

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

INTERCEPCIÓN DE LA VEGETACIÓN HERBÁCEA DE AMBIENTE SEMIÁRIDO Y SU EFECTO EN LA RELACIÓN INTENSIDAD-DURACIÓN-FRECUENCIA DE LA PRECIPITACIÓN

TESIS

Que como parte de los requisitos para obtener grado de:

MAESTRO EN CIENCIAS

(RECURSOS HÍDRICOS Y AMBIENTAL)

PRESENTA

ALVARO ALBERTO LÓPEZ LAMBRAÑO

DIRIGIDA POR: DR. ENRIQUE GONZALEZ SOSA

Santiago de Querétaro, Qro. México, Octubre de 2007

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE INGENIERÍA

INTERCEPCIÓN DE LA VEGETACION HERBACEA DE AMBIENTE SEMIARIDO Y SU EFECTO EN LA RELACIÓN INTENSIDAD-DURACIÓN-FRECUENCIA DE LA PRECIPITACIÓN

TESIS

Que como parte de los requisitos para obtener grado de:

MAESTRO EN CIENCIAS (RECURSOS HÍDRICOS Y AMBIENTAL)

PRESENTA

ALVARO ALBERTO LÓPEZ LAMBRAÑO

DIRIGIDA POR: DR. ENRIQUE GONZALEZ SOSA

SINODALES

Dr. Enrique González Sosa Presidente

Dr. Carlos Díaz Delgado Secretario

Dr. Eusebio Ventura Ramos Vocal

Dr. Nicolás Caballero Guerrero Suplente

M.I. Filiberto Luna Suplente

Dr. Gilberto Herrera Ruiz Director de la Facultad

> Centro Universitario Querétaro, Qro. Octubre 2007 México

Dr. Luís Gerardo Hernández Sandoval Director de Investigación y Posgrado

RESUMEN

El presente estudio se desarrolló en la zona semiárida del centro de México ubicada en el estado de Querétaro, con la finalidad de cuantificar las pérdidas de precipitación por intercepción en la vegetación herbácea de ambiente semiárido; y así mismo evaluar el efecto de las pérdidas por intercepción en la relación de la precipitación. Las pérdidas de Intensidad – Duración – Frecuencia precipitación por intercepción, fueron determinadas mediante la simulación de lluvias a diferentes intensidades sobre muestras con cobertura vegetal herbácea correspondientes a la zona de Cadereyta, en donde se midieron flujos por escurrimiento superficial, infiltración y precipitación incidente, con los cuales se realizaron los diferentes balances hídricos para los eventos de lluvia simulada sobre la cobertura vegetal. A partir de precipitaciones máximas en 24 horas se desarrollaron las curvas Intensidad – Duración – Frecuencia (IDF) de la precipitación para períodos de retorno de 2,5,10,20 y 50 años, evaluando el efecto de la intercepción en dichas curvas estableciendo cuatro escenarios con diferentes coberturas. De las simulaciones de lluvia realizadas se encontró que el porcentaje interceptado en vegetación herbácea tenia un valor promedio de 1.7% del total de la precipitación incidente. Las curvas IDF se vieron afectadas aproximadamente en un 2.3% para el escenario conformado solo por cobertura vegetal herbácea, para el escenario conformado por cobertura vegetal arbórea el efecto fue de un 22.34% y un 24.6% para el escenario conformado por vegetación herbácea y arbórea.

Palabras clave: Pérdidas por intercepción, curvas intensidad – duración – frecuencia, balance hídrico, simulación de lluvias

SUMMARY

This study has been developed on a semi-arid zone located in the state of Ouerétaro in central Mexico; the objective of this research is to measure rainfall loss due to semi-arid environment grass interception, and to evaluate the effect of interception loss in intensity, duration, frequency, relation with rainfall. Rainfall loss by interception was determined from rainfall simulation at several intensity levels on grass covered vegetation samples taken from Cadereyta zone, where run-off flows and income rainfall were measured. With these, water balance for events of simulated rainfall on covered vegetation were performed from maximum rainfall in 24 hours intencity-duration-frecuancy curves (IDF) of rainfall for rain return rates of 2,5,10,20 and 50 years, evaluating the interception effect on those curves when establishing four sceneries of different coverage. From the rainfall simulations performed it was stated that the intercepted percentage on grass vegetation had an average of 1.7 % of the totality of income. IDF curves were affected on approximately 2.3% on the scenery that consists of just covered grass vegetation; on the scenery that consists of tree covered vegetation, the effect was 22.34% and 24.6% on the scenery that consists of tree and grass covered vegetation.

Key words: Loss for interception, Intensity-duration-frequency curves , Water balance , Rainfall simulation

A Mari, por su apoyo, comprensión, paciencia y acompañarme en la lucha por alcanzar esta meta.

> A mis padres Alvaro y Angela, con mucho cariño y como un reconocimiento por su apoyo, sacrificios, interés en mi superación y por guiarme en esta travesía desde la distancia, no fue fácil estar lejos pero lo logramos.

> > A mis hermanas Nena y Rochyta, por su apoyo espiritual y tenerme siempre en sus pensamientos y oraciones.

> > > A mi sobrino Pupy por darme la felicidad con sus llamadas y travesuras.

> > > > A mis familiares, primos y tios, por su apoyo incondicional.

A la memoria de mi amigo Adolfo Ayola Padilla, Q.E.P.D, por creer en mi, brindarme consejos, amistad, por incentivarme a la investigación y guiarme siempre desde el cielo.

AGRADECIMIENTOS

Quiero expresar mis más sinceros agradecimientos a todas aquellas personas y entidades que con su apoyo me dieron la fuerza suficiente para culminar este trabajo, especialmente a:

DIOS, como Ser supremo por permitir realizar mis aspiraciones y acompañarme en todo momento.

A mi papá, por sus enseñanzas y trasmitirme todos sus conocimientos en Ingeniería Civil, Hidráulica e Hidrología, por ti, pude llegar a cumplir mis aspiraciones.

Al proyecto FOMIX-QRO (QRO-2004-CO1-17). Importancia de la vegetación del semidesierto queretano en la preservación y gestión de los recursos hídricos, por financiar gran parte de proyecto y mi beca para desarrollar los estudios.

Al Dr. Enrique González Sosa por su valioso tiempo, asesorías, apoyo como becario y vincularme en su grupo de investigación.

Al Dr. Eusebio Ventura Ramos, por su amistad, colaboración, apoyo incondicional y ante todo brindarme la oportunidad de haber realizado mis estudios de maestría en esta institución.

Al Dr. Gilberto Herrera, por su apoyo, colaboración y amistad en todo momento.

Al Dr. Domingo Gómez y familia, por su generosidad, apoyo y ayudarme a la solución de inconvenientes cuando se me presentaron.

A mis amigos, colegas y hermanos Colombianos Cesar Granada Isaza y Patricia Marín Muñoz, por su colaboración, amistad, logística, conocimientos y apoyo anímico, ; en verdad no terminaría de mencionar sus aportes y cualidades, ustedes fueron pieza fundamental y clave en la realización de este trabajo, mil gracias y sigan pa lante pelaos.... A mi amigo y colega Sergio Sandoval, al igual que su esposa, gracias por su apoyo incondicional, y ante todo brindarme la oportunidad de ser su amigo y poder compartir con sus familias.

A los Colombianos que siempre me apoyaron y me acompañaron en esta travesía, fueron mi familia en todo momento.

A mis amigos Mexicanos, gracias por adoptarme en su tierra y por su gran amistad, a pesar de estar lejos de mi casa, con ustedes me sentí en familia.

A los revisores de la tesis por su tiempo y sugerencias.

A todos los profesores y personas que laboran en el laboratorio de Hidráulica; por sus enseñanzas y contribuciones.

ÍNDICE

Resumen	iii
Summary	iv
Dedicatorias	v
Agradecimientos	vi
Índice	viii
Índice de tablas	xii
Índice de figuras	xiv
Índice de anexos	xvii

1. INTRODUCCION

1.1	Antecedentes	2
1.2	Justificación	5
1.3	Objetivos	6
1.4	Hipótesis	6

2. INTERCEPCIÓN DE LA PRECIPITACIÓN POR VEGETACIÓN HERBÁCEA

2.1	Componentes del balance de masa	8
2.2	Definición de intercepción y pérdidas por intercepción	9
2.3	La intercepción como componente del ciclo hidrológico	10
2.4	Modelos de pérdidas por intercepción	13
	2.4.1 Modelo de Rutter	15

2.4.2	Modelo de Gash	18
2.4.3	Otros modelos analíticos para determinar la intercepción	21
2.4.4	Modelos empíricos de regresión para determinar la intercepción	22

3. RELACIÓN INTENSIDAD – DURACIÓN Y FRECUENCIA DE LA PRECIPITACIÓN.

3.1 Introduc	ción	24
3.2 Definició	on de las curvas Intensidad – Duración – Frecuencia	25
3.3 Aplicació	ón de las curvas IDF	26
3.4 Estadísti	ca Hidrológica	27
3.4.1	Funciones de frecuencia y probabilidad	27
3.4.2	Parámetros estadísticos	29
3.4.3	Muestreo aleatorio	32
3.4.4	Tendencia central de la muestra	32
3.4.5	Variabilidad de la muestra	33
3.4.6	Simetría de la muestra	35
3.4.7	Ajuste de una distribución de probabilidad	35
3.4.8	Método de los momentos	35
3.4.9	Funciones de distribución de probabilidad para variables hidrológicas aleatorias continuas	36
3.5 Análisis	de frecuencia	37
3.5.1	Concepto de período de retorno	37

	3.5.2	Series de información hidrológica	38
	3.5.3	Análisis de frecuencia con factores de frecuencia	39
	3.5.4	Factor de frecuencia para las distribuciones normal y lóg. Normal	40
	3.5.5	Factor de frecuencia para las distribuciones Gumbel y Log- Gumbel	41
	3.5.6	Intervalos de confianza en el cálculo de eventos extremos por factores de frecuencia	42
3.6	Construce	ción de las Curvas Intensidad-Duración-Frecuencia (IDF)	43
3.7	Metodolo la zona s	gía para la obtención de las Curvas IDF de emidesértica de Querétaro	45
	3.7.1	Recopilación de la información	45
	3.7.2	Ajuste de los datos de precipitación a una distribución de probabilidad mediante la prueba Ji Cuadrada (x^2)	46
	3.7.3	Método de Bill para la obtención de las curvas IDF mediante valores máximos mensuales de precipitación en 24 horas	50
		3.7.3.1 Determinación de las curvas IDF	56

4. ESTUDIO EXPERIMENTAL

4.1	Precipitación acumulada en los sitios experimentales de Cadereyta, Dolores y Amazcala	67
4.2	Intensidad media y máxima de los eventos de precipitación	68
4.3	Duración de los eventos de precipitación	70
4.4	Frecuencia de los eventos de precipitación	73

4.5 Metodología de experimentos en laboratorio	
4.5.1 Materiales utilizados y equipos	76
4.5.2 Muestras de la vegetación herbácea	77
4.5.3 Simulador de lluvias y sus características	80
4.5.4 Experimentos preliminares	81
4.5.5 Simulaciones de lluvia para el cálculo de la intercepción	83
4.5.6 Metodología para la determinación de las pérdidas por intercepción	86
4.5.6.1 Determinación de las pérdidas por intercepción	73

5. RESULTADOS Y DISCUSION

5.1	Infiltración en las cajas	94
5.2	Pérdidas por intercepción y balances hídricos de las simulaciones	96
5.3	Modelos de regresión lineal para la determinación de las pérdidas por intercepción	97
5.4	Efecto de la intercepción en la relación Intensidad – Duración- Frecuencia de la precipitación	103
5.5	Ejemplo de ilustración	109
6. CONCLUSIONES Y RECOMENDACIONES		111
REFERENCIAS RIBLIOGRAFICAS		
ANEXOS		119

ÍNDICE DE TABLAS

Tabla		Página
1	Algunas funciones de densidad de probabilidad utilizadas en Hidrologia	36
2	Datos de precipitación máxima en 24 horas.	45
3	Ajuste de datos de precipitación a las distribuciones de probabilidad.	48
4	Datos de precipitación máxima horaria.	52
5	Valores de la variable reducida para diferentes periodos de retorno	55
6	Precipitación en intensidad máxima en 1 para cada Ir	56
7	Precipitaciones máximas en 24 horas y 1 hora	57
8	Precipitación máximas en 24 y 1 hora para un Ir de 2 años	58
9	Precipitaciones e intensidades máximas para un Ir de 2 años	60
10	Ecuaciones para el cálculo de las precipitaciones e intensidades máximas	61
11	Precipitaciones máximas	62
12	Intensidades máximas	62
13	Intensidades de precipitación medias, máximas y precipitación neta Cadereyta	69
14	Intensidad de precipitación media, máxima y precipitación neta Dolores	70
15	Frecuencia de los eventos de precipitación en la estacion Cadereyta	74

16	Frecuencia de los eventos de precipitación en las estación Dolores	75
17	Intensidades utilizadas en la experimentación	82
18	Porcentajes de cobertura vegetal en caja	87
19	Pérdidas por interceptación para la simulación 1	96
20	Pérdidas por interceptación	97
21	Modelos de regresión encontrados para estimar las pérdidas por intercepción EI)	99
22	Valores de precipitación y porcentajes de intercepción	104
23	Efecto de la intercepción en las intensidades máximas horarias	105
24	Influencia de las pérdidas por intercepción	110

ÍNDICE DE FIGURAS

Figura		Página
1	Representación en diagrama de bloques del sistema hidrológico global.	12
2	Situación de la intercepción dentro del ciclo hidrológico.	13
3	Efectos de la función de densidad de probabilidad causados por cambios en la desviación estándar y en el coeficiente de asimetría.	31
4	Gráfica de la función de distribución Pearson	49
5	Gráfica de la función de distribución Log normal	49
6	Gráfica de la distribución Gumbel	50
7	Recta de regresión para un Tr de 2 años	59
8	Curva IDF para un Tr de 2 años	60
9	Curva Intensidad – Duración- Frecuencia correspondientes al semidesierto de Querétaro	64
10	Pluviómetro sónico	66
11	Estaciones climatológicas instaladas en la zona semidesértica	67
12	Precipitación acumulada en Dolores, Cadereyta y Amazcala	68
13	Duraciones de los eventos de precipitación de la estación Cadereyta	71
14	Duración de los eventos de precipitación de la estación Dolores Hidalgo	71
15	Histogramas de duraciones para los eventos de precipitación de la estación Cadereyta	72

16	Histogramas de duraciones para los eventos de precipitación de la estación Dolores	73
17	Histogramas de frecuencia de precipitaciones en la estación Cadereyta	74
18	Histogramas de frecuencia de precipitaciones en la estación Dolores	75
19	Muestra con cobertura vegetal herbácea.	78
20	Inicio del proceso de extracción	79
21	Corte inferior de la muestra para su extracción	79
22	Muestra extraída totalmente	80
23	Simulador tipo Norton en funcionamiento	84
24	Simulación de lluvia sobre las cajas con cobertura vegetal	89
25	Lluvia simulada sobre una cobertura vegetal herbácea y matorral	85
26	Lluvia interceptada durante una simulación.	85
27	Cajas con sus componentes	86
28	Cobertura caja 1	88
29	Cobetura caja 2	89
30	Cobertura caja 3.	89
31	Cobertura caja 4	90
32	Infiltración cajas 1 y 2	94
33	Infiltración cajas 3 y 4	95
34	Modelos de regresión lineal para cada caja	98

35	Modelo de pérdidas por intercepción en vegetación herbácea en Cadereyta	101
36	Modelo de pérdidas para vegetación arbórea	102
37	Curvas IDF con el efecto de la vegetación herbácea	106
38	Curvas IDF con el efecto de la vegetación arbórea	107
39	Curvas IDF con el efecto de la vegetación arbórea + vegetación herbácea	108

ÍNDICE DE ANEXOS

Anexos		Página
A.1.1	Valores para la Distribución Ji – Cuadrado con V grados de libertad.	119
A.1.2	Valores de probabilidad encontrados con el programa SMADA 6.0 para cada función de probabilidad.	121
A.2.1	Tablas del cálculo de las láminas de escurrimiento para cada simulación.	125
A.2.2	Tablas del cálculo de las láminas de infiltración para cada simulación.	132
A.3.1	valores correspondientes a la infiltración, escurrimiento y el tiempo de estabilización en cada caja para todas las simulaciones realizadas.	139
A.4.1	Valores correspondientes a todos los componentes en cada simulación.	145
A.5.1	Características de los eventos registrados en la	147
A.5.2	Características de los eventos registrados en la estación Dolores	150

1. INTRODUCCION

La disponibilidad de los recursos hídricos en zonas semiáridas depende directamente de los patrones del ciclo anual del agua y de las condiciones de la vegetación. Uno de los indicadores de la disponibilidad de los recursos hídricos es el conocimiento de la interacción entre la vegetación y los residuos vegetales para poder determinar el agua retenida proveniente de la precipitación; y de esta manera tener un parámetro para el cálculo de los balances hídrico en dichas zonas.

En los últimos años, numerosas investigaciones han dejado al descubierto el efecto importante de la vegetación. Aunque todavía poco conocido en ambientes semiáridos, es la intercepción de las precipitaciones que en forma de lluvia, roció, granizo, etc, quedan parcialmente retenidas por las hojas, ramas, troncos y cubierta de residuos vegetales y de ahí se evaporan nuevamente a la atmósfera (Belmonte, 1999).

La intercepción de la precipitación puede ocurrir debido a la vegetación u otra forma de obstrucción. Este proceso en el balance hídrico funciona como un reservorio que almacena una parte del agua para regresarla a la atmósfera. La tendencia es que esta intercepción reduzca y retarde el pico de las sequías, a lo largo del año (Tucci, 2001). Otro aspecto importante del proceso de intercepción puede ser reflejado al estimar los efectos de la cobertura vegetal en la relación Intensidad – Duración – Frecuencia de la precipitación, lo cual ha llevado a desarrollar modelos estocásticos que toman en cuenta dichos efectos y demuestran como las pérdidas por evaporación, producto de la intercepción ocurrida durante eventos de precipitación, afectan dicha relación (Kiem, 2004).

En este trabajo se mide el balance hídrico de intercepción mediante lluvia simulada, en vegetación herbácea semidesértica y se determina la influencia de las pérdidas por intercepción en las curvas de Intensidad – Duración – Frecuencia de la precipitación correspondientes a la zona semidesértica de Cadereyta.

1.1 Antecedentes

La lluvia es un factor importante que regula el crecimiento de la vegetación y ésta a su vez, es un elemento que determina la composición de la lluvia efectiva que llega a la superficie del suelo. La diferencia ente los escurrimientos superficiales y la precipitación está sujeta a la capacidad de intercepción de la vegetación y las pérdidas por evaporación de la lluvia interceptada.

La capacidad de una cubierta de residuos vegetales para interceptar la lluvia tiene gran influencia en los procesos erosivos y en la hidrología del suelo, tanto a nivel puntual como a nivel de cuenca hidrológica. La presencia o ausencia de vegetación afecta a la cantidad de lluvia que alcanza el suelo, su distribución espacial, su energía cinética y su capacidad para fragmentar y transportar el suelo.

Cuando el agua retenida en la superficie de las plantas procede de la interceptación de lluvia, su evaporación posterior representa una pérdida de recursos hídricos aprovechables. Por el contrario, la capacidad de interceptación puede suponer un incremento de los recursos hídricos cuando el agua interceptada procede de la humedad del aire o de la condensación. Las pérdidas por intercepción pueden alcanzar valores importantes a nivel de cuenca hidrográfica (Shuttleworth & Calder, 1979; Schellekens et al. 2000). En bosques de coníferas, que están entre las formaciones vegetales con mayor capacidad de interceptación, se han determinado pérdidas de entre el 21 y el 48 % de la precipitación media anual debidas a la interceptación (Carlyle-Moses, 2004). La mayoría de los trabajos se han realizado en zonas de clima templado y tropical siendo más escasos en climas áridos y semiáridos.

La información disponible sobre vegetación de zonas áridas y semiáridas es mucho menor, y en especial la relativa a los arbustos que, sin embargo, son la forma vegetal más característica de estos ecosistemas. Esto, en parte, se debe a la dificultad de emplear metodologías para evaluar el fenómeno en este tipo de especies. Algunos investigadores han utilizado simuladores de lluvia sobre plantas que habían sido cortadas previamente en el campo (Belmonte, 2000).

En estudios realizados se ha observado que el porcentaje del agua evaporada a partir de la vegetación o del suelo está directamente relacionado con la intensidad y distribución espacial y temporal de la precipitación, determinando que las pérdidas por intercepción dependen de la frecuencia, duración e intensidad de la precipitación y de las características morfológicas de la vegetación (Horton, 1919; Sevenije, 2006; y Belmonte, 2006).

Durante un evento de precipitación una parte del agua interceptada por la cubierta vegetal se evapora sin llegar al suelo (pérdidas por intercepción) y otra parte se transfiere al suelo, o por el goteo de las hojas y ramas (traslocación) o escurre por los tallos hasta alcanzar la base de la planta (escorrentía cortical) (García – Estringana et al.,2006).

Las pérdidas por intercepción dependen en gran parte del tipo de vegetación, estado de desarrollo de la misma, intensidad, frecuencia, duración y forma de la precipitación (Waggoner 1989). Schowalter (1999), Crockford y Richards (2000), estudiaron el proceso de intercepción en tres especies de vegetación, encontrando que las pérdidas por intercepción son influenciadas por la cantidad, intensidad y duración de la precipitación, así como también la temperatura y la velocidad del viento.

Gerrits et al. (2006), explican que la intercepción en el suelo de bosques en Luxemburgo es parte de la precipitación neta que es temporalmente almacenada en la parte superior de la vegetación de la superficie del suelo, que posteriormente es evaporada a pocas horas, durante días o después del evento de precipitación. En la literatura se pueden encontrar investigadores que han evaluado la intercepción en residuos vegetales de bosques, generalmente los métodos utilizados se pueden dividir en dos categorías (Helvey y Patric, 1965):

- Métodos de laboratorio, donde se toman muestras en campo y posteriormente en el laboratorio se calculan curvas de humedad y secado, para determinar el contenido de humedad.
- 2. Métodos de campo, los residuos vegetales tomados en el bosque, se colocan en bandejas y se calcula la humedad correspondiente.

Helvey (1964) desarrolló experimentos correspondientes a la primera categoría, saturando residuos vegetales; las muestras de residuos se saturaron y luego se secaron hasta peso constante evaluando el drenaje. La curva de secado y el peso seco por unidad de área se determinó secando las muestras en horno. La evaporación también fue calculada, encontrando que el 3% de la precipitación anual es evaporada desde los residuos vegetales. Otros ejemplos similares fueron desarrollados por Putuhena y Cordery (1996), determinando la variación espacial de intercepción en diferentes tipos de residuos vegetales, y posteriormente la capacidad de almacenamiento fue determinada en el laboratorio utilizando simulación de lluvia, encontrando valores de intercepción de 2.8 mm para residuos de pinos y 1.7 mm para residuos de eucaliptos.

Los métodos de campo, que corresponde a la segunda categoría fueron desarrollados por Pathak et al. (1985), quienes determinaron el peso de las

muestras en las bandejas antes y después del evento de precipitación, encontrando valores de intercepción en residuos de 8 – 12 % de la precipitación neta. Schaap y Bouten (1997) midieron flujos de intercepción utilizando un lisímetro y encontraron valores de evaporación de 0.23 mm/día. Gerrits et al. (2004) encontraron valores de evaporación en residuos, correspondientes al 34 % de la precipitación neta de la cuenca de Huewelerbach en Luxemburgo, concluyendo que las pérdidas por intercepción en residuos vegetales es un proceso significativo en el ciclo hidrológico, y debe ser incluida en modelaciones hidrológicas.

1.2 Justificación

Este trabajo se justifica dada la necesidad de estudiar las pérdidas por intercepción de la vegetación herbacea en zonas áridas y semiáridas, específicamente en el semidesierto Queretano, ya que dichas pérdidas tienen gran importancia en el balance hídrico de una cuenca, en especial cuando la distribución espacio temporal de la precipitación es irregular y el porcentaje interceptado y evaporado es elevado.

Con lo anterior se pretende mostrar la importancia de las pérdidas por intercepción en la cuantificación y preservación de los recursos hídricos, así como su efecto en la relación Intensidad – Duración y Frecuencia de la precipitación.

1.3 Objetivos

Objetivo General

 Cuantificar las pérdidas por intercepción en la vegetación herbácea de ambiente semiárido y su efecto en la relación Intensidad – Duración – Frecuencia de la precipitación.

Objetivos Específicos

- Caracterizar los eventos de precipitación registrados en las estaciones climáticas de Cadereyta, Dolores Hidalgo y Amazcala.
- Encontrar las pérdidas de precipitación por intercepción en vegetación herbácea semiárida mediante simulación de lluvias.
- Elaborar las curvas Intensidad Duración Frecuencia de la precipitación, tomando en cuenta el efecto de las pérdidas por intercepción.

1.4 Hipótesis

La vegetación herbácea de ambiente semiárido se ajusta a un reservorio que puede regular los componentes del balance de masa.

 Las pérdidas por intercepción en vegetación herbácea semiárida es función de la intensidad de los eventos de precipitación.

- Es posible determinar las pérdidas por intercepción en vegetación herbácea semiárida, utilizando la metodología de simulación de lluvias y teniendo en cuenta la intensidad media, máxima y duración de las precipitaciones de la zona del semidesierto.
- Las curvas de Intensidad Duración Frecuencia de la precipitación correspondientes a la zona del semidesierto, pueden cambiar al ser afectadas por las pérdidas de precipitación en la vegetación herbácea de dicha zona.

2) INTERCEPCIÓN DE LA PRECIPITACIÓN POR VEGETACIÓN HERBÁCEA

2.1 Componentes del balance de masa

La vegetación arbórea y los residuos vegetales producto de la senecencia natural, se consideran como un reservorio de agua, el cual es llenado por la lluvia y vaciado por la evaporación y drenaje.

Para que el sistema esté en equilibrio se satisface la ecuación del balance de masa:

$$P + E + D + R + \Delta C = 0 \tag{1}$$

Las suma de todos los componentes, Precipitación + Evaporación + Drenaje + Escurrimiento superficial + Almacenamiento = 0

Las Pérdidas por intercepción (I) en una tormenta se dan de acuerdo con la siguiente relación:

$$EI = \sum E = \sum P - \sum T$$
(2)

Esta expresión EI es el agua interceptada y evaporada en el período de tiempo en que la lluvia comienza a caer en una vegetación seca hasta que la vegetación está finalmente seca otra vez, $\sum P$, $\sum E$, $\sum T$ son el total de los componentes de lluvia, evaporación y flujo de traslocación, respectivamente.

El balance de masa en la vegetación para cualquier período en una tormenta es:

$$\sum P = \sum D + \sum E \pm \Delta C \tag{3}$$

Donde $\sum D =$ Total de agua drenada $\sum E =$ Total de la evaporación $\Delta C =$ Cambio de agua con respecto al total

Para la interceptación en un suelo sin cobertura, le corresponde un 100% de precipitación y, en consecuencia, un 0% de pérdida por intercepción, que es la. Para las pérdidas por intercepción se admite que el porcentaje de lluvia interceptada es directamente proporcional al porcentaje de cobertura.

2.2 Definición de intercepción y pérdidas por intercepción

Intercepción es definida de muchas maneras y por muchos investigadores. La intercepción se define como el fenómeno por el cual la vegetación obstaculiza o detiene el flujo de precipitación, en su camino hacia el suelo, en cualquiera de las formas en que ésta se presente (Belmonte, 1998).

La capacidad de una cubierta vegetal para interceptar la lluvia tiene gran importancia en procesos hidrológicos, tanto a nivel local como a nivel de cuenca. Durante un evento de precipitación una parte del agua interceptada por la cubierta vegetal se evapora sin llegar al suelo (pérdidas por intercepción) y otra parte se transfiere al suelo, o por el goteo de las hojas y ramas (traslocación) o escurre por los tallos hasta alcanzar la base de la planta (escorrentía cortical), (García – Estringana et al.,2006). Cuando el agua retenida en la superficie de las plantas procede de la intercepción de la precipitación, su evaporación posterior representa una pérdida de recurso. Por el contrario, la capacidad de intercepción puede suponer un incremento de los recursos hídricos cuando el agua interceptada procede de la humedad del aire (García – Estringana et al.,2006).

Savenije (2006) define la intercepción como la cantidad de precipitación que es temporalmente almacenada en una superficie y que se evapora después o durante el evento de precipitación. En el proceso de intercepción en la superficie inferior de un bosque, una parte del flujo es interceptado por la superficie del suelo seco, otra por la vegetación corta (hierba, musgos, pasto,) y otra parte es interceptada por residuos (Gerrits et al., 2006).

Las pérdidas por intercepción dependen en gran parte del tipo de vegetación, estado de desarrollo de la misma, intensidad, frecuencia, duración y forma de la precipitación. Schowalter (1999), Crockford y Richards (2000), estudiaron el proceso de intercepción en tres especies de vegetación, encontrando que las pérdidas por intercepción son influenciada por la cantidad, intensidad y duración de la precipitación, así como también la temperatura y la velocidad del viento.

2.3 La intercepción como componente del ciclo hidrológico

El ciclo hidrológico no tiene principio ni fin y sus diversos procesos ocurren en forma continua. El agua se evapora desde los océanos y desde la superficie terrestre para volverse parte de la atmósfera. El vapor de agua se transporta y se eleva en la atmósfera hasta que se condensa y precipita sobre la superficie

terrestre o los océanos. El agua precipitada puede ser interceptada por la vegetación, convertirse en flujo superficial sobre el suelo, infiltrarse, correr a través del suelo como flujo subsuperficial y descargar en los ríos como escorrentía superficial. La mayor parte del agua interceptada y de escorrentía superficial regresa a la atmósfera mediante evaporación. El agua infiltrada puede percolar profundamente para recargar el agua subterránea de donde emerge en manantiales o se desliza hacia los ríos para formar la escorrentía superficial, y finalmente fluye hacia el mar o se evapora en la atmósfera a medida que continúa el ciclo (Chow et al, 1998).

