

Universidad Autónoma de Querétaro Facultad de Ingeniería

Comportamiento de un suelo expansivo con diversas densidades

Tesis

Que como parte de los requisitos para obtener el grado de Maestro en Ciencias (Geotecnia)

> Presenta: Ing. Fernanda Nayeli Ortega Rojas

Dirigido por: Dr. Eduardo Rojas González

Querétaro, Qro. a 15 de agosto de 2021

Universidad Autónoma de Querétaro

Facultad de Ingeniería

Maestría en Ciencias (Geotecnia)

Comportamiento de un suelo expansivo con diversas densidades

Tesis

Que como parte de los requisitos para obtener el grado de Maestro en Ciencias (Geotecnia)

> Presenta: Ing. Fernanda Nayeli Ortega Rojas

Dirigido por: Dr. Eduardo Rojas González

SINODALES

Dr. Eduardo Rojas González Presidente

Dr. Jaime Moisés Horta Rangel Secretario

Dra. María de la Luz Pérez Rea Vocal

Dra. Teresa López Lara Suplente

Dr. Omar Chávez Alegría Suplente

> Centro Universitario, Querétaro, Qro. México. Agosto 2021

A mamá y papá, por creer en mí siempre.

<text> A Enrique. Tú haces que yo sea una mejor persona.

AGRADECIMIENTOS

Gracias mamá Leticia Rojas y papá Carlos Ortega. Su apoyo incondicional, su cariño y su orientación me han puesto en donde estoy ahora. Agradezco a Dios tenerlos en mi vida. Nada me hace más feliz que saber que están allí para mí.

Gracias a mis hermanas Andrea y Karla, su divertida compañía, sus consejos, su apoyo y su cariño me motivan siempre a seguir adelante con las metas que parecen lejanas y complicadas.

Gracias Enrique. Este camino que apenas empieza es más bonito de tu mano. Gracias por crecer conmigo, a tu lado sé que todo puede ser mejor. Gracias por siempre escucharme, por ser un amigo incondicional y por hacer de cada día un día memorable con tu alegría tan contagiosa. Eres maravilloso.

Javier y Juan Pablo, los mejores compañeros que pude haber encontrado. Su amistad ahora es muy importante para mí. Gracias por el tiempo que compartimos juntos. No hubiera disfrutado tanto el tiempo en la maestría sin ustedes. También gracias Pamela y Erick, por su apoyo a nosotros desde el primer día. Las pláticas en el cubículo y las convivencias fuera de la escuela con todos ustedes me regalaron momentos muy agradables que atesoraré siempre.

Lau, Beto, Bere, Pau, Aby, Dr. Mauricio. Haber estudiado la maestría fue la mejor decisión que pude haber tomado y fue gracias a ustedes que me motivaron de algún modo u otro.

Gracias infinitas al Dr. Eduardo Rojas por sus enseñanzas en clase y asesorías invaluables. Gracias por su tiempo y paciencia, que hicieron este trabajo posible. Es usted un gran mentor.

Gracias Dr. Jaime Horta por la motivación que siempre infunde en sus alumnos, nunca escatima en tiempo para ello. Gracias también por ayudarnos a aterrizar nuestros proyectos a la realidad. Gracias Dra. Luz Pérez Rea por la paciencia que le caracteriza. Gracias por encontrar siempre un momento para ayudar y orientar a sus alumnos. Gracias por sus observaciones que enriquecieron este trabajo de tesis.

Gracias a la Dra. Teresa López Lara, sus comentarios ayudaron significativamente a mejorar este trabajo y mi forma de trabajar.

Dr. Omar, sus clases en la licenciatura fueron el primer empujón para decidirme a estudiar esta maestría. Gracias por su exigencia y por sus enseñanzas.

Gracias a la Universidad Autónoma de Querétaro y al CONACYT por el apoyo ar General de Bibi

RESUMEN

El comportamiento volumétrico del suelo saturado ha sido ampliamente estudiado y modelado, pero no así el de los suelos no saturados. Este es un motivo por el cual se ha ido incrementando la investigación hacia los suelos no saturados. Además de que es más probable encontrar este tipo de suelos y es sobre los cuales se edifican la mayor parte de las estructuras.

El comportamiento volumétrico de un suelo no saturado se puede representar en un plano esfuerzo medio (p) vs succión (s). En este plano se establece un marco elastoplástico, el cual ha dado resultados satisfactorios sobre los cambios volumétricos de los suelos utilizando los esfuerzos efectivos. En el caso de los suelos no saturados, actualmente también se considera que es necesario el uso de esfuerzos efectivos.

La estructura del suelo es un factor que influye en su comportamiento hidromecánico; los poros de distintas dimensiones, los diferentes tamaños de partícula del suelo, así como la cantidad de arcilla que compone el suelo, y externamente la carga aplicada al suelo, darán como resultado diferentes respuestas en el cambio de volumen cuando se afecta su humedad.

Asimismo, en la naturaleza encontramos tres principales tipos de arcilla: caolinita, ilita y montomorilonita, esta última con mayor capacidad de aumentar o disminuir su volumen ante los cambios de humedad debido a sus propiedades físico-químicas.

En este trabajo, se realiza una parte experimental utilizando muestras de arcilla remoldeadas con dos diferentes densidades: una suelta y una compacta. Para poder modelar su comportamiento, se extenderá el marco elastoplástico de esfuerzos efectivos propuesto por (Rojas González, 2017) al caso de materiales compactados. En este marco elastoplásticio, el comportamiento volumétrico depende de la densidad relativa del suelo que afecta los índices de expansión y de expansión-colapso.

ABSTRACT

The volumetric behavior of saturated soils has been widely studied and modeled which is not the case for unsaturated soils. This is the reason why research on unsaturated soils has increased. In addition, it is more likely to find this type of soils where most part of structures have been built.

The volumetric behavior of an unsaturated soil can be represented in plane on the axes of a mean stress (p) vs suction (s). On this plane, an elastoplastic framework has been established with satisfactory results when effective stresses are used. For the case of unsaturated soils, it is presently acknowledged the necessity to use effective stresses.

The structure of the soil is a factor that influences its hydromechanical behavior; the pores of different dimensions, the different sizes of soil particles, as well as the amount of clay that forms the soil, and externally the load applied to the soil, will result in different volume changes when humidity of the sample is affected.

Likewise, in nature we find three main types of clay: kaolinite, illite and montomorillonite, the last one with a greater capacity to increase or decrease its volume with humidity changes due to its physical-chemical properties.

In this work, a series of experimental tests using remoulded clay samples at two different densities: a loose and a compacted one. In order to model these results, an elastoplastic framework for effective stresses proposed by (Rojas González, 2017)+ is extended for the case of compacted soils. In this elastoplastic framework, the volumetric behavior depends on the relative density of the soil which in turn affect the soil parameters expansion and the collapse-expansion indexes.

ÍNDICE GENERAL

DEDIC	
AGRA	
RESU	MENV
ABST	RACT
ÍNDICI	E GENERAL VII
ÍNDICI	E DE FIGURASXI
ÍNDICI	E DE GRÁFICAS XIII
ÍNDICI	E DE TABLASXVII
1 IN	TRODUCCIÓN1
1.1	DESCRIPCIÓN DEL PROBLEMA1
1.2	JUSTIFICACIÓN2
1.3	OBJETIVOS2
1.4	HIPÓTESIS
1.5	ANTECEDENTES
2 ES	STADO DEL ARTE7
2.1	CAPILARIDAD10
2.2	SUCCIÓN11
2.3	ESTADO DE ESFUERZOS DEL SUELO12
2.4	COMPORTAMIENTO VOLUMÉTRICO DEL SUELO14
2.5	MODELOS CONSTITUTIVOS14

2.5	5.1 Modelos b	oasados en esfuerzos netos	14
2.5	5.2 Marco ela	stoplástico basado en esfuerzos efectivos	17
3 MI	ETODOLOGÍA.		19
3.1	EXPERIMENT	TACIÓN	19
3.7	1.1 Contenido	de agua	20
3.7	1.2 Gravedad	específica	21
3.7	1.3 Granulom	etría	22
3.7	1.4 Límites de	e consistencia	22
3.7	1.5 Prueba de	e compactación Proctor Modificada	23
3.7	1.6 Succión		23
3.7	1.7 Pruebas c	odométricas	25
3.7	1.8 Límite de	contracción volumétrica	26
3.7	1.9 Marco Ela	stoplástico	27
4 RE	ESULTADOS Y	DISCUSIÓN	
4.1	CARACTERIZ	ACIÓN DEL MATERIAL	
4.2	PRUEBA DE (COMPACTACIÓN PROCTOR MODIFICADA	31
4.3	GRUPOS DE	MUESTRAS	32
4.4	PRUEBAS DE	SUCCIÓN	33
4.5	PRUEBAS OF	DOMÉTRICAS	34
4.5	5.1 Muestras	sueltas	34
4.5	5.2 Muestras	compactas	
4.5	5.3 Resumen		41
4.6	PRUEBAS DE	CONTRACCIÓN VOLUMÉTRICA	44

4.6.1 Muestras compactas	44
4.6.2 Muestras sueltas	
4.7 COMPARACIÓN TEÓRICO-EXPERIMEN	TAL52
4.7.1 Muestras sueltas	
4.7.1.1 Muestra con carga inicial de 7.6 k	Pa54
4.7.1.2 Muestra con carga inicial de 50 kF	°a56
4.7.1.3 Muestra con carga inicial de 203.6) kPa57
4.7.1.4 Muestra con carga inicial de 621.3	} kPa59
4.7.1.5 Resumen Muestras Sueltas	
4.7.2 Muestras compactas	61
4.7.2.1 Muestra compacta con carga inicia	al de 588 kPa63
4.7.2.2 Muestra compacta con carga inicia	al de 2320 kPa64
4.7.2.3 Muestra compacta con carga inicia	al de 2623 kPa67
4.7.2.4 Resumen Muestras Compactas	68
4.8 MODIFICACIÓN DEL MARCO ELASTOPI	∟ÁSTICO69
4.8.1 Comparación de resultados	
5 OBSERVACIONES Y CONCLUSIONES	
6 RECOMENDACIONES	80
	81
ANEXOS	85
ANEXO 1. GRANULOMETRÍA	
ANEXO 2. LÍMITES DE PLASTICIDAD	
ANEXO 3. DENSIDAD DE SÓLIDOS:	

	ANEXO 4. PRUEBAS ODOMÉTRICAS	
	ANEXO 5. PRUEBAS DE SUCCIÓN	97
	ANEXO 6. PRUEBAS DE CONTRACCIÓN VOLUMÉTRICA	99
	ANEXO 7. MARCO ELASTOPLÁSTICO	
Qif	ección ceneral de Bibliotecas	
		х

ÍNDICE DE FIGURAS

O'K

Figura 2.1. Tipos de estructura del suelo. (Modificado de Gens y Alonso, 1992)9
Figura 2.2. Fenómeno capilar, donde el agua del tubo capilar se encuentra a presión negativa. Tomado de Juárez Badillo y Rico Rodríguez, 2011
Figura 2.3. Modelo tridimensional. Superficies de fluencia. Modificado de Gens y Alonso, 1992
Figura 2.4 Modelo Básico de Barcelona (BBM), plano (p, s). Modificado de Alonso et al., 1990)
Figura 2.5 Modelo Expansivo de Barcelona (Modificado de Alonso, et al., 1999).
Figura 2.6. Marco elastoplástico. Tomado de Rojas González (2017)17
Figura 2.7. Marco elastoplástico para suelos expanso-colapsables, basado en esfuerzos efectivos. Tomado de Rojas González, (2017)
Figura 3.1. Extracción de aire para la determinación de la densidad de sólidos21
Figura 3.2. Muestras sueltas para la determinación de la curva de succión humedecimiento – secado24
Figura 3.3 Especímenes de suelo de densidad relativa compacta labrados para medición de succión
Figura 3.4. Muestras montadas en los consolidómetros25
Figura 3.5. Muestras densas cubiertas con parafina para la determinación de su volumen
Figura 3.6. Marco elastoplástico basado en esfuerzos efectivos28

