

Universidad Autónoma de Querétaro Facultad de Ingeniería Maestría en Vías Terrestres

Evaluación económica de la espuela de ferrocarril Tequisquiapan Vizarrón.

TESIS

Que como parte de los requisitos para obtener el grado de

Maestro en Vías Terrestres

Presenta:

Ing. José Alejandro González García

Dirigido por:

M. en I. Aldo Alfaro González

SINODALES

M. en I. Aldo Alfaro González Presidente

Dr. Guillermo Torres Vargas Secretario

<u>Dr. Omar Chávez Alegría</u> Vocal

M en I. Domingo Gerardo Valencia Suplente

M en I. Rubén Ramírez Jiménez

Suplente

Dr. Aurelio Domínguez Conzález Director de la Facultad de Ingeniería

Dr. Irineo Torres Pacheco Director de Investigación y Posgrado UAO

Firma

FIRM

Firma

Centro Universitario Querétaro, Qro. Junio del 2013 México **RESUMEN**

En el presente trabajo de tesis se realiza una evaluación económica en donde

comparamos una infraestructura férrea con una infraestructura carretera. Uno de sus

principales resultados ha sido la cuantificación de los beneficios que una vía férrea puede

traer a esta parte del estado de Querétaro, ya que en este momento no se cuenta con

infraestructura adecuada para el transporte masivo de mercancías y personas.

Dicha comparación permite analizar las diferencias y el impacto económico que

tendría proponer una infraestructura férrea de Tequisquiapan a Vizarrón de Montes versus

la actual carretera. Así, se realizó el cálculo de los costos de operación (tanto presentes

como futuros) del transporte de carga que transita por la actual carretera, mismos que se

contrastaron con lo que costaría mover esa misma carga por ferrocarril.

También se realizó una Evaluación económica que considera los beneficios que se

tendrían si la carretera actual fuera ampliada para hacer menores los costos de operación de

los diferentes vehículos que transitan por esta carretera.

Similarmente, se hizo una comparación de los beneficios que tendría la ampliación

de la carretera actual en relación con los beneficios que se tendrían si se construye,

alternativamente, la infraestructura férrea proyectada.

La comparación de los indicadores de rentabilidad económica de las diferentes

alternativas demuestra la viabilidad económica que tendría la construcción de una

infraestructura viaria en esta zona del estado.

(**Palabras Clave**: Evaluación, Ferrocarril, Transporte de carga)

i

SUMMARY

In this thesis is carried out an economic evaluation where we compared railway

infrastructure with road infrastructure. One of the main findings is the quantification of the

benefits that a railroad can bring to this part of the state of Queretaro, given the current

situation where there is not adequate infrastructure for mass transit of goods and people.

We compare and analyze the differences between a proposal of railway

infrastructure (from Vizarrón de Montes to Tequisquiapan) versus the current road. Thus,

we performed the calculation of operating costs (both present and future) of truck cargo

passing through the current road, wich is contrasted with the corresponding cost of moving

the same cargo by rail.

It was also performed an economic evaluation that consider the benefits if the

existing road would increase its number of lines in order to lower operating costs of

different vehicles traveling on this road.

Similarly, was made a comparison of the benefits that would have such widening of

current road in relation to the benefits we could have if, alternatively, the projected rail

infrastructure were built.

Comparison of the economic performance indicators of different alternatives

demonstrates the economic viability from a railway infrastructure in this area of the state of

Queretaro.

(**Key words**: Evaluation, Rail, FreightTransportation)

ii

AGRADECIMIENTOS

Quiero agradecerle a mis asesores de tesis, al Dr. Guillermo Torres Vargas y al M en I. Aldo Alfaro González, por los conocimientos invaluables que me brindaron para llevar a cabo esta investigación, y sobretodo su gran paciencia para esperar a que este trabajo pudiera llegar a su fin.

Agradezco a los miembros del jurado, el Dr. Omar ChávezAlegría, M en I. Domingo Gerardo Valencia V. y al M en I. Rubén Ramírez Jiménez, por las valiosas contribuciones que hicieron al trabajo final y por el tiempo que dedicaron para revisarlo.

INDICE

RESUMEN	1
SUMMARY	II
AGRADECIMIENTOS	III
INDICE	IV
INDICE DE CUADROS	${f V}$
INDICE DE FIGURAS	VII
INTRODUCCIÓN	1
OBJETIVO	2
HIPÓTESIS	3
ANTECEDENTES	4
MARCO TEÓRICO	8
 INTRODUCCIÓN 	8
 LINEAMIENTOS PARA LA ELABORACIÓN Y 	8
PRESENTACIÓN DE LOS ANÁLISIS COSTO Y	
BENEFICIO DE LOS PROGRAMAS Y PROYECTOS	
DE INVERSIÓN EN MÉXICO.	
 CRITERIOS QUE DEBEN SER TOMADOS PARA 	10
LA EVALUACIÓN ECONÓMICA	
DESCRIPCIÓN DE LA REGIÓN	29
DETERMINACIÓN DEL NIVEL DE SERVICIO	31
ANALISIS FINANCIERO DE LA CARRETERA	33
TEQUISQUIAPAN – VIZARRON	
• ANÁLISIS 1	37
• ANÁLISIS2	47
COMPARACIÓN DE ALTERNATIVAS DE SOLUCIÓN	51
DESCRIPCIÓN DEL PROYECTO	52
TRAZO DEL PROYECTO	56
CONCLUSIONES	57
CITAS BIBLIOGRAFICAS	59
APENDICE	62
ANEXOS	63

INDICE DE CUADROS

CUADRO		<i>PÁGINA</i>
1	Determinación de la tasa de crecimiento media anual promedio	12
2	Determinación de la tasa de crecimiento media anual compuesta	13
3	Resumen de las tasas de crecimiento media anual de los	14
	Principales corredores carreteros del país.	
4	Niveles de servicio para carreteras de dos carriles tipo I.	31
5	Comparación de Niveles de Servicio en 50 años	31
6	Datos Viales SCT 2010.	33
7	Pesos totales de vehículos.	35
8	Datos viales SCT 2001.	35
9	Porcentajes de TPDA en la Carretera.	35
10	Tasas de Crecimiento media anual.	36
11	Tiempo de recorrido sin proyecto.	36
12	Tiempo de recorrido con proyecto.	37
13	Calculo de valor del tiempo.	37
14	Calculo de costo paramétrico Vía Férrea.	38
15	Costo de operación base para camión C2.	43
16	Costo de operación base para camión C3.	43
17	Costo de operación base para camión articulado T3-S2.	43

CUADRO		PÁGINA
18	Costo de operación base para camión articulado T3-S3.	44
19	Costo de operación base para camión articulado T3-S2-R4.	44
20	Costo Neto por Km.	44
21	Pesos transportados por Vehículos pesados.	45
22	Cálculos de análisis costo beneficio, Ferrocarril vs Transporte	46
	Pesado.	
23	Indicadores económicos ferrocarril vs Carretera.	47
24	Costos de operación sin proyecto.	47
25	Costos de operación con proyecto.	47
26	Calculo de costo paramétrico ampliación de la carretera	48
	actual.	
27	Cálculos del análisis económico, carretera actual Vs	49
	Carretera mejorada.	
28	Indicadores económicos Carretera vs Carretera mejorada.	50
29	Comparación de Indicadores económicos.	51
30	Estructuración de Capas Superiores según el tipo de Vía Férrea.	53

INDICE DE FIGURAS

FIGURA		PÁGINA
1	Evolución del transporte de carga terrestre, por ferrocarril.	6
2	Principales corredores del sistema carretero nacional.	13
3	Localización de Carretera Tequisquiapan – Vizarrón	33
4	Gráficas para determinar factores del Vehículo tipo C2.	39
5	Gráficas para determinar factores del Vehículo tipo T3S2	40
6	Gráficas para determinar factores del Vehículo tipo T3S3	41
7	Gráficas para determinar factores del Vehículo tipo T3S2R4	42
8	Perfil del Proyecto.	52
9	Sección tipo Corte y Terraplén	53
10	Trazo del proyecto.	56

INTRODUCCIÓN

Un transporte férreo de Tequisquiapan a Vizarrón sería el transporte perfecto para el traslado de personas con fines turísticos y mercancías ya que un ferrocarril resulta ser un medio de transporte más limpio y seguro, Sabiendo que en México tenemos la necesidad de buscar nuevas alternativas de infraestructura viaria.

Vizarrón de Montes cuenta con una gran variedad de productos y materias primas como, quesos, vinos, mármol, artesanías etc. El terreno accidentado y el tipo de camino que hay entre estas dos poblaciones, no permite el traslado adecuado de un lugar a otro.

Todos los estudios sobre transporte coinciden en señalar al ferrocarril como el más sostenible y seguro de los medios de transporte. Efectivamente, comparado con la carretera es el que menos emisiones de efecto invernadero provoca, el que menos espacio ocupa, el más seguro etc. Sin embargo, a pesar de estas evidencias, la mayor parte de las inversiones se dirigen a la carretera. (Ecologistas en acción et al. 2004).

Los datos no dejan lugar a dudas. Fijémonos en la contribución al Cambio Climático, considerado como uno de los más graves problemas ambientales de nuestra época. Mientras que desplazar una persona un kilómetro en coche supone unas emisiones de 120 gramos de CO2, el principal causante del calentamiento global, si el desplazamiento se realiza en ferrocarril estas emisiones se reducen a 45 gramos, casi 3 veces menos. (Agencia Europea del medio ambiente et al. 2004).

En el caso de las mercancías, la diferencia es aún más acusada: desplazar una tonelada a lo largo de un kilómetro emite 120 gramos de CO2 si se hace en camión, frente a los 23 gramos, casi 6 veces menos, que emitiría si se desplazase en ferrocarril. (Ecologistas en acción et al. 2004)

El ferrocarril también es el medio de transporte más seguro. Atendiendo a una estadística europea que utiliza datos de 2001, el número de muertos por cada 1.000 millones de viajeros-km en la Unión Europea es de 0,2 en ferrocarril, 0,4 en avión y 8,7 en carretera. En otras palabras, la carretera resulta 43 veces más peligrosa que el modo ferroviario. (Ecologistas en acción et al. 2004)

OBJETIVO

• Objetivo General:

El objetivo fundamental de este trabajo es proporcionar la base metodológica que debe aplicarse a un análisis costo-beneficio de alternativas de solución de diferentes modos de transporte, y proporcionar a los responsables de la toma de decisiones una herramienta de análisis para llevar a cabo la asignación adecuada de los recursos disponibles.

• Para el logro del objetivo anterior se establecen los siguientes alcances u objetivos particulares.

Este trabajo pretende hacer notoria desde un punto de vista económico y social, que la construcción de una vía férrea, puede traer consigo mejores resultados a largo plazo, aún y cuando el costo de inversión sea más importante que el considerado para las alternativas de solución del modo carretero.

Se pretende utilizar documentos ya publicados para llevar a cabo este análisis, los cuales nos dan una idea de los costos y de las características que pueden llegar a variar en las vías terrestres con respecto al tiempo.

Al realizar la evaluación económica se pretende hacer notar la importancia del impacto social y económico que tendrán los municipios cercanos a Tequisquiapan y Vizarrón de Montes si se construye la vía férrea.

Al comparar ambas alternativas, se establecerá la diferencia en los diferentes indicadores económicos, y así se podrá estimar el excedente del consumidor que tendrá la población que se encuentra en la zona de influencia del proyecto, cumpliendo con ello con uno de los preceptos básicos de la economía de mercado, establecer el equilibrio para no provocar depresiones económicas en otras ramas de la actividad económica regional, asegurándose con ello no solo el crecimiento regional sino un desarrollo sustentable desde el punto de vista económico y social.

HIPOTESIS

Se espera que con la construcción de una vía férrea de Tequisquiapan a Vizarrón, se tengan ahorros considerables en valor del tiempo de las personas y en costos de operación de los vehículos que circulan por esta carretera.

Al comparar el transporte de mercancías por ferrocarril con el transporte de mercancías por carretera, se pretende seleccionar la opción más rentable desde el punto de vista económico, en este sentido, se analizarán como alternativas de solución el transporte de mercancías por carretera, considerando el trazo actual pero mejorando sus características geométricas.

Se pretende que al transportar mercancías por ferrocarril se reduzca el aforo de vehículos pesados que transitan por esta carretera y a su vez, mejorar los tiempos de recorrido de un lugar a otro.

Sera posible comparar los indicadores económicos obtenidos en estas dos situaciones buscando que estos favorezcan la creación de una vía férrea, sabiendo que la construcción de una vía férrea implicaría más del doble de inversión que el ampliar la carretera existente.

ANTECEDENTES

México ha venido evolucionando, desde 1821 hasta 1872, del tráfico de arriería y diligencias, hasta la aparición del ferrocarril en 1872. En sus primeros 54 años se construyeron 350 kilómetros de vía férrea, cada año, desde 1872 hasta 1926, reduciendo ese ritmo entre 1926 y 1966 a solo una tercera parte, con lo cual se alcanza el kilometraje actual de la red férrea mexicana, con 23000 kilómetros aproximadamente.(Santamaría Arribas Sara, 2005).

El tren de carga medio produce 100 mil toneladas-kilómetro (netas) por tren, con recorrido medio de 200 kilómetros y una distancia media de 450 kilómetros por tonelada. (Ferromex, Grupo México, 2009)

El tren de pasajeros medio produce 60 mil pasajeros-kilómetro, con recorrido de 300 km, por 120 km de recorrido por pasajero.

Los ferrocarriles mexicanos mueven sus trenes con, aproximadamente, 1000 locomotoras, 2000 coches y 25000 carros. (Ferromex, Grupo México, 2009)

En el año de 1996 Ernesto Zedillo Ponce de León, Presidente de México de 1994 a 2000, desincorpora del estado a la empresa paraestatal Ferrocarriles Nacionales de México y se dan por finalizadas las operaciones de transporte de pasajeros en todo el país. En años posteriores a la privatización se crearon tres rutas de transporte de pasajeros para fines turísticos: Ferrocarril Chihuahua-Pacífico (chepe), Tequila Express, y el Expreso Maya (sin operaciones comerciales desde el 25 de junio de 2007). (Santamaría, 2005).

El principal problema para el ferrocarril mexicano y para México en materia de infraestructura es la insuficiencia de este medio para satisfacer su demanda como medio de transporte masivo. "México requeriría inversiones en infraestructura por 20 mil millones de dólares al año durante la próxima década, casi 3 por ciento del producto interno bruto (PIB), según estimaciones del banco mundial (BM)". (Rosas, 2004)

El hecho que el ferrocarril se encuentra en rezago y que la necesidad de México en cuestión de infraestructura, marca un panorama turbio para los ferrocarriles porque; "en 2003 apenas se logró invertir 119 mil millones de pesos en torno a 8 mil 500 millones de

dólares en infraestructura". El transporte ferroviario está destinado a fungir como columna vertebral en materia de carga, en virtud de sus grandes ventajas como medio de transporte masivo. (Fox V., 2003)

Ahora, se sabe que para desarrollar crecimiento se puede realizar únicamente mediante un amplio desarrollo de la actividad económica, la cual depende en gran parte del sistema de transporte. De igual forma el transporte genera el desarrollo regional, al facilitar la creación de mercados y realiza una red incorporada de actividades en dichos mercados. (Ferrocarriles Nacionales de México, México, 1987)

El ferrocarril mexicano actualmente no se encuentra en el rezago que aparenta según un estudio de evaluación económica de las actuales condiciones de competencia y complementariedad entre ferrocarril y autotransporte, que es entendible el hecho que ante la liberación del ferrocarril. Éste y el autotransporte se ven en condiciones de coexistencia de mayor competencia a la vez que tienen una creciente complementariedad. (Ferrocarriles Nacionales de México, México, 1987)

A comparación del transporte ferroviario de carga, el de pasajeros muestra grave descenso, tras reconocerse que la vocación del ferrocarril se enfoca en mover grandes volúmenes de carga a grandes distancias. Sin embargo el transporte de pasajeros sería una herramienta indispensable para el pasajero mexicano, dado que éste ofrece recorridos largos a bajos costos. El problema del transporte de pasajeros por ferrocarril deberá ser abordado en estudios de viabilidad y un análisis de los diferentes impactos económicos que propiciaría y cómo afectaría a los servidores de este servicio. (Ferrocarriles Nacionales de México, México, 1987)

El ferrocarril en los últimos años ha presentado un vigoroso repunte debido principalmente al cambio operativo – administrativo en el que se ha visto inmerso. En el periodo 1991 a 2002 las unidades de demanda atendida al ferrocarril presentan una tendencia al crecimiento como lo refleja los indicadores operativos en toneladas y toneladas-kilómetro, donde las toneladas proyectan una tasa de crecimiento medio anual (TCMA) de 5.1%, esta fue mayor a la tasa de crecimiento toneladas-kilómetro, que fue de 4.2% para dicho periodo. El repunte se aprecia mejor a parte del proceso de apertura; tan

solo entre 1997 y 1998, la toneladas-kilómetro crecieron 10.4% y las toneladas 23.1%. Dicho crecimiento se aprecia mejor en la gráfica mostrada a continuación: (Torres G., et al., 2004).

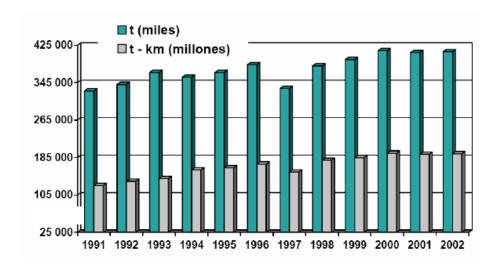


Figura 1. Evolución del transporte de carga terrestre, por ferrocarril. (Torres G., et al., 2004).

En el periodo 1980-1993 el promedio del ingreso real del ferrocarril por unidad de servicio t-km. Fue prácticamente idéntico al periodo 1999-2003 (de 0.261 y de 0.258 pesos constantes del año 2000 respectivamente), es decir que un usuario promedio del ferrocarril no apreció un incremento real de su costo por transportar sus mercancías. Sin embargo de acuerdo con el índice nacional de precios al productor para el periodo diciembre de 2003 a junio de 2004 se halló que el nivel de precios del ferrocarril para el mercado nacional se mantuvo sin cambios, esto significa que existe en el ferrocarril una política tarifaria diferenciada por tipo de mercado, por su parte, el auto transporte no presenta este tipo de diferenciación dado que reportó un incremento generalizado de 3% tanto para el mercado nacional, como internacional.(Torres G., et al., 2004).