El ciclo hidrológico puede tratarse como un sistema, cuyos componentes son precipitación, evaporación, escorrentía y otras fases del ciclo hidrológico. Estos componentes se pueden agrupar en subsistemas del ciclo total y pueden ser estudiados separadamente (Chow et al, 1998). La intercepción se encuentra dentro del sistema de agua atmosférica junto a la precipitación, evaporación y la transpiración. Los otros sistemas corresponden al de agua superficial y agua subsuperficial. En la Figura 1 se esquematizan los sistemas hidrológicos.

Llamas (1993) definió el ciclo hidrológico como el conjunto de todos los procesos de transformación del agua en la tierra conformado por varias fases como son:

- Evaporación de los océanos, del suelo y de las plantas
- Condensación del agua y precipitación en forma de lluvia, nieve, granizo, etc.
- Escorrentía superficial, infiltración, precolación, flujo subterráneo y retorno a la superficie.
- Formación de corrientes superficiales, ríos, arroyos, y su descarga en lagos, mares, etc.
- Evaporación y repetición del ciclo

En la Figura 2, de la definición de intercepción, se deriva un fenómeno hidrológico y como tal, forma parte del ciclo hidrológico (Belmonte, 1999).

Fuente: Belmonte (1997)

Figura 2. Situación de la intercepción dentro del ciclo hidrológico

2.4 Modelos de pérdidas por intercepción

Los resultados de trabajos realizados sobre intercepción, se han expresado en forma de ecuaciones empíricas de regresión, entre perdida por intercepción y lluvia, es decir funciones del tipo:

$$I = a + b P \tag{4}$$

Donde I es la pérdida por intercepción, P es el total de lluvia y a y b los coeficientes de regresión; pretendiendo con ello modelar el proceso (Belmonte 1998). Trabajos realizados por Zinke (1967) contienen ejemplos de este tipo de

ecuaciones empíricas, utilizadas para describir la pérdida por intercepción diaria, como una función del total de lluvia caída diariamente (Gash, 1979).

Este tipo de ecuaciones han sido criticadas por no tomar en cuenta la duración, intensidad y número de episodios contabilizados en un mismo registro, con el consiguiente efecto de saturación o no, de la superficie arbórea (Jackson, 1975).

Helvey y Patric (1965b), revisaron los resultados de estudios hechos en un bosque de madera dura, y concluyeron que las ecuaciones de regresión (una para el invierno y otra para el verano) eran adecuadas para describir las pérdidas por intercepción de precipitación para la región sureste de los Apalaches.

Horton (1919), fue el primero en tener en cuenta el efecto de la saturación de la superficie arbórea en eventos de lluvia prolongados, separando la evaporación durante el evento de la evaporación una vez finalizado el evento, expresando la pérdida por intercepción como:

$$I = \int_{0}^{t} Edt + S$$
⁽⁵⁾

Donde *E* es la evaporación del agua interceptada durante la lluvia; *S* la capacidad de almacenaje y *t* es el tiempo de duración del evento de precipitación, si bien no contempla la evaporación desde la superficie de los troncos. Leonard (1966), utilizó esta misma estructura en su trabajo "Teoría matemática de la intercepción". La modelización del proceso de intercepción llegó a su mayor significado, con la llegada de los modelos realizados por Rutter et al. (1971, 1975) y de Gash (1979). Estos modelos, se han mantenido vigentes hasta la actualidad, y siguen siendo utilizados en diversos trabajos de intercepción.

2.4.1 Modelo de Rutter (1971)

Rutter et al. (1971) desarrollaron un modelo numérico basado en ecuaciones físicas para predecir la intercepción de la lluvia en pinos. Este modelo considera la vegetación como un reservorio que almacena agua y que puede ser vaciado por la evaporación y el drenaje, el cual varia de acuerdo a la cantidad de agua almacenada.

Este modelo se basa en una corrida de balance de masa: el cambio total de agua almacenado en la vegetación es determinado por la proporción de la lluvia que entra en la vegetación, el drenaje de la vegetación y evaporación del agua interceptada.

El modelo tiene como datos de entrada, la lluvia y variables meteorológicas que controlan la evaporación, para calcular un balance variable de una superficie arbórea de estructura conocida y el cual conduce a una estimación de las pérdidas por intercepción de la siguiente manera:

$$I = \sum E = \sum R - \sum T \tag{6}$$

Siendo

$$\sum T = p \sum R + \sum D \tag{7}$$

Es decir, la traslocación libre + drenaje o verdadera traslocación, donde p es la proporción de lluvia que atraviesa libremente la cubierta, R la intensidad de la lluvia, D el drenaje de agua retenida en la copa y E la evaporación de la copa.

El balance de agua de la cubierta para cualquier período de tiempo dentro de una lluvia se define como:

$$(I-p)\sum R = \sum D + \sum E \pm \Delta C$$
(8)

Donde la sumatoria de *D* es el total de agua drenada o escurrida desde la cubierta, y Δ *C* es el cambio en el total de agua almacenada en la cubierta.

El modelo calcula una tasa de evaporación potencial cuando la cubierta está saturada, cuando C > S. Pero cuando C < S asume que:

$$E = E_p \frac{C}{S}$$
(9)

En la ecuación anterior C es la cantidad de agua interceptada en la copa, S la capacidad de almacenamiento de la copa y E_p es la evaporación potencial; y sirve para calcular la evaporación desde el comienzo de la lluvia hasta que la cubierta se satura. Finalizada la lluvia, el total de evaporación desde ese momento será igual al agua almacenada en la cubierta.

Rutter et al. (1971), calcularon la E_p a partir de las ecuaciones de Monteith (1965) y Slatyer (1977) para dos condiciones:

 a) Cuando se conoce la temperatura media de la superficie de la cubierta, en cuyo caso:

$$E_{p} = \frac{\rho c(e_{s}(T) - e_{d})}{\lambda \gamma r_{a}}$$
(10)

b) Cuando la temperatura media de la cubierta no es conocida:

$$Ep = \frac{sR_n + \rho c(e_a(T) - e_d)/r_a}{\lambda(s + \gamma)}$$
(11)

Donde:

- E_p = Evaporación potencial (mm)
- $e_s(T)$ = Presión de vapor del agua a la temperatura de la superficie (KPa)
- $e_a(T) =$ Presión de vapor del agua a la temperatura del aire (KPa)
- e_d = Presión de vapor del agua a la temperatura del punto de rocío (KPa)
- S = Cambio de la presión de vapor del agua con la temperatura (KPa)
- C = calor específico del aire seco (MJ/kg/°C)
- λ = Calor latente de vaporización del agua (cal/g)
- γ = Constante psicométrica (KPa/°C)
- $R_n = Radiación neta (W/m^2)$
- r_a = Resistencia aerodinámica (s/m)

El modelo fue comprobado y validado con medidas efectuadas sobre bosques caducifolios (Rutter et al. 1975) y también se estudió su sensibilidad a la introducción de algunos parámetros representativos y variables meteorológicas (Rutter y Morton, 1977).

Este modelo mejoró considerablemente las estimaciones de pérdidas por intercepción, aunque fue criticado por sus desventajas prácticas, como eran la necesidad de datos meteorológicos diarios, difíciles de obtener en aquel momento, y la utilización de un complejo programa de ordenador, desventajas que hoy en día quedaron superadas ampliamente.

2.4.2 Modelo de Gash (1979)

Gash (1979), uso un modelo de que contiene muchos razonamientos físicos fundamentales del modelo de Rutter. Gash parte de la ecuación de Horton y separa la evaporación antes y después de la saturación de la cubierta vegetal resultando que:

$$I = \int_{0}^{t'} Edt + \int_{t'}^{t} Edt + S$$
 (12)

Donde:

- t' = Tiempo que tarda es saturarse la superficie arbórea
- E = Evaporación

I = Intercepción

S = Capacidad de almacenamiento
A partir de aquí, Gash determinó que era posible representar un modelo de lluvia real por series de tormentas, separadas por intervalos lo suficientemente largos para dar tiempo a que la cubierta arbórea y el tronco se sequen. Realizó una integración analítica del total de la pérdida por intercepción, reemplazando el índice de lluvia y evaporación aplicable a cada tormenta, por la media de dichos índices. Fue necesario introducir los siguientes supuestos:

1- Que las condiciones meteorológicas que prevalecen durante cualquier tormenta son similares a aquellas que prevalecen en el resto.

2- Que la dependencia logarítmica de la tasa de goteo (Tr) sobre la saturación de la cubierta arbórea, observada por Rutter et al. (1971), muestra que en efecto no hay traslocación desde la cubierta hasta que no está saturada. Y que el total de agua (C) en la cubierta, al final de una tormenta, es rápidamente reducida (20 – 30 min) a S, mínimo valor necesario para la saturación, independientemente del valor de C al cesar la lluvia. Gash separa la pérdida total por intercepción en los siguientes componentes:

 a) Pérdida por intercepción (m) en pequeñas tormentas incapaces de saturar la cubierta

$$(1-p-p_t)\sum_{j=1}^{m} P_{G_j}$$
 (13)

 b) Pérdida por intercepción en cubiertas saturadas durante el tiempo de lluvia, para (n) tormentas capaces de saturar la cubierta

$$\left(\overline{E} / \overline{R}\right) \sum_{j=1}^{n} \left(P_{Gj} - P'\right)$$
(14)

c) Pérdida por intercepción antes de alcanzar la saturación de la cubierta, para tormentas capaces de saturar la cubierta.

$$(1 - p - p_t)P'_G - S$$
 (15)

d) Pérdida por intercepción del agua almacenada en los troncos

$$qS_{t} + p_{t} \sum_{J=1}^{m+n-q} P_{Gj}$$
 (16)

Donde:

I = Pérdidas por intercepción (mm)

R = Tasa media de lluvia (mm/h)

- E = Tasa media de evaporación (mm)
- t =Duración de la lluvia (s)
- t' = Tiempo necesario para la saturación de la cubierta (s)
- S = Capacidad de almacenamiento de la cubierta (mm)
- S_t = Capacidad de almacenamiento de los troncos (mm)
- P_G = Lluvia que cae sobre la cubierta (mm)
- P'_{G} = Lluvia necesaria para saturar las cubierta (mm)
- p = Coeficiente de traslocacion libre (cte)
- p_t = Proporción de lluvia derivada hacia los troncos (mm)
- n = Número de tormentas capaces de saturar la cubierta

m = Número de tormentas de lluvia insuficiente para saturar la cubierta q = Número de n tormentas capaces de saturar la capacidad de almacenamiento de los troncos y de generar, por lo tanto escorrentía cortical.

Con esto, la ecuación de pérdidas por intercepción para cualquier período, considerando que la lluvia necesaria para saturar la cubierta es constante, es:

$$\sum_{j=1}^{n+m} I_j = n(1-p-p_t)P'_G + (\overline{E}/\overline{R})\sum_{j=1}^n (P_{Gj}-P'_G) + (1-p-p_t)\sum_{j=1}^m P_{Gj} + qS_t + p_t\sum_{j=1}^{m+n-q} P_{Gj}$$
(17)

2.4.3 Otros modelos analíticos para determinar la intercepción

Los modelos posteriores de no han variado substancialmente esta estructura. Calder (1978), combinó la pérdida por transpiración y la pérdida por evaporación del agua interceptada, para bosques de abetos. Sellers y Lockwood (1981), consideraron las variaciones verticales de la capacidad de almacenamiento de la cubierta; es decir, utilizaron un modelo multicapa. Massman (1983) vuelve al modelo de una capa. Mulder (1985) utilizó datos meteorológicos estandard. Teklehaimanot y Jarvis (1991) elaboraron un modelo en el que la evaporación del agua interceptada se midió directamente por encima de la cubierta de los árboles. Sin embargo se han generado algunas controversias con respecto a la pérdida total por intercepción (Morton, 1984). Durocher (1990) menciona que hay crecientes evidencias que sugieren que la evaporación desde la superficie mojada puede ser mayor que el índice potencial esperado de la resistencia aerodinámica predominante y la energía disponible. Crockford y Jonson (1983), establecen que las dificultades se derivan de los errores de medida de la precipitación, la traslocación y la escorrentía cortical.

21

2.4.4 Modelos empíricos de regresión para determinar la intercepción

En estudios realizados en Murcia, Belmonte (1997), demostró como los modelos basados en una ecuación empírica de regresión, pueden cometer excesivos errores en la predicción de los balances anuales, si no se tienen en cuenta las características de los episodios de precipitación y, sobre todo, las variaciones estacionales de la biomasa de la cubierta o las variaciones interanuales como consecuencia de sequías u otros fenómenos que puedan afectarles; concluyendo que bajo condiciones de clima mediterráneo semiárido, la utilización de modelos basados en ecuaciones empíricas de regresión requiere la utilización combinada de al menos dos ecuaciones, una para vegetación en condiciones normales y otra para vegetación en condiciones de estrés hídrico, pudiendo ser obviadas las variaciones derivadas de los estados fonológicos estacionales.

Las ecuaciones para condiciones normales y condiciones de estrés, obtenidas en cuatro años de muestreo, dieron buenos resultados en la predicción de los balances anuales, tanto en aquellas que relacionan la pérdida por intercepción con el volumen de precipitación por episodios, como las que relacionan las pérdidas por intercepción con la energía cinética de la lluvia.

García – Estringana (2006) utilizó técnicas desarrolladas por Belmote (1998), realizando medidas de traslocación, escorrentía cortical y las pérdidas por evaporación, mediante una adaptación de la técnica "Intercepction Flow Collection Box" desarrollado por Belmonte (1998). Por lo tanto, estudió y evaluó fenómenos de intercepción para todos los eventos de lluvia que tienen lugar mensualmente o anualmente del mismo modo que otras técnicas habituales.

Belmonte et al (2006), ensayó un método de estimación del balance hídrico de la precipitación en el suelo bajo deferentes tipos de cubierta de matorral de pequeño

porte en ambientes mediterráneos semiáridos, apoyándose en la técnica TDR (Time Domain Reflectrometry). Posteriormente, mediante simulación de lluvia, se obtuvo en el campo, los balances hídricos de precipitación. En este estudio Belmonte et al (2006), encontraron funciones de correlación entre la precipitación incorporada al suelo y el contenido de humedad en el mismo, lo que le proporcionó ecuaciones estadísticamente muy significativas con coeficientes de correlación de 0.96 y 0.98, lo que permite el uso de las mismas en la transformación del contenido de humedad volumétrica a mm; Belmonte et al (2006), validó la eficiencia de este método comparando los resultados de balances de precipitación en el suelo y precipitación interceptada por la cubierta , obtenidos con otros procedimientos en este tipo de vegetación, llegando a resultados muy similares, con lo que comprobó la efectividad de sus ecuaciones.

3. RELACIÓN INTENSIDAD – DURACIÓN Y FRECUENCIA DE LA PRECIPITACIÓN.

3.1 Introducción

El agua es un recurso fundamental para la vida y un factor esencial para el sector productivo, por lo que, el estudio de las precipitaciones en una región, tiene especial importancia debido al predominio de las actividades relacionadas con el aprovechamiento de los recursos hídricos. A través de esto, es posible obtener una información valiosa para la gestión del agua, en términos de los usos agrícolas, forestales, energéticos, de uso doméstico, etc.

Por otro lado, estudiar las precipitaciones y conocer su distribución temporal es motivo de interés para diversos fines, por ejemplo meteorológicos edafológicos, como también hidrológicos, al tiempo de lo cual se pueden proporcionar índices para realizar estudios de crecidas o permitir la alimentación de modelos precipitación-escorrentía que permitan mejorar la información disponible, para un adecuado diseño y dimensionamiento de las obras civiles. Para esto, es necesario conocer las intensidades de precipitación, para distintos períodos de retorno Pizarro et al (2001).

La precipitación, como variable de estado hidrológica, se puede caracterizar a través de la intensidad, su distribución en el espacio y en el tiempo, y su frecuencia o probabilidad de ocurrencia, y para poder caracterizarla es necesario un gran número de observaciones, extraídas de series temporales, con el objeto de deducir el patrón de comportamiento de las precipitaciones en una zona determinada y permitir un análisis o uso posterior.

3.2 Definición de las curvas Intensidad – Duración – Frecuencia

Las curvas Intensidad – Duración – Frecuencia (IDF), son curvas que resultan de unir los puntos representativos de la intensidad media en intervalos de diferente duración, y correspondientes todos ellos a una misma frecuencia o período de retorno (Témez, 1978).

Junto con la definición de las curvas, surgen otros elementos a considerar, como son la intensidad de precipitación, la frecuencia o la probabilidad de excedencia de un determinado evento. Además, es de suma importancia tener claro el concepto de cada una de estas variables, de modo de tener una visión más clara de las curvas Intensidad-Duración-Frecuencia (Pizarro et al., 2002).

En este sentido se debe destacar que la intensidad, según Chow *et al.* (2000), se define como la tasa temporal de precipitación, o sea, la altura de agua de precipitación por unidad de tiempo (mm/h ó pulg/h), y ésta se expresa como:

$$i = \frac{\rho}{Td} \tag{18}$$

Donde P es la altura de agua de precipitación en mm o pulg, y Td es la duración de la lluvia, dada usualmente en horas.

Otro elemento a estudiar en el diseño de las curvas IDF, es la frecuencia, la cual se expresa en función del período de retorno (Tr), que es el intervalo de tiempo

promedio (expresado en años) entre eventos de precipitación que igualan o exceden la magnitud de diseño (Chow *et al.*,2000).

3.3 Aplicación de las curvas IDF.

El uso de las curvas IDF se enmarcan en la estimación de crecidas de cuencas hidrográficas que tienen tiempos de concentración pequeños o de pequeña duración, y su utilidad principal es poder estimar la intensidad, duración y frecuencia de la precipitación en un lugar que no posee pluviógrafo, solamente pluviómetros totalizadores que entregan precipitaciones diarias o lugares donde no existe información pluviométrica (Pizarro et al., 2002).

Además, es importante señalar que uno de los primeros pasos que deben seguirse en muchos proyectos de diseño hidrológico, como es el caso del diseño de un drenaje urbano, el aprovechamiento de recursos hídricos en la generación de energía eléctrica, o el diseño de obras de ingeniería de regadíos, es la determinación del evento o eventos de lluvia que deben usarse. La forma más común de hacerlo es utilizar una tormenta de diseño o un evento que involucre una relación entre la intensidad de lluvia, la duración y las frecuencias o períodos de retorno. Esta relación se denomina curva IDF, curvas que son determinadas para cada sitio en particular (Chow *et al.*, 2000).

3.4 Estadística hidrológica

Los procesos hidrológicos, la precipitación entre ellos, evolucionan en el tiempo y en el espacio en forma parcialmente predecible y parcialmente aleatoria. Los procesos que cumplen con esta característica se conocen como procesos estocásticos. En algunos casos la variabilidad aleatoria es tan grande que se justifica que se dé al proceso un tratamiento puramente aleatorio, es el caso de este trabajo, en el que a las variables que se analizan (intensidad y cantidad de lluvia) se les considere variables aleatorias, o sea, que no están sujetas a ninguna predicción precisa. Por ejemplo la precipitación en un lugar determinado varía día a día y año tras año, y no puede predecirse con exactitud cual será su magnitud, pero si puede establecerse la probabilidad de que exceda o no cierto valor preestablecido, esto sólo puede determinarse a través del análisis probabilístico y estadístico de los registros que se tengan del pasado.

El objetivo básico del uso de la estadística en la explicación de los procesos hidrológicos es obtener información del fenómeno en el pasado y hacer inferencias acerca de su comportamiento futuro.

3.4.1 Funciones de frecuencia y probabilidad

Si las observaciones de una muestra están idénticamente distribuidas (cada valor de la muestra extraído de la misma distribución de probabilidad), éstas pueden ordenarse para formar un histograma de frecuencia. Primero, el rango factible de la variable aleatoria se divide en intervalos discretos, luego se cuenta el número de observaciones que cae en cada uno de los intervalos y finalmente el resultado se dibuja como una gráfica de barras. El ancho Δx , del intervalo utilizado para construir el histograma de frecuencia se escoge lo más pequeño posible, y de tal manera que caigan suficientes observaciones dentro de cada uno de los intervalos de los intervalos para que el histograma tenga una variación razonablemente suave en el rango de la información.

Si el número de observaciones n_i en el intervalo i, que cubre el rango l rango [xi - Δx , xi], se divide por el número total de observaciones n, el resultado se conoce como la *función de frecuencia relativa* f_s(x):

$$f_{s}(xi) = \frac{n_{i}}{n}$$
(19)

Esta función de frecuencias relativa es una estimación de $P(X_i - \Delta x \le X \le x_i)$, la probabilidad que una observación de la variable aleatoria X caiga en el intervalo [xi - Δx , xi]. El subíndice s, indica que la función se calcula utilizando información de la muestra.

La suma de los valores de las frecuencias relativas hasta un punto dado es la *función de frecuencia acumulada,* $F_s(x)$.

$$f_{s}(x_{i}) = \sum_{j=1}^{i} f_{s}(x_{j})$$
 (20)

La función de frecuencia acumulada representa un estimativo de P(X $\leq x_i$), la probabilidad acumulada de x_i .

Las funciones de frecuencia relativa y de frecuencia acumulada están definidas para una muestra; las funciones correspondientes para la población se aproximan como límites a medida que $n \rightarrow \infty$ y $\Delta x \rightarrow 0$. En el límite la función de frecuencia relativa dividida por el intervalo de longitud Δx se convierte en la *función de densidad de probabilidad f(x):*

La función de densidad de probabilidad, f(x), está definida como:

$$f(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} \frac{f_s(x)}{\Delta x}$$
(21)

La función de frecuencia acumulada se convierte en la *función de distribución de probabilidad, F(x),* se define como:

$$F(x) = \lim_{\substack{n \to \infty \\ \Delta x \to 0}} F_s(x)$$
(22)

Cuya derivada es la función de densidad de probabilidad.

$$f(x) = \frac{dF(x)}{dx}$$
(23)

Para un valor de x, F(x) es la probabilidad acumulada P(X \leq x), y puede expresarse como la integral de la función de densidad de probabilidad sobre el rango X \leq x:

$$P(X \le x) = F(x) = \int_{-\infty}^{x} f(u) du$$
(24)

Donde u es una variable auxiliar de integración (Ven Te Chow, 2000).

3.4.2 Parámetros estadísticos

Los parámetros estadísticos son características de una población. Un parámetro estadístico es el valor esperado E de alguna función de una variable aleatoria. Para una variable aleatoria X, la media es E(X), y se calcula como el producto de x y la

correspondiente densidad de probabilidad f(x), integrando sobre el rango factible de la variable aleatoria tenemos:

$$E(X) = \mu = \int_{-\infty}^{\infty} f_X(x) dx$$
 (25)

E(x) representa el primer momento con respecto al origen de la variable aleatoria, una medida del punto medio " tendencia central " de la distribución. La estimación por la muestra de la media es el promedio de la información de la muestra.

Otros valores de tendencia central son la moda, la mediana y la media geométrica. La moda es el punto de máxima densidad de probabilidad, la mediana es el valor de la variable aleatoria que hace que F(x) = 0.5, o sea que tiene una probabilidad acumulada del 50%. La media geométrica se calcula como el antilogaritmo del valor esperado de los logaritmos de la variable aleatoria.

La variabilidad de la información se mide por medio de la varianza (σ^2), la cual es el segundo momento con respecto a la media, y se define por la siguiente expresión:

$$E[(x-\mu)^{2}] = \sigma^{2} = \int_{-\infty}^{\infty} (x-\mu)^{2} f(x) dx$$
 (26)

La desviación estándar (σ), es la raíz cuadrada de la varianza. A medida que la desviación estándar aumenta, lo hace también la dispersión de la información. Una medida adicional de la variabilidad, es el coeficiente de la variación (CV).

$$CV = \frac{\sigma}{\mu}$$
(27)

La simetría de una distribución de probabilidad con respecto a la media se mide utilizando la asimetría u oblicuidad, la cual es el tercer momento con respecto a la media, y está definido por:

$$E[(x-\mu)^{3}] = \int_{-\infty}^{\infty} (x-\mu)^{3} f(x) dx$$
 (28)

Un parámetro adimensional de medida de la asimetría lo constituye el coeficiente de asimetría (γ), que esta definido por la siguiente expresión:

$$\gamma = \frac{1}{\sigma^{3}} E[(x - \mu)^{3}]$$
(29)

Para valores del coeficiente de asimetría positivos (γ >0), la función de densidad de probabilidad está desviada hacia la derecha (hacia valores grandes). Cuando se tiene un coeficiente de asimetría negativo, está desviada hacia la izquierda (hacia valores pequeños), y si es cero la distribución de valores es totalmente simétrica alrededor de la media. En la figura 3a y 3b, se puede apreciar cómo influyen los valores de los parámetros estadísticos en la forma de la función de densidad de probabilidad (Ven Te Chow, 2000).

Figura 3. Efectos de la función de densidad de probabilidad causados por cambios en la desviación estándar y en el coeficiente de asimetría (Chow,2000)

3.4.3 Muestreo aleatorio

En el numeral anterior se presentaron los parámetros estadísticos poblacionales, estos parámetros son constantes que no se ven afectados por las observaciones de una muestra aleatoria.

En hidrología se trabaja con poblaciones generalmente infinitas. Ante la imposibilidad de tener todos los valores que la variable aleatoria ha tomado en el pasado o que tomará en el futuro, se toma una muestra aleatoria, que consta de los valores registrados históricamente hasta la fecha del análisis. Por ejemplo, para la elaboración de una curva intensidad-duración-frecuencia para una estación cualquiera, se toma una muestra aleatoria de los valores de intensidad para una duración determinada de lluvia, a partir de los registros pluviográficos disponibles. Las características medidas a partir de muestras aleatorias varían de una muestra a otra, es así como las curvas intensidad-duración-frecuencia que se elaboraron hace 20 años son diferentes a las que se puedan construir actualmente, porque aunque fueron hechas a partir de valores tomados de una misma población, los 20 años más de registro hacen que la muestra cambie y por tanto las características que de ella se puedan inferir.

3.4.4 Tendencia central de la muestra

La media de una muestra aleatoria de tamaño n, está definida por:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$
(30)

La mediana de una muestra de tamaño n, ordenada en forma creciente de magnitud, se define por:

Si n es impar, la mediana será la observación central de los valores, una vez que estos han sido ordenados en orden creciente o decreciente.

$$\widetilde{X} = \frac{x(n+2)}{2} \tag{31a}$$

Si n es par, será el promedio aritmético de las dos observaciones centrales.

$$\tilde{X} = \frac{X\frac{n}{2} + X\frac{n}{2} + 1}{2}$$
(31b)

Los subíndices de las x en la fórmula anterior indican la posición de la observación en la muestra ordenada.

La moda de una muestra aleatoria, es el valor de la muestra que ocurre con mayor frecuencia.

La media es la medición de localización central usada más comúnmente, pero tiene la desventaja de verse afectada seriamente por la presencia de valores extremos.

3.4.5 Variabilidad de la muestra

Al medir la variabilidad de los datos de una muestra aleatoria, lo que se pretende es saber en qué grado las observaciones se alejan del promedio. Los estadísticos más importantes para cuantificar dicha variabilidad en la muestra aleatoria son la amplitud y la varianza muestral. La amplitud de una muestra aleatoria se define por el estadístico (xn - x(1)), donde xn y x(1) son respectivamente las observaciones mayor y menor de la muestra.

La varianza de una muestra aleatoria de tamaño n, se define mediante el estadístico:

$$S^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n-1}$$
(32)

La desviación estándar de la muestra es la raíz cuadrada de la varianza muestral.

3.4.6 Simetría de la muestra

El coeficiente de asimetría de una muestra aleatoria de tamaño *n*, se define mediante el estadístico:

$$C_{s} = \frac{n \sum_{i=1}^{n} (x_{i} - \overline{x})^{3}}{(n-1)(n-2)S^{3}}$$
(33)

La interpretación de los estadísticos presentados anteriormente es equivalente a la que se presentó en el numeral anterior para los parámetros poblacionales.

Un estadístico es una variable aleatoria que depende únicamente de la muestra observada y por consiguiente tiene su propia distribución de probabilidad, la cual recibe el nombre de distribución muestral (Ven Te Chow, 2000).

3.4.7 Ajuste de una distribución de probabilidad

Mediante el ajuste de una función de probabilidad a un conjunto de datos hidrológicos, una gran cantidad de información probabilística de la muestra puede resumirse en forma compacta, en la función de densidad de probabilidad con sus parámetros asociados. Lo que se pretende es encontrar los valores de los parámetros que definen la función de distribución de probabilidad a partir de la información muestral. El cálculo de los parámetros de las distribuciones se puede llevar a cabo por el método de los momentos, este método es aplicable si se conoce, o asume, previamente la distribución de probabilidad. En el ajuste que se hizo para la elaboración de las curvas intensidad-duración-frecuencia que motivaron este trabajo, se empleó el método de los momentos.

3.4.8 Método de momentos

Si *X* es una variable aleatoria, el r-ésimo momento alrededor del origen se define como:

$$E(x^{r}) = \int_{-\infty}^{\infty} x^{r} f(x) dx$$
(34)

El primer momento con respecto al origen es la media o valor esperado de la variable aleatoria.

Para la misma variable aleatoria *X*, el r-ésimo momento centrado o r-ésimo momento con respecto a la media de *X*, se define por:

$$E(x-\mu)^r = \int_{-\infty}^{\infty} (x-\mu)^r f(x) dx$$
(35)

En el método de momentos se considera que unos buenos estimativos de los parámetros de una función de probabilidad, son aquellos para los cuales los momentos de la función de densidad de probabilidad con respecto al origen o a la media, son iguales a los momentos correspondientes de la información muestral (Ven Te Chow, 2000).

3.4.9 Funciones de distribución de probabilidad para variables hidrológicas aleatorias continuas

Las funciones de distribución de probabilidad se ajustan a las variables hidrológicas. La mejor forma de mostrar de manera compacta las distribuciones es a través de una tabla, en la que se define para cada distribución, la función de densidad de probabilidad, el rango que puede tomar la variable aleatoria y las ecuaciones que definen los parámetros de la distribución en términos de la información muestral. La tabla 1 presenta tales características.