Figura 3.7. Marco elastoplástico basado en esfuerzos efectivos, cuando la carga aplicada supera la SFCBC₀......29

Figura 4.1. Curva de compactación mediante prueba Proctor Modificada......31

Figura 4.3 Marco elastoplástico para suelos fuertemente compactados, aplicando

ÍNDICE DE GRÁFICAS

Gráfica 4.1. Curvas características de las muestras sueltas y compactas
(elaboración propia), y comparación con curvas de retención de muestras
inalteradas, con datos experimentales de Silva García (2019)
Gráfica 4.2. Prueba de expansión libre para las muestras sueltas
Gráfica 4.3. Deformación de la muestra cargada con 203.6 kPa ante las diferentes
etapas de humedecimiento
Gráfica 4.4 Cambio de la relación de vacíos para muestras sueltas después de
cada etapa37
Gráfica 4.5. Expansión – colapso de las muestras sueltas
Gráfica 4.6. Prueba de expansión libre para las muestras compactas
Gráfica 4.7 Relación de vacíos para las muestras densas al final de cada etapa.
Gráfica 4.8. Expansión – colapso de las muestras compactas
Gráfica 4.9. Comparación de las deformaciones de expansión – colapso para las
dos densidades ensayadas41
Gráfica 4.10 Curvas de compresibilidad de las muestras suelta y compacta42
Gráfica 4.11 Curvas de compresibilidad de muestras de densidad relativa suelta,
densidad relativa compacta (con datos propios) y muestra inalterada con grado de
saturación de 40% (con datos obtenidos por Silva García, 2019)43
Gráfica 4.12 Contracción volumétrica de las muestras compactas45
Gráfica 4.13. Cambio en la relación de vacíos de las muestras ante el secado45

Gráfica 4.14 Relación de vacíos con respecto al grado de saturación durante el	
proceso de secado46	
Gráfica 4.15 Succión de las muestras conforme disminuye la relación de vacíos debido al secado47	
Gráfica 4.16 Esfuerzo de succión en el proceso de secado	
Gráfica 4.17. Proyección en curva de compresibilidad para encontrar el esfuerzo de succión	
Gráfica 4.18. Construcción de proceso de secado para la muestra suelta50	
Gráfica 4.19. Proceso de secado, cambio de relación de vacíos con respecto al grado de saturación	
Gráfica 4.20. Esfuerzo de succión conforme la muestra se seca	
Gráfica 4.21. Proyección en curva de compresibilidad para encontrar el esfuerzo de succión	
Gráfica 4.22. Marco elastoplástico, muestra suelta, con valores de curva de retención	
Gráfica 4.23. Marco elastoplástico, muestra suelta, con valores obtenidos de la	
curva de compresibilidad54	
Gráfica 4.24. Marco elastoplástico para la muestra suelta inicialmente cargada con 7.6 kPa	
Gráfica 4.25. Comparación teórico-experimental de la deformación volumétrica.	
Muestra suelta, carga inicial de 7.6 kPa55	
Gráfica 4.26. Marco elastoplástico para la muestra suelta inicialmente cargada con	
50 kPa	

	Gráfica 4.27. Comparación teórico-experimental de la deformación volumétrica.
	Muestra suelta, carga inicial de 50 kPa57
	Gráfica 4.28. Marco elastoplástico para la muestra suelta inicialmente cargada con
	203.6 kPa
	Gráfica 4.29. Comparación teórico-experimental de la deformación volumétrica.
	Muestra suelta, carga inicial de 203.6 kPa
	Gráfica 4.30. Marco elastoplástico para la muestra suelta inicialmente cargada con
	203.6 kPa
	Gráfica 4.31. Comparación teórico-experimental de la deformación volumétrica.
	Muestra suelta, carga inicial de 621.3 kPa60
	Gráfica 4.32. Marco elastoplástico, muestra compacta, con valores de curva de
	retención
	Gráfica 4.33. Marco elastoplástico, muestra compacta, con valores obtenidos de la
	curva de compresibilidad
	Gráfica 4.34. Marco elastoplástico para la muestra compacta inicialmente cargada
	con 588 kPa
	Gráfica 4.35. Comparación teórico-experimental de la deformación volumétrica.
	Muestra compacta, carga inicial de 588 kPa64
	Gráfica 4.36. Marco elastoplástico para la muestra compacta inicialmente cargada
	con 2320 kPa65
Э,	Gráfica 4.37. Deformaciones unitarias para la muestra con carga inicial de 2320
	kPa66
	Gráfica 4.38. Comparación toórico-oxporimontal do la deformación volumétrico

Gráfica 4.39. Marco elastoplástico para la muestra compacta inicialmente cargada con 2623 kPa67
Gráfica 4.40. Comparación teórico-experimental de la deformación volumétrica. Muestra compacta, carga inicial de 2623 kPa68
Gráfica 4.41. Contracción volumétrica de las muestras densas en función de la humedad y la relación de vacíos73
Gráfica 4.42 Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 588 kPa74
Gráfica 4.43 Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 2320 kPa74
Gráfica 4.44. Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 2622.6kPa75
Gráfica 4.45 Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 588 kPa
Gráfica 4.46 Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 2320 kPa
Gráfica 4.47. Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 2623 kPa

ÍNDICE DE TABLAS

Tabl	la 4.1. Grupos de muestras ensayadas
Tabl	la 4.2. Parámetros de ajuste para las curvas de retención agua – suelo33
Tabl	la 4.3 Resumen pruebas odométricas41
Tabl cara	la 4.4. Resumen de los parámetros obtenidos de las pruebas odométricas y acterísticas iniciales de las muestras
Tabl suel	la 4.5. Parámetros para determinación de superficies de fluencia, muestras tas
Tabl y teo	la 4.6. Comparación de las deformaciones volumétricas obtenidas experimental óricamente para muestras sueltas60
Tabl com	la 4.7. Parámetros para determinación de superficies de fluencia, muestras
Tabl y teo	la 4.8 Comparación de las deformaciones volumétricas obtenidas experimental óricamente para muestras compactas
Tabl	la 4.9 Comparación de las deformaciones volumétricas obtenidas experimental
y ted	óricamente para muestras compactas, con la SFCBC vertical

1 INTRODUCCIÓN

El comportamiento volumétrico de las arcillas expansivas ha sido ampliamente estudiado, sin embargo, la complejidad del problema es tal que aún queda mucho camino por recorrer. Primeramente, se sabe que las arcillas tienden a expandirse, ya que la bipolaridad del agua permite que las moléculas de agua se introduzcan entre las unidades de arcilla. En cambio, si el agua se pierde, entonces se genera una disminución de volumen. Pero cuánto expanda dependerá de diversos factores. La montmorilonita es el tipo de arcilla más activa de la naturaleza. Además, si el suelo tiene grados de saturación bajos, tenderá a expandir con el aumento de humedad. Otro factor importante es la densidad relativa del material: si el suelo tiene una gran cantidad de vacíos, la expansión será transmitida a esos poros y probablemente a nivel macroestructural la expansión será casi imperceptible. Si el suelo está sometido a una carga, esto también influirá en la respuesta al humedecimiento. Diversos autores han intentado representar el comportamiento de las arcillas expansivas a partir del marco elastoplástico de Alonso et al., en 1990.

1.1 Descripción del problema

La estructura de los suelos expansivos está formada por glomérulos de arcilla y granos gruesos, que presentan intraporos y macroporos. En los intraporos se desarrolla la expansión debido a la físico-química de las arcillas, mientras que en los macroporos se desarrolla el colapso al aplicar una carga al suelo y posteriormente humedecer (Rojas, 2017).

En zonas áridas o semiáridas, donde la evapotranspiración es mayor a la precipitación, las estructuras se cimientan sobre el nivel de aguas freáticas (suelos no saturados), y si además se trata de zonas geotécnicas de valle, es muy probable que se encuentren suelos arcillosos expansivos, que pueden generar daños a las estructuras si el subsuelo se humedece a causa de lluvias o fugas de agua. Se pueden presentar daños por expansión cuando las cargas aplicadas al suelo son menores a la presión de expansión y posteriormente el suelo sufre un

humedecimiento, o colapso cuando se aplican cargas muy grandes y posteriormente se humedece.

Con esta investigación, se buscará si existe una densidad relativa a la cual la deformación de expansión y colapso se anulan para un suelo expansivo no saturado.

1.2 Justificación

Una vez que se compruebe que el comportamiento volumétrico de una arcilla expansiva se puede simular por medio del marco elastoplástico desarrollado por Rojas (2017) para diversos ciclos de humedecimiento-secado, y de carga-descarga, este se podrá utilizar ampliamente para obtener resultados satisfactorios para el diseño de cimentaciones sobre este tipo de suelos, ya que se podrán obtener las características del suelo en términos de densidad relativa, y así encontrar el valor de esta propiedad para que las deformaciones de expansión y colapso se equilibren, y así no ocurran daños en estructuras.

1.3 Objetivos

Extender el marco elastoplástico para suelos expanso-colapsables desarrollado por Rojas (2017) para el caso de suelos compactados a diferentes densidades y cargadas a diversos esfuerzos en el odómetro.

Verificar si para ciertas condiciones de relación de vacíos y de la carga, la expansión y el colapso se anulan mutuamente.

1.4 Hipótesis

E6xiste una condición de carga y relación de vacíos para la cual un suelo expansivo sometido a cargas elevadas presenta una deformación mínima al saturarse debido a que el colapso se compensa con la expansión.

1.5 Antecedentes

Alonso et al. (1990) desarrollaron el "Barcelona Basic Model" (BBM), un marco del comportamiento volumétrico de suelos de baja actividad, como lo son arenas parcialmente saturadas, limos y arcillas de baja plasticidad, por lo que permite solo deformaciones pequeñas de expansión. Gens y Alonso, (1992), desarrollaron una extensión de este marco para arcillas no saturadas, el cual considera la macroestructura y la microestructura de un suelo expansivo, y la relación entre ambos. Los autores concluyeron que la expansión depende de la humedad, de la densidad seca y la carga aplicada, además, que la presión de expansión depende de la relación de vacíos.

González Blanco (2012) utilizó una arcilla limosa de baja compresibilidad con distintos contenidos de agua y densidad seca, y diferentes procesos de carga y secado por medio de ensayes odométricos a succión controlada, esto para determinar el índice de microporos. Se observó que, a una misma densidad seca, las muestras compactadas del lado seco presentan una estructura floculada con poros inter e intra-agregados, mientras que las compactadas del lado húmedo presentan una mayor proporción de microporosidad. Con respecto a los trayectos de secado, la macroporosidad aumenta con succiones de 0.2 MPa para muestras del lado húmedo y seco, disminuyendo a mayor succión (1 MPa). Una vez que se aplican cargas, la macro y la microestructura disminuyen.

