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Abstract

Already today numerous applications, such as tracking people or assets, naviga-
tion and geofencing for people or robots, intelligent transport systems and location
sensitive marketing and billing, require location information. The Internet-of-
Things will further increase the amount of location-based services (lbss) and
also the demanded accuracy will increase. Outdoors, global navigation satellite
systems (gnsss) provide reliable location information. Other technologies such as
pervasive computing systems, wireless communication networks, miniaturised
sensors, and so forth enable the localisation of an object or person in indoor
environments. Many systems that enable indoor localisation require particular
infrastructure or a multitude of sensors; especially if the aim is ubiquitous and
seamless localisation. Taking into consideration the use of available infrastructure,
the potential accuracy and precision and the error sources, gnss and wireless
local area network (wlan) location fingerprinting with received signal strength
indicator (rssi) are the most promising technologies to achieve ubiquitous and
seamless indoor/outdoor localisation.

This thesis proposes amethod to fuse gnss pseudoranges andwlan rssi in order
to yield a general, ubiquitous positioning system that is likewise accurate indoors,
outdoors and in the transition zones. We use the recursive Bayesian estimation
framework to tightly integrate global positioning system (gps) pseudoranges with
wlan rssi. We present a state space model that relies on statistical models for the
object’s/person’s motion and for the pseudorange and rssi observations. This
study addresses the fundamental issue of different state space of measurements:
pseudoranges reside on a spatially continuous state space and rssi on a spatially
discrete space.
To overcome this problem, Gaussian process regression for wlan rssi is

revised and used to interpolate rssis on space. Thus, we yield a continuous rssi
model facilitating the accurate data fusion with gps pseudoranges. To find and
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propose the best suited Gaussian process regression model for rssi, we revive
the discussion about rssi distributions and explore and assess several Gaussian
process models in depth. It was also hypothesised whether different models
for indoor and outdoor environments would improve the systems localisation
performance. The model for the gps observations is based on the well-known
pseudorange model.
Once developed the observation models, a particle filter is presented that

integrates the Gaussian process based likelihood function and fuses the two
measurements. The filter deals intuitively with issues as the weighting of the two
sources of information, the availability of less than four pseudoranges and the
spatial limitation of the fingerprinting radio map.
To demonstrate the effectiveness of the proposed algorithm we developed

software to record real world data, regarding synchronisation and the different
coordinate systems and projections. In experiments, conducted in an environment
challenging for gnss and wlan fingerprinting localisation using off-the-shelf
sensors, we achieved, accurate and robust seamless localisation with an average
accuracy of 5m.
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Resumen

Ya en la actualidad numerosas aplicaciones, como el rastreo de personas o
bienes, navegación o geovallado para personas o robots, sistemas de transporte
inteligente, mercadotecnia o facturación consciente de la ubicación. El Internet de
las Cosas aumentará aún más la cantidad de los servicios basados en la posición
y también aumentará la exactitud exigida. Al exterior los sistemas globales de
navegación por satélite proveen información de la ubicación fiable. Tecnologías
como sistemas de computación ubicua, redes inalámbrica de comunicación,
sensores miniaturizados, entre otras, pueden determinar la ubicación de personas
u objetos en interiores. Muchos sistemas de localización en interiores necesitan
infraestructura particular o una multitud de sensores; especialmente si se busca la
localización ubicua y continua. Considerando la disponibilidad de infraestructura,
el potencial de exactitud y precisión, y las fuentes de errores de las tecnologías,
los sistemas globales de navegación por satélite y el fingerprinting en redes
de área local inalámbrica con la fuerzas de las señales, son las tecnologías
más prometedoras para lograr localización ubicua tanto en interiores como en
exteriores.

Esta tesis proponeunmétodo en el que combina sistemas globales de navegación
por satélite y fuerzas de señales de redes de área local inalámbricas con el fin de
lograr una localización general, ubicua, con la misma exactitud y precisión en
interiores, exteriores y en las zonas de transición. Se utiliza un filtro Bayesiano
recursivo para integrar profundamente pseudodistancias de sistemas globales de
navegación por satélite con fuerzas de señales de redes de área local inalámbricas.
Se presenta un modelo del espacio de estado basado en modelos estocásticos para
el movimiento del objeto/personas y para las pseudodistancias y observaciones
de fuerza de señales de redes de área local inalámbricas. Este estudio aborda al
problema fundamental que las pseudodistancias están definidas en un espacio
espacialmente continuo y las fuerzas de señales de redes de área local inalámbricas
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están definidas en un espacio discreto.
Para resolver este problema, retomamos la regresión de procesos Gaussianos.

Se aplica a la interpolación de las fuerzas de señales en el espacio para lograr
un modelo continuo en el espacio del las fuerzas de señales de redes de área
local inalámbricas que facilita la integración con pseudodistancias del sistema de
posicionamiento global. Para encontrar y proponer el mejor modelo de procesos
Gaussianos para las fuerzas de señales, reactivamos la discusión sobre la distribu-
ción de fuerzas de señales de redes de área local inalámbricas y examinamos y
evaluamos varios modelos de procesos Gaussianos en detalle. También se planteó
la hipótesis si modelos diferente para interiores y exteriores mejoraría la exactitud
del sistema de posicionamiento. El modelo de las observaciones del sistema global
de posicionamiento se basa en el modelo de pseudodistancias estándar.

Una vez desarrollados los modelos de las observaciones, se presenta un filtro de
partículas que integra la función de verosimilitud basada en procesos Gaussianos
y combina las dos mediciones. El filtro maneja intuitivamente cuestiones como la
ponderación de las dos fuentes de información, la disponibilidad de menos de
cuatro pseudodistancias y la limitación espacial de la base de datos de fingerprints
de fuerzas de señales.

Para demostrar la eficacia del algoritmo propuesto desarrollamos un software
para registrar datos del mundo real, tomando en cuenta la sincronización y las
diferentes sistemas de coordenadas y proyecciones. En experimentos, efectuados
en ambientes desafiantes para sistemas globales de navegación por satélite y
fingerprinting con fuerzas de las señales con sensores comerciales, hemos logrado
una exactitud media de 5m.
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Chapter 1

Introduction

1.1. Motivation

Since thousands of years human beings had the necessity to identify their location
and to find their way in order to accomplish the daily tasks. Perhaps the most
common use of (geo-)localisation might just be ‘finding home’. The ancient skill
of navigation was and is indispensable for getting around and exploring new
territories. The term navigation is twofold. On the one hand it is understood
as determining locations over time, and on the other hand it refers to planning
and maintaining of a course from one location to another. Groves (2008) calls
these two concepts ‘science of navigation’ and the ‘art of navigation’, where
the latter may also be described by routing and is not much of concern here.
Navigation is intuitively performed by estimating a location over time, relative to
known visual references, such as landmarks, waypoints, celestial objects, and so
on. This technique of navigation is based upon recognition of known features
and is referred to as position fixing. The same method was applied when ships
were navigated along shores, using landmarks as the needed reference points.
As soon it became necessary to navigate ships distant from shores, references
in the landscape were lacking and new navigation methods had to be found.
The alternative approach that was found is called dead reckoning. It requires
knowledge about an initial position, and also observations of the velocity and
direction of motion. The averaged velocity and the heading give the change of
position, which is added to the last known position. Repeating this consecutively,
the current position can always be derived from the last one and the motion since
then (Titterton et al. 2004). Clearly, the key to navigation is the determination of
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1. Introduction

locations, or positions.
When purely visual observations were replaced bymore precise measurements,

made with tools like compass, sextants, precise clocks, et cetera, the accuracy
of location estimates and thereby the performance of navigators was increased
significantly. The next step towards an refined navigation was taken at the
beginning of the 20th century, when radio frequency signals were dominated
and radio navigation was explored. Also important developments of instruments
measuring inertial forces fall into that time and contributed to the that improve-
ment. Again, much more precise and accurate measurements could be taken,
leading to better location estimates and hence improved navigation.

The best known positioning system based upon radio frequency signals is the
navstar global positioning system (gps). It is the standard positioning system of
today, and it was declared operational about twenty years ago. With an today
accuracy about 10m of a low priced gps receiver (Dardari et al. 2012; Hightower
et al. 2001), in unobstructed environments even less (FAA 2016; Zandbergen
et al. 2011)1, it fulfils most of the commercial demands for self-localisation and
navigation on sea, air and land. (For an extensive study about global navigation
satellite system (gnss) applications and market segments see Kaplan et al. (2006,
chap. 12).)
Gps receiver disseminated fast into consumer products and can nowadays

be found in an increasing number of vehicles and mobile devices. This in
turn, especially the exponentially emerging mobile device market, created a
vast demand of additional services using somehow information about the user’s
whereabouts. For these services the term location-based services (lbss) was
coined. Lbss took the use of location information beyond that of pure localisation
and navigation. Numerous applications such as tracking of objects and users,
finding points of interests (restaurants, pharmacies), assistance for elderly and
challenged persons, sharing of resources by sharing their location, spatially
filtered advertising or autonomous vehicles have been explored (Mautz 2012, sec.
1.4). Location information already interferes considerably with the modern daily
life, its significance is evident without even considering military applications.

Thementioned applications require not onlymore accurate and precise location

1. Absolute numbers are hardly comparable because they most likely origin from different
accuracy metrics and different measurement conditions. Employing differential positioning,
multiple constellations and/or frequencies, carrier-phase measurements, postprocessing, etc. also
centimetre accuracy can be achieved. Cost and size constrain their use in consumer grade receivers.

2



1.1. Motivation

information than current consumer grade gnss receiver can deliver, but also
must be more robust and provide near 100% availability independent of the
environment. For these but also other reason indoor localisation has become a
vivid research field. Virtually any signal or sensor technology is employed in
indoor positioning systems, ranging from optical, infrared and radio frequency
signals over sound and inertial or magnetic measurements to floor tiles (Mautz
2012); systems relying on wireless local area network (wlan) infrastructure are
probably the most prominent.

Problem formulation The largest contributions to gnss positioning error are
shadowing and multipath propagation (Kaplan et al. 2006). Shadowing occurs
when the links between the gnss receiver and the satellite is obstructed. Signal
powers are already very low near the earth’s surface and after penetrating
obstructing objects they are too low to be received by most receivers. Position
fixes can usually not be obtained inside buildings. Multipath phenomenon is
caused by obstructions of the satellite-receiver link too. But the signal reaches the
receiver by indirection, such as reflections at objects, instead of being blocked.
These two error sources are dominant in harsh environments such as dense urban
areas, tunnels and so forth.

Ubiquitous indoor localisation must still overcome several challenges. Just the
diversity of approaches poses a problem, as an optimal, unifying method does not
exist. Scalability and accuracy are further problems for many system. The most
important issue when it comes to indoor positioning is the initial deployment of
the systems (ymberopoulosLiuEtAl15:Realistic; Mautz 2012), either hardware
and/or software. Because to attain a certain performance this usually has to be
done manually.
Albeit gnss modernisation and augmentation reduced the positioning error

considerably and also indoor positioningmethods advanced considerably, neither
gnss nor a particular indoor positioning technology alone is able to satisfy all
demands of today’s and future lbss. Robust, ubiquitous and seamless localisation,
purely relying on gnss or on any other single indoor localisation system, is still
not possible; less when a large number of affordable mobile devices are crucial
for the service.

A possibility to further increase the accuracy, precision and robustness of
positioning systems and overcoming some flaws coming by design of gnss, it

3



1. Introduction

is widely suggested to aid gnss with additional sensor information (Fernández-
Prades et al. 2011; Liu et al. 2007; Sun et al. 2005). The integration of different
systems is also a common method to improve indoor positioning systems. This
approach is also called hybridisation or information/data fusion and investigated
in this study.

Many different technologies have been used in combinationwith gnss, themost
promising rely on inertial measurement units or wlan infrastructure; both achieve
accuracies in the range of gnss or better and both enable seamless localisation
– smooth, continuous localisation indoors and outdoors.

A inertial navigation systems (ins) measures inertial forces over time, from
which velocity and attitude are computed. Velocity and attitude permit to update
the former position via dead reckoning. Ins measure inertial force, which depends
on the motion of the moving unit and thus makes them completely self-contained,
independent of any reference except an initial position. Inertial sensors are
already deployed in many mobile devices so that hardware requirements are not
an issue. However, when using mobile devices, due to the dead the reckoning
principle the errors accumulate rapidly and the accuracy deteriorates fast. To
compensate this error an additional localisation source is usually needed (typically
communication- and sensor networks), or the ins system requires the sensor unit
to be mounted in a specific position.

Wlan signals have been used in many ways to determine location estimation,
fingerprinting is mostly used because it requires no alteration of the system and
no knowledge of the access points positions. Fingerprinting has in addition
properties that complement gnss very well, most importantly, it is not prone
to multipath propagation. Compared to other communication- and sensor
networks wlans has the advantage that the infrastructure is already widely
existing. Especially in urban environments, which are usually harsh for gnss. An
open challenge is of course the high burden of deploying and maintaining the
fingerprint database. Nonetheless, in this work we use wlan fingerprinting to
complement gnss.

1.2. Related work

In the following we present an overview about approaches that combine gnss
with wlan positioning system (wps). To improve the positioning performance of
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localisation systems there are several different levels on which data can be fused.
First, the most high-level approach is to use a position determined by one

system instead the position estimate of the primary system. This increases the
availability of the hybrid system compared with the availability of the stand-alone
systems.
Second level, positions from two or more positioning systems are combined,

for example by taking their average or by applying filter techniques. These
two methods address mainly gnss outages and augment the coverage of the
positioning system.
A third group of approaches integrates raw observation data of two or more

positioning systems directly. In addition to assist during gnss outages, this
approach can improve the overall location accuracy and precision and has the
potential to increase the robustness.

1.2.1. Switching between gnss and wps positions

The key idea of positioning systems that fall into this category is to switch between
two independent systems. To do so usually a criterion that determines when to
switch is needed. Intuitively this could be the availability of one or the other
system and indeed this method is quite commonly used; gnss is used outdoors
when usually a position fix is available and wps is used indoors when no gnss
position fix is available. An other switching criterion is an accuracy metric. These
two basic switching criteria may be further controlled by the recognition of a
previously visited location or a time constraints that must be fulfilled.
For example, mobile devices may apply these basic methods as indicated

by application programming interfaces and their location frameworks (black-
berry.com 2013; developer.android.com 2013; developer.apple.com 2013; de-
veloper.nokia.com 2012). Also the studies by Anagnostopoulos et al. (2015),
Bittins et al. (2011), E et al. (2013), Gallagher et al. (2011), Hansen et al. (2009),
Papandrea et al. (2012), Pei et al. (2009), Reyero et al. (2008), Wang et al. (2012)
and Yang et al. (2009) use these ideas in one form or an other.

1.2.2. Weighting of gnss and wps positions

This section summarises gnss-wps hybridisationmethods that combine independ-
ently determined location estimates to a common solution. Position estimates
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1. Introduction

are combined linearly by either simple weighting methods, such as the weighted
average, or by adaptive filters.

When simple weighting methods are used, the weights have to be determined
in an additional step. Very diverse information, such as the weather conditions,
the availability of gnss position fix, the number of gnss satellites in view, the
signal-to-noise ratio, sample statistics, and so forth is employed (Li, Tan et al.
2011; Singh et al. 2004; Yeh, Hsu and Chiou 2010; Yeh, Hsu, Su et al. 2009).
The standard adaptive filter for data fusion is the Kalman filter (kf), though

its variants and other approximations to the sequential Bayesian estimation
framework are feasable. The weights are commonly derived from some accuracy
measure obtained from the filter. The variance of the estimate is themost common
measure. Eck et al. (2012) and Kuusniemi et al. (2011) and Xu et al. (2009) use the
kf to fuse at least two position estimates. Pany et al. (2010) and Lorga et al. (2010)
also employ a kf. They run it as one part of their (multi-sensor) high-sensitivity
receiver, where it integrates a wps position estimate in order to backup the system
in gnss denied areas.

In (Hejc, Seitz, Boronat et al. 2013; Shah et al. 2007) a particle filter is employed
to fuse the outcomes of different positioning systems.

1.2.3. Integration of gnss pseudoranges with wps features

Now we consider data fusion architectures that deduce a common position from
features that were derived from sensory data. For gnss, the feature of choice
is always pseudorange, whereas in the case of wps different features have been
chosen.

Some studies fuse ranges from wlan signals with gnss pseudoranges (Fernan-
dez et al. 2011; Li and O’Keefe 2013; Nur et al. 2013; Yan et al. 2012; Zirari et al.
2010), where the ranges from wlans are either obtained by measureing the signal
propagation time or by deducing ranges from rssis. This approach has two
drawbacks: Knowledge of the wlan access point positions is required and the
line-of-sight (los) to the access points is assumed. Whereas it advantageous that
the features are of the same physical quantity. This facilitates the use of the same
position estimation method that is used in gnss, compare section 2.4.1.

In (Hejc, Seitz andVaupel 2014; Richter, Seitz et al. 2012) an approach integrating
wlan rssi and gnss pseudoranges is studied. As the two measurements are not
of the same quantity the gnss position estimation algorithms can not be applied.
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Instead the authors form likelihood functions of the measurements and combine
these in the correction step of a particle filter.

Using pseudoranges makes the localisation process more robust, because two
pseudoranges or very few rssis observation can already contribute to the solution.
Thus, potentially preventing complete failure of the system in environments that
are harsh for gnss and wps.

1.3. Scope

This dissertation explores amulti-sensor data fusion approach for general purpose
location estimation, targeting medium- to large-scale indoor/outdoor environ-
ments. It focuses on a tight integration of pseudoranges of gnsss with signal
strength measurements of wlans to enable seamless positioning with meter-level
accuracy. We study algorithms to improve the localisation performance with
commercial off-the-shelf gnss receivers and wlan transceivers.

Hypothesis The filter which will be developed, combining statistically wlan
received signal strength measurements with gnss pseudo ranges, will
increase the localisation accuracy and precision, reliability and availability
in comparison with general purpose localisation systems such as gnss.

Objective Design and implementation of a particle filter for ubiquitous and
seamless localisation, which permits to increase the accuracy, precision and
availability of positioning systems.

This incorporates the following particular objectives:

1. Developing and evaluating the wlan positioning system appropriate to be
tightly fused with gnss.

2. Developing a particle filter, which is able to estimate the user’s position
fusing the received wlan signal powers and gnss pseudoranges.

3. Analysing, evaluating and tuning the filter developed to improve robustness,
precision and accurateness in comparison with the stand-alone systems, to
achieve the goals of the hypothesis.

7



1. Introduction

The combination of gnss pseudoranges and wlan signal strength has in addition
the potential to mitigate errors occurring from multipath propagation of the gnss
signals.

1.4. Outline and contributions

The essential contribution of this thesis is the fusion of gnss pseudoranges with
wlan rssis on a continuous state space.

The fundamentals of the methods, techniques and concepts used to achieve
this objective are reviewed in chapter 2. It deals with the basics of location
determination and estimation theory. Mainly, the maximum likelihood method
and the recursive approach to Bayesian state estimation are described. We discuss
briefly two numerical methods for the location estimation problem: the kf and the
particle filter (pf). Furthermore, we introduce Gaussian processes and Gaussian
process regression and conclude chapter 2 with the principles of gnss and wlan
fingerprinting positioning system.
Chapter 3 describes the interpolation of the wlan fingerprint database. We

model the spatial rssi distribution by Gaussian processes that allow to regress
rssi values in the neighbourhood of the discrete distributed fingerprints. The
key contribution lies in an sound analyses of different Gaussian process models
with real data in order to determine the best suited model for wlan rssis. This
analysis examines the necessity of different Gaussian process models for indoor
and outdoor environments. While interpolating fingerprints reduces the labour
of creating accurate fingerprint databases, it is an essential step to achieve accurate
fusion of rssi with pseudoranges.
In chapter 4 we present the methodology how the two measurements are

combined within the Bayes filter. It describes the usedmodels, whereof the model
for the rssi observation is based on the results of chapter 3. Subsequently, we
derive the particle filter that actually combines the data via the measurement
likelihood functions and validate the proposed method experimentally.

Finally, conclusions are drawn in chapter 5 and possible future work is pointed
out.
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Patent applications
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Chapter 2

Background

Even though applications and use cases exist that deal with static objects whose
position shall be identified; this work concentrates on the dynamic case. As objects
in consideration are moving, so is location and the data we may observe about
that process changing. Without further defining the object we know nothing
about its motion or its location. Hence, we model the object’s motion as a random
process and the position, in a particular point of time, as a random variable.
This chapter considers the mathematical background and the models to cope

with that kind of data, providing the foundations for the algorithm fusing gnss
pseudoranges and wlan rssi.

2.1. Determination of location

2.1.1. Positioning techniques

A location is always always determined in a certain reference frame of which
certain reference points are known. These may be landmarks, the positions of the
satellites for gnss, the initial position for dead reckoning or some base stations of
a communication network.

Based on the particular realisation of the system there are two possiblemodes of
operation: terminal- or infrastructure based. A positioning system is terminal based
if the position is calculated inside the mobile unit, and infrastructure based if the
position is calculated inside the infrastructure. This depends basically on where
the measurements are observed and processed. However, a communication
channel between terminal and infrastructure leaves this decision to the system
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2. Background

designer, thus, details like privacy protection, energy consumption, etcetera can
be incorporated.

Furthermore, four different principles are used to determine location informa-
tion:

The simplest of the three positioning principles is just based on the concept of
proximity. Assume that the object to be localised is noticed by one node of the
corresponding network. This may happen by receiving radio frequency signals
or perceiving what ever physical quantity the network uses for operation. If the
position of that node is known, it is clear that the object is in the proximity of that
node and its location can be roughly identified. In cellular networks for example,
if a mobile terminal is connected to a base station, rather a large installation whose
fix position are known, the network needs to identify the terminal’s cell and
automatically knows its location. Of course in other networks such a localisation
method must be implemented.

The second positioning technique is known as triangulation. It enables localisa-
tion of on object by applying the geometrical properties of a triangle. Dependent
on the available baselines or angles of the triangle, the missing information can
be determined. If ranges to reference points are known or deduced from some
observed quantities, the localisation method is called lateration. It might be trilat-
eration, where the intersection of three spheres determines the three-dimensional
solution. The radii of the spheres are the distances between the object and the
reference points. Or it might be multilateration, where differences of distances to
reference points are used to determine the solution. Instead of three spheres, three
two-sheeted hyperboloids are formed by distance difference to four reference
points. The intersection point of these hyperboloids determines the position in
three-dimensional space. The observables are for both techniques often time
measurements which are converted to distances via the velocity of the signal.
As well signal powers are used to derive a distance to a signal emitter. Here,
the difference between transmitted and received signal power is applied to a
law of signal propagation, relating signal power to the distance to the emitter.
Finally, the object is located by the rules of basic geometry that are applied to
a set of distances (or differences of distances) to various base stations which
form triangles. The other geometric approach is named angulation. Angulation
is the traditional method of land surveying until the rise of gps. The position
solution is determined by intersecting the direction lines at three reference points
obtained by the measured angles. In communication networks proper antennae
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2.1. Determination of location

or antennae arrays are used to determine the angles relative to reference points,
from which the position of the object is calculated.

The principle of the third positioning technique is to match features or patterns.
Features are usually a set of a certain metrics of signals. It is assumed that
the feature is unique at the each location and therefore forms together with
the position a reference point for localisation, which can be recognised. This
location dependence is exploited in two phases. In phase i), a survey process is
carried out by assembling a geographical map of that feature. Throughout the
considered site, it is scanned for the feature whose value/magnitude is recorded
together with the coordinate where the scan took place. If the feature map is
obtained once, the second phase ii) can commence. This is the localisation phase.
Again it is scanned for the feature, this time at the sought position(s). Then the
observed value is compared with the complete set of features recorded in the map.
Finally, the sought position is obtained from the map where the feature matched
(best). This method is quite often called location fingerprinting, contemplating the
uniqueness of fingerprints1. The positioning technique is only reliable when the
feature is sufficiently heterogeneous distributed to estimate reliable a position.

Inertial navigation is the last technique. Ins operate completely without
infrastructure, the measurements are made inside the inertial frame of the system.
A pose has to be known initially. Then, after some specific time the distance
and direction since the last post are determined and added to the subsequently
added to the previous pose. The measurements are usually the time since the
last position, the acceleration and rotation, which are converted into a position
increment2. The current pose and time is the starting point for the following
incremental update.

For more detailed information about the different positioning algorithms it is
referred to (Gustafsson et al. 2005; Liu et al. 2007; Samama 2008; Titterton et al.
2004).

1. Remark, the assumption of unique reference point can in reality not be met. To overcome this
problem a whole set of features (from various transmitters) is processed instead of a single feature.
A larger set of features is more likely to be unique at a certain position.

2. The position increment can actually be obtained from different sensory data, such as distance
from an odometer or speed from a speed sensor.
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2.1.2. Location estimation

Determining geographic information is to infer some position or symbolic de-
scription of a place from our world. We use physical quantities to model and
describe that world or certain environments of it in order to define functions that
describe how we interact with that world and all its complexity and uncertainty.
Location estimation requires measurements, which are at least subject to noise.
To obtain reliable location information the value of interest (position, velocity,
pitch, roll, yaw) must be infered from possibly indirect, inaccurate and imprecise
observations. In other words, estimation is the ‘process of selecting a point from
a continuous space – the best estimate’ (Bar-Shalom et al. 2001). Estimating the
position of an object which moves in time, involves also the change of position
over time. This can be modelled as a dynamic system.
The most common form to describe the dynamic system constituting the

localisation problem is the state space notation: A set of first-order differential
equations, describing the evolution of the location in time domain. The position
of the object is part of the system’s internal state or state vector. The state is
actually a set of variables that are sufficient (beside some possible inputs to the
system) to describe the current state of the system, and together with a model
of the dynamic system it even describes its future behaviour. In the state space
model, the state is hidden, described by so called latent variables, and is observed
through measurements. The estimation of the object’s state is often referred
to as filtering, since the goal is to filter out the noise from the measurements
approximating the state, the true position.

Many information, additional to the measurements, can reduce the estimation
errors. Including knowledge about a former position, about the dynamics of
the system, about the measurement errors and even redundant measurements.
All this information can be processed, under certain assumptions, in an optimal
fashion by the sequential Bayesian estimator, a method of Bayesian inference.
This estimator represents the available information probabilistically. It establishes
a hypothesis of the state in form of a probability density function and updates this
hypothesis as additional evidence is obtained. What is more, as this framework
deals universally with probability density functions (pdfs), information from
completely different sources can be combined. It allows to ‘fuse’ information.
The combination of different sensor information is known as multi-sensor data
fusion.
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For the localisation estimation problemwe have the state vector, xt , that embeds
the location information, some noise, vt , representing the uncertainty and some
possible input to the system ut . As the object moves the model needs to adapt to
these changes. To describe the the evolution of the dynamic system over time a
differential equation is used – the process model

ẋt � f (xt , ut , vt),

where f (·) is a not further specified non-linear function. The second part of the
state space model relates the measurements, yt , to the system’s state:

yt � h(xt ,wt),

known as the measurement model, where wt is the sensor noise. As well h(·)
is a possibly non-linear function describing the sensor. The noises are usually
assumed to be zero mean, uncorrelated and mutually independent.

2.2. Estimation techniques

The problem of location estimation can also be described statistically. Bayesian
inference is very commonly used for that matter, but also frequentist methods
such as the maximum likelihood (ml) estimator are often applied.
We begin this section with briefly presenting two estimation paradigms: The

Bayesian method in section 2.2.1 and the ml method in section 2.2.2. Furthermore
common estimation techniques for dynamic state estimation are presented in the
sections 2.2.3, 2.2.4 and section 2.2.5.

2.2.1. Bayesian formalism

The Bayesian method provides a flexible and consistent ‘formalism for reasoning
about partial beliefs under conditions of uncertainty.’ (Pearl 1988, p. 29). It
includes all relevant information, such as prevenient knowledge, the history
of observations and any kind of uncertainty. Unknowns in a Bayesian model
are considered as a random variables. Accordingly, we model the real world
with probabilities, sometimes called beliefs. To consider these probabilities as
hypothesis is as well a common point of view.
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To infer information via a Bayesian model one starts off with some initial know-
ledge, one may have or assume, about the system. Not until data, measurements,
arrive from the system the belief (based on previous knowledge) is modified
according to that data. Calculating the probability of the variable of interest,
conditioned on the data, concludes the concept of Bayesian inference. The laws
of probability and Bayes’ theorem is all what is needed. Bayes’ theorem for the
pdfs3 of the two stochastic variables x and y reads

a posteriori︷  ︸︸  ︷
p(x | y) �

likelihood︷  ︸︸  ︷
p(y | x)

a priori︷︸︸︷
p(x)

p(y)︸︷︷︸
evidence

. (2.1)

In this notation x represents the random parameter/variable we like to estimate
and y some measurements the system provides. The term p(x | y) is called the a
posteriori pdf, or just posterior (density), where posterior is related to the arrival of
data. The term p(x) is known as the a priori pdf. It describes the information about
the parameter x available prior to receiving data. If only a few or no information
is known before the data arrives the prior is rather wide up to completely flat. The
pdf that describes observation procedure is the likelihood function of x given y,
reflecting the chances that y was obtained when x had taken certain values. The
denominator of equation (2.1) is the often called the evidence and is a normalising
constant (independent on x), making sure the posterior is a valid pdf integrating
to one. If the system evolves in time and data is obtained repeatedly one can start
off the estimation again but with the posterior as the current prior.