Distribución	Función de densidad de probabilidad	Dominio	Ecuaciones para los parámetros en términos de los momentos de la muestra
Normal	$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$	$-\infty \le x \le \infty$	$\mu = \overline{\mathcal{X}}, \sigma = s_x$
Log-normal	$f(x) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(y-\mu_y)^2}{2\sigma_y^2}\right)$	x > 0	$\mu_{y} = \overline{\mathcal{Y}}, \ \sigma_{y} = S_{y}$
Gumbel, valor extremo tipo I	$f(x) = \frac{1}{\alpha} \exp\left[-\frac{x-u}{\alpha} - \exp\left(-\frac{x-u}{\alpha}\right)\right]$	$-\infty < x < \infty$	$\alpha = \frac{\sqrt{6s_x}}{\pi}$ $u = \overline{x} - 0.5772\alpha$

Tabla 1. Algunas funciones de densidad de probabilidad utilizadas en hidrología

3.5 Análisis de frecuencia

Los sistemas hidrológicos se ven afectados en ocasiones por la ocurrencia de eventos extremos, tales como tormentas severas, sequías o crecientes. El objetivo del análisis de frecuencia de información hidrológica, es relacionar la magnitud de eventos extremos con su frecuencia de ocurrencia, mediante el uso de funciones de distribución de probabilidad. La magnitud de un evento está inversamente relacionada con su frecuencia de ocurrencia, es decir, eventos de magnitud extrema (ya sea muy grande o muy pequeña) ocurren con menor frecuencia que eventos moderados. Un análisis de frecuencia de eventos hidrológicos extremos (por ejemplo, intensidades máximas) es útil en la optimización de diseños de estructuras hidráulicas, como un alcantarillado de agua pluvial. El no contar con un análisis de frecuencia adecuado de la variable de puede llevar a la construcción de estructuras interés en el diseño, subdimensionadas, con el riesgo de colapso que esto implica, o al sobrecosto que acarrea un sobredimensionamiento.

En el diseño de obras de drenaje, un alcantarillado de agua pluvial, por ejemplo, se necesita conocer la tormenta de diseño, o las intensidades de lluvia puntuales en la aplicación del método racional, para obtener los caudales pico que deberán transitar a través de la red de alcantarillado. Las curvas intensidad-duración-frecuencia, son producto de un análisis de frecuencia. En ellas se relacionan la intensidad de la lluvia con su duración y su frecuencia o período de retorno.

3.5.1 Concepto de período de retorno

Supóngase que por definición un evento extremo ocurre si una variable aleatoria X es mayor o igual que un cierto nivel x_{T} . El tiempo que transcurre entre la ocurrencia de eventos de magnitud mayor o igual a x_{T} se conoce como intervalo

de recurrencia (τ), el período de retorno T de un evento $X \ge x_T$ es el valor esperado de τ , $E(\tau)$, o sea su valor promedio medido sobre un número de ocurrencias suficientemente grande. En síntesis, el periodo de retorno de un evento con una magnitud dada puede definirse como el intervalo de recurrencia promedio entre eventos que igualan o exceden una magnitud especificada.

La probabilidad $p = P(X \ge x_T)$ de ocurrencia del evento $X \ge x_T$ en cualquier observación puede relacionarse con el período de retorno mediante la siguiente expresión:

$$P = P(X \ge x_T) = \frac{1}{T}$$
(36)

Es decir, la probabilidad de ocurrencia de un evento en cualquier observación es el inverso de su período de retorno.

3.5.2 Series de información hidrológica.

Una serie de duración completa está compuesta por toda la información hidrológica ordenada por su tiempo de ocurrencia. Una serie de duración parcial es una serie de datos seleccionados de tal manera que su magnitud es mayor que un valor base predefinido. Si el valor base se selecciona de tal manera que el número de valores en la serie es igual al número de años en el registro, la serie se conoce como una serie de excedencia anual. Una serie de valor extremo incluye el valor máximo o mínimo que ocurre en cada uno de los intervalos de tiempo de igual longitud del registro. La longitud del intervalo de tiempo usualmente se toma como un año, y una serie seleccionada de esta manera se conoce como una serie anual. Si se utilizan los valores máximos anules es una serie anual máxima. La selección de los valores mínimos anuales produce una serie anual mínima.

Para la elaboración de las curvas de intensidad-duración-frecuencia que se presentan en este trabajo, se tomaron series de precipitaciones máximas en 24 horas, en donde se determinó la precipitación máxima en 24 horas para cada año del registro de la estación climatológica utilizada en este estudio.

3.5.3 Análisis de frecuencia con factores de frecuencia

El cálculo de las magnitudes de eventos extremos, puede llevarse a cabo conocida la función teórica de distribución de probabilidad, determinando para un valor dado el período de retorno, la correspondiente magnitud del evento, usando la siguiente expresión:

$$\frac{1}{T} = 1 - F(x_T) \tag{37}$$

Donde *T* es el período de retorno en años y $F(x_T)$ es la función de distribución de probabilidad en $X = x_T$.

Según el método de los factores de frecuencia, la magnitud x_T de un evento hidrológico extremo, se puede calcular como la media (μ), más una desviación Δx_T de la variable con respecto a la media (Ven Te Chow, 2000).

$$\boldsymbol{X}_{T} = \boldsymbol{\mu} + \Delta \boldsymbol{X}_{T} \tag{38}$$

El término Δx_T en la ecuación 38 puede calcularse como el producto de la desviación estándar σ y el factor de frecuencia K_T . Entonces la ecuación 38 puede expresarse como:

$$X_{T} = \mu + K_{T}\sigma \tag{39}$$

Una estimación de x_T puede hacerse empleando la información muestral, utilizando la siguiente ecuación:

$$X_{\tau} = \overline{X} + K_{\tau} \mathsf{S} \tag{40}$$

Cuando se utiliza una distribución con transformación logarítmica, la magnitud del evento se encuentra tomando el antilogaritmo de valor calculado con la ecuación 40.

El factor de frecuencia K_T es función del período de retorno y del tipo de distribución utilizada en el análisis (Ven Te Chow, 2000).

3.5.4 Factor de frecuencia para las distribuciones normal y log normal

El factor de frecuencia para el cálculo de la magnitud de un evento con probabilidad de excedencia (p=1/T), utilizando la distribución normal o la lognormal, se puede encontrar empleando las siguientes ecuaciones (Ven Te Chow, 2000):

Cuando
$$p = \frac{1}{T} \le 0.5$$

$$K_{\tau} = w - \frac{2.515517 + 0.802853w + 0.010328w^2}{1 + 1.432788w + 0.189269w^2 + 0.001308w^3}$$
(41)

Donde
$$w = \left[\ln \left(\frac{1}{p^2} \right) \right]^{\frac{1}{2}}$$

Cuando P>0.5

$$K_{\tau} = w - \frac{2.515517 + 0.802853w + 0.010328w^2}{1 + 1.432788w + 0.189269w^2 + 0.001308w^3} \text{-w}$$
(42)

Donde
$$w = \left[\ln \left(\frac{1}{1 - p^2} \right) \right]^{\frac{1}{2}}$$

Para la distribución log-normal, se utiliza el mismo procedimiento, excepto que éste se aplica a los logarítmos de las variables y su media y desviación estándar son utilizadas en la ecuación 40. Las ecuaciones 41 y 42 son el resultado de una aproximación numérica que fue realizada por (Abramowitz y Stegun, 1965), para calcular la integral que representa la función de probabilidad de estas distribuciones. El error al aplicar las fórmulas es menor que 0.00045.

3.5.5 Factor de frecuencia para las distribuciones Gumbel y Log-Gumbel

Para estas distribuciones el factor de frecuencia se puede calcular con la siguiente ecuación (Ven Te Chow, 2000):

$$K_{T} = -\frac{\sqrt{6}}{\pi} \left[0.5772 + \ln \left[\ln \left(\frac{T}{T-1} \right) \right] \right]$$
(43)

3.5.6 Intervalos de confianza en el cálculo de eventos extremos por factores de frecuencia

Las magnitudes de eventos determinadas a partir de un análisis de frecuencia, a menudo se presentan en un rango o intervalo de confianza, donde es de esperarse que se encuentre el valor correcto del evento estimado. El tamaño del intervalo depende de un nivel de confianza β . Los valores superior e inferior del intervalo de confianza se conocen como los límites de confianza. A cada nivel de confianza corresponde un nivel de significancia α , el cual está dado por:

$$\alpha = \frac{1-\beta}{2} \tag{44}$$

Es importante anotar que los límites de confianza son variables aleatorias, ya que son función del tamaño de la muestra. Mientras más grande sea la muestra, más estrecho es el intervalo de confianza. Para la magnitud de un intervalo asociada a un período de retorno cualquiera, los límites de confianza se pueden calcular utilizando el error estándar (*Se*), el cual mide la desviación estándar de las magnitudes de eventos, calculadas mediante muestras, con respecto a la verdadera magnitud del error estándar (ven Te Chow, 2000).

Para la distribución normal, el error estándar se calcula como:

$$Se = \left(\frac{2+z^2}{n}\right)^{\frac{1}{2}}S$$
(45)

Donde z es la variable normal estandarizada, n el tamaño de la muestra y S la desviación estándar de la muestra.

Para la distribución Gumbel se tiene:

$$Se = \left[\frac{1}{n}\left(1 + 1.1396K_T + 1.1{K_T}^2\right)\right]^{\frac{1}{2}}S$$
(46)

 K_T es el factor de frecuencia para la distribución Gumbel.

Los límites de confianza superior (LT, α) e inferior, (UT, α), se calculan empleando las siguientes expresiones (Ven Te Chow, 2000):

$$L_{T,\alpha} = x_t + S_e Z_\alpha \tag{47}$$

$$U_{T,\alpha} = x_t - S_e Z_\alpha \tag{48}$$

En las ecuaciones anteriores, $Z\alpha$ es el valor de la variables normal estándar con una probabilidad de excedencia α .

3.6 Construcción de las Curvas Intensidad-Duración-Frecuencia (IDF)

Con respecto a la construcción de las curvas Intensidad-Duración-Frecuencia (IDF), diversos autores plantean distintas formas o métodos para su construcción.

Según Aparicio (1997) existen dos métodos; el primero, llamado de intensidad – período de retorno, relaciona estas dos variables, y para cada duración por separado, mediante alguna de las funciones de distribución de probabilidad usadas

en hidrología. El otro método relaciona simultáneamente la intensidad, la duración y el período de retorno en una familia de curvas, cuya ecuación es;

$$I = \frac{k * T^m}{(d+c)^n} \tag{49}$$

Donde *k, m, n y c* son constantes que se calculan mediante un análisis de correlación lineal múltiple, y en tanto que I y d corresponden a la intensidad de precipitación y la duración, respectivamente.

Por otra parte, Chow *et al.* (2000), plantean dos formas de trabajar con las curvas. La primera, utiliza un análisis de frecuencia de la lluvia, considerando para ello una función de distribución de probabilidad de valor extremo como la función Gumbel.

El segundo método, expresa las curvas IDF como ecuaciones, con el fin de evitar la lectura de la intensidad de lluvia de diseño en una gráfica. Wenzel (1982), citado por Chow *et al.* (2000), dedujo para algunas ciudades de los Estados Unidos, algunos coeficientes para utilizarlos en una ecuación de la forma;

$$I = \frac{C}{\left(Td^e + f\right)} \tag{50}$$

Donde *I* es la intensidad de lluvia de diseño, y *Td* la duración, en tanto *c*, *e* y son coeficientes que varían con el lugar y el período de retorno.

Otra forma o método para determinar las curvas IDF, es el que se utilizó en este trabajo, el cual es citado por Galindo (2004), en donde utiliza el método de Bill para obtener las curvas IDF a partir de lluvias máximas en 24 horas.

3.7 Metodología para la obtención de las Curvas IDF de la zona semidesértica de Querétaro.

A continuación, se describirá detalladamente, cada una de las fases metodológicas para la obtención de las curvas IDF correspondientes a la zona semidesértica de Querétaro.

3.7.1 Recopilación de la información

La información correspondiente a este proyecto de tesis, se obtuvo de la estación climatológica de Centro Experimental Norte de Guanajuato (CENGUA), la cual abarca información meteorológica correspondiente a la zona semidesértica de Querétaro y Guanajuato.

Se recopiló una serie de datos de precipitación máxima mensual en 24 horas registrada con pluviómetro, correspondiente a 16 años de registro, de la cual se conformó la tabla 2 con datos máximos de precipitación en 24 horas para cada año registrado.

AÑO	Precipitacion Max. 24 horas
	(mm)
1986	38.3
1987	34.5
1988	36.4
1989	38.7
1990	41.2
1991	55.8
1992	37.3
1993	37.0
1994	55.8
1995	42.2
1996	53.2
1997	29.4
1998	41.2
1999	58.4
2000	41.4
2001	55.4

Tabla 2. Datos de precipitación máxima en 24 horas

A partir de los datos de la tabla 2 se desarrollará el método de Bill para obtener las curvas IDF y realizar los ajustes a las diferentes distribuciones de probabilidad.

3.7.2 Ajuste de los datos de precipitación a una distribución de probabilidad mediante la prueba Ji Cuadrada (x^2).

La prueba ji-cuadrado se usa para determinar el grado de ajuste de una distribución de probabilidades teórica a una distribución empírica; este tipo de distribución tiene como factor principal de variación el número de de grados de libertad (n-1). Citado por Palacios en 1980.

El procedimiento Consiste en comparar la frecuencia o probabilidad observada, con los valores calculados según el tipo de distribución supuesto, para valores de la variable aleatoria estudiada. La suma de las diferencias al cuadrado, dividida entre las frecuencias calculadas, da un valor Ji - cuadrado para (n - 1) grados de libertad, el que se compara con los valores tabulados para un 99.5 % y 99% de probabilidad; sí el valor obtenido es mayor que el esperado, no hay buen ajuste con la distribución supuesta; en cambio, si el valor es menor la distribución se considera aceptable.

A continuación se desarrollará la prueba Ji Cuadrada para los datos de la tabla 2 y determinar cual es la distribución de probabilidad que mejor los ajusta.

Para calcular la probabilidad empírica de precipitación observada se usa la formula de Weibull (Ven Te Chow, 1998).

$$p = \frac{m}{n+1} \tag{51}$$

Donde

p = Probabilidad

m = Número de orden

n = Número de observaciones

Para el valor de m o el número de orden de menor a mayor

Para el cálculo de χ^2 se efectúa con la siguiente formula:

$$\chi^{2} = \sum_{i=1}^{n} \frac{(O_{i} - C_{i})^{2}}{C_{i}}$$
(52)

Donde

O = Valores observados

C =Valores Calculados

En la tabla 3, se muestran los cálculos realizados con las diferentes funciones de distribución.

м	Precipitación (mm)	Probabilidad empírica Weibull	Pearson calculada (P)	Log-Normal Calculada (P)	Gumbel Tipo I Calculada (P)	Pearson (O-C) ² /C	Log-Normal (O-C) ² /C	Gumbel (O-C) ² /C
1	29.4	0.06	31.20	30.83	30.20	0.10	0.07	0.02
2	34.5	0.12	33.46	33.33	32.60	0.03	0.04	0.11
3	36.4	0.18	35.15	35.16	34.39	0.04	0.04	0.12
4	37	0.24	36.61	36.70	35.94	0.00	0.00	0.03
5	37.3	0.29	37.94	38.09	37.38	0.01	0.02	0.00
6	38.3	0.35	39.22	39.40	38.76	0.02	0.03	0.01
7	38.7	0.41	40.48	40.68	40.13	0.08	0.10	0.05
8	41.2	0.47	41.74	41.95	41.52	0.01	0.01	0.00
9	41.2	0.53	43.03	43.25	42.98	0.08	0.10	0.07
10	41.4	0.59	44.39	44.60	44.52	0.20	0.23	0.22
11	42.2	0.65	45.86	46.04	46.22	0.29	0.32	0.35
12	53.2	0.71	47.48	47.63	48.13	0.69	0.65	0.54
13	55.4	0.76	49.33	49.44	50.36	0.75	0.72	0.50
14	55.8	0.82	51.56	51.60	53.12	0.35	0.34	0.13
15	55.8	0.88	54.50	54.43	56.88	0.03	0.03	0.02
16	58.4	0.94	59.11	58.85	63.08	0.01	0.00	0.35
Sumatoria						2.70	2.71	2.52

Tabla 3. Ajuste de datos de precipitación a las distribuciones de probabilidad

La probabilidad calculada para la distribución Normal, Log-Normal y Gumbel Tipo I fueron obtenidas mediante el software DISTRIB 2.0, desarrollado por la Universidad Central de la Florida en EEUU. Ver Anexo 1.

Como el número de observaciones n = 16, los grados de libertad serán 15. En las tablas de la Ji Cuadrada (Anexo 1), se obtienen los siguientes valores para un 99.5 y 99% de probabilidad.

 $x^{2}_{0.995} = 32.8$ $x^{2}_{0.99} = 30.6$

Se puede observar que 2.70, 2.71 y 2.52 son menores que el valor esperado encontrado en la tabla de la Ji Cuadrada; pero como el valor que más se acerca a cero es 2.52 se puede afirmar que la distribución Gumbel Tipo I es la que mejor ajusta los datos.

A continuación se presentan las gráficas de las funciones de distribución utilizadas; obtenidas mediante el software DISTRIB 2.0:

Figura 5. Gráfica de la función de distribución Log Normal

Figura 6. Gráfica de la función de distribución Gumbel

De las gráficas anteriores se puede determinar que la distribución Gumbel Tipo I, es la que mejor ajusta los datos a una línea recta.

3.7.3 Método de Bill para la obtención de las curvas IDF mediante valores máximos mensuales de precipitación en 24 horas.

El diseño de una obra hidráulica esta asociado a la ocurrencia de un evento hidrológico de cierto periodo de retorno. La estimación de dicho evento depende de la información disponible en el sitio que se esta analizando; en este caso, se requiere determinar la intensidad de la lluvia, a partir de un registro de lluvias máximas en 24 horas.

La construcción de las curvas IDF se realiza de acuerdo con la fuente de información disponible, ya sea pluviográfica o pluviométrica. El segundo caso es el más común en México, ya que sólo el 13 % de las estaciones climatológicas del país cuentan con pluviógrafo (Escalante., 2004).

Como las estaciones pluviométricas proveen datos de lluvia máxima de 24 horas, se desarrollará el Método de Bill, para la obtención de las curvas Intensidad – Duración – Frecuencia (Galindo.,2004).

Para desarrollar dicho método es necesario determinar la relación de la lluvia de 1 hora con la de 24 horas, todo en un periodo de retorno, dicha relación se designa como CP ó coeficiente R (Chen., 1983).

El coeficiente CP ó R, se puede obtener debido a estudios realizados en diferentes países para zonas determinadas, en donde se realiza un análisis de series de precipitación mensual multianual; el valor de este coeficiente puede variar dependiendo de la pluviosidad de la zona de interés (Galindo.;2004); por otro lado también se ha demostrado que el valor de este coeficiente puede variar dependiendo del tamaño de la muestra de los datos de precipitación utilizados para su determinación (Escalante.,2004).

En la república Mexicana se han desarrollados trabajos para determinar el coeficiente R, obteniendose estos valores para ciertas regiones del país (Escalante.,2004); tambien existen publicaciones que reportan los valores que relacionan la lluvia de 1 hora con una de 24 horas de duración (Guerra., 2002).

Para la región de interés de este trabajo; la cual cubre la zona semidesértica de Querétaro y Guanajuato, se ha encontrado que el coeficiente CP ó R, tiene un valor promedio de 0.6 (Escalante.,2004),(Guerra.,2002). Por otra parte este valor

51

coincide con los valores utilizados en diferentes estudios de consultaría en esta zona (Caballero.,2006).

Para el desarrollo de método de Bill, es necesario calcular la intensidad máxima horaria relacionando la precipitación de 1 hora con una de 24 horas, para realizar dicha relación, se multiplica el valor del coeficiente CP ó R por el valor correspondiente a cada precipitación máxima en 24 horas.

Para el caso de este trabajo se utilizará un Cp de 0.6, tomando como referencia los trabajos realizados previamente, en los cuales queda referenciado este valor (Escalante.,2004),(Guerra.,2002) y (Caballero.,2006).

En la tabla 4 se presentan los datos de precipitación máxima horaria a partir de coeficiente CP.

	Precipitación	Precipitación		
AÑO	Max. 24 horas	Max. 1 hora		
	(mm)	(mm)		
1986	38.3	22.98		
1987	34.5	20.7		
1988	36.4	21.84		
1989	38.7	23.22		
1990	41.2	24.72		
1991	55.8	33.48		
1992	37.3	22.38		
1993	37.0	22.2		
1994	55.8	33.48		
1995	42.2	25.32		
1996	53.2	31.92		
1997	29.4	17.64		
1998	41.2	24.72		
1999	58.4	35.04		
2000	41.4	24.84		
2001	55.4	33.24		
Media		26.11		
D. Estandar		5.45		

Tabla 4. Datos de precipitación máxima horaria

Para la serie de datos anterior, se calculan los estadísticos correspondientes a la media y desviación estándar.

Posteriormente se ajustan los datos a una función de distribución de probabilidades; en este caso se determinó que la que mejor ajustaba los datos era la Gumbel o de valores extremos.

La ecuación de la distribución Gumbel, según Monsalve (1995) es:

$$\mathsf{P}(\mathsf{x} \le \mathsf{x}_{\mathsf{i}}) = \boldsymbol{e}^{-\boldsymbol{e}^{-\boldsymbol{v}_{i}}}$$
(53)

Donde

e = base de los logaritmos neperianos

 y_i = Variable reducida

 x_i = Precipitación máxima en 1 hora para un período de retorno determinado, en este caso 2,5,10,20 y 50 años.

Luego se tiene que:

$$y_i = a \left(x_i - x_f \right) \tag{54}$$

$$a = \frac{S_n}{S} \tag{55}$$

$$x_f = \overline{X} - S \, \frac{Y_n}{S_n} \tag{56}$$

Donde

 \overline{X} : Promedio de los datos de la muestra (Observados).

S: Desviación estándar del os datos de la muestra.

 $Y_n y S_n$ dependen del número de años de registro de la muestra n, y son respectivamente la media y la desviación estándar de la variable reducida (y). Los valores de $Y_n y S_n$, provienen del cuadro conformado para estos valores correspondiente al método de Gumbel (Mosalve.,1995).

Entonces

 \overline{X} = 26.11 Y_n = 0.5157 S_n = 1.0316

Con los datos anteriores se aplica la ecuación 55 y se tiene:

$$a = \frac{S_n}{S} = \frac{1.0316}{5.45} = 0.189$$

a = 0.189

Luego se aplica la ecuación 56

$$x_f = \overline{X} - S \frac{Y_n}{S_n} = 26.11 - 5.45 \frac{0.5157}{1.0316} = 23.3826$$

 $x_f = 23.3826$

Ahora se plantea la ecuación 54, para la variable reducida (Yi)
Los valores de Y_i , se determinaron en el papel Gumbel, para los diferentes periodos de retorno (Monsalve., 1995).

Tabla 5. Valores de la variable reducida para diferentes períodos de retorno

Tr (años)	Y _i
2	0.37
5	1.5
10	2.25
20	2.97
50	3.9

Los valores anteriores fueron referenciados por Monsalve, 1995.

Conociendo los valores de (Y_i), (*a*) y (X_f), de despeja de la ecuación 54, la variable (x_i), que corresponde al valor de las precipitaciones máximas en una hora para los diferentes períodos de retorno, por lo tanto se tiene:

$$x_i = \frac{y_i}{a} + x_f \tag{57}$$

Aplicando la ecuación anterior, se procedió luego a conformar una tabla de cálculos con período de retorno, los valores Y_n y S_n , y de esta manera encontrar de las precipitaciones máximas en una hora para los diferentes períodos de retorno.

En la tabla 6, se observan las precipitaciones máximas en 1 hora y la intensidad máxima para cada período de retorno.

Tr (años)	Yn	Sn	Yi	P Max en 1 Hora (mm)	i Max (mm/h)
2	0.5157	1.0316	0.37	25.34	25.34
5	0.5157	1.0316	1.5	31.31	31.31
10	0.5157	1.0316	2.25	35.27	35.27
20	0.5157	1.0316	2.97	39.08	39.08
50	0.5157	1.0316	3.9	43.99	43.99
100	0.5157	1.0316	4.6	47.69	47.69

Tabla 6. Precipitación e intensidad máxima en 1 para cada Tr

Como el tiempo es de 1 hora, la precipitación y la intensidad máxima coinciden numéricamente.

3.7.3.1 Determinación de las curvas IDF

Uno de los modelos más simples y comunes en hidrología está basado en la suposición de que dos variables se relacionan en forma lineal. En general, el objetivo de un modelo de esta naturaleza es poder estimar el valor de una variable, que se denomina variable dependiente, a partir del valor de la otra, que se llama variable independiente (Aparicio, 2007), (Caballero ,2006).

Debido a lo anterior, las curvas IDF fueron determinadas a partir de un análisis de regresión lineal simple, donde se tomó como variable dependiente la precipitación y variable independiente la duración, las variables anteriores, se analizaron para los diferentes períodos de retorno establecidos.

A continuación se desarrolla la técnica de regresión lineal simple para la obtención de las curvas IDF:

En primer lugar se determinan los valores de precipitación máxima en 24 horas para cada período de retorno, así mismo de determina la precipitación máxima en 1 hora, mediante la utilización del coeficiente CP, en este caso se utilizó un Cp de 0.6, tomando como referencia los trabajos realizados previamente, en los cuales queda referenciado este valor (Escalante, 2004), (Guerra, 2002) y (Caballero, 2006).

Los valores de precipitación máxima en 24 se relacionaron con los diferentes períodos de retorno, mediante la función de distribución de probabilidad de Gumbel, con la cual se obtuvo un mejor ajuste.

En la tabla 7, se presentan los valores de precipitación máxima en 24 horas y 1 hora, para cada período de retorno.

Tr (años)	P.Max 24 Horas (mm)	P. Max. 1 hora (mm)
2	42.2	25.32
5	52.2	31.32
10	58.8	35.28
25	67.2	40.32
50	73.4	44.04

Tabla 7. Precipitaciones máximas en 24 y 1 hora

Con la tabla anterior se procedió al desarrollo de la regresión lineal, para cada período de retorno establecido.

Para la estimación de la ecuación de regresión lineal simple, es necesario determinar los valores de b_1 y b_o a partir de la muestra. El método de estimación

es el de Mínimos Cuadrados, las siguientes son las ecuaciones para determinar b_1 y b_o :

$$b_1 = \frac{\sum XY - \overline{y} \sum X}{\sum X^2 - \overline{x} \sum X}$$
(58)

$$b_0 = \overline{y} - b_1 \overline{x} \tag{59}$$

X = Duración (horas)Y = Precipitación (milímetros)

En la siguiente tabla se tiene la precipitación máxima en 24 horas con un valor de 42.2 milímetros y la precipitación máxima para 1 hora con un valor de 25.32 milímetros, estas precipitaciones corresponden a un período de retorno de 2 años.

Este mismo procedimiento se realiza con los diferentes períodos de retorno establecidos.

Tabla 8. Precipitaciones máximas en 24 y 1 hora para un Tr de 2 años

	X _i	Y _i	X _i ²	Y _i ²	(X _i Y _i)
	24	42.2	576	1780.84	1,012.80
	1	25.32	1	641.1024	25.32
Σ	25	67.52	577	2421.9424	1038.12

Con los valores de la tabla anterior, se desarrollaron las ecuaciones 58 y 59, obteniendo los siguientes valores para b_1 y b_o :

 $b_1 = 0.733$ $b_o = 24.586$ Con los valores anteriores se obtuvo la ecuación de la recta de regresión:

$$Y = 0.733x + 24.586$$
(60)

El coeficiente de determinación R^2 tuvo un valor de 1.

En la figura 7, se observa la recta de regresión calculada con los valores de precipitación máxima en 24 y 1 hora, para un período de retorno de 2 años.

Figura. 7. Recta de regresión para un Tr de 2 años

Posteriormente se procedió a darle valores de tiempo en horas, a la ecuación 60, con la finalidad de calcular los valores de precipitación máximos para cada intervalo de tiempo determinado y a su vez convertir los valores de precipitación máxima en valores de intensidad máxima, los cálculos anteriores se realizarón para un período de 2 años.

Resolviendo la ecuación 60 con el procedimiento anterior, y tomando como intervalos de tiempo 24, 2, 1, 05, 033, 025 horas; se determinó la siguiente tabla para un período de retorno de 2 años.

Tiempo (hr)	Tiempo (min)	P.Máxima (mm)	I.Máxima (mm/hr)
24	1440	42.20	1.76
2	120	26.05	13.03
1	60	25.32	25.32
0.5	30	24.95	49.91
0.33	20	24.83	75.24
0.17	10	24.71	145.36
0.08	5	24.64	308.06

Tabla 9. Precipitaciones e intensidades máximas para un Tr de 2 años

Con la tabla anterior de graficaron los valores y se obtuvo la curva IDF para un período de retorno de 2 años, como se muestra en la siguiente figura.

Figura 8. Curva IDF para un Tr de 2 años

El proceso anterior se realizó con los valores de la tabla 9, correspondientes a precipitaciones máximas en 24 y 1 hora, para los períodos de retorno de 2, 5,10,25 y 50 años.

A continuación se presentan las ecuaciones para el cálculo de las precipitaciones e intensidades máximas correspondientes a cada período de retorno.

Tr (años)	Ecuación P.Máxima (mm)	R ²	Ecuación I.Máxima (mm/hr)	R ²
2	P = 0.7339x + 24.586	1	$I = 1468.8 x^{-0.9908}$	0.9996
5	P = 0.9078x + 30.412	1	$I = 1816.8x^{-0.9908}$	0.9996
10	P = 1.0226x + 34.257	1	$I = 2046.5 x^{-0.9908}$	0.9996
25	P = 1.1687x + 39.151	1	$I = 2338.9 x^{-0.9908}$	0.9996
50	P = 1.2765x + 42.763	1	$I = 2554.7 x^{-0.9908}$	0.9996

Tabla 10. Ecuaciones para el cálculo de las precipitaciones e intensidades máximas

P: Precipitación máxima

I: Intensidad máxima

X: tiempo en horas para la precipitación máxima y en minutos para la intensidad máxima.