Nowamooz y Masrouri (2010), realizaron pruebas experimentales en suelos expansivos a diferente densidad aplicando ciclos de expansión y contracción bajo

diferentes esfuerzos netos, donde las muestras más sueltas presentaron disminución de volumen, mientras que las más densas expandieron. Con estos resultados, los investigadores hablan de una densidad seca crítica, en la que, al humedecer el suelo, ésta no presente contracción ni expansión.

Alonso et al. (1999) presentan un modelo mejorado del comportamiento mecánico de arcillas expansivas a partir del propuesto por Alonso et al. (1987,1990), donde se consideran los dos niveles de estructura para suelos expansivos bajo carga, cambios de succión y ciclos de succión.

Hoffmann et al. (2007), utilizaron mezclas de pellets de bentonita compactadas para su utilización como barreras de ingeniería para el aislamiento de residuos. A estas muestras se les añadió agua utilizando diferentes velocidades de inyección y diferentes mecanismos de transferencia de agua líquida y en vapor, Se realizaron ensayes odométricos a succión controlada y pruebas de presión de expansión para comparar los resultados con el marco elastoplástico de Alonso el al. (1990), donde la permeabilidad y la presión de expansión parecieron estar en función de la densidad seca de la muestra. Además, la deformación de expansión depende del logaritmo del esfuerzo vertical de manera lineal, donde el colapso se dio con esfuerzos confinantes mayores. Los resultados muestran que la presión de expansión depende de la trayectoria de esfuerzos de la muestra.

En 2018, Rahardjo et al., presentaron ecuaciones elastoplásticas constitutivas acopladas para un suelo no saturado (caolinita), para definir la curva de fluencia del aumento de succión por medio de los cambios de succión mátrica, así como la relación entre volumen específico de agua, esfuerzo neto y succión mátrica incorporando la histéresis de las curvas de retención, lo cual ayudó a aproximar mejor los resultados con los datos experimentales.

Rojas (2017), desarrolló el marco elastoplástico, que simula el comportamiento volumétrico de un suelo expanso-colapsable durante ciclos de humedecimiento-secado, y carga-descarga, el cual incluye un índice de expansión elastoplástico,

relacionado con la densidad relativa del suelo y un índice de expansión-colapso. Este modelo está relacionado con la densidad relativa porque a menor relación de vacíos, la expansión de la microestructura se transmite a la macroestructura. Al contrario, con una relación de vacíos alta, la expansión de la microestructura puede no llegar a afectar a la macroestructura, por lo que en esta condición el suelo colapsa.

Este modelo fue comparado por Rojas, (2017) con experimentaciones realizadas con anterioridad, con lo cual se pudo observar que las deformaciones serán menores para suelos con compacidad relativa mayor, cargados a un esfuerzo mayor al de preconsolidación aparente (Rojas, 2017). Sin embargo, no se pudo comprobar que la expansión y colapso se anulan mutuamente a valores altos de compactación del suelo.

En suelos compactados del lado húmedo del óptimo, se puede considerar que la estructura es matriclal principalmente, mientras que el suelo compactado que se encuentra en la rama seca de la curva de compactación, así como en el óptimo de compactación, presentan una estructura de agregados (Barrera Bucio, 2002).

Tarantino y De Col (2008), realizaron curvas de compactación estática en muestras de caolinita, aplicando cuatro diferentes esfuerzos, con las cuales obtuvieron las ramas secas de las curvas de compactación. Midieron la succión postcompactación y para algunas muestras midieron la porosimetría por medio de intrusión de mercurio. De acuerdo con las succiones medidas, se identificaron tres regiones diferentes. La primera, con los mayores contenidos de agua, donde la succión aumenta al incrementar el grado de saturación debido a la compactación a humedad constante, la segunda con valores medios de humedad, donde la succión disminuye al aumentar la succión, y la tercera, con los más bajos contenidos de agua donde la succión no depende de la densidad del suelo, por lo que la succión no cambia al compactar el suelo a humedad constante. Esta última región está limitada por la humedad microestructural, sugerida por Romero (2000). Al medir la porosimetría post-compactación, Tarantino y De Col (2008) encontraron que, al aplicar el mismo esfuerzo a muestras con diferentes contenidos de agua, entre más pequeño el contenido de agua, los modos de tamaños son los mismos, pero la porosidad se redistribuye: aumenta la porosidad de los intraagregados y disminuye la de los interagregados, pero puede considerarse "el mismo suelo" en un amplio rango de humedad. Sin embargo, para muestras con humedad menor a la microestructural, eventualmente el suelo presenta una porosimetría monomodal, por lo que este ya no puede ser considerado "el mismo suelo".

Li y Zhang (2009) obtuvieron resultados similares al medir cómo la porosimetría cambia al compactar el suelo y al someterlo a saturación y secado. Encontraron un mayor cambio en los poros interagregados por compactación y mayor cambio en poros intraagregados por ciclos de humedecimiento y secado. Asimismo, cuando se someten muestras a secado, el volumen de los poros inter e intraagregados disminuye, mientras que al someterlas a humedecimiento, el volumen de los poros . de k Generation intraagregados aumenta y el de los poros interagregados disminuye.

2 ESTADO DEL ARTE

Un suelo no saturado está conformado por partículas sólidas (fase sólida), fase gaseosa, que puede ser cualquier gas y vapor, fase líquida en los poros no ocupados por gas, formada por agua, aceite, líquidos en fase no acuosa, etc. (Lu y Likos, 2004), además de una membrana contráctil, que se refiere al agua adsorbida capaz de ejercer atracción entre las partículas de suelo (Fredlund y Rahardjo, 1993). La masa de esta membrana contráctil se considera como parte de la fase líquida. Existen suelos granulares cuyo comportamiento se rige por las fuerzas gravitacionales, como la compacidad y acomodo de las partículas; y también existen suelos formados por partículas finas, donde las fuerzas electromagnéticas cobran mayor importancia (Juárez Badillo y Rico Rodríguez, 2011).

La naturaleza de las arcillas influye en su comportamiento volumétrico.

La superficie de las partículas de arcilla tiene carga negativa, lo cual hace que las moléculas de agua con carga positiva se vean fuertemente atraídas, dependiendo de la intensidad de la carga negativa. La bipolaridad del agua permite que se vean atraídos cationes con carga positiva de Na⁺⁺, K⁺, Ca⁺⁺, Mg⁺⁺, Al⁺⁺⁺, Fe⁺⁺⁺, etc., y los cationes, a su vez, atraen moléculas de agua. El agua adsorbida aumenta por la carga eléctrica y radio iónico del catión, lo que hace que se genere esta película llamada membrana contráctil, que, debido a las presiones de adsorción a las que se encuentra, cambia su punto de congelación. Se calcula que esta presión ronda los 20,000 kg/cm². Considerado que a presiones de 6,000 kg/cm² el punto de congelación es de 30°C, entonces se puede inferir que el agua adsorbida en las partículas de arcilla se encuentra en estado sólido, y entre más se aleja de la superficie del cristal, empieza a comportarse como un fluido viscoso. El agua libre o gravitacional es aquella que no se encuentra sujeta a la partícula (Juárez Badillo y Rico Rodríguez, 2011).

Las arcillas del tipo montmorilonita son las más activas de la naturaleza, están formadas por dos láminas sílicas con una alumínica al centro. La capacidad de intercambio catiónico de este tipo de arcilla va de los 80 a 150 meq/100gr, mientras que, para las caolinitas, que son las arcillas más estables, tiene un valor que va de 3 a 15 meq/100gr. Esta capacidad de intercambio catiónico se ve fuertemente relacionada con la superficie específica del suelo, que para la montmorilonita es de 200 a 800 m²/gr, mientras que para la caolinita va de 1 a 10 m²/gr. La debilidad de la unión entre las láminas que conforman el suelo permite la entrada de moléculas de agua en su interior, y esto genera una expansión (Juárez Badillo y Rico Rodríguez, 2011). Si el suelo pierde humedad, entonces el suelo se contrae. Las arcillas conformadas por montmorilonita, en combinación con un clima semiárido donde la evapotranspiración potencial es mayor que la precipitación, originan suelos expansivos, los cuales cambian su volumen debido a los cambios de humedad (Hurtado Maldonado, et al., 2004).

Un suelo fino presenta dos niveles de estructura: la microestructura conformada por partículas de arcilla donde predominan los efectos físico-químicos, y la macroestructura, que es el suelo a mayor escala donde se presentan los reacomodos estructurales (Gens y Alonso, 1992) (figura 2.1). La microestructura formada por glomérulos de arcilla presenta intraporos entre las partículas, mientras que la macroestructura, entre glomérulos y granos gruesos presenta poros llamados intergranulares (Rojas, 2013).

Figura 2.1. Tipos de estructura del suelo. (Modificado de Gens y Alonso, 1992)

La expansión se puede dar de manera general, movimientos de expansión y contracción en el perímetro de las estructuras o un movimiento local que puede provocar rotura de tuberías (Gromko, 1974). Este fenómeno ocurre debido a la naturaleza de las arcillas, que dejan pasar moléculas de agua entre las láminas, lo cual resulta en un hinchamiento. Si esta agua se evapora, el volumen se reduce, aunque no se regresa al volumen o a la relación de vacíos iniciales.

La expansión del suelo puede verse afectada por: espesor del estrato arcilloso, sobrecarga, profundidad del nivel freático, succión, actividad de la arcilla, cambios de humedad de acuerdo con la temporada del año, densidad del suelo, etc. (Gromko, 1974); estos factores modificarán la respuesta del suelo a los cambios de humedad. Los cambios de volumen del suelo están principalmente asociados por las variaciones de humedad, lo cual modifica la succión del mismo.

2.1 Capilaridad

La succión está dada por el agua a presión negativa contenida en el suelo (Pérez García y Zepeda Garrido, 2004). Cualquier cambio de succión en el suelo afecta su equilibrio (Fredlund y Rahardjo, 1993).

Consideremos un tubo de radio pequeño que es introducido a un recipiente de agua. El agua subirá por el tubo capilar debido a la tensión superficial (figura 2.2). Si consideramos agua pura, el ángulo α que se genera entre el menisco y la vertical, será de 0°, por lo que la altura máxima a la que puede llegar el agua es de:

$$h_c = \frac{2T_s}{\rho_w gr} \tag{2.1}$$

Donde h_c es la máxima altura capilar, T_s es la tensión superficial, ρ_w es la densidad del agua, g es el componente gravitacional y r es el radio del menisco, que, ya que se considera un ángulo de contacto igual a cero, será igual al radio del tubo capilar.

Figura 2.2. Fenómeno capilar, donde el agua del tubo capilar se encuentra a presión negativa. Tomado de Juárez Badillo y Rico Rodríguez, 2011.

En términos de presión, considerando un equilibrio hidrostático, la presión a esta altura h_c será de:

$$u_w = -\rho_w g h_c \tag{2.2}$$

Donde u_w es la presión del agua a esa altura h_c , que por equilibrio hidrostático es negativa.

Ahora, considerando que en ese punto la presión de aire u_a es igual a cero, entonces se puede escribir la succión mátrica $(u_a - u_w)$ de la siguiente manera:

$$u_a - u_w = \rho_w g h_c \tag{2.3}$$

Que también se puede escribir de la siguiente manera:

$$u_a - u_w = \frac{2T_s}{r} \tag{2.4}$$

Cuando un suelo no está saturado, el agua contenida se encuentra a presión negativa, debido a los tamaños de poro tan pequeños que forman estos tubos capilares, por lo que el agua se ve atraída al suelo debido a la tensión superficial. Entonces, de acuerdo con la relación anterior, se puede decir que entre más pequeño el radio de poro, mayor es la succión mátrica.