Se ha visto que donde se introduce una nueva vía de comunicación en zonas poco o casi nada desarrolladas, el uso de la tierra cambia o se reorienta gradualmente, en primer lugar con el desarrollo residencial seguido de la penetración de las actividades comerciales. Esto es, en potencia, parte de las posibilidades de activar económicamente la

zona aledaña a la sierra gorda de los Municipios de Tequisquiapan, Ezequiel Montes y Cadereyta de Montes.

Estos municipios tienen atractivos turísticos que pueden ser explotados en mayor escala si se proporciona a la población un medio de transporte férreo cómodo y seguro con detalles de amabilidad y atención personalizada al turismo nacional y extranjero.

La comunidad de Vizarrón está ubicada en una zona rica en mármol. Mineral que no ha sido explotado en gran escala industrial debido a la falta de un transporte masivo que pueda trasladar este mineral en bruto y transformado a los diferentes mercados nacionales e internacionales.

Con el análisis económico de una vía férrea la zona podemos darnos cuenta del impacto económico y social que tendría el realizar este proyecto al, producir nuevos empleos y riqueza a la población.

MARCO TEORICO

1. Introducción

En los métodos de evaluación se toma en cuenta el valor del dinero a través del tiempo, que en este caso representamos el dinero o flujos de efectivo como los ahorros en tiempos de recorrido y en costos de operación que se tendrían al realizar el proyecto deseado.

Con estos flujos de efectivo se realiza un análisis Costo-Beneficio, el cual requiere la estimación de indicadores de rentabilidad, como el Índice de Rentabilidad (IR), el Valor Presente Neto (VPN), y la Tasa Interna de Retorno (TIR), entre otros indicadores.

Cabe señalar que el análisis Costo-Beneficio tiene sus orígenes en la Economía pura, específicamente en la microeconomía.

El aspecto más importante en el análisis Costo-Beneficio, es optimizar la utilidad neta de la inversión del proyecto (VPN), centrando fundamentalmente su atención en los precios de mercado y los beneficios directos de los inversionistas. Para los proyectos en los que el inversionista es la federación o el gobierno en sus distintos niveles, el análisis Costo-Beneficio tiene por finalidad cuantificar los beneficios que obtendrá la población (bien social).

2. <u>Lineamientos para la elaboración y presentación de los análisis costo y</u> beneficio de los programas y proyectos de inversión.

La fracción II del artículo 34 de la Ley Federal de Presupuesto y Responsabilidad, establece que las dependencias y entidades de la Administración Pública Federal deberán presentar a la Secretaría de Hacienda y Crédito Público la evaluación costo y beneficio de los programas y proyectos de inversión a su cargo, donde demuestren que dichos programas son susceptibles de generar un beneficio social neto bajo supuestos razonables.

De acuerdo al artículo 45 del Reglamento de la Federación de Presupuesto y Responsabilidad Hacendaria, los proyectos de inversión deberán contar con un análisis costo y beneficio, que considere las alternativas que se hayan identificado para atender una necesidad específica o solucionar la problemática de que se trate y deberá mostrar que son susceptibles de generar beneficios netos para la sociedad bajo supuestos y parámetros razonables, independientemente de su fuente de financiamiento.

A diferencia de la evaluación financiera, la evaluación socioeconómica es la evaluación del proyecto desde el punto de vista de la sociedad en su conjunto, para conocer el efecto neto de los recursos utilizados en la producción de los bienes o servicios sobre el bienestar de la sociedad. Dicha evaluación debe incluir todos los factores del proyecto, es decir, sus costos y beneficios independientemente del agente que los enfrente. Ello implica considerar adicionalmente a los costos y beneficios monetarios, las externalidades y los efectos indirectos e intangibles que se deriven del proyecto. A diferencia de la evaluación financiera que es aquella que permite determinar si el proyecto es capaz de generar un flujo de recursos positivos y alcanzar una cierta tasa de rentabilidad esperada, deben incluirse todos los costos financieros por préstamos de capital, pago de impuestos e ingresos derivados de subsidios recibidos.

El análisis costo beneficio se aplicará en los siguientes casos:

- Para los programas y proyectos de inversión con monto total de inversión mayor a 150 millones de pesos
- 2.) Para los proyectos de infraestructura productiva a largo plazo
- 3.) Para aquellos programas y proyectos de inversión que así lo determine la Secretaría, a través de la unión de inversiones, independientemente de su monto total de inversión.

Para proyectos de infraestructura económica, el análisis costo beneficio se acompañará de una manifestación del administrador del proyecto o del área de la dependencia, de que éste es factible técnica, legal y ambientalmente.

Esto tomado de: Secretaría de Hacienda y Crédito Público, con fundamento en los artículos 31 de la Ley Orgánica de la Administración Pública Federal 1, 4, 34 y 109 de la Ley Federal de Presupuesto y Responsabilidad Hacendaria y 45,46, 47 y 214 de su Reglamento, así como por el artículo 61 fracción II del Reglamento Interior de la Secretaría de Hacienda y Crédito Público.

• Evaluación del proyecto.

En esta sección se deberá identificar y cuantificar en términos monetarios los costos y beneficios del proyecto, así como el flujo de los mismos a lo largo del horizonte de evaluación, con objeto de demostrar que el proyecto es susceptible de generar, por si mismo, beneficios netos para la sociedad.

En la evaluación del proyecto se deberán tomar en cuenta los efectos directos e indirectos, se deberán presentar los indicadores de rentabilidad que resulten del flujo neto de costos y beneficios del proyecto, así como el cálculo del Valor Presente Neto (VPN), la Tasa Interna de retorno (TIR) y, en el caso de proyectos cuyos beneficios sean crecientes en el tiempo, la Tasa de Rendimiento Inmediato (TRI).

Los beneficios y costos se expresarán en términos reales, esto es, descontando el efecto causado por la inflación. Para ello los beneficios y costos se expresarán a precios del año en el que se solicita el registro en la Cartera.

3.- Criterios que deben ser tomados para la evaluación económica.

3.1 Horizonte económico.

Generalmente se define como el lapso que transcurre desde la investigación previa de un proyecto hasta la medición, mediante proyecciones, de los efectos que cause en el proyecto a realizar dicha inversión en caso de llevarse a cabo.

En este caso se estimó el horizonte económico en 50 años ya que es el tiempo que duran las concesiones ferroviarias.

3.1.1 Tasa de crecimiento media anual.

Para este trabajo se analizaron 2 formas de determinar las tasas de crecimiento media anual, comparando las tasas de crecimiento media anual de los 14 principales corredores carreteros del país.

Para poder determinar las tasas de crecimiento media anual de los principales corredores carreteros del país se recurrió a los datos viales de la Secretaría de Comunicaciones y Transportes, las cuales tienen datos a partir del año 2001, basándonos en estos principales corredores se prosiguió a recabar información para obtener tasas de crecimiento media anual promedio de los diferentes corredores carreteros, los cuales son:

- 1. Corredor Transpeninsular de Baja California.
- 2. Corredor México Nogales.
- 3. Corredor Querétaro Cd. Juárez.
- 4. Corredor México Nuevo Laredo.
- 5. Corredor Veracruz- Monterrey.
- 6. Corredor Veracruz- Monterrey.
- 7. Corredor Puebla Oaxaca Ciudad Hidalgo.
- 8. Corredor México-Puebla-Progreso.
- 9. Corredor Península de Yucatán.
- 10. Corredor Mazatlán Matamoros.
- 11. Corredor Altiplano.
- 12. Corredor México Tuxpam.
- 13. Corredor Acapulco-Veracruz.
- 14. Corredor Circuito Transistmico.

Las tasas de crecimiento media anual se obtuvieron de 2 formas.

a) Promedio de TCMA: Determinando el incremento porcentual de cada año, realizar la suma de todos los incrementos porcentuales y dividirlos entre el total de estos, para así tener un promedio del incremento porcentual por año de todos los años analizados. Se muestra la metodología en el cuadro 1.

Cuadro 1. Determinación de TCMA promedio

Nombre	Km	TE	SC	TDPA	%A	%B	%C	AÑO	TCMA	PROMEDIO DE TCMA
Bahia de los Angeles	68	1	0	194	68.6	0.4	31	2012	-0.05	8.6%
Bahia de los Angeles	68	1	0	205	83.9	1.2	14.9	2011	-0.46	<u> </u>
Bahia de los Angeles	68	1	0	377	86.5	1.3	12.2	2010	-0.01	T
Bahia de los Angeles	68	1	0	380	90.9	0.7	8.4	2009	0.65	
Bahia de los Angeles	68	1	0	231	91.8	3.7	4.5	2008	0.19	Para determinar la TCMA Promedio
Bahia de los Angeles	68	1	0	194	82.7	3.4	3.9	2007	-0.10	se dettermina y sumó el increment
Bahia de los Angeles	68	1	0	216	88	2	10	2006	-0.15	porcentual de cada año y se dividio
Bahia de los Angeles	68	1	0	253	91	1	8	2005	0.70	entre el numero de años analizado:
Bahia de los Angeles	68	1	0	149	91	1	8	2004	0.06	
Bahia de los Angeles	68	1	0	141	91	1	8	2003	0.00	
Bahia de los Angeles	68	1	0	194	0	0	0	2002	0.04	
Bahia de los Angeles	68	1	0	187	91	2	7	2001		
										V
										Para determinar el incremento porcentual por año se utilizó la sig. formula
Se Procuro que el Sentido de la circulación fuese en ambos sentidos			Tomamos en cuenta los años					$TCMA = \frac{Año \ Actual - Año \ anterior}{}$		
			disponibles en los Datos Viales de la SCT				Año anterior			

b) **TCMA compuesta:** Tomando como base la formula de interés compuesto y despejando la fórmula para obtener la TCMA.

$$TDPA2 = TDPA1(1 + TCMA)^{n}.$$
 (1)

Donde:

TDPA2 =Transito diario Promedio anual del año actual

TDPA1= Transito diario promedio anual del último año de registro

TCMA= Tasa de crecimiento media anual.

n= Numero de años transcurridos desde TDPA1 hasta TDPA2.

Despejando esta fórmula se tiene que la TCMA es.

$$TCMA = \sqrt[n]{\frac{TDPA2}{TDPA1}} - 1 \tag{2}$$

Año Actual Carr: Ent. Punta Prieta - Bahía de Los Ángeles Nombre Km TE SC **TDPA** %Ã %В %C AÑO TCMA Bahia de los Angeles 0 31 2012 -0.05 68 68.6 0.4 205 -0.46 Bahia de los Angeles 68 0 83.9 1.2 14.9 2011 TCMA COMPUESTA Bahia de los Angeles 68 1 0 377 86.5 1.3 12.2 2010 -0.01 Bahia de los Angeles 380 90.9 0.003 68 1 0 0.7 8.4 2009 0.65 Bahia de los Angeles 0 231 91.8 3.7 4.5 2008 0.19 68 0 82.7 3 4 3.9 -0.10 Bahia de los Angeles 194 2007 Bahia de los Angeles 68 0 216 88 2 10 2006 -0.15 Bahia de los Angeles 68 0 253 91 8 2005 0.70 Bahia de los Angeles 68 0 149 91 8 2004 0.06 Para Determinar la TCMA Bahia de los Angeles 68 1 0 141 91 1 8 2003 0.00 Compuesta se utilizaron únicamente Bahia de los Angeles 68 0 194 0 0 0 2002 0.04 el Año Actual y el último año de Bahia de los Angeles 68 0 2001 registro. Tomamos en cuenta los años Para determinar el incremento Se Procuro que el Sentido de la circulación disponibles en porcentual de todo el periodo se fuese en ambos sentidos los Datos Viales de la SCT utilizó la sig. formula. Año actual Último año de registro Siendo "n", la cantidad de años en el Último año de registro periodo analizado.

Cuadro 2. Determinación de TCMA compuesta.

Teniendo la metodología para determinar las tasas de crecimiento media anual ya sea, promedio de TCMA o TCMA compuesta se analizaron los diferentes corredores carreteros del país, los cuales se muestran en la figura 2 siguiente.

Fuente: Opúsculo, El Sector Carretero en México 2009, SCT.

Figura 2. Principales corredores del sistema carretero nacional

Habiendo analizado los principales corredores del sistema carretero nacional se obtuvieron los siguientes datos, mostrados en el cuadro 3.

Cuadro3. Resumen de TCMA de los principales corredores carreteros del país.

Resumen de TCMA por Corredores Carreteros	TCMA Promedio	TCMA Compuesta
1.Corredor Transpeninsular de Baja California	7.7%	4.6%
2.Corredor México Nogales	9.1%	4.5%
3.Corredor Querétaro - Cd. Juarez	6.2%	3.3%
4.Corredor México Nuevo Laredo	3.5%	2.8%
5.Corredor Veracruz- Monterrey	4.9%	4.3%
6.Corredor Puebla - Oaxaca - Ciudad Hidalgo	4.8%	4.6%
7.Corredor México-Puebla-Progreso	7.0%	5.9%
8.Corredor Peninsula de Yucatán	7.3%	5.8%
9. Corredor Mazatlan - Matamoros	7.0%	4.7%
10.Corredor Manzanillo-Tampico	5.5%	4.2%
11.Corredor Altiplano	21.3%	13.0%
12. Corredor México Tuxpam	4.6%	3.5%
13.Corredor Acapulco-Veracruz	5.9%	4.8%
14. Corredor Circuito Transistmico	4.3%	3.2%
Promedio	7.1%	4.9%

Al observar los resultados en el cuadro 3 se puede apreciar que al obtener la TCMA promedio tenemos una tasa mucho mayor a la TCMA compuesta, "teniendo como referencia la media nacional que es de un 3%", (Torres G., et al., 2000), en el estudio se ocupan tasas de crecimiento media anual más comunes y no tan altas como en el ejercicio pasado, pero si se hace una comparación obteniendo las tasas de crecimiento media anual de manera compuesta de la carretera estudiada.

3.2 Costos de operación vehicular

La estimación en términos monetarios de los beneficios que se obtienen por ahorros en los costos de operación vehicular, se determinan con base en los costos de operación por tipo de vehículo del Tránsito Diario Promedio Anual (TDPA), ante situaciones sin y con proyecto, es decir mediante la diferencia de los costos de operación en la situación actual y los costos de operación en el camino con el proyecto realizado. Los

costos de operación de ambas situaciones se calculan a partir de los costos de operación base (costos de operación por tipo de vehículo en condiciones ideales de operación), a los cuales se les aplica un factor de corrección que toma en cuenta el tipo de terreno y el Índice Internacional de Rugosidad (IIR). (Torres G., et al., 2002).

El Estudio de Normas para el Diseño y Mantenimiento de Carreteras se desarrolló bajo la supervisión del Banco Mundial; en él participaron diferentes instituciones académicas y dependencias involucradas en la planeación, construcción y operación de carreteras en diversos países. Las relaciones entre costos de operación, características de carreteras e incluida la rugosidad, fueron estudiadas en Kenia (1971-75); Brasil (1975-84); Santa Lucía (1977-82); e India (1977-83). Revisando los estudios de los cuatro países mencionados, se concluyó que los de Brasil presentaron no sólo mayor cobertura y semejanza en cuanto a tipos de vehículos y características de caminos, sino también mayor similitud económica con respecto a las condiciones prevalecientes en México durante el periodo de estudio. Por lo anterior, se decidió utilizar su metodología e información pertinente para aplicarla con datos nacionales, mediante el programa de cómputo basado en los propios estudios de Brasil, como herramienta principal para la adaptación.

La adecuación consistió en el uso de datos sobre características técnicas de vehículos nacionales, así como costos unitarios de sus insumos. También se definieron, con base en análisis de sensibilidad en rangos de factibilidad y auscultaciones de campo, datos relativos a la utilización de los vehículos.

Los costos de operación vehicular toman como referencia los modelos matemáticos desarrollados por el Banco Mundial en 1987, con los cuales posteriormente estructuró un programa de cómputo denominado Vehicle Operating Costs (VOC, por sus siglas en inglés). Asimismo, considera la adaptación de dicho programa a las características técnicas de los vehículos que operan en México hecha en el propio IMT, denominada VOCMEX, así como los modelos con nuevas expresiones desarrolladas para el HDM-4.

A partir del uso de los modelos matemáticos mencionados, mediante el programa de cómputo VOCMEX, y de una actualización de datos diversos sobre características técnicas de los vehículos, sus precios y los de sus insumos, se conforma un conjunto de gráficas, las cuales permiten estimar los costos de operación vehicular para siete tipos de unidades, bajo condiciones diversas de alineamiento geométrico y estado superficial de las carreteras sin necesidad de usar el programa. Los datos presentados en el trabajo pueden emplearse tanto en el programa de cómputo VOC como en el HDM-4.

La actualización de esta información consistió en obtener características técnicas de los siete tipos de vehículos identificados que intervienen en la determinación de los costos de operación vehicular y que son: Peso del vehículo vacío, carga útil, velocidad deseada, área frontal proyectada y velocidad calibrada del motor. El factor de eficiencia energética se modificó, aprovechando el rango permitido por el modelo HDM (The Highway Design and Maintenance Standards Model) en su versión 3, debido a que arrojó resultados más cercanos a la realidad. La Potencia máxima en operación y la Potencia máxima del freno se calcularon tomando como referencia las expresiones matemáticas sugeridas en el modelo HDM (The Highway Design and Maintenance Standards Model) en su versión 4, ya que éstas ofrecieron resultados más acordes con lo observado en la práctica. (Arroyo J., et al., 2002).

3.3. Ahorros en costos de operación vehicular.

Una vez hecha la proyección del tránsito diario promedio anual y teniendo los costos de operación vehicular se procede a aplicar el porcentaje de participación que tiene cada tipo de vehículo en el mismo. Esta participación se obtiene de la composición vehicular obtenida en los datos viales disponibles (% A, %B, %C2, %C3, %T3S2, %T3S3 y %T3S2R4).