Con las ecuaciones de la tabla anterior de calcularon los valores de precipitaciones e intensidad máxima para cada período de retorno, con los cuales se obtuvieron las curvas IDF. En la tabla 11, se muestran las precipitaciones máximas, calculadas a partir de las ecuaciones encontradas para cada período de retorno.

	Precipitaciones Máximas (mm)					
Tr (años)	5 minutos	10 minutos	20 minutos	30 minutos	60 minutos	120 minutos
2	24.64	24.71	24.83	24.95	25.32	26.05
5	30.48	30.57	30.71	30.87	31.32	32.23
10	34.34	34.43	34.59	34.77	35.28	36.30
25	39.24	39.35	39.54	39.74	40.32	41.49
50	42.87	42.98	43.18	43.40	44.04	45.32

Tabla 11. Precipitaciones máximas

Los valores de la tabla anterior se convirtieron a intensidades máximas; también se pueden determinar con las ecuaciones de intensidad máxima encontradas; en la tabla 12 se muestran los valores de intensidad máxima para cada período de retorno con las cuales se obtuvieron las curvas IDF.

Tabla 12. Intensidades máximas

	Intensidades Máximas (mm/hr)					
Tr						
(años)	5 minutos	10 minutos	20 minutos	30 minutos	60 minutos	120 minutos
2	308.06	145.36	75.24	49.91	25.32	13.03
5	381.06	179.80	93.07	61.73	31.32	16.11
10	429.24	202.54	104.83	69.54	35.28	18.15
25	490.56	231.47	119.81	79.47	40.32	20.74
50	535.82	252.83	130.86	86.80	44.04	22.66

A partir de los datos condensados en la tabla 12, se elaboraron las curvas de INTENSIDAD – DURACIÓN – FRECUENCIA (IDF) de la lluvia. Usualmente los datos se presentan en forma gráfica, con la duración en el eje horizontal y la intensidad

en el eje vertical, mostrando una serie de curvas para cada uno de los períodos de retorno (Tr), tal como se muestra en la figura 4, correspondientes a la zona de semidesierto de Querétaro.

Las curvas establecen la relación de proporcionalidad (INVERSA) entre la intensidad y la duración, para los períodos de retorno establecidos.

De igual forma se puede establecer directamente la intensidad máxima probable para cada período de retorno en una determinada duración, lo cual facilita el diseño de estructuras hidráulicas.

CURVAS INTENSIDAD - DURACIÓN - FRECUENCIA DE LA ZONA DEL SEMIDESIERTO DE QUERÉTARO

Figura 9. Curvas Intensidad – Duración – Frecuencia correspondientes al semidesierto de Querétaro

4. ESTUDIO EXPERIMENTAL

El sitio experimental Cadereyta corresponde a una microcuenca perteneciente al Municipio de Cadereyta de Montes, Estado de Querétaro, se localiza entre los 20° 34' y 21° 03' de latitud Norte y entre los 99° 23´ y 99° 53´ de longitud Oeste, con una altitud de 2,040 msnm. Sus climas son el seco y el estepario; que de acuerdo al grado de humedad y temperatura, son de dos tipos: el semicálido y semidesértico que se caracterizan por un invierno seco, temperatura media anual de 16.7°C y máxima de 38°C. Presenta una precipitación media anual de 550 mm. La vegetación se encuentra compuesta por diversas especies entre las que sobresalen las cactáceas y pequeñas partes boscosas de pinos y encinos en lo que corresponde a la Sierra Gorda. La flora característica de la región semidesértica, es el matorral, donde se observan individuos arbóreos como capulín (*Prunus serotina*), mezquite (*Prosopis spp.*), pirúl (*Schinus molle*) y algunos arbustos como huizache (*Acacia spp.*), tullidora (*Karwinskia humboldtiana*), además de granjeno (*Celtis pallida*) (Centro Nacional de Desarrollo Municipal, Gobierno del Estado de Querétaro, 1999).

El sitio experimental de Cadereyta se encuentra instrumentado con una estación climatológica para registrar las variables climáticas, las cuales son fundamentales para el cálculo del balance hídrico en dichas zonas. En este caso se tratará la variable precipitación, estudiando algunos eventos registrados, para determinar características como duración, precipitación media, precipitación neta, intensidad, etc.

La estación climatológica cuenta con datalogger marca CAMPBELL SCIENTIFIC el cual registra la precipitación cada 20 minutos. Los pluviómetros son de tipo sónico electrónicos como se observan en la figura 10:

Figura 10. Pluviómetro Sónico

Datalogger de la Estación

Para conocer las características de la precipitación en la zona de Cadereyta se analizaron eventos ocurridos en el año 2006, a partir del mes de Febrero hasta el mes de Septiembre; completando en su totalidad el periodo de lluvias de la zona.

También se recopiló información de eventos de precipitación en las estaciones climatológicas de los sitios experimentales correspondientes a Dolores Hidalgo y Amazcala, con la finalidad de determinar si la región semidesértica del altiplano central mexicano presentaba un comportamiento similar en el régimen de precipitaciones.

En la figura 11, se muestra la ubicación de las estaciones climatológicas instaladas en el corredor continental correspondientes a los sitios experimentales, de los cuales se analizaron eventos de precipitación registrados en dichas estaciones durante el año 2006.

Figura 11. Estaciones climatológicas instaladas en la zona Semidesértica

4.1 Precipitación acumulada en los sitios experimentales de Cadereyta, Dolores y Amazcala.

En general el ciclo anual del agua en los tres sitios experimentales de la zona semidesértica en estudio, presentan un comportamiento regional. Para esta zona

se tiene un valor promedio anual de 550 milímetros, pero este puede valor puede variar, ya que el ciclo anual del agua tiene una dinámica particular año con año.

En la Figura 12 se muestra la precipitación acumulada (mm), a lo largo del año 2006 para estos sitios.

Figura 12. Precipitación acumulada en Dolores, Cadereyta y Amazcala

4.2 Intensidad media y máxima de los eventos de precipitación

La intensidad de la precipitación es otra característica de la lluvia que fue determinada en este estudio. Para los eventos registrados se calculó dicha característica. El valor máximo registrado para un evento determinado fue de

52.50 mm/h y el menor de 0.42 mm/h. El valor de intensidad media para cada evento se obtuvo promediando las intensidades obtenidas para cada 20 minutos durante la duración total de cada evento.

La intensidad correspondiente al volumen total para cada evento fue calculada por el cociente entre la precipitación neta en (mm) y la duración total de cada evento en horas.

En las tablas 13, y 14, se observan los valores correspondientes a intensidades medias para los períodos de registro en las estaciones climatológicas de Cedereyta y Dolores

INTEN	INTENSIDADES Y PRECIPITACIÓN MEDIA EN CADEREYTA						
MES	INTENSIDAD VOLUMEN TOTAL(mm/h)	INTENSIDAD MEDIA (mm/h)	INTENSIDAD MAXIMA (mm/h)	P neta (mm)			
MARZO	1.59	1.41	8.32	5.31			
ABRIL	3.26	2.92	15.25	10.13			
MAYO	4.12	3.51	17.22	8.42			
JUNIO	2.63	2.23	10.21	5.13			
JULIO	2.17	1.96	9.18	9.76			
AGOSTO	4.02	3.40	13.90	8.67			
SEPTIEMBRE	1.68	1.40	5.52	4.33			
Media total	2.78	2.40	11.37	7.39			

Tabla 13. Intensidades de precipitación medias, máximas y Precipitación neta

INTENSIDADES Y PRECIPITACION MEDIA EN DOLORES						
MES	INTENSIDAD VOLUMEN TOTAL(mm/h)	INTENSIDAD MEDIA (mm/h)	INTENSIDAD MAXIMA (mm/h)	P neta (mm)		
ENERO	1.83	1.76	10.27	6.61		
MARZO	4.26	3.99	16.18	5.66		
ABRIL	2.23	1.94	7.50	5.36		
MAYO	2.30	2.00	7.08	6.16		
JUNIO	1.79	1.53	7.37	3.70		
JULIO	2.17	1.87	7.88	6.34		
AGOSTO	4.17	3.42	15.03	10.42		
Media total	2.68	2.36	10.19	6.32		

Tabla 14. Intensidades de precipitación medias, máximas y Precipitación neta

La precipitación media en las tablas anteriores, es el promedio de todos los valores de intensidad registrados cada 20 minutos para cada mes.

Realizando un análisis de las tablas 13 y 14, se encontraron valores muy similares en la precipitación media mensual, Cadereyta con 7.39 mm y Dolores con 6.32 mm. Los valores de intensidad media resultaron de 2.4 mm/h y 2.36 para Cadereyta y Dolores, correspondientemente. En ese mismo orden la intensidad media máxima fue de 11.37 mm/h y 10.19 mm/h; con los valores anteriores, se determinó que las características de los eventos de precipitación son muy similares en los dos sitios.

En el anexo 5 se muestran los eventos de precipitación registrados y analizados en las estaciones climatológicas Cadereyta y Dolores.

4.3 Duración de los eventos de precipitación

En las figuras 13 y 14, se muestran los eventos de precipitación correspondientes al período de estudio y registro en las estaciones climatológicas Cadereyta y Dolores; en donde se analizaron las duraciones de cada evento, como también la precipitación acumulada por evento.

Figura 13. Duraciones de los eventos de precipitación de la estación Cadereyta

EVENTOS ACUMULADOS ESTACIÓN DOLORES

Figura 14. Duraciones de los eventos de precipitación de la estación Dolores Hidalgo

Realizando un análisis de las gráficas anteriores, se determinó que los eventos de precipitación registrados presentan una tendencia a ser más intensos en el rango de 20 a 80 minutos. También se observan eventos de precipitación con duraciones mayores a 120 minutos, estabilizándose al aumentar la duración.

En las figuras 15 y 16 se muestran, los histogramas de duración correspondientes a las estaciones Cadereyta y Dolores.

Figura 15. Histogramas de duraciones para los eventos de precipitación de la estación Cadereyta

Del histograma anterior, tenemos que 28 eventos de un total de 70 eventos estudiados en la estación Cadereyta se encuentran en el rango de 60 a 120 minutos de duración, lo que representa un 40%, por otro lado se determina que el 85% de los eventos tiene como máximo una duración de 4 horas.

Figura 16. Histogramas de duraciones para los eventos de precipitación de la estación Dolores

Del histograma anterior, tenemos que 27 eventos de un total de 67 eventos estudiados en la estación Dolores se encuentran en el rango de 60 a 120 minutos de duración, lo que representa un 40%, por otro lado se determina que el 85% de los eventos tiene como máximo una duración de 4 horas.

4.4 Frecuencia de los eventos de precipitación

Se realizó un análisis de frecuencias de precipitación en las estaciones Cadereyta y Dolores, para todos los eventos registrados.

En la tabla 15, se observan los rangos de frecuencia de precipitación con sus respectivos porcentajes de incidencias, correspondiente a la estación climatológica de Cadereyta.

Rango P (mm)	N° Eventos	%	% Acumulado
0 - 5.0	38	54.3	54.3
5.0 - 10	16	22.9	77.1
10 - 15	6	8.6	85.7
15 - 20	4	5.7	91.4
20 - 25	3	4.3	95.7
25 - 30	0	0.0	95.7
30 - 35	1	1.4	97.1
35 - 40	1	1.4	98.6
40 - 45	1	1.4	100.0
Total	70	100.0	

Tabla 15. Frecuencia de los eventos de precipitación en la estación Cadereyta

Con la tabla anterior se realizó el histograma de frecuencia de precipitaciones de la estación Cadereyta, donde el 95.7% de los eventos estuvieron en el rango de 0 – 30 milímetros, del porcentaje anterior el 54.3% de los eventos de se presentaron en el rango de 0 – 5 milímetros.

Figura 17. Histograma de frecuencia de precipitaciones en la estación Cadereyta

En la tabla 16, se observan las frecuencias de precipitación con sus respectivos porcentajes de incidencia correspondiente a la estación climatológica de Cadereyta.

Rango P (mm)	N° Eventos	%	% Acumulado
0 - 5.0	39	58.2	58.2
5.0 - 10	14	20.9	79.1
10 - 15	5	7.5	86.6
15 - 20	2	3.0	89.6
20 - 25	4	6.0	95.5
25 - 30	1	1.5	97.0
30 - 35	1	1.5	98.5
35 - 40	0	0.0	98.5
40 - 45	0	0.0	98.5
45 - 50.33	1	1.5	100.0
Total	67	100.0	

Tabla 16. Frecuencia de los eventos de precipitación en la estación Dolores

Con la tabla anterior se realizó el histograma de frecuencia de precipitaciones de la estación Dolores, donde el 97% de los eventos estuvieron en el rango de 0 - 30 milímetros, del porcentaje anterior el 58.2% de los eventos de se presentaron en el rango de 0 - 5 milímetros.

Figura 18. Histograma de frecuencia de precipitaciones en la estación Dolores

Una vez analizada y caracterizada la variable precipitación en las estaciones Cadereyta y Dolores, mediante la determinación de la precipitación media, intensidad media, intensidad máxima, duración y frecuencia de los eventos, se puede asumir que existe un comportamiento muy similar en el régimen de precipitaciones de las zonas que abarcan las estaciones analizadas en la zona Semidesértica del estado de Querétaro y Guanajuato, por lo cual se puede asumir que el uso de las curvas IDF de este trabajo, aplican a toda esta zona.

Por otro lado, a partir de las caracterizaciones de la precipitación por evento, puede establecerse que el tipo de precipitación predominante en la zona del corredor continental donde se sitúan los sitios Cadereyta y Dolores es de tipo frontal, presentándose en algunos casos las precipitaciones de frente frío y en otros de frente caliente.

4.5 Metodología de experimentos en laboratorio

A continuación se describen los métodos, materiales y equipos utilizados para la realización de los experimentos que permiten determinar las pérdidas por intercepción en vegetación herbácea y residuos vegetales.

4.5.1 Materiales utilizados y equipos

Los experimentos se realizaron en el laboratorio de Hidráulica de la Facultad de Ingeniería de la UAQ y para su realización se utilizó el siguiente equipo y material:

 Simulador de lluvia tipo Norton, el cual permite realizar simulaciones de precipitación para diferentes ciclos (Bautista; 2002).

- 4 Cajas con cobertura de vegetación herbácea y mulch con estrato de suelo de 10 centímetros, las cuales se utilizaron para el calculo de la intercepción mediante balances hídricos. Cada caja se ubico de tal forma que el centro de cada caja correspondiera al centro de cada aspersor del simulador.
- Balanza electrónica
- Pluviómetros digitales
- Probetas
- Matraces
- Plomada
- Flexómetro
- Cronómetro
- Recipientes de recolección de muestras
- Horno de secado
- Equipo de cómputo
- Palas, machete, pico y barras
- Nivel
- Impermeables
- Vehículo de recolección de muestras y materiales

4.5.2 Muestras de la vegetación herbácea

La extracción de muestras se llevó a cabo en la zona de Cadereyta correspondiente al área de estudio. Para la extracción de muestras se utilizaron 4 cajas de acero con dimensiones de 40 X 50 centímetros y con un espesor de 10 centímetros. Para la extracción de muestras se utilizó la metodología de muestras inalteradas de suelo, ya que la caja se fue hundiendo en el suelo a medida que se golpeaba y luego se corto por la parte inferior para luego colocarle una bandeja que impidiera que la muestra se agrietara y se saliera del confinamiento rectangular. La selección de los puntos de extracción fue aleatoria, pero teniendo en cuenta que existiera cobertura vegetal herbácea representativa de la zona. En la figura 19 se observa una muestra con cobertura vegetal herbácea en el momento de extracción. La figura 20 se muestra la colocación del rectángulo de confinamiento para iniciar el proceso de extracción. La figura 21 ilustra el momento en que se corta por la parte inferior la muestra para la colocación de la bandeja para evitar el agrietamiento en el momento de la extracción.

En la figura 22 se observa la muestra extraída en su totalidad para posteriormente ser desplazada hasta el laboratorio.

Figura 19. Muestra con cobertura vegetal herbácea

Figura 20. Inicio del proceso de extracción

Figura 21. Corte inferior de la muestra para su extracción

Figura 22. Muestra extraída totalmente

Finalmente se extrajeron 4 cajas las cuales presentaron cobertura vegetal conformada por hierbas, pastos, matorral y mulch, las cuales fueron transportadas al Laboratorio de Hidráulica para posteriormente realizar las simulaciones de lluvia bajo el simulador.

4.5.3 Simulador de lluvias y sus características

En el estudio de la partición de la precipitación se utilizó lluvia simulada. Las ventajas del uso de los simuladores de lluvia son, por una parte, que se dispone de lluvia cuando se necesita. Permiten prescindir de la lluvia natural, lo que supone una gran ventaja en climas semiáridos, en donde las precipitaciones son irregulares y su escasez podría retrasar la investigación durante años. La lluvia

simulada reduce el tiempo de experimentación y con ello el coste de la investigación. Por otra parte, características de la lluvia tales como duración, intensidad, distribución de tamaños de gota o energía cinética de las gotas de lluvia son constantes en todos los experimentos y muchas veces conocidos. Así pues, el grado de control de las características de la lluvia y la posibilidad de repetir el experimento cuantas veces se quiera bajo las mismas condiciones de precipitación, permite obtener una base de datos de gran calidad en un tiempo relativamente corto (García, 2006).

El simulador de lluvias que se encuentra en el laboratorio de Hidráulica de la Facultad de Ingeniería de la Universidad Autónoma de Querétaro se denomina de tipo Norton, ya que fue desarrollado con base en el diseño del Dr. Darrell Norton en el Nacional Soil Erosion Research Laboratory, Purdue University, West Lafayette, Indianda (Bautista, 2002).

El simulador de Tipo Norton utiliza boquillas del tipo Vee-Jet 80100 que simulan la distribución del tamaño de las gotas de lluvias. Este simulador está construido básicamente en aluminio y consiste de una serie de componentes: caja de aspersión, tubo de aspersión, distribuidor de agua, tubo de drenaje, estructura, bomba eléctrica, suministro de agua, caja de control y controlador, los cuales van montados sobre una escalera (Bautista, 2002).

4.5.4 Experimentos preliminares

Los experimentos preliminares fueron desarrollados para la calibración del simulador con el objeto de determinar las intensidades de lluvias para la realización de las simulaciones.

81

Para la simulación de la lluvia se tuvo en cuenta que las intensidades de trabajo estuvieran en el rango de las intensidades que ocurren en la zona de estudio ubicada en Cadereyta y que pudieran ser reproducidas por el simulador.

El simulador proporciona la intensidad de trabajo dependiendo del número de oscilaciones por minuto.

Con la finalidad de conocer si las intensidades de diseño correspondían a los valores actuales que proporciona el simulador, se realizó una prueba de calibración mediante la ubicación de pluviómetros, haciendo que el centro de cada pluviómetro coincidiera con el centro de cada aspersor, de esta forma se hizo llover con el número de ciclos por minuto a los que corresponden las intensidades originales de diseño y de esta manera se realizó la calibración del simulador ya que las intensidades originales han disminuido a medida que se ha utilizado el simulador desde su construcción, esto se debe a la falta de mantenimiento del mismo y al desgaste de accesorios y piezas que lo conforman.

En la tabla 17 se muestran los resultados obtenidos para los diferentes ciclos en los que trabaja el simulador actualmente.

Oscilaciones (min)	Intensidad original (mm/h)	Intensidad actual (mm/h	
100	42.6	31.33	
125	49.26	35.83	
150	65.7	43	
175	68.29	48	

Tabla 17. Intensidades utilizadas en la experimentación

En la tabla anterior se puede observar que el simulador de lluvias ha presentado disminución en las intensidades originales, siendo esto un factor importante en el momento de realizar las simulaciones para la determinación de las perdidas por intercepción. Por limitaciones técnicas del simulador actualmente no fue posible realizar simulaciones por debajo de estas oscilaciones.

4.5.5 Simulaciones de lluvia para el cálculo de la intercepción

Una vez calibrado el simulador, se realizaron las simulaciones de lluvia sobre las cajas con cobertura vegetal que fueron extraídas en la zona del estudio. Se simularon lluvias con 4 intensidades que se encuentran en el rango de 31 a 48 mm/h. Todas las simulaciones se realizaron por un periodo de 1 hora y se colocaron pluviómetros entre las cajas para verificar que la intensidad estaba en el rango de las oscilaciones encontradas en la calibración del simulador. Las cajas fueron ubicadas de manera que el centro de los aspersores coincidiera con el centro de cada caja. La presión en el simulador para cada simulación correspondía a un valor de 6 psi para garantizar que la salida en los aspersores fuera uniforme.

En la figura 23 se observa el simulador de lluvia durante una simulación.

Figura 23. Simulador Tipo Norton en funcionamiento

En la figura 24 se observa el proceso de simulación sobre las cajas con cobertura vegetal.

Figura 24. Simulación de lluvia sobre las cajas con cobertura vegetal En la figura 25 se puede observar lluvia simulada sobre una de las cajas con cobertura vegetal conformada por hierbas y matorrales.

Figura 25. Lluvia simulada sobre una cobertura vegetal herbácea y matorral

Finalmente en la figura 26 se puede apreciar las lluvia interceptada durante la realización de una simulación sobre una cobertura vegetal herbácea.

Figura 26. Lluvia interceptada durante una simulación

4.5.6 Metodología para la determinación de las pérdidas por intercepción.

Para el desarrollo de la metodología se utilizaron las 4 cajas con cobertura vegetal. Cada caja tiene una superficie de 0.020 m^2 con una altura de 0.10m que corresponde al espesor de suelo en cada muestra.

Cada una de las cajas cuenta con vertedor con la finalidad de medir el escurrimiento que posteriormente se deposita en un recipiente. Las cajas en la parte inferior cuentan con una bandeja perforada con 3 orificios con la finalidad de medir el agua que se infiltra durante la simulación, la cual es depositada en un matraz.

En la figura 27 se pueden observar las cajas con sus componentes durante una simulación.

Figura 27. Cajas con sus componentes

En la figura anterior se observan las cajas utilizadas con cada componente para la determinación de las pérdidas por intercepción donde:

- $1 \rightarrow$ Vertedor para el escurrimiento
- 2→ Matraz para la infiltración
- $3 \rightarrow$ Recipiente para el escurrimiento

Para efectos de simulación y determinación de las perdidas por intercepción las cajas se enumeraron ya que las coberturas vegetales presentaban variaciones entre ellas; la caja 1y 2 estaban compuesta por cobertura pastizal seca y verde, la caja 3 estaba conformada por pasto verde, seco y un matorral y la caja 4 compuesta por pasto verde, seco y mulch. Estas coberturas fueron al comienzo de las simulaciones. Debido a lo anterior se realizaron balances hídricos para cada caja, tomando en cuenta la precipitación de entrada, la escurrida y la infiltrada al momento de estar saturada la muestra.

En la tabla 18 se muestran los porcentajes promedio de cobertura vegetal en cada caja durante el proceso de simulación de lluvias.

Caja	Tipo de cobertura vegetal	Cobertura vegetal (%)	Área de cobertura (m²)
1	Pasto seco y verde	74.5	0.149
2	Pasto seco y verde	71	0.142
3	Pasto seco, verde y matorral arbustivo	77.5	0.155
4	Pasto seco, verde y mulch	76	0.152

Tabla 18	Porcentaies	de co	bertura	vegetal	en cada	caia
	Forcentajes	ue co	Dertura	vegetai	en caua	caja

Los porcentajes de cobertura anterior, se determinaron mediante un análisis de imágenes en el programa ArcWiew 3.2, cuadriculando el área de cobertura para cada caja y determinando la variación de tonos de las imágenes para la conformación de polígonos, a los cuales se les determinó el área.

La figura 28 muestra el tipo y cobertura vegetal de la caja 1.

Figura 28. Cobertura caja 1

En la figura 29 se observa el tipo y cobertura vegetal de la caja 2, así mismo en la figura 30 para la caja 3 y en la figura 31 para caja 4.

Figura 29. Cobertura caja 2

Figura 30. Cobertura caja 3

Figura 31. Cobertura caja 4

Cada simulación tuvo una duración de 1 hora, en la cual cada 5 minutos se midieron los flujos correspondientes al escurrimiento y a la infiltración, este procedimiento de medida se realizó por cada caja para posteriormente realizar los balances hídricos por cada evento.

Se trabajaron con 4 intensidades medias correspondientes a 31.33, 35.83, 43 y 48 mm/h, estas intensidades se encuentran en el rango de valores que ocurren en la zona del estudio ubicada en Cadereyta. Por limitaciones técnicas del simulador no fue posible la realización de simulaciones con valores menores de intensidades.

4.5.6.1 Determinación de las pérdidas por intercepción.

Los balances hídricos por evento se realizaron a cada caja con su respectiva cobertura vegetal con la finalidad de determinar las pérdidas por intercepción,
completando 4 balances por cada simulación realizada en el Laboratorio de Hidráulica de la Facultad de Ingeniería de la Universidad Autónoma de Querétaro.

Para encontrar las perdidas por intercepción se empleó la siguiente ecuación:

$$\sum P - \left(\sum E + \sum I\right) = EI$$
(61)

Donde:

P = Precipitación simulada (mm)

E = Escurrimiento superficial (mm)

I = Flujo por infiltración (mm)

EI = Pérdidas por intercepción

Debido a que las cajas que contenían las muestras con vegetación tenían un espesor de suelo de 10 centímetros, la determinación de las pérdidas por intercepción se realizó a partir de que la muestra se encontraba saturada y el flujo por infiltración empezaba a estabilizarse.

La determinación del flujo por escurrimiento superficial se realizó de la siguiente manera:

Se ubicó un recipiente con peso conocido a la salida del vertedor de cada caja con la finalidad de recolectar cada 5 minutos el flujo escurrido durante un periodo de 1 hora, luego los recipientes con el flujo recolectado se pesaron en una balanza electrónica para obtener el peso del recipiente con el peso del agua; una vez determinado el peso del recipiente con agua las muestras se introdujeron a una estufa para su posterior secado a una temperatura de 105 grados centígrados para obtener el peso seco del recipiente más el peso de los sedimentos recolectados en el flujo de escurrimiento superficial. Con lo anterior se tiene:

$$P_{agua} = (P_{recipiente + agua}) - (P_{recipiente}) - (P_{sedimentos})$$
(62)

Una vez determinado el peso del agua en gramos se convierte a kilogramos y se calcula el volumen en metros cúbicos de la siguiente manera:

Volumen escurrido =
$$\frac{P_{agua}}{Densidad de agua}$$
 (63)

La densidad del agua tiene un valor de 998.2 kg/m³, este valor esta dado para una temperatura de 20 grados centígrados que es la temperatura promedio dentro del laboratorio al momento de las simulaciones.

Teniendo el volumen escurrido se puede convertir a lámina de precipitación de la siguiente forma:

Lamina de escurrimiento =
$$\frac{\text{Volumen escurrido}}{\text{Area de las cajas}}$$
 (64)

Luego se realizan las conversiones de unidades correspondientes para obtener el valor de la lámina de escurrimiento en milímetros.

Para la medición del flujo por infiltración se emplearon cajas con orificios en la parte inferior, en los que se acoplaron mangueras conductoras del agua infiltrada, para ser almacenada en un matraz. Las mediciones se realizaron con intervalos de 5 minutos, en un periodo de una hora. La unidad de medición del agua infiltrada en el matraz, fue de mililitros, los cuales se convirtieron a unidades en metros cúbicos, para emplear luego la ecuación 64 y obtener así la lámina en metros.

La precipitación simulada fue medida con pluviómetros situados entre las cajas para verificar que las intensidades se encontraran en el rango de la calibración. Una vez determinados los componentes de flujo por escurrimiento, flujo por infiltración estabilizado y precipitación simulada se pudo aplicar la ecuación 61 y obtener los valores de perdidas por intercepción en cada caja para cada evento simulado. En los Anexos 2 se pueden observar las tablas correspondientes a los cálculos para la determinación de los flujos por escurrimiento e infiltración.

5. RESULTADOS Y DISCUSIÓN

5.1 Infiltración en las cajas

Luego de aplicar la metodología anterior se pudieron obtener las pérdidas de precipitación por intercepción de la cobertura vegetal para cada caja, tendiendo en cuenta que los balances hídricos en cada caja dependieron del momento en que el flujo de agua por infiltración empezó a estabilizarse.

A manera de ilustración en se presenta la figura 32 obtenida de la primera simulación en donde se observa el momento en que la infiltración empieza a ser constante.

Figura 32. Infiltración cajas 1 y 2

En la gráfica anterior se observan los flujos por infiltración para las cajas 1 y 2 correspondientes a la primera simulación, en donde se tiene que en el minuto 50 es cuando el flujo por infiltración empieza a estabilizarse en ambos casos, por lo tanto se asume que las muestras se encuentran saturadas; para la caja 1 tiende a

valores constantes de 0.73 milímetros de lámina y para la caja 2 con valores de 0.75; en este momento es cuando se pudo realizar el balance hídrico para la intensidad de trabajo.

La figura 33 corresponde a las cajas 3 y 4 en donde se aplica este mismo concepto con la diferencia que la caja 3 empieza a presentar estabilización en el flujo por infiltración a los 40 minutos y la caja 4 a los 50 minutos de simulación, presentándose valores constantes de 1.23 milímetros de lámina de agua para la caja 3 y 1.20 para la caja 4; lo que indica que a partir de ese momento es cuando se toman en cuenta los valores de precipitación, infiltración y escurrimiento para la realización de los respectivos balances hídricos.

Figura 33. Infiltración cajas 3 y 4

La metodología anterior se aplicó para cada muestra por cada simulación en donde los tiempos de estabilización del flujo por infiltración fueron variables dependiendo de la caja y de la simulación, lo que es producto de la cobertura vegetal de cada caja y propiedades del suelo. En los Anexos 3 se pueden observar los valores correspondientes a la infiltración, escurrimiento y el tiempo de estabilización en cada caja para todas las simulaciones realizadas.