2.2 Succión

La succión total está conformada por dos componentes principales, que son la succión osmótica, resultado de las sales disueltas en el agua de poro, y la succión mátrica que se refiere a la interacción entre el agua de poro y los sólidos o matriz del suelo (Lu y Likos, 2004).

Como ya se mencionó anteriormente, los poros del suelo se pueden representar como tubos capilares que contienen agua a presión negativa, por lo que forman una superficie curva llamada menisco.

Consideremos que tenemos una superficie de agua de suelo curva debido al tamaño del tubo capilar, la presión de vapor encima de esta superficie será menor que la presión de vapor por encima de una superficie plana de agua de suelo considerando un contenedor más grande. Entonces la humedad relativa será menor para una superficie de agua de suelo curva. Asimismo, el radio del tubo capilar es inversamente proporcional a la diferencia entre la presión del aire encima de la superficie de agua y la presión del agua $(u_a - u_w)$. Esto es la succión mátrica, que incrementa conforme el radio disminuye.

Del mismo modo, comparando dos superficies planas, una de un solvente y otra de agua pura, se tendrá una presión de vapor de agua mayor encima del agua pura, es decir, la humedad relativa disminuye con la presencia de sales disueltas. Esta disminución de humedad relativa se refiere a la succión osmótica.

Como se describió anteriormente, la tensión superficial soporta una columna de agua en el tubo capilar. Esta tensión genera como reacción fuerzas de compresión en las paredes del tubo, que en este caso se trata de las partículas de suelo. Entonces el peso de la columna transferido por la existencia de la membrana contráctil aumenta la compresión en la estructura del suelo, por lo que la presencia de esta membrana contráctil incrementa la resistencia al cortante del suelo (Fredlund y Rahardjo, 1993).

2.3 Estado de esfuerzos del suelo

Una relación constitutiva relaciona dos variables de estado. Para el suelo, por ejemplo, se tiene aquella que define su comportamiento mecánico: esfuerzodeformación. Además, se puede relacionar el esfuerzo contra el cambio volumétrico. La curva característica del suelo es otra relación constitutiva (Fredlund y Rahardjo, 1993).

Para los suelos saturados, una variable de estado es el esfuerzo efectivo ($\sigma - u_w$), donde σ es el esfuerzo normal total y u_w es la presión de agua de poro. Esta expresión es aplicable para cualquier tipo de suelo, ya que es independiente de sus propiedades.

Para un suelo no saturado, el establecimiento de este esfuerzo efectivo fue más complicado. Se han propuesto las siguientes ecuaciones (Fredlund y Rahardjo, 1993):

Croney, 1958:

$$\sigma' = \sigma - \beta' u_w$$

Donde σ se refiere al esfuerzo normal total y β' es un factor de unión.

En 1959, Bishop estableció la siguiente expresión:

$$\sigma' = (\sigma - u_a) + \chi(u_a - u_w)$$
(2.6)

Donde u_a se refiere a la presión de aire de poro y χ es un parámetro relacionado con el grado de saturación del suelo.

Aitchison y Holmes (1961) propusieron la siguiente ecuación:

$$\sigma' = \sigma - \psi p'' \tag{2.7}$$

Donde p'' es la deficiencia de presión de agua de poro y ψ es un parámetro que va de cero a uno.

Jennings, 1961 estableció otra relación para determinar el esfuerzo efectivo:

$$\sigma' = \sigma - \beta p'' \tag{2.8}$$

Donde p'' es la presión negativa de agua de poro tomada como un valor positivo, y β es un factor estadístico del mismo tipo al área de contacto, que debe ser medido experimentalmente.

La ecuación de Bishop es la única que relaciona la presión de agua de poro y la presión de aire de poro, sin embargo, Jennings y Burland (1962), observaron que esta expresión no ofrece una adecuada relación entre cambio de volumen y esfuerzo efectivo a un grado de saturación menor al crítico, que es de 20% para arenas y limos, y de 80 a 90% para arcillas.

Posteriormente se propusieron más expresiones para redefinir el esfuerzo efectivo para suelos no saturados. Fredlund y Morgenstern (1977) propusieron como variables de esfuerzo independientes ($\sigma - u_a$) y ($u_a - u_w$), ($\sigma - u_w$) y ($u_a - u_w$) o ($\sigma - u_a$) y ($\sigma - u_w$). El esfuerzo efectivo aún sigue siendo tema de debate.

2.4 Comportamiento volumétrico del suelo

El comportamiento volumétrico de un suelo puede medirse con pruebas odométricas, donde se relaciona el esfuerzo aplicado con el cambio de la relación de vacíos de una muestra. En una gráfica de esta prueba, se pueden apreciar dos pendientes diferentes, una relacionada con el comportamiento elástico del suelo (κ), y otra con el comportamiento elastoplástico (λ). En esta gráfica se identifica un esfuerzo de preconsolidación (Po^{*}), que se puede definir como el mayor esfuerzo al que ha sido sometido el suelo, por lo que a partir de este punto el comportamiento es elastoplástico.

Cuando un suelo se seca hasta llegar a un valor de succión s_0 , este esfuerzo de preconsolidación aumenta a P_0 , el cual es considerado aparente, ya que dependerá del valor de succión.

2.5 Modelos constitutivos

2.5.1 Modelos basados en esfuerzos netos

El Modelo Básico de Barcelona (BBM por sus siglas en inglés), está basado en el modelo del Estado Crítico, pero considerando suelos no saturados. Fue desarrollado por Alonso et al. (1990) utilizando dos variables de esfuerzo independientes: succión (s) y esfuerzo medio neto (p).

El modelo explica el fenómeno de colapso de un suelo al ser humedecido, esto por medio de la superficie de fluencia de colapso bajo carga. El modelo explica el comportamiento volumétrico de un suelo cuando una muestra parte del estado saturado a seco, donde se endurece por los esfuerzos de contacto entre partículas (succión), y luego es cargado incrementando el esfuerzo neto (donde hay una ligera deformación), para posteriormente saturar. Al llegar a este punto, la rigidez del suelo se pierde debido a la pérdida de la presión de contacto entre las partículas, y la muestra se deforma debido a la carga que fue aplicada anteriormente (Rojas, 2013).

De manera general, de acuerdo con Alonso *et al.* (1990), el incremento en la succión producirá disminución del volumen, endurecimiento del suelo, y aumento en la resistencia al corte debido al aumento de la cohesión aparente del material.

El modelo de Barcelona está conformado por superficies de fluencia en tres dimensiones, que relacionan la succión (s), la presión neta (p) y el esfuerzo desviador (q) (Figura 2.3). Estas superficies de fluencia delimitan el comportamiento elástico del elastoplástico. Alonso et al. (1990), desarrollaron este modelo, con el cual se pueden conocer las condiciones del suelo para que ocurra el colapso.

Figura 2.3. Modelo tridimensional. Superficies de fluencia. Modificado de Gens y Alonso, 1992.

El plano (p, s) limita la zona elástica por medio de una superficie de fluencia por incremento de succión (SIYS por sus siglas en inglés) y una superficie de fluencia de colapso bajo carga (LCYS por sus siglas en inglés). Y, considerando para un

modelo de tres ejes (p, q, s), si la cohesión y la succión están relacionadas entre ellas, las elipses intersectarán el eje p en el punto (Alonso et al., 1990) $p = -p_s = -ks$, donde *k* es constante (Figura 2.4).

Figura 2.4 Modelo Básico de Barcelona (BBM), plano (p, s). Modificado de Alonso et al., 1990).

Asimismo, la superficie de fluencia por incremento de succión (SI), estará delimitada por la relación s=s0, que es el valor de succión después de un proceso de secado del suelo, por lo que esta superficie de fluencia dependerá del valor de la succión alcanzado.

Alonso et al. (1999) presentan un modelo mejorado del comportamiento mecánico de arcillas expansivas a partir del propuesto por Alonso et al. (1987,1990), donde se consideran los dos niveles de estructura para suelos expansivos bajo carga, así como cambios de succión y ciclos de succión. A este modelo se le llamó Modelo Expansivo de Barcelona (Figura 2.5).

Figura 2.5 Modelo Expansivo de Barcelona (Modificado de Alonso, et al., 1999).

2.5.2 Marco elastoplástico basado en esfuerzos efectivos

Rojas y Chávez (2013) presentan un marco basado en esfuerzos efectivos para el comportamiento volumétrico de suelos expansivos (figura 2.6). A partir del este, Rojas (2017) considera para el comportamiento elastoplástico expansivo de la macroestructura, un índice de expansión (λ_{ex}), y un índice de expansión colapso (λ_{cex}) para modelar el comportamiento de un suelo cuando colapsa la macroestructura al mismo tiempo que la microestructura expande.

Figura 2.6. Marco elastoplástico. Tomado de Rojas González (2017).

Los índices de expansión y expansión – colapso están dados por las siguientes ecuaciones:

$$\lambda_{ex} = (\lambda_e - \kappa)Dr + \kappa$$

$$(2.9)$$

$$\lambda_{cex} = (\lambda_e - \kappa)(1 - Dr) + \kappa$$

$$(2.10)$$

donde:

 $\lambda_e =$ Índice de compresión dado en un plano logarítmico de esfuerzo medio efectivo y relación de vacíos.

 $\kappa =$ Índice de descarga-recarga

Dr = Densidad relativa del suelo

Así, el marco elastoplástico para suelos expanso-colapsables, queda de la siguiente manera (Figura 2.7), el cual se basa en esfuerzos efectivos e incluye el acoplamiento hidromecánico.

Las ecuaciones del marco elastoplástico se muestran en el apartado 3.1.9.

Figura 2.7. Marco elastoplástico para suelos expanso-colapsables, basado en esfuerzos efectivos. Tomado de Rojas González, (2017).
3 METODOLOGÍA

Las pruebas experimentales se han realizado con un suelo arcilloso que fue extraído en el Fraccionamiento Jurica de la ciudad de Querétaro, México; a una profundidad de 1.80 m. Se obtuvieron muestras alteradas para la realización de las pruebas, así como una muestra cúbica inalterada para conocer las condiciones naturales del suelo.

La extracción de las muestras se realizó en el mes de enero del año 2019.

3.1 Experimentación

De la muestra cúbica se obtuvo el peso volumétrico natural del suelo por medio de inmersión en agua con parafina y se determinó el contenido de agua natural.

La muestra alterada fue secada al aire, posteriormente se disgregó para eliminar los terrones del suelo, y se reservó para determinar sus propiedades, como lo son: límites de Atterberg, análisis granulométrico por tamices e hidrómetro y gravedad específica de acuerdo a las especificaciones de las normas ASTM.

Para conocer el comportamiento volumétrico de este suelo, se trabajó con dos densidades diferentes: sueltas y compactas. A estos dos grupos de muestras se realizaron pruebas odométricas con diferentes cargas iniciales.

El grupo de muestras densas fue obtenido por medio de la prueba proctor modificada, debido a que se buscó una relación de vacíos mínima, así que se fabricaron muestras con la humedad óptima, aplicando la energía de la prueba proctor modificada. Una vez compactadas dichas muestras, los especímenes se sometieron a un proceso de secado, con lo que se llegó a una relación de vacíos promedio de e=0.405, con una humedad de w=11.6%. Se eligió una humedad baja

para asegurar que las muestras expandieran al saturar, y esta humedad en particular para facilitar el labrado de las muestras para ensaye.

