simulated positions number is 38000000. Therefore, 

the site number with a minor-allele count of 0 in the modern and ancient population, 

which we will define as nonvariable sites, accounts for approximately 99.9% of all 

the positions. 

Other elements of the jsfs appear to be variable as a function of the 

divergence time. As an example, when we count the number of positions where the 

less frequent allele appears once in the ancient population and is absent in the 

modern population, we see that this count is equal to 739, 1856, and 2835 in the 

simulations done with a divergence time equal to 0, 288 and 600 generations ago. 

This provides an additional line of evidence that the jsfs is sensitive to changes in 

the divergence time. Similar trends can be observed for other elements of the jsfs. 

In the next three sections I analyze how the number of nonvariable sites, number of 

sites fixed in one population but variable on the other population, and broad changes 

on the jsfs changes as a function of the divergence time and the sample number 

taken in the ancient deme. 
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Table 5.- Folded joint site frequency spectrum in a simulation of 38,000,000 bases using a divergence 
time of 0 generations between the modern and the ancient population 
Modern\Ancient 0 1 2 3 4 5 

0 37977079 739 39 5 0 0 
1 3804 525 88 9 0 0 
2 1566 607 111 15 6 3 
3 1013 515 100 26 0 2 
4 685 380 138 28 10 4 
5 426 452 129 34 14 1 
6 326 337 127 71 10 8 
7 211 235 231 66 17 6 
8 160 271 144 50 31 11 
9 141 218 168 71 28 7 

10 106 125 172 97 45 22 
11 58 158 135 101 45 22 
12 94 167 152 105 24 36 
13 52 143 176 117 50 22 
14 45 120 124 85 45 32 
15 43 100 100 118 86 35 
16 33 54 135 133 76 16 
17 17 67 111 97 124 34 
18 16 63 110 104 81 42 
19 16 42 100 116 95 45 
20 7 43 79 84 83 60 
21 5 32 75 104 64 71 
22 11 19 69 93 106 54 
23 1 19 54 111 131 106 
24 1 6 68 61 109 53 
25 5 11 22 68 99 66 
26 8 19 58 83 118 66 
27 11 23 48 98 98 75 
28 2 13 44 86 104 73 
29 2 22 37 112 104 48 
30 6 13 5 41 70 75 
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Table 6.- Folded joint site frequency spectrum in a simulation of 38,000,000 bases using a divergence 
time of 288 generations between the modern and the ancient population 
Modern\Ancient 0 1 2 3 4 5 

0 37976043 1856 375 108 30 2 
1 4183 261 116 62 34 2 
2 1947 235 63 72 20 3 
3 1270 272 130 52 30 8 
4 851 235 112 53 33 9 
5 602 191 146 80 33 19 
6 516 241 87 61 26 6 
7 361 186 113 65 41 5 
8 311 135 134 88 17 13 
9 211 172 109 31 41 14 

10 164 161 112 73 47 19 
11 144 128 144 64 31 13 
12 122 124 152 50 52 16 
13 95 81 104 68 44 36 
14 114 77 77 66 62 44 
15 58 92 115 58 68 38 
16 73 64 76 58 59 34 
17 97 71 50 77 69 41 
18 28 77 57 80 59 35 
19 27 50 95 73 55 30 
20 26 53 44 66 89 38 
21 21 38 55 101 58 39 
22 34 37 53 69 97 50 
23 30 37 49 64 101 37 
24 7 53 73 76 87 63 
25 6 26 70 71 101 48 
26 13 39 60 77 76 35 
27 11 26 53 46 82 28 
28 8 12 74 82 94 31 
29 4 15 56 34 55 47 
30 2 10 13 38 23 18 
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Table 7.- Folded joint site frequency spectrum in a simulation of 38,000,000 bases using a divergence 
time of 600 generations between the modern and the ancient population 
Modern\Ancient 0 1 2 3 4 5 

0 37973398 2835 844 291 117 34 
1 4587 123 95 39 29 11 
2 2005 141 97 73 30 9 
3 1347 157 107 51 61 19 
4 891 130 103 42 28 19 
5 626 133 119 54 48 22 
6 507 107 96 67 45 16 
7 454 76 75 70 51 34 
8 411 103 90 51 73 20 
9 320 135 94 63 50 28 