5.2 Pérdidas por intercepción y balances hídricos de las simulaciones

Una vez se obtuvieron los valores correspondientes a precipitación total, escurrimientos e infiltración se pudieron obtener las pérdidas por intercepción para cada evento simulado en cada una de las cajas utilizadas aplicando la ecuación 61. Una vez determinado el componente de las pérdidas por intercepción se realizaron los balances hídricos. A manera de ilustración se muestra a continuación en la tabla 19 los valores de las pérdidas por intercepción y el balance hídrico de la primera simulación en cada caja.

	Simulación 1						
	Precipitación	Escurrimiento	Infiltración	Intercpeción			
	(mm)	(mm)	(mm)	(mm)			
Caja 1	5.00	2.70	2.15	0.15			
Caja 2	5.00	2.56	2.28	0.16			
Caja 3	12.50	2.29	9.80	0.41			
Caja 4	5.00	0.80	3.61	0.59			

En la tabla 19 se tienen las pérdidas por intercepción obtenidas para cada caja en la primera simulación. Los valores de las columnas de precipitación, escurrimiento e infiltración fueron determinados a partir del momento en que las muestras se encontraban saturadas. Las pérdidas por intercepción se obtuvieron de la resta de los componentes de escurrimiento e infiltración a la precipitación ocurrida a partir de la saturación de la muestra. La precipitación neta completa el balance hídrico para cada caja. En el Anexo 4 se pueden observar los valores correspondientes a todos los componentes en cada simulación.

5.3 Modelos de regresión lineal para la determinación de las pérdidas por intercepción.

En la tabla 20 se muestran los resultados de las pérdidas por intercepción encontradas en las simulaciones, con los cuales se construyó un modelo de regresión lineal para cada caja.

Simulación	Caja 1 (mm)	Caja 2 (mm)	Caja 3 (mm)	Caja 4 (mm)	Precipitación simulada (mm)
1	0.15	0.16	0.41	0.59	31.33
2	0.91	0.13	0.42	0.12	35.83
3	0.49	0.69	0.92	0.96	33.55
4	0.38	0.34	0.31	0.72	31.90
5	0.05	0.23	0.26	0.06	29.65
6	0.68	0.73	0.70	0.77	43.00
7	0.97	0.92	0.94	0.97	48.00

Tabla 20. Pérdidas por intercepción

Con los valores de intercepción encontrados en cada caja, se construyeron los modelos de regresión lineal para cada caja con la finalidad de encontrar una relación entre la precipitación y las pérdidas por intercepción. A continuación en la figura 34 se muestran los modelos de regresión encontrados.

Figura 34. Modelos de regresión Lineal para cada caja

En la figura 34, se puede apreciar que las líneas de tendencia para cada caja tienen comportamientos muy similares en donde se puede determinar que existe una relación directamente proporcional entre las pérdidas por intercepción y la precipitación; en general los modelos presentan buenos valores del coeficiente de determinación R², en donde la caja 3 presentó un valor de 0.9544 siendo este el más cercano a la unidad, por lo cual este modelo explica en un 95% el comportamiento de las pérdidas por intercepción. También se encontraron las ecuaciones en cada modelo lo que permite estimar las pérdidas por intercepción en cada caja asumiendo un valor de precipitación.

A continuación en la tabla 21 se presentan las ecuaciones que permiten predecir las pérdidas por intercepción:

Caja	Tipo de cobertura	Ecuación	R ²
1	Pasto seco y verde	EI = 0.0432P - 1.1143	0.89
2	Pasto seco y verde	EI = 0.0408P - 1.0728	0.82
3	Pasto seco, verde y matorral arbustivo	EI = 0.035P - 0.7782	0.95
4	Pasto seco, verde y mulch	EI = 0.0409P - 1.0351	0.63

 Tabla 21. Modelos de regresión encontrados para estimar las pérdidas por intercepción

 (EI)

En las ecuaciones anteriores EI corresponde a las perdidas por intercepción que se pueden estimar en cada caja para un valor determinado de precipitación (P).

Con los valores de de EI correspondientes a la tabla 20, se encontró un modelo general de regresión lineal que permitiera estimar las pérdidas por intercepción en vegetación herbácea para la zona en estudio. Con este modelo encontrado se

puede predecir cuanta agua proveniente de la precipitación va a ser interceptada por la vegetación herbácea. En la figura 35 se muestra el modelo de pérdidas por intercepción.

Figura 35. Modelo de pérdidas por intercepción en vegetación herbácea para Cadereyta

El modelo anterior explica en un 83% el comportamiento de las pérdidas por intercepción en vegetación herbácea para Cadereyta, permitiendo predecir el valor teniendo una precipitación de entrada al sistema.

A continuación se presenta la ecuación del modelo encontrado:

$$EI = 0.0385P - 0.9013 \tag{64}$$

En la ecuación anterior EI corresponde a las pérdidas por intercepción y (P) es la precipitación de entrada.

Mastachi (2007), realizó trabajos en la zona del estudio encontrando un modelo de regresión lineal para pérdidas por intercepción aplicado a la vegetación arbórea de la zona. En la figura 36 se puede observar el modelo encontrado por Mastachi, el cual será utilizado en este trabajo para afectar la relación Intensidad – Duración – Frecuencia de la precipitación y observar los efectos.

Fuente: Mastachi (2007)

Figura 36. Modelo de pérdidas para vegetación Arbórea

Del modelo anterior se utilizará la ecuación encontrada para Cadereyta la cual es determinada a partir de los datos obtenidos por Mastachi (2007), para los dos tipos de vegetación que estudio en Cadereyta.

La siguiente es la ecuación obtenida de los datos de pérdidas por intercepción de la vegetación arbórea (Mastachi, 2007).

$$EI = 0.200512 P + 1.27839$$
(65)

 $R^2 = 0.9326$

La ecuación anterior es la utilizada para afectar la relación Intensidad – Duración – Frecuencia para la condición de pérdidas por intercepción en vegetación arbórea, al igual se aplicará la ecuación 61 para la condición vegetación herbácea.

5.4 Efecto de la intercepción en la relación Intensidad – Duración – Frecuencia de la precipitación

Para obtener el impacto de la intercepción en la relación Intensidad – Duración – Frecuencia de la precipitación, se consideraron 4 escenarios.

Donde:

P: Precipitación total

EI_H: Pérdidas por intercepción en la vegetación herbácea

EIA: Pérdidas por intercepción en la vegetación arbórea

Escenario 1

La primera situación son las curvas IDF obtenidas sin el efecto de la intercepción.

(P) (Ver figura 9).

Escenario 2

La segunda situación es la obtención de las curvas IDF tendiendo en cuenta la intercepción por la vegetación Herbácea. $P - EI_H$ (Ver figura 37).

Escenario 3

En la tercera situación se obtienen las curvas IDF teniendo el efecto de la vegetación arbórea. $P - EI_A$ (Ver figura 38).

Escenario 4

Finalmente en la cuarta situación se obtienen las curvas IDF con el efecto de las perdidas por intercepción por vegetación arbórea + vegetación herbácea. $P - EI_A - EI_H$. (Ver figura 39).

En la tabla 22 se muestran las precipitaciones de diseñó para las curvas IDF para cada escenario tomado en cuanta, así mismo se pueden observar los porcentajes de pérdidas en cada condición.

	Precipitación p	ara las Curv	as IDF	Porcenta	jes interceptad coberturas	los en las	
AÑO	Precipitación Max. 24 horas (mm)	P neta Herbácea	P neta Arbórea	P neta H + A	% Interceptado Herbácea	% Interceptado Arbórea	% Interceptado H + A
1986	38.3	37.73	29.34	28.77	1.50	23.39	24.89
1987	34.5	34.07	26.30	25.88	1.24	23.76	24.99
1988	36.4	35.90	27.82	27.32	1.37	23.56	24.94
1989	38.7	38.11	29.66	29.07	1.52	23.35	24.88
1990	41.2	40.52	31.66	30.98	1.66	23.15	24.82
1991	55.8	54.55	43.33	42.09	2.23	22.34	24.58
1992	37.3	36.77	28.54	28.01	1.43	23.48	24.91
1993	37.0	36.48	28.30	27.78	1.41	23.51	24.92
1994	55.8	54.55	43.33	42.09	2.23	22.34	24.58
1995	42.2	41.48	32.46	31.74	1.71	23.08	24.79
1996	53.2	52.05	41.25	40.11	2.16	22.45	24.61
1997	29.4	29.17	22.23	22.00	0.78	24.40	25.18
1998	41.2	40.52	31.66	30.98	1.66	23.15	24.82
1999	58.4	57.05	45.41	44.06	2.31	22.24	24.55
2000	41.4	40.71	31.82	31.13	1.67	23.14	24.81
2001	55.4	54.17	43.01	41.78	2.22	22.36	24.58

|--|

H: Vegetación herbácea

A: Vegetación arbórea

En la tabla 23 se puede observar en forma tabular el efecto de la intercepción en la intensidad máxima horaria correspondiente a las curvas IDF para cada escenario.

	i Maximas en las Curvas IDF (mm/h)				Efecto (%)		
Tr (años)	Escenario 1	Escenario 2	Escenario 3	Escenario 4	Escenario 2	Escenario 3	Escenario 4
2	25.32	24.90	19.50	19.02	1.66	22.99	24.88
5	31.32	30.66	24.24	23.58	2.11	22.61	24.71
10	35.28	34.44	27.42	26.64	2.38	22.28	24.49
20	40.32	39.30	31.44	30.42	2.53	22.02	24.55
50	44.04	42.84	34.44	33.30	2.72	21.80	24.39
				Media	2.28	22.34	24.60

A continuación en las figuras 37, 38 y 39 se muestran las curvas IDF obtenidas con el efecto de las pérdidas por intercepción, las cuales pueden ser comparadas con la figura 9, la cual no tiene el efecto de la vegetación.

CURVAS INTENSIDAD - DURACIÓN - FRECUENCIA DE LA ZONA DEL SEMIDESIERTO DE QUERÉTARO

Figura 37. Curvas IDF con el efecto de la vegetación herbácea

CURVAS INTENSIDAD - DURACIÓN - FRECUENCIA DE LA ZONA DEL SEMIDESIERTO DE QUERÉTARO

Figura 38. Curvas IDF con el efecto de la vegetación arbórea

CURVAS INTENSIDAD - DURACIÓN - FRECUENCIA DE LA ZONA DEL SEMIDESIERTO DE QUERÉTARO

Figura 39. Curvas IDF con el efecto de la vegetación arbórea + vegetación herbácea

5.5 Ejemplo de aplicación

Mediante el desarrollo de un ejemplo, se puede apreciar el impacto de las pérdidas por intercepción en las curvas IDF.

En este caso aplicaremos la fórmula Racional para determinar un gasto de diseño. Se tomó como ejemplo la cuenca conformada por el área natural protegida Peña Colorada, la cual se encuentra ubicada en el estado de Querétaro; y posee un área de 35.06 km², de la cual el 0.65 % corresponde a suelo desnudo erosionado, el 92.73 % está conformado por Matorrales y selva, y el 6.63 % corresponde a vegetación herbácea y pastizales. Guerrero et al (2006). Los porcentajes anteriores determinaron los coeficientes de escorrentía para los cálculos de los gastos mediante la fórmula racional.

Las intensidades de precipitación, se determinaron para un periodo de retorno de 2 años y un tiempo de concentración de 89 minutos, determinado a partir del método de Kirpich; el cual toma como base la longitud del cauce de la cuenca y la pendiente promedio de la misma.

Arango (2006), determino una pendiente promedio de 3 % para la zona correspondiente a Peña Colorada.

Mediante el uso de herramientas SIG, se determino una longitud de cauce de 9.8 kilómetros.

Con los valores anteriores, se desarrollo el método racional para el área natural protegida Peña Colorada. El método racional esta dado por la siguiente ecuación:

$$Q = 0.278 CIA$$
 (66)

109

Donde Q = Gasto (m³/s) C = Coeficiente de escorrentía I = Intensidad de la lluvia (mm/h) A = Área de drenaje (km²)

En la tabla 24 se muestran los resultados de la aplicación de las curvas IDF, y así mismo la influencia de las pérdidas por intercepción en su aplicación.

Superficie	Cobertura (%)	Area (km2)	Coeficiente de escorrentía para un Tr 2 años	Intensidad sin efecto de la Vegetación (mm/h)	Intensidad con efecto de la Vegetación (mm/h)	Gasto (m3/s)	Gasto (m3/s)
Suelo desnudo	0.65	0.23	0.36	24	24	0.55	0.55
Matorral y selva	92.73	32.51	0.29	24	17	62.91	44.56
Pastizal	6.63	2.32	0.34	24	20	5.27	4.39
					Σ	68.73	49.50

Tabla 24. Influencia de las pérdidas por intercepción

En la tabla anterior es posible observar el efecto que tienen las pérdidas por intercepción en la vegetación, igualmente es posible identificar que el mayor impacto se presenta cuando se tiene una condición con cobertura vegetal conformada por Matorral y bosque, ya que las intensidades que proporcionan las curvas con esta condición, son menores que las que se pueden obtener con una condición de suelo desnudo, donde no se considera el efecto de la vegetación.

Con la condición de suelo desnudo se tiene un Gasto total de $68.73 \text{ m}^3/\text{s}$, mientras que dicho gasto se reduce a $49.5 \text{ m}^3/\text{s}$ considerando el efecto de la vegetación; esta reducción se representa en un 28 %.

6. CONCLUSIONES Y RECOMENDACIONES

Las diferencias de la intercepción de la precipitación en cada una de las cajas se deben principalmente a la cobertura vegetal que presentaban las muestran en el momento de las simulaciones. Las cajas que más interceptaron fueron la 4 y 3, en donde la caja 4 presentaba vegetación herbácea y una capa de mulch y la caja 3 presentaba adicionalmente una especie arbustiva que proporcionó una condición adicional para generar intercepción. Finalmente los valores promedios de intercepción fueron 0.52, 0.46, 0.56 y 0.60 milímetros.

La intercepción presentó una relación de proporcionalidad con la precipitación. La intercepción en este trabajo dependió de factores como la cantidad de precipitación total simulada, flujos por escurrimientos y saturación de las muestras ya que en este momento es cuando fue posible la realización de los balances hídricos.

Al aplicar el modelo de pérdidas por intercepción en vegetación herbácea a los valores de precipitación correspondientes a la zona del estudio, se encontró que el porcentaje interceptado tenia un valor promedio de 1.7 % del total de la precipitación.

Al trabajar con lluvia simulada las condiciones técnicas del simulador entran a jugar un aspecto muy importante ya que puede limitar los alcances de la investigación.

A partir de los datos de precipitación máxima en 24 horas se pudieron elaborar las curvas de INTENSIDAD – DURACIÓN – FRECUENCIA (IDF) de la lluvia. Usualmente los datos se presentan en forma gráfica, con la duración en el eje horizontal y la intensidad en el eje vertical, mostrando una serie de curvas para cada uno de los períodos de retorno (Tr).

Las curvas establecen la relación de proporcionalidad inversa entre la intensidad y la duración, para los períodos de retorno establecidos.

Se pudo demostrar el impacto que tienen las pérdidas de precipitación por intercepción en la vegetación semiárida de Querétaro en la relación Intensidad – Duración – Frecuencia de la lluvia para esta zona, encontrando cuatro condiciones en las que se podrían utilizar las curvas IDF obteniendo resultados diferentes de acuerdo a la consideración que se proponga. Las condiciones que se obtuvieron fueron las siguientes: Se determinaron las curvas IDF sin el efecto de la vegetación, otra condición fue el efecto de la vegetación arbórea la cual afecta los valores de intensidad para los diferentes periodos de retorno en un 22.34 %; se obtuvo un efecto del 1.7 % en la reducción de los valores de intensidad para la condición herbácea , finalmente la condición que más efecto tuvo en las curvas fue la de presentarse la combinación de vegetación arbórea y herbácea con un efecto de 24.6 %.

Debido a lo anterior, las curvas IDF se convierten en una herramienta importante de planificación a la hora de realizar diseños y obras hidráulicas, ya que los gastos de diseño se incrementaran o disminuirán de acuerdo con la condición que se presente, reflejando este impacto en los costos económicos de un proyecto y dimensionamiento del mismo. Por otro lado las curvan IDF entran a desempeñar un factor importante en la gestión integrada de los recursos hídricos de una zona ya que se pueden planificar planes de riego que se reflejarán en cantidades de agua que se requerirán para un cultivo o una vegetación determinada. Este trabajo sirve como punto de partida para la realización de un estudio más completo y detallado en campo, con precipitaciones reales y a la vez involucrando los elementos que componen el balance de masa aplicado al fenómeno lluvia – escorrentía. También los efectos de las pérdidas por intercepción en las curvas IDF, podrían ser estudiados en diversas zonas como centros urbanos para diferentes condiciones que afecten los escurrimientos.

REFERENCIAS BIBLIOGRAFICAS

Abramowits, M. and Stegun I. 1965. Handbook of mathematical functions, Dover Pub,. New York.

Aparicio, F. 1997. Fundamentos de Hidrología de Superficie. Balderas, México: Limusa. 303 p.

Bautista, Omar 2002. Diseño y construcción de un simulador de lluvia para estudios de erosión de suelos.

Belmonte Serrato, F. & Romero-Díaz, A. 1998. A simple technique for measuring rainfall interceptation by small shrub: Interceptation flow collection box. *Hydrological Processes*, 12: 471-481.

Belmonte Serrato, F. 1997. *Interceptación en bosque y matorral mediterráneo semiárido: balance hídrico y distribución de la lluvia neta*. Tesis doctoral, Universidad de Murcia. 375 pp.

Belmonte Serrato, F. y Romero Díaz, A. 1998. *Modelos y técnicas en interceptación*. Cuadernos Técnicos de la S.E.G. nº 11, Geoforma Ediciones. Logroño.

Belmonte Serrato, F. 2001. Balance hídrico, distribución de flujos y modelización de la interceptación en dos arbustos semiáridos mediante lluvia simulada. Papeles de Geografía, 33, 23-34.

Belmonte Serrato, F., Quiñónez Rubio, J.M y Romero Díaz A. 2006. Medida de la lluvia almacenada por distintas cubiertas vegetales en ambiente mediterráneo semiárido en función de las variaciones de humedad del suelo.

Calder, I.R. 1990. *Evaporation in the uplands*. J.Wiley (ed) Chichester.

Carlyle Moses, D. E. 2004. Throughfall, stemflow, and canopy interception loss fluxes in a semi-arid Sierra Madre Oriental matorral community.J .Arid Environments 58, 181–202.

Chow, Ven Te. Hidrología aplicada. 1998. 584 PP.

Crockford, R. H., and Johnson, M.E. 1983. Some error in the measurement of precipitation throufall and stemflow and the implications for estimation of interception. In Hobart: Hidrology and Water Resources Symposium, The Institution of Engineers, Australia, 83/13, 236-242.

Crockford, R. H., and D. P. Richardson, 2000. "Partitioning of rainfall into throughfall, stemflow and interception: effect of forest type, ground cover and climate", *Hydrol. Process.* 14: 2903-2920.

Durocher, M.G. 1990. Monitoring spatial variability of forest intercpection. Hidrological Process, Vol. 4, 215-229.

Galindo Martínez, José. 2004. Problemas resueltos de hidrología superficial y subterránea. Unisalle.

Garcia Estrinaga, P, Blazquez, A. y Alegre, J. 2006. Determinación de la interceptación y la redistribución del agua de lluvia a su paso a través de vegetación arbustiva en traslocacion y escorrentía cortical: Una modificación de método " Interception Flor Collection Box.".

García Ortiz, Eva. 2006. Efecto de la estructura de la copa en la partición de lluvia de tres especies arbustivas en clima semiárido. Tesis doctoral.

Gash, J.H.C. 1979. An analytical model of rainfall interception by forests. *Quart. J. R. Met. Soc.*, 105: 43-55.

Gerrits A.M, Savenije H.G, Hoffmann L, and Pfister L. 2006. Measuring forest floor interception in a beech forest in Luxenbourg.

Helvey, J. D., Rainfall 1964. interception by hardwood forest litter in the southern Appalachians, U.S. Forest Serv. Southeast. Forest Expl. Sla. Res. Paper S, 8 pp.

Heyvey, J.D and Patric, J.H. 1965. Canopy and litter interception of rainfall by harwoods of Eastern Unites Status, Water Resur. Res. 1, 193-206, 2326, 233.

Horton, R.E., 1919. Rainfall interception. *Mon. Weather Rev.*, 47: 603–623. Jackson, I.J. (1975): Relationship between rainfall parameters and interception by tropical forest. Journal of Hidrology, 24, 215-238.

Keim, R.F., Skaugset, A.E., Link T.E and Iroume A. 2004. A stochastic model of throughfall for extreme events.

Leonar, R.E. 1966. Mathematical theory of interception. In SOPPER, w.e. and LULL, h.w. International symposium of Forest Hydrology. Pergamon Presss. N. Cork, 131-136.

Llamas, J. 1993. Hidrologia general: Principios y aplicaciones. 635 pp.

Lockwood, J.G 1985. World climatic system. Arnold, Londres, 292 pp.

López Lambraño, Álvaro. 2001. Trabajo de grado elaboración de las curvas Intensidad Duración Frecuencia (IDF) de la Cuenca media del Río Sinú.

Massman, W.J. 1983. The derivation and validation of a new model for the interception of rainfall by forest. Agricutural Meteoroly, 28, 247-265.

Monsalve, Germán. Hidrología en la ingeniería. 1995.

Morton, F.I. 1984. What are the limits on forest evaporation. Journal of Hydrology, 74, 373-398.

Mulder, J.P.M. 1985. Simulating interception loss using standard meteorological data. The forest Atmosphere Interation. Reidel, Dordrecht, 177-196.

Palacios, Enrique 1980. Manual de operación de distritos de riego. 266 pp.

Pizarro, R., Flores, J., Sanguesa, C., Martinez, E. 2001. Curvas Intensidad – Duración – Frecuencia en Chile.

Rutter, A. J., Kershaw, K.A, P.C, and Morton. A. R., 1971. A predictive rainfall interception in forest. I Derivation of the model from observations in plantation of Corsican pines. Agri. Meteorology., 9: 367-384.

Rutter, A.J and Morton A.J. 1977. A predictive rainfall interception in forest. III. Sensitivity of the model to stand parameters and meteorological variables. J. appl. Ecol. 14, 567-588.

Schellekens, J., Bruijnzeel, L.A., Scatena, F.N., Bink, N.J., Holwerda, F. 2000. Evaporation from a tropical rain forest, Luquillo Experimental Forest, eastern Puerto Rico. *Water Resources Research*, Vol. 36, No. 8: 2183-2196.

Schowalter, T.D. 1999. Throughfall volume and chemistry as affected by precipitation volume, sampling size, and defoliation intensity. Great Basin Nat. 59:79-84.

Sellers, P.J. and Lockwood, J.G. 1981. A computer simulation of the effects of differing crop types on the water balance of small catchments over long time periods. Q.J.R. M.S., 107, 395-414.

Sevenije, H.G. 2004. The importance of interception and why we should delete the term evapotraspiration from our vocabulary. Hydrol. Processes, 18, 1507-1511.

Shuttleworth, W.J. & Calder, I.R., 1979. Has the PriestleyeTaylorequation any relevance to forest evaporation? Journal of Applied Meteorology 18: 639-646.

Teklehaimanot, Z. and Jarvis, P.G. 1991. Direct measurement of evaporation of intercept water from forest canopies. J. appl.Ecol., 28, 603-618.

Tucci, C.E.M. Precipitação. In. TUCCI. 2001. C.E.M.(Org.) Hidrologia: ciência e aplicação. 2.ed. Porto Alegre: Universidade Federal do Rio Grande do Sul. p.177-242.

Zinke, P.J. 1967. Forest interception studies in the United States. In Forest Hidrology. 137-161. N. York.

ANEXOS

ANEXOS 1

A .1 Valores para la Distribución Ji – Cuadrado con V grados de libertad

	X~X ² (df)		P()	K > x ² (df.α))	
grados	alfa				
de libertad	0.100	0.050	0.025	0.010	0.00
1	2.7055	3.8415	5.0239	6.6349	7.8794
2	4.6052	5.9915	7.3778	9.2104	10.596
3	6.2514	7.8147	9.3484	11.3449	12.838
4	7.7794	9.4877	11.1433	13.2767	14.8602
5	9.2363	11.0705	12.8325	15.0863	16.7496
6	10.6446	12.5916	14.4494	16.8119	18.547
7	12.0170	14.0671	16.0128	18.4753	20.277
8	13.3616	15.5073	17.5345	20.0902	21.9549
9	14.6837	16.9190	19.0228	21.6660	23.5893
10	15.9872	18.3070	20.4832	23.2093	25.188
11	17.2750	19.6752	21.9200	24.7250	26.756
12	18.5493	21.0261	23.3367	26.2170	28.2997
13	19.8119	22.3620	24.7356	27.6882	29.8193
14	21.0641	23.6848	26.1189	29.1412	31.3194
15	22.3071	24.9958	27.4884	30.5780	32.801
16	23.5418	26.2962	28.8453	31.9999	34.267 ⁻
17	24.7690	27.5871	30.1910	33.4087	35.7184
18	25.9894	28.8693	31.5264	34.8052	37.1564
19	27.2036	30.1435	32.8523	36.1908	38.582
20	28.4120	31.4104	34.1696	37.5663	39.996
21	29.6151	32.6706	35.4789	38.9322	41.400
22	30.8133	33.9245	36.7807	40.2894	42.795

32.0069	35.1725	38.0756	41.6383	44.1814
33.1962	36.4150	39.3641	42.9798	45.5584
34.3816	37.6525	40.6465	44.3140	46.9280
35.5632	38.8851	41.9231	45.6416	48.2898
36.7412	40.1133	43.1945	46.9628	49.6450
37.9159	41.3372	44.4608	48.2782	50.9936
39.0875	42.5569	45.7223	49.5878	52.3355
40.2560	43.7730	46.9792	50.8922	53.6719
41.4217	44.9853	48.2319	52.1914	55.0025
42.5847	46.1942	49.4804	53.4857	56.3280
43.7452	47.3999	50.7251	54.7754	57.6483
44.9032	48.6024	51.9660	56.0609	58.9637
46.0588	49.8018	53.2033	57.3420	60.2746
47.2122	50.9985	54.4373	58.6192	61.5811
48.3634	52.1923	55.6680	59.8926	62.8832
49.5126	53.3835	56.8955	61.1620	64.1812
50.6598	54.5722	58.1201	62.4281	65.4753
51.8050	55.7585	59.3417	63.6908	66.7660
63.1671	67.5048	71.4202	76.1538	79.4898
74.3970	79.0820	83.2977	88.3794	91.9518
85.5270	90.5313	95.0231	100.4251	104.2148
96.5782	101.8795	106.6285	112.3288	116.3209
107.5650	113.1452	118.1359	124.1162	128.2987
118.4980	124.3421	129.5613	135.8069	140.1697
172.5812	179.5806	185.8004	193.2075	198.3599
226.0210	233.9942	241.0578	249.4452	255.2638
331.7885	341.3951	349.8745	359.9064	366.8439
436.6490	447.6324	457.3056	468.7244	476.6068
540.9303	553.1269	563.8514	576.4931	585.2060
	32.0069 33.1962 34.3816 35.5632 36.7412 37.9159 39.0875 40.2560 41.4217 42.5847 43.7452 44.9032 46.0588 47.2122 48.3634 49.5126 50.6598 51.8050 63.1671 74.3970 85.5270 96.5782 107.5650 118.4980 172.5812 226.0210 331.7885 436.6490 540.9303	32.006935.172533.196236.415034.381637.652535.563238.885136.741240.113337.915941.337239.087542.556940.256043.773041.421744.985342.584746.194243.745247.399944.903248.602446.058849.801847.212250.998548.363452.192349.512653.383550.659854.572251.805055.758563.167167.504874.397079.082085.527090.531396.5782101.8795107.5650113.1452118.4980124.3421172.5812179.5806226.0210233.9942331.7885341.3951436.6490447.6324540.9303553.1269	32.006935.172538.075633.196236.415039.364134.381637.652540.646535.563238.885141.923136.741240.113343.194537.915941.337244.460839.087542.556945.722340.256043.773046.979241.421744.985348.231942.584746.194249.480443.745247.399950.725144.903248.602451.966046.058849.801853.203347.212250.998554.437348.363452.192355.668049.512653.383556.895550.659854.572258.120151.805055.758559.341763.167167.504871.420274.397079.082083.297785.527090.531395.023196.5782101.8795106.6285107.5650113.1452118.1359118.4980124.3421129.5613172.5812179.5806185.8004226.0210233.9942241.0578331.7885341.3951349.8745436.6490447.6324457.3056540.9303553.1269563.8514	32.006935.172538.075641.638333.196236.415039.364142.979834.381637.652540.646544.314035.563238.885141.923145.641636.741240.113343.194546.962837.915941.337244.460848.278239.087542.556945.722349.587840.256043.773046.979250.892241.421744.985348.231952.191442.584746.194249.480453.485743.745247.399950.725154.775444.903248.602451.966056.060946.058849.801853.203357.342047.212250.998554.437358.619248.363452.192355.668059.892649.512653.383556.895561.162050.659854.572258.120162.428151.805055.758559.341763.690863.167167.504871.420276.153874.397079.082083.297788.379485.527090.531395.0231100.425196.5782101.8795106.6285112.3288107.5650113.1452118.1359124.1162118.4980124.3421129.5613135.8069172.5812179.5806185.8004193.2075226.0210233.9942241.0578249.4452331.7885341.3951349.8745359.9064436.6490447.63244

A.1.2 Valores de probabilidad encontrados con el programa SMADA 6.0 para cada función de probabilidad.