Las muestras sueltas fueron fabricadas buscando una relación de vacíos cercana a la máxima que se ha reportado en trabajos anteriores para muestras naturales (Verdín Montes, 2018 y Silva García, 2019), por ello se fabricaron con material cribado por la malla #4, dejando caer en los moldes para lograr una relación de vacíos cercana a e=1.5, esto con una humedad de w=10.9%, humedad cercana a la mínima alcanzada al someter a secado al aire, esto para asegurar la expansión de las muestras.

3.1.1 Contenido de agua

Se determinó de acuerdo con la norma ASTM D 2216 -10 "Standard test methods for laboratory determination of water (moisture) content of soil and rock by mass". En un recipiente de masa conocida se colocó una cantidad determinada de suelo, el recipiente se llevó al horno a una temperatura de 110°± 5°C, la muestra seca con el recipiente se pesó después de al menos 16 horas, y se calculó el porcentaje de humedad de la muestra con la siguiente ecuación:

$$w = \frac{W_w}{W_s} = \frac{W_{fm} - W_{fs}}{W_{fs} - W_f} \times 100$$
(3.1)

Donde:

w =Contenido de agua (%)

 W_w = Masa del agua contenida en la muestra (g)

 W_s = Masa de las partículas sólidas (g)

 W_{fm} = Masa de la muestra más recipiente (g)

 W_{fs} = Masa de la muestra seca más recipiente (g)

 W_f = Masa del recipiente (g)

3.1.2 Gravedad específica

Para determinar la densidad de sólidos o gravedad específica, se siguió el procedimiento que establece la norma ASTM C 128-12. Una porción de suelo de aproximadamente 60 g fue secada al horno a una temperatura de 110°± 5°C, se obtuvo una muestra de 50 g de suelo seco el cual se saturó durante 24 horas. Se colocó dentro de un matraz que previamente fue calibrado con distintas temperaturas de agua destilada. El matraz con la muestra y agua destilada hasta el centro del bulbo, se sometió a un proceso de extracción de aire mediante baño maría y posteriormente bomba de vacío. En la Fig. 3.1 se muestra una fotografía tomada durante este proceso. Una vez aforado el matraz hasta la marca de calibración, se realizaron tres mediciones a distintas temperaturas. La gravedad específica se calculó mediante la siguiente fórmula:

$$S_s = \frac{W_s}{W_{fw} + W_s - W_{fws}}$$
(3.2)

Donde:

JIFECCI

 S_s = Gravedad específica de suelo

 W_s = Masa de suelo seco (g)

 W_{fw} = Masa del matraz más agua hasta la marca de aforo (g)

Figura 3.1. Extracción de aire para la determinación de la densidad de sólidos.

3.1.3 Granulometría

Al ser un material predominantemente fino, se realizó el lavado de una muestra de suelo con la malla No. 200, de acuerdo con las especificaciones de la norma ASTM D 1140-00. El material retenido en dicha malla, se pasó por tamices para la obtención de los porcentajes de suelo que se retienen en cada una de ellas. El suelo que pasó la malla No. 200, se colocó en un recipiente. Al sedimentarse, se decantó y una porción del suelo se utilizó para su análisis con hidrómetro, de acuerdo con la norma ASTM D422-07 que establece los procedimientos para realizar dicha prueba.

Una vez realizados ambos análisis, se procedió a graficar la curva granulométrica.

3.1.4 Límites de consistencia

Se utilizó como referencia la norma ASTM D 4318-10 para determinar los límites líquido y plástico del material, así como el índice de plasticidad. De la muestra alterada secada al aire, se tomaron aproximadamente 400 g de suelo que fueron disgregados hasta pasar la malla No. 40. Esta muestra de suelo se colocó en un recipiente y se le agregó agua destilada hasta saturar el suelo. Se dejó reposar por 24 horas. Al día siguiente, con el método de la copa de Casagrande, se realizaron al menos cinco registros a diferente humedad justo cuando los golpes lograban cerrar la ranura realizada al suelo a la medida indicada. El límite líquido se determina con la humedad a la que la ranura del suelo se cierra 1.27 cm a los 25 golpes en la copa de Casagrande. Para graficar la curva de fluidez, se coloca el contenido de agua en el eje de las ordenadas en escala natural y el número de golpes en las abscisas en escala logarítmica. La ordenada correspondiente a 25 golpes es el límite líquido.

El límite plástico fue obtenido haciendo rollitos de aproximadamente 3 mm de diámetro. Cuando los rollitos se empiezan a agrietar justo a los 3 mm, quiere decir que ya se llegó a la humedad correspondiente al límite plástico. La diferencia matemática entre el límite líquido y el plástico corresponde con el índice de plasticidad. Con el límite líquido y el índice plástico se obtiene la clasificación del

suelo utilizando la carta de plasticidad del Sistema Unificado de Clasificación de Suelos (SUCS).

3.1.5 Prueba de compactación Proctor Modificada

Se siguió el procedimiento indicado en la norma ASTM D-1557 para determinar la curva de compactación del material con energía modificada. Se realizaron cinco puntos a diferentes contenidos de agua. Las muestras se compactaron siguiendo el método C, en cinco capas, aplicando 56 golpes.

Se fabricaron probetas de suelo con la humedad óptima del material con el mismo molde del método C para tener espacio al labrar especímenes. Las probetas se realizaron con material cribado por la malla No. 8.

3.1.6 Succión

Las curvas de retención fueron obtenidas a través del método del papel filtro, con base en la norma ASTM D-5298. Para determinar la succión total y la succión mátrica se utilizó el papel Whatman No. 42.

Para las muestras sueltas se utilizó un molde circular de aluminio (figura 3.2), con el cual se llegó a la densidad deseada, con una relación de vacíos de 1.5 y grado de saturación promedio de 18.6%. A partir de esta densidad, diez muestras fueron saturadas y otras diez se sometieron a secado. Una vez que se obtuvo el 100% y 0% de grado de saturación, se procedió a realizar un proceso de secado y humedecimiento, respectivamente, de manera controlada, para lograr diferentes grados de saturación en ambas trayectorias de humedecimiento – secado y secado – humedecimiento.

Una vez que cada una de las muestras llegó al grado de saturación requerido, las muestras se colocaron dentro de un frasco junto con los discos de papel filtro para medir succión mátrica y total.

Figura 3.2. Muestras sueltas para la determinación de la curva de succión humedecimiento – secado.

Pasados siete días, se determinó la humedad de los discos de papel filtro para conocer los valores de succión de la muestra.

Para las muestras densas se labraron fragmentos del suelo, como los mostrados en la figura 3.3. De igual manera, diez de éstos se sometieron a saturación y diez a secado, para posteriormente seguir el mismo procedimiento de las muestras sueltas.

Figura 3.3 Especímenes de suelo de densidad relativa compacta labrados para medición de succión.

Al finalizar el periodo de equilibrio, el volumen de cada una de las muestras fue determinado por medio del método de inmersión en agua con parafina.

3.1.7 Pruebas odométricas

Para los dos grupos de muestras, se realizaron pruebas odométricas de acuerdo con la normativa ASTM D-2435.

- > Muestras sueltas: relación de vacíos de 1.5 y humedad promedio de 10.9%.
- > Muestras densas: relación de vacíos de 0.35 y humedad promedio de 11.6%.

Estos dos grupos se sometieron a diferentes cargas verticales. Las pruebas se realizaron de la siguiente manera:

- Prueba de consolidación: saturación y posterior aplicación de cargas en incrementos hasta definir el tramo virgen. La muestra suelta se llevó a un esfuerzo de 381.6 kPa y la muestra densa a 1235 kPa. En la figura 3.4 se muestran las fotografías de dos de las muestras que fueron ensayadas en los consolidómetros.
- 2. Prueba de triple odómetro: Aplicación inicial de una carga, seguido de cinco incrementos de agua. Finalmente se inundó la muestra.

Figura 3.4. Muestras montadas en los consolidómetros.

Los incrementos de agua para las pruebas de triple odómetro fueron calculados y agregados por medio de una jeringa a través del cabezal. Para estos ensayes con incrementos de agua no se utilizaron piedras porosas, únicamente papel filtro y cabezal.

3.1.8 Límite de contracción volumétrica

Dado que las muestras sueltas tienen una estructura abierta, fue inviable medir los cambios de volumen conforme se seca una muestra, de manera que se consideraron las mediciones de los volúmenes realizadas para las pruebas de succión.

Para la determinación del límite de contracción de las muestras densas, se labraron cuatro especímenes, mostrados en la fotografía de la figura 3.5. Gracias a sus características de compacidad, se pudo medir el cambio de volumen por inmersión en agua con parafina, eliminando cuidadosamente la cera después de cada medición y pesando las muestras antes y después de cada determinación para los casos en que hubiera habido pérdidas de material.

Únicamente la primera determinación del volumen para las muestras densas se hizo por medio de la prueba de inmersión en mercurio de acuerdo a la normativa ASTM D427-04.

Figura 3.5. Muestras densas cubiertas con parafina para la determinación de su volumen.

3.1.9 Marco Elastoplástico

Primeramente, en el marco elastoplástico se distinguen las trayectorias de humedecimiento y de secado de la muestra.

La trayectoria de secado estará definida por el esfuerzo de succión para cada grado de saturación desde las condiciones iniciales (en estado saturado o con la humedad natural) y hasta alcanzar la succión máxima s₀, a la que se realiza el ensaye. Por lo tanto, esta trayectoria iniciará en s = 0 si la muestra parte de un grado de saturación de 100%, con $p' = p'_{0i}$, donde p'_{0i} es el esfuerzo inicial de la muestra cuando empieza el secado, y llega hasta el punto ($p' = \chi_0 s_0$, $s = s_0$).

Por su parte, la trayectoria de humedecimiento está dada por el esfuerzo aplicado p_c al final del secado más el esfuerzo de succión χs . Entonces, $P'_{hum} = p_c + \chi s$.

Por otro lado, las superficies de fluencia para el marco elastoplástico son las siguientes:

s₀: Succión máxima alcanzada por la muestra

SFCBC: Superficie de fluencia de colapso bajo carga, paralela a la trayectoria de secado, desplazada a la derecha una distancia $\chi_0 s_0$ (ver Figura 3.6). Esta superficie de fluencia determinará el comportamiento elástico: si la muestra se carga a un esfuerzo menor a $2 \chi_0 s_0$, esta experimentará únicamente deformaciones de expansión.

Figura 3.6. Marco elastoplástico basado en esfuerzos efectivos.

Para un comportamiento expansivo, las deformaciones quedarán definidas por:

$$\Delta \varepsilon_{\nu} = \frac{e_0}{1 + e_0} \left[\left(\frac{p'_{hum}}{SFCBC} \right)^{\lambda_{ex}} - 1 \right]$$
(3.3)

Donde e_0 se refiere a la relación de vacíos al inicio de la saturación, λ_{ex} es el índice de expansión dado por $\lambda_{ex} = (\lambda_e - \kappa_e)Dr + \kappa_e$, donde λ_e y κ_e son los índices elástoplástico y de recarga-descarga, respectivamente, calculados de la curva de compresibilidad en un plano logarítmico.

Si en cambio, el esfuerzo aplicado rebasa la superficie de fluencia SFCBC₀, entonces se tendrán deformaciones de expansión y colapso. Cuando esto ocurre, dicha superficie de fluencia se desplaza a la derecha, con una inclinación hacia la derecha (Figura 3.7). Esta inclinación estará determinada por la siguiente ecuación:

$$\Delta p_s = \frac{(p'_{0i} + \chi s + \chi_0 s_0)(p_c - \chi_0 s_0)}{p_c + 2\chi_0 s_0}$$
(3.4)

Entonces la ubicación de la nueva superficie de fluencia será $SFCBC_2 = SFCBC_0 + \Delta p_s$, donde $SFCBC_0$ se refiere a la primera superficie de fluencia de colapso bajo carga.