10 240 96 76 38 73 34 
11 220 117 136 69 61 23 
12 190 112 65 30 52 23 
13 165 99 66 53 68 66 
14 179 67 79 52 53 28 
15 111 75 48 40 84 21 
16 140 81 44 66 101 29 
17 111 92 54 90 86 30 
18 61 35 41 46 60 30 
19 47 52 66 71 122 30 
20 51 40 72 41 69 53 
21 60 76 56 63 75 42 
22 70 56 68 68 89 46 
23 49 52 47 60 62 29 
24 73 53 70 71 70 43 
25 46 55 70 66 88 58 
26 39 33 59 104 93 39 
27 42 39 74 60 55 39 
28 18 27 52 75 86 46 
29 48 43 49 56 94 25 
30 9 40 25 49 49 20 
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Number of nonvariable sites depending on the sample number and the 
divergence time 
The jSFS is composed of many elements, shown in a multidimensional matrix, that 

are jointly informative about past population demographic history. One of the 

informative elements in the jSFS is a cell in the matrix that counts the number of 

positions in the genome where the alleles are fixed in both populations. We will refer 

to these positions as nonvariable sites. In our simulations we analyzed the 

nonvariable site number depending on sample sizes and the past population 

divergence time. We found that the number of nonvariable sites decreases as a 

function of the sample size for the three divergence times analyzed (Figure 30). This 

result is congruent with coalescent theory which states that the branch length of a 

genealogy increases with the sample number (Wakeley, 2009). The increase in the 

branch length of the genealogies decreases the nonvariable site number since the 

mutation number on a sample is equal to the product of the genealogical branch 

length times the mutation rate. The nonvariable site number is equal to the positions 

analyzed minus the number of mutations in the individuals simulated.  

 

 

  

 

Figure 30.- Number of nonvariable sites depending on the sample size in the ancient population for 
a divergence time of A) 0 generations, B) 288 generations and C) 600 generations. 
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We also evaluated the impact of the divergence time on the number of nonvariable 

sites. We found that the number of nonvariable sites decreases as a function of the 

divergence time. This observation is also consistent with coalescent theory since an 

increased divergence time also increases the genealogy branch length. The 

increased genealogy branch length also increases the number of mutations, and this 

leads to a decreased number of nonvariable sites. This particular effect is observed 

for every sample size of the ancient population analyzed (Figure 31).  

 
Figure 31.- Number of nonvariable sites depending on the divergence time between the ancient 
population and the present day population for a sample size of A) 5, B) 25 and C) 50 individuals. 
 
 
Differences in position numbers on sites with an allele fixed in one 
population and two alleles present in the other population 
Another element of interest in the jSFS are the site number with a fixed allele in one 

population and two alleles seen in the other population. This particular component 

of the joint site frequency spectrum is interesting to analyze because it helps us to 

understand how the divergence time has an impact on the sites that are variable in 

only one of the two analyzed populations. We find that the sites with the allele is 

fixed in one population but there are two alleles in the other population are sensible 

to changes in the divergence time (Figure 32, 33). Particularly, we see clear 

differences when comparing the number of fixed positions in the modern population 

and variable in the ancient deme when comparing the jsfs generated with different 

parameters of the divergence time (Figure 32). We also see that important 

differences in the count of positions that are variable in the modern population and 
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fixed in the ancient population depending on the divergence time (Figure 33). These 

results provide additional evidence that there are components in the jsfs that vary as 

a function of our parameter of interest, the divergence time. This is important 

because we will use the statistic jsfs to perform inferences of the divergence time. 

 

 
Figure 32.- Differences between jsfs’ as a function of the divergence time and the sample size when 
analyzing fixed positions in the modern population and variable in the ancient deme. 
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Figure 33.- Differences between jsfs’ as a function of the divergence time and the sample size when 
analyzing positions that are variable in the modern population and fixed in the ancient population. 
 
 
 
Differences between the joint site frequency spectrum depending on the 
divergence time between populations 
 

Apart from the nonvariable site number and the fixed site number in one population 

but not the other one, we also analyzed if the jsfs is broadly sensitive to changes in 

the divergence time between an ancient and a present-day population. To do this, 

we used a metric that captures the number of differences between 20 jsfs generated 

with different divergence time values. We found that the jsfs display fewer 

differences when they are simulated under the same divergence time compared to 

simulations with a different value (Figure 34). The differences between the jsfs’ 

simulated with a different divergence time are important for demographic inferences, 
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since they indicate that this statistic is sensitive to changes in the divergence time 

parameter which should make this statistic useful for demographic inferences 

(Figure 34). Interestingly, the differences between jsfs become larger as the sample 

size increases (Figure 34). 