Las expresiones siguientes permiten determinar los costos de operación del flujo vehicular, en forma anual y por tipo de vehículo:

```
Automóviles (A) = (TDPAj) * (\%A) * (L) * (COSTO DE OPERACIÓN Axy) * 365

Automóviles (B) = (TDPAj) * (\%B) * (L) * (COSTO DE OPERACIÓN Bxy) * 365

Automóviles (C2) = (TDPAj) * (\%C2) * (L) * (COSTO DE OPERACIÓN C2xy) * 365

Automóviles (C3) = (TDPAj) * (\%C3) * (L) * (COSTO DE OPERACIÓN C3xy) * 365

Automóviles (T3S2) = (TDPAj) * (\%T3S2) * (L) * (COSTO DE OPERACIÓN T3S2xy) * 365

Automóviles (T3S3) = (TDPAj) * (\%T3S3) * (L) * (COSTO DE OPERACIÓN T3S3xy) * 365

Automóviles (T3S2R4) = (TDPAj) * (\%T3S2R4) * (L) * (COSTO DE OPERACIÓN T3S2R4xy) * 365
```

En donde L es la longitud del camino, X representa el tipo de terreno en que se localiza el camino en estudio e Y representa el IIR de la superficie de rodamiento.

Los beneficios debidos a los ahorros en costos de operación para cada tipo de vehículo, se obtienen por diferencia entre la situación sin proyecto y la situación con proyecto. Al sumar estos ahorros se obtienen los beneficios totales en forma anual.

Los beneficios debidos a los ahorros en costos de operación para cada tipo de vehículo, se obtienen por diferencia entre la situación sin proyecto y la situación con proyecto. Al sumar estos ahorros se obtienen los beneficios totales en forma anual. (Torres G., et al., 2000).

3.4. Valor del tiempo

El tiempo de recorrido influye generalmente en la estimación de los beneficios derivados del mejoramiento o rehabilitación de la infraestructura para el transporte.

Para estimar el valor del tiempo, se partió de establecer como variables el ingreso per-capita ponderado de la población ocupada del país, expresado en función del número de salarios mínimos generales que percibe; y el tiempo laborado por semana de dicha población, en función del número de horas laboradas por semana.

Una de las variables que intervienen en la evaluación económica de proyectos de infraestructura para el transporte, es el valor del tiempo de recorrido de los usuarios de dicho sistema, particularmente el de los pasajeros; la valoración de esta variable, conjuntamente con los ahorros en costos de operación vehicular y los ahorros en costos de conservación de la infraestructura derivados de una utilización racional de la misma, permiten al analista de proyectos de inversión estimar el costo generalizado del transporte, sin perder de óptica el equilibrio del usuario.

En la Publicación Técnica No. 291 del IMT "Propuesta metodológica para la estimación del valor del tiempo de los usuarios de la infraestructura carretera en México: el caso del transporte de pasajeros", Publicada en el 2006 (Torres G., et al., 2006), se tomaron como variables:

- La población ocupada en las distintas ramas de la actividad económica del país.
- El tiempo que labora ésta en actividades productivas;
- El nivel de ingresos de cada uno de los grupos estudiados, agrupándolos en distintos percentiles dependiendo del número de horas trabajadas a la semana y del número de salarios mínimos percibidos en función del nivel de ingresos registrado en el censo de referencia.

Se trata de estimar adecuadamente una de las variables que inciden directamente en la determinación de los beneficios directos que tienen los usuarios de la infraestructura, cuya importancia repercute de manera definitiva en los indicadores de rentabilidad.

La variable tiempo y su valoración en términos monetarios es un insumo de gran importancia para determinar los beneficios derivados de ahorros en tiempos de recorrido, que impactan en el costo generalizado del transporte, el cual es un elemento básico en los estudios de pronóstico de la demanda, así como de los análisis de factibilidad económica y financiera.

La principal fuente de información consultada fue el Censo de Población y Vivienda, (INEGI 2000). En el análisis estocástico realizado se tomaron como variables la

población ocupada en las distintas ramas de la actividad económica del país; el tiempo que labora ésta en actividades productivas; y el nivel de ingresos de cada uno de los grupos estudiados, agrupándolos en distintos percentiles dependiendo del número de horas trabajadas a la semana y del número de salarios mínimos percibidos en función del nivel de ingresos registrado en el censo de referencia.

La información censal sobre el ingreso expresado en salarios mínimos generales, permitirá por una parte conocer la tendencia del ingreso de cada uno de los percentiles identificados en la población ocupada; pero además proporciona los elementos para determinar el coeficiente adimensional FIP, el cual se obtiene como un promedio ponderado del total de la población ocupada del país. Por otra parte, de manera semejante se obtiene el tiempo que labora dicha población, constituyendo estos valores estimados las variables independientes que se emplean en la estimación de la variable dependiente, objeto de este estudio, es decir, del valor del tiempo horario de los pasajeros que viajan por la red carretera nacional, el cual se obtiene a partir del ingreso que percibe cada persona que cuenta con un empleo en cualquiera de las ramas de la actividad económica nacional (SHP para pasajeros que viajan por motivo de trabajo, y VTpp para aquellos lo hacen por motivo de placer).

3.4.1. Tiempo laborado por la población ocupada del país vs. Ingreso promedio

De la información estadística nacional publicada por el INEGI, se observa que la población ocupada (PO) del país fue de 33 730 210 personas, de las cuales solamente 28 109 846 reportaron tener ingreso (POI). Para realizar el análisis se tomaron en cuenta intervalos de 8 horas laboradas por semana para cada uno de los grupos considerados. Asimismo, se incluyeron diez rangos de ingreso, los cuales se aplicaron a cada uno de los intervalos de tiempo laborado por semana.

En ambos casos se obtienen las marcas de clase de los intervalos considerados, así como los promedios ponderados tanto de las horas trabajadas por la

población ocupada como del nivel de ingresos promedio de dicha población (expresada en salarios mínimos generales, SMG, 2006).

El promedio ponderado se obtiene a partir de la expresión:

En donde:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} xif(xi)$$
 (3)

X = media (promedio ponderado)

 xi = marca de clase de los distintos intervalos considerados (tiempo laborado por semana e ingreso expresado en salarios mínimos generales de la población ocupada).

f (xi) = frecuencia con que se presenta el evento (Población Ocupada) en cada intervalo.

Es conveniente señalar que para el análisis realizado se discriminaron la población ocupada que no recibe ingresos y los rubros correspondientes al tiempo laborado por semana y nivel de ingresos que son reportados como "no especificado".

El tiempo que labora por semana la población ocupada, se obtiene de calcular su promedio ponderado (HTP), el cual reportó un valor de 43,47 h/semana.

El promedio ponderado del nivel de ingresos de la población ocupada en México en el 2011 ha sido estimado en 2.94 SMG. Este coeficiente se denomina factor de ajuste del ingreso (FIP).

Los usuarios de la red carretera nacional se dividen en dos grandes grupos:

- a) Los pasajeros
- b) La carga.

El tiempo que labora por semana la población ocupada, se obtiene de calcular su promedio ponderado (HTP)

El promedio ponderado del nivel de ingresos de la población ocupada en México en el 2011 ha sido estimado en 2.94 SMG. Este coeficiente se denomina factor de ajuste del ingreso (FIP) y es publicado por la CEPEP (Centro de Estudios para la Preparación y Evaluación Socioeconómica de Proyectos) anualmente.

3.4.2 Valor del tiempo de los pasajeros que realizan viajes con motivo de trabajo:

A partir de los valores correspondientes al tiempo laborado por semana de lapoblación ocupada del país, así como del promedio del ingreso de dicha poblaciónes posible estimar el costo horario promedio mediante la expresión:

$$SHP = [(FIP)(SMG)(7)]/HTP$$
 (4)

En donde:

SHP = valor del tiempo de los pasajeros que viajan por motivo de trabajo, expresado en \$/h.

FIP = factor de ajuste del ingreso de la población ocupada (promedio ponderado del ingreso expresado en número de salarios mínimos diarios).

SMG = promedio del salario mínimo general expresado en \$/día.7 = días /semana.

HTP = tiempo promedio que labora por semana la población ocupada.

3.4.3 Valor del tiempo de los pasajeros que viajan por motivo de placer

Para estimar el valor del tiempo de los usuarios del transporte carretero nacional que no viajan por motivos de trabajo, es decir, que la razón del viaje es de placer (visita a familiares y amigos, eventos sociales y culturales) o de turismo, se recurrirá a la metodología planteada por F. Cortés, en "El ingreso y la desigualdad en su distribución".

$$VTpp = 0.3 H \tag{5}$$

En donde:

VTpp = valor del tiempo de los pasajeros que viajan por motivo de paseo

H = 2 (FIP)(SMH)

H = ingreso horario familiar, expresado en \$/h

2 = número de miembros de la familia que cuentan con ingreso

FIP = factor de ajuste del ingreso de la población ocupada (promedio ponderado del ingreso, expresado en número de salarios mínimos generales diarios)

SMH = salario mínimo horario de la población, expresado en \$/h publicado por la CONASAMI (Comisión Nacional de los Salarios Mínimos,2012) anualmente.

3.4.4 Número de ocupantes en los vehículos.

Para determinar el número de ocupantes de los distintos vehículos, se utilizó la Publicación Técnica No 147 "CRITERIOS QUE INTERVIENEN LA METODOLOGIA DE EVALUACIÓN ECONÓMICA DE REHABILITACIÓN DE CAMINOS RURALES", en donde en el subcapítulo "Determinación de los ahorros en tiempo de recorrido", se determinan los niveles de ocupación para los vehículos tipo "A" y "B" los cuales son de 2.5 ocupantes (1.5 pasajeros y el conductor) por automóvil y 30 ocupantes (29 pasajeros y el conductor) por autobús.

La estimación del valor del tiempo de los conductores y de los ocupantes de los distintos vehículos que conforman el tránsito usuario del camino y que permite cuantificar los beneficios debidos a los ahorros en tiempo de recorrido ha sido realizada para el promedio nacional por lo que los costos horarios pueden ajustarse a cada entidad federativa, de acuerdo a lo estipulado en la estadística disponible en cada una de ellas. (Torres G. et al., 2000).

3.4.5 Costos de Operación del Ferrocarril.

Se determinó el costo de operación del ferrocarril, por medio de una publicación de "El Universal" donde nos dice que el transportar una tonelada por ferrocarril no rebasa los 0.034 dólares, ya que no existen documentos confiables en donde describan los costos de operación de los ferrocarriles así como los que describen los costos de operación de los vehículos representativos del transporte interurbano.

Sabemos que una plataforma la cual contiene 4 contenedores y es capaz de transportar 55 toneladas por contenedor. Y un Ferrocarril es capaz de arrastrar 100 vagones

La expresión siguiente permite determinar los costos de operación del ferrocarril, en forma anual.

Ferrocarril (FR) = (Toneladas Movidas /Día)*(\$ Costo de Tonelada (6) Movida/Km)*(365)*(Distancia Recorrida).

3.5 Indicadores de rentabilidad.

3.5.1 Valor Presente Neto.

"Es el valor en términos monetarios que da como resultado al restar los flujos de efectivo generados por el proyecto a la inversión inicial de un proyecto dado." El punto de

partida para la evaluación económica de un proyecto de inversión cuyos beneficios y costos se distribuyen a lo largo de cierto número de períodos en el futuro (desde t=0 hasta t=T) consiste en determinar cuál es el valor actualizado (en el momento en el que debe tomarse la decisión) de la suma de dichos beneficios menos los costos. Esto es lo que se denominaremos valor actual neto (VPN). (De Rus et al., 2006).

El proyecto consiste en una sucesión de flujos monetarios positivos (beneficios) y negativos (costos) que se suceden a partir de una inversión inicial realizada en el período t=0.

La fórmula que se emplea para el cálculo del VPN es la siguiente:

$$VPN = \sum (It - Et) \frac{1}{(1+i)^n}$$
 (7)

De dónde:

Et = Egresos totales.

It = Ingresos totales.

$$\frac{1}{(1+i)^n} = Factor_de_actualización$$

Algunas situaciones que se pueden presentar en el análisis del VPN:

- Si resulta que el VPN es positivo (VPN>0), la rentabilidad de la inversión es mayor que la tasa actualizada o de descuento. En consecuencia, el proyecto se acepta.
- Si el VPN es cero (VPN=0), entonces la rentabilidad es igual a la tasa de descuento, por lo que el proyecto puede considerarse aceptable.
- Si el VAN es negativo (VAN<0), la rentabilidad se encuentra por debajo de la tasa de descuento y en consecuencia, el proyecto debe descartarse.

3.5.2. Tasa Interna de Retorno.

Es la tasa de descuento que hace que el VPN sea igual a cero, o es la tasa que iguala la suma de los flujos descontados a la inversión inicial, es el único indicador económico que se calcula a precios constantes.

Para aplicar la TIR, se parte del supuesto que el VPN=0, entonces se buscará encontrar una tasa de actualización con la cual el valor actualizado de las entradas de un proyecto, se haga igual al valor actualizado de las salidas.

La ecuación de la TIR es la siguiente:

$$\sum_{t=0}^{t=n} (It - Et) \frac{1}{(1+i)^n} = 0$$
(8)

En consecuencia, la decisión de invertir se realiza comparando la TIR con una tasa de descuento aplicada que en este caso por efecto del ejercicio se tomó del 12%, lo que da la tasa aceptable mínima a que debe calcularse el crecimiento del capital invertido.

Esta tasa de descuento es necesaria para la actualización de los flujos de efectivo, y así tener el valor actual de un pago o ingreso futuro.

Criterios de aceptación o rechazo de proyectos con base a TIR:

La TIR, al igual que otros indicadores tiene dos criterios a seguir para aceptar o rechazar proyectos de inversión:

- Si la TIR es mayor o igual que la Tasa de descuento, el proyecto se acepta. (TIR = Tasa de Descuento).
- Si la TIR es menor que la Tasa de descuento, el proyecto se rechaza. (TIR < Tasa de Descuento). (Torres G., et al.,2000)

3.5.3 Índice de Rentabilidad

El índice de rentabilidad (IR), de la inversión es la suma de beneficios que se calcula serán obtenidos a lo largo de la vida útil del proyecto (horizonte económico) y la suma de los costos de inversión del mismo.

El índice de rentabilidad se calcula tomando en cuenta el valor de los beneficios y costos a precios de mercado mediante la siguiente expresión:

$$IR = \sum_{j=0}^{n} Bij / \sum_{j=0}^{n} Cj$$
(9)

En donde:

IR = Índice de Rentabilidad,

Bij = Beneficios derivados de los distintos criterios i en el año j

Cj = Costos de Inversión en el año j.

j = 0,1,2,3,...n

n = Horizonte económico del proyecto

La determinación del índice de rentabilidad a precios de mercado se emplea normalmente cuando el análisis costo-beneficio está orientado básicamente a proyectos de tipo privado, en donde se dispone de capital propio y no tiene que pagarse ningún cargo por financiamiento además de contar con horizontes económicos equiparables.

La estimación del índice de rentabilidad con valores actualizados se realiza cuando se trate de proyectos en los que deba retribuirse un costo originado por financiamiento a la institución (pública o privada) que proporciona el crédito, o bien cuando es necesario tomar en cuenta el llamado costo por externalidades, es decir, cuando parte de los beneficios y/o costos recaen sobre terceros, tal es el caso de obras de

infraestructura financiadas con recursos fiscales propios o provenientes de crédito externo, otorgados por instituciones internacionales de crédito, así como en aquellos proyectos cuyo horizonte económico es diferente. (Torres G., et al.,2000).

La expresión que se emplea en la obtención del índice de rentabilidad a precios actualizados es la que se muestra a continuación:

$$IR = \sum_{j=0}^{n} Bij (1+r)^{-j} / \sum_{j=0}^{n} Cj(1+r)^{-j}$$
(10)

En donde:

IR = Índice de Rentabilidad

Bij = Beneficios derivados de los distintos criterios i en el año j

Cj = Costos de inversión en el año j

r = Tasa de actualización

j = 0,1,2,3,...n

n = Horizonte económico

En este caso, es conveniente conocer el flujo de recursos reales (de los bienes y servicios) utilizados o producidos directamente por el proyecto.

Si el índice de rentabilidad es mayor o igual a 1, el proyecto es rentable, ya que el ingreso por los beneficios obtenidos es igual o superior al capital.

3.5.4 Índice de Rentabilidad Inmediata

El índice de rentabilidad inmediata, es el indicador que muestra la rapidez de recuperación de la inversión en el primer año de operación del proyecto.

Este indicador se define como el cociente que resulta de dividir los beneficios obtenidos en el primer año de operación del proyecto entre el costo de inversión del mismo.

Cuando la inversión se realiza en diferentes periodos del horizonte económico del proyecto, el índice de rentabilidad inmediata más representativo es el que se obtiene a precios actualizados. La expresión que se utiliza para su estimación es la siguiente:

IRI =
$$\left[\sum_{j=n}^{n-1} \text{Bij } (1+r)^{-j}\right] - \sum_{j=0}^{n-1} \text{Cj} (1+r)^{-j}\right],$$
(11)

En donde:

IRI = Índice de Rentabilidad Inmediata (Actualizado)

Bij = Beneficios derivados de los distintos criterios i en el año j

Cj = Costos de Inversión en el año j

r = Tasa de actualización

j = 0,1,2,....n

n = año de puesta de operación del proyecto

Este indicador tiene gran utilidad cuando al jerarquizar los proyectos de una cartera, nos encontramos con dos o más de ellos que tienen el IR, VPN o la TIR similares, ya que nos permite conocer si un gran porcentaje de la inversión realizada será recuperada en el corto plazo. (Torres G., et al.,2000).

DESCRIPCIÓN DE LA REGION

1. <u>Tequisquiapan</u>

1.1.Medio físico

El territorio del municipio de Tequisquiapan se encuentra ubicado en la parte Norte, a los 20° 39' y en el extremo Sur a los 20° 39' de latitud Norte. La región más oriental se localiza a los 99° 50' mientras que sus límites occidentales están a los 100° 05' de longitud.

La Cabecera Municipal se localiza a los 20° 31' 00'' de latitud Norte y 95° 52' 30'' de longitud Oeste.