Figura 3.7. Marco elastoplástico basado en esfuerzos efectivos, cuando la carga aplicada supera la SFCBC₀.

Si la trayectoria de humedecimiento cruza la superficie de fluencia, habrá deformaciones de expansión y colapso simultáneamente, por lo que se introduce el índice expansión-colapso $\lambda_{cex} = \lambda_e - \lambda_{ex} + \kappa_e$, y las deformaciones para este caso serán:

$$\Delta \varepsilon_{\nu} = \frac{e_0}{1 + e_0} \left[\left(\frac{p'_{hum}}{SFCBC_2} \right)^{\lambda_{cex}} - 1 \right]$$
(3.5)

Finalmente, debido a que la curva de retención arroja valores de succión muy elevados, se escalarán estas utilizando un procedimiento basado en trabajos anteriores (Verdín Montes, 2018 y Silva García, 2019) por medio de la curva de compresibilidad, con una modificación. Para determinar el esfuerzo de succión, se determinará el esfuerzo necesario para pasar de una relación de vacíos (condición saturada) a otra (relación de vacíos a la cual se realizó el ensaye) proyectando dichos valores a la pendiente del tramo virgen de las curvas de compresibilidad. La diferencia entre ambas abscisas se considera como el esfuerzo de succión.

Además, se hace uso de los parámetros utilizados por Silva García (2019), que son los factores de ajuste de succión y parámetros de escaneo.

4 RESULTADOS Y DISCUSIÓN

4.1 Caracterización del material

Como se mencionó en el apartado 3.1, se realizó un muestreo en el fraccionamiento Jurica, de la ciudad de Querétaro, a una profundidad de 1.80 m, ya que se tienen antecedentes de que en esta zona el material es muy expansivo. De las muestras alteradas e inalteradas se determinaron las siguientes propiedades:

Propiedad	Cantidad	
Humedad natural, w (%)	33.5	
Densidad de sólidos, Ss	2.58	
Límite líquido, LL (%)	82.24	
Límite plástico, LP (%)	36.63	
Índice plástico, IP (%)	45.6	
Contenido de gravas (%)	0	
Contenido de arenas (%)	1.96	
Contenido de limos(%)	39.04	
Contenido de arcillas (%)	59	

De acuerdo a la granulometría del suelo y sus características de plasticidad, el material se clasifica de acuerdo al S.U.C.S. como una arcilla de alta compresibilidad (CH).

Además, de acuerdo con resultados publicados por Curiel Iñiguez (2018), la superficie específica de esta arcilla es de 691.51 m²/g.

La curva granulométrica y la determinación de los límites líquido y plástico se muestran en los Anexos 1 y 2.

4.2 Prueba de compactación Proctor modificada

Se construyó la curva de compactación con cinco determinaciones para obtener la humedad óptima y la densidad seca máxima del suelo. La curva se muestra en la figura 4.1.

			(Testi	igo de hum	edad	(()		
Punto	W _{Mm} (g)	W _m (g)	γ _m (g/cm3)	W _m (g)	W _s (g)	w (%)	γ _d (g/cm3)	e Sw	Sw (%)
1	7020	3530	1.6518	200	158.7	26.02	1.3107	0.9684	69.34
2	7245	3760	1.7595	200	152.6	31.06	1.3425	0.9218	86.94
3	7400	3920	1.8343	200	149	34.23	1.3666	0.8879	99.46
4	7335	3845	1.7993	200	145.3	37.65	1.3072	0.9738	99.75
5	7230	3740	1.7501	200	140.8	42.05	1.2321	1.0940	99.16

Figura 4.1. Curva de compactación mediante prueba Proctor Modificada.

Con esta prueba se determinó una densidad seca máxima de 1.395 g/cm³, con una humedad de 33.85%.

Con esta humedad gravimétrica y energía de compactación se fabricaron las muestras densas para la experimentación, con material cribado por la malla No. 8.

4.3 Grupos de muestras

A continuación, se muestra un resumen de las características de los dos grupos de muestras, que se identificaron como muestras sueltas y muestras densas.

Las muestras sueltas se fabricaron con material cribado por la malla #4, con una humedad de 10.9%, buscando una relación de vacíos de 1.5, ya que es la relación de vacíos máxima que alcanza una muestra natural cuando su grado de saturación es incrementado hasta 100%, de acuerdo con resultados obtenidos del trabajo de Verdín Montes (2018).

Por otro lado, las muestras densas se obtuvieron al compactar el suelo por medio de la energía de la prueba proctor modificada, con la finalidad de obtener una relación de vacíos muy pequeña, con la humedad óptima de 33.85%. Estas probetas posteriormente se sometieron a un secado controlado para evitar agrietamiento hasta alcanzar una humedad promedio de 11.60%, lo que corresponde a un grado de saturación de 74.7% en promedio.

Entonces, las condiciones iniciales promedio de ambos grupos de muestras se presentan en la Tabla 4.1.

	Propiedad	Muestras sueltas	Muestras densas	
	Ss	2.58	2.58	
	e0	1.506	0.405	
-CN-	γ _m (g/cm ³)	1.142	2.053	
	w (%)	10.91	11.60	
	Gw (%)	18.72	74.68	
$\mathbf{O}^{\mathbf{v}}$		•		

Tabla 4.1. Grupos de muestras ensayadas.

4.4 Pruebas de succión

Se realizaron las determinaciones de succión en las trayectorias de secado y humedecimiento. En la gráfica 4.1, se observa que el rango de succiones de las muestras sueltas va de 0.5 a 212,324 kPa. Se trata de un rango muy amplio debido a la gran variedad de tamaños de poro en las muestras de suelo, con estructura abierta. En cambio, cuando el suelo presenta una estructura más cerrada, como es el caso de las muestras compactas, este rango se ve disminuido, por lo que tenemos valores desde 7,324 hasta 212,324 kPa, que coincide con el máximo valor para muestras sueltas, debido a que es el máximo que puede ser medido por medio del papel filtro.

Se realizó un ajuste de acuerdo a los autores Zhou, et al. (2012), que se deriva de las ecuación de Van Genuchten (1980). Para ello, los parámetros de ajuste utilizados fueron los mostrados en la Tabla 4.2, en la que se muestran además los parámetros que ajustan los datos experimentales obtenidos por Silva García (2019) para muestras inalteradas de este suelo. En la Gráfica 4.1 también se agregaron como referencia las curvas de retención del suelo inalterado.

Parámetro	Muestras sueltas	Muestras compactas	Muestras inalteradas (Silva García, 2019)	
a _w	17000	160000	100000	
mw	0.236	0.22	0.49	
n _w	2.5	2.55	2.2	
ad	920000	160000	120000	
m _d	1.05	2.5	0.6	
n _d	10	1.6	2.1	

Tabla 4.2. Parámetros de ajuste para las curvas de retención agua – suelo

Gráfica 4.1. Curvas características de las muestras sueltas y compactas (elaboración propia), y comparación con curvas de retención de muestras inalteradas, con datos experimentales de Silva García (2019).

4.5 Pruebas odométricas

4.5.1 Muestras sueltas

Este grupo de muestras inició con una relación de vacíos promedio de e=1.506 y con un grado de saturación de Gw=18.7% (Tabla 4.1).

Las gráficas de las pruebas odométricas se muestran a continuación. La primera de ellas se trata de la prueba de expansión libre con esfuerzo inicial de 1 kPa; al inicio se observa la trayectoria de humedecimiento, donde la relación de vacíos llega a 2.19 al finalizar la etapa de humedecimiento. Posteriormente, al ser cargada con incrementos de 2.9, 9.3, 20.5, 40.8, 86.1, 176.6 y 381.6 kPa, se llega a una relación de vacíos de e=0.998. Con estas cargas se definió el tramo virgen de la curva y se determinó la presión de preconsolidación.

Al descargarse, el suelo se recupera hasta una relación de vacíos de 1.137, definiendo el tramo de descarga.

Gráfica 4.2. Prueba de expansión libre para las muestras sueltas.

De acuerdo con los resultados de esta prueba, se determinó una presión de expansión de P_e = 70 kPa y una presión de preconsolidación de P₀ = 7 kPa, donde la pendiente del tramo virgen es de λ = 0.6498 y la del tramo de recompresión es de κ = 0.060, esto en escala semilogarítmica. Para escala logarítmica, los valores son λ_e = 0.236 y κ_e = 0.0256

Las curvas de consolidación para cada una de las etapas de inundación y carga, se muestran en el Anexo 4.

Por otro lado, se realizaron pruebas odométricas con esfuerzos iniciales de 7.6, 50, 203.6 y 621.3 kPa para posteriormente humedecer en cinco incrementos controlados. Estos incrementos se realizaron por medio de una jeringa para medir el aumento del contenido de agua con respecto al contenido de agua inicial. Finalmente, se inundó la muestra para asegurar su total saturación. Se registraron las deformaciones medidas en estas etapas a las que fueron sometidas las muestras. Se pueden consultar las curvas de tiempo vs deformación de cada una de estas etapas en el Anexo 4. En ellas cada uno de los incrementos controlados se identificaron con la abreviación "Hum".

Para las muestras con cargas iniciales mayores a 50 kPa, se observa una tendencia al colapso al inundar las muestras, sin embargo, en ciertas etapas se registraron deformaciones de expansión que alcanzaron a ser transmitidas por la microestructura, como se puede ver en la Gráfica 4.3, donde se presentaron estas deformaciones de expansión en las etapas 4 y 5 del humedecimiento.

Estas ligeras expansiones se presentaron en las etapas 4 y 5 de humedecimiento para las muestras con carga inicial de 50, 203.6 y 621.3 kPa.

Gráfica 4.3. Deformación de la muestra cargada con 203.6 kPa ante las diferentes etapas de humedecimiento.

Para el caso de la muestra con carga inicial de 7.6 kPa, inició con una expansión al principio de las etapas 1 y 2 de humedecimiento, seguida de un colapso, para posteriormente expandir en los subsecuentes incrementos de agua.

La Gráfica 4.4 muestra a manera de resumen cómo fue cambiando la relación de vacíos para cada muestra suelta ensayada: relación de vacíos inicial, relación de vacíos después de cada carga y relación de vacíos después de la saturación.

Por otro lado, la respuesta al humedecimiento con diferentes esfuerzos iniciales se muestra en la Gráfica 4.5, con lo que se obtiene una presión de expansión de 18kPa para la muestra suelta con el método del triple odómetro.

Gráfica 4.4 Cambio de la relación de vacíos para muestras sueltas después de cada etapa.

4.5.2 Muestras compactas

Los ensayes realizados a este grupo de muestras iniciaron con una relación de vacíos promedio de e=0.402, con un grado de saturación promedio de Gw=75.3% (Tabla 4.1).

De igual manera, se realizó una prueba odométrica de expansión libre, donde se llegó a una relación de vacíos de 1.002 al finalizar la etapa de inundación, lo cual significa una deformación unitaria de 41.9%, mientras que la muestra suelta tuvo una deformación unitaria de expansión de 28.8%.

La muestra fue cargada posteriormente en incrementos desde 5.13 y hasta 1235kPa, esto para lograr alcanzar la relación de vacíos inicial y con ello, determinar la presión de expansión por este método.