To estimate the parameter x a point estimate of the posterior distribution is to
be calculated. Therefore several options exist (Ho et al. 1964). The maximum
a posteriori (map) estimate is one choice, in particular on the basis of empirical
data, usually assumed to be symmetric and unimodal. One looks for the value of
x for which the posterior is maximised:

x̂map
� arg max

x
p(x | y). (2.2)

3. This text does not formally distinguish between probabilities and pdfs of continuous random
variables, because they differ only in a constant prefactor which we omit for the sake of simplicity,
see also (Barber 2014, ch. 1).
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That procedure results simply in the mode of the posterior.
A more general solution can be formulated if one minimise the error. Let

x̃ � x − x̂ the error of the estimate. The optimal point estimate is the estimator
that minimises that error in average. Choosing the minumum mean square
error (mmse) as optimisation criterion, the resulting estimator minimises the
expectation of the quadratic error of the estimate x̂

arg min
x
E

�(x̂ − x)2 | y
�

Bar-Shalom et al. (2001) shows that if the posterior is differentiable the solution of
the minimisation problem is the conditional mean

x̂eap
� E[x | y] ,

∫
xp(x | y)dx. (2.3)

Equation (2.3) is also referred to as expected a posteriori (eap) estimate. It is
the optimal estimate regardless the posterior pdf. If the posterior is symmetric
and unimodal, such as the Gaussian distribution, the map and the eap estimate
are identical, since in that case the mean and the median coincide (Bar-Shalom
et al. 2001). As well other cost functions have been used, as for example
arg minx E

�|x̂ − x | | y
�
. One obtains theminimax estimate resulting in themedian

of p(x | y), compare (Ho et al. 1964).

2.2.2. Maximum likelihood estimator

In contrast to Bayesian methods, the ml estimator, as a frequentist method,
considers the sought parameters as unknown but fixed, not random as in the
Bayesian context. In this context, the notion of previous information is accepted
neither, information is infered only on the base of (random) data.

To estimate a parameter in the ml sense first the likelihood function is to be con-
structed (compare equation (2.1)). For different possible values of the parameter
the likelihood function provides probabilities of getting a certain realization from
the random data. The ml estimate is simply the value corresponding to the
maximum of the likelihood function

x̂ml
� arg max

x
p(y | x) (2.4)
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The estimate depends on the data and is therefore a function of the random
data. Nevertheless, the likelihood function is viewed as function of the parameter
because the probability of the observed, hence fixed, data is calculated for possible
values of the parameter. One often writes L(x) for L(y | x) , p(y | x).

Remark: Assuming a flat prior distribution4 in equation (2.1) the map estimate
in equation (2.2) results in the ml estimate (2.4).

2.2.3. Sequential Bayesian estimation

Consider a stationary random process {xt , t ∈ T }, t ∈ R1 , x ∈ Rnx describing the
object’s motion, and a (vector valued) random variable xt – the state or state vector
that representing the physical system. Let xt0 , . . . , xtk be the system’s state as at
several consecutive time instances t0 < t2 < . . . < tk up to tk , expressing that the
data is sequential, and reflecting its change with time.
Even though the problem – to find an object’s position over time – is a

continuous-time problem, the objective of this work is an computable solution
for the data fusion problem. That is, to consider a discrete parameter set for the
random process which therefore becomes a random sequence {xk , k � 1, 2, . . . }.
Since we will deal with events consecutive in time we abbreviate a sequence of
states up to time k with x0:k . The characteristic of a random process or sequence
are embodied in its pdf. We can denote the process’ joint density function by
p(x0 , . . . , xk) or just p(x0:k) and its aposteriori pdf by p(x0:k | y1:k). Bayes’ theorem
for sequences of the states and observations y1:k becomes

p(x0:k | y1:k) �
p(y1:k | x0:k)p(x0:k)

p(y1:k)
. (2.5)

Where the observations, that arriving from the system, are modelled as a random
sequence {yk , k � 1, 2, . . . }, yk ∈ Rny too.

In the localisation problem the last position (incorporated into the state vector)
is intuitively correlated to its predecessor, from which the object moved to the
last position. This dependence of the most recent position on previous ones
represents the conditional pdf p(xk | x0:k−1). One can qualify this further, such

4. Note that a flat prior or diffuse prior has infinite variance resulting in an improper pdf, since
it does not integrate to one and has no moments. Nonetheless the posterior is usually a proper
pdf. (Bar-Shalom et al. 2001)
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that the most recent state only depends on the directly previous state, yielding

p(xk | x0:k−1) � p(xk | xk−1). (2.6)

This property is known as the Markov property and random processes that
inherit that property are first-orderMarkov processes. The history of the process
does not contain any new information if the current state is known; that is, the
system is memoryless. Bar-Shalom et al. (2001) puts that nicely as ‘The future is
independent of the past if the present is known.’.

A similar assumption can be made about the sequence of observations. To look
at a measurement as making a snapshot of the current state makes obvious that
an observation only depends on the current state, but only the state. Expressing
that probabilistically obeys

p(yk | y1:k−1 , x0:k) � p(yk | xk). (2.7)

The latter two equations describe statistically the discrete-time process model
and the measurement model. Equation (2.6) exhibits the Markov property and
is called the transition probability density, describing the evolution from one time
instance to the next Equation (2.7) is again a likelihood function.
However, we can also formulate the state space model as analogue to the

continuous-time state space model in section 2.1.2, though with additive noise.
The discrete-time process model becomes

xk � fk−1(xk−1) + vk−1 , (2.8)

where fk−1 defines a possibly non-linear function describing state’s evolution
in time and {vk , k � 1, 2, . . . }, vk ∈ Rnv denotes the identical, independent
distributed (i.i.d.) process noise. Notice that as well the left hand side of the
general model (2.8) depends solely on the last state.

Above we stated that, because of the intuitive characteristics of the localisation
problem – moving from one position to the next position, and observing a single
point in time – one can assume that the state is Markov. But it can be shown that
any process being an outcome of deterministic dynamic system that is described
by ordinary differential or difference equations and that is driven by uncorrelated
noise is a continuous- or discrete-time Markov process (Bar-Shalom et al. 2001)
To complete the state space equation, we describe the observation as function
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of the state xk too; the measurement model is

yk � hk(xk) + wk . (2.9)

The randomsequence {wk , k � 1, 2, . . . },wk ∈ setRnw is termed themeasurement
noise, which is also i.i.d., independent of the process noise, the state and the
observations.
Recall equation (2.5), that infering the parameter x means to estimate the

(underlying) posterior pdf p(x0:k | y1:k). Equation (2.6) and (2.7) allow us to derive
a two step recursive procedure updating the marginal posterior pdf, p(xk | y1:k);
the density reflecting the current state, its uncertainty and the history of the
observations, see appendix A. The sequential Bayesian estimator consists of two
steps; the process update (2.10a)

p(xk | y1:k−1) �
∫

p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1. (2.10a)

that predicts the pdf of the state at time k using the process model in form
of the transitional pdf and the posterior from time k − 1; and the measurement
update step (2.10b), correcting (2.10a) by applying the observation in form of the
likelihood pdf, thus yielding the marginal posterior pdf of the state

p(xk | y1:k) �
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
. (2.10b)

Estimator (2.10) incorporates all statistical information needed to infer xk in an
optimal fashion from the filtering pdf. It processes new information sequentially
as it becomes available instead of storing all information of all time instances.
It furthermore avoids to eventually process information that has been already
processed before.
The denominator of equation (2.10b) is given by

p(yk | y1:k−1) �
∫

p(yk | xk)p(xk | y1:k−1)dxk ,

being a scalar constant that normalises the posterior pdf such that it integrates to
one.
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To estimate the posterior pdf the process and measurement model, fk and hk ,
and the disturbances, vk andwk , must be known. In addition an initial (prior) state
x0 and its pdf, p(x0), must be available. The prediction of the posterior involves
the state transition pdf that is determined by p(xk | xk−1) � pv(xk − fk−1(xk−1))
and the likelihood function that is determined by p(yk |xk) � pw(yk − hk(xk)).

The described method, estimating xl based on the observations y1:k at current
time l � k, is often referred to with filtering, since it infers the presence p(xl | y1:k).
In contrast, one speaks of smoothing when the past is of interest and the sought-
after posterior is p(xl | y1:k), l < k, or of predicting when one wants to infere a
future state p(xl | y1:k), l > k. Therefore we use the denotation filtering density for
the left hand side of equation (2.10b).
The most common Bayesian filtering problems comply with the following

interpretation: Equation (2.10a) propagates the state’s pdf forward in time. The
random noise vk usually increases uncertainty of the believe about the state.
Equation (2.10b) incorporates the likelihood function into the estimation process.
It introduces new data, which usually decreases the uncertainty about the state’s
believe, resulting in an updated posterior pdf of the state.
The sequential Bayesian estimator is quite general framework that applies

to many kinds of stochastic filtering tasks, including non-linear process and
measurement models, multimodal noises of any distribution. But a general
analytic solution for stochastic filtering problem (2.10) does not exist. For the
specific case of linear process- and measurement model with Gaussian process-
and measurement noise the Kalman filter (Kalman 1960) is the optimal solution
in the mean square sense. In other cases only approximations exist. For example
to approximate a multi-model posterior by its moments the Gaussian mixture
approach is a common choice, pioneered by Alspach et al. (1972). If the state space
is discrete the pdfs can be evaluated at the finite set of points. These methods are
often called grid-based method and in the case of a finite, discrete state space
they provide an optimal solution to the Bayesian recursion. A further option is to
solve the integrals numerically for example by a method called particle filtering,
which is based on stochastic integration.

2.2.4. Kalman filter

This section shows an analytic solution to the Bayesian filtering problem (2.10)
for linear Gaussian state space models.
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A linear a process and linear a measurements procedure, both with additive
noises are described by the discrete-time state space equations (2.11).

xk � Fkxk−1 + Gvk−1 (2.11a)

and

yk � Hkxk + wk . (2.11b)

The noises vk1 and wk are mutually independent, zero mean Gaussian distributed
noises of mean zero. They are also independent of the state vector xk and the ob-
servation vector yk . Due to the linear models and the Gaussian distributed noises
the state is a linear combination of normally distributed random variables and
therefore itself Gaussian. At any stage of the recursion (2.10), the corresponding
distributions (prior, predictive or posterior) remain Gaussians:

p(xk−1 | y1:k−1) � N(x̂k−1|k−1 , Pk−1|k−1)
p(xk | y1:k−1) � N(x̂k |k−1 , Pk |k−1)

p(xk | y1:k) � N(x̂k |k , Pk |k),

where x̂k |k � E[p(xk | y1:k)] is the conditional mean of the state and Pk |k �

E[x̃k |k x̃T
k |k | y1:k−1] is the conditional covariance matrix of the state’s error x̃k �

x̂k − xk.
Instead of propagating the distributions with time, only the parameters of the

distributions, the conditional mean and covariance – the the distribution’s the
first- and second order moment – are updated through (2.8) and (2.9). Kalman
(1960) developed that approach for nonstationary problems.

Assume, x̂0|0 being the initial (prior) conditional mean and P0|0 being the
conditional covariance matrix of the state x0 ∼ p(x0) � N(x̂0|0 , P0|0) given the
measurements y0|−1. Let the process noise be given by vk ∼ N(0,Qk), then the
process update of the Kalman filter is

x̂k |k−1 � Fk x̂k−1|k−1 (2.12a)
Pk |k−1 � FkPk−1|k−1FT

k + GkQk−1GT
k . (2.12b)

Equation (2.12a) propagates the estimate of the previous state through the
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process model and equation (2.12b) adapts the uncertainty about the state
accordingly, while adding the mapped covariance of the process noise. The
results are predictions of the posterior pdf’s parameters.
Using the results of equations (2.12) and wk ∼ N(0, Rk), the Kalman filter

measurement update obeys

x̂k |k � x̂k |k−1 + Kk(y − Hk x̂k |k−1) (2.13a)
Pk |k � Pk |k−1 − Kk HkPk |k−1. (2.13b)

The matrix K is the Kalman gain matrix, given by Kk � Pk |k−1HT
k (HkPk |k−1HT

k +

Rk)−1.
The term y − Hk x̂k |k−1 is often referred to as innovation and the term in

the Kalman gain HkPk |k−1HT
k + Rk is the innovation covariance respectively,

they correspond to the likelihood function in equation (2.10b). The innovation
covariance is a measure for the quality of the observations. The innovation
is added to the predicted state estimate, see (2.13a). But the Kalman gain
amplifies the influence of the innovation if the prediction covariance is large
and the innovation covariance is small, and vice versa. The interpretation of
the covariance update (2.13b) is likewise straight forward. The posterior pdf’s
covariance results in the predicted covariance minus the mapped prediction
covariance modified by the Kalman gain.

If all assumptions are met, the mean and covariance parametrise the posterior
pdf exactly. Then the state estimate, the conditional mean of the filtering density
and the mmse estimate. The Kalman filter is thus the optimal solution.

2.2.5. Particle filter

In the sequel a very versatile method solving the sequential Bayesian estimation
problem is presented: the particle filter. It carries out the integrations involved
in (2.10) numerically by approximating the continuous pdfs by discrete random
measures and solving the resulting sums. Their advantages lie in their possibility
to approximate arbitrary functions (pdfs), their convergence properties and their
possibility to be implemented in parallel (Djurić et al. 2003). Compared to
grid-based methods particle filter are independent of the dimension of the state
space.

Particle filter rely on theprinciple of importance samplingwhich canbe formulated
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sequentially such that it can be employed for sequential Bayesian filtering. Gordon
et al. (1993) presented the first efficient particle filter (Doucet, Freitas et al. 2001),
based on sequential importance samplingwith an resampling step, and demonstrated
the application of particle filter for localisation and tracking.

Monte Carlo integration

The objective of Bayesian filtering is to estimate the filtering pdf p(xk | y1:k) and
some parameter of that density. But to simplify the expressions, we consider just
the random variable x. In general one needs to solve integrals of the form

E[b(x)] �
∫

b(x)p(x)dx.

A parameter which is often of interest is a point estimate like the expectation
b(x) � x, or perhaps a moment b(x) � (x − E[x])n . Assume that a large number
of i.i.d. samples could be draws uniformly from the function of interest {x(i) , i �
1, 2, . . . ,N} ∼ p(x). Then one could use

p(x) ≈ 1
N

N∑
i�1

δ(x − x(i)), (2.14)

to approximate the integral with a simple sum

E[b(x)] �
∫

b(x)p(x)dx ≈
∫

b(x) 1
N

N∑
i�1

δ(x − x(i))dx

≈ 1
N

N∑
i�1

b(x(i)). (2.15)

Such an estimate is unbiased and converges almost surely to the true estimate as
the number of random samples goes to infinity Doucet, Freitas et al. (2001). This
method is often called perfect importance sampling.

But perfect importance sampling is still not the solution to the general Bayesian
filter. Generating samples that belong to standard distributions such as the
Gaussian, or Student distribution is usually done via transformations of i.i.d. uni-
form distributed samples obtained from pseudo random sequences. Mixtures of
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standard distributions can be used in turn to generate more complex distributions.
But the generation of samples representing an arbitrary posterior distribution,
especially if it is of high dimensionality, is not straight forward (MacKay 2005).
The pdfs of the Bayesian filter are in general quite complex functions. In addition,
these functions or their possible parametrisation is unknown.

Importance sampling

The idea of perfect importance sampling relies on the knowledge of the posterior
density. But in our filtering problem it is the sought distribution; thus we can not
sample from it. But let’s assume we knew a density that is proportional up to a
multiplicative constant to the sought state posterior and from which it is easy to
draw samples p(x) ∝ q(·). The function q(·) is known as the importance function.

To use the samples generated from the importance function x(i) ∼ q(·) in
equation (2.14), we must account for the values where the importance function
deviates from sought distribution p(·). This is achieved by defining some weights
that multiplicatively adjust for sampling from the importance function instead of
the sought distribution. The proportionality factor is simply:

ω̃(i)
�

p(x(i))
q(x(i)) ,

named the importance weights. In this probabilistic context the weights are
normalised so that they sum to unity.

ω(i)
�

ω̃(i)∑N
j�1 ω̃

( j) . (2.16)

Each particle x(i) is assigned an normalised importance weight ω(i). The set of
particles and associated weights form the random measure X � {x(i) , ω(i)}N

i�1.

Replacing the equally weighted samples in equation (2.14) with this random
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measure the approximation (2.15) is still correct and results in

E[b(x)] �
∫

b(x)p(x)dx ≈
∫

b(x)
N∑

i�1

1∑N
j�1 ω̃

( j)
p(x(i))q(x(i))

q(x(i)) dx

≈
∫

b(x)
N∑

i�1

1∑N
j�1 ω̃

( j)
p(x(i))
q(x(i)) δ(x − x(i))dx �

N∑
i�1

ω̃(i)∑N
j�1 ω̃

( j) b(x(i))

≈
N∑

i�1
ω(i)b(x(i)). (2.17)

For finite N this estimate is biased, but if N → ∞ it converges towards equa-
tion (2.15) (Doucet, Freitas et al. 2001). For the particles approximation of the
sought density to be accurate enough a few conditions must be met. The most
important one is that the importance function is sufficiently heavy tailed to ‘cover’
the sought distribution completely. More details on this can be found in (Doucet,
Freitas et al. 2001; MacKay 2005).
As the mean is computed by x̂ �

∑N
i�1 ω

(i)x(i), one can also compute the
standard deviation of the particles. This serves as quality measure of the point
estimate and is given by

σp �

√
E[(x̂ − x(i))2] �

√√√∑N
i�1 ω

(i)(x̂ − x(i))2
(N′−1)∑N

i�1 ω
(i)

N′

, (2.18)

where N′ denotes the non-zero weights (Weyn 2001).
It follows the adaption of this concept to the sequential estimation problem, in

particular, we clarify how to determine the weights recursively.

Sequential importance sampling

To adapt the concept of importance sampling to the sequential problem, we
consider again sequences of states. Let the posterior pdf at any time instance,
p(x0:k | y1:k) to be the pdf to be represented by particles. The random measure
at time k is denoted by Xk � {x(i)k , ω

(i)
k }N

i�1, constituting x(i)k , a state vector of the
ith particle and ω(i)

k an associated weight. We look for an recursive particle
approximation expressing the joint posterior pdf (2.5).
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Suppose one can choose an importance function (proportional to the posterior
of the state sequences) obeying a structure that contains the marginal importance
density at time k − 1, q(x0:k−1 | y1:k−1), as given by

q(x0:k | y1:k) � q(xk | x0:k−1 , y1:k)q(x0:k−1 | y1:k−1). (2.19)

This suggests that previous samples x(i)0:k−1 ∼ q(x(i)0:k−1 | y1:k−1) can be augmen-
ted with new samples x(i)k ∼ q(xk | x(i)0:k−1 , y1:k) to determine x(i)0:k−1 ∼ q(x(i)0:k |
y1:k) (Djurić et al. 2003); in analogy to the process update. Furthermore, one can
show (see A.2), similar to the sequential Bayesian estimator, that the prior joint
posterior pdf of the states, p(x0:k−1 | y1:k−1), can be updated by observations of
the system. Omitting the constant scalar denominator gives

p(x0:k | y1:k) ≈ p(yk | xk)p(xk | xk−1)p(x0:k−1 | y1:k−1), (2.20)

that corresponds to the measurement update of the Bayesian filter. Now, express-
ing the importance weights as if samples were drawn from p(x0:k | y1:k)

ω̃(i) ∝ p(x(i)0:k | y1:k)
q(x(i)0:k | y1:k)

(2.21)

and substituting (2.20) and (2.19) into the latter equation (2.21), one yields

ω̃(i)
k ∝

p(yk | x(i)k )p(x(i)k | x(i)k−1)
q(x(i)k | x(i)0:k−1 , y1:k)

p(x(i)0:k−1 | y1:k−1)
q(x(i)0:k−1 | y1:k−1)︸              ︷︷              ︸

∝ω(i)
k−1

, (2.22)

an expression that evolves the importance weights in time. After normalising
the weights, they can be plugged into equation (2.17) completing the sequential
importance sampling method to the determine the sought estimate.

Particle depletion An intrinsic problem of sequential importance sampling not
discussed so far is the degeneracy problem. It is that after a few iterations only a
few particles have large weight and the majority of particles will have negligible
weights, and the particle approximation fails to represent the posterior. With
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an importance function as in equation (2.19) the variance of the weight can only
increase over time (Doucet, Godsill et al. 2000). The degeneracy problem can
be reduced by the choice of the importance function. The optimal importance
function is one that minimises the variance of the weights and is given by
p(xk | x(i)k−1yk); but it has usually no closed form. Doucet, Godsill et al. (2000)
states further strategies to obtain an adequate importance functions. However,
the degeneracy problem persists.

To overcome the sample degeneracy problemof sequential importance sampling
one introduces a further resampling procedure that removes particles that have
insignificant weight and reproduces particles with considerable weight. This
redistributes the particles and spreads them across the posterior. Several res-
ampling schemes have been proposed in the literature, Doucet and Johansen
(2009) states a few of them.

A criterion that measures the degeneracy of the particles, indicating the
goodness of the particle filter is the effective sample size. An estimator of the
effective sample size is

N̂eff ≈ 1∑N
i�1

�
ω(i)�2 (2.23)

(Doucet, Godsill et al. 2000).
The sequential importance sampling with resampling provides a base for many

different versions of particle filters. A particular implementation is presented in
the sequel.

Bayesian bootstrap filter

The choice of the importance function can be quite complicated. A convenient
choice not mentioned before is the process model. Let the importance function
be q(x(i)k | x(i)0:k−1 , y1:k) � p(xk | xk−1). Substituting this into equation (2.22), the
importance weight update depends only on the likelihood function

ω̃(i)
k ∝ p(yk | x(i)k )ω(i)

k−1. (2.24)

Sequential importance sampling with the state transition pdf as importance
function and a resampling step after every weight update and normalisation is
known Bayesian bootstrap filter according to (Gordon et al. 1993). A variety of
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k
x

p(yk+1 |xk+1)

p(yk |xk)

Xk−1 � {x(i)k−1 , 1/N}N
i�1

Xk � {x(i)k , ω
(i)
k }N

i�1
Xk � {x(i)k , 1/N}N

i�1

Xk+1 � {x(i)k+1 , ω
(i)
k+1}N

i�1
Xk+1 � {x(i)k+1 , 1/N}N

i�1

resampling and
prediction step
update step

Figure 2.1.: Bootstrap Particle Filter scheme for one-dimensional state estima-
tion. (Doucet, Freitas et al. 2001)

resampling procedures are available, we refer to (Hol04:Resampling) for the four
most common algorithms. The Bayesian bootstrap filter resamples at each time
step and after the resampling the particles are assigned equal weights. This is
illustrated in figure 2.1.

Note that this kind of particle filter has certain drawbacks. Choosing a prior
pdf as importance function bears the consequence that particles are chosen
without any knownledge about the measurements, thus making it prone to
outliers (Doucet, Godsill et al. 2000).

Even though resampling is effective against the degeneracy problem by re-
moving particles with very small weights, it is worth noting that it introduces
an additional issue. Repeated draws of the same particle are likely and reduce
the support of the density function, hence, degrades the quality of the particle
approximation. This is known as sample impoverishment. For that reason one
should only resample if necessary. A commonly applied scheme is to resample
when the effective sample size reaches a certain threshold, for example Nth � N/2.
Moreover, resampling limits parallelisation as particles are combined.
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2.3. Gaussian process regression

2.3.1. Gaussian process modelling

A Gaussian process is a stochastic process. It can be seen as a generalised multi-
dimensional Gaussian distribution with infinite many random variables. Each
subset of these random variables is again Gaussian distributed.

Definition 2.3.1. A Gaussian process is a collection of random variables, any finite
number of which have a joint Gaussian distribution (Rasmussen et al. 2006).

According to the idea of a Gaussian distribution of infinite many variables,
a Gaussian process is not specified by scalars or vectors, but by functions.
As a multi-dimensional Gaussian distribution is completely described by its
two parameters, a vector of expectations and a covariance matrix, a Gaussian
process is completely described by its mean function m(x) � E[ f (x)] and covariance
function k(x, x′) � E[( f (x) − m(x))( f (x′) − m(x′))]. Hence, Gaussian processes are
distributions over functions. (Rasmussen et al. 2006)
With the mean and covariance function of a real process f (x), the Gaussian

process will be denoted with

f (x) ∼ GP(m(x), k(x, x′)).

The variables x and x′ are values of the function f . Themean function characterises
a global structure of the Gaussian process and the covariance function describes
how the two points, x and x′, are correlated.

Gaussian process modelling can also be seen from a Bayesian point of view. A
non-linear function f (x) is assumed to underlie the data {xn , fn}N

n�1. Inferring the
function f (x) in this context means seeking its posterior pdf. With the definitions
of thematrix of input vectors X ≡ {xn}N

n�1 and the vector of observed target values
f ≡ { fn}N

n�1, the posterior probability is given, according to Bayes’ theorem (2.1),
with

p( f (x) | f,X) � p(f | f (x),X)p( f (x))
p(f | X) . (2.25)

The function f (x) is usually a single sample function of the data to be modelled.
p( f (x)) is the a priori pdf over functions assumed on the model. The prior’s
importance lies in determining the general characteristic of the function which is
to be inferred. This characteristic includes smoothness, mean and uncertainty,
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continuity or the spectral distribution of energy. These properties can be specified
or manipulated by means of the mean and covariance function. The likelihood
function p(f | f (x),X) describes how probable are the observed target values
for different settings of the function f (x); it expresses the observations. These
two probabilities are the relevant terms to infer future target values fn or to
predict/interpolate f (x), based on samples.

The covariance functions are specified by kernels. They express the correlation
between two points of the random process. Two nearby points are usually highly
correlated and close by points are stronger correlated; covariance functions drop
off with larger distance. A wide variety of covariance functions with different
properties are readily available (ch. 4), they can be determined analytically
or obtained by combination of valid covariance functions. The choice of the
covariance function depends greatly on the underlying data. An example of a
very common covariance function is the squared exponential covariance function

cov( f (xp), f (xq)) � k(xp , xq) � exp
(
−1

2 ||xp − xq ||2
)
. (2.26)

The covariance and possible as well the mean function have free parameters, the,
so-called hyperparameter. How to determine these parameters is outlined in the
next section.

2.3.2. Gaussian process regression

Gaussian process regression is based on the idea of Bayesian inference and can be
used to predict or interpolate values of a unknown, sought non-linear function f .
Regression based on Gaussian process modelling is a non-parametric regression
method.
The principle concept of regression analysis is to infer an unknown function

that describes a sought relationship between a dependent variable and data
samples, with help of these available data samples. Consider the unknown
relation y(x) � f (x) + ε, which shall be modelled with a Gaussian process, of
which only a set of noisy training dataD � {(xn , yn)}N

n�1 can be obtained. Where
x denotes an input vector of dimension D and y denotes a scalar output value
or target value. For sake of convenience the N input vectors are collected in
the columns of a matrix, X of input data, the output values in a vector of target
values y. For now also the noise will be neglected, thus the vector of target values
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becomes f, so that the noiseless training data set can be written as D � {X, f}.
The data which is to be predicted is denoted by f∗, henceD∗ � {X∗ , f∗} denotes
the set of predicted target values and its corresponding input values. To this set
it is referred to as test data. As the input data forms a matrix of N input data
vectors also the covariance of equation (2.26) for N input vectors can be rewritten
in matrix form, K(X,X).

Posterior distribution

Asmentioned earlier, a Gaussian process is a process of Gaussian distributionwith
infinitemany variables, ofwhich each subset follows again aGaussian distribution.
Consider the process ( f1 , f2) ∼ N(µ,Σ), then it follows f1 ∼ N(µ1 ,Σ11) and f2 ∼
N(µ2 ,Σ22), where the parameters are determined according to the marginalised
distribution f1 of the joint Gaussian distribution ( f1 , f2) (see Rasmussen et al.
2006, pp. 200). The same follows for the N noise free outputs of the training data,
f and the N∗ test outputs f∗. Their joint distribution is given with

[
f
f∗

]
∼ N

(
0,

[
K(X,X) K(X,X∗)
K(X∗ ,X) K(X∗ ,X∗)

])
. (2.27)

Here, a zero-mean function is assumed, which is a common choice if no more
information about the process is known. The covariance matrix of the joint
distribution consists of four partitions. K(X,X∗) is the N × N∗ covariance matrix,
which is determined by the covariances of all pairs of training and test input
values. The other partitions hold the covariances of other pairs of input values,
according the matrices defined above.

To obtain the posterior distribution the joint distribution (2.27)must be restricted
to the set of possible functions that fit to the training data. This can be achieved
by conditioning the joint distribution on the observations, which results in

f∗ | X∗ ,X, f ∼ N(f̄∗ , cov(f)). (2.28)

The mean function of this Gaussian process is

f̄∗ ≡ E[f∗ | X∗ ,X, f] � K(X∗ ,X)K(X,X)−1f (2.29)
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and the covariance function is given by

cov(f∗) � K(X∗ ,X∗) − K(X∗ ,X)K(X,X)−1K(X,X∗). (2.30)

The distribution (2.28) describes which observations f∗ are likely to be made at
position X∗, given the previous observations f made at the inputs X. If the mean
and covariance function of the Gaussian process (2.28) are known, the posterior
distribution can be calculated and samples obtained directly. Drawing samples
from the posterior distribution means making predictions f∗ corresponding to the
test inputs X∗. The posterior distribution is sometimes also called the predictive
distribution. (Bishop 2006; Rasmussen et al. 2006)

Observed data is usually not free of noise. Consequently, the latent function
becomes y(x) � f (x) + ε, with ε being i.i.d. Gaussian noise. We denote the
variance of this noise by σ2

ε. Due to the independence of the noise, the updated
covariance for two the noisy training outputs simply becomes the sum of both
variance terms cov(yp , yq) � k(xp , xq) + σ2

εδpq . Considering a whole set of N
training input vectors it follows the covariance function,respectively:

cov(y) � K(X,X) + σ2
εI .

Compared to the noise free case in equation (2.27), a diagonal matrix with the
auto-covariance values is added to the covariance function of training data; and
the joint distribution of noisy training and test data becomes

[
y
f∗

]
∼ N

(
0,

[
K(X,X) + σ2

εI K(X,X∗)
K(X∗ ,X) K(X∗ ,X∗)

])
. (2.31)

Again, by conditioning equation (2.31) on the observations, y, the posterior
distribution can be obtained:

f∗ | X, y,X∗ ∼ N(f̄∗ , cov(f∗)). (2.32)

Is mean and covariance functions are given respectively by

f̄∗ � K(X∗ ,X)[K(X,X) + σ2
εI]−1y, (2.33)

cov(f∗) � K(X∗ ,X∗) − K(X∗ ,X)[K(X,X) + σ2
εI]−1K(X,X∗). (2.34)
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The posterior distribution relates the known training data to unseen test data;
it allows to make predictions. The mean function (2.33) specifies the predicted
values and the and the covariance function (2.34) describes the confidence in
these predictions.