Distribution Analysis: Gumbel Extremal Type I -----Summary of Data ------First Moment (mean) = 43.5125 Second Moment = 8.253e01 Skew = 4.077e-01

Point	Weibu Brobabi	III Actual	Predicted	Standard
	FIUDADI	iity value	value	
1 ().0588	29.4000	30.1972	2.7612
2 ().1176	34.5000	32.5970	2.3542
3 ().1765	36.4000	34.3936	2.1107
4 ().2353	37.0000	35.9447	1.9599
5 ().2941	37.3000	37.3773	1.8818
6 ().3529	38.3000	38.7571	1.8694
7 ().4118	38.7000	40.1272	1.9194
8 ().4706	41.2000	41.5222	2.0293
9 ().5294	41.2000	42.9754	2.1974
10	0.5882	41.4000	44.5245	2.4243
11	0.6471	42.2000	46.2179	2.7141
12	0.7059	53.2000	48.1252	3.0777
13	0.7647	55.4000	50.3585	3.5379
14	0.8235	55.8000	53.1238	4.1413
15	0.8824	55.8000	56.8790	4.9973
16	0.9412	58.4000	63.0793	6.4612

	- Predicti	ons		
Exceedence	Return	Calculated	Standard	
Probability	Period	Value	Deviation	
0.9950	200.0	84.4002	11.6662	
0.9900	100.0	78.4501	10.2007	
0.9800	50.0	72.4782	8.7372	
0.9600	25.0	66.4619	7.2749	
0.9000	10.0	58.3521	5.3407	
0.8000	5.0	51.9337	3.8780	
0.6670	3.0	46.8361	2.8283	
0.5000	2.0	42.2393	2.1061	

Distribution Analysis: Pearson Type III
Summary of Data
First Moment (mean) = 43.5125
Second Moment = 8.253e01
Skew = 4.077e-01

Point Numb	Weibu er Probabi	ıll Actual F lity Value	Predicted Value	Standard Deviation
	0 0588	29 4000	31 2048	2 6001
2	0.0300	34 5000	33 4557	2.0001
3	0.1765	36,4000	35,1491	2.0617
4	0.2353	37.0000	36.6069	2.1353
5	0.2941	37.3000	37.9447	2.2385
6	0.3529	38.3000	39.2219	2.3413

7	0.4118		38.7000		40.4764		2.4348	
8	0.4706		41.2000		41.73	73	2.5175	
9	0.529	0.5294)0	43.0322		2.5923	
10	0.588	2	41.4000		44.3932		2.6648	
11	0.647	1	42.2000		45.8575		2.7452	
12	0.705	9	53.2000		47.4762		2.8516	
13	0.764	7	55.40	00	49.33	00	3.0175	
14	0.823	5	55.80	00	51.56	44	3.3114	
15	0.882	4	55.80	00	54.49	63	3.8922	
16	0.941	2	58.40	00	59.1067		5.2721	
Excee Pro 0.9 0.9	edence bability 950 900	• Pre Re Pe 200	ediction eturn riod 	S Ca Va 73 69	alue 3.3939 9.5940	d St Devi 12 10	andard iation .2763 .0985	
0.9	9800	50	0.0 65		5.6512 8		3.0563	
0.9600 2		5.0 61		L.5109	0. 1	0.19/5		
0.9000 10		5.0	50	.0105 4.		1705		
0.0	5000		2.0	э0 ЛС	0.0100		2.1/10 2.7771	
0.	5000	2	3.0 46 2.0 42		46.3857 42.3787		2.7771 2.5556	

Distribution

Distribution Analysis: 2 Parameter Log Normal -----Summary of Data ------First Moment (mean) = 43.5125 Second Moment = 8.253e01

Point Number	Wei Proba	bull ability	Actual Value	Predicted Value	l Standard Deviation
1	0.0588	3 2	9.4000	30.828	34 2.7268
2	0.1176	53	4.5000	33.332	2.4290
3	0.1765 3		6.4000	35.158	3 2.2621
4	0.2353	3 3	7.0000	36.698	3 2.1628
5	0.2941	. 3	7.3000	38.090	05 2.1105
6	0.3529) 3	8.3000	39.403	2.0964
7	0.4118	3	8.7000	40.679	07 2.1161
8	0.4706	54	1.2000	41.951	.3 2.1677
9	0.5294	4	1.2000	43.246	2.2506
10	0.5882	24	1.4000	44.598	35 2.3665
11	0.647	1 4	2.2000	46.043	31 2.5187
12	0.7059	9 5	3.2000	47.630)2 2.7141
13	0.764	7 5	5.4000	49.437	70 2.9650
14	0.8235 5		5.8000	51.602	25 3.2962
15	0.8824	1 5	5.8000	54.428	36 3.7647
16	0.9412 5		8.4000	58.850	0 4.5512
		Pred	ictions -		
Exceed	lence	Retu	ırn (Calculated	Standard
Proba	ability	Perio	bd	Value	Deviation
0.99	50	200.	0	72.5199	7.1742
0.99	00	100.	0	68.8779	6.4591
0.9800		50.0) (65.1067	5.7284
0.9600		25.0) (61.1553	4.9784
0.9000		10.0)	55.5048	3.9511
0.8000		5.0) !	50.6798	3.1516
0.66	570	3.0) 4	16.5621	2.5797
0.50	000	2.0) 4	12.5941	2.2052

Skew = 4.077e-01

ANEXOS 2

A.2.1 Tablas del cálculo de las láminas de escurrimiento para cada simulación

Primera Simulacion									
Lata	Peso sola	Peso con	Peso seca	Peso	Peso agua	Volumen	Lamina	Lamina	
	(g)	Agua (g)	(g)	suelo (g)	(g)	escurrido (m3)	(m)	(mm)	
1 + 5	21 1707	52 872	22 7/1	1 5703	30 1310	3 01853E-05	0 0002	0 1500	
2+5	21.1707	50 3268	22.741	1.0703	27 8384	2 78886E-05	0.0002	0.1303	
215	21.3020	48 7735	22.4004	1.1000	26.2467	2.70000E-05	0.0001	0.1394	
4 + 5	20.8220	52 1/01	22.0200	1 3127	30.0054	3.00505E-05	0.0001	0.1513	
$\frac{1}{1}$ + 10	21 3850	84 3474	22.1047	0.8085	62 1539	6 2266E-05	0.0002	0.1000	
2 ± 10	21.0000	48 802	23.036	1 5313	25 7660	2 58125E-05	0.0000	0.0110	
$\frac{2}{3}$ t 10	21.0047	75 7759	22 637	1 4814	53 1389	5 32347E-05	0.0003	0.1201	
4 t 10	11 2510	135 4248	11 7521	0.5011	123 6727	0.000123896	0.0006	0.6195	
1 t 15	11 2253	136 7282	11 7854	0.5601	124 9428	0.000125168	0.0006	0.6258	
2 t 15	11 2242	91 7612	12 0225	0 7983	79 7387	7 98825E-05	0.0004	0 3994	
3 t 15	11.4638	52.3012	12.8639	1.4001	39,4373	3.95084E-05	0.0002	0.1975	
4 t 15	10,7060	65.9875	11.9234	1.2174	54.0641	5.41616E-05	0.0003	0.2708	
1 t 20	11.1569	117.6262	12.4684	1.3115	105.1578	0.000105347	0.0005	0.5267	
2 t 20	11.3070	99.4746	12.9093	1.6023	86.5653	8.67214E-05	0.0004	0.4336	
3 t 20	11.2151	37.0496	11.761	0.5459	25.2886	2.53342E-05	0.0001	0.1267	
4 t 20	11.2004	59.3163	12.881	1.6806	46.4353	4.6519E-05	0.0002	0.2326	
1 t 25	10.2988	151.7881	12.257	1.9582	139.5311	0.000139783	0.0007	0.6989	
2 t 25	11.2628	106.2408	11.0157	-0.2471	95.2251	9.53968E-05	0.0005	0.4770	
3 t 25	11.2607	53.417	12.9115	1.6508	40.5055	4.05785E-05	0.0002	0.2029	
4 t 25	11.2059	59.5502	12.9273	1.7214	46.6229	4.6707E-05	0.0002	0.2335	
1 t 30	11.2400	148.8348	12.2508	1.0108	136.5840	0.00013683	0.0007	0.6842	
2 t 30	11.1013	120.8576	12.0534	0.9521	108.8042	0.000109	0.0005	0.5450	
3 t 30	11.0339	52.5578	11.7905	0.7566	40.7673	4.08408E-05	0.0002	0.2042	
4 t 30	11.1909	55.1108	12.923	1.7321	42.1878	4.22639E-05	0.0002	0.2113	
1 t 35	11.0750	170.5261	12.1447	1.0697	158.3814	0.000158667	0.0008	0.7933	
2 t 35	10.5448	129.7884	11.289	0.7442	118.4994	0.000118713	0.0006	0.5936	
3 t 35	11.1070	47.4793	12.334	1.2270	35.1453	3.52087E-05	0.0002	0.1760	
4 t 35	10.6672	58.088	12.3673	1.7001	45.7207	4.58031E-05	0.0002	0.2290	
1 t 40	11.2266	180.056	11.7302	0.5036	168.3258	0.000168629	0.0008	0.8431	
2 t 40	10.7328	155.2175	11.9312	1.1984	143.2863	0.000143545	0.0007	0.7177	
3 t 40	11.1778	69.8423	11.8923	0.7145	57.9500	5.80545E-05	0.0003	0.2903	
4 t 40	10.5998	61.8673	11.1414	0.5416	50.7259	5.08174E-05	0.0003	0.2541	
1 t 45	10.5815	192.9024	11.7696	1.1881	181.1328	0.000181459	0.0009	0.9073	
2 t 45	11.2233	162.9628	12.3371	1.1138	150.6257	0.000150897	0.0008	0.7545	
3 t 45	11.3041	79.5677	12.1423	0.8382	67.4254	6.7547E-05	0.0003	0.3377	
4 t 45	10.7501	70.1357	11.4048	0.6547	58.7309	5.88368E-05	0.0003	0.2942	
1 t 50	11.3948	192	12.7619	1.3671	179.2381	0.000179561	0.0009	0.8978	
2 t 50	11.2479	172.3582	12.3766	1.1287	159.9816	0.00016027	0.0008	0.8014	
3 t 50	10.4315	58.604	12.1107	1.6792	46.4933	4.65771E-05	0.0002	0.2329	
4 t 50	11.5470	72.5295	12.2392	0.6922	60.2903	6.0399E-05	0.0003	0.3020	
1 t 55	10.9272	192	11.8356	0.9084	180.1644	0.000180489	0.0009	0.9024	
2 t 55	10.8052	184.1896	12.1305	1.3253	172.0591	0.000172369	0.0009	0.8618	
3 t 55	10.5684	97.2728	11.5511	0.9827	85.7217	8.58763E-05	0.0004	0.4294	
4 t 55	11.1405	63.944	11.966	0.8255	51.9780	5.20717E-05	0.0003	0.2604	
1 t 60	10.9896	192	11.8356	0.8460	180.1644	0.000180489	0.0009	0.9024	
2 t 60	10.5835	191.1896	12.1305	1.5470	179.0591	0.000179382	0.0009	0.8969	
3 t 60	11.0603	95.2728	12.5511	1.4908	82.7217	8.28709E-05	0.0004	0.4144	
4 t 60	11.3307	61.944	13.966	2.6353	47.9780	4.80645E-05	0.0002	0.2403	

Segunda Simulacion									
Lata	Peso sola (g)	Peso con Agua (g)	Peso seca (g)	Peso suelo (g)	Peso agua (g)	Volumen escurrido (m3)	Lamina (m)	Lamina (mm)	
1t5	21.1707	47.8927	22.8519	1.6812	25.0408	2.5086E-05	0.0001	0.1254	
2 t 5	21.3826	50.9043	22.7143	1.3317	28.1900	2.8241E-05	0.0001	0.1412	
3t5	21.3035	64.4276	22.6675	1.3640	41.7601	4.1835E-05	0.0002	0.2092	
4 t 5	20.8220	44.4263	22.2289	1.4069	22.1974	2.2237E-05	0.0001	0.1112	
1 t 10	21.3850	68.7696	21.9384	0.5534	46.8312	4.6916E-05	0.0002	0.2346	
2 t 10	21.5047	45.7848	21.9408	0.4361	23.8440	2.3887E-05	0.0001	0.1194	
3 t 10	21.1556	78.6275	22.4275	1.2719	56.2000	5.6301E-05	0.0003	0.2815	
4 t 10	11.2510	44.9008	11.3925	0.1415	33.5083	3.3569E-05	0.0002	0.1678	
1 t 15	11.2253	172.1541	12.3776	1.1523	159.7765	0.00016006	0.0008	0.8003	
2 t 15	11.2242	258.2017	12.8843	1.6601	245.3174	0.00024576	0.0012	1.2288	
3 t 15	11.4638	162.3206	13.4367	1.9729	148.8839	0.00014915	0.0007	0.7458	
4 t 15	10.7060	113.8525	12.1911	1.4851	101.6614	0.00010184	0.0005	0.5092	
1 t 20	11.1569	125.3511	12.8767	1.7198	112.4744	0.00011268	0.0006	0.5634	
2 t 20	11.3070	306.3977	12.7935	1.4865	293.6042	0.00029413	0.0015	1.4707	
3 t 20	11.2151	143.9227	13.233	2.0179	130.6897	0.00013093	0.0007	0.6546	
4 t 20	11.2004	149.0846	13.2761	2.0757	135.8085	0.00013605	0.0007	0.6803	
1 t 25	10.2988	88.7589	12.5227	2.2239	76.2362	7.6374E-05	0.0004	0.3819	
2 t 25	11.2628	298.2471	11.7985	0.5357	286.4486	0.00028697	0.0014	1.4348	
3 t 25	11.2607	221.3492	12.8507	1.5900	208.4985	0.00020887	0.0010	1.0444	
4 t 25	11.2059	158.4058	13.2793	2.0734	145.1265	0.00014539	0.0007	0.7269	
1 t 30	11.2400	78.6201	12.5318	1.2918	66.0883	6.6207E-05	0.0003	0.3310	
2 t 30	11.1013	233.0479	12.6942	1.5929	220.3537	0.00022075	0.0011	1.1038	
3 t 30	11.0339	265.2434	12.3517	1.3178	252.8917	0.00025335	0.0013	1.2667	
4 t 30	11.1909	171.3361	13.2637	2.0728	158.0724	0.00015836	0.0008	0.7918	
1 t 35	11.0750	138.0545	12.5139	1.4389	125.5406	0.00012577	0.0006	0.6288	
2 t 35	10.5448	232.2558	11.8734	1.3286	220.3824	0.00022078	0.0011	1.1039	
3 t 35	11.1070	268.7730	12.8076	1.7006	255.9654	0.00025643	0.0013	1.2821	
4 t 35	10.6672	187.4346	12.6941	2.0269	174.7405	0.00017506	0.0009	0.8753	
1 t 40	11.2266	118.4394	12.043	0.8164	106.3964	0.00010659	0.0005	0.5329	
2 t 40	10.7328	260.8016	12.5391	1.8063	248.2625	0.00024871	0.0012	1.2436	
3 t 40	11.1778	265.2855	12.3688	1.1910	252.9167	0.00025337	0.0013	1.2669	
4 t 40	10.5998	188.0000	11.5941	0.9943	176.4059	0.00017672	0.0009	0.8836	
1 t 45	10.5815	110.8299	12.1743	1.5928	98.6556	9.8834E-05	0.0005	0.4942	
2 t 45	11.2233	243.8862	12.8819	1.6586	231.0043	0.00023142	0.0012	1.1571	
3 t 45	11.3041	281.1618	12.5683	1.2642	268.5935	0.00026908	0.0013	1.3454	
4 t 45	10.7501	189.0000	11.855	1.1049	177.1450	0.00017746	0.0009	0.8873	
1 t 50	11.3948	178.0575	13.3546	1.9598	164.7029	0.000165	0.0008	0.8250	
2 t 50	11.2479	254.8713	12.9696	1.7217	241.9017	0.00024234	0.0012	1.2117	
3 t 50	10.4315	319.3208	11.4258	0.9943	307.8950	0.00030845	0.0015	1.5423	
4 t 50	11.5470	189.0000	12.7567	1.2097	176.2433	0.00017656	0.0009	0.8828	
1 t 55	10.9272	65.3921	12.0684	1.1412	53.3237	5.342E-05	0.0003	0.2671	
2 t 55	10.8052	270.6747	12.7439	1.9387	257.9308	0.0002584	0.0013	1.2920	
3 t 55	10.5684	227.0173	11.9933	1.4249	215.0240	0.00021541	0.0011	1.0771	
4 t 55	11.1405	190.0000	12.4195	1.2790	177.5805	0.0001779	0.0009	0.8895	
1 t 60	10.9896	60.4057	11.7968	0.8072	48.6089	4.8697E-05	0.0002	0.2435	
2 t 60	10.5835	241.4530	11.3981	0.8146	230.0549	0.00023047	0.0012	1.1523	
3 t 60	11.0603	217.5092	12.632	1.5717	204.8772	0.00020525	0.0010	1.0262	
4 t 60	11.3307	186.4973	11.8579	0.5272	174.6394	0.00017495	0.0009	0.8748	
				Tercera Sir	nulacion				
--------	-----------	----------	-----------	-------------	----------	---------------	----------	----------	
	Descente	D	D	D	Deer			Laurina	
Lata	Peso sola	Peso con	Peso seca	Peso	Peso	Volumen	Lamina	Lamina	
	(g)	Agua (g)	(g)	suelo (g)	Agua (g)	escurrido(m3)	(m)	(mm)	
1 t 5	21.2887	62.6648	21.3336	0.0449	41.3312	4.14057E-05	0.000207	0.207029	
2 t 5	21.0404	29.9211	21.0661	0.0257	8.855	8.87097E-06	4.44E-05	0.044355	
3 t 5	21.0823	50.1245	21.1846	0.1023	28.9399	2.89921E-05	0.000145	0.14496	
4 t 5	20.5819	44.2805	20.6925	0.1106	23.588	2.36305E-05	0.000118	0.118153	
1 t 10	21.2173	152.2227	21.5442	0.3269	130.6785	0.000130914	0.000655	0.654571	
2 t 10	21.3954	123.601	21.6701	0.2747	101.9309	0.000102115	0.000511	0.510574	
3 t 10	20.9717	99.1724	21.1854	0.2137	77.987	7.81276E-05	0.000391	0.390638	
4 t 10	11.1193	59.3443	11.3337	0.2144	48.0106	4.80972E-05	0.00024	0.240486	
1 t 15	10.7275	244	11.2365	0.509	232.7635	0.000233183	0.001166	1.165916	
2 t 15	11.251	254	11.8451	0.5941	242.1549	0.000242592	0.001213	1.212958	
3 t 15	10.8921	149.3452	11.1083	0.2162	138.2369	0.000138486	0.000692	0.692431	
4 t 15	10.7715	84.3876	10.976	0.2045	73.4116	7.3544E-05	0.000368	0.36772	
1 t 20	11.4633	204.7474	11.9226	0.4593	192.8248	0.000193173	0.000966	0.965863	
2 t 20	11.1612	274	11.3025	0.1413	262.6975	0.000263171	0.001316	1.315856	
3 t 20	11.4465	150.7717	11.6315	0.185	139.1402	0.000139391	0.000697	0.696956	
4 t 20	11.8491	80.6647	12.0367	0.1876	68.628	6.87518E-05	0.000344	0.343759	
1 t 25	11.2802	246	11.7792	0.499	234.2208	0.000234643	0.001173	1.173216	
2 t 25	10.3035	242	10.8549	0.5514	231.1451	0.000231562	0.001158	1.15781	
3 t 25	10.7556	148.7629	10.993	0.2374	137.7699	0.000138018	0.00069	0.690092	
4 t 25	11.6373	73.4196	11.8269	0.1896	61.5927	6.17038E-05	0.000309	0.308519	
1 t 30	11.2826	221	11.7925	0.5099	209.2075	0.000209585	0.001048	1.047924	
2 t 30	11.1234	265	11.6614	0.538	253.3386	0.000253795	0.001269	1.268977	
3 t 30	11.0782	175.56	11.3779	0.2997	164.1821	0.000164478	0.000822	0.822391	
4 t 30	11.1903	78.8533	11.3635	0.1732	67.4898	6.76115E-05	0.000338	0.338058	
1 t 35	11.151	249	11.643	0.492	237.357	0.000237785	0.001189	1.188925	
2 t 35	10.595	256	11.0778	0.4828	244.9222	0.000245364	0.001227	1.226819	
3 t 35	10.7544	185.77	11.0932	0.3388	174.6768	0.000174992	0.000875	0.874959	
4 t 35	10.7255	79.0643	10.8752	0.1497	68.1891	6.83121E-05	0.000342	0.34156	
1 t 40	11.2289	243	11.7351	0.5062	231.2649	0.000231682	0.001158	1.15841	
2 t 40	10.7458	277	11.2534	0.5076	265.7466	0.000266226	0.001331	1.331129	
3 t 40	11.2276	186.88	11.5789	0.3513	175.3011	0.000175617	0.000878	0.878086	
4 t 40	10.6344	78.2291	10.805	0.1706	67.4241	6.75457E-05	0.000338	0.337728	
1 t 45	10.6848	238	11.1838	0.499	226.8162	0.000227225	0.001136	1.136126	
2 t 45	11.2466	249	11./09/	0.4631	237.2903	0.000237718	0.001189	1.188591	
3 t 45	11.3206	195.78	11.6554	0.3348	184.1246	0.000184457	0.000922	0.922283	
4 t 45	10.7992	120	10.9282	0.129	109.0718	0.000109268	0.000546	0.546342	
1 t 50	11.4192	292	12.0132	0.594	279.9868	0.000280492	0.001402	1.402458	
2 t 50	11.2/9	297	11.8811	0.6021	285.1189	0.000285633	0.001428	1.428165	
3 t 50	10.3927	196.50	10.8084	0.4157	185.7510	0.000186087	0.00093	0.930433	
4 t 50	11.4995	140	11.0/1/	0.1722	128.3283	0.00012850	0.000643	0.642799	
1 t 55	10.9289	260	11.3897	0.4608	254.6103	0.000255069	0.001275	1.2/534/	
2155	10.7701	200	11.3117	0.5350	2/6.6883	0.000277187	0.001380	1.385930	
3155	10.5009	207	11.0955	0.5084	255.9047	0.000250300	0.001282	1.281831	
4155	11.1974	148	11.3111	0.1137	136.6889	0.000136935	0.000685	0.684677	
1160	10.9686	335	11.6452	0.6766	323.3548	0.000323938	0.00162	1.019089	
2 1 60	10.62/9	295	11.1205	0.4986	203.0/35	0.000284385	0.001422	1.421927	
3160	11.5789	300	11.1597	0.5808	200.0403	0.000289361	0.007447	1.446806	
4100	11.344	155	11.5122	U.1082	143.48/8	0.000143747	0.000719	0./10/33	

	Cuarta Simulacion									
	Dece colo	Deeg een	Dees	Deee	Dees	Malumaan	Lonino	Londono		
Lata	Peso sola	Peso con	Peso seca	Peso	Peso	Volumen	Lamina	Lamina		
	(g)	Agua (g)	(g)	suelo (g)	Agua (g)	escumuo(ms)	(11)	(((((((((((((((((((((((((((((((((((((((
1 t 5	21.2887	106.0775	21.3286	0.0399	84.7489	8.49017E-05	0.000425	0.424509		
2 t 5	21.0404	74.9759	21.1655	0.1251	53.8104	5.39074E-05	0.00027	0.269537		
3 t 5	21.0823	65.2154	21.2174	0.1351	43.998	4.40773E-05	0.00022	0.220387		
4 t 5	20.5819	52.5266	20.6113	0.0294	31.9153	3.19729E-05	0.00016	0.159864		
1 t 10	21.2173	200.3404	21.6384	0.4211	178.702	0.000179024	0.000895	0.895121		
2 t 10	21.3954	192.4757	21.7614	0.366	170.7143	0.000171022	0.000855	0.855111		
3 t 10	20.9717	66.3949	21.0271	0.0554	45.3678	4.54496E-05	0.000227	0.227248		
4 t 10	11.1193	54.3881	11.1981	0.0788	43.19	4.32679E-05	0.000216	0.216339		
1 t 15	10.7275	218	11.1669	0.4394	206.8331	0.000207206	0.001036	1.03603		
2 t 15	11.251	213	11.6381	0.3871	201.3619	0.000201725	0.001009	1.008625		
3 t 15	10.8921	162	11.0195	0.1274	150.9805	0.000151253	0.000756	0.756264		
4 t 15	10.7715	70	10.8609	0.0894	59.1391	5.92457E-05	0.000296	0.296229		
1 t 20	11.4633	218	11.9239	0.4606	206.0761	0.000206448	0.001032	1.032239		
2 t 20	11.1612	222	11.7519	0.5907	210.2481	0.000210627	0.001053	1.053136		
3 t 20	11.4465	188	11.6068	0.1603	176.3932	0.000176711	0.000884	0.883556		
4 t 20	11.8491	73	11.9708	0.1217	61.0292	6.11393E-05	0.000306	0.305696		
1 t 25	11.2802	238	11.6819	0.4017	226.3181	0.000226726	0.001134	1.133631		
2 t 25	10.3035	244	10.7584	0.4549	233.2416	0.000233662	0.001168	1.168311		
3 t 25	10.7556	223	11.2012	0.4456	211.7988	0.000212181	0.001061	1.060904		
4 t 25	11.6373	92	11.7632	0.1259	80.2368	8.03815E-05	0.000402	0.401907		
1 t 30	11.2826	245	11.7242	0.4416	233.2758	0.000233696	0.001168	1.168482		
2 t 30	11.1234	273	11.6397	0.5163	261.3603	0.000261832	0.001309	1.309158		
3 t 30	11.0782	247	11.5024	0.4242	235.4976	0.000235922	0.00118	1.179611		
4 t 30	11.1903	94	11.3735	0.1832	82.6265	8.27755E-05	0.000414	0.413877		
1 t 35	11.151	263	11.6271	0.4761	251.3729	0.000251826	0.001259	1.259131		
2 t 35	10.595	268	11.156	0.561	256.844	0.000257307	0.001287	1.286536		
3 t 35	10.7544	287	11.212	0.4576	275.788	0.000276285	0.001381	1.381427		
4 t 35	10.7255	95	10.8598	0.1343	84.1402	8.42919E-05	0.000421	0.42146		
1 t 40	11.2289	276	11.8096	0.5807	264.1904	0.000264667	0.001323	1.323334		
2 1 40	10.7458	308	11.3322	0.5864	290.0078	0.000297203	0.001480	1.480014		
3 1 40	11.2276	230	11.7018	0.5342	218.2382	0.000218632	0.001093	1.093159		
4 (40	10.6344	101	10.8447	0.2103	90.1553	9.03179E-05	0.000452	0.451589		
1145	10.0040	304	11.2420	0.0077	292.7070	0.000293285	0.001400	1.400427		
2 1 45	11 2206	323	11.0012	0.0340	223 0517	0.000313003	0.001000	1 11707		
3 t 45 4 t 45	10 7002	200	10.0252	0.0277	71 07/9	7 12035 05	0.001117	0.356015		
4 (45	11 / 102	272	11 9252	0.120	260.043	0.000260512	0.000330	1 30256		
2 t 50	11.4132	316	11 0315	0.5576	304 0685	0.000200512	0.001503	1.502.50		
2 t 50 3 t 50	10 3027	237	10 9884	0.0020	226.0116	0.000304017	0.001323	1 132004		
4 t 50	11 4995	180	11 6659	0.0007	168 3341	0.000220413	0.001102	0.843188		
1 t 55	10 9289	253	11 4504	0.1004	241 5496	0.000241985	0.000040	1 209926		
2 t 55	10.7761	200	11 3151	0.539	285 6849	0.000241000	0.001431	1 431		
3 t 55	10 5869	210	11.1522	0.5653	198.8478	0.000199206	0.000996	0.996032		
4 t 55	11,1974	175	11.3258	0.1284	163.6742	0.000163969	0.00082	0.819847		
1 t 60	10.9686	303	11.6797	0,7111	291,3203	0.000291846	0.001459	1.459228		
2 t 60	10.6279	376	11.3199	0.692	364,6801	0.000365338	0.001827	1.826689		
3 t 60	10.5789	212	11.1381	0.5592	200.8619	0.000201224	0.001006	1.006121		
4 t 60	11.344	170	11.5229	0.1789	158.4771	0.000158763	0.000794	0.793814		