Al descargarse, el suelo expande y llega a una relación de vacíos final de 0.744 (Gráfica 4.6).

Gráfica 4.6. Prueba de expansión libre para las muestras compactas.

De acuerdo con los resultados de esta prueba, se determinó una presión de expansión de Pe = 1150 kPa y una presión de preconsolidación de P₀ = 95 kPa, donde la pendiente del tramo virgen es de λ = 0.497 y la del tramo de recompresión

es de κ =0.114 para una escala semilogarítmica, y para escala logarítmica de λ_e =0.404 y la del tramo de recompresión es de κ_e =0.095

Las curvas de consolidación de las etapas de inundación y carga, se muestran en el Anexo 4.

Al igual que con las muestras sueltas, se realizaron pruebas odométricas con diferentes esfuerzos iniciales, que para este caso fueron de 588, 2300 y 2620 kPa. Estos esfuerzos son mayores a los aplicados a muestras sueltas con la finalidad de encontrar un esfuerzo que provocara el colapso de la muestra. Posteriormente los especímenes fueron humedecidos en cinco incrementos controlados e inundación al final de la prueba. Los cambios de volumen producidos en cada etapa de los ensayes, se pueden consultar en el Anexo 4.

A diferencia de las muestras con estructura abierta, estas muestras compactas registraron mayores deformaciones de expansión, y ninguna de estas sufrió exclusivamente colapso al ser inundadas.

Las muestras con carga inicial de 2320 y 2622.6 kPa se labraron y se ensayaron en condiciones desfavorables, ya que la temperatura no fue constante a lo largo de estas pruebas, debido a que el sistema la cámara no sirvió en esta temporada. Para estimar el contenido de agua para etapa, se hizo un ajuste al calcular la humedad final de la probeta, conociendo grado de saturación final y densidad de sólidos del material. Sin embargo, estos ajustes de humedad no arrojaron resultados aceptables para la muestra con carga inicial de 2320. No obstante, se presentan los resultados experimentales de los tres ensayes.

Como resumen, se proporciona la Gráfica 4.7; se observa que todas las muestras experimentaron una deformación de expansión al ser saturadas al 100%.

Gráfica 4.7 Relación de vacíos para las muestras densas al final de cada etapa.

La respuesta al humedecimiento con diferentes esfuerzos iniciales se muestra a continuación, donde se añaden los resultados de la muestra cargada inicialmente con 2320 kPa, aunque se dejan fuera para el cálculo de la presión de expansión.

Siguiendo la tendencia de los resultados experimentales, se puede estimar un valor de presión de expansión de 8 MPa con el método del triple odómetro (Gráfica 4.8).

Gráfica 4.8. Expansión – colapso de las muestras compactas.

4.5.3 Resumen

JIREC

En la Gráfica 4.9 se muestra una comparación de la respuesta ante el humedecimiento para las dos diferentes densidades con distintas cargas iniciales, donde la presión de expansión es mucho mayor para las muestras compactas debido a que predominan los microporos, por lo que la expansión es fácilmente comunicada a las fronteras.

Gráfica 4.9. Comparación de las deformaciones de expansión – colapso para las dos densidades ensayadas.

A continuación, se presenta la Tabla 4.3, donde se resume la información obtenida de las pruebas odométricas, como son presión de preconsolidación, presión de expansión y pendientes de los tramos de recompresión y virgen (escala logarítmica).

Parámetro	M. Suelta	M. Compacta
λε	0.2360	0.4039
Кe	0.0256	0.0949
P0 (kPa)	7	95
Pe (kPa) Método A	70	1150

18

8000

Pe (kPa) Triple odómetro

Tabla 4.3 Resumen pruebas odométricas

En la Gráfica 4.10 se muestran ambas curvas de compresibilidad; donde la presión de expansión para muestras sueltas es de 70 kPa y para las muestras compactas es de 1150 kPa.

Gráfica 4.10 Curvas de compresibilidad de las muestras suelta y compacta.

En la Gráfica 4.11 se agregó también la curva de compresibilidad de una muestra que inició con una relación de vacíos de 0.9, con un grado de saturación de 40%, aunque en condiciones naturales, con datos obtenidos de Silva García (2019). La Tabla 4.4 resume los parámetros obtenidos en cada una de las pruebas (muestra suelta, muestra densa y muestra inalterada), así como las propiedades de los especímenes al iniciar los ensayes.

Sirect

Gráfica 4.11 Curvas de compresibilidad de muestras de densidad relativa suelta, densidad relativa compacta (con datos propios) y muestra inalterada con grado de saturación de 40% (con datos obtenidos por Silva García, 2019)

 Tabla 4.4.
 Resumen de los parámetros obtenidos de las pruebas odométricas y características iniciales de las muestras

	Parámetro	M. Suelta	M. Compacta	M. Natural
	λε	0.2360	0.4039	0.2213
	Кe	0.0256	0.0949	0.0380
*	P0 (kPa)	7	95	-
C	Pe (kPa) Método A	70	1150	80
-CL	Pe (kPa) Triple odómetro	18	7500	-
	Ss	2.58	2.58	2.55
	e ₀	1.4919	0.4107	0.900
)	γ _m (g/cm³)	1.148	2.041	1.532
	w (%)	10.91	11.60	14.12
	Gw (%)	18.88	72.86	40

4.6 Pruebas de contracción volumétrica

4.6.1 Muestras compactas

irect

Se labraron muestras para medir el cambio en volumen conforme el agua se va disipando hasta llegar al secado total.

El proceso de secado de las muestras se hizo de una manera controlada para evitar el agrietamiento de las mismas, tomando mediciones de volumen cada 24 horas. Posteriormente, las muestras fueron secadas al horno, sacándolas cada determinado tiempo para medir su cambio en el volumen, esto hasta que las muestras estuvieron completamente secas.

Para las muestras sueltas este procedimiento no fue posible debido a la baja compacidad de las mismas, lo que impedía su manipulación.

Las cuatro muestras utilizadas para la medición del cambio de volumen fueron de diferentes tamaños y pesos iniciales (Figura 3.5). La relación peso de la muestra contra volumen de las muestras, al ser secadas, se puede observar en la Gráfica 4.12. El proceso de secado de las muestras inició con una humedad promedio de 26.08%, lo que equivale a un grado de saturación de 90.3% en promedio.

En la Gráfica 4.13 se muestra el cambio en la relación de vacíos de las muestras al ser secadas; se observa que a partir de una relación de vacíos promedio de 0.401, el cambio de volumen es menor.

Gráfica 4.12 Contracción volumétrica de las muestras compactas

Gráfica 4.13. Cambio en la relación de vacíos de las muestras ante el secado.

Por medio de esta prueba, se puede relacionar la relación de vacíos con la succión, con lo cual, por medio de la curva de compresibilidad se puede obtener el parámetro de endurecimiento $\chi_0 s_0$, útil para evaluar el esfuerzo efectivo.

La Gráfica 4.14 relaciona el grado de saturación con la relación de vacíos de los cuatro especímenes que fueron monitoreados en el proceso de secado. Se observa el cambio de pendiente cuando la muestra sobrepasa el límite de contracción, que

se ha estimado en 12.8% del contenido de agua gravimétrico, 82.3% del grado de saturación (0.401 de relación de vacíos en promedio), desde donde el comportamiento comienza a ser elastoplástico.

Por otro lado, la Gráfica 4.15 muestra cómo la succión aumenta al secar los especímenes de suelo, donde el quiebre corresponde con la relación de vacíos de 0.401 aproximadamente. A partir de este punto, el cambio de volumen es mucho menor.

Gráfica 4.14 Relación de vacíos con respecto al grado de saturación durante el proceso de secado

Finalmente, igualando χ con el grado de saturación, se obtiene la Gráfica 4.16, que relaciona el esfuerzo χ s en escala logarítmica con la relación de vacíos. Se observa que, a partir de e = 0.401 en promedio, el valor del esfuerzo de succión empieza a disminuir con el secado. Esto es debido a las limitaciones de la medición de la succión por medio del papel filtro. A valores altos de succión, el método no resulta confiable, y reporta valores excesivos de la succión.

Gráfica 4.15 Succión de las muestras conforme disminuye la relación de vacíos debido al secado.

Gráfica 4.16 Esfuerzo de succión en el proceso de secado.

Debido a que los esfuerzos de succión son muy grandes si se utiliza directamente la curva de retención, se ha estimado este esfuerzo por medio de la curva de compresibilidad, con base en los trabajos realizado anteriormente (Verdín Montes, 2018 y Silva García, 2019), haciendo unas modificaciones a sus procedimientos.

Para determinar el valor de χ s para un grado de saturación de 75.8% (valor promedio para las pruebas odométricas con carga inicial), en la Gráfica 4.17 se

toman las relaciones de vacío inicial (0.745) y final (0.356) promedio de la prueba de contracción volumétrica, y se proyectan estos valores en la curva de compresibilidad (Verdín Montes, 2018). Para este trabajo, se toma una relación de vacíos inicial de 1.0002, que es la correspondiente a la medida en la prueba de expansión libre, al final de la etapa de saturación.

El esfuerzo necesario para llevar una muestra de una relación de vacíos inicial de 1.0002 a la final de 0.356 es de 1250 kPa, que es la diferencia de las abscisas correspondientes con la intersección de estas relaciones de vacío con la pendiente del tramo virgen de las muestras sueltas, ya que se considera que para las muestras compactas no alcanzó a definir este tramo. Este esfuerzo de 1250 kPa corresponde con el de succión para una muestra compacta completamente seca.

Dado que las pruebas odométricas se realizaron con una relación de vacíos promedio de 0.41, el esfuerzo necesario para llevar la muestra de una relación de vacíos de 1.0002 a 0.41 es de $\chi_0 s_0 = 1170$ kPa – 150 kPa = 1020 kPa, que es el esfuerzo de succión promedio para las pruebas odométricas.

Gráfica 4.17. Proyección en curva de compresibilidad para encontrar el esfuerzo de succión.

Para cada muestra ensayada se calcula este esfuerzo de succión inicial.

4.6.2 Muestras sueltas

Ya que las muestras sueltas no se pudieron manipular por su baja compacidad, se han utilizado los valores de relación de vacíos obtenidos por medio de la prueba de expansión libre (relación de vacíos máxima) y al medir el volumen de las muestras utilizadas para determinar las curvas de retención (relación de vacíos mínima para una muestra suelta con humedad cercana a 0%). Para ello se considera una relación de vacíos de la muestra saturada de 2.19. Asimismo, para un grado de saturación de 0.36% se tiene una relación de vacíos de 1.425.

Además, se han calculado las pendientes formadas en la gráfica Wm vs Vm de las mediciones del volumen en el proceso de secado para las muestras compactas, donde se tiene una pendiente de 0.985 para el tramo elástico y de 0.134 para el tramo elastoplástico, esto descartando la Muestra 4, ya que estos valores fueron menores con respecto a las primeras tres muestras.

Una vez que se recolectaron estos datos, se procedió a construir la trayectoria de secado para una muestra con peso inicial de Wm=50g. En la Gráfica 4.18 se muestra esta trayectoria siguiendo las pendientes promedio de las muestras compactas, además, se dibuja la trayectoria de secado de la Muestra 3 compacta como referencia. Se observa que la muestra suelta es más deformable.