However, the prior distribution specifies only vaguely the underlying function,
because enough information about the underlying process is in practice not
available. Therefore, the Gaussian process model, specified by solely the posterior
distribution, usually models poorly the sought function.

Training a Gaussian process

In contrast to the mean and covariance function of the prior distribution, the
posterior distribution depends on the data, so does the quality of the predictions.
The Gaussian process model needs to be adapted to the data in order to fit well
the (unknown) underlying process.
Adapting or training of a Gaussian process model means to choose the prior

distribution and to learn the optimal hyperparameters of the mean and covariance
function, such that the resulting model fits the data well – and hopefully the
underlying function, too.
The choice of the prior mean and covariance function can be difficult and

usually requires some information about principle structure of the underlying
process, for example periodicity or global trend.

To learn the hyperparameters one determines the probability of the data given
the model, with respect to the parameters, see appendix B. The logarithmic
marginal5 likelihood function describes this relationship, and it has an analytic
solution if we assume Gaussian distributed noise

log p(y | X, θ) � −1
2yT[K(P, P)+σ2

εI]−1y− 1
2 log|K(P, P)+σ2

εI |−
n
2 log 2π, (2.35)

where θ collects the model’s hyperparameters.
Optimising this function involves no further parameters, which eventually

need to be found. This likelihood function automatically balances the complexity
of the model in the light of the data and its uncertainty, so that it avoids overly
complex models. This simplifies greatly the training of the models.

5. This likelihood function is usually attributed with the term marginal, since it is obtained by
integrating out the not obtained observations.
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Finally, the mean predictive function of the Gaussian process posterior – with
already adapted hyperparameters – can be obtained by drawing samples from it.
The predicted covariance function is of great value, describing the uncertainty of
the predictions.

Non-zero mean functions

Above, we assume a zero prior mean function letting the Gaussian process
converge to zero in the absence of training data. Although the prior covariance
function essentially controls the structure of the process, since it also can account
for uncertainty of the mean function, the convergence to a zero mean may lead to
erroneous models.

Non-zeromean functions (for instance providing a linear or a polynomial global
structure) can be incorporated in the Gaussian process regression framework.
For a fixed mean function m(x) equation (2.33) is scaled by the chosen prior mean
function and becomes

f̄∗ � m(X∗) + K(X∗ ,X)[K(X,X) + σ2
εI]−1(y −m(X)).

The non-zero mean function is simply subtracted from the observations, trans-
forming them to have again a mean of zero. As the covariance function is
independent of the observation equation (2.34) still holds. Once the posterior
distribution is inferred the fixed zero mean (parameters known) is added back to
the predictive mean function. Notice that the mean function of the data is not
necessarily the mean function of the process.
The idea just described applies also for variable mean function. A set of fix

basis functions is specified, whose parameters are then inferred from data. The
uncertainty of the mean function’s parameters can be modelled by the covariance
function (see Rasmussen et al. 2006, pp. 28).
Throughout this section, we assumed the observation noise to be normally

distributed. Nevertheless, as well other noise distribution are feasible in this
framework. In this case the noise term of the training data (σ2

εI) must be
replaced by an appropriate (full-rank) noise covariance matrix. Note that the
marginal likelihood function will usually not have an analytic representation and
that optimising the hyperparameters requires approximations, such as Laplace
approximation or Monte Carlo methods.
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This section is based primarily on the book by Rasmussen et al. (2006), that
covers the topic in more depth.

2.4. Global satellite navigation system

The developments of positioning by satellites were military driven, as the de-
velopments of terrestrial positioning systems before. The Sputnik mission was
used by US research to develop and test the basic positioning method of satellites.
They used the Doppler shift of the signals emitted by the satellite and the exact
knowledge about the location of signal reception to calculate the orbit of the
Sputnik. Inverting that problem is a solution to determine a location on earth;
if the orbit and the Doppler shift is known. In 1959 the transit program, was
founded, the first (civil use) satellite positioning system. As well the Soviet Union
launched a comparative system around 10 years later (Tsikada). Accuracies of
both systems were in the range of 200m to 500m and the time-to-first-fix (ttff)
was around an hour. Moreover, only every 40minutes a two-dimensional position
estimates for static receiver could be provided. (Samama 2008)

To overcome these drawbacks they superseded transit with the navstar gps
in 1973. It is designed be operational 24 hours at 365 days per year, allowing
three-dimensional position, velocity estimates, and time measurements from all
over the earth. In contrast to transit, it employs ranging with digital pseudo
random noise (prn) modulated signals (Kaplan et al. 2006). In 1978 the first
four (first generation) satellites were launched but it took until 1995 that the 24
nominal (second generation) satellites were in orbit and gps could provide its
full capabilities. In all this time modernisation have been implemented. That
includes satellites, the signals, the complete control centre at ground (Bonnor
2012) and augmentation systems such as sbas.
In 1976 the Soviet Union started its glonass program, with similar technical

specification as the gps. In contrast to gps, it modulates the information to be
transmitted on the frequency instead onto the pseudo random noise code (Bonnor
2012). The first satellite were brought into their orbits in the early- to mid-eighties
and in 1995 the constellationwith the 24nominal satellitewas established (Samama
2008). Due to the short life time of the satellites the full constellation was not
operational until 2011. Glonass as well was modernised. A particular issue was
the compatibility to gps and galileo. Since 2011 the new satellites transmit in
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addition code-modulated signals.
The European Union decided 1998 to launch a own satellite positioning system

for world-wide civilian use: galileo. One of the main aims of galileo is to be
interoperable with gps (Kaplan et al. 2006). That regards the design of signal
structure, coordinate reference frame, time reference system. In addition to
the ‘Open Service’ for positioning other services are part of the galileo design,
among others ‘Search and Rescue Service’, ‘Public Regulated Service’ (encrypted
signals). It was planned that the full galileo constellation of 30 satellites is
available in 2020 (Bonnor 2012).
Three further systems are under construction, they are regional navigation

satellite systems; not covering the whole globe. The Chinese BeiDou system,
in particular the BeiDou-II system because only this is designed to provide a
real-time three-dimensional position fix. A sixteen satellite constellation will
provide position service for the Asian-Pacific region. The second one is the
Japanese qzss. It aims for communication (media) and positioning services. It is
not able to provide a position fix on its own. The last we mention is the inrss, a
positioning system by the Indian government. The inrss will consist of seven
satellite providing positioning service for the Indian subcontinent. (Bonnor 2012).

2.4.1. Principle of operation

The mentioned gnss differ in specification and implementation due to physical
limitations (space, frequency). Respecting the announced efforts to make gnsss
more compatible they (will) obey the same principle of operation. We intend to
provide a general overview about gnss instead of one or all very specific. We
rather state ranges than single values and concentrate on information important
for position estimation. For more detailed information about each gnss is referred
to (Kaplan et al. 2006; Samama 2008).
The three globally operating gnss have constellations of 24 and 30 satellites,

in medium earth orbits between 25 000 km to 30 000 km to provide at least four
satellites at almost each place on earth (Groves 2008). Each satellite broadcasts its
orbital information (ephemerides), its health information and time information.
This data is referred to as ‘navigation message’ and it is transmitted on a the same
communication channel for all satellites. Among the gnsss different signals and
at least two6 carrier frequencies are used. These frequencies are between 1.1GHz

6. A civil/open and a military/encrypted signal.

37



2. Background

to 1.6GHz.
To calculate a position trilateration is employed. Therefore ranges fromdifferent

satellites must be obtained by the receiver. These ranges are computed from
the time the signals need to propagate from the satellite to the receiver. To use
these time measurements the satellites clock must be and are synchronised to a
common time reference.

One of crucial concepts of gnss is characterisation of the signals which allows
to identity each satellite, while the signals use the same spectrum, and to measure
the propagation time of the signal. The code division multiple access (cdma)
scheme that is applied provides properties to fulfil both objectives.

The navigation message is combined with the prn sequence – still being a prn
sequence, because the low bitrate of the navigation messages does not change the
noise character much. The use of prn codes lets the signal look like noise, having
the advantage that the energy of the information is distributed over the spectrum
making it less susceptible to interferer signals. The prn sequences are chosen
such that they are orthogonal to each other and that each satellite is assigned
one of the set of orthogonal sequences. In the satellite the prn sequence is then
periodically modulated onto the carrier signal and transmitted.

These signals arrive at the receiver where they are unmodulated such that the
prn sequence can be processed. It is correlated with local copies of the prn codes
residing in the receiver. Due to the orthogonality of the sequences the correlation
peaks when the correct replica of the received sequence is (auto-)correlated, that
way identifying the transmitter. If other sequences are correlated the correlation
function stays flat7.
The correlation as well allows to measure the propagation time. Assume also

the receiver clock is synchronised and that the transmit time of the signal is
already decoded. To correlate the signal the receiver has to find its beginning.
Correlating consists then to shift the local replica of the sequence such that both
sequences align. The time the code was shifted corresponds/equates the time
the signal travelled. Multiplying this time by the speed of light yields the range
from the satellite to the receiver. This range comprises an additional error source,
the receiver clock and the satellites are actually not synchronised. The differences
in time between the gnss receiver and the reference time of the satellites. The

7. Glonass actually employs frequency division multiple access, but is changing this in favour
of cdma (Bonnor 2012)
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distance between the receiver position, p and the position of the jth satellite p j is
expressed as their geometric distance plus the receiver clock offset, tr ,

% j
� ‖p j

s − p‖ + ctr + η
j

�

√
(x j

s − x)2 + (y j
s − y)2 + (z j

s − z)2 + ctr + η
j ,

(2.36)

where η j aggregates further error sources, see (Kaplan et al. 2006, ch. 6 & 7).
Equation (2.36) states a single pseudorange.

Four satellite-to-receiver ranges form an equations system that can be solved to
obtain the triple x, y and z, the coordinates of the receiver and also the receiver
clock offset.

Trilateration

Relying on the geometry of triangles gnss compute the users position. Here, each
satellite’s position at the time of signal transmission is known (transmitted in the
navigationmessage); three satellites constructing a triangle, each being a corner. A
satellite-receiver distance forms a sphere around a satellite. In three-dimensional
space these two spheres intersect in a circular plane that is perpendicular to a
line connecting the two satellite. Based on only two pseudorange measurement
the receiver position is one of the positions forming the perimeter of the circle,
see figure 2.2. Consider an additional sphere around a third satellite. The third
sphere intersects with the perimeter of the circle in two points, as can be seen in
figure 2.3; narrowing down the possible solutions. One excludes the solution that
does not lie on the earth’s surface and the left point is the sought receiver position.
Of course, the pseudoranges are affected by errors. Therefore the intersection
point is rather a spherical triangle kind intersection zone.

In the case of gnss a fourth pseudorange is necessary because the receiver clock
offset tr introduces a fourth unknown variable that is common to all pseudoranges.

Position, Velocity, Time algorithm

The solution to the navigation equations above is commonly abbreviated with
position, velocity and time (pvt), naming the important quantities one wants
to known from a gnss receiver. Several methods to determine a position fix
algorithmically exist. In general the equations of pseudoranges are linearised
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Figure 2.2.: Intersection of spheres constructed by two satellite-receiver ranges. Nar-
rowing down the possible solutions to the circle of intersection. (‘Keep Environment
Nature’s Blog’ 2008)

around an approximate position and a predicted clock offset, that results system
of linear equations relating changes of the user’s position to changes of the
pseudoranges. One actually solves for a correction to the initial estimate of
the user position and clock offset (Kaplan et al. 2006). The position estimate
is obtained by adding the correction on the initial values. The accuracy of this
solution depends on the first approximations of the positions. Repeating the
calculation using the last solution and recent pseudorange measurement may
refine the position estimate. In practice, ten iterations are usually sufficient
for the algorithm to converge (Samama 2008).If more than four pseudoranges
were obtained – nowadays the case in most environments – the least squares or
weighted least squares approach is used, since it is more accurate then just using
four measurements.
Bancroft (1985) developed a closed-form solution to the problem. He trans-

formed the time of arrival (toa) problem to a time difference of arrival (tdoa)
problem by calculating with differences of pseudoranges. That results in a
quadratic equation to that the solution is easily obtained. The advantage of this
approach is that it does not need initial values.
The calculation of pvt is usually implemented in iterative manner able to

continuously determine a position estimate.
Additional information may provide further improvements for the pvt estima-
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2.5. Wlan based localisation

Figure 2.3.: Intersection of spheres constructed by three satellite-receiver ranges.
The three spheres intersect in two points (black dots), forming the possible solu-
tions. (‘Keep Environment Nature’s Blog’ 2008)

tion. By means of an extended Kalman filter the history of the measurements
and a model of the motion of the receiver can be incorporated into the estimation
procedure; advantageous especially in dynamic use cases. A detailed description
about the gnss Kalman filter can be found in (Groves 2008; Kaplan et al. 2006).

2.5. Wlan based localisation

Wlans are radio frequency communication networks according to the standard
ieee 802.11. They provide wireless access to computer networks in at in the
industrial, scientific and medical frequency band at 2.4GHz and 5.8GHz. The
access to a wlan is limited by its outreach of up to 100m dependent on the
environment. The nodes of wlans are known as access points.

Wlans offer some compelling advantages with respect to location determina-
tion. These in particular are a world-wide availability of access points, millions of
wlan enabled devices, wall penetrating signals. The localisation infrastructure
and end-user devices are off-the-shelf, standardised and already widespread
allowing almost everyone to develop a wps. These properties made this technique
the most common one for indoor localisation. That the wlan signals penetrate
solid objects makes them also useful in outdoor environments that is covered by
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wlan infrastructure; therefore existing wlans often cover urban areas completely
and that makes them potentially a large area position system. Companies make
already use of that and provide localisation services based on wlan in large
areas (awiloc 2013; skyhookwireless 2013). The wide proliferation of access points
in denser inhabited areas provides a sufficient number of access point for wpss.
Vaupel et al. (2010) state an average of 12.6 access points in an ordinary dense
urban centre.
All positioning techniques mentioned in section 2.1.1 have been explored for

wps. But propagation-time based methods suffer from non-line-of-sight (nlos)
conditions (Galler et al. 2006; Koenig et al. 2011; Pahlavan et al. 2006) and the
missing time synchronisation bear additional problems (Bagdonas et al. 2008;
Günther et al. 2005; Li, Pahlavan et al. 2000; Yamasaki et al. 2005) diminishing the
position accuracy. An other shortcoming is that accurate access point locations
must be known, which is hard considering public areas where access points are
often moved difficult to to survey. Systems that are based on proximity neither
possess sufficient accuracy. The left over localisation technique is – the one we
also will employ – wlan location fingerprinting.

2.5.1. Wlan rssi location fingerprinting principle of operation

Location fingerprinting’s fundamental concept is that a metric or set of metrics is
unique at every position and that a certain location can therefore be identified by
that metric. For localisation in wlans the rssi is the signal metric most commonly
chosen, as do we – but note that the assumption of spatial uniqueness of rssi is
flawed in reality.
As any localisation system as well for location fingerprinting needs some

spatial references, which need to be created. That is done in a step prior to the
localisation. This step is often called survey- or offline phase. Objective of this
phase is to create a ‘map’ that comprises all the rssi of all access points at all
positions: the radio map. In practice the developer/operator of the system moves
to a position, reads that position for example from a (digital) map, measures
the rssi, of all receivable wlan access points and stores the rssi together with
the position in a database. This procedure is then repeated for many reference
points. Each entry of database is referred to as fingerprint. To determine a position
from such a system one measures again the rssi, now at the unknown location,
and compares these observations with the entries contained in the database.
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2.5. Wlan based localisation

The position corresponding the closest rssi match is the sought position. This
method was first published by Bahl et al. (2000). Each rssi is identified via the
media access control (mac) address which is transmitted with the signal. This
identifier is associated with each rssi reading and also stored in the database. In
practice Bahl et al. (2000) did not store a single rssi reading in the database, but a
time average. Also note that standard wlan transceiver chip sets output a rssi
quantised to one dBm.

2.5.2. Modelling wlan location fingerprinting

Received signal strength

Rssi are mainly determined by the attenuation that a radio-frequency signals
experiences propagating through the atmosphere, in free space without encoun-
tering objects, interference by other signals, etc. it is described by free-space
path loss model Pfs � −10γ log

�
λ

4πd

�
. Where λ is the wavelength, γ the path

loss exponent (γ � 2 in free space) and d � ‖pT − pR‖ is the distance between
transmitter and receiver.
In urban- and indoor scenarios this model holds only to a certain extend,

since mostly the los between transmitter and receiver is obstructed. Rssi are
additionally affected by fading, describing changes of signal power due to changes
of the transmitter-receiver geometry; for examples when transmitter and/or
receiver are in motion. The change of the signal path due to obstacles results
in reflection, diffraction and scattering (Rappaport 2001), these are large-scale
effects summarised by shadowing.
A third phenomena that affects the signal power in urban areas is called

small-scale fading. It is due to changes in the multipath geometry and changes in
velocity of the transmitter and/or receiver (Rappaport 2001). Therefore several
copies of the signal are received at slightly different times, causing interference
and the signal power variations. Small-scale fading occurs in relatively small
time periods. Since wlan rssi are time averaged signal power measurements the
attenuation due to fading can be neglected.

The large-scale effects attenuate the signal power logarithmically with distance,
leading to the log-distance path loss model (Rappaport 2001). Various other sug-
gestions to model the signal attenuation in complex areas exist, but most of are
based on the log-distance path loss model. Additional time varying influences
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are modelled as a random process with log-normal distribution. The path loss in
urban and indoor environments is given by

Pld � Pfs(d0) + 10γ · log10

(
d
d0

)
+ wrssi . (2.37)

Pfs is the free-space path loss at a reference distance of d0 � 1 m. γ is the path loss
distance exponent and wrssi is a noise term reflecting for log-normal shadowing
(in dB). Given a transmitter emitting the signal with the power of PT , the averaged
signal power received at the receiver is described by

s � PT − Pld. (2.38)

Wlan rssi are signal strength, whose mean satisfies equation (2.38).

Due to variability and complexity of dense urban and indoor environment
(geometry, humidity, moving persons/objects, a user’s orientation, radio fre-
quency inferences, etc.) of the wlan radio propagation channel the path loss
models are not accurate enough to model rssi and vice versa (Chitte et al. 2009;
Elnahrawy et al. 2004; Heurtefeux et al. 2012). The path loss exponent varies
in dependence of the environment’s geometry and materials and the los/nlos
conditions. Many different path loss models, advantageous only for particular
scenarios, have been developed (Rappaport 2001); a unifying model for general
environments is still lacking (Hatami et al. 2006; Mardeni et al. 2012). Therefore
the ranges of the parameters be quite large: the path loss exponent γ ranges from
2dB to 6 dB (Kushki 2009) and the standard deviation σwrssi varies between 3 and
16dB (Rappaport 2001). Such dynamics may even occur over short distances.
To overcome the shortcoming of the propagation models the empirical wlan
location fingerprinting became the technique of choice.

Accounting for the random nature of rssi, we denote the random process
of rssis by {st , t ∈ T }, on the signal space st ∈ S. We like to point out that
st is in general not stationary (Kaemarungsi et al. 2004b). Only during the
relatively short rssi capturing intervals, at the particular position, and relatively
fix conditions of the environment, we assume stationarity. This process is also
spatially correlated, thus depends on location; but for the sake of convenience
we neglect this dependence. We will come back to it as it is import for the
interpolation of signal strengths we will discuss later.
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Fingerprints and radio map

Since the fingerprints are taken on discrete positions to establish the radio map.
These discrete positions are defined on the space P̆ ⊆ R3, which consists of
dom(P̆) � p̆1 ∪ p̆2 ∪ · · · ∪ p̆nm regions of equal volume, nm denoting the number
of regions. Each region has a volume |p̆m | that can be assigned a probability.
Presuming that the volumes |p̆m | are equal size, a region can be approximated by
its centroid p̄m , see (Thrun et al. 2006).
Lets define a fingerprint as Sm , F(p̄m), Sm ∈ S being a (set of) rssi observed

at the mth reference position p̄m � (x̄m , ȳm , z̄m)T in Cartesian coordinates. Each
set of rssi consists of possibly various rssi from nl ,k access points Sm � {sm ,l}nl ,k

l�1 ,
whose elements sm ,l � (sm ,l

1 , . . . , sm ,l
ns ,k

)T are realisations of st .8
For the sake of convenience we assume the number of receivable access points

at a specific reference position as constant in time (nl ,k � nl), as well as the number
of of signal strength values received at a that reference position (ns ,k � ns).9

A fingerprint in its most general definition is a set of pdfs – one for each access
point – specific for a given location (Mirowski, Whiting et al. 2012), p(sm ,l | p̄m).
That is, sm ,l may contain sufficient data to construct a histogram of rssi received
from one access point approximating the underlying pdf. The classic wlan
fingerprinting method (Bahl et al. 2000) uses time averaged signal strength for
fingerprinting; s̄m ,l � 1/ns

∑ns
q�1 sm ,l

q reduces to a scalar. The complete fingerprint
database is then defined by

R , {p̄m , Sm}, m � 1, . . . , nm .

Position estimation

The fundamental problem of wlan fingerprinting is to deduce a position from
the radio map while observing rssi measurements from various access points.
To estimate a position, when a set of rssi is measured is to match the observed
Sk � {sl

k}
nl
l�1 with the database entries Sm ; a classical pattern recognition problem.

8. The time index k is used for the cycles of the sequential Bayesian estimator and for observations
that fall within one of these cycles.

9. Then number of access points and number of received rssi values may be a design parameter
making these two assumptions reasonable. Advanced models exist that consider in particular the
issue of changing number of receivable access points, see (Beder et al. 2012; Mirowski, Steck et al.
2011).
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One seeks to minimise a measure capturing the divergence/similarity of the
chosen pattern or signal metric

p̂k � arg min
p̄m

(d(Sk | p̄m , Sm)) .

This similarity indicates how likely it is to receive the observation at each of the
reference positions.

To discriminate or compare between the current measurement and the finger-
prints in the database many metrics are available. The classical fingerprinting for
example uses the Euclidean distance in signal space. Assuming the number of
access points and as well the number of measurements from each access point the
same, the similarity between the fingerprints and the observation can be given by

d(Sk | p̄m , Sm) �
√√ nl∑

l�1
(sl

k − sm ,l)2. (2.39)

One can improve this estimator by finding the k closest fingerprints

{pm′ | {p̄n}nn−K
n�1 : d(Sk | p̄n , Sn) ≥ d(Sk | p̄m , Sm)}, m′ � 1, . . . , K

and averaging over the corresponding positions

p̂ �

∑K
m′�1 wm′p̄m′∑K

m′�1 wm′
, where w � 1/K. (2.40)

This algorithm is the k-nearest neighbours (k-nn) method. When weighting
nearer neighbours more heavily by replacing the weights in equation (2.40) with
the inverse of the divergence measure wm � d (Sk , | pm , Sm)−1, a slightly better
estimator – the weighted k-nn method – is obtained.

A stochastic approach to this is to use the rssi likelihood function. A large
likelihood reflects a high similarity and a low likelihood a high divergence.

In the probabilistic framework the rssi observations from different access points
are assumed to be independent of each other [discuss independence assumption].
If the distribution of the noise wrssi is known, the joint pdf for independent
random variables is given by the product of the likelihood functions of each
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access point

p(s1
k , . . . , s

nl
k | p̄m) �

nl∏
l�1

p(sl
k | p̄m)

�

nl∏
l�1

pwm ,l (sl
k − h l

s(pm))

�

nl∏
l�1

pwm ,l (sl
k − sm ,l)

, p(Sk | p̄m).

(2.41)

The function h l
s(p̄m) stands for the (empirical) measurement model of the lth

access point and is determined by the mth radio map entry. A position estimate
(p̂) can be obtained by the ml method (2.4).

The similarity measure clearly depends on the model of the rssi likelihood
and what data is stored in the radio base. For parametric models the 2-norm (see
equation (2.39)) is the most widely applied measure of similarity between the
rssi fingerprints and the observed signal strength. Other options to compute the
similarity in signal space are referred in (Corte-Valiente et al. 2009; Honkavirta et al.
2009). To compare the similarity between complete pdfs, hence including higher
moments, either estimated by histograms or kernel density estimators (Roos et al.
2002) other kernel regression versions (Kushki et al. 2007; Le Dortz et al. 2012;
Mirowski, Steck et al. 2011; Pan et al. 2006). As well Honkavirta et al. (2009)
lists various possibilities to compare pdfs. Further methods to recognise the
observed signal strength pattern within the radio map include support vector
regression (Battiti et al. 2002), decision trees (Yim 2008) and neural networks (Fang
et al. 2008).

Concluding remarks

The more information is stored in the database the more details can be explored
from the rssi uncertainty. This enables to extract more feature(s) that can be used
for regression, allowing a more accurate recognition of that feature(s) and more
better positioning. The amount of rssi samples, that is the amount of information,
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depends on the design of the system and on the labour invested to generate the
radio map. The density of database reference positions is likewise important.
One system design issue influencing the positioning performance is the rssi

sample rate and the time available to observe the rssi. The sample rate of standard
wlan transceiver chips is 1 s. For example a pedestrian moving with for example
1ms−1 may only receive one observation at a position or may be up to five rssi
observation in the area of that position. Therefore in realistic scenarios it is
unlikely that enough samples for a complete histogram can be collected. This loss
of information make parametric approximations of the likelihood more useful
even though they discard possibly useful information (Honkavirta et al. 2009;
Mirowski, Whiting et al. 2012).
An other point to consider when designing a wps is the average distance of

the database reference points. In general, the closer the reference positions
to each other the more exact the positioning system. But there is a limit that
depends on the environment. In spaces with few obstructing objects the signal
strength at close by positions differ little, hence it is useless in these areas to create
fingerprints overly dense. In addition several authors studied how the radio
map generation can be simplified. Three approaches could be found: Either by
crowdsourcing as in (Park 2013), or by automation (Palaniappan et al. 2011), or
by interpolation (Atia et al. 2012).

The number of access points received in survey phase and positioning phase is
a further point to consider. Ideally, this number should coincide in both phases;
but often it does not, due to a small time window receiving rssi or may be moved
or off-line access points. A frequent remedy is to choose only the strongest access
points. Whereas Beder et al. (2012) and Kushki et al. (2007) and Mirowski, Steck
et al. (2011) incorporated this problem in their algorithms.

All these considerations are relative and needed to be considered in the light of
the overall system/wps design, including the environment (variability, size of
open spaces, etc.) and of course use cases.
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Chapter 3

Gaussian process wlan positioning
system

This chapter describes a wlan positioning system based on the concept of
fingerprinting. Compared with classical fingerprinting, which infers the sought
position from the spatially discrete fingerprints, we use the Gaussian process
regression approach described in section 2.3 to interpolate the rssis. This brings
two additional advantages: First, due to the interpolation of fingerprints the
amount of fingerprints that is needed for a certain positioning accuracy can
be reduced without loosing accuracy, thus facilitating largely the creation of
radio maps; second, one can use this interpolated radio map to compute a rssi
likelihood function on a continuous state space. This facilitates the integration of
rssi into the data fusion framework (2.10), our main objective, but it also enables
probabilistic fingerprinting localisation. Wherefore we use the ml estimator to
infer a position from rssis readings.
Even though the overall objective is the hybrid localisation system, the wlan-

only position estimates are helpful to assess its accuracy and precision, providing
a sense about the details about the fusion with gnss. The following section
presents the probabilistic wlan rssi model, that will also be used to fuse rssi
with pseudoranges. Section 3.3.2 describes the experimental setup used to create
the radio map. Gaussian process regression model are very flexible methods,
however this flexibility brings as well responsibility in choosing the ‘right’ model.
Therefore, conduct a comparative analysis in finding the ‘right’ model. In
section 3.4 we compare several Gaussian process models to find the one that
suites wlan rssi best. Furthermore, we investigate if Gaussian process models
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for indoor and outdoor environments can be distinguished. This is followed by
results on Gaussian process regression based ml estimator derived from the best
suited Gaussian process model.

3.1. Wlan rssi model

The following sections describe the interpolation of rssi with Gaussian process
regression in order to form a likelihood function on continuous state space. The
fundamentals of regression with Gaussian processes can be found in section 2.3.
Interpolating rssi values corresponds to predicting rssi in space. That was

already studied before because this means an increase of resolution of the wlan
radio map. This idea was already studied by Elnahrawy et al. (2004) who applied
Delaunay triangulation to interpolate between fingerprints, whereas Chai et al.
(2007) interpolated linearly to obtain additional signal strength values. A large
body of studies use some regression method as the very Gaussian processes
regression models (Atia et al. 2012; Bekkali et al. 2011; Duvallet et al. 2008; Ferris
et al. 2006; Li, Wang et al. 2005; Yoo et al. 2014). Benefits of this procedure
are a continuous approximation of the spatial rssi distribution – facilitating the
integration into the Bayesian fusion framework – and largely reduced labour of
fingerprint database creation. The disadvantages are the increase of complexity
of the system and the additional computational burden.

Section 2.3 provides the fundamentals to understand the wlan rssi model that
will be presented in section 3.1.2. In section 3.2 we outline the use of the rssi
likelihood function to estimate a location with the ml technique. As modelling
of wlan rssi has been controversial we first state the different approaches of
probabilistic rssi modelling, justify our choice and then present the Gaussian
process regression based rssi likelihood function.