 
Figure 34.- Differences between jsfs as a function of the divergence time and the sample size 

 

Inference accuracy 
 

We found that the estimates of the divergence time were very accurate when the 

simulated divergence time was equal to 0 (Figure 35A). Note that estimates of the 

divergence time between 0 and 20 imply an accurate estimation of the divergence 

time since the ancient sample is taken from 20 generations ago. The modern 

lineages can not coalesce the ancient lineages until the ancient samples appear in 

the genealogy 20 generations ago and, therefore, the genealogies should be 
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identical under the coalescent model for any divergence time between 0 and 20. On 

the other hand, we found that the estimates were not as accurate when the 

divergence time was equal to 288 or 600 (Figure35B-35C). Interestingly, we found 

that the divergence time estimates were closer to the true values when the sample 

size increased for simulations done under a divergence time equal to 288 or 600 

(Figure 35B-35C). 

 
Figure 35.- Inferences of the divergence time depending on the sample size in the ancient population 
for 3 different sample sizes used in the ancestral population. 
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Conclusions 

The divergence time between populations is a parameter of high interest in 

population genetics because it informs us about the continuity between populations 

living in the present and in the past. If this parameter is equal to zero, it indicates 

that the populations are continuous and that the populations living in the present are 

direct descendants of a population living in the past. Higher values of this parameter 

show that the populations are more divergent from each other. In this dissertation 

we analyzed if this parameter could be inferred using the joint site frequency 

spectrum. Our results indicate that the joint site frequency spectrum is an informative 

statistic about the divergence time between two populations.  

First, we show that one statistic that is derived from the site frequency 

spectrum, the number of nonvariable sites, is negatively correlated with the 

divergence time and also with the sample size. This is an expected result that is 

congruent result with coalescent theory. The genealogical branch length increases 

with the divergence time and the sample size, and that should decrease the number 

of nonvariable sites which is what I find in my study. 

Second, we find that the joint site frequency spectrum displays differences 

when doing simulations under a different divergence time. This is an important point 

because this is the statistic that we use to perform inferences. Interestingly, the 

differences found are even largely increased when the sample sizes used become 

larger. 

We analyzed if the divergence time parameter can be estimated from the joint 

site frequency spectrum. We found that this parameter shows a slight 

underestimation bias when the divergence time is equal to 288 and 600 generations. 

Interestingly, the bias is decreased when the sample size increases. This indicates 

that the sample size should be considered when analyzing the power to estimate a 

demographic parameter of interest, such as the divergence time between 

populations. 
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The joint site frequency spectrum has been broadly used to infer past 

demographic events using software like dadi or fastsimcoal2 (Gutenkunst et al., 

2009; Excoffier et al. 2013). The inferences performed using the site frequency 

spectrum have been shown to give accurate results on various demographic 

scenarios (Adrion et al., 2020). However, the site frequency spectrum has been 

found to show an identical form for very different past demographic histories in some 

cases using only genomic information from modern populations (Myers et al. 2008). 

The use of the joint site frequency spectrum to infer past demographic history using 

jointly modern and ancient populations has not been carefully explored. Broadly, our 

results show that inferences of demographic parameters of interest using the joint 

site frequency spectrum when including ancient samples should be analyzed 

carefully. We suggest performing inferences under the sample size at hand to see if 

the demographic inferences of one demographic parameter in particular could be 

accurately estimated given our study design. Our results focus on the analysis of the 

divergence time, but other demographic parameters could suffer similar biases when 

performing inferences under the joint site frequency spectrum.  

Many ancient samples will be collected and sequenced in the near future and 

will help us gain important insights about out past population history. However, these 

inferences should be treated with care since they could be based on statistics that 

are not sufficient to accurately infer a demographic parameter of interest given the 

sample size available in the study at hand. Here we present an analysis focused on 

demographic inferences performed with the joint site frequency spectrum. However, 

these results could also be found with any other statistic since, in the end, all 

statistics of diversity are a function of the joint site frequency spectrum (Achaz, 

2008). Performing simulations that analyze the power to infer past demographic 

parameters under a particular study design at hand, with its sample sizes available, 

should be a crucial step in future analysis to evaluate if we have the necessary data 

to perform accurate inferences of past demographic history. 
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