Límites

- Al Norte con los municipios de Colón y Ezequiel Montes.
- Al Sur con el municipio de San Juan del Río.
- Al Este con el municipio de Ezequiel Montes y el Estado de Hidalgo.
- Al Oeste con los municipios de Pedro Escobedo y Colón

1.2.Orografía

El territorio de Tequisquiapan se encuentra situado en la altiplanicie mexicana, en las estribaciones australes de la Sierra Gorda, y donde se localizan zonas relativamente planas que forman pequeños valles y planicies que se han convertido en áreas de cultivo.

1.3.Geología y Geohidrología

Por las características tan especiales del subsuelo de Tequisquiapan consideramos de interés ampliar la información geológica de la región, a efecto de comprender por qué afloran corrientes subterráneas en forma de manantiales en las partes bajas del margen Noroeste y Suroeste del río San Juan.

En la mayor parte de la región afloran rocas ígneas extrusivas y sedimentarias

continentales recientes. Las rocas ígneas extrusivas son riolitos y basaltos, con sus

correspondientes derivados piroclásticos, o sea, compuestos formados bajo la acción del

calor.

La mayor parte de las elevaciones estás formadas por riolitos poco compactas y

generalmente de textura porfírica, de color rosado que observan un fuerte

fracturamiento. Las fracturas se presentan generalmente rellenas por cuarzo y en ocasiones

por vesículas de cuarzo y ópalos.

1.4. Características y Uso del Suelo

La topografía se caracteriza por ser terreno plano a ligeramente ondulado, con

suelos de tipo feozem a vertisol, de textura media y fina respectivamente, compuesta con

arena y arcilla; además de sedimentos terciarios que se encuentran intercalados con riolitos

y basaltos, formando capas de suelo que determinan la existencia de mantos acuíferos de

agua termal.

2. <u>Vizarrón de Montes</u>

2.1. Localización de Vizarrón de Montes

Vizarrón de Montes se localiza en el Municipio Cadereyta de Montes del Estado de

Querétaro Arteaga México y se encuentra en las coordenadas GPS:

Longitud (dec): -99.720000

Latitud (dec): 20.831667

La localidad se encuentra a una mediana altura de 2060 metros sobre el nivel del

mar.

30

DETERMINACIÓN DEL NIVEL DE SERVICIO.

Debido a que las características de la vialidad corresponden a unacarreterade dos carriles clase I, tomamos como referencia el manual de capacidad vial de los Estados Unidos;HigwayCapacity Manual 2000.

Al tener una carretera de dos carriles tipo I tenemos los siguientes niveles de servicio los cuales son referenciados a la tasa de flujo y velocidad de viaje correspondientes, como se menciona en el cuadro siguiente.

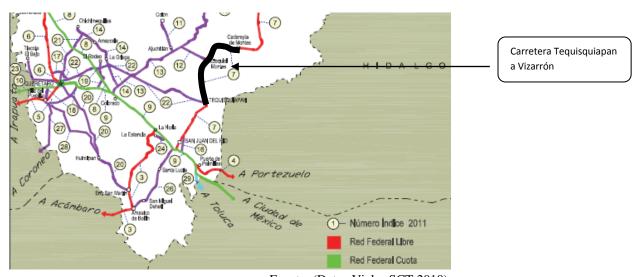
Cuadro 4. Niveles de servicio para carreteras de dos carriles tipo I.

NIVEL DE SERVICIO	TASA	DE	FLUJO	VELOCIDAD	DE
	(Vehículos	s ligeros/ho	ora)	VIAJE (km/h)	
A	490			90	
В	780			80-90	
С	1190			70-80	
D	1830			60-70	
Е	3200			<60	•

Fuente:(HCM, 2000) Capítulo 20

En el cuadro 2, se puede observar el nivel de servicio de la carretera en los siguientes 50 años, se determinó tomando el TDPA y el factor k´ de los datos viales SCT 2010, y realizando la proyección futura con un interés compuesto; TDPA(1+TCMA)^n

Cuadro 5. Comparativa de Niveles de servicio en 50 años.


Tramo: Carretera Tequisquiapan-	Tránsito Horario	Nivel de servicio
Vizarrón.	Máximo	
Carriles en toda la carretera		2 Carriles.
Año cero	459	A
Año cinco	508	A
Año diez	561	A
Año quince	621	A
Año veinte	688	A
Año veinticinco	761	A
Año treinta	844	В
Año treinta y cinco	935	В
Año cuarenta	1036	В
Año cuarenta y cinco	1148	В
Año cincuenta	1273	C

Es evidente que la alternativa de un ferrocarril se verá reflejada a partir del año 30 porque la carretera empezará a presentará algunos problemas de libertad de movimientos para el usuario.

Se considera que se ha alcanzado la máxima capacidad vehicular cuando el volumen de demanda rebasa el límite superior del volumen de servicio del nivel de servicio E.

ANALISIS FINANCIERO DE LA CARRETERA TEQUISQUIAPAN – VIZARRON

Se realizó en análisis económico para determinar la factibilidad de la construcción de una vía férrea de Tequisquiapan a Vizarrón de Montes para abaratar el costo de traslado de mercancías y de personas de un lugar a otro. Por lo siguiente primero se consultaron los datos viales de la Secretaría de Comunicaciones y Transportes, tomando en cuenta el aforo vehicular que sale y entra de Vizarrón de Montes en el Km 73.50.

Fuente: (Datos Viales SCT 2010)

Figura 3.Localización de Carretera Tequisquiapan – Vizarrón

Cuadro 6. Datos Viales SCT 2010

7 CARR: SAN JUAN DEL RIO - XILITLA						(CLAVE:	00183	3			RUT	A: M	EX-120				AÑO : 20)10
L U G A R	E S	T A	СІ	0 N		CI	LASI	FICA	CIOI	N V E	HIC	JLAR	ΕN	POF	RCIE	NTO		C O O R D	ENADAS
	KM	TE	SC	TDPA	A	В	C2	C3	T3S2	T3S3	T3S2R4	OTROS	Α	В	С	K	D	LATITUD	LONGITUD
T. DER. TEQUISQUIAPAN	19.80	1	2	5836	79.3	6.1	7.6	1.3	3.6	0.8	0.3	1.0	79.3	6.1	14.6	0.095	0.501	20.516450	-99.901146
T. DER. TEQUISQUIAPAN	19.80	3	0	11771	85.0	2.6	5.4	1.4	2.4	0.9	0.6	1.7	85.0	2.6	12.4	0.074	0.506	20.543537	-99.902142
EZEQUIEL MONTES	36.50	1	0	9792	78.5	2.5	4.7	2.5	5.9	2.7	2.5	0.7	78.5	2.5	19.0	0.072	0.501	20.646938	-99.904907
EZEQUIEL MONTES	36.50	3	0	8670	79.4	2.2	4.4	2.0	5.6	2.9	2.6	0.9	79.4	2.2	18.4	0.070	0.502	20.677131	-99.891078
CADEREYTA	47.90	3	0	8380	80.7	2.2	4.5	2.1	5.3	2.2	2.4	0.6	80.7	2.2	17.1	0.073	0.510	20.701624	-99.807901
VIZARRON DE MONTES	73.50	3	0	2868	81.1	2.1	4.4	2.1	5.2	2.1	2.4	0.6	81.1	2.1	16.8	0.078	0.505	20.842699	-99.715484
												Fu	ente	e: (I	Date	s V	iale	s SCT	2010)

Como lo que más nos interesa en este proyecto es que el tren además de transportar personas con fines turísticos transporte mercancías, el análisis financiero está enfocado en el costo de operación de los camiones de carga, C2, C3, T3S2, T3S3, T3S2R4 Y otros camiones que transporten mercancías.

El horizonte económico para este proyecto será de 50 años, ya que es el tiempo en que normalmente duran las concesiones al ferrocarril y se verán introducidos tanto los costos de operación de los vehículos pesados así como los costos de operación del tren utilizado en dicho proyecto.

El transporte de carga y pasajeros en México se realiza por medio de camiones y autobuses. Mientras en EU y Canadá el volumen de autotransporte de carga no rebasa 63%, en México supera 85%. La diferencia se explica por el debilitamiento de nuestro sistema ferroviario: esos países movilizan más de 24% de sus mercancías por tren; México sólo 7%.

El transporte público de pasajeros presenta relaciones aún más contrastantes: en la UE uno de cada dos pasajeros viaja en tren; en México casi nadie lo puede hacer. En México, el costo de transporte de mercancías por tren es 30% más barato que por carretera. Desplazar por carretera una tonelada de mercancía por kilómetro cuesta 0.055 dólares; por vías férreas no rebasa los 0.034 dólares. (Saldaña S., 2008).

Sabemos que una plataforma la cual contiene 4 contenedores y es capaz de transportar 55 toneladas por contenedor.

Con esto sabemos que una plataforma de 4 contenedores tomando en cuenta una doble estiba va a tener un costo aproximado de \$0.034 por las 55x4 toneladas que maneja esto nos da una igualdad a \$24.2 pesos mexicanos sabiendo que actualmente el dólar se encuentra en un tipo de cambio de \$13.0106 pesos a la venta.

Con respecto a la NORMA Oficial Mexicana NOM-012-SCT-2-1995, Sobre el peso y dimensiones máximas con los que pueden circular los vehículos de autotransporte que transitan en los caminos y puentes de jurisdicción federal, reflejados en el cuadro 7.

Cuadro 7. Pesos totales de vehículos

TIPO DE VEHICULO	TONELADAS TOTALES
C2	17.5 TON
C3	22 TON
T3S2	44 TON
T3S3	48.5 TON
T3S2R4	65.5 TON

Fuente: NORMA Oficial Mexicana NOM-012-SCT-2-1995

Cuadro 8. Datos viales SCT 2001

6 CARR: SAN JUAN DEL RIO - XILITLA	CLA	VE:		183					RUTA:	MEX-12	20				AÑO:	2001
LUGAR	ESTACIO								SIFICAC		VEHICULA		ORCIE			
	KM	TE	SC	TDPA	A	В	C2	C3	T3S2	T3S3	T3S2R4	OTROS	Α	В	С	K'
SAN JUAN DEL RIO	0.00															
T. DER. LIBRAMIENTO DE SAN JUAN DEL RIO	5.20	3	0	8827	87.4	1.9	3.6	2.4	1.3	0.8	0.5	2.1	87	2	11	0.094
T. DER. TEQUISQUIAPAN	19.80	1	0	8422	79.2	4.3	5.9	3.7	2.7	2.3	0.5	1.4	79	4	17	0.093
T. DER. TEQUISQUIAPAN	19.80	3	0	5013	83.1	2.7	5.9	2.6	2.8	1.5	0.4	1.0	83	3	14	0.104
EZEQUIEL MONTES	36.50	1	0	5240	86.2	1.7	4.3	3.2	1.2	1.0	0.5	1.9	86	2	12	0.094
EZEQUIEL MONTES	36.50	3	0	3990	83.7	1.4	4.5	3.6	2.5	2.1	0.1	2.1	84	1	15	0.090
CADEREYTA	47.90	3	0	2410	89.6	1.5	5.0	1.3	0.5	0.3	0.7	1.1	90	2	8	0.081
VIZARRON DE MONTES	73.50	3	0	1874	83.5	4.9	5.2	2.3	1.6	1.0	0.5	1.0	84	5	11	0.115
T. DER. SAN JOAQUIN	79.50	3	0	860	84.7	4.6	6.5	1.8	0.6	0.4	0.2	1.2	85	5	10	0.103
T. IZQ. HIGUERILLAS	89.10	3	0	1067	84.6	4.5	6.5	2.3	0.6	0.3	0.1	1.1	85	5	10	0.095

Fuente: (Datos Viales SCT 2001)

Para obtener la TCMA se tomaron en cuenta los datos viales del 2001 y los datos viales del 2010, los cuales están en los cuadros 8 y 6 respectivamente.

Cuadro 9. Porcentajes de TDPA en la Carretera

	2001	2010	PORCENTAJ	ES
TDPA	1874	2868	2001	2010
A	1565	2326	0.835	0.811
В	92	60	0.049	0.021
C2	97	126	0.052	0.044
C3	43	60	0.023	0.021
T3S2	30	149	0.016	0.052
T3S3	19	60	0.01	0.021
T3S2R4	94	69	0.05	0.024

Y con esto llegamos a las tasas de crecimiento media anual de cada uno de los vehículos que transitan por esta carretera, mostradas en el cuadro 10.

Cuadro 10. Tasas de Crecimiento media anual.

TIPO	TCMA
A	4%
В	-4%
C2	3%
C3	3%
T3S2	17%
T3S3	12%
T3S2R4	-3%

Como las tasas de crecimiento se disparan mucho en algunos casos y en otros son negativas, tomamos tasas de crecimiento media anual comunes, con las cuales calculamos la demanda futura como si la TCMA fuese un interés compuesto; TDPA(1+TCMA) ^n (como se muestra en el Anexo 1).

Con esto se realizaron 2 análisis financieros uno en donde comparamos el transporte de mercancías en la carretera actual contra una el transporte de mercancías en una vía férrea.

Y el otro análisis se hace comparando la carretera actual con una ampliación de está teniendo así ahorros en tiempo de traslado de la carretera.

Valor del tiempo de las personas

Para el cálculo de los dos proyectos se tomaran en cuenta ahorros en valor del tiempo de las personas, los cuales se verán reflejados en un tiempo de recorrido más rápido, suponiendo que si ampliamos la carretera actual tendremos el mismo ahorro de tiempo que si construimos una vía férrea, puesto que con la vía férrea abra menos transporte de carga y por lo tanto una velocidad de flujo mayor, como puede verse en los cuadros 11 y 12.

Cuadro 11. Tiempo de recorrido sin proyecto.

Vehiculos A			Vehiculos B		
DISTANCIA(Km)	53.7	Km	DISTANCIA(Km)	53.7	Km
VEOLOCIDAD	65.00	Km/hr	VEOLOCIDAD	62.0	Km/hr
TIEMPO	0.826	Hr	TIEMPO	0.866	Hr

Cuadro 12. Tiempo de recorrido con proyecto

Vehiculos A			Vehiculos B		
DISTANCIA(Km)	53.7	Km	DISTANCIA(Km)	53.7	Km
VEOLOCIDAD	68.00	Km/hr	VEOLOCIDAD	65.0	Km/hr
TIEMPO	0.790	Hr	TIEMPO	0.826	Hr

En el cuadro 13 se observa el cálculo del valor del tiempo de los usuarios que viajan por motivo de trabajo y los que viajan por motivo de placer.

Cuadro 13. Cálculo del valor del tiempo.

Valor del t	tiempo por motivo de	e trabajo (SHP):							
SHP=	(FIP*SMPG*7)/HTP			SHP=	28.60617494		Viajes por motivo	de trabajo	20%
Valor del t	tiempo por motivo de	e placer (VTpp):					Viajes por motivo	de placer	80%
VTpp=	0.3*H			VTpp=	17.16370496				
DONDE									
H=	ingreso horario famil	liar = 2*FIP*SMH			57.21234988				
SMH=	salario mínimo por h	ora (en pesos) = S	MGP / PHTD		9.743247596				
PHTD=	promedio de horas t	rabajadas diarias =	HTP / 7		6.209428571				
HTP=	promedio de las hor	as trabajadas por s	emana =		43.466				
FIP=	factor de ajuste del i	ingreso promedio d	e la población =		2.936				
SMPG=	salario mínimo gener	ral promedio (en pe	sos diarios)=		60.5 ←	PUBLICADO POR	CONASIMI 2012		

Con esto calculamos el costo por vehículo por hora que transitan en la carretera.

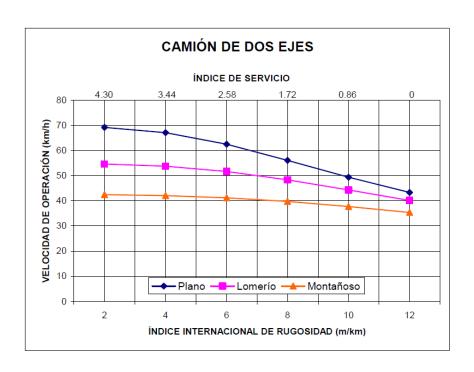
Considerando que viajan 2.5 personas por vehículo tipo A y 30 por vehículo tipo B, se obtienen los beneficios derivados por ahorros en tiempo de recorrido, (como se muestra en anexo 2).

Análisis 1.

Carretera actual contra ferrocarril.

Este análisis se realizó tomando en cuenta únicamente vehículos pesados los cuales son el transporte directo de mercancías producidas en esta parte del estado Queretano.

En el cuadro 14 se muestra el costo paramétrico por m2 de vía de ferrocarril a partir del cual se obtuvo el costo total de la obra.


Cuadro 14. Cálculo de costo paramétrico Vía Férrea

	NOMBRE	DE LA OBRA							DESCRIPCIÓN					
Sobre Carreter	iobre Carretera San Juan del Rio-Xilitla Queretaro Qro. De Km 19+800 al Km 73+500								Construcción de vía ferrea de Tequisquiapan a Vizarron					
No	CONCEPTO	UN	Largo	Ancho	Alto	pz	PARÁM	CANTIDAD TOTAL	PU		IMPORTE			
		COSTOS	PARAMETRIC	COS DE LA C	CARRETER	RA LAND	A-PACUL/	1						
1	CARRETERA													
1.1	Construcción de infraestructura ferroviaria	ml	52,084.00	9.40	1.00	1	1.000	489,589.60	650.00	\$	318,233,240.00			
1.2	Locomotora tipo AC4400CW	Pza				1	1.000	40,000,000.00	1.00	\$	40,000,000.00			
									SUB TOTAL =	\$	358,233,240.00			
	DIRECCIÓN DE OBRA	%					2.50%		358,233,240.00	\$	8,955,831.00			
									SUB TOTAL =	\$	367,189,071.00			
									mas 16% IVA =	\$	58,750,251.36			
									TOTAL=	\$	425,939,322.36			

El costo total de la obra sería \$ 367,189,071.00 pesos, con este costo de inversión empezamos a desarrollar el análisis financiero de esta obra.