	Quinta Simulacion									
	Peso sola	Peso con	Peso seca	Peso	Peso	Volumen	Lamina	Lamina		
Lata	(a)		(a)	suelo (a)		escurrido(m3)	Lamina (m)	(mm)		
	(9)	Agua (g)	(9)	Sucio (g)	Agua (g)	cocumac(mo)	(11)	(((((((((((((((((((((((((((((((((((((((
1 t 5	21.2887	61.55	21.9353	0.6466	39.6147	3.96861E-05	0.000198	0.198431		
2 t 5	21.0404	40.43	21.1238	0.0834	19.3062	1.9341E-05	9.67E-05	0.096705		
3 t 5	21.0823	47.58	21.2524	0.1701	26.3276	2.63751E-05	0.000132	0.131875		
4 t 5	20.5819	38.59	20.599	0.0171	17.991	1.80234E-05	9.01E-05	0.090117		
1 t 10	21.2173	186.83	21.7132	0.4959	165.1168	0.000165415	0.000827	0.827073		
2 t 10	21.3954	146.47	21.8588	0.4634	124.6112	0.000124836	0.000624	0.62418		
3 t 10	20.9717	73.26	21.0887	0.117	52.1713	5.22654E-05	0.000261	0.261327		
4 t 10	11.1193	57.68	11.3003	0.181	46.3797	4.64633E-05	0.000232	0.232317		
1 t 15	10.7275	194	11.156	0.4285	182.844	0.000183174	0.000916	0.915869		
2 t 15	11.251	155.05	11.6037	0.3527	143.4463	0.000143705	0.000719	0.718525		
3 t 15	10.8921	75.07	10.9575	0.0654	64.1125	6.42281E-05	0.000321	0.321141		
4 t 15	10.7715	62.2	10.8701	0.0986	51.3299	5.14225E-05	0.000257	0.257112		
1 t 20	11.4633	204.53	11.8958	0.4325	192.6342	0.000192982	0.000965	0.964908		
2 t 20	11.1612	155.7	11.6078	0.4466	144.0922	0.000144352	0.000722	0.72176		
3 t 20	11.4465	68.99	11.4677	0.0212	57.5223	5.7626E-05	0.000288	0.28813		
4 t 20	11.8491	64.64	11.969	0.1199	52.671	5.2766E-05	0.000264	0.26383		
1 t 25	11.2802	174.25	11.562	0.2818	162.688	0.000162981	0.000815	0.814907		
2 t 25	10.3035	141.74	10.6175	0.314	131.1225	0.000131359	0.000657	0.656795		
3 t 25	10.7556	55.34	10.8611	0.1055	44.4789	4.45591E-05	0.000223	0.222796		
4 t 25	11.22	54.81	11.3586	0.1386	43.4514	4.35298E-05	0.000218	0.217649		
1 t 30	11.2826	194.61	11.6162	0.3336	182.9938	0.000183324	0.000917	0.916619		
2 t 30	11.1234	156.98	11.4421	0.3187	145.5379	0.0001458	0.000729	0.729002		
3 t 30	11.0782	46.4	11.158	0.0798	35.242	3.53055E-05	0.000177	0.176528		
4 t 30	11.1903	62.03	11.3279	0.1376	50.7021	5.07935E-05	0.000254	0.253968		
1135	11.151	239	11.5815	0.4305	227.4185	0.000227829	0.001139	1.139143		
2135	10.595	192.75	11.05	0.455	181.7	0.000182028	0.00091	0.910138		
3135	10.7544	94.92	10.8580	0.1042	84.0614	8.4213E-05	0.000421	0.421065		
4135	11,220	/1.//	10.8441	0.1180	100.9259	0.10358E-05	0.000305	0.305179		
2 ± 40	10 7459	200	11.0110	0.3029	195.40	0.000100720	0.000944	0.94304		
2 1 40	11 2276	190.03	11 2702	0.3942	04 2517	0.000185824	0.000929	0.929122		
3 t 40 4 t 40	10.6244	95.05	10 7016	0.1507	61 0001	6.10100E.05	0.000422	0.422010		
4 (40	10.6848	201.08	10.7910	0.1372	100 08/	0.19199L-03	0.00051	0.009099		
2 † 45	11 2466	193.16	11 6528	0.0112	181 5072	0.000191320	0.000307	0.9300-2		
3 t 45	11.3206	103.60	11 5103	0 1987	92 1707	9 23369E-05	0.000462	0.461685		
4 t 45	10 7992	64 47	10 927	0 1278	53 543	5.36396E-05	0.000268	0.268108		
1 t 50	11 4102	270	11 8955	0 4763	258 1045	0.00025857	0.001203	1 29285		
2 t 50	11 279	300	11 71	0.431	288 29	0.00028881	0.001200	1 444049		
3 t 50	10.3927	83.57	10.5851	0.1924	72,9849	7.31165E-05	0.000366	0.365583		
4 t 50	11,4995	61.24	11.6345	0.135	49.6055	4.9695E-05	0.000248	0.248475		
1 t 55	10.9289	305	11.5132	0,5843	293,4868	0.000294016	0.00147	1.47008		
2 t 55	10.7761	320	11.3501	0.574	308.6499	0.000309206	0.001546	1.546032		
3 t 55	10.5869	141.63	10.8216	0,2347	130.8084	0.000131044	0.000655	0.655221		
4 t 55	11.1974	103.93	11.4	0.2026	92.53	9.26969E-05	0.000463	0.463484		
1 t 60	10.9686	307	11.5805	0.6119	295.4195	0.000295952	0.00148	1.479761		
2 t 60	10.6279	340	11.1885	0.5606	328.8115	0.000329404	0.001647	1.647022		
3 t 60	10.5789	68.6	10.6922	0.1133	57.9078	5.80122E-05	0.00029	0.290061		
4 t 60	11.344	85.84	11.5613	0.2173	74.2787	7.44126E-05	0.000372	0.372063		

	Sexta Simulacion									
Lata	Peso sola (g)	Peso con Agua (g)	Peso seca (g)	Peso suelo (g)	Peso Agua (g)	Volumen escurrido(m3)	Lamina (m)	Lamina (mm)		
						,				
1 t 5	21.2887	175.8044	21.517	0.2283	154.2874	0.000155	0.000773	0.772828		
2 t 5	21.0404	107.0054	21.3057	0.2653	85.6997	8.59E-05	0.000429	0.429271		
3 t 5	21.0823	43.8337	21.2096	0.1273	22.6241	2.27E-05	0.000113	0.113324		
4 t 5	20.4226	54.4809	20.6847	0.2621	33.7962	3.39E-05	0.000169	0.169286		
1 t 10	21.2173	240	21.8852	0.6679	218.1148	0.000219	0.001093	1.092541		
2 t 10	21.3954	191.4145	22.0353	0.6399	169.3792	0.00017	0.000848	0.848423		
3 t 10	20.9717	86.27	21.152	0.1803	65.118	6.52E-05	0.000326	0.326177		
4 t 10	11.1193	63.9822	11.373	0.2537	52.6092	5.27E-05	0.000264	0.26352		
1 t 15	10.7275	378	11.6616	0.9341	366.3384	0.000367	0.001835	1.834995		
2 t 15	11.251	368	12.5352	1.2842	355.4648	0.000356	0.001781	1.780529		
3 t 15	10.8921	270	11.3956	0.5035	258.6044	0.000259	0.001295	1.295354		
4 t 15	10.7715	115.474	11.108	0.3365	104.366	0.000105	0.000523	0.522771		
1 t 20	11.4633	357	12.7526	1.2893	344.2474	0.000345	0.001724	1.724341		
2 t 20	11.1612	343	11.6632	0.502	331.3368	0.000332	0.00166	1.659671		
3 t 20	11.4465	252	11.8053	0.3588	240.1947	0.000241	0.001203	1.203139		
4 t 20	11.2203	118.769	11.5845	0.3642	107.1845	0.000107	0.000537	0.536889		
1 t 25	11.2802	322	12.0427	0.7625	309.9573	0.000311	0.001553	1.552581		
2 t 25	10.3035	295	11.04	0.7365	283.96	0.000284	0.001422	1.42236		
3 t 25	10.7556	235	11.2161	0.4605	223.7839	0.000224	0.001121	1.120937		
4 t 25	11.22	77.0275	11.4797	0.2597	65.5478	6.57E-05	0.000328	0.32833		
1 t 30	11.2826	346	11.9656	0.683	334.0344	0.000335	0.001673	1.673184		
2 t 30	11.1234	324	11.8723	0.7489	312.1277	0.000313	0.001563	1.563453		
3 t 30	11.0782	227	11.502	0.4238	215.498	0.000216	0.001079	1.079433		
4 t 30	11.1903	59.7155	11.3551	0.1648	48.3604	4.84E-05	0.000242	0.242238		
1 t 35	11.151	327	11.8093	0.6583	315.1907	0.000316	0.001579	1.578795		
2 t 35	10.595	354	11.4604	0.8654	342.5396	0.000343	0.001716	1.715786		
3 t 35	10.7544	181.753	11.0672	0.3128	170.6858	0.000171	0.000855	0.854968		
4 t 35	10.7255	80.199	10.8815	0.156	69.3175	6.94E-05	0.000347	0.347212		
1 t 40	22.7557	481	23.842	1.0863	457.158	0.000458	0.00229	2.289912		
2 t 40	22.2458	475	23.6023	1.3565	451.3977	0.000452	0.002261	2.261058		
3 t 40	11.2276	258	11.2401	0.0125	246.7599	0.000247	0.001236	1.236024		
4 t 40	10.6344	79.4593	10.8816	0.2472	68.5777	6.87E-05	0.000344	0.343507		
1 t 45	10.6848	312	11.3124	0.6276	300.6876	0.000301	0.001506	1.506149		
2 t 45	11.2466	367	12.2168	0.9702	354.7832	0.000355	0.001777	1.777115		
3 t 45	11.3206	277	11.9203	0.5997	265.0797	0.000266	0.001328	1.327789		
4 t 45	10.7992	110.364	11.0774	0.2782	99.2866	9.95E-05	0.000497	0.497328		
1 t 50	22.7592	420	23.7538	0.9946	396.2462	0.000397	0.001985	1.984804		
2 t 50	22.7392	410	23.9743	1.2351	386.0257	0.000387	0.001934	1.933609		
3 t 50	10.3927	311	11.0325	0.6398	299.9675	0.000301	0.001503	1.502542		
4 t 50	11.4995	137.2321	11.8744	0.3749	125.3577	0.000126	0.000628	0.627919		
1 t 55	22.3468	410	23.356	1.0092	386.644	0.000387	0.001937	1.936706		
2 t 55	22.0993	419	23.4322	1.3329	395.5678	0.000396	0.001981	1.981406		
3 t 55	10.5869	318	11.2566	0.6697	306.7434	0.000307	0.001536	1.536483		
4 t 55	11.1974	148.2271	11.6079	0.4105	136.6192	0.000137	0.000684	0.684328		
1 t 60	21.8545	405	22.7351	0.8806	382.2649	0.000383	0.001915	1.914771		
2 t 60	21.4192	425	22.6492	1.23	402.3508	0.000403	0.002015	2.015382		
3 t 60	10.5789	289	14.6041	4.0252	274.3959	0.000275	0.001374	1.374454		
4 t 60	11.344	147.6517	11.8735	0.5295	135.7782	0.000136	0.00068	0.680115		

	Septima Simulacion									
	Description	D	D	Deser	Dest	Volumen		1		
Lata	Peso sola	Peso con	Peso seca	Peso	Peso	escurrido(Lamina	Lamina		
	(g)	Agua (g)	(g)	suelo (g)	Agua (g)	m3)	(m)	(mm)		
1 t 5	21.2887	210	21.486	0.1973	188.514	0.000189	0.000944	0.94427		
2 t 5	21.0404	173.53	21.5848	0.5444	151.9452	0.000152	0.000761	0.761096		
3 t 5	21.0823	126.89	21.2545	0.1722	105.6355	0.000106	0.000529	0.52913		
4 t 5	20.4226	74.45	20.5528	0.1302	53.8972	5.4E-05	0.00027	0.269972		
1 t 10	21.2173	275	21.814	0.5967	253.186	0.000254	0.001268	1.268213		
2 t 10	21.3954	278	22.105	0.7096	255.895	0.000256	0.001282	1.281782		
3 t 10	20.9717	207	21.2283	0.2566	185.7717	0.000186	0.000931	0.930533		
4 t 10	11.1193	99.35	11.3061	0.1868	88.0439	8.82E-05	0.000441	0.441013		
1 t 15	10.7275	225	11.1618	0.4343	213.8382	0.000214	0.001071	1.071119		
2 t 15	11.251	262	11.9208	0.6698	250.0792	0.000251	0.001253	1.252651		
3 t 15	10.8921	188	11.0101	0.118	176.9899	0.000177	0.000887	0.886545		
4 t 15	10.7715	88.8	10.8613	0.0898	77.9387	7.81E-05	0.00039	0.390396		
1 t 20	11.4633	214	11.8789	0.4156	202.1211	0.000202	0.001012	1.012428		
2 t 20	11.1612	212	11.2008	0.0396	200.7992	0.000201	0.001006	1.005806		
3 t 20	11.4465	88.22	11.49	0.0435	76.73	7.69E-05	0.000384	0.384342		
4 t 20	11.2203	64.03	11.3027	0.0824	52.7273	5.28E-05	0.000264	0.264112		
1 t 25	11.2802	301	11.807	0.5268	289.193	0.00029	0.001449	1.448572		
2 t 25	10.3035	303	13.3719	3.0684	289.6281	0.00029	0.001451	1.450752		
3 t 25	10.7556	167	10.9509	0.1953	156.0491	0.000156	0.000782	0.781652		
4 t 25	11.22	68.96	11.3184	0.0984	57.6416	5.77E-05	0.000289	0.288728		
1 t 30	11.2826	229	11.6628	0.3802	217.3372	0.000218	0.001089	1.088646		
2 t 30	11.1234	318	11.8245	0.7011	306.1755	0.000307	0.001534	1.533638		
3 t 30	11.0782	185	11.2825	0.2043	173.7175	0.000174	0.00087	0.870154		
4 t 30	11.1903	83.97	11.3128	0.1225	72.6572	7.28E-05	0.000364	0.363941		
1 t 35	11.151	302	11.7163	0.5653	290.2837	0.000291	0.001454	1.454036		
2 t 35	10.595	334	11.3344	0.7394	322.6656	0.000323	0.001616	1.616237		
3 t 35	10.7544	171	10.906	0.1516	160.094	0.00016	0.000802	0.801913		
4 t 35	10.7255	107.81	10.827	0.1015	96.983	9.72E-05	0.000486	0.485789		
1 t 40	11.2289	319	12.2934	1.0645	306.7066	0.000307	0.001536	1.536298		
2 t 40	10.7458	365	11.9158	1.17	353.0842	0.000354	0.001769	1.768604		
3 t 40	11.2276	250	11.6433	0.4157	238.3567	0.000239	0.001194	1.193933		
4 t 40	10.6344	150	10.7166	0.0822	139.2834	0.00014	0.000698	0.697673		
1 t 45	10.6848	188	10.9906	0.3058	177.0094	0.000177	0.000887	0.886643		
2 t 45	22.7466	464	23.6137	0.8671	440.3863	0.000441	0.002206	2.205902		
3 t 45	11.3206	270	11.6654	0.3448	258.3346	0.000259	0.001294	1.294002		
4 t 45	10.7992	170	10.9003	0.1011	159.0997	0.000159	0.000797	0.796933		
1 t 50	11.4192	330	11.8424	0.4232	318.1576	0.000319	0.001594	1.593657		
2 t 50	22.739	411	23.77	1.031	387.23	0.000388	0.00194	1.939641		
3 t 50	10.3927	250	10.6179	0.2252	239.3821	0.00024	0.001199	1.199069		
4 t 50	11.4995	155	11.617	0.1175	143.383	0.000144	0.000718	0.718208		
1 t 55	10.9289	335	11.5235	0.5946	323.4765	0.000324	0.00162	1.620299		
2 t 55	22.0993	525	23.5711	1.4718	501.4289	0.000502	0.002512	2.511665		
3 t 55	10.5869	245	10.782	0.1951	234.218	0.000235	0.001173	1.173202		
4 t 55	11.1974	165	11.3281	0.1307	153.6719	0.000154	0.00077	0.769745		
1 t 60	10.9686	340	11.5266	0.558	328.4734	0.000329	0.001645	1.645329		
2 t 60	21.4192	562	22.8391	1.4199	539.1609	0.00054	0.002701	2.700666		
3 t 60	10.5789	170	10.8172	0.2383	159.1828	0.000159	0.000797	0.797349		
4 t 60	11.344	170	11.549	0.205	158.451	0.000159	0.000794	0.793684		

A.2.2 Tablas del cálculo de las láminas de infiltración para cada simulación

		Primera Sin	nulacion		
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)
1		0	0	0	0
2	1 _	0	0	0	0
3	5	0	0	0	0
4	1	0	0	0	0
1		0	0	0	0
2	10	0	0	0	0
3	10	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	15	0	0	0	0
3	15	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3	20	150.5	0.0001505	0.00075	0.7525
4		0	0	0	0
1		0	0	0	0
2	25	0	0	0	0
3	25	241	0.000241	0.00121	1.205
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3		244	0.000244	0.00122	1.22
4		0	0	0	0
1		40	0.00004	0.0002	0.2
2	35	70	0.00007	0.00035	0.35
3		245	0.000245	0.00123	1.225
4		60	0.00006	0.0003	0.3
1		120	0.00012	0.0006	0.6
2	40	90	0.00009	0.00045	0.45
3	-0	246	0.000246	0.00123	1.23
4		125	0.000125	0.00063	0.625
1		135	0.000135	0.00068	0.675
2	45	115	0.000115	0.00058	0.575
3	75	246	0.000246	0.00123	1.23
4		210	0.00021	0.00105	1.05
1		140	0.00014	0.0007	0.7
2	50	150	0.00015	0.00075	0.75
3		246	0.000246	0.00123	1.23
4		236	0.000236	0.00118	1.18
1		145	0.000145	0.00073	0.725
2	55	150	0.00015	0.00075	0.75
3		246	0.000246	0.00123	1.23
4		240	0.00024	0.0012	1.2
1		145	0.000145	0.00073	0.725
2	60	155	0.000155	0.00078	0.775
3	00	246	0.000246	0.00123	1.23
4		245	0.000245	0.00123	1.225

Segunda Simulacion								
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)			
1		0	0	0	0			
2		0	0	0	0			
3	5	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2	10	0	0	0	0			
3	10	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2	4.5	0	0	0	0			
3	15	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2		0	0	0	0			
3	20	200	0.0002	0.001	1			
4		0	0	0	0			
1		180	0.00018	0.0009	0.9			
2	25	170	0.00017	0.00085	0.85			
3	25	250	0.00025	0.00125	1.25			
4		190	0.00019	0.00095	0.95			
1	00	185	0.000185	0.00093	0.925			
2		195	0.000195	0.00098	0.975			
3	- 30	300	0.0003	0.0015	1.5			
4		230	0.00023	0.00115	1.15			
1		230	0.00023	0.00115	1.15			
2	25	190	0.00019	0.00095	0.95			
3	35	340	0.00034	0.0017	1.7			
4		235	0.000235	0.00118	1.175			
1		275	0.000275	0.00138	1.375			
2	40	200	0.0002	0.001	1			
3	40	360	0.00036	0.0018	1.8			
4		238	0.000238	0.00119	1.19			
1		325	0.000325	0.00163	1.625			
2	15	215	0.000215	0.00108	1.075			
3	40	360	0.00036	0.0018	1.8			
4		275	0.000275	0.00138	1.375			
1		328	0.000328	0.00164	1.64			
2	50	217	0.000217	0.00109	1.085			
3		365	0.000365	0.00183	1.825			
4		280	0.00028	0.0014	1.4			
1		330	0.00033	0.00165	1.65			
2	55	220	0.00022	0.0011	1.1			
3		370	0.00037	0.00185	1.85			
4		280	0.00028	0.0014	1.4			
1		330	0.00033	0.00165	1.65			
2	60	220	0.00022	0.0011	1.1			
3	00	370	0.00037	0.00185	1.85			
4		295	0.000295	0.00148	1.475			

Tercera Simulacion								
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)			
1		0	0	0	0			
2		0	0	0	0			
3	5	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2	10	0	0	0	0			
3	10	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2	15	0	0	0	0			
3	15	0	0	0	0			
4		0	0	0	0			
1		0	0	0	0			
2	20	0	0	0	0			
3	20	95	0.000095	0.00048	0.475			
4		15	0.000015	7.5E-05	0.075			
1		0	0	0	0			
2	25	0	0	0	0			
3	25	425	0.000425	0.00213	1.5			
4		170	0.00017	0.00085	0.85			
1	20	0	0	0	0			
2		30	0.00003	0.00015	0.15			
3	30	430	0.00043	0.00215	1.55			
4		230	0.00023	0.00115	1.15			
1		115	0.000115	0.00058	0.575			
2	25	120	0.00012	0.0006	0.6			
3	35	455	0.000455	0.00228	2.275			
4		240	0.00024	0.0012	1.2			
1		130	0.00013	0.00065	0.65			
2	40	560	0.00056	0.0028	2.8			
3	40	390	0.00039	0.00195	1.95			
4		390	0.00039	0.00195	1.95			
1		160	0.00016	0.0008	0.8			
2	45	185	0.000185	0.00093	0.925			
3	40	375	0.000375	0.00188	1.875			
4		470	0.00047	0.00235	2.35			
1		235	0.000235	0.00118	1.175			
2	50	215	0.000215	0.00108	1.075			
3	50	375	0.000375	0.00188	1.875			
4		475	0.000475	0.00238	2.375			
1		238	0.000238	0.00119	1.19			
2	55	220	0.00022	0.0011	1.1			
3	00	380	0.00038	0.0019	1.9			
4		480	0.00048	0.0024	2.4			
1		240	0.00024	0.0012	1.2			
2	60	250	0.00025	0.00125	1.25			
3	00	390	0.00039	0.00195	1.95			
4		485	0.000485	0.00243	2.425			

Cuarta Simulacion									
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)				
1		0	0	0	0				
2	-	0	0	0	0				
3	Э	0	0	0	0				
4		0	0	0	0				
1		0	0	0	0				
2	10	0	0	0	0				
3	10	0	0	0	0				
4		0	0	0	0				
1		0	0	0	0				
2	45	0	0	0	0				
3	15	0	0	0	0				
4		0	0	0	0				
1		0	0	0	0				
2	20	0	0	0	0				
3	20	200	0.0002	0.001	1				
4		0	0	0	0				
1		180	0.00018	0.0009	0.9				
2	25	170	0.00017	0.00085	0.85				
3	25	250	0.00025	0.00125	1.25				
4		190	0.00019	0.00095	0.95				
1	30	195	0.000195	0.00098	0.975				
2		171	0.000171	0.00086	0.855				
3		300	0.0003	0.0015	1.5				
4		230	0.00023	0.00115	1.15				
1		230	0.00023	0.00115	1.15				
2	05	190	0.00019	0.00095	0.95				
3	35	340	0.00034	0.0017	1.7				
4		270	0.00027	0.00135	1.35				
1		275	0.000275	0.00138	1.375				
2	40	150	0.00015	0.00075	0.75				
3	40	250	0.00025	0.00125	1.25				
4		320	0.00032	0.0016	1.6				
1		205	0.000205	0.00103	1.025				
2	15	155	0.000155	0.00078	0.775				
3	40	250	0.00025	0.00125	1.25				
4		350	0.00035	0.00175	1.75				
1		330	0.00033	0.00165	1.65				
2	50	155	0.000155	0.00078	0.775				
3	50	260	0.00026	0.0013	1.3				
4		400	0.0004	0.002	2				
1		330	0.00033	0.00165	1.65				
2	55	160	0.00016	0.0008	0.8				
3	00	260	0.00026	0.0013	1.3				
4		410	0.00041	0.00205	2.05				
1		330	0.00033	0.00165	1.65				
2	60	165	0.000165	0.00083	0.825				
3	00	270	0.00027	0.00135	1.35				
4		415	0.000415	0.00208	2.075				

		Quinta Sin	nulacion		
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)
1		0	0	0	0
2	1 5	0	0	0	0
3	5	0	0	0	0
4	1	0	0	0	0
1		0	0	0	0
2	10	0	0	0	0
3	10	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	15	0	0	0	0
3	15	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3	20	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	25	0	0	0	0
3		0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3		255	0.000255	0.001275	1.275
4		95	0.000095	0.000475	0.475
1		0	0	0	0
2	25	0	0	0	0
3		390	0.00039	0.00195	1.55
4	1	125	0.000125	0.000625	0.625
1		0	0	0	0
2	40	0	0	0	0
3	40	335	0.000335	0.001675	1.675
4		350	0.00035	0.00175	1.75
1		0	0	0	0
2	45	0	0	0	0
3		395	0.000395	0.001975	1.675
4		360	0.00036	0.0018	1.8
1		185	0.000185	0.000925	0.925
2	50	145	0.000145	0.000725	0.725
3	50	330	0.00033	0.00165	1.65
4		360	0.00036	0.0018	1.8
1		195	0.000195	0.000975	0.975
2	55	155	0.000155	0.000775	0.775
3	55	360	0.00036	0.0018	1.675
4		370	0.00037	0.00185	1.85
1		196	0.000196	0.00098	0.98
2	60	160	0.00016	0.0008	0.8
3	00	460	0.00046	0.0023	1.675
4]	375	0.000375	0.001875	1.875

		Sexta Sin	nulacion		
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)
1		0	0	0	0
2	1 _	0	0	0	0
3	5	0	0	0	0
4	1	0	0	0	0
1		0	0	0	0
2	10	0	0	0	0
3	10	0	0	0	0
4	1	0	0	0	0
1		0	0	0	0
2	15	0	0	0	0
3	15	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3	20	40	0.00004	0.0002	0.2
4		185	0.000185	0.000925	0.925
1		0	0	0	0
2	25	0	0	0	0
3	25	290	0.00029	0.00145	1.45
4		320	0.00032	0.0016	1.6
1		0	0	0	0
2	20	0	0	0	0
3	- 50	305	0.000305	0.001525	1.525
4		250	0.00025	0.00125	1.25
1		60	0.00006	0.0003	0.3
2	35	40	0.00004	0.0002	0.2
3	55	450	0.00045	0.00225	2.25
4		385	0.000385	0.001925	1.925
1	1	80	0.00008	0.0004	0.4
2	40	105	0.000105	0.000525	0.525
3	10	358	0.000358	0.00179	1.79
4		515	0.000515	0.002575	2.575
1	ļ	105	0.000105	0.000525	0.525
2	45	95	0.000095	0.000475	0.475
3	l í	365	0.000365	0.001825	1.825
4		525	0.000525	0.002625	2.625
1	1	135	0.000135	0.000675	0.675
2	50	128	0.000128	0.00064	0.64
3		365	0.000365	0.001825	1.825
4		535	0.000535	0.002675	2.675
1	1	138	0.000138	0.00069	0.69
2	55	129	0.000129	0.000645	0.645
3		367	0.000367	0.001835	1.835
4		530	0.00053	0.00265	2.65
1	ļ	143	0.000143	0.000715	0.715
2	60	130	0.00013	0.00065	0.65
3	1	370	0.00037	0.00185	1.85
4		535	0.000535	0.002675	2.675

		Septima	Corrida		
Caja	Tiempo (m)	Infiltracion (ml)	Volumen Infiltrado (m3)	Lamina(m)	Lamina(mm)
1		0	0	0	0
2	5	0	0	0	0
3		0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	10	0	0	0	0
3	10	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	15	0	0	0	0
3	10	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	20	0	0	0	0
3	20	0	0	0	0
4		0	0	0	0
1		0	0	0	0
2	25	0	0	0	0
3	20	0	0	0	0
4		230	0.00023	0.00115	1.15
1		0	0	0	0
2	30	0	0	0	0
3	00	160	0.00016	0.0008	0.8
4		265	0.000265	0.001325	1.325
1		0	0	0	0
2	35	0	0	0	0
3		410	0.00041	0.00205	2.05
4		325	0.000325	0.001625	1.625
1		60	0.00006	0.0003	0.3
2	40	40	0.00004	0.0002	0.2
3	-	490	0.00049	0.00245	2.45
4		565	0.000565	0.002825	2.825
1	4	95	0.000095	0.000475	0.475
2	45	50	0.00005	0.00025	0.25
3	4	495	0.000495	0.002475	2.475
4		570	0.00057	0.00285	2.85
1	4	420	0.00042	0.0021	2.1
2	50	270	0.00027	0.00135	1.35
3	4	500	0.0005	0.0025	2.5
4		570	0.00057	0.00285	2.85
1	4	425	0.000425	0.002125	2.125
2	55	2/5	0.000275	0.001375	1.3/5
3	4	505	0.000505	0.002525	2.525
4		580	0.00058	0.0029	2.9
1	4	430	0.00043	0.00215	2.15
2	60	280	0.00028	0.0014	1.4
3	4	510	0.000505	0.00255	2.00
4	1	202	0.000585	0.002925	2.920

ANEXOS 3

A.3.1 valores correspondientes a la infiltración, escurrimiento y el tiempo de estabilización en cada caja para todas las simulaciones realizadas.

			f				
	Caja 1		Caja 2				
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)		
5	0.15	0.00	5	0.14	0.00		
5	0.15	0.00	10	0.14	0.00		
10	0.31	0.00	10	0.13	0.00		
15	0.63	0.00	15	0.40	0.00		
20	0.53	0.00	20	0.43	0.00		
25	0.70	0.00	25	0.48	0.00		
30	0.68	0.00	30	0.55	0.00		
35	0.79	0.20	35	0.59	0.35		
40	0.84	0.60	40	0.72	0.45		
45	0.91	0.68	45	0.75	0.58		
50	0.90	0.70	50	0.80	0.75		
55	0.90	0.73	55	0.86	0.75		
60	0.90	0.73	60	0.90	0.78		
Total	8.24	3.63	Total	6.75	3.65		

|--|

	Caja 3		Caja 4			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	
5	0.13	0.00	5	0.15	0.00	
10	0.27	0.00	10	0.62	0.00	
15	0.20	0.00	15	0.27	0.00	
20	0.13	0.75	20	0.23	0.00	
25	0.20	1.21	25	0.23	0.00	
30	0.20	1.22	30	0.21	0.00	
35	0.18	1.23	35	0.23	0.30	
40	0.29	1.23	40	0.25	0.63	
45	0.34	1.23	45	0.29	1.05	
50	0.23	1.23	50	0.30	1.18	
55	0.43	1.23	55	0.26	1.20	
60	0.41	1.23	60	0.24	1.23	
Total	3.01	10.55	Total	3.30	5.58	

	Caja 1		Caja 2			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min) Lamina de escurrimiento (mm)		Lamina de Infiltracion (mm)	
5	0.13	0	5	0.14	0.00	
10	0.23	0	10	0.12	0.00	
15	0.80	0	15	1.23	0.00	
20	0.56	0	20	1.47	0.00	
25	0.38	0.9	25	1.43	0.85	
30	0.33	0.925	30	1.10	0.98	
35	0.63	1.15	35	1.10	0.95	
40	0.53	1.375	40	1.24	1.00	
45	0.49	1.625	45	1.16	1.08	
50	0.82	1.64	50	1.21	1.09	
55	0.27	1.65	55	1.29	1.10	
60	0.24	1.65	60	1.15	1.10	
Total	5.43	10.915	Total	12.66	8.14	

	Caja 3			Caja 4			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min) Lamina de escurrimiento (mm)		Lamina de Infiltracion (mm)		
5	0.21	0.00	5	0.11	0.00		
10	0.28	0.00	10	0.17	0.00		
15	0.75	0.00	15	0.51	0.00		
20	0.65	1.00	20	0.68	0.00		
25	1.04	1.25	25	0.73	0.95		
30	1.27	1.50	30	0.79	1.15		
35	1.28	1.70	35	0.88	1.18		
40	1.27	1.80	40	0.88	1.19		
45	1.35	1.80	45	0.89	1.38		
50	1.54	1.83	50	0.88	1.40		
55	1.08	1.85	55	0.89	1.40		
60	1.03	1.85	60	0.87	1.48		
Total	11.74	14.58	Total	8.28	10.12		