3.1.1. On the Gaussianity of wlan rssi

The rssi model function is supposed to properly reflect the statistics of rssi and
to describe the relation of signal power and space. Rssis are first of all governed
by the environment and all the fluctuations and disturbances occurring in that
environment – causing temporal and spatial variations of the statistical properties
of rssis. In addition, the rssi pdf varies dependent on receiver antenna orientation
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and may even change completely for different receiving hardware. An accurate
and universal model of the wlan signal strength distribution is still an open issue.
Based on the log-distance path loss model (2.37), or one of its variations, it is

commonly assumed that the logarithmic rssi are normally distributed due to
large-scale shadowing that affects them (Rappaport 2001). This assumption holds
only now and then (Kaemarungsi et al. 2004b, 2012; Ladd et al. 2005; Le Dortz
et al. 2012; Mirowski, Steck et al. 2011; Vaupel et al. 2010). Rssi pdfs are frequently
left-skewed, sometimes they are also be bi- or multimodel, hence rendering the
assumption of Gaussianity flawed.
Considering that rssi are quantised, the normalised centralised histogram

models the signal strength likelihood p(s | p) quite natural. Chai et al. (2007),
Mirowski, Steck et al. (2011) and Roos et al. (2002) chose this approach, but
capturing a full histogram to completely approximate the rssi distribution
requires a relatively large amount of samples, implying enough time. This
temporal constraint, an increased database size and increased computational
burden, which additionally leads to higher device power consumption, makes
this method inexpedient.
A different but also non-parametric approach is to approximate the rssi

likelihood by kernel density estimation. Kushki et al. (2007), Pan et al. (2006), Park
et al. (2011) and Roos et al. (2002) did this, where the squared exponential kernel1
is the kernel mostly used. This method add an additional step of complexity to
the overall positioning system making it for the current work not appropriate.
In contrast to capture a histogram capturing a single rssi is clearly not robust

enough, nonetheless – the middle ground – capturing averages is a working
approach as classical, deterministic fingerprint methods have shown. Capturing
the mean and a variance is enough to model a Gaussian likelihood distribution.
The majority of studies on this topic followed this approach, for example (Chen
et al. 2007; Ferris et al. 2006; Li, Salter et al. 2006; Wallbaum et al. 2004; Youssef
et al. 2003). More robust or more general distributions have been suggested too:
For example a Gaussian mixture (Tseng et al. 2008), contaminated Gaussian with
los and nlos component (Yin et al. 2013), t-distribution (Elnahrawy et al. 2004),
Weibull distribution (Chan et al. 2012), central χ2-distribution (Kaemarungsi et al.
2004a) and a Gaussian enhanced with a Gibbs distribution accounting for missed
access points (Beder et al. 2012).

1. Often also referred to as radial basis or Gaussian kernel.
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All models suffer from the variability of the wlan propagation channel. In
practical systems rssis are recorded during short time periods, in fact in the
survey and as well positioning phase. Different approaches are more robust than
others, but that depends on the context and design of the wps. Given that the
rssi are not stationary over medium and long time periods it is always uncertain
if the observations made during the survey phase share the properties of the
observations at a later time. This holds for the simple approaches as well as for
the more complex ones. Measurement redundancy countervails modelling issues
to a certain degree.
Albeit parametric models do not capture well the rssi pdf, even less if the

distribution is skewed or multimodel, several authors consider a Gaussian
rssi distribution a trade-off between complexity and feasibility and reported
reasonable results Chen et al. (2007), Elnahrawy et al. (2004), Kaemarungsi et al.
(2012), Mirowski, Whiting et al. (2012) and Youssef et al. (2003). We fall into line
with that argumentation: We use the normal distribution to model the rssi in
the positioning context (eq. (2.10b)) and also for the interpolation of rssis with
Gaussian processes (eq. (2.25)). Using a normally distributed Gaussian process
likelihood function leads moreover to an analytically solvable regression. More
details on this choice can be found in (Richter and Toledano-Ayala 2015).
For more insights about the statistical properties of wlan rssi in indoor

environments we refer to (Kaemarungsi et al. 2012).

3.1.2. Interpolating the wlan radio map

In section 2.5.2 we defined a reference point of the database p̄m on discrete
subspace P̆ of R3. In our implementation of the wlan positioning system we have
only two-dimensional reference positions which is why we reduce the position
space to p̄m ∈ P̆ ⊆ R2 as compared to section 2.5.2. (We recommend this section
and section 2.3 because we use the same notations).
An analytic relationship between rssi and space is not known though, but

consider the following equation to represent this relation s � f (p)+ ε, where f (·)
is the function describing this underlying relationship and which we are after
because it allows us to predict further values. The noise, ε, is uncorrelated and
stems from a normal distribution (see discussion above) with standard deviation
σε.
When creating a fingerprint database we sample at known locations from
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this relation and get for each fingerprint a set of noisy rssi measurements, sm ,
observed at some reference positions p̄m . Thus, creating the whole radio map
with nm fingerprints is described by

sm
� f (p̄m) + ε, m � 1, . . . , nm .

Notice that sm are the rssis of a single access point. That means that also the
regression procedure is done for each access point separately. The index of access
point, l, is therefore omitted here for convenience.

Since we average the signal strength over a few seconds we denote the rssi that
we observed from the same access point by s̄m . If we used the whole fingerprint
database as training data we write the training data asD � {pm , s̄m}nm

m�1, but in
general one may only use m ≤ nm data points, why we use the notation P , {pm}
for the training input values and s , {s̄m} for target values.
The measurements {s̄m}nm

m�1 are spatially correlated (to a certain extend, as
this depends on the distance of the corresponding reference points) which is
expressed by their covariance function cov(s). The covariance needs to be specified
by choosing a suited kernel, K(P,P). This is one of the crucial choices when
determining a Gaussian process model. The covariance function of the noisy
training targets becomes simply cov(s) � K(P,P) + σ2

εI. The mean function of
that process is denoted µ(s). Hence, the radio map creation underlying Gaussian
process follows a multivariate normal distribution s ∼ N�

µ(s), cov(s)�.
Now we further restrict the noise to follow a zero mean normal distribution,

ε ∼ N(0, σε), and assumewe further sample rssi, s∗ � f (P∗); this time at unknown
locations P∗ – speaking of our test dataD∗ � {P∗ , s∗}. These measurements are
the rssi we want to predict. As both sets of observations origin from the same
physical process they are jointly distributed and spatially correlated. (neglecting
temporal variations between the times of measurement taking). The correlation
between the two sets of rssi is expressed by a covariance matrix that determines
the correlation between training and test data pairs, given by K(P, P∗) � K(P∗ , P)T ,
and the covariance matrices of the training target values K(P, P) and the same for
test data K(P∗ , P∗) respectively. The joint rssi distribution yields

[
s
s∗

]
∼ N

( [
m(P)
m(P∗)

]
,

[
K(P,P) + σ2

εI K(P, P∗)
K(P∗ ,P) K(P∗ , P∗)

])
.
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Based on the joint distribution, the posterior Gaussian process distribution is,
as before, obtained by conditioning over the observations, resulting in a normal
distribution

p(s∗ | D , P∗) � N�
µ(s∗), cov(s∗)�. (3.1)

Its mean function reads,

µ(s∗) � m(P∗) + K(P∗ ,P)[K(P,P) + σ2
εI]−1(s −m(P)) (3.2)

and covariance function

cov(s∗) � K(P∗ , P∗) − K(P∗ ,P)[K(P,P) + σ2
εI]−1K(P, P∗), (3.3)

respectively. To predict/interpolate further rssis at arbitrary locations one just
uses equation (3.2) whereupon corresponding variances are provided by the
covariance function. The prediction distribution models the randomness and the
spatial correlation of rssis. The section that follows makes use of this distribution
by constructing a ml estimator that is able to infer the location of the object.
For the particular choice of the mean and covariance function we refer to

section 3.4.

3.2. Position estimation

Consider an object/user that wants to determine its position based on an observed
rssi average s̄k from still only one access point. (The particular number of the
signals strength values that is received at time k is of no interest as we average
them, as we have done for the radio map as well.)

Since normal distributednoisewas assumed,wealsouse aGaussiandistribution
to denote the likelihood function (now of the positioning context):

p(s̄k | P∗) � 1√
2πσs∗

exp
(
−1

2

�
s̄k − µs∗

�2

σ2
s∗

)
where we denote µs∗ and σ2

s∗ the value of the mean and covariance functions
(eq. (3.1)) that corresponds to the test position under consideration. For each of
the test inputs it determines the probability that s̄k was observed at the particular
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location.

The variance should actually reflect the uncertainty of the measurement at
given location. When we captured the wlan data we estimated the variance with
the same samples that are used to calculate the rssi mean. During the observation
interval of a few seconds we unfortunately obtained quite often only a single
rssi from an access point, not allowing the estimation of a deviation measure.
Therefore, we modelled the uncertainty with the predicted rssi variances. With
this approach the variance reflects the uncertainty of the measurement only if the
measurement condition during radio map recording and during measurement
reception are equal. This is an unjustified assumption which, nevertheless, works
in practice.

The likelihood function is actually computed on a regular grid of locations
which corresponds to the test positions. For this case only, the mean function
equals the mean values (µ(s∗) ≡ µs∗) and the covariance function equals the
variance (cov(s∗) ≡ σ2

s∗) values of the likelihood function.

Consider now an object/user that wants to determine its position based on
observed averaged rssi s̄ l

k from l � 1, . . . , nl different access points. For this
situation, let the complete set of rssi observation be Sk � {s̄ l

k}
nl
l�1. Measurements

from access points that are not contained in the radio map are simply ignored
and vice versa, so that the number of rssi observed from different access points
and the corresponding number of a fingerprints become equal |S∗ | � |Sk |. The
joint likelihood function becomes the product of the likelihood functions of each
access point

p(Sk | P∗) �
nl∏

l�1

1√
2πσl

s∗
exp

(
−1

2

�
s̄ l

k − µl
s∗

�2

(σl
s∗)2

)
� L(p | Sk).

(3.4)

In the following experiments we establish the likelihood function when new
observations arrive. The application of the ml method, equation (2.4), yields then
the final position estimate.
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3.3. Experiments

As follows, we describe tools and methods used in the experiments and the
evaluation of the wps performance. We, first, introduce an experiment to shed
more light on the rssi distribution. The other experiments are conducted to assess
the fit of the Gaussian process model, which is used to interpolate the rssi radio
map. A comparative study of the fit of the different Gaussian process models
narrows down the choice to a few models. These are then used to compute ml
estimators, and based it on model fit and the yielded localisation performance,
we choose the best fitting model.

Wlan packet capturing The hardware we use to listen to wlan data is a laptop
running Unix-like operating system (gnu)/Linux2 with a wireless network
interface card using the Atheros ar9271 chip set. This wlan adapter is connected
via universal serial bus (usb) to the laptop and equipped with a dipole antenna
providing 4dBi of additional gain.
The remainder of the wlan data processing chain is in software. To identify

the access points from which the rssis are emitted the mac address that identifies
uniquely the access point are parsed from he received packets and associated
to the rssis. We only record broadcast packets, since they contain the rssi of a
packet and the mac address of its source. In addition, broadcast packets are
emitted periodically to announce the presence of the access point. Hence, wlan
packets can be captured passively, avoiding privacy issues as these packets do
not contain any data of any wlan user. We use the pcap library3 to capture
packets and to filter for only broadcast packets. To capture the packet passively,
the monitor mode of the wireless network interface is activated. Also the channel,
the network interface listens on, must be changed. Broadcast packets are usually
sent every 100ms; we switch the channel of the wireless network interface card
every 200ms. The channel switching of the wlan adapter is done with help of
the netlink library4.

2. Gnu/Linux, free Unix-like operating system: https://www.gnu.org/gnu/linux-and-gnu.
en.html

3. libpcap, portable C/C++ library for network traffic capture: http://www.tcpdump.org/
4. Netlink Protocol Library Suite (libnl), collection of libraries providing application program-

ming interfaces (apis) to netlink protocol based Linux kernel interfaces: http://www.infradead.
org/~tgr/libnl/
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3.3. Experiments

After a packet is received the sought data must be extracted. The rssi can be
found in the radiotap header5, parser are readily available on the web. The mac
address is contained in the broadcast packet, for which an existing parser was
adapted. The software so far described is written in C/C++.
Recall, wlan fingerprinting consists of the survey phase and the localisation

phase. For both phases the rssis and the mac address of the access point must
be recorded; for the survey phase, in addition, the position of rssi recording the
must be known.

To associate the position with the received wlan data we adapted the program
JMapViewer6 for our needs. JMapViewer is a java software displaying osm map
data. We use it to integrate the different software blocks and control the overall
system. On click on the map we retrieve the position in geodetic coordinates, we
resume the thread capturing the wlan packets and changing the channels. A
second click (executed after a few seconds) forwards the position via the java
native interface (jni) to the C/C++ part described before. Then a few statistics are
computed on the received rssis and then stored all together in a SQLite7 database.
After the storage process completes the thread pauses until the occurrence of a
new click on the map, again instructing to record a fingerprint.

3.3.1. Static rssi measurement from a single access point

The Gaussian process model requires to specify a likelihood function; but since
the discussion about the rssi distribution is not conclusive, an experiment to
analyses of the distributions of raw rssis and averaged rssis is inserted, and
described as follows. We refer to this experiment as Single-ap.
The positions of the emitting and the receiving antennae were fix during the

experiment. Their distance was about 5m, but in separate rooms which are
connected by door.
Three series of rssis were measured in an indoor setting from a single access

point, while the receiving antenna and the access point remained at fix positions.

5. radiotapheader, packet headerprovides information additionally to thewireless lan standards
(ieee 802.11) standard that is added to the packet at the time of capture by the driver controlling
the capture device: http://www.radiotap.org/

6. JMapViewer, graphical user interface written in Java displaying open street map (osm) data
as a map: http://wiki.openstreetmap.org/wiki/JMapViewer

7. SQLite, software library implementing structured query language (sql) database engine:
http://www.sqlite.org/
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3. Gaussian process wlan positioning system

Each of the three measurement series contains about 900 (raw) rssi values. For
the first series the rssis were stored unprocessed. For the second measurement
series we computed the arithmetic mean and median of the rssi for every second
and stored them instead of the raw values. In the third take, the rssis are averaged
over a time interval of five seconds.

3.3.2. Gaussian process regression modelling

The experiments have been conducted in our test bed at the faculty of engineering
of the Universidad Autónoma de Querétaro (uaq). The test area comprises two
small buildings: an one storey building and a two storey building (both about
8 × 45m); and the surrounding area covering about 80 × 75m.
Both buildings (see grey areas in the centre of figure 3.1) are sectioned by

brick walls with roughcast. Smaller sections are divided by soft partitions.
The buildings count with a roofed outdoor passageway from which they can
be entered. The one storey building (left building) has a central corridor and
consist of small office spaces. The different sections of the two story building
(right building) are accessed from the outdoor passageway. This building has
a semi-open stairway giving access to the second floor. Size and properties of
the buildings and the climatic conditions, that most of the time lead to opened
(single-pane) windows and doors, provide rather low signal attenuation.

Radio map construction

Seamless localisation in this work relies on the availability of wlans in indoor
environments and in their surroundings. The characteristics of radio waves
– including their signal strength – is considerably different in interiors than
outdoors. Indoors the signal strength varies unpredictable, primarily, because
of the different mediums they are passing, because of multiple reflections and
possibly near field effects. To investigate whether the Gaussian process models,
used here to interpolated radio maps, are also different indoors and outdoors, we
constructed radio maps for indoor and outdoor environments separately.

We recorded themeasurements in three parts. An indoor radiomap, containing
the fingerprints of the two buildings, and two outdoor radio maps, which contain
the area between and behind the buildings. Figure 3.1 shows the three areas
for which the radio maps were constructed: the fingerprints that constitute the
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Figure 3.1.: Test area and fingerprint positions ( )8of one access point. Reference
points within the yellow shaded area belong to the Indoor dataset; reference points
lying in the blue shaded area form the Outdoor-2 dataset; and all other fingerprints
belong to Outdoor-1. ©OpenStreetMap contributors

indoor radio map are inside the yellow shaded area, one outdoor radio map
covers the blue shaded area, denoted Outdoor-1, and the second outdoor radio
maps contains the remaining fingerprints. We denote the second outdoor radio
map by Outdoor-2.

Ameasurement of a fingerprint took about 3 s to 5 s during which the recording
device stood still. The body of the experimenter, holding the recording device,
attenuates wlan signal and introduces adependency to the rssis on the orientation
of the experimenter. To account for that, we recorded four fingerprints at each
reference position of the Indoor and Outdoor-1 radio map. One for every cardinal
orientation, where the position of the fingerprint were virtually the same.

8. There is a mismatch between the overlaid reference positions and the background map image,
rendered from osm data. This mismatch constitutes in a slight correction of the osm data after
the wps experiments were concluded (with the objective to better match gnss and wlan data).
Regardless the mismatch, we use the updated map image here for reasons of consistency.
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An example is shown in figure 3.1. The reference positions belong to an access
point that covers the complete test bed, that is, its signals are strong enough to
be received on almost every reference position. Dependent on the distant of the
access point to the test bed, the signals of an access point are stronger or weaker
and therefore were received more or less often, respectively. Signals from distant
access points produce rather sparse radio maps and signals from nearby access
points produce dense radio maps. The approximate access point position that
corresponds to the data in figure 3.1 can be deduced from the interpolated rssis
in figure 3.5a; it coincides with the peak of the graph in the centre of the test bed.
In addition to the three mentioned radio maps, we created a fourth one by

joining the three radio maps into one: the Test-bed dataset. We use this radio
map in addition and for the experiments evaluating the positioning performance.

Dense and sparse radiomaps To analyse the influence of the fingerprint density
on the model fit and on the positioning performance, experiments with a dense
and a sparse radio map are required. The dense radio maps are the radio
maps as described above, containing the complete set of data as obtained in the
experiments. The sparse radio map has less fingerprints. However, the spatial
distributionmight be locally dense, because it is constructed by picking at random
from the dense radio maps such that the amount of fingerprints equals the fourth
part of that of the dense radio map. We expect with this procedure to obtain
results that are applicable in general practice. Note, that the total amount of
fingerprints for a given access point depends on its reception conditions at a
certain position in space.

Training and assessment of the Gaussian process model

To interpolate the rssis over space we need a model that emulates the spatial
structure of rssis. Gaussian process models are known to be flexible enough to
model a wide range of structures. Gaussian process modelling is essentially the
search for the structure in the data.

Theprinciple structure of aGaussianprocess is providedby its priordistribution,
determined by a mean and covariance function. Each of these functions has
a certain characteristic, which in combination account for certain structural
properties or trends in the data. Note, that these two functions only assume
properties on the underlying process. To find the best suited Gaussian process,
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which fits the data being modelled, can be a difficult. It involves the choice of
mean and covariance function, the search for the hyperparameters, which adapt
the mean and covariance functions to the training data, and the comparison of
the resulting models. We test a variety of mean and covariance functions, use
them to interpolate the radio maps and evaluate the fit of the models based on
reasonable measures and the model residuals.

Choice of mean and covariance function An overview of possible mean and
covariance functions can be found in the literature (Rasmussen et al. 2006, e.g.).
Global characteristics of these models are determined by their mean function.
The covariance function models the local correlation between neighbouring rssi.
It accounts for local structures, but it can also model global structures.
In a homogeneous medium the power of radio frequency waves decays expo-

nentially. We expect thus a two-dimensional exponential decay as the general
form of the latent function, the global structure of our data. However, depending
on position of the access point within the area of interest, which may only cover
a part of the area that an access point covers, and superimposed effects caused
by the wave’s propagation environment, the underlying function could be a
one-sided exponential, or have any other shape. In general we expect rssis to
obey this two-dimensional exponential decay, or a clipping of it. More complex
global global structures – for example periodicity – are not expected.

This globel structure is likely superimposed by local variations of diverse origin.
In indoor environments, we expect additionally attenuationwhen thewave passes
obstacles. We assume furthermore random fluctuation attributed to passing
people or objects, due to adaptions of the transmit power of the access point (to
reduce interference in the communication channels) and because of multipath
propagation effects. The signals may as well be affected by uncorrelated noise.

The Zero mean function is the mostly used mean function9. In the experiments
we use 1) the zero mean function, Zero, 2) the constant mean function, Const
and 3) the linear mean function, Lin.

A zero mean function is zero everywhere and Gaussian processes with a zero
mean function, which are not conditioned on data, are simply zero. A constant
mean function assumes that the underlying process is everywhere constant

9. The zero mean function is the standard one, because it is simple and the covariance function
can model its uncertainty by adding an additional term.
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(determined by a single hyperparameter) and a linear mean function assumes a
linear structure (determined by two hyperparameters).

In this workwe use the following basis kernels to construct covariance functions

• squared exponential kernel, Se

• Matérn kernel with parameter ν �
1
2 ,

3
2 ,

5
2 , Matν� 1

2 [, 3
2 ,

5
2 ]

• rational quadratic kernel, Rq

• independent noise, kernel In

• additive kernel, Add

Additive kernels (Add ·) have the particular property that their structure is gov-
erned by interactions across different dimensions. Additive kernels are composed
by summing up all possible products of one-dimensional basis kernels (Duvenaud
et al. 2011). Gaussian processes with such covariance function are called additive
Gaussian processes. Additive Gaussian processes pose very general models,
because in addition to the hyperparameters of each basis kernel they possess
also parameters that determine the amount of interactions from each order. As
all hyperparameters are adapted automatically, these processes have increased
flexibility and are able to model a wide range of structures.

We evaluate these kernels directly or we combine them to form new covariance
functions. Operations used to combine these basis kernels are the sum (Sum · & ·)
the product (Prod · & ·).

Optimising the hyperparameters After the mean and covariance function are
chosen, the optimal hyperparameters need to be found, recall 2.3.2. To do so,
we use the gpml package10 and gnu Octave11. This toolbox determinces the
hyperparameters by minimising the negative logarithmic likelihood function of
the training data with a gradient descent method, the limited-memory Broyden–
Fletcher–Goldfarb–Shanno (l-bfgs) algorithm.

10. gpml v3.5, http://www.gaussianprocess.org/gpml/code/matlab/doc/
11. gnu Octave, high-level interpreted language, primarily intended for numerical computations:

http://www.gnu.org/software/octave/
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Comparison of Gaussian process models The evaluation of the performance
of the Gaussian process models is based, on the one hand, on the test error
and, on the other hand, on the Bayesian information criterion (bic) – both are
obtained as an average from a 10-fold cross-validation. Therefore, we split the
training data into ten folds. We use nine of them to fit the model and use the
inputs of the remaining 10th-fold as test data for the prediction. The rms of the
difference between the target values of the 10th-fold and the predicted values
yields the average test error. The second measure to assess the model is the
bic. (The bic is used instead of the logarithmic marginal likelihood, because
the latter favours models with more hyperparameters if already fitted Gaussian
process models are compared under the same settings (Duvenaud 2014)). The
bic is based on the logarithmic marginal likelihood (see eq. (2.35)) of the data and
contains an additive term that penalises larger numbers of model parameters:
BIC(M) � −2 log(D | M) + 1

2 |M| log N∗; where M stands for the model,D are the
data, |M| is the number of free model parameters and N∗ the number of test points.
Albeit that rssis do not meet all of the assumptions for applying the bic, it yields
a reliable model measure (Lloyd et al. 2014). Since a model is trained for each
access point separately, the model selection criteria are averages over the access
points.
The test error can be counted to the category of frequentist tools as it relies

only on the data. The bic incorporates a priori information, thus being part of
Bayesian statistics. This choice of model selection criteria is expected to lead to
unambiguous and reasonable conclusion.

Implementation details For each of the four radio maps, we trained a Gaussian
process model for each access point. Since the optimisation procedure failed
in cases when only very few fingerprints per access point were available, we
excluded access points with less than 30 fingerprints in a dataset. For the Indoor
dataset we trained models for 49 access points, we trained 91 models for the
Outdoor-1 and 35 models for the Outdoor-2 radio maps. The Test-bed dataset,
combining all three radio maps, consists of 100 access points. These numbers
seem high in the first place, but all institutional access points are virtual access
points; each of them emulates four different access points. Although the location
of virtual access points is identical, we treated them as distinct access points as
their mac address is different.
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Figure 3.2.: Test area with fingerprint positions ( ) of one access point and trajectories
(Trajectory-1 ; Trajectory-2 ). The starting point of each trajectory is marked
with a circle and the end point with an arrow. ©OpenStreetMap contributors © IEEE 2015

Optimising the hyperparameters requires an initial guess. Before running the
cross-validation experiments, we ran multiple tests on all datasets to find good
initial hyperparameters. The number of maximum function evaluations of the
l-bfgs algorithm was set to 70.

The grid on which we interpolated the rssis is 2m × 2m.

Maximum likelihood position estimation

Tovalidate theGaussian processmodel, we evaluated the localisation performance
based on a ml estimator using these models. We recorded wlan data along two
paths. These paths are presented in figure 3.2 and are denoted by Trajectory-1
and Trajectory-2. Both of them run through indoor and outdoor environments,
but most of the time they are on the semi-open passageway.
For localisation only the rssis and mac addresses are needed. However,

to analyse the performance additionally the reference coordinates on these
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trajectories were recorded. To obtain this ground truth we used the software
described before to record the radio maps. A trajectory dataset contains for each
of its position the coordinates of the position that was clicked on the map, a set of
rssis for all receivable access points and the mac address associated with these
access points. The capturing time at each position was about 2 s to 3 s. The mean
and the variance of the rssis were finally stored in the database.
To compute a ml estimate, we precomputed the rssi predictions for both

Gaussian process model. At the arrival of new measurement the likelihood
function, equation (3.4) was established and its maximum was determined.

As performance criteria we use is the rms of the error. This accuracy measure
computes first the error between each position of the ground truth trajectory, pr ,
and the estimated trajectory p̂r . The root mean square error (rmse) results as the
square root of the squared and averaged errors. For a trajectory of nr points we
can write

ermse �

√√
1
nr

nr∑
r�1

(pr − p̂r)2. (3.5)

3.4. Results

Before presenting the results for the Gaussian process model search, we show
results from static indoor rssi measurements to justify our choice of the wlan
rssi distribution. Kaemarungsi et al. (2012) analysed the statistical properties of
rssis and explored their impact on the localisation performance of wlan location
fingerprinting systems. Here, in addition, statistics of raw and averaged rssis are
examined.
The second part of this section contains the results of the structure search in

wlan rssi. A number of Gaussian process regression models are thoroughly
assessed in order to spatially interpolate rssis. This assessment relies on two
model criteria and the analysis of the regression residuals. The impact of some
Gaussian process models on the localisation performance is evaluated in the
last part of this section. It seeks to confirm if the models yielded by the model
selection criteria are also the best suitedmodels for localisation; or: if the evidence
in form of model selection criteria transfers to practice.
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3.4.1. Single position single access point rssi measurements

In section 3.1.1 we argued to model wlan rssis as normally distributed data
as a compromise between practicality and complexity. Many wlan location
fingerprinting systems use the mean of rssis. This choice is supported by the
central limit theorem; but only if the observations meet certain conditions, most
importantly that they are independent and have finite variance. To corroborate the
use of averaged rssis and to support the argumentation for normal distribution
as a trade-off, the pdf of averaged rssis are compared to that of raw rssis
and analysed with respect to normality. Recall the Single-ap experiment from
section 3.3.1.
The rssi histograms of raw rssis and averaged rssis are shown in figure 3.3.

The left panel depicts the histogram of raw rssi observations, the centre panel
contains the histogram of rssis averaged over 1 s and the rightmost panel shows
the histogram of arithmetic means of rssi averaged over 5 s. All three histograms
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Figure 3.3.:Rssi histograms at a fix location. Rssis are either single samples, samples
averaged over one second or averaged over five seconds. Mean and median are
marked by vertical lines.

are considerably skewed to the left and present multiple modes – that confirms
that rssi pdfs are not normal distributions.

The tendency of rssi pdfs to have heavy tails to the left is simply caused by the
nature of signal attenuation: Consider a fix emitter sending at constant power
and fix receiver. On the one hand, signals may take the direct path, only affected
by free space attenuation. These signal are the possibly strongest signals the
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receiver observes, showing on the right from the mean in the histogram. These
signals are bounded by the emitted power on the upper side, which prevents
heavy right tails in the histogram, it even promotes light tails on the right hand
side. On the other hand, signals sent with the same power may not take the
direct path, but a quite complex one; for example passing walls, get reflected
and scattered multiple times before they are received. These signals, albeit sent
with the same power, show on the left side from the mean in the histogram. In
indoor scenarios with complex paths between emitter and receiver, less signals
are observed via the direct path, but more signals take in average a complex path
and become more and more attenuated. These signals have no lower bound as
their path can be arbitrarily complex – causing left-skewed pdfs. However, the
wireless network adapter imposes a lower bound.

For rssis with a low average value the situation is slightly different. Signals
that have low in power in average are not received by wireless network interfaces
if they are below a certain threshold. This lower bound prevents the reception
of rssi far from the mean value. In this scenario the rssis have a lower and an
upper bound that causes the histograms to be more symmetric. This was already
pointed out in Kaemarungsi et al. 2012.
The normal probability plot presents the data against a theoretic normal

distribution, see figure 3.4. We present again the raw data and the averaged rssis.
The normal probability plot in the left panel (3.4a) and in the centre panel (3.4b
show a similar non-linear trend, reflecting the heavy left tails and as well the
light right tails of the distributions. However, around the mean all three plots are
reasonable linear. (Especially the leftmost panel reveals the discrete nature of
rssis.)
When considering the transition from raw rssis to rssis averaged over 1 s in

the histograms and in the norm probability plots, a decrease of the left tail and an
increase of the right tail is observable. The data is less spread out, the lower and
upper bounds moved closer to the average; while the central tendency measures
approximately remain.

Moving to the data averaged over 5 s this trend continues. The data concentrates
more around the central tendencymeasures and its pdf becomes almost symmetric.
In panel 3.4c most of the data points lie on the line indicating normality – thus,
supporting the notion of a Gaussian model, albeit the pdf of rssis averaged over
only a few seconds is, in a strict sense, not normal.

Table 3.1 shows the central tendency measure of the three data sets. The mean
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Figure 3.4.: Rssi normal probability plot at a fix location. Rssis are either single
samples, samples averaged over one second or averaged over five seconds. The
linear graph in the normal probability figures connects the first and the third quartile
of the data and is then extrapolated towards the ends.

and the median are compared, to additionally examine if one or the other is
eventually more consistent and therefore more robust, especially in the light
of non-Gaussian rssis. The difference between mean and median is small, for

Table 3.1.:Mean andmedian of static rssi measurements for different post-processing.
(These values correspond to the mean and median shown in the panels 3.3a–3.3c.)

raw rssis 1 s avg. rssis 5 s avg. rssi

mean -71.29 -71.69 -72.38
median -71.00 -71.00 -72.63

all three data sets it is less than 1dBm. We prefer therefore the mean over the
median, because of its more convenient properties, primarily linearity.
To assess the dispersion of data, more robust estimators than the standard

deviation exist, too. One example is the median absolute deviation. The time
intervals of 1 sand5 s for collecting data and calculate the statistics are unfortu-
nately too short. In many intervals only a single value was recorded, obviously
not sufficient data to compute sample statistics. Because of too many intervals
with invalid data the estimation of the average dispersion of the (averaged) rssis
was not feasible.
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Averaged rssis obey the central limit theorem, hence, for large averaging
intervals they converge to a normal distribution. Rssis averaged over one and
three second are may be normally distributed. They are with higher probability
symmetric and with lower probability heavy tailed, though. This is noteworthy,
because according to Kaemarungsi et al. (2012) the logarithmic rssis can be
approximated with a normal distribution.