Para realizar la comparación de costos de operación de cada uno de los vehículos recurrimos a la publicación técnica No 337 del IMT, "Costos de operación base de los vehículos representativos del transporte interurbano".

1.- Primero se calculó el costo del operación de vehículos pesados por esta carretera, por medio de las tablas publicadas en la publicación técnica No 337, mismas que se muestran en las figuras 4, 5, 6 y 7, y en los cuadros 15, 16, 17, 18, y 19.

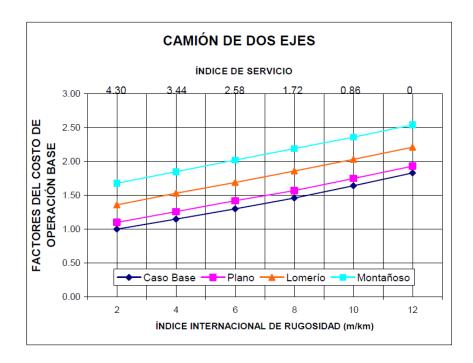
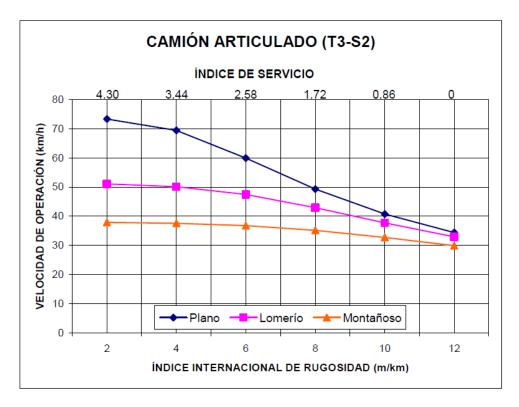



Figura 4. Gráficas para determinar factores del Vehículo tipo C2. (Torres, et al., 2010).

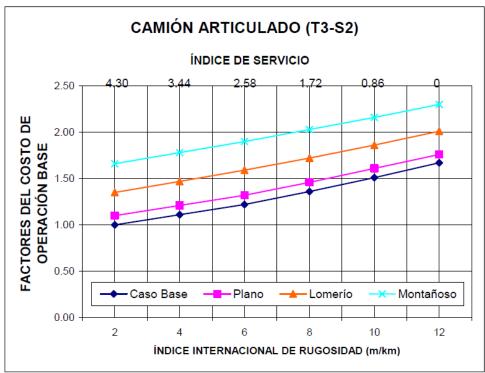
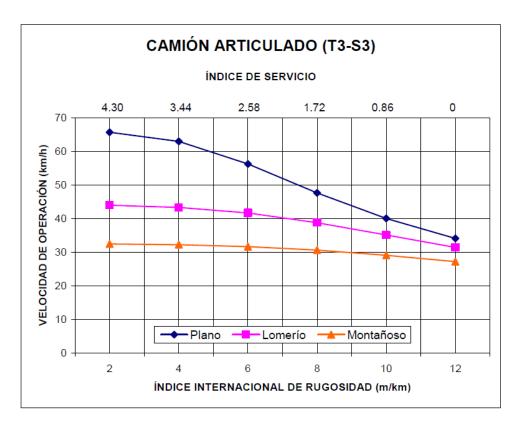



Figura 5. Gráficas para determinar factores del Vehículo tipo T3-S2. (Torres, et al., 2010).

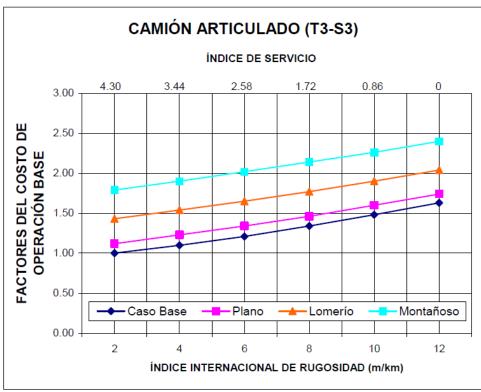
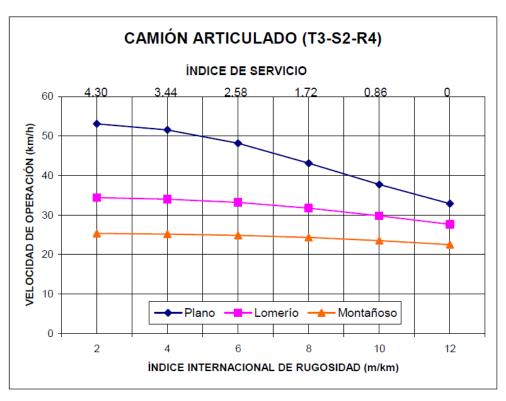



Figura 6. Gráficas para determinar factores del Vehículo tipo T3-S3. (Torres, et al., 2010).

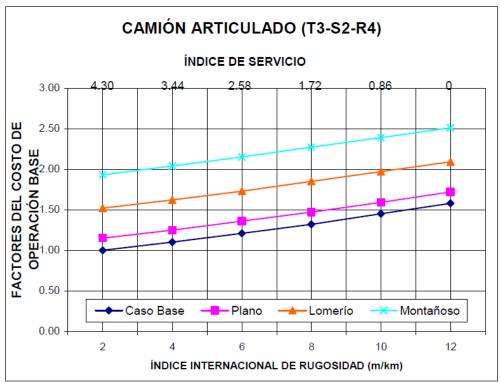


Figura 7. Gráficas para determinar factores del Vehículo tipo T3-S2-R4. (Torres, et al., 2010).

Cuadro 15. Costo de operación base para camión C2, (Torres, et al., 2010).

COSTOS DE OPERACIÓN-CAMIÓN DE DOS EJES

Valores calculados, en pesos por veh-km (2008)

IIR	Caso base	Plano	Lomerío	Montañoso
2	4.73	5.21	6.45	7.96
4	5.46	5.97	7.23	8.77
6	6.17	6.70	8.01	9.56
8	6.92	7.45	8.79	10.36
10	7.75	8.27	9.60	11.18
12	8.65	9.14	10.45	12.03

Cuadro 16. Costo de operación base para camión C3, (Torres, et al., 2010).

FACTORES DEL COSTO BASE-CAMIÓN DE TRES EJES (adimensional)

IIR	Caso base	Plano	Lomerío	Montañoso	
2	1.00	1.12	1.44	1.82	
4	1.11	1.24	1.56	1.94	
6	1.22	1.35	1.68	2.07	
8	1.33	1.47	1.81	2.20	
10	1.45	1.59	1.93	2.33	
12	1.58	1.72	2.06	2.46	

Cuadro 17. Costo de operación base para camión articulado T3-S2. (Torres, et al., 2010).

FACTORES DEL COSTO BASE-CAMIÓN ARTICULADO (T3-S2) (adimensional)

IIR	Caso base	Plano	Lomerío	Montañoso	
2	1.00	1.10	1.35	1.66	
4	1.11	1.21	1.47	1.78	
6	1.22	1.32	1.59	1.90	
8	1.36	1.46	1.72	2.03	
10	1.51	51 1.61 1.		2.16	
12	1.67	1.76	2.01	2.30	

Cuadro 18. Costo de operación base para camión articulado T3-S3. (Torres, et al., 2010). COSTOS DE OPERACIÓN-CAMIÓN ARTICULADO (T3-S3)

Valores calculados, en pesos por veh-km (2008)

IIR	Caso base	Plano	Lomerío	Montañoso	
2	10.85	12.14	15.48	19.38	
4	11.97	13.31	16.70	20.62	
6	13.16	14.52	17.94	21.89	
8	14.55	15.86	19.26	23.20	
10	16.08	17.34	20.66	24.58	
12	17.69	18.90	22.14	26.04	

Cuadro 19. Costo de operación base para camión articulado T3-S2-R4. (Torres, et al., 2010).

VELOCIDAD DE OPERACIÓN-CAMIÓN ARTICULADO (T3-S2-R4) Valores calculados, en km/h (2008)

IIR	Plano	Lomerío	Montañoso		
2	53.11	34.42	25.34		
4	4 51.57		25.16		
6	48.19	33.19	24.85		
8	43.14	31.77	24.32		
10	37.74	29.83	23.52		
12	32.89	27.65	22.51		

Tomando en cuenta un terreno plano se obtuvo un costo de operación neto por km en el cuadro 20.

Cuadro 20. Costo Neto por Km

	Costos		
	Op. Base	Factor ajuste	Costo Neto
A	2.96	1.2	3.552
В	8.86	1.2	10.632
C2	4.73	1.4	6.622
C3	6.5	1.35	8.775
T3S2	9.84	1.35	13.284
T3S3	10.85	1.35	14.6475
T3S2R4	13.43	1.35	18.1305

Longitud de la carretera	53.70 km

Al contar con los datos del costo de operación por Kilómetro de los vehículos pesados y la distancia de la carretera el siguiente paso es calcular el costo de todos los

vehículos que circulan por esta carretera, multiplicando; (TDPA)*(365 días del año)*(factor de ajuste)*(costo de operación Base)*(Longitud de la carretera), para todo el horizonte económico de análisis, (como se muestra en el anexo 3).

Teniendo el costo de transporte de vehículos se calcula el peso transportado por cada uno de los vehículos el cuadro 21 muestra las toneladas movidas por cada tipo de vehículo. Para así obtener un precio neto por tonelada transportada utilizando (Como se muestra en el anexo 4)

Cuadro 21. Pesos transportados por Vehículos pesados

C2	17.5	Ton
C3	22	Ton
T3S2	44	Ton
T3S3	48.5	Ton
T3S2R4	65.5	Ton

Con esto calculamos la carga transportada por los vehículos pesados y la carga transportada por el ferrocarril.

Se conoce que una plataforma la cual contiene 4 contenedores y es capaz de transportar 55 toneladas por contenedor. Y un Ferrocarril es capaz de arrastrar 100 vagones agregando una máquina de ferrocarril cada 10 años para así satisfacer la demanda de carga por transportar.

En el anexo 5. Se consigna la evolución del costo de las toneladas movidas por año por carretera y por ferrocarril, así como, el costo de las locomotoras.

Con la diferencia de estos costos se realiza análisis financiero como se muestra en los cuadro 22 Y 23 con lo cual se obtiene por una parte el Valor Presente Neto a lo largo del horizonte económico del proyecto y sus indicadores de rentabilidad .

Cuadro 22. Cálculos de análisis costo beneficio, Ferrocarril vs Transporte pesado

TOTAL DE BENEFI	CIO			INVERSIÓN					VALORES ACTUALIZAI	oos	
AÑO	TPESADO	TREN	BENEFICIO NETO		VN	VN ACUMULADO	1/(1+i)^n	COSTOS DE IV	AHORROS TOTALES	VPN	VPN ACUMULADO
2011	113436023.82	28439947.36	0.00	367,189,071.00	-367189071.00	-367189071.00	1.000			-367189071	-367189071
2012	116067435.45	28439947.36	87635116.33		87635116.33	-279553954.67	0.893	0	78245639.58	78245639.58	-288943431.4
2013	118765355.18	28439947.36	90333188.62		90333188.62	-189220766.05	0.797	0	72013064.91	72013064.91	-216930366.5
2014	121531556.25	28439947.36	93099545.31		93099545.31	-96121220.73	0.712	0	66266417.44	66266417.44	-150663949.1
2015	124367860.85	28439947.36	95936008.64		95936008.64	-185212.10	0.636	0	60969067.86	60969067.86	-89694881.22
2016	127276141.48	28439947.36	98844451.17		98844451.17	98659239.08	0.567	0	56086996.13	56086996.13	-33607885.08
2017	130258322.42	28439947.36	101826797.25		101826797.25	200486036.33	0.507	0	51588624.46	51588624.46	17980739.38
2018	133316381.16	28439947.36	104885024.44		104885024.44	305371060.77	0.452	0	47444658.51	47444658.51	65425397.88
2019	136452349.94	28439947.36	108021165.03		108021165.03	413392225.80	0.404	0	43627936.82	43627936.82	109053334.7
2020	139668317.24	28439947.36	111237307.58		111237307.58	524629533.38	0.361	0	40113288.27	40113288.27	149166623
2021	142966429.45	28439947.36	114535598.55		114535598.55	639165131.93	0.322	0	36877397.37	36877397.37	186044020.3
2022	146348892.47	42659921.04	103698270.21	40000000.00	63698270.21	702863402.14	0.287	11499044.16	18311730.56	6812686.395	192856706.7
2023	149817973.39	42659921.04	107167537.11		107167537.11	810030939.25	0.257	0	27507237.55	27507237.55	220363944.3
2024	153376002.24	42659921.04	110725755.66		110725755.66	920756694.91	0.229	0	25375485.38	25375485.38	245739429.7
2025	157025373.80	42659921.04	114375320.70		114375320.70	1035132015.61	0.205	0	23403456.69	23403456.69	269142886.4
2026	160768549.38	42659921.04	118118693.64		118118693.64	1153250709.25	0.183	0	21579843.71	21579843.71	290722730.1
2027	164608058.77	42659921.04	121958404.34		121958404.34	1275209113.59	0.163	0	19894057.59	19894057.59	310616787.7
2028	168546502.16	42659921.04	125897053.06		125897053.06	1401106166.65	0.146	0	18336193.32	18336193.32	328952981
2029	172586552.13	42659921.04	129937312.47		129937312.47	1531043479.11	0.130	0	16896994.85	16896994.85	345849975.8
2030	176730955.74	42659921.04	134081929.70		134081929.70	1665125408.81	0.116	0	15567820.7	15567820.7	361417796.5
2031	180982536.62	42659921.04	138333728.48		138333728.48	1803459137.30	0.104	0	14340610.13	14340610.13	375758406.7
2032	185344197.17	56879894.72	128475637.62	4000000.00	88475637.62	1891934774.91	0.093	3702384.467	8189270.661	4486886.194	380245292.9
2033	189818920.81	56879894.72	132950587.96	10000000.00	132950587.96	2024885362.87	0.083	0	10987370.35	10987370.35	391232663.2
2034	194409774.25	56879894.72	137541672.64		137541672.64	2162427035.51	0.074	0	10148918.85	10148918.85	401381582.1
2035	199119909.91	56879894.72	142252044.16		142252044.16	2304679079.67	0.066	0	9371863.873	9371863.873	410753445.9
2036	203952568.34	56879894.72	147084943.16		147084943.16	2451764022.83	0.059	0	8652022.701	8652022.701	419405468.6
2037	208911080.73	56879894.72	152043700.95		152043700.95	2603807723.78	0.053	0	7985458.241	7985458.241	427390926.9
2038	213998871.53	56879894.72	157131742.04		157131742.04	2760939465.83	0.047	0	7368469.891	7368469.891	434759396.8
2039	219219461.06	56879894.72	162352586.88		162352586.88	2923292052.71	0.042	0	6797583.924	6797583.924	441556980.7
2040	224576468.31	56879894.72	167709854.54		167709854.54	3091001907.25	0.037	0	6269543.57	6269543.57	447826524.3
2041	230073613.71	56879894.72	173207265.56		173207265.56	3264209172.81	0.037	0	5781298.925	5781298.925	453607823.2
2042	235714722.04	71099868.40	164628671.14	4000000.00	124628671.14	3388837843.96	0.030	1192068.71	3714148.481	2522079.771	456129903
2042	241503725.45	71099868.40	170417950.90	40000000.00	170417950.90	3559255794.86	0.037	1152000.71	4534596.136	4534596.136	460664499.1
2044	247444666.48	71099868.40	176359173.81		176359173.81	3735614968.67	0.024	0	4189896.62	4189896.62	464854395.7
2045	253541701.25	71099868.40	182456496.10		182456496.10	3918071464.76	0.021	0	3870317.197	3870317.197	468724712.9
2046	259799102.73	71099868.40	188714190.84		188714190.84	4106785655.60	0.019	0	3574158.154	3574158.154	472298871.1
2047	266221264.02	71099868.40	195136651.26		195136651.26	4301922306.86	0.017	0	3299818.338	3299818.338	475598689.4
2048	272812701.88	71099868.40	201728394.23		201728394.23	4503650701.09	0.017	0	3045791.657	3045791.657	478644481.1
2048	279578060.19	71099868.40	208494063.76		208494063.76	4712144764.85	0.013	0	2810663.364	2810663.364	481455144.4
2050	286522113.68	71099868.40	215438434.68		215438434.68	4927583199.53	0.013	0	2593106.184	2593106.184	484048250.6
2051	293649771.60	71099868.40	222566416.39		222566416.39	5150149615.92	0.012	0	2391876.359	2391876.359	486440127
2052	300966081.63	85319842.08	215663083.01	4000000.00	175663083.01	5325812698.93	0.011	383814.2208	1685549.733	1301735.512	487741862.5
2053	308476233.86	85319842.08	223173572.11	40000000.00	223173572.11	5548986271.04	0.010	363614.2206	1911990.863	1911990.863	489653853.3
2053	316185564.85	85319842.08	230883246.71		230883246.71	5779869517.75	0.009	0	1766108.766	1766108.766	491419962.1
2054	324099561.85	85319842.08 85319842.08	238797594.19		238797594.19	6018667111.94	0.008	0	1630936.115	1630936.115	493050898.2
2056	332223867.14	85319842.08	246922256.96		246922256.96	6265589368.90	0.007	0	1505737.331	1505737.331	494556635.5
2056	340564282.46	85319842.08 85319842.08	255263036.92		255263036.92	6520852405.81	0.006	0	1389821.062	1389821.062	495946456.6
2057	349126773.62	85319842.08 85319842.08	263825900.01		263825900.01	6784678305.83	0.005	0	1282538.358	1282538.358	497228995
2058	357917475.24	85319842.08 85319842.08	272616981.00		272616981.00	7057295286.82	0.005	0	1183280.795	1183280.795	497228995 498412275.8
2059	366942695.54	85319842.08 85319842.08	272616981.00		281642588.25	7338937875.07	0.004	0	1091478.577	1091478.577	498412275.8 499503754.3
2060	376208921.40	85319842.08 85319842.08	290909208.81		290909208.81	7629847083.88	0.004	0	1091478.577	1091478.577	499503754.3 500510353
2001	370200321.40	03313042.08	8157036154.88		3264209172.81	3264209172.81	0.003	382390499.6	884476735.5	500510353	200210222
			8157036154.88	J	5264209172.81	32642091/2.81		382390499.6	884476735.5	500510353	

Cuadro 23. Indicadores económicos ferrocarril vs Carretera

	VPN	3264209172.81	3,264.21	millones
TASA DE DESC.	12%	TIR	26.30%	
		IR	2.313019639	
		IRI	0.213093596	
		TRI	21.31%	

Tenemos una tasa interna de retorno de 26.30 % la cual nos indica que el proyecto es altamente rentable.