	Caja 1		Caja 2		
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)
5	0.21	0.00	5	0.04	0.00
10	0.65	0.00	10	0.51	0.00
15	1.17	0.00	15	1.21	0.00
20	0.97	0.00	20	1.32	0.00
25	1.17	0.00	25	1.16	0.00
30	1.05	0.00	30	1.27	0.15
35	1.19	0.58	35	1.23	0.60
40	1.16	0.65	40	1.33	2.80
45	1.14	0.80	45	1.19	0.93
50	1.40	1.18	50	1.43	1.08
55	1.28	1.19	55	1.39	1.10
60	1.62	1.20	60	1.42	1.25
Total	13.00	5.59	Total	13.49	7.90

	Caja 3		Caja 4		
Tiempo (min)	Lamina de escurrimiento (mm)	de Lamina de Tiempo ento Infiltracion (min) es		Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)
5	0.14	0.00	5	0.12	0.00
10	0.39	0.00	10	0.24	0.00
15	0.69	0.00	15	0.37	0.00
20	0.70	0.48	20	0.34	0.08
25	0.69	1.50	25	0.31	0.85
30	0.82	1.55	30	0.34	1.15
35	0.87	2.28	35	0.34	1.20
40	0.88	1.95	40	0.34	1.95
45	0.92	1.88	45	0.55	2.35
50	0.93	1.88	50	0.64	2.38
55	1.28	1.90	55	0.68	2.40
60	1.45	1.95	60	0.72	2.43
Total	9.77	15.35	Total	4.99	14.78

Simulación 4

	Caia 1][Caia 2	
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min) (mm)		Lamina de Infiltracion (mm)
5	0.42	0.00	5	0.27	0.00
10	0.90	0.00	10	0.86	0.00
15	1.04	0.00	15	1.01	0.00
20	1.03	0.00	20	1.05	0.00
25	1.13	0.00	25	1.17	0.85
30	1.17	0.98	30	1.31	0.86
35	1.26	1.15	35	1.29	0.95
40	1.32	1.38	40	1.49	0.75
45	1.47	1.03	45	1.57	0.78
50	1.30	1.65	50	1.52	0.78
55	1.21	1.65	55	1.43	0.80
60	1.46	1.65	60	1.83	0.83
Total	13.71	9.48	Total	14.79	6.58

	Caja 3		Caja 4			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	
5	0.22	0.00	5	0.16	0.00	
10	0.23	0.00	10	0.22	0.00	
15	0.76	0.00	15	0.30	0.00	
20	0.88	0.00	20	0.31	0.00	
25	1.06	1.25	25	0.40	0.95	
30	1.18	1.50	30	0.41	1.15	
35	1.38	1.70	35	0.42	1.35	
40	1.09	1.25	40	0.45	1.60	
45	1.12	1.25	45	0.36	1.75	
50	1.13	1.30	50	0.84	2.00	
55	1.00	1.30	55	0.82	2.05	
60	1.01	1.35	60	0.79	2.08	
Total	11.05	10.90	Total	5.48	12.93	

	Caja 1		Caja 2			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	ia de Tiempo Acion (min) (mm) (mm)		Lamina de Infiltracion (mm)	
5	0.20	0.00	5	0.10	0.00	
10	0.83	0.00	10	0.62	0.00	
15	0.92	0.00	15	0.72	0.00	
20	0.96	0.00	20	0.72	0.00	
25	0.81	0.00	25	0.66	0.00	
30	0.92	0.00	30	0.73	0.00	
35	1.14	0.00	35	0.91	0.00	
40	0.94	0.00	40	0.93	0.00	
45	0.96	0.00	45	0.91	0.00	
50	1.29	0.93	50	1.44	0.73	
55	1.47	0.98	55	1.55	0.78	
60	1.48	0.98	60	1.65	0.80	
Total	11.92	2.88	Total	10.93	2.30	

	Caja 3			Caja 4			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)		
5	0.13	0.00	5	0.09	0.00		
10	0.26	0.00	10	0.23	0.00		
15	0.32	0.00	15	0.26	0.00		
20	0.29	0.00	20	0.26	0.00		
25	0.22	0.00	25	0.22	0.00		
30	0.18	1.28	30	0.25	0.48		
35	0.42	1.55	35	0.31	0.63		
40	0.42	1.68	40	0.31	1.75		
45	0.46	1.68	45	0.27	1.80		
50	0.37	1.65	50	0.25	1.80		
55	0.66	1.68	55	0.46	1.85		
60	0.29	1.68	60	0.37	1.88		
Total	4.02	11.18	Total	3.28	10.18		

<u>S</u>	iı	n	u	la	ci	Ó	n	6
_								_

	Caja 1		Caja 2			
Tiempo (min)	Tiempo (min) Lamina de escurrimiento (mm)		Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	
5	0.77	0.00	5	0.43	0.00	
10	1.09	0.00	10	0.85	0.00	
15	1.83	0.00	15	1.78	0.00	
20	1.72	0.00	20	1.66	0.00	
25	1.55	0.00	25	1.42	0.00	
30	1.67	0.00	30	1.56	0.00	
35	1.58	0.30	35	1.72	0.20	
40	2.29	0.40	40	2.26	0.53	
45	1.51	0.53	45	1.78	0.48	
50	1.98	0.68	50	1.93	0.64	
55	1.94	0.69	55	1.98	0.65	
60	1.91	0.72	60	2.02	0.65	
Total	5.84	2.08	Total	5.93	1.94	

	Caja 3		Caja 4				
Tiempo (min)	Tiempo (min) Lamina de escurrimiento (mm)		Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)		
5	0.11	0.00	5	0.17	0.00		
10	0.33	0.00	10	0.26	0.00		
15	1.30	0.00	15	0.52	0.00		
20	1.20	0.20	20	0.54	0.93		
25	1.12	1.45	25	0.33	1.60		
30	1.08	1.53	30	0.24	1.25		
35	0.85	2.25	35	0.35	1.93		
40	1.24	1.79	40	0.34	2.58		
45	1.33	1.83	45	0.50	2.63		
50	1.50	1.83	50	0.63	2.68		
55	1.54	1.84	55	0.68	2.65		
60	1.37	1.85	60	0.68	2.68		
Total	6.98	9.13	Total	2.83	13.20		

	Caja 1		Caja 2				
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)		
5	0.94	0.00	5	0.76	0.00		
10	1.27	0.00	10	1.28	0.00		
15	1.07	0.00	15	1.25	0.00		
20	1.01	0.00	20	1.01	0.00		
25	1.45	0.00	25	1.45	0.00		
30	1.09	0.00	30 1.	1.53	0.00		
35	1.45	0.00	35	1.62	0.00		
40	1.54	0.30	40	1.77	0.20		
45	0.89	0.48	45	2.21	0.25		
50	1.59	2.10	50	1.94	1.35		
55	1.62	2.13	55	2.51	1.38		
60	1.65	2.15	60	2.70	1.40		
Total	4.86	6.38	Total	7.15	4.13		

	Caja 3		Caja 4			
Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	Tiempo (min)	Lamina de escurrimiento (mm)	Lamina de Infiltracion (mm)	
5	0.53	0.00	5	0.27	0.00	
10	0.93	0.00	10	0.44	0.00	
15	0.89	0.00	15	0.39	0.00	
20	0.38	0.00	20	0.26	0.00	
25	0.78	0.00	25	0.29	1.15	
30	0.87	0.80	30	0.36	1.33	
35	0.80	2.05	35	0.49	1.63	
40	1.19	2.45	40	0.70	2.83	
45	1.29	2.48	45	0.80	2.85	
50	1.20	2.50	50	0.72	2.85	
55	1.17	2.53	55	0.77	2.90	
60	0.80	2.55	60	0.79	2.93	
Total	5.66	12.50	Total	3.78	14.35	

ANEXO 4

A.4.1 Valores correspondientes a todos los componentes en cada simulación.

P. Total (mm) **31.33**

	Simulacion 1								
	Precipitacion(Escurrimiento	Infiltracion	Intercpecion					
	mm)	(mm)	(mm)	(mm)					
Caja 1	5.00	2.70	2.15	0.15					
Caja 2	5.00	2.56	2.28	0.16					
Caja 3	12.50	2.29	9.80	0.41					
Caja 4	5.00	0.80	3.61	0.59					

P. Total (mm)

35.83

	Simulacion 2									
	Precipitacion(Escurrimiento	Infiltracion	Intercpecion						
	mm)	(mm)	(mm)	(mm)						
Caja 1	9.30	1.83	6.57	0.91						
Caja 2	9.30	4.81	4.36	0.13						
Caja 3	15.80	6.26	9.13	0.42						
Caja 4	9.30	3.53	5.65	0.12						

P. Total (mm)

33.55

	Simulacion 3									
	Precipitacion(Escurrimiento	Infiltracion	Intercepcion						
	mm)	(mm)	(mm)	(mm)						
Caja 1	8.35	4.30	3.57	0.49						
Caja 2	8.35	4.24	3.43	0.69						
Caja 3	13.10	4.58	7.60	0.92						
Caja 4	13.10	2.59	9.55	0.96						

P. Total (mm)

31.90

	Simulacion 4								
	Precipitacion(Escurrimiento	Infiltracion	Intercepcion					
	mm)	(mm)	(mm)	(mm)					
Caja 1	9.30	3.97	4.95	0.38					
Caja 2	12.10	7.84	3.93	0.34					
Caja 3	12.10	5.34	6.45	0.31					
Caja 4	9.30	2.46	6.13	0.72					

P. Total (mm)

29.65

Simulacion 5 Precipitacion(Infiltracion Escurrimiento Intercepcion mm) (mm) (mm) (mm) Caja 1 7.17 4.24 2.88 0.05 Caja 2 7.17 4.64 2.30 0.23 10.80 0.26 2.19 8.35 Caja 3 Caja 4 10.80 1.66 9.08 0.06

P. Total (mm)

43.00

	Simulacion 6								
	Precipitacion(Escurrimiento	Infiltracion	Intercepcion					
	mm)	(mm)	(mm)	(mm)					
Caja 1	8.6	5.84	2.08	0.68					
Caja 2	8.60	5.93	1.94	0.73					
Caja 3	16.80	6.98	9.13	0.70					
Caja 4	16.80	2.83	13.20	0.77					

P. Total (mm)

48.00

Simulacion 7

	Precipitacion(Escurrimiento	Infiltracion	Intercepcion
	mm)	(mm)	(mm)	(mm)
Caja 1	12.2	4.86	6.38	0.97
Caja 2	12.20	7.15	4.13	0.92
Caja 3	19.10	5.66	12.50	0.94
Caja 4	19.10	3.78	14.35	0.97

ANEXO 5

A.5.1 Características de los eventos registrados en la estación Cadereyta

ID	FECHA	HORA INICIO	HORA FINAL	DURACION (hr)	P Inicio (mm)	P Final (mm)	P neta (mm)	P media (mm)	INTENSIDAD VOLUMEN TOTAL(mm/h)	INTENSIDAD MEDIA (mm/h)	INTENSIDAD MAXIMA (mm/h)	DURACION (hr)	P Total / I Media
1	15/03/2006	17:40	21:20	03:40	23.10	27.83	4.73	0.39	1.29	1.18	3.30	3.67	4.00
2	16/03/2006	16:40	18:20	01:40	27.83	34.27	6.44	1.07	3.86	3.22	8.52	1.67	2.00
3	24/03/2006	17:00	22:40	05:40	34.71	39.90	5.19	0.29	0.92	0.87	10.32	5.67	6.00
4	25/03/2006	00:20	09:00	08:40	39.91	45.50	5.59	0.21	0.64	0.62	11.16	8.67	9.00
5	26/03/2006	13:00	16:40	03:40	45.50	50.09	4.59	0.38	1.25	1.15	8.31	3.67	4.00
6	21/04/2006	13:40	23:20	09:40	53.04	55.85	2.81	0.09	0.29	0.28	3.93	9.67	10.00
7	22/04/2006	16:00	17:40	01:40	55.85	59.84	3.99	0.67	2.39	2.00	8.49	1.67	2.00
8	22-23/04/2006	22:40	01:40	03:00	59.84	62.96	3.12	0.31	1.04	0.94	3.15	3.00	3.33
9	23/04/2006	18:40	22:20	03:40	62.96	102.60	39.64	3.30	10.80	9.91	47.70	3.67	4.00
10	26/04/2006	13:20	15:40	02:20	103.70	113.40	9.70	1.21	4.16	3.64	25.20	2.33	2.67
11	30/04/2006	18:00	19:40	01:40	117.50	119.00	1.50	0.25	0.90	0.75	3.00	1.67	2.00
12	01/05/2006	17:00	19:20	02:20	119.00	135.00	16.00	2.00	6.87	6.00	42.60	2.33	2.67
13	02/05/2006	20:20	23:00	02:40	135.00	140.40	5.40	0.60	2.02	1.80	7.50	2.67	3.00
14	12/05/2006	14:20	16:00	01:40	142.70	153.80	11.10	1.85	6.65	5.55	17.70	1.67	2.00
15	12-13/05/2006	21:20	00:40	03:20	153.80	158.60	4.80	0.44	1.44	1.31	6.00	3.33	3.67
16	14/05/2006	20:00	21:20	01:20	160.10	164.90	4.80	0.96	3.61	2.88	12.30	1.33	1.67
17	11/06/2006	16:00	17:00	01:00	0.35	0.76	0.41	0.10	0.41	0.31	1.05	1.00	1.33
18	20/06/2006	06:40	09:40	03:00	0.82	8.23	7.41	0.74	2.47	2.22	21.03	3.00	3.33
19	24/06/2006	10:00	11:20	01:20	8.23	8.62	0.39	0.08	0.29	0.23	0.57	1.33	1.67
20	30/06/2006	09:00	10:40	01:40	8.75	21.04	12.29	2.05	7.36	6.15	18.18	1.67	2.00

04	04/07/0000	00.40	00.00	04.00	04.04	00.00	1.05	0.00	4.04	0.00	4.50	1.00	1.07
21	01/07/2006	00:40	02:00	01:20	21.04	22.69	1.65	0.33	1.24	0.99	4.59	1.33	1.67
22	01/07/2006	11:20	20:00	08:40	22.69	30.29	7.60	0.28	0.88	0.84	16.17	8.67	9.00
23	02/07/2006	11:40	17:20	05:40	30.29	42.86	12.57	0.70	2.22	2.10	11.61	5.67	6.00
24	03/07/2006	08:20	09:40	01:20	42.86	46.17	3.31	0.66	2.49	1.99	9.45	1.33	1.67
25	09/07/2006	15:40	18:00	02:20	46.22	53.24	7.02	0.88	3.01	2.63	19.26	2.33	2.67
26	14/07/2006	11:00	13:00	02:00	53.44	54.56	1.12	0.16	0.56	0.48	2.31	2.00	2.33
27	22/07/2006	19:20	20:20	01:00	54.78	55.49	0.71	0.18	0.36	0.53	1.38	2.00	1.33
28	24/07/2006	02:20	04:20	02:00	55.49	55.88	0.39	0.06	0.39	0.17	0.78	1.00	2.33
29	24-25/07/2006	18:00	02:00	08:00	55.90	100.70	44.80	1.79	5.60	5.38	15.00	8.00	8.33
30	25/07/2006	18:00	23:40	05:40	100.70	118.20	17.50	0.97	3.09	2.92	13.20	5.67	6.00
31	26-27/07/2006	22:40	01:20	02:40	118.20	128.90	10.70	1.19	4.01	3.57	7.20	2.67	3.00
32	03/08/2006	20:40	22:00	01:20	129.00	130.50	1.50	0.30	1.13	0.90	2.40	1.33	1.67
33	04/08/2006	19:00	21:40	02:40	130.50	151.70	21.20	2.36	7.94	7.07	21.90	2.67	3.00
34	05/08/2006	13:40	14:40	01:00	151.80	152.10	0.30	0.07	0.30	0.22	0.60	1.00	1.33
35	05/08/2006	16:40	19:00	02:20	152.10	159.40	7.30	0.91	3.13	2.74	12.60	2.33	2.67
36	05-06/08/2006	23:20	00:20	01:00	159.40	160.40	1.00	0.25	1.00	0.75	1.80	1.00	1.33
37	06/08/2006	17:20	18:40	01:20	160.50	162.40	1.90	0.38	1.43	1.14	4.50	1.33	1.67
38	07/08/2006	12:40	15:40	03:00	162.40	178.60	16.20	1.62	5.40	4.86	41.10	3.00	3.33
39	07/08/2006	19:40	20:40	01:00	178.60	182.00	3.40	0.85	3.40	2.55	7.20	1.00	1.33
40	11/08/2006	19:40	23:00	03:20	182.20	187.50	5.30	0.48	1.59	1.45	8.70	3.33	3.67
41	12/08/2006	18:20	23:00	04:40	187.50	191.80	4.30	0.29	0.92	0.86	3.60	4.67	5.00
42	15/08/2006	22:20	00:20	02:00	191.80	193.20	1.40	0.20	0.70	0.60	1.80	2.00	2.33
43	24/08/2006	11:40	12:40	01:00	193.20	195.80	2.60	0.65	1.30	1.95	6.30	2.00	1.33
44	24/08/2006	15:40	17:00	01:20	195.80	205.50	9.70	1.94	7.29	5.82	26.70	1.33	1.67
45	25-26/08/2006	20:00	00:20	04:20	205.80	228.00	22.20	1.59	5.13	4.76	21.00	4.33	4.67
46	26/08/2006	03:20	06:40	03:20	228.00	265.30	37.30	3.39	11.20	10.17	30.90	3.33	3.67
47	26/08/2006	08:00	09:00	01:00	265.30	265.60	0.30	0.08	0.30	0.23	0.60	1.00	1.33
48	27/08/2006	00:00	01:00	01:00	265.60	268.10	2.50	0.63	2.50	1.88	6.00	1.00	1.33
49	31/08/2006	18:00	19:00	01:00	268.10	285.80	17.70	4.43	17.70	13.28	52.50	1.00	1.33

50	01/09/2006	16:40	17:40	01:00	285.80	295.30	9.50	2.38	9.50	7.13	18.60	1.00	1.33
51	03/09/2006	03:00	04:40	01:40	295.30	297.00	1.70	0.28	1.02	0.85	2.40	1.67	2.00
52	04/09/2006	04:00	04:40	00:40	0.15	0.29	0.14	0.05	0.21	0.14	0.42	0.67	1.00
53	05/09/2006	02:00	04:00	02:00	0.30	0.75	0.45	0.06	0.23	0.19	0.69	2.00	2.33
54	05/09/2006	06:20	07:20	01:00	0.77	1.01	0.24	0.06	0.24	0.18	0.57	1.00	1.33
55	07/09/2006	13:00	15:40	02:40	1.09	3.44	2.35	0.26	0.88	0.78	2.40	2.67	3.00
56	07-08/09/2006	21:00	02:00	05:20	4.23	11.12	6.89	0.43	1.29	1.29	5.61	5.33	5.33
57	08/09/2006	19:00	20:40	01:40	11.12	12.47	1.35	0.23	0.81	0.68	1.56	1.67	2.00
58	10/09/2006	12:00	12:40	00:40	12.47	12.69	0.22	0.07	0.33	0.22	0.66	0.67	1.00
59	12/09/2006	05:40	07:00	01:20	12.69	13.78	1.09	0.22	0.82	0.65	3.21	1.33	1.67
60	13/09/2006	20:40	21:40	01:00	13.78	14.03	0.25	0.06	0.25	0.19	0.42	1.00	1.33
61	14/09/2006	18:00	20:20	02:20	14.28	25.23	10.95	1.22	4.70	3.65	26.25	2.33	3.00
62	15/09/2006	15:00	21:00	06:00	26.68	46.75	20.07	1.06	3.35	3.17	8.64	6.00	6.33
63	16/09/2006	12:00	14:00	02:00	46.76	52.16	5.40	0.77	2.70	2.31	9.57	2.00	2.33
64	20/09/2006	17:40	18:40	01:00	52.41	53.09	0.68	0.17	0.68	0.51	1.17	1.00	1.33
65	21/09/2006	13:40	15:00	01:20	53.09	53.46	0.37	0.07	0.28	0.22	0.60	1.33	1.67
66	21/09/2006	16:20	19:00	02:40	53.46	54.01	0.55	0.06	0.21	0.18	0.81	2.67	3.00
67	21-22/09/2006	23:20	03:40	04:20	54.01	68.11	14.10	1.01	3.26	3.02	12.36	4.33	4.67
68	22-23/09/2006	20:40	00:20	03:20	68.14	70.07	1.93	0.18	0.58	0.53	2.10	3.33	3.67
69	25/09/2006	01:00	05:20	04:20	70.78	77.73	6.95	0.50	1.61	1.49	5.73	4.33	4.67
70	25/09/2006	07:40	10:20	02:40	77.76	83.50	5.74	0.64	2.46	1.91	12.06	2.33	3.00

ID	FECHA	HORA INICIO	HORA FINAL	DURACION (hr)	P Inicio (mm)	P Final (mm)	P neta (mm)	P media (mm)	INTENSIDAD VOLUMEN TOTAL(mm/h)	INTENSIDAD MEDIA (mm/h)	INTENSIDAD MAXIMA (mm/h)	DURACION (hr)	P Total / I Media
1	11-12/01/2006	19:00	02:30	07:30	3.9	4.78	0.88	0.01	0.12	0.12	0.48	7.50	7.58
2	23/01/2006	14:40	16:05	01:25	5.35	6.33	0.98	0.05	0.69	0.65	2.76	1.42	1.50
3	23-24/01/2006	16:50	00:40	07:50	6.33	27.95	21.62	0.23	2.76	2.73	17.28	7.83	7.92
4	24/01/2006	01:45	03:40	01:55	27.95	30.30	2.35	0.10	1.23	1.18	16.92	1.92	2.00
5	24/01/2006	05:25	07:05	01:40	30.30	37.54	7.24	0.34	4.35	4.14	13.92	1.67	1.75
6	14/03/2006	04:00	05:30	01:30	39.26	40.81	1.55	0.08	1.03	0.98	8.76	1.50	1.58
7	16/03/2006	04:30	05:45	01:15	40.88	61.79	20.91	1.31	16.73	15.68	45.48	1.25	1.33
8	23/03/2006	00:50	03:50	03:00	62.10	65.74	3.64	0.10	1.21	1.18	11.64	3.00	3.08
9	23/03/2006	06:45	07:25	00:40	65.74	66.76	1.02	0.11	1.53	1.36	8.16	0.67	0.75
10	23/03/2006	13:30	15:00	01:30	66.86	68.05	1.19	0.06	0.79	0.75	6.84	1.50	1.58
								•					
11	21/04/2006	02:20	04:40	02:20	68.58	74.45	5.87	0.73	2.52	2.20125	7.02	2.33	2.67
12	21/04/2006	05:40	10:00	04:20	74.45	79.59	5.14	0.37	1.19	1.10	5.58	4.33	4.67
13	22/04/2006	04:20	07:00	02:40	79.59	84.1	4.51	0.50	1.69	1.50	3.9	2.67	3.00
14	29/04/2006	00:00	01:40	01:40	84.2	90.1	5.9	0.98	3.53	2.95	13.5	1.67	2.00
15	01/05/2006	22:00	23:00	01:00	90.4	96.8	6.4	1.60	6.40	4.80	14.4	1.00	1.33
16	02/05/2006	01:20	03:00	01:40	96.8	98.5	1.7	0.28	1.02	0.85	2.1	1.67	2.00
17	10/05/2006	03:20	08:20	05:00	98.5	101.9	3.4	0.21	0.68	0.64	2.1	5.00	5.33
18	10/05/2006	10:00	11:00	01:00	101.9	102.5	0.6	0.15	0.60	0.45	1.5	1.00	1.33
19	11/05/2006	04:00	07:00	03:00	102.5	105.4	2.9	0.29	0.97	0.87	3	3.00	3.33
20	14/05/2006	19:20	20:00	00:40	0.08	0.24	0.16	0.05	0.24	0.16	0.48	0.67	1.00
21	16-17/05/2006	21:40	00:20	02:40	0.27	7.65	7.38	0.82	2.76	2.46	8.19	2.67	3.00
22	17/05/2006	02:00	05:00	03:00	7.65	13.06	5.41	0.54	1.80	1.62	4.98	3.00	3.33
23	17/05/2006	21:20	22:40	01:20	13.06	13.64	0.58	0.12	0.44	0.35	1.65	1.33	1.67
24	18/05/2006	00:40	05:40	05:00	13.64	40.1	26.46	1.65	5.29	4.96	15.15	5.00	5.33
25	18/05/2006	14:40	17:00	02:20	0.06	12.38	12.32	1.54	5.29	4.62	20.52	2.33	2.67
26	18-19/05/2006	22:00	00:20	02:20	12.38	22.05	9.67	1.21	4.15	3.63	12.06	2.33	2.67
27	22/05/2006	14:00	15:00	01:00	22.13	22.83	0.7	0.18	0.70	0.52	1.08	1.00	1.33
28	27/05/2006	08:40	11:40	03:00	22.83	30.24	7.41	0.74	2.47	2.22	6.03	3.00	3.33
29	27/05/2006	17:40	21:40	04:00	30.31	37.11	6.8	0.52	1.70	1.57	5.88	4.00	4.33
30	28/05/2006	11:20	14:00	02:40	37.14	47.24	10.1	1.12	3.78	3.37	17.58	2.67	3.00
31	30/05/2006	07:00	10:00	03:00	50.03	52.98	2.95	0.30	0.98	0.88	4.32	3.00	3.33
32	31/05/2006	01:00	03:40	02:40	52.98	58.89	5.91	0.66	2.21	1.97	6.39	2.67	3.00

A.5.2 Características de los eventos registrados en la estación Dolores

33	02/06/2006	17:20	19:20	02:00	58.9	59.05	0.15	0.02	0.07	0.06	0.21	2.00	2.33
34	02/06/2006	22:40	23:40	01:00	59.22	60.82	1.6	0.40	1.60	1.20	3.45	1.00	1.33
35	19/06/2006	13:40	16:20	02:40	0.01	9	8.99	1.00	3.37	3.00	14.46	2.67	3.00
36	21/06/2006	16:00	17:00	01:00	9	9.28	0.28	0.07	0.28	0.21	0.66	1.00	1.33
37	22/06/2006	13:40	16:20	02:40	9.28	12.08	2.8	0.31	1.05	0.93	5.97	2.67	3.00
38	29/06/2006	01:00	02:40	01:40	12.1	12.89	0.79	0.13	0.47	0.40	1.23	1.67	2.00
39	30/06/2006	03:40	05:40	02:00	12.9	13.79	0.89	0.13	0.44	0.38	2.34	2.00	2.33
40	30/06/2006	12:00	14:00	02:00	13.84	27.93	14.09	2.01	7.05	6.04	30.66	2.00	2.33
41	01/07/2006	04:20	07:00	02:40	27.94	38.7	10.76	1.20	4.03	3.59	11.13	2.67	3.00
42	01-02/07/2006	21:20	00:00	02:40	38.7	54.44	15.74	1.75	5.90	5.25	36.48	2.67	3.00
43	03/07/2006	11:00	12:00	01:00	54.44	62.36	7.92	1.98	7.92	5.94	22.38	1.00	1.33
44	12/07/2006	21:40	22:40	01:00	62.38	63.05	0.67	0.17	0.67	0.50	1.41	1.00	1.33
45	13/07/2006	04:00	06:00	02:00	63.09	63.26	0.17	0.02	0.08	0.07	0.27	2.00	2.33
46	22/07/2006	03:20	06:40	03:20	0.01	0.26	0.25	0.02	0.08	0.07	0.24	3.33	3.67
47	22/07/2006	10:40	13:40	03:00	0.26	0.44	0.18	0.02	0.06	0.05	0.30	3.00	3.33
48	23/07/2006	17:20	19:00	01:40	0.48	0.63	0.15	0.03	0.09	0.08	0.33	1.67	2.00
49	23-24/07/2006	23:40	02:40	03:00	0.65	0.88	0.23	0.02	0.08	0.07	0.18	3.00	3.33
50	24/07/2006	06:00	08:00	02:00	0.94	5.16	4.22	0.60	2.11	1.81	7.26	2.00	2.33
51	25/07/2006	04:40	10:20	05:40	5.16	55.49	50.33	2.80	8.88	8.39	27.60	5.67	6.00
52	26/07/2006	02:20	03:20	01:00	55.52	55.94	0.42	0.10	0.42	0.31	1.05	1.00	1.33
53	27/07/2006	01:40	02:40	01:00	55.97	56.15	0.18	0.04	0.18	0.14	0.42	1.00	1.33
54	27/07/2006	06:00	07:20	01:20	56.15	56.59	0.44	0.09	0.33	0.26	1.14	1.33	1.67
55	29/07/2006	19:20	21:20	02:00	57.86	61.33	3.47	0.50	1.74	1.49	8.07	2.00	2.33
					-	_			_				-
56	02/08/2006	02:40	03:20	00:40	61.48	69.56	8.08	2.69	12.06	8.08	24.24	0.67	1.00
57	02/08/2006	18:00	19:00	01:00	69.56	70.25	0.69	0.17	0.69	0.52	1.29	1.00	1.33
58	02/08/2006	21:40	23:00	01:20	70.25	72.06	1.81	0.36	1.36	1.09	3.33	1.33	1.67
59	03/08/2006	01:00	06:40	05:40	72.06	102.4	30.34	1.69	5.35	5.06	51.00	5.67	6.00
60	03/08/2006	09:40	11:00	01:20	102.5	103.7	1.2	0.24	0.90	0.72	2.40	1.33	1.67
61	03/08/2006	21:20	23:00	01:40	103.7	126.9	23.2	3.87	13.89	11.60	37.50	1.67	2.00
62	04/08/2006	14:20	16:20	02:00	128.2	129.7	1.5	0.21	0.75	0.64	2.40	2.00	2.33
63	04/08/2006	19:00	20:40	01:40	129.7	144.3	14.6	2.43	8.74	7.30	32.10	1.67	2.00
64	07/08/2006	01:00	03:20	02:20	144.3	145.5	1.2	0.15	0.52	0.45	0.90	2.33	2.67
65	09/08/2006	19:40	21:20	01:40	148	148.5	0.5	0.08	0.30	0.25	0.60	1.67	2.00
66	11-12/08/2006	22:00	05:20	07:20	148.5	173.2	24.7	1.07	3.37	3.22	11.40	7.33	7.67
67	15/08/2006	00:40	08:40	08:00	173.2	190.4	17.2	0.69	2.15	2.06	13.20	8.00	8.33