3.4.2. Gaussian process model selection and validation

To determine Gaussian process model that is best suited to model rssis spatially,
we adapted several models whose prior distributions are yielded by combining
the mean and covariance functions listed in section 3.3.2. The results, in terms of
the model selection criteria, are presented separately for the three radio maps:
the indoor radio map, the two outdoor radio maps and the dataset that combines
these radio maps. For models for those the model selection criteria do not allow
a clear assessment, we examine additionally the predicted mean and covariance
functions. Moreover, the model residuals for two selected access points are
evaluated and presented in section 3.4.2.

We actually evaluatedmore covariance functions thanwe present here. Because
some combinations of basis kernels resulted consistently in poorer models than
a basis kernel alone (larger residuals and bic), we withhold them from the
evaluation. The additive combination of basis kernels with the independent noise
kernel are such a cases.

For some covariance functions the optimisation of the hyperparameters failed
because of singular covariance matrices. The use of the additive covariance
function of orders higher than one resulted in that problem. Results for these
models can hence not be presented.

Test error and Bayesian information criterion

The chosen model selection criteria for the predicted mean function from the
Gaussian process regression are presented in the following tables. Each of the
tables contains the results for the different radio maps and their combination
within the Test-bed dataset. They show the test error and bic for different prior
distributions – different combinations of mean and covariance functions. In
theory, the better fitting models yield lower test error and lower bic than models
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that fit the data poorly.
Table 3.2 compares the model selection criteria for the Indoor training data.

Table 3.2.: Test error and bic of a Gaussian process regression for different combina-
tions of mean and covariance functions. The Gaussian process models are trained
with Indoor data. Model measures are averages over several access points and
10-fold cross-validation. The lowest values are highlighted.

test error / dBm Bic
Zero Const Lin Zero Const Lin

Se 9.856 9.714 9.864 703.093 682.127 682.051
Matν�1/2 9.727 9.686 9.890 691.012 684.433 684.421
Matν�3/2 9.829 9.715 9.916 693.923 682.010 681.903
Matν�5/2 9.847 9.741 9.915 697.181 681.882 681.730
Rq 9.796 9.727 9.900 691.367 684.291 684.075
Sum Se & Se 9.860 9.709 9.922 707.760 686.931 687.104
Prod Se & Se 9.900 9.723 9.854 707.089 686.870 686.856
Add Seo�1 9.765 9.684 9.762 704.530 693.851 694.259

If we compare first the test error with respect to the mean functions, one can
observe, despite the small differences, that the constant mean function yields
consistently the best results. If ranking the test error, the zero mean function
yields except for the Sum Se & Se case the second lowest values. The linear mean
function comes third. Repeating this comparison for the bic, we find the linear
mean function yielding the lowest bic for all of covariance functions, except Sum
Se & Se and Add Seo�1. According to the bic but in contrast to the test error,
models using the zero mean function fit the data consistently worst. With respect
to the mean function, the data from the Indoor radio map is ambiguous: The test
error suggests the use of the constant mean function, whereas the bic points to
the linear mean function, albeit it resulted in the highest test errors. Noteworthy
are the comparatively large differences of the bics for the zero mean function
with Se kernel the compared to the other two mean functions.

Ranking the test errors and comparing them points to the additive squared
exponential and to the Matérnν�1/2 covariance kernel of order one, but also the
Matérn covariance function with ν � 1/2 might be a good candidate. If we repeat
this comparison procedure for the bic, we may choose a kernel from the Matérn
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function class, the Matν�5/2 kernel produced the lowest bics. The hight bic of the
Add Se kernel is opposed to its low test error.

The bic of the last three kernels, which are rather complex kernels with more
hyperparameters, is distinctly higher than that of simpler kernel. This is in
conformity with the definition of the bic. A conspicuous detail can be observed
from bics for combination of the Zero mean function with the Se kernel: it
yielded a bic as high as that of the complex kernels, though it is a simple model
with relatively few parameters.

An assessment of both model criteria for this Indoor data set indicates the use
of a prior distribution with the constant mean function and the Matérnν�1/2 or
Matérnν�5/2 kernel as covariance function. Nonetheless, as the model selection
criteria of the Matérnν�3/2 kernel are very close to the former ones it might be
also a good option. In addition, the Matérnν�1/2 function achieved low model
measures only in combination with the zero mean function (which evoked some
inconclusiveness); thus, the Matérnν�1/2 function should be used with some care.

In Table 3.3 the test error and the bic, for combinations of mean and covariance
function, from the outdoor data sets are presented.
According to the test error for the Outdoor-1 datasets, the prior distribution

with constant mean function yields for the majority of cases the lowest result.
However, the difference to the test errors of the zero mean function are very small.
Models from the Outdoor-2 dataset relying the zero mean function outperforms
the models using the constant mean function. The linear mean function produces
again the poorest models compared to the zero and constant mean function for
both outdoor datasets. But only based on the test error. Given now consideration
to the bic of the Outdoor-1 data, the linear mean function constructed the best
Gaussian process models and for the Outdoor-2 dataset the constant mean
function yielded consistently the lowest values. As for the Indoor data, the bics
of the Zero mean function are the largest, contradicting the conclusions based on
test error again. In particular the combination of Zero with Se yields a striking
high bic compared to the other mean functions. Contemplating the both model
selection criteria the constant mean function seems to be the best compromise, as
its test error and bics are not conflicting.

A results obtained by different covariance functions are this timemore coherent.
Models using the additive squared exponential kernel produced distinctly the
lowest test errors – for all mean functions and for both data sets. Considering the
bic, the Matérn covariance functions stand out. The Matérnν�3/2 kernel shows
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Table 3.3.: Test error and bic for different Gaussian process models trained with the
outdoor data. The values are averages over several access points and 10-fold
cross-validation. The lowest test error and bic are highlighted.

test error / dBm Bic
Zero Const Lin Zero Const Lin

O
ut
do

or
-1

Se 8.982 9.025 9.085 1015.224 994.559 994.662
Matν�1/2 9.075 9.041 9.090 999.759 993.034 992.891
Matν�3/2 9.087 9.054 9.101 1004.740 991.610 991.580
Matν�5/2 9.065 9.051 9.097 1009.041 992.243 992.330
Rq 9.064 9.055 9.107 1002.027 995.405 995.051
Sum Se & Se 8.984 9.034 9.068 1020.611 999.941 1000.402
Prod Se & Se 9.008 9.026 9.082 1020.691 1000.822 1000.060
Add Seo�1 8.971 8.964 9.017 1032.788 1021.243 1020.440

O
ut
do

or
-2

Se 7.315 7.348 7.401 372.575 356.170 357.956
Matν�1/2 7.326 7.289 7.333 366.333 357.939 360.296
Matν�3/2 7.338 7.322 7.382 368.586 356.720 358.833
Matν�5/2 7.345 7.335 7.393 370.125 356.221 358.537
Rq 7.354 7.361 7.418 367.016 357.939 359.611
Sum Se & Se 7.317 7.337 7.401 376.122 359.774 361.995
Prod Se & Se 7.296 7.339 7.386 376.388 359.774 362.188
Add Seo�1 7.225 7.207 7.283 375.852 366.793 367.726

for both data set low bic, however, Matérnν�3/2 kernel is a candidate, too. These
results shows again the discrepancy of the Add Seo�1 kernel: one the on hand the
lowest test errors and on the other hand the highest bics. The model combining
Zero function and Se kernel produced again a bic as large as that of more complex
models.

Because of the mentioned contradictions of test error and bic a good choice for
the outdoor radio maps is a prior distribution with a constant mean function and
a Matérn covariance function with ν � 3/2. We believe this combination balances
well between the test error and the bic.

The next table (3.4) shows the results yielded from the regression on the
combined radio map, the data set that includes the previous three radio maps.
These results are still more coherent and confirm the conclusions deduced from
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the smaller data sets.

Table 3.4.: Test error and bic for different Gaussian process models trained with the
Test-bed data. Model measures are averages over several access points and 10-fold
cross-validation. The lowest values of each category are typeset in bold. © ieee
2015

test error / dBm Bic
Zero Const Lin Zero Const Lin

Se 9.277 9.286 9.403 1498.148 1458.365 1460.108
Matν�1/2 9.351 9.318 9.422 1459.503 1451.745 1452.113
Matν�3/2 9.346 9.308 9.435 1472.590 1452.499 1453.363
Matν�5/2 9.347 9.305 9.433 1481.816 1454.384 1455.309
Rq 9.334 9.325 9.428 1462.458 1455.182 1456.116
Sum Se & Se 9.278 9.290 9.388 1504.146 1464.460 1466.045
Prod Se & Se 9.274 9.287 9.400 1504.203 1464.387 1466.445
Add Seo�1 9.059 9.051 9.141 1544.440 1531.548 1531.577

Models that rely upon the constant mean function yield the lowest test errors in
combination with simple covariance functions, whereas models that rely on the
zeromean function yield the lowest test errors in combinationwith rather complex
mean function. Once again, the linear mean function produces consistently the
highest test errors. The bic favours clearly models with the constant mean
function, yielding the lowest values. The second lowest bics yield the linear
mean function. The highest bics result from zero mean function, particularly
in combination with the Se and the complex kernels. The difference between
the bic of the zero mean function to the bics of the other two mean functions is
again noticeable large. It seems the constant mean function emerges as the best
candidate from the data.

Consider the model measure for the different kernels: Choosing the covariance
function solely on the test error would result again in additive Se kernel. In a
ranking of test errors, followed by the Prod Se & Se and the Sum Se & Se kernel.
As before, this is opposed to the results reported by the bic. Regarding the bic,
models using the Matérn kernel with ν � 1/2 and ν � 3/2 fit the data best and
models using the Prod Se & Se and the Sum Se & Se kernels show large bics,
hence, model the data inadequately. This inconclusiveness between test error and
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bic is illustrated best by the Add Seo�1 kernel. The high bic, (despite the relatively
low test error) of the prior with zero mean function and squared exponential
covariance function is again present and not reasonable regarding the amount of
hyperparameters.

Based on this analysis of the four data sets, we narrow down the choices of prior
distributions to a few candidates. These candidates will be further scrutinised,
whereas other prior distributions will be eliminated. The insights obtained from
the model selection criteria call for some conclusions that we summarise below:

• The differences of model measures between similar models are small,
their informative value is rather limited. Furthermore, the examination
of the mean and covariance function was done independently, without
giving much consideration to specific combination. Nevertheless the model
measures for a certain mean function in combination with certain kernel
function may differ more than the difference to the other mean functions.

• The test error and the bic provided partially contradictory conclusions:

– The linear mean function yielded for all data sets high test errors,
but low bics. We exclude the Lin mean function in favour of the
constant mean function from further evaluation, because the results
of the constant mean function are consistent and their bics are very
close while the Lin mean function is more complex (possessing one
hyperparameter more).

– The simple kernels yielded low test errors, but high bics. We exclude
and complex kernels – except the Add Se kernel, as it yielded noticeable
low test errors – from further analysis, because they more likely to
overfit the data and its adaption to the data is more computationally
demanding.

• The prior distribution based on the Zero and Se functions yielded low test
errors; but also high bics with magnitudes in the range of the complex
models, while its number of hyperparameters is in the range of that of the
simple models. We exclude the squared exponential kernel as an immediate
choice. However, especially because it is the most common one and was
successfully used in combinationwith the zeromean function as the ‘default’
Gaussian process prior, we select it for further evaluation.
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• Models using the constant mean function outperform, in average over all
data sets, the models relying on the zero or linear mean functions. It is
therefore the top candidate mean function.

• The lowest bics were achieved when the constant mean function was
combined with the Matérn kernels with roughness parameter: ν � 5/2 for
the Indoor data, ν � 3/2 and ν � 5/2 for the two outdoor datasets and
ν � 1/2 for the joined radio map. For the Indoor and the Outdoor-2 data set
these kernel yielded also the quite low test errors. For that reason and for
being a trade-off between Matν�1/2 and Matν�5/2, we pick the Matérnν�3/2
function as the (currently) best candidate.

• Convincing evidence was not found that the Gaussian process model for
indoor and outdoor environments should use different prior distributions.
The candidate models that followed from the comparison of the model
selection criteria are not clearly distinguishable.
Rather the contrary is the case. For both environments the constant mean
function yielded the best results and also the Matérn kernel is suggested by
two data sets with consistency: the Indoor and Outdoor-2 data. Only the
test error from the Outdoor-2 data set shows unfavourable values for the
Matérn kernels – probably because of the distribution of the fingerprints in
one dimension, along the paths see figure 3.1.
An analysis of the hyperparameters for the same mean and covariance
function did not disclose more insights. We compared the hyperparameters
yielded from indoor data with the hyperparameters yielded from outdoor
data for three prior distributions, certain patterns were not found. The
reader may find that data in appendix C.

Up to this point, we consider a Gaussian processmodel with a prior distribution
based on theMatérnν�3/2 covariance function as the best suited to model rssis. As
follows, we use this model as a reference model to examine the other candidate:
the additive square exponential kernel. Both are combined with the constant
mean function.

Because no differences between the indoor and outdoor models was found, the
Test-bed radio map is used from here on.

Two spatial rssi distributions, predicted from models relying on the constant
mean function and using the Matérnν�3/2 kernel and the additive Se kernel are
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shown in the figures 3.5 and 3.6. The function in panel 3.5a presents a global
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(a) Predicted rssi mean function based on a
prior with Matérnν�3/2 kernel.
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(b) Predicted rssi mean function based on a
prior with additive Se kernel of order one.

Figure 3.5.: Predicted rssi mean functions of two Gaussian processes with different
prior covariance function for one access point. The two Gaussian process models
have both a constant mean function combined with either Matérnν�3/2 or additive
Se kernel, respectively. The magnitude of the mean and covariance function are
indicated by the colour bars.

maximum, indicated the position of the access point, in the centre of the test
area. To the borders of the test area this function decays, this decay is governed
by local minima and maxima. Panel 3.6a present the corresponding covariance
function and the training points that where used to regress the model. It shows
low uncertainty in regions where a lot of information (in form of training data) is
available. That is reasonable and expected. In areas where few or no training
data is available the variance is high, representing the uncertainty about the
predictions.
In contrast, the predictions from the Add Se prior covariance function in the

panels 3.5b and 3.6b are not comprehensible. Panel 3.5b depicts a mean function
that predicts almost constantly high rssis along the y-axis, around 590m, with a
global rssi-peak coinciding with that in panel 3.5a. The covariance function in
panel 3.6b is almost constant over a large area and increases towards the edges of
the test area, in particular east and west. It does not logically follow the training
data. Neither the structure of the rssi nor the covariance function are reasonable.
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(a) Predicted rssi covariance function based
on a prior with Matérnν�3/2 kernel.
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(b) Predicted rssi covariance function based
on a prior with additive Se kernel of order
one.

Figure 3.6.: Predicted rssi covariance functions of two Gaussian processes of one
access point and corresponding training data. The two Gaussian process models
have a constant mean function combined with either Matérnν�3/2 or additive Se
kernel. The magnitude of the mean and covariance function are indicated by the
colour bars. Large training data are coloured purple–dark blue and low rssi light
blue–white.

This prediction is not explainable by physics or the existing environment.
Albeit Gaussian processes with a prior distribution that uses the Add Seo�1

kernel yielded very low test errors, the posterior process shows that they fail to
fit the data – and that the small test error is misleading. A large bias or variance
of the test error may cause these misleading outcomes. We thus exclude the
Add Se kernel from the list of candidates and establish the Matérn kernel based
covariance function as the kernel of choice for rssi interpolation.

Spatial density of fingerprints A critical and much investigated issue of wlan
location fingerprinting is the required effort to create the radio maps. Although
interpolating the radio map reduces this labour, a radio map is still required.
The effect of the amount of fingerprints on the interpolated radio maps was

studied by Bekkali et al. (2011). However, the applicability and generality of their

77



3. Gaussian process wlan positioning system

results appears restricted, as they based their study on simulations, idealising
the problem: Ray launching is used to generate the rssis; the test environment
is indoors only, constituting a single, symmetric room; the fingerprints are on
a regular grid; realistic disturbances of the signal strength are not modelled;
different mean functions than the zero mean function are not regarded.
This part of the analysis of Gaussian process models examines the influence

of the fingerprint density on the quality of predictions. It is based on data that
was obtained in a realistic indoor/outdoor environment and extends the findings
of (Bekkali et al. 2011). We share some conclusions of their study, though, we
want to look into one of their results: That a model that uses the Se kernel fits
rssis better than a model relying on the Mat kernel. The importance of that point
rises when considering that the Se covariance function in combination with the
Zero mean function is used as ‘default’ model in a majority of works.
Before getting to the results though, we have to put our experiment in per-

spective. First, the fingerprint density in our study and in Bekkali et al. (2011)’s
are different; a dense radio map for our scenario would still be sparse in their
environment. Second, some parts of our Test-bed radio map contains up to four
fingerprints on virtually the same position. Third, the models we use rely on the
constant mean function, not on the zero mean function – recall, based on that
choice, in particular the difference in bic can be large.
Table 3.5 presents the bic for the models using constant mean function and

either the squared exponential or the Matérn kernel. We compare the fit of the
models when trained with either a dense or a sparse radio map. The dense radio
map is the complete Test-bed radio map and the sparse radio map was obtained
by sampling the Test-bed radio map, according to section 3.3.2. In addition, we
did this for two access points. One that provided many fingerprints to the radio
map, apD, and an other access point whose signal were not captured that often
and therefore did not contribute to many fingerprints, apS. The complete set of
fingerprints of the access point apD can be found in figure 3.6a and the complete
set of fingerprints of the access point apD is shown in figure 3.7a. For three out
of four scenarios, the models employing the Matérnν�3/2 kernel achieve a better
model fit. In the case of the undersampled radio map, from an access point
that already has a low amount of fingerprints in this radio map, the squared
exponential kernel fits the data marginally better. The bic-difference is very small
and the result may not be significant. Based on our data the statement of (Bekkali
et al. 2011) can not be refuted, but neither confirmed with certainty. Only if the
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Table 3.5.: Test error and bic obtained from Gaussian process model with constant
mean function and either Se- or Mat-kernel. For each of the two kernels the model
was fitted either using the complete training data (complete) or using only a subset
of the training data (undersampled) for both access points. The lowest bic is typeset
in bold.

Bic - apD Bic - apS
dense sparse dense sparse

Se 3559.841 939.622 1077.977 288.091
Matν�3/2 3542.781 936.257 1073.987 288.178

fingerprint distribution is very sparse the Se kernel seems to perform better.
One may conclude that for spatially dense fingerprint distributions, the Matérn

kernel should be used, and for sparse fingerprint distributions, the squared
exponential kernel has potentially advantages. Considering the properties of the
two kernel functions and the data that used for this examination, this result is
reasonable. Due to its parametrisation the Matérn function is very flexible, based
on ν this function can be very rough but also very smooth, it even converges
to the Se kernel for ν → ∞. Generally speaking, the Matérn kernel is rougher
than the squared exponential kernel and is therefore able to adapt to large rssi
variations within small distances. As this occurs more likely when the fingerprint
distribution is dense, the Matérn function is beneficial in these cases. In scenarios
where the fingerprints are sparse, the training rssi are smooth (either because
the latent function is smooth, or because not enough information about the
latent function is available), which can also be fitted by processes with a prior Se
covariance function.
The decision for one or an other covariance function based on the spatial

fingerprint density is very difficult, since the environment affects this density.
First of all, in a certain area, the fingerprint density for different access points
usually varies, because of the reception condition of each access point. And for a
single access point the reception condition in turn depends on the position of the
user/object, the changes in the environment and the wireless network interface
of the user/object. In practice these factors are uncontrollable. Of course, in
general the fingerprint density decreases with distance from the access point;
the spatial distribution of the corresponding fingerprints is still non-uniform.
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3. Gaussian process wlan positioning system

Without further provision for the interpolation of rssis, one would need to predict
the fingerprint density for each access point – may be as function of space – or
include it as a-priori information.
For these reasons we reinforce our recommendation to use of the Matérnν�3/2

covariance function (over the squared exponential covariance function).
The amount of fingerprints used to analyse the model fitting for the different

prior distributions is admittedly high. If considered from a practical point of
view one would like to avoid such a fingerprint density. To assure practicability
of the suggested model, even if very few training data is available, we examine
the predicted rssi mean functions for an access point with a low density of
fingerprints (apS). The corresponding results are shown in figure 3.7.
The left hand side panel 3.7a depicts the predictions obtained from a process

trained with the complete radio map and the right hand side panel 3.7b depicts
the predictions obtained from a process trained with a undersampled radio map.
Although for the process in panel 3.7b only the fourth part was used to adapt it
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(a) Predicted rssi mean of a model that was
trained with the full set of its fingerprints.
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(b) Predicted rssi mean of a model trained
with the fourth part of its fingerprints.

Figure 3.7.: Rssi predictions from two Gaussian process regression models trained
with a different amount of training data for a single access point. Both models are
based on the same prior distribution with constant mean and Matérnν�3/2 function.
The magnitude of the mean function is indicated by the colour bars. Large training
data are coloured purple–dark-blue and low rssi light-blue–white.
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to the data, the principle features are present. They are less pronounced, though.
Both mean functions show the peak rssi at [560, 580]m × [0, 20]m and also
the areas of low rssi within and behind the two buildings (see figure 3.1 for
comparison) are present. Major differences are visible in areas where no training
data exist: about [580, 600]m × [0, −20]m and in the surrounding of (620, 7)m. It
causes the local maximum visible in panel 3.7a about (592, −14)m and parts of the
local minimum behind the right building to be smoothed over. The magnitude of
rssi towards the edges of the test bed is also slightly lower.
However, information about this degradation of accuracy is contained in the

covariance function, shown in figure 3.8. Comparing the covariance function of

540 560 580 600 620
−40

−20

0

20

40

easting (m)

no
rt

hi
ng

(m
)

cov(s∗)
P

−50 0 50

(a) Predicted rssi variance of a model trained
with all its fingerprints.
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(b)Predicted rssi variance of a model that was
trained with the fourth part of its fingerprints.

Figure 3.8.: Rssi covariance function from two Gaussian process regression models
trained with a different amount of training data for a single access point. Both
models are based on the same prior distribution with constant mean and Matérnν�3/2
function. The magnitude of the covariance function is indicated by the colour bars.
Large training data are coloured purple–dark-blue and low rssi light-blue–white.

panel 3.8a and panel 3.8b discloses the corresponding increase of variance in the
areas affected by that reduction. The information that the covariance function
provides is essential for the main objective of this work, the hybrid positioning
system, because it allows an automatic weighting of the different systems that are
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3. Gaussian process wlan positioning system

to be fused.
The figures 3.7 and 3.8 also show the main advantage of rssi interpolation

compared to basic fingerprinting. Namely that despite reducing the number of
fingerprints of the radio maps, an accurate radio map can still be provided. The
effect of the decrease of accuracy of the radio map on the localisation performance
is investigated in section 3.4.2.

Residuals

The chosen Gaussian process prior distribution yielded reasonable results, as
shown in the previous section. Nevertheless, the model we used is based on
assumptions that may be disputable. In this section we like to assess qualitatively
themodelling errors and howmuch the data deviates from themade assumptions.

We explore the residuals of the Test-bed data, for the preferred prior distribution
(Const, Matν�2/3). The data we present as follows belongs to two access points
we used as well in the previous section to illustrate the model selection: one
access point that contributes a lot fingerprints to the radio map, and an other
access point that contributes few fingerprints to the radio map. The training data
for these two access points, apD and apS, are shown in figure 3.6a and figure 3.7a.
Recall equation (2.25), if the rssi observations are modelled by a Gaussian

likelihood function, as we did, the Gaussian process regression model residuals
ought to be normally distributed, too. We evaluate the histograms and the norm
probability plots of the residuals to see if the assumption of normally distributed
rssi is valid.

The histograms for the two access points are shown in figure 3.9. The residuals
are expected to be about normal distributed with mean zero. An important
observation is that in both cases the histograms are symmetric and the residuals
have a mean around zero. But, the distributions are to heavy tailed for normal
distributions. The histogram on the right hand side (3.9b) presents even multiple
modes, possibly caused by the small sample size.

More details can be observed in the norm probability plot in figure 3.10. (Perfect
normal distributed data would lie on the red line.) The statements based on
the histograms can be confirmed: The distribution of the residuals is symmetric
around zero, with heavy tails. In panel 3.10a the majority of the residuals, the
residuals between −5 dBm to 5dBm, coincide with the line indicating normality,
thus, they follow a normal distribution. The remaining residuals smaller than

82



3.4. Results

−15 −10 −5 0 5 10 15

0

20

40

60

80

rssi residuals (dBm)

fr
eq

ue
nc

y

(a) Histogram of residuals corresponding to
an access point with many fingerprints.
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(b) Histogram of residuals corresponding to

an access point with few fingerprints.

Figure 3.9.: Histogram of rssi residuals of two Gaussian process regression models,
each for a different access point.
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(a) Norm probability plot of the residuals which
correspond to an access point with many
fingerprints.
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Figure 3.10.: Norm probability plot of the rssi model residuals from Gaussian process
regression models for two different access points.
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±10 dBm deviate slightly from that line. The number of outliers is relatively
small, about 1.5% of the sample. One could describe the model residuals as
approximately normal distributed. The residuals of apS share the same properties,
only the maximum values are smaller.
The distribution of the residuals is one issue, an other one is their spatial

independence. In figure 3.11 the residuals of the two access points are graphed
as function of space.
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(a)Residuals corresponding to an access point
with many fingerprints.
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(b)Residuals corresponding to an access point
with few fingerprints.

Figure 3.11.: Rssi model residuals over space of the test area for two access points.
The magnitude of the residuals are indicated by the colour bars.

Several of these figures were visually examined and compared. However,
a definite statement, whether the residuals are spatially independent or not,
is difficult to provide, as no perspective allows an appropriate assessment.
Additionally, the unknown locations of the access points, which affect the spatial
distribution of the residuals, complicate such a inspection. Nonetheless, the
spatial residual distributions that were examined and compared did not suggest
that the residuals possess spatial patterns.
What in addition can be seen in the example figures 3.6a and 3.7a, is that the

residuals from apD present a larger variance than the residuals from apS. The
reason is the larger variance of the rssi if the power of wlan signals is high,
compared to the variance of low power rssis.
Figure 3.12 presents the predicted rssi as function of th rssis used to train
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the model. If the predictions matched the training target values perfectly, all
points would lie on the red line. A random distribution around the line of ideal
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(a) rssi measurements versus predictions for
an access point with many fingerprints.
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(b) rssi measurements versus predictions for
an access point with few fingerprints.

Figure 3.12.: Training rssi versus predicted rssi for two access points. The red line
indicates under and overfitting of the training data.

predictions indicates an appropriate adaption to the training data. Nevertheless,
towards the ends of the function becomes asymmetric for both access points.

Just below −40 dBm in panel 3.12a and below −60 dBm in panel 3.12b), the
rssi lean towards the training data. That is, the predictions are smaller the
training rssi, they do not ‘reach’ the training data. This suggests that the model
underestimates the rssi observations around the maximum rssi nearby the access
points. This effect is explainable by the way the radio maps were recorded,
namely that eventually four fingerprints at the same position was captured. If
these rssis varied too much while being very close, the process would not be able
to adapt. Notice that not all access points present these outliers.

The opposite effect is visible at the lower end of rssi. Here, the points lean
towards the predictions, meaning that the predicted rssi are smaller than the
training data. It indicates that the training data is underestimated by the model;
note, this time at the lower rssi bound. Only, a few access points showed that
effect.
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Positioning accuracy

The previous findings favour the Gaussian process model based on the Matérn
kernel, but these findings rely on themodel selection criteria only and do not allow
conclusion about the positioning accuracy or precision. This issue is addressed
in this subsection. Through the positioning performance of the ml estimator we
seek confirmation about choice of the Gaussian process model.
To see whether or not the positioning performance reflects the results of the

previous sections, we derive ml estimators and compare the resulting rmses. Each
estimator is derived according to equation (3.4): For a certain Gaussian process
model we compute first the rssi value on a regular grid of the test area. Then, at
each time instance of the trajectory, we use the corresponding rssis measurement
to compute the likelihood function. The likelihood functions are computed based
on Gaussian processes with the constant mean function and the eight different
covariance functions we examined in the previous section. The position at the
maximum of the likelihood function is the final position estimate of that time
instance.

Table 3.6 compares the rmse that resulted from that procedure for Trajectory-1
and Trajectory-2, see figure 3.2. The unequivocally highest accuracy achieved the

Table 3.6.: Rms position error for Trajectory-1 and Trajectory-2. Rmses are from
ml estimators based on Gaussian process models with different prior covariance
function, using the Test-bed radio map.

Ml estimator Position error (m)
Trajectory-1 Trajectory-2

Se 10.21 6.46
Matν�1/2 5.90 3.97
Matν�3/2 8.90 5.68
Matν�5/2 8.98 5.92
Rq 6.18 5.30
Sum Se & Se 10.48 6.46
Prod Se & Se 10.46 6.35
Add Se 14.42 11.45

estimator that uses the Matérnν�1/2 covariance function. The second best result
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achieved the rational quadratic covariance function; a covariance function which
we excluded quite early as a promising candidate to model rssis. Also the other
two Matérn functions perform reasonably well. The more complex functions and
the squared exponential covariance function yielded the lowest accuracies.
These results reflect well the outcomes from the model selection criteria, see

table 3.4. Inparticular, that the error of the estimator using the squared exponential
covariance function is comparable to the errors of the more complex covariance
functions. The error of the estimator using the squared exponential covariance
function is about 40% higher than that of the most accurate ml estimator. This
corresponds to improvements of 1.3m, in case of Trajectory-1, and 0.78m for
Trajectory-2.