Análisis 2.

Se comparó el transporte de vehículos ligeros y pesados en la carretera actual contra los mismos vehículos en una carretera modificada para aumentar las velocidades de operación.

Se calcularon los costos de operación con y sin proyecto como se muestra en los cuadros 24 y 25.

Cuadro 24. Costos de operación sin proyecto

	costos Op	Factor ajuste	Costo Neto		
Α	2.96	1.2	3.552	DISTANCIA(Km)	53.7
В	8.86	1.2	10.632		
C2	4.73	1.4	6.622		
C3	6.5	1.35	8.775		
T3S2	9.84	1.35	13.284	Costos de operaci	ón
T3S3	10.85	1.35	14.6475		
T3S2R4	13.43	1.35	18.1305		

Cuadro 25. Costos de operación con proyecto

	costos Op	Factor ajuste	Costo Neto	
Α	2.96	1	2.96	DISTANCIA(Km) 53.7
В	8.86	1	8.86	
C2	4.73	1	4.73	
C3	6.5	1	6.5	
T3S2	9.84	1	9.84	Costos de operación
T3S3	10.85	1	10.85	
T3S2R4	13.43	1	13.43	

En los costos de operación con proyecto se idealiza el desplazamiento vehicular a un estado óptimo, en el cual el IIR es lo más cercano a 2 con el que concluimos que la carretera estaría en excelentes condiciones.

Con esto hacemos la comparación de costos de operación obteniendo el beneficio económico de la obra.

Cuadro 26. Cálculo de costo paramétrico ampliación de la carretera actual.

		NOMBRI	E DE LA OBRA						DESCRIPCIÓN		
obre Carretera San Juan del Rio-Xilitla Queretaro Qro. De Km 19+800 al Km 73+500					Ampliación	Ampliación de la carretera Tequisquiapan-Vizarrón					
No	CONCEPTO	UN	Largo	Ancho	Alto	pz	PARÁM	CANTIDAD TOTAL	PU	IMPORTE	
COSTOS PARAMETRICOS DE LA CARRETERA LANDA-P											
1	CARRETERA										
1.1	Construcción de ampliación de carretera	ml	53,700.00	5.00	1.00	1	1.000	268,500.00	573.00	\$	153,850,500.00
									SUB TOTAL =	\$	153,850,500.00
	DIRECCIÓN DE OBRA	%					2.50%		153,850,500.00	\$	3,846,262.5
		·							SUB TOTAL =	\$	157,696,762.5
									mas 16% IVA =	\$	25,231,482.0
									TOTAL=	\$	182,928,244.50

El costo total de la obra sería \$ 157,696,762.50 pesos, como se muestra en el cuadro 26. Con este costo de inversión empezamos a desarrollar el análisis financiero de esta obra.

Se determino el costo de operación con y sin proyecto. (Los cuales se muestra en el anexo 6 y el anexo 7 respectivamente).

Con estos costos de operación se determinan la diferencia de costos de operación los cuales son el ahorro de los usuarios de la carreta. (Los cuales se ven reflejados en el anexo 8).

Con la diferencia de estos costos se realiza análisis financiero como se muestra en los cuadro 27 Y 28 con lo cual se obtiene por una parte el Valor Presente Neto a lo largo del horizonte económico del proyecto y sus indicadores de rentabilidad .

Cuadro 27. Cálculos del análisis económico, carretera actual Vs Carretera mejorada

TOTAL DE BENEFI						v	ALORES ACTUALIZADOS		
	BENEFICIO NETO	INVERSIÓN	VN	VN ACUMULADO	1/(1+i)^n	COSTOS DE IVERCIÓN	AHORROS TOTALES	VPN	VPN ACUMULADO
2011	0.00		-157696762.00		1.00	157696762.00		-157696762.00	-157696762.00
2012	30536826.30		29419047.10		0.89	998017.14	26267006.34	25268989.20	-132427772.80
2013	31240815.94	1117779.20	30123036.75		0.80	891086.73	24013900.47	23122813.74	-109304959.06
2014	31962554.97	5833410.18	26129144.79		0.71	4152106.14	18598209.16	14446103.01	-94858856.05
2015	32702516.30	1117779.20	31584737.11	-40440796.25	0.64	710368.89	20072671.43	19362302.55	-75496553.50
2016	33461185.90	1117779.20	32343406.71	-8097389.54	0.57	634257.93	18352517.57	17718259.64	-57778293.86
2017	34239063.17	7789523.77	26449539.40		0.51	3946415.16	13400159.80	9453744.64	-48324549.22
2018	35036661.31	1117779.20	33918882.11	52271031.97	0.45	505626.54	15343179.71	14837553.17	-33486996.05
2019	35854507.71	1117779.20	34736728.51	87007760.48	0.40	451452.27	14029582.04	13578129.77	-19908866.28
2020	36693144.36	5833410.18	30859734.18		0.36	2103586.19	11128329.51	9024743.32	-10884122.96
2021	37553128.26	1117779.20	36435349.07		0.32	359894.99	11731207.27	11371312.28	487189.32
2022	38435031.86	1117779.20	37317252.67		0.29	321334.81	10727818.41	10406483.60	10893672.93
2023	39339443.46	7789523.77	31549919.69		0.26	1999376.74	8098078.57	6098701.83	16992374.70
2024	40266967.70	1117779.20	39149188.51	262319204.60	0.23	256166.14	8971983.57	8715817.43	25708192.18
2025	41218226.00	1117779.20	40100446.81	302419651.40	0.20	228719.77	8205345.91	7976626.14	33684818.3
2026	42193857.05	5833410.18	36360446.87	338780098.27	0.18	1065742.23	6642917.70	5577175.47	39261993.8
2027	43194517.28	1117779.20	42076738.09		0.16	182334.00	6863627.44	6681293.44	45943287.2
2028	44220881.40	1117779.20	43103102.21		0.15	162798.21	6277722.91	6114924.70	52058211.9
2029	45273642.89	7789523.77	37484119.12		0.13	1012946.48	4874419.49	3861473.01	55919684.9
2030	46353514.52	1117779.20	45235735.33	506679793.01	0.12	129781.74	5252175.43	5122393.69	61042078.6
2031	47461228.96	1117779.20	46343449.76		0.10	115876.55	4804275.52	4688398.97	65730477.6
2032	48597539.28	5833410.18	42764129.10		0.09	539938.18	3958231.18	3418293.00	69148770.6
2033	49763219.57	1117779.20	48645440.37	644432812.24	0.08	92376.08	4020181.31	3927805.23	73076575.8
2034	50959065.52	1117779.20	49841286.32		0.07	82478.64	3677686.63	3595207.99	76671783.8
2035	52185895.04	7789523.77	44396371.27		0.07	513190.21	2924926.32	2411736.11	79083519.9
2036	53444548.92	1117779.20	52326769.73		0.06	65751.47	3078033.62	3012282.15	82095802.0
2037	54735891.44	1117779.20	53618112.25		0.05	58706.67	2816066.65	2757359.99	84853162.0
2038	56060811.06	5833410.18	50227400.88		0.05	273549.49	2355342.63	2081793.15	86934955.2
2039	57420221.11	1117779.20	56302441.91		0.04	46800.60	2357342.01	2310541.42	89245496.6
2040	58815060.50	1117779.20	57697281.31	1008842475.91	0.04	41786.25	2156913.32	2115127.07	91360623.7
2041	60246294.47	7789523.77	52456770.70		0.03	259998.13	1750898.10	1490899.97	92851523.6
2042	61714915.31	1117779.20	60597136.11		0.03	33311.74	1805898.75	1772587.01	94624110.6
2043	63221943.13	1117779.20	62104163.93	1184000546.65	0.0266	29742.63	1652509.61	1622766.99	96246877.6
2044	64768426.70	5833410.18	58935016.52	1242935563.17	0.0238	138588.68	1400163.21	1261574.53	97508452.1
2045	66355444.23	1117779.20	65237665.04		0.0212	23710.64	1383839.23	1360128.59	98868580.7
2046	67984104.24	1117779.20	66866325.04		0.0189	21170.21	1266416.80	1245246.58	100113827.3
2047	69655546.40	7789523.77	61866022.63		0.0169	131723.14	1046172.69	914449.55	101028276.9
2048	71370942.44	1117779.20	70253163.24		0.0151	16876.76	1060715.82	1043839.05	102072115.9
2049	73131497.07	1117779.20	72013717.87	1579172457.00	0.0131	15068.54	970801.35	955732.81	103027848.7
2050	74938448.91	5833410.18	69105038.73	1648277495.73	0.0133	70213.34	831776.85	761563.51	103027848.7
2051	76793071.50	1117779.20	75675292.30	1723952788.03	0.0120	12012.55	813267.09	801254.55	103789412.2
2052	78696674.24	1117779.20	77578895.04		0.0096	10725.49	744397.08	733671.59	105324338.4
2053	80650603.49	7789523.77	72861079.72		0.0086	66735.04	624221.40	557486.35	105881824.7
2054	82656243.57	1117779.20	81538464.37	1955931227.17	0.0036	8550.29	623716.96	615166.67	106496991.4
2055	84715017.89	1117779.20	83597238.70	2039528465.86	0.0068	7634.19	570951.13	563316.94	107060308.3
2056	86828390.06	5833410.18	80994979.88		0.0061	35572.26	493909.16	458336.90	107518645.2
2057	88997865.04	1117779.20	87880085.85	2208403531.59	0.0054	6085.93	478477.40	472391.47	107991036.7
2057	91224990.34	1117779.20	90107211.14		0.0034	5433.87	438038.70	472391.47	107991036.7
2059	93511357.23	7789523.77	90107211.14 85721833.46		0.0049	33810.05	438038.70 372071.46	432604.84 338261.41	108423641.5
2059	93511357.23 95858602.01	1117779.20	94740822.82	2384232576.19	0.0043	4331.85	3/20/1.46 367158.88	362827.04	108761903.0
2060	98268407.32	1117779.20	97150628.12		0.0039	4331.85 3867.72	336158.80	362827.04	109457021.11
2061	1309466262.26	111///9.20	2576124027.13	1061299246.61	0.0035	179899226.4	290031412.4	109457021.1	109457021.11
	1309466262.26	J	25/612402/.13	1061299246.61		1/9899226.4	290031412.4	109457021.1	

Con esta información se obtuvieron los siguientes indicadores económicos los cuales avalan la factibilidad del proyecto.

Cuadro 28. Indicadores económicos Carretera vs Carretera mejorada.

	VPN	2576124027.13	2,576.12	millones
TASA DE DESC.	12%	TIR	20.23%	
		IR	1.612188214	
		IRI	0.166566555	
		TRI	16.66%	

COMPARACIÓN DE ALTERNATIVAS DE SOLUCIÓN

Comparando las dos opciones se puede observar que es mucho más rentable el proyecto de construir una vía férrea esto se muestra en el cuadro 29.

Cuadro 29. Comparación de Indicadores económicos.

	Vía Férrea	Ampliación de
		carretera
TIR	26.30 %	20.23 %
IR	2.313	1.612
IRI	0.213	0.166
TRI	21.31 %	16.66%
Tiempo de recuperación	6 años	9 años
de la inversión		

Con esta tabla comparativa se tiene una idea de la rentabilidad del proyecto a pesar que para la construcción de una vía férrea se requiere más del doble de inversión.

DESCRIPCIÓN DEL PROYECTO

Topografía.

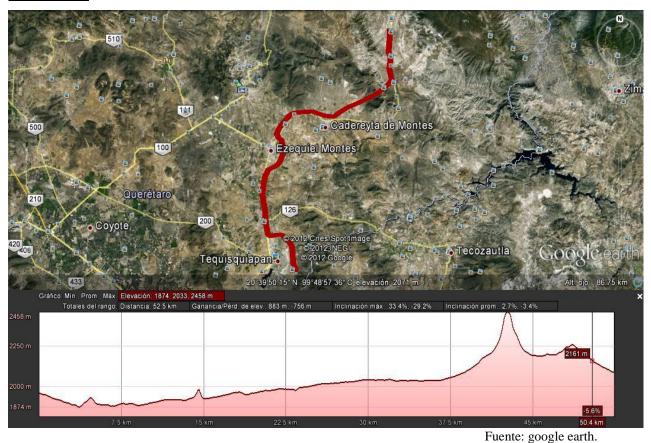


Figura 8. Perfil del proyecto.

En el proyecto contamos con una inclinación promedio de 2.7% a -3.4%. lo cual es adecuado para nuestra vía férrea, mostrando el perfil del proyecto en la figura 8.

Características del Proyecto.

El proyecto Espuela de ferrocarril de Tequisquiapan a Vizarrón, consta de los trabajos de construcción de terracerías, obras de drenaje, obras complementarias, estructuras, vías férreas patio ferroviario y señalamiento.

Espuela de ferrocarril de Tequisquiapan a Vizarrón, contará con la infraestructura adecuada para su correcta operación, en las que se incluye una vía principal de 52.084 kilómetros de longitud, la cual inicia en la conexión con la vía de la estación Bernal ubicada en Tequisquiapan en el km que sería el 0+000 de esta vía y sigue su rumbo al noreste hasta el punto del poblado de Vizarrón de Montes en su km 52+084.

<u>Vía</u>

La vía de 52.084 Km. de longitud, y un derecho de vía de 30 mts, será construida con base en la publicación técnica No 1 del Instituto Mexicano del Transporte

Para la construcción se procederá como sigue:

Terracerías

Las terracerías nuevas para alojar la infraestructura de las vías, deben tener un ancho mínimo de corona de 7.00 ml, tanto en terraplén como en corte, y su calidad debe cumplir con las especificaciones particulares del proyecto, como se muestra en la figura 9

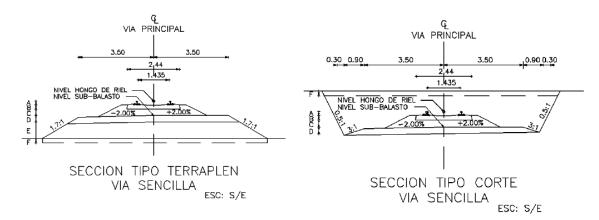


Figura 9. Sección tipo Corte y Terraplén.

Para la sección estructural de la Vía Férrea se tomará como referencia el documento Técnico No 2 del Instituto Mexicano del Transporte, "MANUAL DE CALIDAD PARA MATERIALES EN LA SECCIÓN ESTRUCTURAL DE VIAS FERREAS" (Rico R. A. et al, 1991)

Usualmente la sección estructural de una vía férrea estará constituida por:

Cuerpo del Terraplén.

Capa Subrasante.

Sub-balasto.

Balasto.

Haciéndose notar que el sistema de riel y durmientes no se considera parte de la sección.

Las características de un proyecto determinado pueden hacer conveniente la utilización de otras capas o la eliminación de alguna de las enumeradas. El terreno natural juega un papel importante en el comportamiento general, por lo que se considera parte de la sección estructural de apoyo de la vía.

B) Desde el punto de vista de utilización de materiales para la sección estructural de Vías Férreas, se define la obra por ejecutar según tres tipos de Vías:

1) Vías Férreas Tipo I

Son las vías férreas que soportarán el paso de cargas superiores a los 30 millones de toneladas netas/año. Serán incluidas aquí las vías electrificadas.

2) Vías Férreas Tipo II

Son las vías férreas que soportarán el paso de cargas entre 10 millones y 30 millones de toneladas netas/año.

3) Vías Férreas Tipo III

Son las vías férreas que soportarán el paso de cargas inferiores a los 10 millones de toneladas netas/año.

Las vías tipo II para las que se prevea un desarrollo que las convierta en vías con características del tipo I dentro de su vida útil, deberán considerarse cuidadosamente en los proyectos con la idea de que la transformación de capas inferiores de la sección estructural, como terraplenes o subrasantes, es prácticamente imposible o muy costosa; por el contrario la transformación diferida de capas superiores puede ser una buena política.

Otro tanto puede decirse de vías clasificadas como tipo III, que puedan transformarse en vías tipo II durante su vida útil.

C) La utilización de materiales según los tres tipos de vías anteriormente descritas, hacen necesario matizar la calidad de los materiales de acuerdo a tres tipos de calidad definidos (en orden decreciente) como:

Calidad Deseable (óptima)

Calidad Adecuada (intermedia)

Calidad Tolerable (mínima aconsejable).

A continuación en el cuadro 35 se mencionan los espesores sugeridospara el tipo de vía férrea que convenga el proyecto.

Cuadro 35. Estructuración de Capas Superiores según el tipo de Vía Férrea.

Estructuración de Capas Superiores según el tipo de Vía Férrea									
Tipo	Tipo SUBRASANTE SUB-BALASTO BALASTO								
	ESPESOR CALIDAD	ESPESOR CALIDAD	ESPESOR CALIDAD						
TIPO I	40 cm Deseable	20 cm Deseable	20 cm Deseable						
TIPO II	40 cm adecuada	20 cm Deseable	20 cm Deseable						
TIPO III	40 cm tolerable	20 cm adecuada	20 cm Adecuada						

TRAZO DEL PROYECTO

El trazo del proyecto se realizó sobre la carta topográfica Tequisquiapan f14c87 esc:1:50,000, como se muestra en la figura 10.