The estimated trajectories are presented in figure 3.13. They show the northing
over easting for two estimators. One ml estimator uses theMatérnν�1/2 covariance
function the other estimator the squared exponential covariance function. Both
estimators have again the constant mean function in common. The ground truth
is depicted as reference. The indoor/outdoor trajectories are in general estimated

550 560 570 580 590 600 610

−20

0

20

40

easting (m)

no
rt
hi
ng

(m
)

ground truth
Mle–Se

Mle–Matν�1/2

(a) Estimates of Trajectory-1.
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(b) Estimates of Trajectory-2.

Figure 3.13.: Estimated trajectories from two Gaussian process based ml estimators,
using different prior covariance function, for two trajectories. The ml estimators are
based on a constant mean (Const) and 1) squared exponential (Se), or 2) Matérn
(Matν�1/2) kernel. The Gaussian processes are trained with the complete radio map.
The ground truth is depicted as reference.

well. The typical problems of localisation methods based on fingerprinting is
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visible. In open areas fingerprints are not well distinguishable due to insufficient
signal attenuation. Neighbouring fingerprints and even more distant fingerprints
are alike. A result are the outliers visible for both trajectories, occurring in the
vicinity of open spaces. In Trajectory-1 they are visible at the beginning about
(607, −9)m, along the pathway of the right building [585, 600]m × [0, 25]m
(which is open towards the large open space) and around the small lawn area
[550, 565]m × [25, 41]m. The estimates for Trajectory-2 present these outliers
also along the pathway of the right building [585, 600]m × [5, 30]m and behind
the right building [610, 620]m × [15, 20]m. Especially the estimate of the last
position deviates, it jumped about 25m to (585, 40)m. In these cases the estimates
are pulled towards the open areas.
The indoor sections of the trajectories are well estimated. This is observable

in panel 3.13a at the entrances, which are located about (605, 2)m, (595, 27)m
and (570, 30)m. Trajectory-2 constitutes only one indoor section, which is also
estimated well, panel 3.13b illustrates that, see [555, 30]m × [572, 27]m.
These two panels also reveal that in sections of the trajectories where the

accuracy is high, both estimators perform equally well. But the large position
errors produced by the Matérn function become even larger when the squared
exponential covariance function is used.
These results confirm the insights from the previous section. 1) The model

differences are large enough propagate via the likelihood function and are
reflected in the localisation error. The choice of the Gaussian process model
influences the accuracy of a wps. 2) The Matérn covariance function is a very
good choice to interpolate rssis, though, based on the model selection criteria,
we favoured the Matérn covariance function with ν � 3/2 instead of ν � 1/2.
This suggests additionally that rssi variations are quite large and therefore to use
rather rougher kernels to model rssis.

3.4.3. Positioning performance of wps

In this section, we report more general about the positioning performance of the
Gaussian process based wps. This section shows the usefulness of interpolating
the radio maps to decrease the labour of its construction. We contrast the
positioning accuracy and precision for the dense and the sparse radio map of
the Test-bed. (It is the radio map used for the Gaussian process model selection
experiments.) These findings provide an idea about the (surprising) effect of the
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positioning performance, if one reduces the amount of fingerprints.
The positioning performance is evaluated by means of localisation accuracy

and precision. We present the results for the ml estimator based on our suggested
model with constant mean and Matérnν�3/2 covariance function. To set the
outcomes in context, it is compared with the ml estimator that relies on the
zero mean and squared exponential covariance function and also with the k-nn
algorithm. We chose these two algorithms as benchmark because they are used
commonly for wlan fingerprinting. The two ml estimators are denoted by
Mle–Const & Mat and Mle–Zero & Se. We show results again for the two
trajectories, Trajectory-1 and Trajectory-2.
The accuracy in terms of the rmse is summarised in table 3.7. It contrasts rms

position error yielded for the dense and the sparse radio map. For the dense radio

Table 3.7.: Rms position error of three different position estimators employing the
dense or the sparse radio map for Trajectory-1 and Trajectory-2. © ieee 2015

error Trajectory-1 (m) error Trajectory-2 (m)
dense sparse dense sparse

k-nn 7.06 13.41 4.63 12.79
Mle–Zero & Se 9.92 5.57 6.45 4.65
Mle–Const & Matν�3/2 8.90 5.10 5.68 4.19

map the k-nn estimator outperforms the two ml estimators. Comparing the ml
methods, the Maximum likelihood estimator (mle)–Const & Mat yields lower
position error. For the sparse radio map the situation is different. Now, both ml
estimator outperform the k-nn algorithm. The Mle–Const & Mat yields again
higher accuracy than the Mle–Zero & Se. These outcomes as well corroborate
the results of the model selection section.

The good performance of the k-nnmethod indicates that the fingerprint density
of the dense radio map is relatively high, though, it is a little unexpected. The
degradation of the k-nn’s accuracy with the reduction of fingerprints is because
it works directly on the discrete fingerprints. In the case of the dense radio map
enough fingerprints are available to attain a high accuracy. In the case of the
sparse radiomap the fingerprints are too separated and too sparse. This leaves not
enough candidate positions for the solution space to achieve a similar accuracy.
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It is noteworthy that mles’s performance improve if the amount of fingerprints
is decreased. For Trajectory-1 the error of both ml estimators is reduced by factor
1.8 and for Trajectory-2 the accuracy improvement is factor 1.4. This leads to
the interpretation of the accuracy results of the dense radio map that not the
k-nn algorithm performs exceptionally good, but that the mles perform for some
reason poor. A possible explanation for that requires further analysis which
follows in the next sections.

Dense radio map

The findings we present in this subsection rely all on the dense radio map. It
contains the full set of fingerprints as they were recorded. Panel 3.6a and 3.7a
exemplify the density of fingerprints for one access point. The first panel shows
an access point contributing many fingerprints to the database, because its signals
are received at almost any place of the test area. The latter panel shows an access
point whose signals where not captured often during radio map construction.

The positioning performance of the three estimators are represented in form of
the empirical cdf of the error. Figure 3.14a depicts the accuracy for the dense
radio map. Panel 3.14 shows it for Trajectory-1 and panel 3.14b shows it for
Trajectory-2.

The first interesting observation is that the three estimators perform up to
90% nearly identical; and this can be seen for both trajectories. The estimators
differ mainly in that they have larger or smaller maximum errors. However, for
Trajectory-2 Mle–Const & Mat shows occasionally higher accuracy of 0.5m–1m
below 75%. The median accuracy for Trajectory-1 is about 4m, for Trajectory-2 is
is just below 3m. The error at 90% is 12m for Trajectory-1 and 7m for Trajectory-2.
More significant differences between the estimators can be observed above

90% localisation accuracy. One can observe that the small rmse of the k-nn is
attributed to the smallest maximum errors. They are about twice as small than
that of the ml estimators: 21m in case of Trajectory-1, whereas the mles exhibit
maximum errors about 43m; and 12m for Trajectory-2, whereas the ml estimators
yielded about 25m.
Consider the cdf in panel 3.14b. The estimator based upon the ‘default’

Gaussian process model (Mle–Zero & Se) presents about 3m smaller maximum
error than Mle–Const & Mat, albeit in table 3.7 its average error exceeds that
of Mle–Const & Mat by 1m. It suggests that Mle–Const & Mat’s errors are
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(a) Cdf of the rms error of three positioning
estimators for Trajectory-1.

0 5 10 15 20 25 30

0

0.2

0.4

0.6

0.8

1

accuracy (m)

cu
m
ul
at
iv
e
pr
ob

ab
ili
ty

k-nn
Mle–Zero & Se
Mle–Const & Matν�3/2

(b) Cdf of the rms error of three positioning
estimators for Trajectory-2.

Figure 3.14.: Empirical cdf of the rmse of two trajectories examined for three different
positioning algorithms relying on the dense radio map. The ml estimators are
based on a constant mean (Const) and 1) squared exponential (Se), or 2) Matérn
(Matν�3/2) kernel and used estimators used the dense radio map. © ieee 2015

in general smaller. In the case of Trajectory-2, Mle–Const & Mat outperforms
Mle–Zero & Se consistently.

Sparse radio map

Positioning performance for the undersampled radiomap, the radiomap obtained
by randomly removing the fourth part of the fingerprints, is described as follows.
The data we present here, is much more relevant for a practical, eventually
large-area wps, since the fingerprint density of the dense radio map is unrealistic
for such cases (Of course, the actual fingerprint density depends on the concrete
application.). A one access point sample of fingerprints from the sparse radio
map can be found in figure 3.7b.
The cdf that shows performance of the three estimators for the sparse radio

map is shown in figure 3.15. The performances of the estimators for Trajectory-1
and Trajectory-2 are very similar. The k-nn algorithm presents now very low
accuracy and the two mles perform almost the same. The error of Mle–Const &
Mat is generally slightly smaller than that of Mle–Zero & Se, but in particular
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(a) Cdf of the rms error of three positioning
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Figure 3.15.: Empirical cdf of the rmse of two trajectories examined for three different
positioning algorithms relying on the sparse radio map. The ml estimators are
based on a constant mean (Const) and 1) squared exponential (Se), or 2) Matérn
(Matν�3/2) kernel. © ieee 2015

the difference in maximum error demonstrates again its superiority.
The accuracy of the k-nn estimator is not competitive any more, its median

error is about twice and its error at 100% is trice as large than that of the mles.
Whereas the median error of the mles are roughly 3m to 4m for both trajectories.
Their accuracy at 90% is 9m for Trajectory-1 and 7m for Trajectory-2, respectively.
Their largest deviations from the ground truth are 12m for both trajectories.

A comparison of the outcomes for the two radio maps provides more insights:
Table 3.8 contrasts the accuracy of the k-nn and the mles for the dense and the

sparse radio map.
First of all, the results for the dense radio map are significantly different to that

of the sparse radio map.
One point is the accuracy decrease of the k-nn performance. It is expected and

already discussed.
The most striking point is that a reduction of the number of fingerprints by

factor four, did not or almost not change the errors of the mles below 80%
probability. The maximum errors even decrease because of the reduction of
fingerprints. They decrease considerable: by factor 3.3 in case Trajectory-1 and
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Table 3.8.: Statistics on the position error of three different position estimators employ-
ing the dense or the sparse radio map for Trajectory-1 and Trajectory-2.

error Trajectory-1 (m) error Trajectory-2 (m)
dense sparse dense sparse

median
k-nn 5 11 3 9
Mle 4 4 3 3

90%
k-nn 11 19 10 25
Mle 12 9 7 7

100%
k-nn 21 37 12 31
Mle 43 12 25 12

factor 2.3 for Trajectory-2, respectively. The fingerprint density does not affect the
mean error, but influences substantially the robustness of the ml estimators. The
decrease of their average rmse, shown in table 3.7, is principally caused by that
increased robustness.

This increase of robustness is attributed to the ambiguity problemfingerprinting
methods have. Very large errors in fingerprinting systems are caused by this issue,
in fact, it occurs when similar rssi patterns are recognised at distant locations. We
verified this by examining several likelihood functions for the dense radio map.
They showed repeatedly maxima distant from the actual location. Removing
fingerprints from the radio map potentially also removes ambiguous fingerprints,
while the amount of fingerprints is still high enough so that the Gaussian process
interpolation can provide sufficiently exact rssis at these locations – therefore
the position accuracy can be maintained and even improved. Thus, Gaussian
process ml estimators based upon the sparse radio map limit the influence of
ambiguous rssi on the position estimate better than the ml estimators based on
the dense radio map. However, it is expected that below a certain amount of
fingerprints the quality of rssis predictions declines drastically, such that the
accuracy deteriorates until the position error is only confined by the borders of
the radio map.

Last but not least, one may have noticed that the k-nn algorithm does not suffer
much from the ambiguity issue. The reason is in the distance penalisation term
we introduced. It adds a second feature to the algorithm, namely the number
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3. Gaussian process wlan positioning system

of access points common in the observations and in the database. This second
feature helps to distinguish fingerprints similar in their rssi and diminishes
erroneous recognition of fingerprints. 12

Note, in realistic scenarios the actual density of fingerprints is nearly impossible
to control, because the signal reception conditions change randomly in time and
space. Thus, the robustness of the estimators to a varying fingerprint density that
is a further advantage and reason to build a wps on Gaussian process predictions.
We illustrate concluding the trajectories in easting and northing. Figures 3.16

shows the estimates from the two ml estimators, where the Gaussian processes
are trained with the sparse radio map. In panel 3.16a depicts Trajectory-1 and
panel 3.16b shows Trajectory-2. Comparing these results with the ones derived
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(a) Estimates of Trajectory-1.

560 580 600 620

10

20

30

40

easting (m)

no
rt
hi
ng

(m
)

ground truth
Mle–Se

Mle–Matν�1/2

(b) Estimates of Trajectory-2.

Figure 3.16.: Estimated trajectories from two Gaussian process based ml estimators
trained with the sparse radio map and using different prior covariance function. The
ml estimators are based on a constant mean (Const) and 1) squared exponential
(Se), or 2) Matérn (Matν�1/2) kernel. The Gaussian processes are trained with the
sparse radio map. The ground truth is depicted as reference.

from the dense radio map in figure 3.13, a reduction of extreme position outlier is
observable, in particular for Mle–Const & Mat (even though ν is chosen to 3/2).

In addition, one can see in both trajectories that Mle–Zero & Se shows larger

12. Beder et al. (2012) introduced such an approach into the likelihood function for their
probabilistic fingerprinting system. They model the number of common rssi with a Gibbs
distribution and integrated it into their likelihood function.

94



3.5. Conclusion

outliers than Mle–Const & Mat. We like to stress again the superiority of the
ml estimator derived from a Gaussian process with constant mean and Matérn
covariance function over the estimator relying on the ‘default’ Gaussian process
model. Mle–Const & Mat constitutes lower maximum error than Mle–Zero &
Se, an exception though is the case Trajectory-1with dense radiomap. Thatmeans
that it can deal better with larger rssi variations and is hence more robust. This is
coherent, considering that the Matérn kernel is composed of an exponential and
a polynomial term. It makes it more flexible, hence also wider applicable than
the squared exponential kernel. The greater flexibility facilitates the adaption to
training data with large rssi differences within small distances. The ability to
model rssi well translates to the positioning performance and confines localisation
errors. In comparison, the zero mean function of Mle–Zero & Se additionally
deteriorates the fit and contributes to the described effect. Moreover, using
the constant mean function makes an additional estimation steps as described
in (Ferris et al. 2006) and (Atia et al. 2013) unnecessary.
The insights gained from the analysis of the localisation performance indeed

reflect the findings from the Gaussian process model selection – with respect
to the choice of the prior distribution but also with respect to the density of
fingerprints.

The presented indoor/outdoor wlan fingerprinting positioning system yields
a median accuracy of only 4m. We consider this an acceptable, even competitive
result.

3.5. Conclusion

Gaussian processes model accurately the spatial structure of wlan rssis. They
provide a robust and versatile method to predict/interpolate radio maps for
location fingerprinting systems, notwithstanding the flawed assumption of
normally distributed rssis.

3.5.1. Distribution of rssi

As a conclusion from the Single-ap experiment, we see it justified to approximate
averaged rssis with a Gaussian distribution. Using these averaged rssis to
parametrise the Gaussian process likelihood function, results in more robust
predictions as if raw rssis were used.
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However, it is indicated that more robust Gaussian process likelihood functions
may improve the rssi models. The Student’s t-distribution or the Laplace distri-
bution, for example, seem promising and have been applied in Gaussian process
regression. A non-Gaussian likelihood function will increase the computational
burden of fitting the model, because approximations are needed to infer the
hyperparameters.

3.5.2. Structure search

The spatial structure of rssis is relatively simple, since simple covariance functions,
such as the Se kernel, are able to fit the data better than more complex covariance
functions. This is reasonable in the light of the exponential decay of rssi
and the indistinguishability of spatial rssi distributions of indoor and outdoor
environments.

The search for themost appropriateGaussian process prior distribution resulted
in the choice of the constant mean and the Matérnν�3/2 covariance function.

Choosing the constant mean function over the zero- and linear mean function
is also theoretically justified. The zero mean function is obviously questionable,
because the access point’smaximum rssis is commonly at least 20 dBmbelow zero
and power decreases further with increasing distance from the access point. Thus,
a convergence to zero (in the absence of training data) is not being appropriate
for rssi. The linear mean function may model the rssis well if the access point is
located at the borders of the test area. In these cases the linear decay approximates
the one-sided exponential decay. But as the model selection criteria of the linear
mean function were quite close to that of the constant mean function and its the
complexity is larger, we favour the constant mean function.
The choice of the parameter ν is also a compromise. Based on our data, we

believe that a Matérn covariance function with ν � 3/2 is more general applicable
than the rougher (ν � 1/2) or smoother (ν � 5/2) version. The property of
the Matérn functions to model a certain roughness is also the reason to not
recommend the squared exponential kernel, despite its very common use. Only
for very sparse radio maps, the squared exponential kernel is an appropriate
choice. In that case the training data points are distant from each other and are
therefore sufficiently smooth to be modelled by that kernel.

We conclude that the ‘default’ Gaussian process model, employing zero mean
function and squared exponential covariance function, is usable, but not the best
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choice. The reasons are already mentioned: the undesired convergence to zero
of the zero mean function and the inability of the squared exponential kernel to
model large rssi variations. Moreover, the positioning performance confirmed
the superiority of using a Gaussian process prior with constant mean and Matérn
covariance function.
Finally, we did not find any indication that the rssis of indoor or outdoor

data sets have different structure. Neither the test error nor the bic presented
patterns that suggest the use of different prior distributions; an examination
of the hyperparameters did not change that conclusion. The possible reasons
that the spatial rssi distributions of indoor and outdoor environments are
indistinguishable are: 1) the difference in rssi we expect, is not present in our
environment; 2) the rssi training data did not capture it; or 3) methodological
errors bury it. Causes for each possibility are listed subsequently:

Difference not existing in that environment The building’s geometry and size,
its structure or materials (single brick outer walls and mainly soft partitions
indoors), or the contained objects lead to indifferent spatial rssi distribution
for indoor and outdoor environments.

Difference not contained in data The spatially discrete distribution of finger-
prints is to scarce or geometrically disadvantageous to capture the difference
between indoor/outdoor rssi distribution.
Possible aswell is that the chosenGaussianprocessmodels are too insensitive
to model the existing differences between indoor/outdoor rssi distribution.
They basically smooth over the these differences.

Methodological errors To compute the model selection criteria, we averaged over
all available access points. Note, the spatial fingerprint distribution for each
access point differs and also dependents on the position of the access point.
The effect we expect is perhaps contained in the data of some access points,
but not in these of others. Therefore, averaging over all access points may
remove the spatial rssi differences.
Thus, this calls for an analysis for each access point, possibly on a regular
and finer grid of fingerprints. (The latter point is yet hard to achieve in
realistic scenarios.)

A combination of these reasons is conceivable, too.
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Having said that, the indiscernible of spatial indoor/outdoor rssi distribution
bears the advantage that a common model for both environments is sufficient,
which (in addition to the resource savings due to the interpolation) saves time
when deploying a wps.

3.5.3. Localisation performance

The positioning performance of the ml based fingerprinting system was analysed,
where the ml estimators were derived from Gaussian processes. The positioning
system achieved 4m median error and 6m mean error for the indoor/outdoor
trajectories.

The evaluation of the positioning performance confirmed the previous conclu-
sions: The recommendation for a Gaussian process prior with constant mean
and Matérn covariance function. It demonstrated additionally that the mle using
the Matérn covariance function outperforms the ml estimator relying on the
‘default’ Gaussian process model, because of its greater robustness. The Gaussian
process model with zero mean and squared exponential covariance function is
unfavourable for rssi modelling.
Furthermore, a low radio map density can improve localisation performance

compared to a dense one; in particular if the rssi are modelled adequately. The
reduction of fingerprints diminishes the ambiguity issue due to very similar
fingerprints in a radio map. This affects positively the robustness of the wps,
increases in average its accuracy and precision.
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Chapter 4

Particle filter fusing wlan rssi and
gnss pseudoranges

In the previous chapter, we explained the wlan based positioning system using
interploated rssis and the ml method for self-localisation. In this chapter we
present the proposed information fusion algorithm to blend gnss pseudoranges
with rssis based upon the rssi likelihood function of chapter 3. The proposed
method combines pseudoranges and rssis by employing a particle filter that fuses
the likelihood functions of rssis and pseudoranges in its measurement update
step.

The following section describes subsequently the probabilistic models used in
the particle filter; then in section 4.2 we finally derive the particle filter. Section 4.3
presents the experimentsmade to evaluate the fusion filter and section 4.4 delivers
results on the filter performance – compared to the performance of the filter in
the gps-only or wlan-only setting.

4.1. State-space model

The state space for our self-localisation is naturally three-dimensional space. To
model the dynamic of the object that is to be located we incorporate its position
coordinates, p � (x, y, z)T , in a local level coordinate frame and its velocity,
ṗ � (ẋ, ẏ, ż)T respectively. Due to the differences between receiver and satellite
clocks the receiver clock bias must estimated too. Hence, the state vector is
augmented with receiver clock offset itself, tr , and its time derivative, the clock
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4. Particle filter fusing wlan rss and gnss pseudoranges

drift ṫr . The state vector becomes

xk � (pk , ṗk , tk , ṫk)T . (4.1)

This 8-state vector is a typical choice for a pvt of a gps receiver (Kaplan et
al. 2006). Note, this state vector is defined on continuous space, in particular
p ∈ R3 instead of the discrete subspace P̆ on which the fingerprints are defined
(see sec. 2.5.2). The next section presents the process model, followed by the
measurement model.

4.1.1. Process model

So far we did not specify what we want to localise and spoke generally about
an object, robot or a person. There is no practical general model that models
all possible dynamics. In the field of robotics, motion models have usually
an additional input variable which is the result of a motion command and as
such connected to some sensory data such as odometer or accelerometer data.
Hence, except of some uncertainty the robot already knowswhat motion occurred
between the previous and the current time step. Aswell themotion of a pedestrian
can be inferred from sensors carried by him. A set of inertial sensors enables dead
reckoning based on detected strides, their length and the relative direction of the
user. Also models based on human behaviour have been developed. They require
additional information about the user and its state/condition that must be known
to the system at the outset; examples for these parameters are age, disorientation
and weather, weekday or ground steepness. Another class of approaches rely
on stochastic models. Additional sensors and user information is not required
for these models. These stochastic models are general enough to capture a great
variety of dynamics and can be adapted to the application with few parameters.

To simplify the experimental phase we have chosen a pedestrian to carry the
positioning system, consequentiallywe need tomodel lowdynamics as performed
by pedestrians. Such a dynamic can be described linearly with additive, normal
distributed noise. Thus, we have chosen a Langevin process as in (Vermaak et al.
2001) to propagate the position and velocity in time.
It is a stochastic differential equation to describe the velocity of a Brownian
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particle, for a single dimension its discrete version reads

ẋk � axẋk−1 + bxvxk ,

xk � xk−1 + ∆Tẋk ,

with

ax � exp(−βx∆T), bx � ν̄x

√
1 − a2

x .

The excitation process is white and normally distributed vxk ∼ N(0, 1) and
∆T is the discretization step. The parameters are ν̄x, the steady state rms
velocity (the velocity the pedestrian moves at most) and βx the process’ rate
constant. Experiments showed that βx,y � 10 s−1, βz � 100 s−1 and ν̄x,y � 1.5 m s−1,
ν̄z � 0.5 m s−1 provide good positioning performance.

This equation can be interpreted as a walker moving with a certain step length.
The zero mean of the noise term implies that all direction are equally likely. This
model has an other advantage: If no observations are available the uncertainty
of the objects position increases because the particle filter only predicts the
position. During pseudorange and rssi outages this model accounts for that fact
by increasing the variance over time.

The process model for the position and velocity can be denoted by(
pk

ṗk

)
� Fp

(
pk−1

˙pk−1

)
+ Gpvp ,k , (4.2)

where the noise is Gaussian and uncorrelated vp ,k ∼ N(0, I). The state transition
matrix becomes

Fp �

*.........
,

1 0 0
0 1 0
0 0 1

03×3

ax∆T 0 0
0 ay∆T 0
0 0 az∆T
ax 0 0
0 ay 0
0 0 az

+/////////
-
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and the noise coupling matrix

Gp �

*.........
,

bx 0 0
0 by 0
0 0 bz

bx∆T 0 0
0 by∆T 0
0 0 bz∆T

+/////////
-

.

As well the receiver clock offset obeys linear laws, also with normal distributed
noise. We use a standard clock model where clock phase and clock frequency
obey a random walk. (

tk

ṫk

)
� Fc

(
tk−1
ṫk−1

)
+ Gcvc ,k ,

where
Fc �

(
1 ∆T
0 0

)
and the process noise component for the clock model is again vc ,k ∼ N(0, I). For
the noise coupling term we follow Brown et al. (1997, pp. 428–432), who states
a correlation of the noise terms for the clock phase and clock frequency. The
noise covariance matrix Qc is a 2 × 2 matrix and its elements are given by the
parameters of the clock

q11 �
h0
2 ∆T + 2h−1∆T2

+
2
3π

2h−2∆
3 q12 � h−1∆T + π2h−2∆

2

q21 � q12 q22 �
h0

2∆T + 4h−1 +
8
3π

2h−2∆.

For the used receiver (u-blox 2013) we assume a temperature compensated crystal
clock, resulting in h0 � 2 × 10−19, h−1 � 7 × 10−21 and h−2 � 2 × 10−20.

To denote the clock model (4.1.1) with the white, standard normal distributed
driving noise and to reflecting the correlation, its noise coupling matrix must be
specified accordingly. Correlated noise can be generated by mapping (scaling,
rotating) uncorrelated noise. A scale and rotation matrix are determined by the
eigenvectors, V , and eigenvalues, D, of the covariance matrix, thus the noise
coupling matrix is given by Gc � V

√
DQc .
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Stacking together the transition and the coupling matrices

F �

(
Fp 06×2
Fc 02×6

)
and G �

(
Gp

02×1 Gc

)
respectively, we can denote the complete process model by

xk � Fxk−1 + Gvk . (4.3)

The process noise of the complete model is simply vk � (vp ,k , vc ,k)T .
We can also describe the process model probabilistically. We have zero mean

normal distributed noise that disturbes the state vector. The transition pdf
describing the temporal evolution results in

p(xk | xk−1) � pvk (xk − Fxk−1)

�
1

(2π)nx/2(GTQG)1/2 exp
(
−1

2 (xk − Fxk−1)T(GTQG)−1(xk − Fxk−1)
)

A few more motion models have been evaluated, such as the nearly constant
velocity model (Bar-Shalom et al. 2001) and a model that models a person’s
motion randomly, including random velocity and heading (Widyawan et al. 2007);
nonetheless the Langevin process based model fits best to our experiments and
outperformed the other models. Before getting to the experiments we explain the
measurement models that will be used in the particle filter correction step.

4.1.2. Measurement models

This subsection derives the probabilistic observation models. It is divided in two:
The first part deals with the pseudorange model and the second part describes
the signal strength model.

Pseudorange likelihood function

To derive the pseudorange likelihood function we commence with the sensor
model, in accordance with the general observation model (2.9),

%k � hk ,%(Dxk) + wη,k .
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This model relates the state vector to the observations, where we apply a boolean

matrix, D �

(
I3 03×3 03×2

02×3 02×3
1 0
0 0

)
to feed only the needed elements of the state

vector. These are the receiver’s position, pk , and the offset of its clock to those of
the satellites, tr,k . We further assume that this model is time-invariant between
two consecutive time instances.

An analytic model for a pseudorange was already presented in Background
section 2.4. For the sake of convenience we restate the non-linear model that
describes a pseudorange:

%k � ||ps ,k − pk || + c(tr,k − ts ,k) + Ik + Tk + wη,k .

This model is time-variant, because the receiver and satellites are moving and
the properties of the space between satellite and receiver vary too. It consists of
the geometric range between the satellite, ps ,k , and the receiver, pk , the receiver,
tr,k , and the satellite clock offset, ts ,k and the delay due to the ionosphere, Ik ,
and troposphere, Tk , and eventually other error terms. The experimental setup
corrects the pseudoranges already for the code bias and the satellite clock offset
with respect to system time, nonetheless some residual errors of the satellite
clock offset may remain. As well the ionospheric and tropospheric delays are
corrected, based on the ‘Troposphere model’ and the ‘Broadcast ionosphere
model’ from (Takasu 2013, pp. 149). Hence, the remaining errors, which we
collect in wη,k , are caused by multipath propagation and shadowing effects,
prediction errors of the ephemerides, relativistic effects, residuals of corrections
terms and of course noise (Kaplan et al. 2006, sec. 7.2). In this work we use

%k � ||ps ,k − pk || + ctr,k + wη,k (4.4)

to estimate a pseudorange.

It is usually considered that these remaining errors are distributed normally
with zero mean, wη ∼ N(0, σ2

wη
). We introduce the pseudorange likelihood

function for a single satellite

p(%k | xk) � pwη

�
%k − h%(Dxk)

�
.

Assuming statistical independence of pseudorange measurements from n% satel-
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lites and denoting these pseudoranges %k � {% j
k}

n%
j�1, the joint likelihood function

of the pseudoranges is given by

p(%k | xk) �
n%∏
j�1

pwη

�
%

j
k − h j

%(Dxk)
�

�

n%∏
j�1

pwη(% j
k − %̂

j
k)

�

n%∏
j�1

1√
2πσ̂ j

wη ,k

exp
(
−1

2
(% j

k − %̂
j
k)2

(σ̂ j
wη ,k

)2

)
, L(pk | %k).

(4.5)

Pseudoranges estimated through (4.4) and its standard deviation are denoted
with %̂

j
k and σ̂

j
wη ,k

, respectively. To estimate the standard deviation rtklib’s
default values were used.

Rssi likelihood function

We mentioned before (sec. 2.5.2) that models that map space to signal strength,
and vice versa, are too inaccurate for arbitrary areas. There is no agreement of
the scientific community on a unifying model for that relationship. The common
‘workaround’ is the fingerprinting method – that is creating this missing model
empirically. How one can obtain such a model on continuous space is explained
in section 3.1 and herein used.
In the state space context rssi observations take the general form

sk � hk ,s(Cxk) + wε,k ,

where hk ,s(·) is a non-linear function. This model is also time-variant since
the object/user may move and because of the changes of the environment that
influence rssi readings. These changes include primarily appearing, disappearing
or moved access points and of larger objects. Suchmodifications in the fingerprint
environment requires updates of the radio maps, however, the resulting temporal
variations are prevalently slow which requires only infrequent updates. The
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design of the fingerprinting system and the conditions of the environment
determine the update rate. For the duration of a discretization interval, we
consider this observation model time-invariant.
In this study the radio map and the wlan positioning system is defined on

two-dimensional space of locations, p ∈ R2. Thereforewe usematrix C � (I2 | 02×6).
Nonetheless the extension to R3 is straight forward and for notational simplicity
we denote a position by p regardless of its z-coordinate.

Based on the general model and relying again on the assumption of normal
distributed noise, the likelihood function for the rssi for one access point can be
denoted as

p(s̄k | xk) � pwε

�
s̄k − hs(Cxk)

�
.

The notation s̄k is used again to indicate the use of the mean instead of the
collection of several rssi.

To incorporate nl access points we multiply likelihood functions for each access
point; and instead of relying only on fingerprints, as in section 2.5.2, we use
interpolated rssis yielded by theGaussian process regression. When theGaussian
process model is once established, predictions are obtained by equations (3.2)
and (3.3), from which the likelihood function can be established as observations
are received. Recall section 3.2, the likelihood function becomes

p(Sk | xk) �
nl∏

l�1
pwε

�
s̄ l

k − h l
s(Cxk)

�

�

nl∏
l�1

pwε

�
s̄ l

k − µl
s∗ ,k

�

�

nl∏
l�1

1√
2πσl

s∗ ,k

exp
(
−1

2

�
s̄ l

k − µl
s∗ ,k

�2

(σl
s∗ ,k)2

)
, L(pk | Sk).

(4.6)

One difference to equation (3.4) exists though: The likelihood function within the
update step of the filter (2.10b) needs to consider the object’s/user’s motion, thus,
the change of the state vector over time. The test inputs need to be determined
dynamically according to the system’s state. The model accounts for that with
the time index added to the parameters of the likelihood function.
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Equation (4.5) and (4.6) are the key elements to fuse signal strength and
pseudoranges. Both functions represent the measurements as function of space
with the position as ‘fixed’ parameter. Varying the position provides values of
likeliness that the measurement was received at the currently chosen position.
Based on these likelihoods the balance between gps and wlan is controlled.

Within the particle filter the likelihood functions determine the weights of each
particle, whose combination determines the smoothness of seamless localization.
The integration of the likelihood functions into the particle filter is discussed next.

4.2. Particle filter – A wlan aided pvt

The recursive Bayesian filter is conceptually described in equation (2.10). We
discussed the two step procedure consisting of the process and measurement
update. As both parts of the estimator involve integrals over non-trivial pdfs they
need to be approximated.

In section 2.2.5 we described the fundamentals of the particle filter as numerical
approximation to the sequential state estimation problem. Based on the state
space models of the previous section we explain in this section the particular
details of the particle filter. For simplicity we resort to the bootstrap filter. We
commence with the process update followed by the measurement update, where
the data fusion takes place.

4.2.1. Process update

The state transition probability describes the propagation of the state from the last
time instance to the current one. We provided a probabilistic description based on
the Langevin process that models this evolution. In addition, assume a particle
approximation of the prior distribution of the last time step is known. We could
sample from the state transition density and compute the particle approximation
to equation (2.10a) to obtain the pdf that predicts the current state.

Instead, since an analytic description of the state transition exists, we pass each
particle from the prior, p(x(i)k−1 | y1:k−1), through equation (4.3) to yield

x(i)k | y1:k−1 � Fx(i)k−1 + Gv(i)
k−1 (4.7)

the approximative prediction density, p(xk | y1:k−1). Where {v(i)
k−1}N

i�1 are samples
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from the process noise pdf. Simulating equation (4.3) is more efficient and
intuitive than the way via the state transition pdf.

At the initialisation stage the prior pdf is usually not known. In such cases of
high uncertainty a uniform prior, p(x0) , p(x0 | y−1), over a plausible region is a
common choice.

4.2.2. Measurement update

The measurement update, or often called correction, follows formally equa-
tion (2.10b). To solve this equation the pdfs are approximated with particles and
their weights, where the weights compensate for the deviations of the importance
function from the posterior pdf. We approximate the filtering distribution with
particles and their associated weights

p(xk | y1:k) ≈
N∑

i�1

1∑N
j�1 ω̃

( j)
k

p(x(i)k )
q(x(i)k )︸              ︷︷              ︸

ω(i)
k

δ
�
xk − x(i)k

�
. (4.8)

The particles that are distributed according to the predictive distribution x(i)k ∼
p(x(i)k | y1:k−1) and the weights are initially uniform distributed. The key is to
adapt the weights such that the predicted distribution is updated according to
the obtained measurements.

The Bayesian bootstrap filter employs the state transition pdf as importance
function. The weight update is given by the product of weights of the previous
time instance and the likelihood function, see equation (2.24).

The likelihood functions are given by equation (4.5) and (4.6) and their particle
approximations can be obtained directly by drawing samples from these two
Gaussian distributions, whose mean and variance are known since they are
deduced from measurements.
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For the pseudorange likelihood function we obtain

p(%k | x(i)k ) �
n%∏
j�1

pwη,k

�
%

j
k − h j

%(Dx(i)k )�

�

n%∏
j�1

1√
2πσ̂ j

wη ,k

exp
(
−1

2
(% j

k − %̂
j,(i)
k )2

(σ̂ j
wη ,k

)2

)
� L(p(i)

k | %k).

To predict the pseudoranges, %̂(i)k , model (4.4) is calculated for each particle. The
variance of each pseudorange is estimated by rtklib and equal for all particles.

Similarly, the approximative rssi likelihood function becomes

p(Sk | x(i)k ) �
nl∏

l�1
pwε,k

�
s̄ l

k − h l
s(Cx(i)k )�

�

nl∏
l�1

1√
2πσl ,(i)

s∗ ,k

exp
(
−1

2

�
s̄ l

k − µ
l ,(i)
s∗ ,k

�2

(σl ,(i)
s∗ ,k )2

)
� L(p(i)

k | Sk).

(4.9)

The rssi predictions, {µ(i)s∗ ,k}N
i�1 are yielded by choosing the particle’s position as

test inputs, P∗k � {Cx(i)k }N
i�1 and employing (3.2).

The interaction of the true location with the observations and their variances
in the likelihood functions modifies the impact of a particle. If the measurement
coincides well with true location the impact of a particle increases, and the other
way around for measurements far from the correct location. Likewise, if the
variance is small particles receive more impact as if the variance of the likelihood
function is large.

The next step is to combine the two measurement likelihood functions. The
independence of rssis and pseudoranges allows us to multiply their likelihood
functions in order to obtain a global likelihood function

p(yk | x(i)k ) � L(p(i)
k | Sk) · L(p(i)

k | %k).
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This part of the algorithm essentially fuses the observation data. The allocation
of weights to the particles based on their positions and the observations fulfils an
automatic shifting between gps and wlan.

By substituting the latter equation into (4.8) we can finally formulate the particle
approximation to the posterior pdf:

p(xk | y1:k) ≈
N∑

i�1
L�

p(i)
k | Sk

�L�
p(i)

k | %k
�
ω(i)

k−1δ
�
xk − x(i)k

�
. (4.10)

Likelihood functions provide information on the parameters only up to a multi-
plicative constant, therefore we normalise the updated weights so that they sum
to unity. This ensures that the resulting posterior also sums to unity and thus
yields a proper pdf that provides a valid prior pdf for the following recursion
step.
Updating the weights with the multiplied likelihood functions assigns high

weights to particles with locations that correspond best with both observations.
During the resampling particles with high weights are multiplied whereas
particles with low weight are forwarded or may even not survive.

Furthermore, they control the influence of gnss andwlan observations, because
both systems have contrasting error mechanisms. Gnss performance degrades in
areas with obstructed satellite to receiver link, where scattering and multipath
effects delay the signal propagation time. The same obstructions cause the wlan
signal strength to distribute heterogeneously, and not smoothly, exponentially
decaying as predicted by path loss models. The larger rssi deviations between
neighbouring locations facilitates fingerprinting. For example, variances of pseu-
doranges received indoors are generally higher that the pseudorange variances
received in open sky scenarios. Consequently, indoors the weights determined by
the pseudorange likelihood are lower than outdoors which decreases confidence
in the gnss measurements.
The other way around in open sky scenarios, where gnss achieves high

accuracies, the rssi are too ambiguous. Small differences in signal space can result
in very large deviations in space, making fingerprinting methods perform poor.
However, the good gnss signal reception conditions result in low pseudorange
variances. That again shifts weight to the gnss, likely improving the overall
localisation accuracy.
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The choice of the rssi variance is derived from the fingerprint database and
therefore not directly related to the observation made in the localisation phase.
The weighting between the two sensor data is (unfortunately) merely governed
by the variances of the pseudoranges.

4.3. Experiments

We explain the experiments, to assess the performance of the particle filter
fusing gnss pseudoranges and wlan rssi, in this section. They build upon the
experiments for the wps described in chapter 3. For information about the test
area, recording and pre-processing of rssis we refer to section 3.3.
This section describes the extension of the data logging hard and software

to store in addition to the rssis the gps raw data, it explains the measurement
process(es) and comprises some noteworthy details of the particle filter imple-
mentation.

Measurement capturing The wlan data capturing and processing chain used
to evaluate the wps is described in section 3.3 and extended by multiple points:

Record gnss data The used receiver is the ublox lea-6t-0 (u-blox 2013) single
frequency gps receiver with raw pseudorange data output. It is connected
via usb to a laptop. The antenna is a standard patch antenna that was
delivered with the device. During the experiments the experimenter hold
the laptop in front of him, while the antennta was mounted on his head,
to avoid blocking because of the experimenter’s body and the laptop. In
addition to the motion of the experimenter’s body also his head movements,
such as pitch and yaw motions, influence the gps antenna position.

The obtained raw gps data are parsed and preprocessed. Preprocessing
comprises calculation of the satellite positions and satellite clock at trans-
mission time and estimation of correction data, such as ionospheric and
tropospheric delays, and corresponding variances. Thereafter the data are
associated with a timestamp. To parse the ubx protocol and preprocess
the data we integrated functions from rtklib (Takasu 2013)1. Addition-

1. rtklib, programpackage for standard and precise positioningwith gnss: http://www.rtklib.
com/
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ally the gps receiver nmea output is read, parsed and associated with a
timestamp too. The software library nmealib2 is used to parse the nmea
messages. Either data are subsequently buffered and stored in a SQLite
database. Reading from the buffer and writing to the database is executed
in a separate thread.
The whole gps data processing runs concurrently to the wlan data pro-
cessing, where gps data processing runs on its own, without user interven-
tion. Starting and stopping of threads is controlled by the already described
graphical user interface.

Capture wlan data continuously So far wlan data are only recorded after the
experimenter reached a reference position, clicked on the map application
and started data capturing and storing for a few seconds. For the combined
gps and wlan experiments we implemented an optional recording mode
which allows to capture wlan data in a temporal continuous fashion. We
used pcap’s dump feature that stores wlan packets as they arrive, without
preprocessing, in a pcap-file. This mode fits better typical scenarios in
which the object/user moves uninterrupted.
The drawback of this mode is that no reference points can be associated
to the observations. However, both modes, the temporally discrete and
continuous mode, may be used simultaneously.

Synchronisation of gps and wlan data Above we mentioned the association of
timestamps to the observations. We add a Julian date timestamp after
parsing of gps and discrete wlan data. When doing a continuous wlan
data capture a unix epoch timestamp is used.

Notes on dealing with geographic data Fusing the gps and wlan observations
premises a common spatial reference system. Gnss receiver use overwhelmingly
a system based on an ellipsoidal approximation of the earth’s shape. The spatial
reference system of most digital maps available on the internet (also osm) is
based on a spherical approximation of the earth’s shape. This discrepancy
– if left uncompensated – leads to differences in northing (larger differences at
higher latitudes) while easting is unaffected. To account for this difference and

2. nmealib, software library to parse and generate nmea sentences: https://github.com/AHR-
Project/nmealib
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to minimise potential inaccuracies due to coordinate conversions, we employ
the proj.4 library3 for all transformations and projections between geographic
coordinates.

Transformations from geographic Cartesian coordinates (earth-centred, earth-
fixed) to local coordinates are done in gnu Octave. The databases used to store gps
and wlan data contains the unaltered geographic coordinate data as provided by
the gps receiver and osm. The algorithm eventually processes local East, North
and Up coordinates.

Furthermore, the osm data itself might be erroneous, in particular because it is
generated by its users. However, this allowed us to correct and update important
landmarks of the map data of the test bed. It was done with help of a geodetic
gnss receiver in relative positioning mode, claimed to be accurate up to a few
centimetre.
To obtain the trajectory data (rssis and associated mac addresses) and the

ground truth positions the experimenter used the software to record the radio
map. (The same approach was used as well to generate the radio map, see
section 3.3.) Ground truth data was generated by marking the equipment’s
position on the map. The approach of marking locations on the map introduces
further location inaccuracies: The experimenter has to, first, visually estimate his
own location (by identifying nearby landmarks); then second, find this position
correctly in the map; and third, mark it on the map using a pointer device. To
facilitate the last two tasks, we set up a osm tile server cloning parts of the osm
data, configured it to render two more additional zoom-levels and enabled the
JMapViewer software to depict these additional zoom-levels.
All the mentioned error sources are unmodelled and affect the outcomes of

the particle filter. However, we believe that particularly the human introduced
uncertainties are partially averaged out and that in average the error of each
ground truth position is less than 0.5 metre.

Filter implementation details Assessing the filter performance revealed several
issues in the design presented so far. In particular during the initial convergence of
the filter, when the first estimates are still far from the true location. Furthermore,
the task of self-localisation and the filter design constitute some issues that need
attention. We could overcome most of the drawbacks by modifying the likelihood

3. proj.4, standard library for cartographic conversions: http://proj4.org/
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functions.
The adaptions of the pseudorange likelihood function are discussed as follows:

1. The order of magnitude of pseudorange residuals can be about 106m. Such
magnitudes as arguments to the exponential kernel of a normal distribution
exceeds the numerical precision and results virtually in zero. Therefore

2. In this initialisation phase of the filter the pseudorange likelihood function
often yields only one single non-zero value. This concentrates the particles
rapidly in a very small area from where they may never leave again. In
such cases we set the likelihood function invalid and proceed with rssi
observations and subsequently with the next recursion step. If no rssi
measurement is obtained, it follows prediction, which each time increases
the variance, spreading the particles farther. If the particles get into the
area of the true location the pseudorange likelihood possibly becomes more
informative again, the rssi observations suit the predicted location and the
algorithm continues as described above. A quite slow convergence rate is
the consequence, because while only predicting repeatedly the particles
obey a random process.

3. Additionally, as a result of multiplying several pseudorange likelihoods,
one for each satellite, the joint pseudorange likelihood is often very peaked.
To mitigate this effect we smooth the joint likelihood function as in (Ferris
et al. 2006); it is given by the geometric mean of the individual likelihoods:

L(pk | %k) �
( n%∏

j�1
p(% j

k | x(i)k )
)1/n%

.

4. The last issue regarding the pseudorange likelihood we need to discuss
is the estimation of the receiver clock offset. The pseudorange likelihood
function does discriminates poorly between the position and the receiver
clock offset. As Hejc, Seitz and Vaupel (2014), we also use a least squares
method to estimate the clock offset

The presented rssi likelihood function needs only a modification to avoid the
case when the set of observations contains no rssi which is also contained in
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the radio map. In this situation we invalidate the likelihood function as if no
measurement was received.

An other issue, related to wlan observations, occurs if the object/user moved
beyond the radio map area, but wlan signals are still received. This constitutes
a problem because of possibly ambiguous rssi in the radio map which may
be similar as the ones received outside the radio map area. Knowing that the
estimate will be inaccurate, we compute the rssi likelihood function only if the
distance to the nearest reference position is smaller than 10m, thus bounding the
error. This value must of course be balanced between the average distance of
fingerprint positions and the desired error bound.

In commercial receivers gps observations are usually postprocessed to improve
the positioning solution. Common provisions are the Hatch filter to smooth pseu-
doranges, advanced measurement integrity methods to detect faulty observations
and multipath detection methods to eventually mitigate errors due to multipath
propagation effects. Our implementation – beside what is already implemented
in the receiver’s before delivering pseudoranges – does not rely on such methods
to show the potential of the fusion strategy. Nevertheless, we are aware that
the used gps receiver is of decent quality, most likely comprising the mentioned
features and providing relatively low noise measurements. We included the
position estimates of the receiver as a benchmark where it is appropriate.
The correction step of the particle filter (4.10) employs both measurements

simultaneously, but not always both observation are received within in the
same discretization interval. Two measurement sources yield four cases: 1)
none measurement was received, 2) both measurements were observed, 3) only
wlan rssi were received and, last but not least, 4) only pseudoranges were
obtained. According to the availability of measurements the likelihood functions
are calculated and the particle filter corrects the predicted pdf. In the first case
the correction is skipped and the filter proceeds with the prediction.
[May be include pseudocode (listing) of complete pf. Include all the above

implementation details? Or may be in the filter section.]

4.3.1. Temporally discrete trajectory

We continue with the description of the experiments to evaluate the proposed
algorithm. We have chosen two different trajectries: First, Trajectory-3, consisting
of mostly indoor sections, and, Trajectory-4, a path consisting of mostly outdoor
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sections. Both trajectories take course along the semi-open passageways of both
buildings of the test bed. We use the discrete wlan measurement mode in order
to be able to generate a reference trajectory; gps measurements are obtained
continuously.
The ground truth of Trajectory-3 and Trajectory-4 are depicted in figure 4.14.

Figure 4.1.: Ground truth trajectory within the test area (Trajectory-3 Trajectory-
4 ). The trajectory starts at the circle and finished in the lower left part of the
image. ©OpenStreetMap contributors

Trajectory-3 begins in the left side of the left building, proceeds to the building’s
access where it leaves on the roofed passageway. At the corner with the right
building it follows its passageway almost until the end of the building where it

4. These paths consists of the actual ground truth measurement data. While the experimenter
followed relatively accurate the existing ways (when they were part of the trajectory); light-red
dashed lines in the osm map, the deviations from these lines are essentially introduced by the
issues when dealing with geographic data and difficulties in creating the ground truth data.
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enters a room, then leaves that room to proceed for 18m outdoors on the lawn
area.

Trajectory-4 starts at a open space, turns sharp right, passes below a few trees
and then takes a sharp left turn towards the right building. The next section
of Trajectory-4 is largely along the roofed passageway of the right building,
with a short deviation inside the right building from where it proceeds to the
northernmost corner of the trajectory. After entering the semi-open passageway
of the left building Trajectory-4 deviates north west to go on around the small
lawn area — as on the roofed passageways, as well in this part of the path
gps los condition is unlikely, attributable to trees. Then the trajectory takes
the passageway of the left building back to the right building, continues on
its passageway until it turns right in the middle of the right building where it
continues to the large open space where it ends.
Most sections of both trajectories run through a multipath rich environment,

additionally, while on the semi-open passageways and around the small lawn
area most parts of the sky view is blocked. Only on the open space area, where
Trajectory-4 starts and ends a relatively open view to the sky is available; relatively
because about 30m south-west of the starting point a four storey building is
located and parts of the open space are covered with trees.

In case of Trajectory-4, the experimenter stayed initially static at the start point
until the first raw gnss observations were obtained. A meaningful initial position
estimates is thereby ensured, because this trajectory begins outdoors in an area
were wlan fingerprinting is expected to perform poorly. The initial delay until
the first raw gps observations arrived is usually 20 s to 40 s. While recording
the trajectory data the experimenter moved from reference position to reference
position with approximately constant speed. The wlan package capture time at
each reference position was again 2 s to 3 s.

In each cycle of the particle filter the eap is estimated according to equation (2.3).
These estimates and the ground truth are used to calculate rmse, but since the
number of ground truth positions and the number of position estimates differs we
interpolate the ground truth data linearly (relying on the assumption of constant
speed) between the ground truth positions.

Results on the accuracy of the particle filter are assessed by means of the rmse,
(3.5). Due to the randomness of the algorithm the presented results are averages
over 50 repetitions.
A reader comparing the results of chapter 3 with the subsequently presented
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results may notice that the coordinates suggest a shift of the test bed, this is
caused simply by a different reference coordinate used for the transformation to
local coordinates.

4.3.2. Temporally continuous trajectory

In this dynamic scenario the experimenter moves with roughly constant speed
along Trajectory-4, see figure 4.1. We will refer to it by Trajectory-4a. The gps
data and wlan data are recorded from the beginning to the end, continuously
without breaks.

The first measurements not containing gps raw data are removed as before.
The estimates of the state vector are also obtained in each filter cycle by the eap

from the set of particles.

4.4. Results

In this section we presents the evaluation of the localisation performance, exem-
plified with two trajectories: Trajectory-3 and Trajectory-4. Trajectory-3 begins
indoors and contains more indoor sections and a transition from indoor area to
an outdoor area with a relatively open sky view. Whereas Trajectory-4 begins
outdoors in relatively open space, contains a short indoor section and terminates
close by the starting point with good satellite visibility. We first analyse the per-
formance of the proposed particle filter for both trajectories with the temporally
discrete recorded trajectory, because it allows us to compute reasonable error
measures and to pinpoint its strength and weakness. We compare the filter’s
accuracy and precision for three cases: the hybrid solution using gps and wlan
sensor data (gps + wlan), the gps-only solution using solely gps observations
and the wlan-only solution that employs only observations from the wlan.

The stop-and-go scenario when the trajectory is recorded temporally discrete is
probably not the most realistic one, therefore we show also results of the particle
filter for a path as in Trajectory-4, but recorded continuously. Unfortunately, a
detailed evaluation is not possible in that case. We present it nevertheless to
demonstrate the filter’s practicability.

To produce reliable results and to compensate the random variations of aMonte
Carlo method we repeat each simulation 50 times. The following results are
averages over these 50 runs.
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4.4.1. Indoor-like trajectory – Trajectory-3

Figure 4.2 depicts the trajectory and the ground truth data. The position estimates
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Figure 4.2.: Particle filter estimates and ground truth of Trajectory-3. The particle filter
employed both measurements (gps+wlan).

are relatively sparse, because rssis are only obtained every few seconds. In the
intermediate intervals the particle filter only runs the prediction step and when a
new rssi measurement is observed the position jumps to the new estimate.
Initially no observation is available and the estimated position results as the

centroid of the initial particle distribution ([120, 280]m × [50, 150]m). After
wlan observations are received the estimated trajectory coincides well with the
ground truth, both indoors and while on the roofed passageway. Towards the
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end of Trajectory-3 the trajectory proceeds indoors again, but the estimates show
an offset of about 3m. When leaving the building towards the open space, gps
measurements are received the first time. Because of the poor quality of these
observations, the particle filter estimates the position inaccurately. However, the
wlan observations are apparently worse than the gps observations, so that the
filter trusts the gps observations more than the rssis and estimated trajectory
deviates further from the ground truth. A consequence of this behaviour is the
high overall rms error, shown in the first column of table 4.1.
Figure 4.3 shows the estimated trajectory and the absolute value of the error.

Errors larger than 7m are observable at the beginning of the trajectory, about 19 s
where the left building is left and when the right building is entered (22 s to 24 s) .
Thus, larger inaccuracies occur during and after the transitions between indoors
and outdoors. However, also the changes in direction that occur during these
transitions may contribute to the error. The by far largest error can be observed
at the end of the trajectory, where the measurements of both sensors are of low
quality. In this section of the path the error grows above 15m.
It is worth mentioning that if the first and the last section of the trajectory are

neglected the error reduces to magnitudes as reported for the wps in chapter 3.
Figure 4.4, 4.5 and table 4.1 compare the results of the particle filter using with

both measurements, or only gps- or only wlan measurements.
The magnitude error of these setups is depicted in figure 4.4. The majority

of time the error of wlan-only is par with the error when gps and wlan are
used. This is clear, because only during the last two minutes of the trajectory
gps signals were received and therefore no weighting between the both sensors
takes place. During the last seconds when the path takes course outdoors and
gps measurements are available, the algorithm considers both measurements. It
weights the gps data much more than the wlan data; which is reasonable, as
the accuracy of the wlan-only solution in this section of the trajectory is worse
than that of gps-only solution. The error when only gps observations are used is
largest, because the filter can only predict the position. While no measurement is
received the position estimate based on solely the prediction is essentially static
and the rising and falling of the error is determined by the trajectory itself. At the
end of Trajectory-3 the error decreases, although the observations are not very
accurate. It decreases even below the error of the wlan-only solution, because
outdoors the rssis suffer ambiguities that cause large errors.
The empirical cumulative distribution function is shown in figure 4.5. One
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(a) East component of estimated trajectory and
of the absolute value of the position error.
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Figure 4.3.: Trajectory-3 estimated by the particle filter in easting and northing with
ground truth and the resulting position error. Both, gps and wlan measurements
are fed to the filter.
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Figure 4.4.: Error of gps+wlan, gps-only and wlan-only solutions.

can see that the hybrid and the wlan-only solution have similar distributions,
whereas the distribution of the hybrid solution is less fat. The distribution of the
gps-only solution is much wider with very heavy tails. The gps+wlan and the
wlan-only solution yield a median error of less than 5m. At 95% the error of the
gps+wlan solution is about 12m, but for the wlan-only solution it is above 20m.
These large errors of the wlan-only solution is caused by the ambiguity issue,
mentioned above. The heavier tail of the wlan-only solution compared with
the hybrid solution indicates that the precision of the hybrid solution is smaller.
Since no pseudoranges are received for most of the time, the median error of the
gps-only solution is about 35m and the error at 95% is about 58m.

Table 4.1 compares the rmse and the standarddeviation (sd) of the particle cloud,
σp , averaged over the whole trajectory. These averages are little above the median

Table 4.1.: Rms error and sd of Trajectory-3 using gps+wlan, gps-only and wlan-
only.

gps+wlan gps-only wlan-only

rmse (m) 6.21 37.33 7.80
avg. sd (m) 5.81 48.27 6.02

errors, an expected outcome. The particle filter that employs pseuodranges and
rssis yields the lowest error and standard deviation. The wlan-only solution’s
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Figure 4.5.: Empirical error distribution function of the gps+wlan, gps-only and
wlan-only solutions for Trajectory-3.

error and standard deviation are very close to those of the hybrid solution.
Because of the lack of pseudoranges for the major part of the trajectory the hybrid
filter uses principally wlan data. For this trajectory we conclude that the hybrid
solution outperforms the other two solution in accuracy and precision.

4.4.2. Outdoor-like trajectory – Trajectory-4

Temporally discrete trajectory

Figure 4.6 shows the estimates of Trajectory-4 of the proposed algorithm and gives
an impression of the overall performance. The ground truth data is the one already
shown in figure 4.1. The particle filter solution is first of all noisy and contains
jumps that seem unrealistic. However, considering the process of trajectory
recording explains this behaviour. Pseudoranges are received continuously, also
during the static phases of rssi capturing. In these intervals the filter continuous
to predict and correct based on the gps measurements, but the standstill is not
estimated well. Suddenly observations from possibly both sensors indicate that
the equipment is already at a location farther ahead and the filter adjusts to them,
which results in position jumps.

In general, the filter outcomes follow the trajectory. Smaller deviations can be
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Figure 4.6.: Particle filter estimates and ground truth of Trajectory-4. The particle filter
employed both measurements (gps+wlan).

seen in the large open area and along the semi-open passageways. Larger errors
can be found along the right building about (240, 100)m, around the small lawn
area about [185, 205]m × [98, 115]m and on the way back to the northernmost
corner at about (225, 123)m where it gets back on track. The performance along
the passageway of the right building and around the small lawn area can be
explained by the poor wps accuracywhile the gps also delivers uncertain estimates.
As discussed in section 3.4.2, the ambiguous rssi observations cause the poor
wps accuracy. The trajectory section on the way back through the passageway
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of the left building is not covered by experiments of the wps, but the decreased
accuracy origins most likely from the same effect. Also the indoor section helps
the algorithm to get back on track, due to more distinctive rssi measurements.
The indoor sections were also well estimated by the wps.

It is not surprising that the localisation error grows in particular where the gps
signal reception is poor – almost everywhere except in the open space area where
the trajectory begins and ends – and where the wlan data are less accurate, or
ambiguous: in the middle division of the passageway of the left building and
around the small lawn area (see results for Trajectory-1 in section 3.4.2).

Although, the initial estimates (from a uniform distribution on the test area) are
more than 20m away from the true initial location, the filter converges after some
time as reliable measurements are obtained. These initial errors are evidently the
largest errors and contribute significantly to the error statistics.
A more detailed analysis allows figure 4.7, showing the estimated trajectory

over time. Ground truth data, linearly interpolated between every actual ground
truth position, is depicted as reference. Below we show their difference over
time, the positioning error. One can draw the same qualitative conclusion of the
estimates as for the precedent figure. The estimates coincide largely with the
ground truth, the position jumps can be seen over the whole trajectory. Errors
about 5m and smaller are most of the time observable, nevertheless two larger
peaks, of about 10m and more, at 34min to 35min and 37min in East and at
28min in North direction can be observed; they belong to the middle section
along the passageway of the right building and to the parts of the passageway of
the left building.
Figure 4.8 compares the position accuracy of the filter, using either gps and

wlan, or only gps, or only wlan sensor data. The wlan stand-alone solution
present the largest errors, but for some time periods its errors are also the
lowest. The error of the gps-only solution appears smaller than the outcomes
based on only wlan, and equal or larger than the estimates derived from the
hybrid solution, gps+wlan. The accuracy of the filter using data of both sensors
outperform in average the single sensor solutions. In large parts of the trajectory
it is in between the accuracies of the gps-only or wlan-only solution; during a
few short periods the accuracy is even the highest, as about 27min and 31.5min.
The next figure (fig. 4.9) shows the empirical cdf of the position error for

the hybrid, the gps stand-alone and wlan stand-alone solution. It becomes
unequivocally that the gps+wlan solution outperforms the single sensor solutions.
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Figure 4.7.: Trajectory-4 estimated by the particle filter in easting and northing with
ground truth and the resulting position error. Gps and wlan measurements are
employed.
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Figure 4.9.: Empirical error distribution function of the gps+wlan, gps-only and
wlan-only solutions for Trajectory-4.
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4. Particle filter fusing wlan rss and gnss pseudoranges

Its outcomes are not only more accurate, but as well more precise, in particular
when large errors are considered. The error of the gps+wlan solution is almost
bounded by the error of one of the other two solutions. For small percentiles it
is bounded by the error of the wlan-only solution and for large percentiles the
error is bounded by the gps-only solution.
For the combined solution, the median accuracy is about 4.2m, where the

median of the gps-only solution is about 2m larger and the median of the wlan-
only solution is only about 1m larger. At 90%, the estimates have 9.5m accuracy
when gps+wlan are used, 13.3m accuracy when only gps is used and 18.4m
accuracy when only wlan is used.