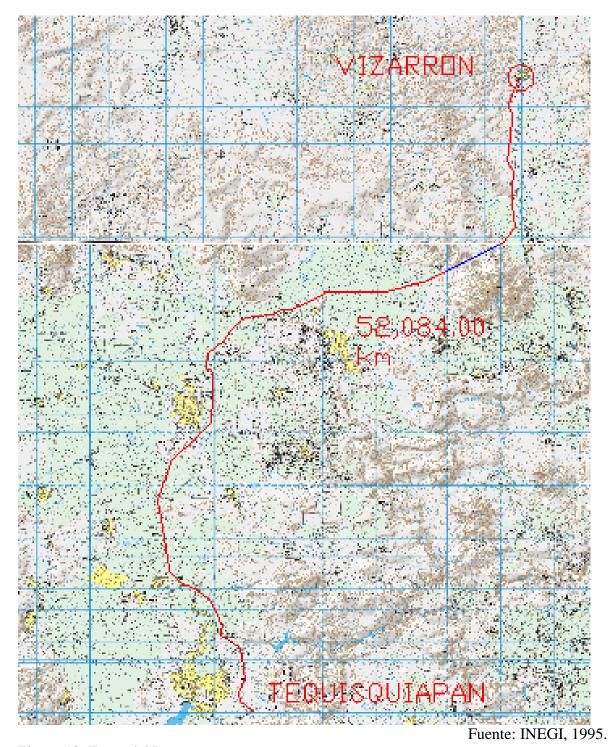


Figura 10. Trazo del Proyecto.

CONCLUSIONES

Al llevar acabo tipos de estudios como este damos pie a la elaboración de muchos más, con los cuales se pretende hacer que la viabilidad para llevar a cabo obras en donde se involucren estos tipos de transporte como el ferrocarril sea mayor, y así participar en el desarrollo de alternativas de transporte más eficientes y económicas en varios aspectos.

La evaluación del proyecto de la vía de ferrocarril de la cabecera municipal de Tequisquiapan a la cabecera municipal de Vizarrón de Montes, indica que es una obra de infraestructura económicamente rentable incluso en los escenarios alternativos propuestos.

En este proyecto lo que se busca son nuevas alternativas de infraestructura viaria, con la necesidad de contar con un modo de transporte más limpio y seguro.

La puesta en operación de esta obra permitirá mejorar la movilidad de las mercancías que se transportan de Vizarrón hacia Tequisquiapan y de ahí al resto de la república conectándose con la red ferroviaria de Kansas City Southern de México, el transporte de mercancías se tornaría más rentable.

Con el proyecto se tendrán los siguientes beneficios:

- Aumento en las velocidades de operación, puesto que los transportes de carga disminuirían al transportarse por ferrocarril
- Ahorros en tiempos de recorrido.
- Reducción en los costos de operación de los diferentes tipos de vehículos.
- Operación más segura al evitar conflictos vehiculares a nivel, o colisiones debido a la circulación de vehículos pesados.
- Oportunidades de crecimiento turístico y de la actividad socioeconómica de la región.
- Un antecedente más de que el transporte masivo de personas o mercancías por ferrocarril es más seguro económico y con un menor impacto ambiental.

 Con las alternativas de solución como la propuesta, se cumple uno de los fundamentos básicos de desarrollo económico, ya que los beneficios netos o excedente del consumidor que genera el proyecto, garantiza el equilibrio en las demás ramas de la actividad económica regional.

Con esto se puede concluir que con la construcción de una vía férrea de Tequisquiapan a Vizarrón, se tienen ahorros considerables en la valoración económica que se hacen a partir de los ahorros en tiempos de desplazamientos de las personas y en costos de operación de los vehículos que circulan por esta carretera.

Con esto se puede llegar a la conclusión que una vía férrea es la opción más rentable desde el punto de vista económico ya que comparando los indicadores económicos obtenidos en estas dos situaciones podemos llegar a la conclusión que el construir una vía férrea de Tequisquiapan a Vizarrón es mucho más rentable que el de ampliar la carretera existente.

CITAS BIBLIOGRAFICAS

- Arribas S., 2005. "Ferrocarriles nacionales de México: historia de una privatización".
- Arroyo J., Aguerrebere R., Torres G., 2010. Publicación técnica No 337 "Costos de Operación Base de los Vehículos representativos del transporte interurbano 2010". IMT SCT 2010.
- CONASAMI. "Salario Mínimo General Promedio" Comisión Nacional de Salarios Mínimos, México, página Web: http://www.conasami.gob.mx
- DE RUS G., BETANCOR O., CAMPOS J.- "Manual de evaluación económica de proyectos de transporte", Banco Interamericano de Desarrollo Washington, D.C. 2006.
- Diario Oficial de la Secretaría de Hacienda y Crédito Público, con fundamento en los artículos 31 de la Ley Orgánica de la Administración Pública Federal 1, 4, 34 y 109 de la Ley Federal de Presupuesto y Responsabilidad Hacendaria y 45,46, 47 y 214 de su Reglamento, así como por el artículo 61 fracción II del Reglamento Interior de la Secretaría de Hacienda y Crédito Público.
- Ecologistas en acción, 2004. "Escaso apoyo al ferrocarril a pesar de sus ventajas ambientales y sociales".http://www.ecologistasenaccion.org/spip.php?article1112

 Consultado en Junio del 2012

Ferromex, Grupo México, 2009. "informe anual 2009".

Rosas A., 2004. "Infraestructura Obstáculo al crecimiento".

Fox V., 2009. "Informe de Gobierno 2003".

Highway Capacity Manual, 2000. TransportationResearchBoard, Washington, D.C.2000

Historia del Ferrocarril Mexicano, 2005. "Antecedentes Históricos del Ferrocarril".

INEGI.- "XII Censo de Población y Vivienda, 2000", página Web, http://www.inegi.gob.mx.

INEGI, 2005. Carta topográfica Tequisquiapan F14C87 ESC: 1:50,000

Instituto Nacional para el Federalismo y el Desarrollo Municipal, 2005. Enciclopedia de los municipios de México, Querétaro, 2005. Gobierno del Estado de Querétaro.

Pueblos de América, 2008. "Vizarrón de Montes". Página web,

http://mexico.pueblosamerica.com/i/vizarron-de-montes. Consultado en Junio del 2012

Rico A., Orozco J., Téllez R., Pérez A., 1991. Publicación Técnica No 2 "Manual de calidad para Materiales en la sección estructural de vías férreas", Instituto Mexicano del Transporte, SCT 1991.

Saldaña S., 2008. Autotransporte vs. Trenes "EL UNIVERSAL".

Secretaría de Comunicaciones y Transportes, 1995. Norma Oficial Mexicana sobre Pesos y Dimensiones Máximas, 1995. "Pesos totales de vehículos NOM-012-sct-2-1995".

Secretaria de Comunicaciones y Transportes, 2002. Datos Viales SCT, 2002. Querétaro SCT.

Secretaria de Comunicaciones y Transportes, 2010. Dirección general de desarrollo carretero SCT, 2010. "Construcción del nuevo libramiento ferroviario Matamoros".

- Secretaria de Comunicaciones y Transportes, 2011. Datos Viales SCT, 2011. Querétaro SCT.
- Torres G., López A., Hernández S., 2004. Publicación técnica No 261 "Evaluación económica de las principales condiciones de competencia y complementariedad entre el ferrocarril y el autotransporte", Instituto Mexicano del Transporte, SCT 2004.
- Torres G., 2000. Publicación técnica No 147 "CRITERIOS QUE INTERVIENEN EN LA METODOLOGÍA DE EVALUACIÓN ECONÓMICA DE REHABILITACIÓN DE CAMINOS RURALES", Instituto Mexicano del Transporte, SCT 2000.

.

- Torres G., Hernández S., 2006. Publicación Técnica No. 291 "PROPUESTA METODOLÓGICA PARA LA ESTIMACIÓN DEL VALOR DEL TIEMPO DE LOS USUARIOS DE LA INFRAESTRUCTURA CARRETERA EN MÉXICO: EL CASO DEL TRANSPORTE DE PASAJEROS". Instituto Mexicano del Transporte, SCT 2006.
- Torres G. Hernández S., 2011 "Propuesta metodológica para determinar el valor del tiempo de los ocupantes de los vehículos que circulan por la red carretera de México, 2011". NOTAS 129, artículo 1, marzo/abril de 2011. Instituto Mexicano del Transporte. 2011.

APENDICE

Abreviaturas deempleo

AREMA American Railway Engineering and Maintenance of Way Association.

A Vehículoligero.

AASHTO American Association of State Highway and Transportation Officials.

B Autobús Foráneo.

BM Banco Mundial.

C2 Vehículo de carga de dos ejes.

C3 Vehículo de carga de tres ejes.

Cm Centímetros.

IIR Índice Internacional de Rugosidad.

IR Índice de Rentabilidad.

IRI Índice de rentabilidad Inmediata.

IMT Instituto Mexicano del Transporte.

Km/hr Velocidad.

Km Kilómetro.

Lbs/yda Libras sobre Yarda

Ml Metros lineales.

PIB Producto Interno Bruto.

P.V.S.M. Peso volumétrico seco máximo.

S/E Sin escala.

S.C.T. Secretaria de Comunicaciones y Transportes

TCMA Tasa de Crecimiento Media Anual.

T3S2 Vehículo articulado de 5 ejes.

T3S3 Vehículo articulado de 6 ejes.

T3S2R4 Vehículo articulado de 9 ejes.

TDPA Tránsito diario promedio anual.

TIR Tasa Interna de Retorno.

TRI Tasa de Rentabilidad Inmediata.

VPN Valor Presente Neto.

ANEXOS

Anexo 1. Demanda futura de la carretera.

AÑO	Α	В	C2	СЗ	T3S2	T3S3	T3S2R4	TOTAL
2011	2326	60	126	60	149	60	86	2868
2012	2372	61	127	62	154	62	88	2926
2013	2420	63	129	64	158	63	90	2986
2014	2468	64	130	66	163	64	91	3047
2015	2518	65	131	68	168	66	93	3109
2016	2568	66	133	70	173	67	95	3172
2017	2619	68	134	72	178	69	97	3237
2018	2672	69	135	74	183	70	99	3303
2019	2725	71	137	76	189	72	101	3370
2020	2780	72	138	79	195	73	103	3439
2020	2835	73	139	81	200	75	105	3509
2022	2892	75	141	83	206	77	107	3581
2023	2950	76	142	86	213	78	109	3654
2024	3009	78	144	88	219	80	111	3729
2025	3069	79	145	91	226	82	114	3805
2026	3130	81	147	94	232	83	116	3883
2027	3193	83	148	97	239	85	118	3963
2028	3257	84	149	100	246	87	120	4044
2029	3322	86	151	103	254	89	123	4127
2030	3388	88	152	106	262	91	125	4212
2031	3456	89	154	109	269	93	128	4299
2032	3525	91	156	112	277	95	130	4387
2033	3596	93	157	115	286	97	133	4477
2034	3668	95	159	119	294	99	136	4570
2035	3741	97	160	122	303	102	138	4664
2036	3816	99	162	126	312	104	141	4760
2037	3892	101	163	130	322	106	144	4858
2038	3970	103	165	134	331	108	147	4958
2039	4050	105	167	138	341	111	150	5061
2040	4131	107	168	142	351	113	153	5165
2041	4213	109	170	146	362	116	156	5272
2042	4297	111	172	151	373	118	159	5381
2043	4383	114	174	155	384	121	162	5492
2044	4471	116	175	160	396	124	165	5606
2045	4560	118	177	165	407	126	169	5722
2046	4652	120	179	169	420	129	172	5841
2047	4745	123	181	175	432	132	176	5962
2048	4840	125	182	180	445	135	179	6086
2049	4936 5035	128 130	184 186	185 191	459 472	138 141	183 186	6212 6342
2050 2051	5136	133	188	191	486	141	190	6473
2051	5239	136	190	202	501	147	194	6608
2052	5343	138	190	202	516	150	194	6746
2054	5450	141	194	215	532	154	202	6886
2055	5559	144	196	221	548	157	206	7030
2056	5670	147	197	228	564	160	210	7176
2057	5784	150	199	235	581	164	214	7326
2058	5899	153	201	242	598	167	218	7479
2059	6017	156	203	249	616	171	223	7636
2060	6138	159	205	256	635	175	227	7795
2061	6260	162	208	264	654	179	232	7958
2062	6386	165	210	272	673	183	236	8125
	Α	В	C2	C3	T3S2	T3S3	T3S2R4	
T.C.M.A.	2%	2%	1%	3%	3%	2.20%	2%	

Anexo 2. Ahorros en Valor del tiempo de las personas.

			AHORROS EN VALOR
AÑO	Α	В	DEL TIEMPO
2011	5578	1901	7479
2012	5689	1939	7628
2013	5803	1978	7781
2013	5919	2017	7936
2015	6038	2058	8095
2016	6158	2099	8257
2017	6281	2141	8422
2018	6407	2184	8591
2019	6535	2227	8762
2020	6666	2272	8938
2021	6799	2317	9116
2022	6935	2364	9299
2023	7074	2411	9485
2024	7215	2459	9674
2025	7360	2508	9868
2026	7507	2558	10065
2027	7657	2610	10267
2028	7810	2662	10472
2029	7966	2715	10681
2029	8126	2769	10895
2030	8288	2825	11113
2031	8454	2823	11335
2032	8623	2939	11562
2033	8796	2998	11793
2034	8971	3057	12029
2033	9151	3037	12029
2030	9334	3181	12515
2037	9521	3245	12765
2039	9711	3310	13021
2039	9905	3376	13021
2040	10103	3443	13547
2041	10305	3512	13818
2042	10503	3582	14094
2043	10722	3654	14376
2044	10936	3727	
2043	11155	3802	14663 14957
2040	11378	3878	15256
2047	11606	3955	15561
2048	11838	4034	
2050	12074	4115	16189
		4113	16513
2051 2052	12316 12562	4197	16843
2052	12814	4281	17180
2053	13070	4367	17180
		4454 4543	
2055	13331	4543	17874
2056	13598		18232
2057	13870 14147	4727 4821	18597
2058	14147		18968
2059		4918	19348
2060	14719	5016	19735
2061	15013	5116	20129

Anexo 3. Costo Total anual en la Carretera.

AÑO	C2	С3	T3S2	T3S3	T3S2R4	Total
2011	16379029	10358878	38830994	17291358	24460612	107320871
2012	16542819	10669644	39995924	17671768	24949824	109829979
2013	16708247	10989734	41195802	18060547	25448821	112403150
2014	16875330	11319426	42431676	18457879	25957797	115042107
2015	17044083	11659008	43704626	18863952	26476953	117748623
2016	17214524	12008779	45015765	19278959	27006492	120524518
2017	17386669	12369042	46366238	19703096	27546622	123371667
2018	17560536	12740113	47757225	20136564	28097555	126291993
2019	17736141	13122317	49189941	20579569	28659506	129287474
2020	17913503	13515986	50665640	21032319	29232696	132360143
2021	18092638	13921466	52185609	21495030	29817350	135512092
2022	18273564	14339110	53751177	21967921	30413697	138745468
2023	18456300	14769283	55363712	22451215	31021971	142062481
2024	18640863	15212362	57024624	22945142	31642410	145465400
2025	18827271	15668732	58735363	23449935	32275258	148956559
2026	19015544	16138794	60497423	23965833	32920763	152538359
2027	19205700	16622958	62312346	24493082	33579179	156213264
2028	19397757	17121647	64181716	25031930	34250762	159983812
2029	19591734	17635296	66107168	25582632	34935777	163852608
2030	19787651	18164355	68090383	26145450	35634493	167822332
2031	19985528	18709286	70133095	26720650	36347183	171895741
2032	20185383	19270564	72237087	27308504	37074126	176075666
2033	20387237	19848681	74404200	27909291	37815609	180365019
2034	20591109	20444142	76636326	28523296	38571921	184766794
2035	20797021	21057466	78935416	29150808	39343360	189284070
2036	21004991	21689190	81303478	29792126	40130227	193920012
2037	21215041	22339866	83742583	30447553	40932831	198677873
2038	21427191	23010062	86254860	31117399	41751488	203561000
2039	21641463	23700364	88842506	31801982	42586518	208572832
2040	21857878	24411375	91507781	32501625	43438248	213716906
2041	22076456	25143716	94253014	33216661	44307013	218996860
2042	22297221	25898027	97080605	33947427	45193153	224416434
2043	22520193	26674968	99993023	34694271	46097016	229979471
2044	22745395	27475217	102992814	35457545	47018957	235689927
2045	22972849	28299474	106082598	36237611	47959336	241551867
2046	23202578	29148458	109265076	37034838	48918523	247569472
2047	23434603	30022912	112543028	37849605	49896893	253747041
2048	23668949	30923599	115919319	38682296	50894831	260088994
2049	23905639	31851307	119396899	39533306	51912727	266599878
2050	24144695	32806846	122978806	40403039	52950982	273284368
2051	24386142	33791051	126668170	41291906	54010002	280147271
2052	24630004	34804783	130468215	42200328	55090202	287193531
2053	24876304	35848926	134382261	43128735	56192006	294428232
2054	25125067	36924394	138413729	44077567	57315846	301856603
2055	25376317	38032126	142566141	45047274	58462163	309484021
2056	25630081	39173090	146843125	46038314	59631406	317316016
2057	25886381	40348283	151248419	47051157	60824034	325358274
2058	26145245	41558731	155785872	48086282	62040515	333616645
2059	26406698	42805493	160459448	49144180	63281325	342097144
2060	26670765	44089658	165273231	50225352	64546952	350805958
2061	26937472	45412347	170231428	51330310	65837891	359749449

Anexo 4. Toneladas movidas por Vehículos pesados.