The summary in terms of the rmse and sd over the complete trajectory confirms
this analysis. Table 4.2 compares the rmse and the sd of the particle cloud of the
same three cases. The particle filter, employing gps and wlan data, has higher

Table 4.2.: Rms error and sd of Trajectory-4 using gps+wlan, gps-only and wlan-
only.

gps+wlan gps-only wlan-only

rmse (m) 6.68 7.88 13.36
avg. sd (m) 2.70 2.99 4.81

accuracy and precision than the particle filter using only one of the sensory data.
The accuracy is improves 1.2m compared with the gps-only solution, and 13m
compared with wlan-only solution.

Gps outages The following results show the localisation performance during
gps outages. The outage was simulated in the interval 31.3min to 35.9min
by simply removing all gps observations. In figure 4.10 the components in
northing and easting of the estimated trajectory are shown. The gps outage is
indicated by the vertical dashed lines. During the outage, the trajectory is still well
estimated because of the wlan measurements. Between two consecutive wlan
observations the filter only predicts the filtering density. Therefore the position
stays almost constant, but the variance increases until the arrival of the next wlan
measurement. The increase of variance is depicted by the grey area. Clearly, the
accuracy during the outage depends on the quality of the wlan measurements;
in the shown case the accuracy even improves as the outage interval was chosen
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Figure 4.10.: Trajectory-4 estimated by the particle filter in easting and northing with
ground truth and two times the standard deviation of the particle cloud. During the
indicated interval gps outages are introduced.

during poor gps signal reception conditions. The filter can deal with abrupt gps
signal loss, though, the quality of the estimates during an outage depends on the
wlan data.

Comparison with u-blox gps stand-alone solution We want to make use of the
additional reference data we recorded: the positions estimates of the u-blox gps
receiver. Therefore we compare the filter outcomes from the hybrid solution with
the estimates from the u-blox gps receiver. Figure 4.11 presents the estimates
for Trajectory-3. The estimates from the u-blox receiver are much smoother than
that of the hybrid gps+wlan particle filter solution, the stop-and-go motion is
not recognisable any more. It performs quite well, it follows the ground truth in
very large sections through the large open space and also on the passageway of
the right building – but only on the forward run. In continuation the estimates
become worse and the estimated trajectory proceeds about 10m parallel of the
ground truth, until the small lawn area, where the estimates improve again.
From the northern corner (225, 123)m on the errors increase again, the estimates
pass through the right building. When moving to the open space the estimated
trajectory coincides again well with the ground truth trajectory.
It is, first of all, remarkable that over the whole data recording period the
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Figure 4.11.: Particle filter- gps receiver estimates and ground truth of Trajectory-4.
The particle filter employed both measurements (gps+wlan).

receiver receives signals of four or more satellites. Noteworthy is as well the
capability to smooth the trajectory. In the stop-and-go scenario, this behaviour
may on one hand improve the user experience, but on the other hand it falsifies
the data.

An advantage of the hybrid solution is clearly that due to wlan data locations
within buildings are estimated more reliable and the system distinguishes better
between indoors and outdoors. Therefore, in contrast to the u-blox gps receiver
stand-alone estimates, the estimates by the particle filter do not cross buildings.
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4.4. Results

The estimates in easting and northing separately, show that the particle filter
hybrid solution follows more truthfully the ground truth trajectory. It presents
less sections which are for a considerable time more than 10m off. In the interval
where the gps+wlan solution presents its largest deviations, 34min to 35min, it
appears that it trusts the gps data too much.
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Figure 4.12.: Trajectory-4 estimated by the particle filter and by the gps receiver in
easting and northing with ground truth and the resulting position error. Gps and
wlan measurements are employed.

Table 4.3 compares the rms error of the hybrid- with the gps stand-alone
solution. The combination of pseudoranges with wlan rssi improves the
localisation accuracy by factor 1.5.
Figure 4.13 compares again the error of the hybrid- with the gps stand-alone

solution, this time over time. In particular during the first four minutes, while
the trajectory is in open space, the gps stand-alone solution outperforms the
particle filter. Afterwards the particle filter provides more accurate estimates,
except around minute 28. One can also observe four major error peaks of the
gps receiver; and that while the error is increasing the hdop is varying relatively
fast. This indicates that the poor accuracy of the gps receiver in these sections is
caused by appearing and disappearing satellites that in turn are caused by a fast
changing sky view, attributed to obstructions of the satellite links. The average
hdop during this trajectory is 4, whereas in good conditions the hdop is between
1 and 2. As well the hdop values about 20 at minute 35 confirms the harsh gps
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Figure 4.13.: Magnitude error of gps receiver solution compared with hybrid particle
filter solution. Both are related to Hdop of the gps receiver solution.

rmse gps rcv. (m) rmse pf (m)

9.79 6.68

Table 4.3.: Rmse of gps receiver and particle filter using gps and wlan sensor data.

signal reception conditions. (For epochs at which less than three satellites were
in view the least squares solution is underdetermined and the hdop is complex
or yields magnitudes about 108. Therefore we removed the hdop values of the
corresponding epochs.)

Temporally continuous trajectory

The following results are derived from data recorded during continuous motion
of the experimenter. Albeit the experimenter moved along the same trajectory, no
ground truth data are available, because the timestamps of the measurements are
uncorrelated. However, to put the results into context, we compare them with
the linearly interpolated ground truth of the discrete data recording, used in the
precedent section.
Figure 4.14 depicts the estimates from the hybrid particle filter. Since the rssi

measurements were obtained continuously, we average them every 4 s before
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4.4. Results

feeding them to the algorithm. Four seconds were chosen experimentally and
provide good results. The estimated trajectory follows the ground truth well.
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Figure 4.14.: Particle filter estimates and ground truth of Trajectory-4a using gps and
wlan measurements. Wlan data are averaged over 4 seconds.

In comparison to the gps+wlan solution of the temporally discrete trajectory
experiment, the estimates appear even more accurate. Part of that impression is
certainly the reduction of position jumps, due to the continuous recording of the
data.

An other reason for that improvement may lie in the poor gps signal reception,
due to which the filter weighs more the wlan data, yielding a better overall
performance.

133



4. Particle filter fusing wlan rss and gnss pseudoranges

The effects of the poor gps signal reception scenario can be observed in the
trajectory estimates of the u-blox gps receiver: Only during the open area section,
at the beginning of the trajectory, the receiver estimates the trajectory reasonable
accurate. The performance of the receiver stays low until the loop way around the
small lawn; afterwards the receiver looses its position fix completely. In contrast,
the particle filter still provides good estimates, also because of its ability to make
advantage of less than four pseudoranges – already discussed by Hejc, Seitz and
Vaupel (2014) and Khider et al. (2013). Hence, the particle filter is also more
robust and, naturally – because of the availability of rssi indoors – yields a better
coverage.
The above outcomes demonstrate additionally that the chosen motion model

works also for continuous motion, these results show that it is indeed very
general.

4.5. Conclusion

We presented a particle filter that fuses pseudoranges and wlan rssi. The
algorithm is designed as a pvt as used in gnss receivers, having access to
pseudoranges and wlan rssi simultaneously.

Integrating gnss pseudoranges and wlan rssi has already been accomplished.
However, instead of excluding multipath affected gnss signals, this work focuses
on a balanced weighting of the two sensor data. Our method achieves smooth
seamless transitions between indoors andoutdoors by automaticallyweighting the
observations based upon probabilities deduced from their likelihood functions; in
which the presented rssi likelihood function plays a key role. As well in areas that
can not clearly described as indoor or outdoor, the particle filter’s performance
is accurate and reliable. The proposed algorithm yielded a median error of
5m and a mean error of about 7m in a realistic, challenging indoor/outdoor
environments. A drawback is certainly its slow initial convergence after the first
measurements are received.

Because of the complementary performance of location fingerprinting and gnss
in contrastive environments, the presented hybrid particle filter demonstrated
improved accuracy and precision comparedwith the particle filter solutions using
solely gps or wlan. Moreover, the functioning of wlan location fingerprinting
in gps denied environments increases the availability of the positioning system;
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4.5. Conclusion

and besides, the filter’s capability to make use of only two pseudoranges makes it
more robust, too.
We found that the hybrid solution also shows smaller errors compared with

the used (‘professional’-grade) gps receiver. What is more, our results suggest
that if the motion of the mobile platform is smoother and uninterrupted the
performance can further improved.
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Chapter 5

Conclusive remarks

The objective of this study is to develop a multi-sensor data fusion method able
to estimate a position in medium- to large-scale indoor/outdoor environment
with consumer grade sensors. This includes of gnss denied areas and also areas
where no wlan may be available.

Therefore we first investigated and evaluated an appropriate method to inter-
polate rssis on space, in order to have a common state space for the data fusion
task. We revisit Gaussian process regression modelling for rssi and found an
appropriate model that outperforms the previously suggested Gaussian process
models.

This interpolation approach is used to develop a wlan location estimator based
on the ml principle. The accuracy of this wps is about 5m mean error and it is
in particular robust against the ambiguity problem that fingerprinting methods
suffer. Beside reducing the burden of constructing the fingerprint database,
interpolating rssis additionally makes the location estimation more robust.
To combine rssi with pseudoranges the Gaussian process based likelihood

function was integrated in the framework of the sequential Bayesian estimator
by computing the likelihood for the rssi measurement for each particle. The
resulting hybrid positioning system fuses wlan rssi and gnss pseudoranges in a
natural way. As well for the pseudorange observations, the likelihood for each
particle is computed.
These functions essentially realise the automatic weighting and integration

into the location estimation process, yielding smooth indoor/outdoor transitions,
in environments difficult for wlan fingerprinting and gnss. In these harsh
environments the hybrid positioning system yields an average error of about 7m.
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5. Conclusive remarks

The ability of using information of only two satellites and the robustness due to
the rssi interpolation makes the overall system more robust and increases the
coverage of the system.

We anticipate that incorporating further signal processing – as commonly used
by commercial receivers – such as pseudorange smoothing, integrity monitoring
or multipath mitigation, will further improve our method. As well the use multi-
constellation- and multi-frequency receiver will improve the accuracy, precision,
robustness and coverage.
For specific applications one needs to adapt the motion model. It potentially

further reduces the accuracy and precision of the positioning system.
Andof course, further improvement canbe achievedby incorporating additional

sensors, in particular when the sensor data is fused tightly. Especially the use
of inertial sensors demonstrated good results in previous works. Inertial sensor
data can be fed into an adequate motion model and thus reduces the positioning
errors.
There is also space for improvement on the wlan side. A first point is the

variance used for the rssi likelihood function. The rssi likelihood function
employs variances of the predicted rssi distribution instead of a deviation that
actually describes the uncertainty of the observed rssi. Integrating a uncertainty
measure of the actual observation in the positioning phase would most likely
improve the positioning performance.

The detection of a indoor or outdoor area is an other issue worth investigating.
Using for example the wlan-only mode indoors, could limit battery drainage of
mobile devices, though pseudoranges may, if received, improve the localisation
accuracy indoors. Annotating the radio map with the respective environment
is one approach. It relies on the correct recognition of the rssis, if, for example,
the best matching rssis correspond to a fingerprint of the indoor radio map, the
user/object is likely indoors.

These benefits achieved but also the potential benefits mentioned above come
for an increase in computational costs. In particular, predicting the rssis at the
particle’s position is computationally demanding. The prediction requires the
inversion of the (square) covariance matrix, whose dimension corresponds to the
number of particles. Solutions to this problem is left for further research. The
amount of computational resources that the particle filter consumes is in compar-
ison a minor problem. Nevertheless, it can be reduced by applying parametric
filters, such as Kalman filters, to the conditionally linear-Gaussian structure of
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the state space. As the designated area of the positioning system becomes very
large, searches through large radio map databases are also computationally costly.
Clustering methods and hierarchical database designs can alleviate that problem.

Scalability is always an issue for positioning systems. In this study it depends
basically on the scalability of the wps, as gnss hasworld-wide coverage. Scalability
of wps is limited by the construction of radiomaps. Interpolation techniques, as for
example Gaussian process regression, facilitate this step, but further automation
by robots or crowd-sourcing are certainly beneficial and needed. An other point
of concern are the sizes of databases of large-area wps.

If the area covered by the wps is distributed over different administrative units
(states, countries and so on), the administration of the resulting vast databases
would probably be decentralised, or even community managed as osm data.
For such a system, one would have to find a consent about the minimum set of
database entries (including coordinate reference system, units, etc.), a strategy
to keep the databases up to date and mechanisms to manage the vast databases.
Clearly, all these points need to be designed with different applications and users
in mind.
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Appendix A

The Bayes recursion

A.1. Derivation of sequential update of the filtering density

The sequential Bayesian estimator is a unifying conceptual framework for many
estimation and control problems. It describes the marginal a posteriori pdf,
p(xk | y1:k), of the Bayesian formalism, as the solution to these classes of problems,
where xk is the hidden state and yk the observation. The index k indicates that
these values are the latest of the corresponding time sequence of states and
observations, and x0:k � {x0 , . . . , xk} denotes the complete sequence and y1:k
respectively for the observations. Additionally, we assume that

• an initial state pdf is available p(x0) (prior density), that
• states follow a first-order Markov process: p(xk | x0:k−1) � p(xk | xk−1), and

that

• the observations of the current time step are only dependent upon the
current state: p(yk | y1:k−1 , x0:k) � p(yk | xk).

Sought is the state most recent state xk as a point estimate of the posterior
p(xk | y1:k) given the set of observations y1:k . The above mentioned assumptions
allow us to derive the sequential Bayesian estimator:

p(xk | y1:k) �
p(y1:k , xk)

p(y1:k)
�

p(y1:k | xk)p(xk)
p(y1:k)

�
p(yk , y1:k−1 | xk)p(xk)

p(yk , y1:k−1)
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A. The Bayes recursion

�
p(yk | y1:k−1 , xk)p(y1:k−1 | xk)p(xk)

p(yk | y1:k−1)p(y1:k−1)

�
p(yk | y1:k−1 , xk)p(xk | y1:k−1)((((((

(p(y1:k−1)p(xk)
p(yk | y1:k−1)((((((

(p(y1:k−1)p(xk)

�
p(yk | xk)p(xk | y1:k−1)

p(yk | y1:k−1)
. (A.1)

Equation (A.1) determines the posterior by means of the likelihood function,
p(yk | xk), the prediction of the posterior, p(xk | y1:k−1), and the evidence,
p(yk | y1:k−1).

The next step is to obtain the prediction of the posterior pdf, the second term of
the nominator. The Chapman-Kolmogorv equation provides an representation
in terms of the transitional pdf and the posterior pdf calculated at the previous
time step. Again the Markov property and total probability theorem are applied

p(xk | y1:k−1) �
∫

p(xk , xk−1 | y1:k−1)dxk−1

�

∫
p(xk | xk−1 , y1:k−1)p(xk−1 | y1:k−1)dxk−1

�

∫
p(xk | xk−1)p(xk−1 | y1:k−1)dxk−1.

(A.2)

For completeness, the denominator of (A.1) yields

p(yk | y1:k−1) �
∫

p(yk , xk | y1:k−1)dxk

�

∫
p(yk | xk , y1:k−1)p(xk | y1:k−1)dxk

�

∫
p(yk | xk)p(xk | y1:k−1)dxk .

See (Bar-Shalom et al. 2001, pp. 373) for comparison.
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A.2. Derivation of sequential update of the posterior density

A.2. Derivation of sequential update of the posterior
density

As for the marginal posterior density, one can derive a recursive expression for
the complete trajectory of states p(x0:k | y1:k), employing the Markov property for
the state and measurement process and Bayes’ theorem:

p(x0:k | y1:k)p(y1:k) � p(x0:k , y1:k)
p(x0:k | y1:k)p(yk | y1:k−1)�����p(y1:k−1) � p(yk , x0:k | y1:k−1)�����p(y1:k−1)

p(x0:k | y1:k) �
p(yk | x0:k , y1:k−1)p(x0:k | y1:k−1)

p(yk | y1:k−1)

�
p(yk | x0:k , y1:k−1)p(xk | x0:k−1 , y1:k−1)p(x0:k−1 | y1:k−1)

p(yk | y1:k−1)

�
p(yk , xk | x0:k−1 , y1:k−1)p(x0:k−1 | y1:k−1)

p(yk | y1:k−1)

�
p(yk | xk)p(xk | x0:k−1 , y1:k−1)p(x0:k−1 | y1:k−1)

p(yk | y1:k−1)

�
p(yk | xk)p(xk | xk−1)p(x0:k−1 | y1:k−1)

p(yk | y1:k−1)

�
p(yk | xk)p(xk | xk−1)

p(yk | y1:k−1)
p(x0:k−1 | y1:k−1).

See for example (Doucet, Freitas et al. 2001; Doucet and Johansen 2009). Note,
that equation (A.1) can also be determined by integrating over the above equation
with respect to x1:k−1.
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Appendix B

Adaption of Gaussian process models

It is possible to ‘learn’ the hyperparameters, in other words to adapt this Gaussian
process model to the concrete problem. Let θ denote the set of hyperparameters
{σ2

ε , `, σ
2
f }.

The problem of model selection can be expressed in a Bayesian perspective.
Consider the equations (2.33), (2.34) plugged into (2.32). The uncertainty about
the hyperparametersmay be encoded in the posterior distribution by conditioning
the distribution on the hyperparameters. To treat this dependence of the posterior
distribution (2.32) on the hyperparameters, one would ideally integrate out θ

p(f∗ | X∗ , y,X) �
∫

p(f∗ | X∗ , y,X, θ)p(θ | y,X)dθ. (B.1)

This includes the determination of the posterior over the hyperparameters

p(θ | y,X) � p(y | X, θ)p(θ)
p(y | X) (B.2)

which in turn makes the evaluation of its denominator, given by

p(y | X) �
∫

p(y | X, θ)p(θ)dθ, (B.3)

necessary. A more detailed derivation can be found in (Bishop 2006, sec. 3.4;
Rasmussen et al. 2006, sec. 5.2).
The integrals (B.1) and (B.3) are in general intractable. A common solution

is to approximate the posterior over function (B.1) by picking likely values of
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B. Adaption of Gaussian process models

hyperparameters (MacKay 2005, sec. 45.5; Bishop 2006, sec. 6.4.3; Rasmussen et al.
2006, sec. 5.2)

p(f∗ | X∗ , y,X) ' p(f∗ | X∗ , y,X, θP).

The most likely values of the hyperparameters can be obtained by an approx-
imation often referred to as type II maximum likelihood procedure. Instead
of maximising the posterior over hyperparameters, θp � arg maxθp(θ | y,X),
equation (B.2) is applied and the most probable values for the hyperparameters
are yielded by

θP � arg max
θ

p(y | X, θ)p(θ)
p(y | X) .

Disregarding the denominator, which is independent of θ, the latter equation
may be rewritten as

θP � arg max
θ

(p(y | X, θ)p(θ)). (B.4)

In practice the search for the hyperparameters (B.4) can be implemented by
gradient based optimisation algorithm such as the conjugate gradients. Thus,
the partial derivative with respect to the hyperparameters must be derived.
Without a priori knowledge about the hyperparameters the second term, p(θ),
is assumed to be uniformly distributed, hence it becomes constant and its
derivatives vanish. Finally, the optimal hyperparameters are determined by
maximising p(y | X), which is the evidence for the hyperparameters. This term
is the likelihood function for the hyperparameters and θP becomes a maximum
likelihood estimate, or respectively the result of the minimisation of the negative
log-likelihood function (Schölkopf et al. 2002, pp. 487–488; MacKay 2005, p. 546)

θP � arg min
θ

(− ln p(y | X, θ)). (B.5)

The distribution in equation (B.5) – the marginal likelihood function – can
be derived by integrating over the product of the likelihood function and the
prior distribution: p(y | X) �

∫
p(y | f,X)p(f | X)df. Under some sensible

assumptions an analytic solution exists for this integral. A Gaussian process prior
distribution with a zero mean function is a normal distribution f | X ∼ N(0, K).
As mentioned in section 2.3.2, the noise process of the underlying function is

146



assumed to be Gaussian distributed, ε ∼ N(0, σ2
ε), thus also the Gaussian process

likelihood function is normal y | f,X ∼ N(f, σ2
εI). As the product of two Gaussian

distributions give another (un-normalised) Gaussian distribution, the marginal
likelihood function becomes y | X ∼ N(0, K + σ2

εI) (Rasmussen et al. 2006, p. 16;
Schölkopf et al. 2002, pp. 487)

p(y | X, θ) � 1
(2π)N |K + σ2

εI |
exp(−1

2 (y
T(K + σ2

εI)−1y)).

Thus, the log-likelihood function can be given with

ln p(y | X, θ) � −N
2 ln 2π − 1

2 ln |K + σ2
εI | −

1
2 (y

T(K + σ2
εI)−1y).

The optimisation problem of maximising the log-likelihood function, is com-
monly solved numerically. Hence, the derivatives with respect to the hyperpara-
meters are determined. The derivation of the negative log-likelihood function
with respect to a hyperparameter is

∂
∂θ

ln p(y | X, θ) � −1
2 tr

(
(K + σ2

εI)−1 ∂(K + σ2
εI)

∂θ

)
+

1
2 (y

T(K + σ2
εI)−1 ∂(K + σ2

εI)
∂θ

(K + σ2
εI)−1y). (B.6)

A gradient search algorithm, employing the derivatives to find the minimum,
may provide the optimal hyperparameters.
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Appendix C

Comparison of hyperparameters

In section 3.4.2 we have seen that the Gaussian process prior distributions for rssis
in either indoor or outdoor environment are indistinguishable. The following
tables compare the hyperparameters of Gaussian process models, to check if
models adapted for either indoor or outdoor environments are distinguishable
by their hyperparameters.
The Gaussian process regression models were fitted to data of the

1. Indoor,

2. Outdoor-1 or

3. Outdoor-2

environments. Each table presents one hyperparameter for six models, corres-
ponding to six access points, AP-1–AP-6. All models are based on the constant
mean function and Matérn class functions.

The class of Matérn functions rely on the modified Bessel function Kν . For the
two input points xp and xq it is given by

kMat(xp , xq) � 21−ν

Γ(ν)

(√
2ν
`

||xp − xq ||
)ν

Kν

(√
2ν
`

||xp − xq ||
)
,

where ν determines its roughness and ` its length scale. Both parameter influence
the ability of the function to adapt to rather smooth or rough data. As ν decreases
the Matérn function becomes rougher and as ν increases it becomes smoother.
For ν →∞Matérn function converges to the squared exponential function (2.26).
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C. Comparison of hyperparameters

Choosing ν � a + 1/2, where a is a non-negative integer leads to a simple
expression of the Matérn function as product of an exponential and a polynomial
of order a (Rasmussen et al. 2006). The most common values for for machine
learning applications are ν are 3/2 and 5/2 (Rasmussen et al. 2006). For ν � 3/2
the Matérn function is given by

kν�3/2(xp , xq) � σ2
f

(
1 +

√
3
`
||xp − xq ||

)
exp

(
−
√

3
`
||xp − xq ||

)
+ σ2

n .

Here, we added in addition two parameters: σ2
f to scale the signal power and σ2

n

to model the power of additive noise noise.
As the Gaussian process prior distributions determine the principle structure,

and the hyperparameters adapt the process to the training data. We compare
the optimized hyperparameters (` – table C.1, σ f – table C.2, σn – table C.3)
of three models, which differ by their prior distribution’s roughness parameter
(ν � 1/2, 3/2, 5/2).

The estimated length scale is shown in table C.1. No clear pattern of the
parameter ` for indoor and outdoor environment is observable. For the indoor
data one may expect smaller length scale as for outdoor data, but this varies for
different access points and different prior distributions (ν � 1/2 and ν � 3/2, 5/2.
The estimated signal magnitude is shown in table C.2. The strength of the

signal is difficult to predict – being the reason why one resorts to fingerprinting
in the first place – since it depends on the signal propagation path between access
point and fingerprint position. They are different for each access point, thus, the
estimate of σ f is expected to be different for each access point and scenario.
The estimated noise magnitude is shown in table C.3. The estimates are

similar for all three environments, a significant difference for indoor and outdoor
environments is not visible.
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Table C.1.: Hyperparameter ` (length scale) optimized with rssi training data from
different regions (Indoor, Outdoor-1, Outdoor-2) of Matérn covariance function with
different parameter ν.

ν � 1/2
Indoor Outdoor-1 Outdoor-2

AP-1 34.4 55.3 27.6
AP-2 19.5 29.8 53.6
AP-3 16.9 31.0 13.4
AP-4 13.0 75.0 11.9
AP-5 29.9 19.0 23.0
AP-6 14.0 4.4 9.3

ν � 3/2
Indoor Outdoor-1 Outdoor-2

AP-1 18.1 18.6 17.8
AP-2 10.1 13.2 25.6
AP-3 7.4 13.6 13.0
AP-4 6.5 56.0 7.2
AP-5 15.7 8.6 16.1
AP-6 10.7 3.1 9.9

ν � 5/2
Indoor Outdoor-1 Outdoor-2

AP-1 14.8 14.7 15.8
AP-2 7.8 10.8 21.5
AP-3 6.1 10.4 12.5
AP-4 5.4 44.8 6.8
AP-5 12.9 7.2 26.1
AP-6 11.6 2.9 19.1
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C. Comparison of hyperparameters

Table C.2.:Hyperparameter σ f (signal standard deviation) optimized with rssi training
data from different regions (Indoor, Outdoor-1, Outdoor-2) of Matérn covariance
function with different parameter ν.

ν � 1/2
Indoor Outdoor-1 Outdoor-2

AP-1 8.2 13.6 8.4
AP-2 6.5 11.2 10.4
AP-3 14.5 8.4 6.1
AP-4 13.8 6.1 9.2
AP-5 11.1 7.4 5.1
AP-6 2.4 4.2 3.3

ν � 3/2
Indoor Outdoor-1 Outdoor-2

AP-1 9.7 14.5 7.8
AP-2 6.7 8.0 9.5
AP-3 14.6 10.0 5.7
AP-4 13.9 8.3 9.0
AP-5 12.0 6.9 4.2
AP-6 2.7 4.0 3.1

ν � 5/2
Indoor Outdoor-1 Outdoor-2

AP-1 9.5 14.2 7.6
AP-2 6.4 7.6 9.2
AP-3 14.7 9.3 5.7
AP-4 13.9 8.1 8.6
AP-5 11.7 6.7 5.5
AP-6 2.7 4.0 3.1
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Table C.3.: Hyperparameter σn (noise standard deviation) optimized with rssi training
data from different regions (Indoor, Outdoor-1, Outdoor-2) of Matérn covariance
function with different parameter ν.

ν � 1/2
Indoor Outdoor-1 Outdoor-2

AP-1 3.7 3.5 3.8
AP-2 3.4 3.5 2.8
AP-3 5.3 3.7 4.8
AP-4 4.8 3.5 0.0
AP-5 4.4 3.6 0.9
AP-6 2.9 3.6 3.8

ν � 3/2
Indoor Outdoor-1 Outdoor-2

AP-1 3.8 3.8 4.5
AP-2 3.5 4.0 3.7
AP-3 5.5 4.1 5.3
AP-4 5.2 3.7 0.6
AP-5 4.5 3.8 2.8
AP-6 3.0 3.7 4.0

ν � 5/2
Indoor Outdoor-1 Outdoor-2

AP-1 3.9 3.9 4.6
AP-2 3.5 4.0 3.8
AP-3 5.5 4.1 5.3
AP-4 5.2 3.7 0.7
AP-5 4.5 3.8 2.9
AP-6 3.0 3.8 4.1
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Nomenclature

Abbreviations

api application programming interface

bic Bayesian information criterion

cdf cummulative distribution function
cdma code division multiple access

eap expected a posteriori

gnss global navigation satellite system
gnu Unix-like operating system, being a recursive

acronym for ‘gnu’s not Unix.’
gps global positioning system

ieee 802.11 Ieee standard for information technology 802,
specific requirements part 11: wireless lan me-
dium access control (mac) and physical layer
(phy) specifications

i.i.d. identical, independent distributed
ins inertial navigation systems

jni java native interface

kf Kalman filter
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Abbreviations

k-nn k-nearest neighbours

lbs location-based service
los line-of-sight

mac media access control
map maximum a posteriori
ml maximum likelihood
mle maximum likelihood estimator
mmse minumum mean square error

nlos non-line-of-sight

osm open street map

pdf probability density function
pf particle filter
prn pseudo random noise
pvt position, velocity and time

rms root mean square
rmse root mean square error
rssi received signal strength indicator

sd standard deviation
sql structured query language

tdoa time difference of arrival
toa time of arrival
ttff time-to-first-fix

usb universal serial bus

wlan wireless local area network
wps wlan positioning system
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Notation

Notation

arg maxa the argument maximising the operand
µ(·) mean (function)
cov(·) covariance (function)
δ(·) Dirac function
p(·) probability or probability density function
p(· | ·) conditional probability or conditional probability

density function

|| · || 2-norm
E[·] expectation
∂
∂a partial derivate with respect to a

A set
a scalar
a column vector
a[i] ith element of a
a0:N sequence of values a0:N , a0 , a1 , . . . , aN

at continuous-time variable
ak discrete-time variable
â estimate of a parameter
A matrix
A−1 inverse of a matrix
AT transpose of a matrix (or vector)
|A| determinant of a matrix
tr(·) trace of a matrix
0 zero matrix
I identity matrix
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