AÑO	C2	63	T2C2	Taca	T2C2D4	Takal
		C3	T3S2	T3S3	T3S2R4	Total
2011	2208	1325	6562	2921	4508	17525
2012	2230	1365	6759	2985	4599	17938
2013	2253	1406	6962	3051	4691	18362
2014	2275	1448	7170	3118	4784	18796
2015	2298	1491	7386	3187	4880	19242
2016	2321	1536	7607	3257	4978	19699
2017	2344	1582	7835	3328	5077	20167
2018	2368	1630	8070	3402	5179	20648
2019	2391	1678	8313	3477	5282	21141
2020	2415	1729	8562	3553	5388	21647
2021	2439	1781	8819	3631	5496	22166
2022	2464	1834	9083	3711	5606	22698
2023	2488	1889	9356	3793	5718	23244
2024	2513	1946	9636	3876	5832	23804
2025	2538	2004	9926	3961	5949	24379
2026	2564	2064	10223	4049	6068	24968
2027	2589	2126	10530	4138	6189	25573
2028	2615	2190	10846	4229	6313	26193
2029	2642	2256	11171	4322	6439	26830
2030	2668	2323	11506	4417	6568	27483
2031	2695	2393	11852	4514	6699	28153
2032	2722	2465	12207	4613	6833	28840
2033	2749	2539	12573	4715	6970	29546
2034	2776	2615	12951	4818	7109	30270
2035	2804	2693	13339	4924	7252	31013
2036	2832	2774	13739	5033	7397	31775
2037	2860	2858	14152	5144	7545	32558
2038	2889	2943	14576	5257	7695	33361
2039	2918	3032	15013	5372	7849	34185
2040	2947	3122	15464	5491	8006	35030
2040	2977	3216	15928	5611	8167	35898
2041	3006	3313	16405	5735	8330	36789
2042	3036	3412	16898	5861	8496	37703
2043	3067	3514	17405	5990	8666	38642
2044	3097	3620	17927	6122	8840	39605
2045	3097	3620		6256	9016	40594
			18465			
2047 2048	3160	3840	19018	6394	9197	41609
	3191	3955	19589	6535	9381	42651
2049	3223 3255	4074 4196	20177	6678	9568 9760	43721
2050	0_00		20782	6825		44819
2051	3288	4322	21405	6976	9955	45946
2052	3321	4452	22048	7129	10154	47103
2053	3354	4585	22709	7286	10357	48291
2054	3388	4723	23390	7446	10564	49511
2055	3421	4865	24092	7610	10776	50764
2056	3456	5011	24815	7777	10991	52049
2057	3490	5161	25559	7948	11211	53370
2058	3525	5316	26326	8123	11435	54725
2059	3560	5475	27116	8302	11664	56117
2060	3596	5640	27929	8485	11897	57547
2061	3632	5809	28767	8671	12135	59014

Anexo 5. Costos por toneladas movidas por año y costo de locomotoras. En la carretera y en la vía de ferrocarril Proyectada.

	Toneladas				
	Movidas por				
	vehiculos	Costo de las	Toneladas movidas		
~	pesados	toneladas movidas	por vagones		Inversión locomotoras
AÑO				Costo	
2011	18652	113436024	44000	28439947.36	40000000
2012	19088	116067435	44000	28439947.36	
2013	19534	118765355	44000	28439947.36	
2014	19992	121531556	44000	28439947.36	
2015	20462	124367861	44000	28439947.36	
2016	20943	127276141	44000	28439947.36	
2017	21437	130258322	44000	28439947.36	
2018	21943	133316381	44000	28439947.36	
2019	22462	136452350	44000	28439947.36	
2020	22994	139668317	44000	28439947.36	
2021	23540	142966429	44000	28439947.36	
2022	24100	146348892	66000	42659921.04	40000000
2023	24673	149817973	66000	42659921.04	
2024	25262	153376002	66000	42659921.04	
2025	25866	157025374	66000	42659921.04	
2026	26485	160768549	66000	42659921.04	
2027	27120	164608059	66000	42659921.04	
2028	27771	168546502	66000	42659921.04	
2029		172586552	66000	42659921.04	
2030		176730956	66000	42659921.04	
2031	29828	180982537	66000	42659921.04	
2032		185344197	88000	56879894.72	40000000
2033		189818921	88000	56879894.72	1000000
2034		194409774	88000	56879894.72	
2035		199119910	88000	56879894.72	
2036		203952568	88000	56879894.72	
2037		208911081	88000	56879894.72	
2038		213998872	88000	56879894.72	
2039		219219461	88000	56879894.72	
2040		224576468	88000	56879894.72	
2041	37940	230073614	88000	56879894.72	
2041	38872	235714722	110000	71099868.40	4000000
2042	39828	241503725	110000	71099868.40	4000000
2043		247444666	110000	71099868.40	
2044		253541701	110000	71099868.40	
2043		259799103	110000	71099868.40	
2040	43908	266221264	110000	71099868.40	
2047			110000		
2048		279578060			
2049		286522114	110000		
2050		293649772			
2052		300966082	132000		4000000
2053		308476234	132000		
2054		316185565	132000		
2055		324099562	132000		
2056		332223867	132000		
2057		340564282	132000		
2058		349126774		85319842.08	
2059		357917475	132000		
2060		366942696		85319842.08	
2061	62048	376208921	132000	85319842.08	

Anexo 6.Costos de operación sin proyecto

AÑO	AÑO	A	В	C2	C3	T3S2	T3S3	T3S2R4	Total
	0 2013	161934770	484710156	16379029	10358878	38830994	17291358	24460612	107320871
	1 2012	165173465	494404359	16542819	10669644	39995924	17671768	24949824	109829979
	2 2013	168476935	504292446	16708247	10989734	41195802	18060547	25448821	112403150
	3 2014	171846473	514378295	16875330	11319426	42431676	18457879	25957797	115042107
	4 2015	175283403	524665861	17044083	11659008	43704626	18863952	26476953	117748623
	5 2016	178789071	535159178	17214524	12008779	45015765	19278959	27006492	120524518
	6 2017	182364852	545862362	17386669	12369042	46366238	19703096	27546622	123371667
	7 2018	186012149	556779609	17560536	12740113	47757225	20136564	28097555	126291993
	8 2019	189732392	567915201	17736141	13122317	49189941	20579569	28659506	129287474
	9 2020	193527040	579273505	17913503	13515986	50665640	21032319	29232696	132360143
	10 2022	197397581	590858975	18092638	13921466	52185609	21495030	29817350	135512092
	11 2022	201345533	602676155	18273564	14339110	53751177	21967921	30413697	138745468
	12 2023	205372443	614729678	18456300	14769283	55363712	22451215	31021971	142062481
	13 2024	209479892	627024271	18640863	15212362	57024624	22945142	31642410	145465400
	14 2025	213669490	639564757	18827271	15668732	58735363	23449935	32275258	148956559
	15 2026	217942880	652356052	19015544	16138794	60497423	23965833	32920763	152538359
	16 2027	222301737	665403173	19205700	16622958	62312346	24493082	33579179	156213264
	17 2028	226747772	678711236	19397757	17121647	64181716	25031930	34250762	159983812
	18 2029	231282727	692285461	19591734	17635296	66107168	25582632	34935777	163852608
	19 2030	235908382	706131170	19787651	18164355	68090383	26145450	35634493	167822332
	20 2033	240626550	720253794	19985528	18709286	70133095	26720650	36347183	171895741
	21 2032	245439081	734658870	20185383	19270564	72237087	27308504	37074126	176075666
	22 2033		749352047	20387237	19848681	74404200	27909291	37815609	180365019
	23 2034	255354819	764339088	20591109	20444142	76636326	28523296	38571921	184766794
	24 2035	260461916	779625870	20797021	21057466	78935416	29150808	39343360	189284070
	25 2036	265671154	795218387	21004991	21689190	81303478	29792126	40130227	193920012
	26 2037	270984577	811122755	21215041	22339866	83742583	30447553	40932831	198677873
	27 2038	276404269	827345210	21427191	23010062	86254860	31117399	41751488	203561000
	28 2039		843892114	21641463	23700364	88842506	31801982	42586518	208572832
	29 2040	287571001	860769957	21857878	24411375	91507781	32501625	43438248	213716906
	30 2042	293322421	877985356	22076456	25143716	94253014	33216661	44307013	218996860
	31 2042	299188870	895545063	22297221	25898027	97080605	33947427	45193153	224416434
	32 2043	305172647	913455964	22520193	26674968	99993023	34694271	46097016	229979471
	33 2044	311276100	931725083	22745395	27475217	102992814	35457545	47018957	235689927
	34 2045	317501622	950359585	22972849	28299474	106082598	36237611	47959336	241551867
	35 2046	323851655	969366777	23202578	29148458	109265076	37034838	48918523	247569472
	36 2047	330328688	988754112	23434603	30022912	112543028	37849605	49896893	253747041
	37 2048	336935261	1008529194	23668949	30923599	115919319	38682296	50894831	260088994
	38 2049	343673967	1028699778	23905639	31851307	119396899	39533306	51912727	266599878
	39 2050	350547446	1049273774	24144695	32806846	122978806	40403039	52950982	273284368
	40 2051	357558395	1070259249	24386142	33791051	126668170	41291906	54010002	280147271
	41 2052	364709563	1091664434	24630004	34804783	130468215	42200328	55090202	287193531
	42 2053	372003754	1113497723	24876304	35848926	134382261	43128735	56192006	294428232
	43 2054	379443829	1135767678	25125067	36924394	138413729	44077567	57315846	301856603
	44 2055	387032706	1158483031	25376317	38032126	142566141	45047274	58462163	309484021
	45 2056	394773360	1181652692	25630081	39173090	146843125	46038314	59631406	317316016
	46 2057	402668827	1205285746	25886381	40348283	151248419	47051157	60824034	325358274
	47 2058	410722203	1229391460	26145245	41558731	155785872	48086282	62040515	333616645
	48 2059	418936648	1253979290	26406698	42805493	160459448	49144180	63281325	342097144
	49 2060	427315381	1279058875	26670765	44089658	165273231	50225352	64546952	350805958
	50 2063	435861688	1304640053	26937472	45412347	170231428	51330310	65837891	359749449

Anexo 7. Costos de operación con proyecto

AÑO	Α	В	C2	C3	T3S2	T3S3	T3S2R4	Total
2011	134945642	403925130	11699306	7673243	28763699	12808413	18118972	79063634
2012	137644554	412003632	11816299	7903440	29626610	13090198	18481351	80917900
2013	140397445	420243705	11934462	8140543	30515409	13378183	18850978	82819575
2014	143205394	428648579	12053807	8384760	31430871	13672503	19227998	84769938
2015	146069502	437221551	12174345	8636303	32373797	13973298	19612558	86770300
2016	148990892	445965982	12296089	8895392	33345011	14280710	20004809	88822010
2017	151970710	454885301	12419049	9162253	34345361	14594886	20404905	90926455
2018	155010124	463983007	12543240	9437121	35375722	14915973	20813003	93085060
2019	158110327	473262668	12668672	9720235	36436994	15244125	21229263	95299289
2020	161272533	482727921	12795359	10011842	37530103	15579496	21653849	97570648
2021	164497984	492382479	12923313	10312197	38656007	15922244	22086926	99900686
2022	167787944	502230129	13052546	10621563	39815687	16272534	22528664	102290993
2023	171143703	512274732	13183071	10940210	41010157	16630530	22979237	104743205
2024	174566577	522520226	13314902	11268416	42240462	16996401	23438822	107259003
2025	178057908	532970631	13448051	11606468	43507676	17370322	23907599	109840116
2026	181619066	543630043	13582532	11954662	44812906	17752469	24385751	112488320
2027	185251448	554502644	13718357	12313302	46157293	18143023	24873466	115205442
2028	188956477	565592697	13855540	12682701	47542012	18542170	25370935	117993359
2029	192735606	576904551	13994096	13063182	48968273	18950098	25878354	120854002
2030	196590318	588442642	14134037	13455078	50437321	19367000	26395921	123789356
2031	200522125	600211495	14275377	13858730	51950440	19793074	26923839	126801461
2032	204532567	612215725	14418131	14274492	53508954	20228522	27462316	129892414
2033	208623219	624460039	14562312	14702727	55114222	20673549	28011562	133064373
2034	212795683	636949240	14707935	15143809	56767649	21128367	28571793	136319553
2035	217051597	649688225	14855015	15598123	58470678	21593191	29143229	139660237
2036	221392628	662681989	15003565	16066067	60224799	22068241	29726094	143088765
2037	225820481	675935629	15153600	16548049	62031543	22553743	30320616	146607550
2038	230336891	689454342	15305136	17044490	63892489	23049925	30927028	150219069
2039	234943628	703243429	15458188	17555825	65809264	23557023	31545569	153925868
2040	239642501	717308297	15612770	18082500	67783541	24075278	32176480	157730569
2041	244435351	731654463	15768897	18624975	69817048	24604934	32820010	161635863
2042	249324058	746287552	15926586	19183724	71911559	25146243	33476410	165644522
2043	254310539	761213303	16085852	19759236	74068906	25699460	34145938	169759392
2044	259396750	776437569	16246711	20352013	76290973	26264848	34828857	173983401
2045	264584685	791966321	16409178	20962573	78579702	26842675	35525434	178319562
2046	269876379	807805647	16573270	21591450	80937093	27433213	36235943	182770969
2047	275273906	823961760	16739002	22239194	83365206	28036744	36960661	187340808
2048	280779384	840440995	16906392	22906370	85866162	28653553	37699875	192032352
2049	286394972	857249815	17075456	23593561	88442147	29283931	38453872	196848967
2050	292122872	874394812	17246211	24301367	91095412	29928177	39222950	201794117
2051	297965329	891882708	17418673	25030408	93828274	30586597	40007409	206871361
2052	303924636	909720362	17592860	25781321	96643122	31259502	40807557	212084362
2053	310003128	927914769	17768788	26554760	99542416	31947211	41623708	217436884
2054	316203191	946473065	17946476	27351403	102528688	32650050	42456182	222932800
2055	322527255	965402526	18125941	28171945	105604549	33368351	43305306	228576092
2056	328977800	984710576	18307200	29017104	108772685	34102455	44171412	234370856
2057	335557356	1004404788	18490272	29887617	112035866	34852709	45054840	240321304
2058	342268503	1024492884	18675175	30784245	115396942	35619468	45955937	246431768
2059	349113873	1044982741	18861927	31707773	118858850	36403097	46875056	252706702
2060	356096150	1065882396	19050546	32659006	122424616	37203965	47812557	259150689
2061	363218073	1087200044	19241052	33638776	126097354	38022452	48768808	265768442

Anexo 8. Diferencia en costos de operación

AÑO	Α	В	C2	C3	T3S2	T3S3	T3S2R4	Total
2011	26989128	80785026	4679723	2685635	10067295	4482945	6341640	2825723
2012	27528911	82400726	4726520	2766204	10369314	4581569	6468473	28912080
2013	28079489	84048741	4773785	2849190	10680393	4682364	6597842	2958357
2014	28641079	85729716	4821523	2934666	11000805	4785376	6729799	30272169
2015	29213900	87444310	4869738	3022706	11330829	4890654	6864395	3097832
2016	29798178	89193196	4918435	3113387	11670754	4998249	7001683	31702508
2017	30394142	90977060	4967620	3206789	12020876	5108210	7141717	32445212
2018	31002025	92796601	5017296	3302992	12381503	5220591	7284551	33206933
2019	31622065	94652534	5067469	3402082	12752948	5335444	7430242	3398818
2020	32254507	96545584	5118144	3504145	13135536	5452823	7578847	3478949!
2021	32899597	98476496	5169325	3609269	13529602	5572786	7730424	3561140
2021	33557589	100446026	5221018	3717547	13935490	5695387	7885032	3645447
2022	34228741	102454946	5273229	3829073	14353555	5820685	8042733	3731927
2023	34913315	104504045	5325961	3943946	14333333	5948740	8203588	3820639
2024	35611582	106594126	5379220	4062264	15227687	6079613	8367660	39116443
2023		108726009	5433013	4184132		6213364		
2026	36323813 37050290	110900529	5487343	4309656	15684517 16155053	6350058	8535013 8705713	40050039 41007822
2027	37791295	113118539	5542216	4438945	16639704	6489760	8879827	4199045
2028		115380910		-			9057424	
	38547121		5597638	4572114	17138895	6632534		4299860
2030	39318064	117688528 120042299	5653615	4709277	17653062	6778450	9238572 9423344	4403297
2031	40104425		5710151	4850556	18182654	6927576		4509428
2032	40906513	122443145	5767252	4996072	18728134	7079983	9611811	4618325
2033	41724644	124892008	5824925	5145954	19289978	7235742	9804047	4730064
2034	42559137	127389848	5883174	5300333	19868677	7394928	10000128	4844724
2035	43410319	129937645	5942006	5459343	20464737	7557617	10200130	4962383
2036	44278526	132536398	6001426	5623123	21078680	7723884	10404133	5083124
2037	45164096	135187126	6061440	5791817	21711040	7893810	10612216	5207032
2038	46067378	137890868	6122055	5965572	22362371	8067474	10824460	5334193
2039	46988726	140648686	6183275	6144539	23033242	8244958	11040949	5464696
2040	47928500	143461659	6245108	6328875	23724240	8426347	11261768	5598633
2041	48887070	146330893	6307559	6518741	24435967	8611727	11487003	5736099
2042	49864812	149257510	6370635	6714303	25169046	8801185	11716743	5877191
2043	50862108	152242661	6434341	6915732	25924117	8994811	11951078	6022008
2044	51879350	155287514	6498684	7123204	26701841	9192697	12190100	6170652
2045	52916937	158393264	6563671	7336901	27502896	9394936	12433902	6323230
2046	53975276	161561129	6629308	7557008	28327983	9601625	12682580	6479850
2047	55054781	164792352	6695601	7783718	29177822	9812860	12936232	6640623
2048	56155877	168088199	6762557	8017229	30053157	10028743	13194956	6805664
2049	57278994	171449963	6830183	8257746	30954752	10249376	13458855	6975091
2050	58424574	174878962	6898484	8505479	31883394	10474862	13728032	7149025
2051	59593066	178376542	6967469	8760643	32839896	10705309	14002593	7327591
2052	60784927	181944072	7037144	9023462	33825093	10940826	14282645	7510917
2053	62000626	185582954	7107515	9294166	34839846	11181524	14568298	7699134
2054	63240638	189294613	7178590	9572991	35885041	11427517	14859664	7892380
2055	64505451	193080505	7250376	9860181	36961592	11678923	15156857	8090792
2056	65795560	196942115	7322880	10155986	38070440	11935859	15459994	8294516
2057	67111471	200880958	7396109	10460666	39212553	12198448	15769194	8503697
2058	68453701	204898577	7470070	10774486	40388930	12466814	16084578	8718487
2059	69822775	208996548	7544771	11097720	41600598	12741084	16406269	8939044
2060	71219230	213176479	7620218	11430652	42848616	13021388	16734395	91655269
2061	72643615	217440009	7696421	11773572	44134074	13307858	17069083	9398100