La Gráfica 4.19 muestra las relaciones de vacíos con respecto al grado de saturación conforme las muestras se secan. Finalmente, la Gráfica 4.20 muestra el esfuerzo de succión para los diferentes valores de relación de vacíos. En esta gráfica se observa que, el valor del esfuerzo de succión para valores bajos de grado de saturación en muestras sueltas sigue aumentando a lo largo del secado. En cambio, en las muestras compactas, el valor de χ s muestra una reducción al final del secado por la disminución abrupta del grado de saturación que muestran las curvas de retención durante el secado. Sin embargo, dado que la relación de vacíos sigue disminuyendo durante el secado, es de esperarse que el esfuerzo de succión

todavía se esté incrementado para los grados de saturación alcanzados en estas muestras.

Gráfica 4.18. Construcción de proceso de secado para la muestra suelta.

Gráfica 4.19. Proceso de secado, cambio de relación de vacíos con respecto al grado de saturación.

Gráfica 4.20. Esfuerzo de succión conforme la muestra se seca.

Para determinar el valor del esfuerzo de succión para un grado de saturación de 18.7% (valor promedio para las pruebas odométricas con carga inicial), en la Gráfica 4.21 se toman las relaciones de vacío inicial (2.2) y final (1.406) promedio de la prueba de contracción volumétrica, y se proyectan estos valores en la curva de compresibilidad.

El esfuerzo necesario para llevar una muestra de una relación de vacíos (e) de 2.2 a 1.406 es de 83 kPa, que es la diferencia de las abscisas correspondientes con la intersección de la curva de compresibilidad con estos valores de e.

Considerando que las muestras ensayadas no llegaron a la condición de secado total, se escala este esfuerzo de succión, considerando la relación de vacíos inicial promedio para estas muestras, que es de 1.506, donde la abscisa en esta ordenada corresponde con un valor de 65 kPa, por lo que el esfuerzo de succión promedio para los ensayes resulta de 58 kPa.

Este valor de esfuerzo de succión se calculó para cada muestra ensayada.

Gráfica 4.21. Proyección en curva de compresibilidad para encontrar el esfuerzo de succión.

4.7 Comparación teórico-experimental

4.7.1 Muestras sueltas

Los datos iniciales para esta comparación con el marco elastoplástico, se resumen en la Tabla 4.5, donde las pruebas odométricas se realizaron con un grado de saturación promedio de 18.72%.

En la Gráfica 4.22 se muestra el marco elastoplástico para una muestra que es secada hasta un valor de succión de 100 MPa; esta cantidad fue obtenida mediante las curvas de retención. Por otro lado, la Gráfica 4.23 se construyó con valores obtenidos de la curva de compresibilidad, donde el valor de la succión s₀ es 303 veces más pequeño que el obtenido de la curva de retención.

		=
Parámetro	Valor	_
Ss	2.58	=
w (%)	10.9	(
е	1.506	
Gw (%)	18.7	
Por medio de curva	a de retención	
s0 (MPa)	100.00	S
x0s0 (MPa)	18.7	0
Por medio de curva de	e compresibilidad	7
s0 (MPa)	0.33	
x0s0 (MPa)	0.063	
		—

Tabla 4.5. Parámetros para determinación de superficies de fluencia, muestras sueltas.

El marco elastoplástico que será utilizado será escalando el obtenido con la curva de retención a los valores obtenidos con la curva de compresibilidad. Así, los factores de ajuste resultaron de: 368.5, 410.1, 364.2 y 365.8 para las muestras con cargas iniciales de 7.6, 50, 203.6 y 621.3 kPa, respectivamente.

Gráfica 4.22. Marco elastoplástico, muestra suelta, con valores de curva de retención.

Gráfica 4.23. Marco elastoplástico, muestra suelta, con valores obtenidos de la curva de compresibilidad.

4.7.1.1 Muestra con carga inicial de 7.6 kPa

Las lecturas de deformación de la muestra cargada con un esfuerzo inicial de 7.6kPa, se llevaron al marco elastoplástico, donde se utilizó la succión ajustada con los resultados arrojados con la curva de compresibilidad.

En la Gráfica 4.24 se puede observar que la muestra parte de un esfuerzo inicial de 0.001 MPa, correspondiente con el de la humedad inicial de extracción de la muestra. Posteriormente la muestra es secada, siguiendo la trayectoria color naranja, hasta alcanzar un grado de saturación de 17.7%, lo que corresponde con una succión de 0.38 MPa. Una vez alcanzado este valor de succión, la muestra es cargada con el esfuerzo de 7.6 kPa, sin embargo, como este esfuerzo no es suficiente para sobrepasar la línea de fluencia que está marcada en color gris, al incrementar su humedad el suelo, siguiendo la línea color azul hasta alcanzar la succión de cero, la muestra únicamente presenta deformaciones elásticas de expansión.

Gráfica 4.24. Marco elastoplástico para la muestra suelta inicialmente cargada con 7.6 kPa.

Las deformaciones volumétricas experimentales se comparan con las teóricas en la Gráfica 4.25, donde el valor final de deformación volumétrica es de 0.063, y teóricamente es de 0.513.

Gráfica 4.25. Comparación teórico-experimental de la deformación volumétrica. Muestra suelta, carga inicial de 7.6 kPa.

4.7.1.2 Muestra con carga inicial de 50 kPa

Se realizó el mismo procedimiento para la muestra suelta inicialmente cargada con 50kPa; el marco elastoplástico para este caso se muestra en la Gráfica 4.26. En la prueba de laboratorio, la muestra, que llegó a una succión máxima s₀ de 0.284, experimentó deformaciones de colapso desde el primer incremento de carga. En el marco elastoplástico la trayectoria de humedecimiento marcada en color azul se acerca a la superficie de fluencia SFCBC, mas no la sobrepasa, por lo que teóricamente las deformaciones son elásticas de expansión.

Asimismo, las deformaciones volumétricas medidas con la prueba de laboratorio, se comparan con las deformaciones teóricas calculadas (Gráfica 4.27), donde experimentalmente se registró una deformación volumétrica de colapso de 0.08; las deformaciones teóricas de expansión resultaron ser de 0.027.

Gráfica 4.27. Comparación teórico-experimental de la deformación volumétrica. Muestra suelta, carga inicial de 50 kPa

4.7.1.3 Muestra con carga inicial de 203.6 kPa

jire'

La muestra fue secada hasta alcanzar un grado de saturación de 18.8%, lo que corresponde con un valor de succión de 0.307 MPa. Una vez alcanzado este valor de succión, la muestra fue cargada con un esfuerzo de 203.6 kPa, lo cual, de acuerdo a la teoría, ya sobrepasa la línea de fluencia inicial SFCBC₀, por lo que se calcula una nueva línea de fluencia SFCBC₂ (Gráfica 4.28). Se puede observar que efectivamente, la línea se inclina a la derecha debido al endurecimiento $\Delta \bar{p}_0$, y, como sucedió con la prueba de laboratorio, las deformaciones son de colapso desde el inicio de la saturación.

Gráfica 4.28. Marco elastoplástico para la muestra suelta inicialmente cargada con 203.6 kPa

Gráfica 4.29. Comparación teórico-experimental de la deformación volumétrica. Muestra suelta, carga inicial de 203.6 kPa.

Las deformaciones teóricas para este caso siguen una trayectoria similar a las experimentales, donde la deformación experimental máxima es de 0.106 y teórica de 0.177, ambas de colapso (Gráfica 4.29).

4.7.1.4 Muestra con carga inicial de 621.3 kPa

Sirección

El marco elastoplástico para la muestra con carga inicial de 621.3 kPa, se muestra en la Gráfica 4.30, donde la carga aplicada sobrepasa la superficie de fluencia inicial, por lo que se determina una nueva superficie de fluencia de colapso bajo carga SFCBC₂.

Las deformaciones volumétricas ε_v , se muestran en la Gráfica 4.31, donde la deformación final fue de 0.173, mientras que la teórica fue de 0.172.

Gráfica 4.30. Marco elastoplástico para la muestra suelta inicialmente cargada con 203.6 kPa.

Gráfica 4.31. Comparación teórico-experimental de la deformación volumétrica. Muestra suelta, carga inicial de 621.3 kPa

4.7.1.5 Resumen Muestras Sueltas

En la Tabla 4.6 se muestra un resumen de las deformaciones obtenidas experimental y teóricamente, además se calcula el porcentaje de diferencia entre ambos valores para cada uno de los esfuerzos iniciales.

Se puede observar que entre mayor es el esfuerzo aplicado, menor es la diferencia entre ambas deformaciones. Además, para el esfuerzo de 621kPa, la deformación es prácticamente igual.

Tab	4.6. Comparación de las deformaciones volumétricas obtenidas experimental y teóricamente para muestras sueltas					
	Esfuerzo aplicado	ε ν (Exp)	ε ν (Teoría)	Diferencias ϵ_v	% diferencia	
),	σ= 7.6 kPa	0.063	0.513	0.450	720.0	

Esfuerzo aplicado	ε ν (Exp)	ε ν (Teoría)	Diferencias ϵ_v	% diferencia
σ= 7.6 kPa	0.063	0.513	0.450	720.0
σ= 49.9 kPa	-0.077	0.027	0.103	134.7
σ= 203.6 kPa	-0.1059	-0.177	0.0712	67.2
σ= 621.3 kPa	-0.1730	-0.172	0.0011	0.6

4.7.2 Muestras compactas

Trecci

Los datos iniciales para esta comparación con el marco elastoplástico, se resumen en la Tabla 4.7, donde las pruebas odométricas se realizaron con un grado de saturación promedio de 75.2%.

Parámetro	Valor					
Ss	2.58					
w (%)	11.8					
е	0.406					
Gw (%)	75.2					
Por medio de curva de retención						
s0 (MPa)	91					
x0s0 (MPa)	68.43					
Por medio de curva de co	ompresibilidad					
s0 (MPa)	1.43					
x0s0 (MPa)	1.06					

Tabla 4.7. Parámetros para determinación de superficies de fluencia, muestras compactas.

En la Gráfica 4.32 se muestra el marco elastoplástico para una muestra que es secada hasta un grado de saturación de 75.2%, que corresponde con valor de succión de 91 MPa, de acuerdo con las curvas de retención.

Por otra parte, se construyó con valores obtenidos de la curva de compresibilidad, donde el valor de la succión s_0 resultó de 1.43 MPa (Gráfica 4.33).

Gráfica 4.32. Marco elastoplástico, muestra compacta, con valores de curva de retención.

Gráfica 4.33. Marco elastoplástico, muestra compacta, con valores obtenidos de la curva de compresibilidad.

Para el cálculo de las deformaciones, y la modelación con el marco elastoplástico, se utilizó la pendiente del tramo virgen de las muestras sueltas, ya que la prueba de expansión libre de la muestra densa no llegó a definir este tramo. Asimismo, se utilizó el marco elastoplástico utilizando las curvas de retención escaladas.

4.7.2.1 Muestra compacta con carga inicial de 588 kPa

La Gráfica 4.34 muestra el marco elastoplástico para una muestra compacta que fue secada desde la saturación total hasta alcanzar un grado de saturación de 75.1%, lo cual corresponde con una succión ajustada de 1.47 MPa. Una vez que llegó a este estado, la muestra fue cargada con tres incrementos para conseguir un esfuerzo total de 0.588 MPa y posteriormente se fue incrementando la humedad del suelo hasta llegar a la saturación total al inundar la muestra. Desde el primer incremento de agua, la muestra experimentó deformaciones de expansión, como se puede comprobar con el marco elastoplástico, donde la trayectoria de humedecimiento en color azul se encuentra cruzando la zona elástica, por lo que la superficie de fluencia SFCBC inicial no cambia. Así, las deformaciones teóricas alcanzan un valor de 0.106, mientras que las experimentales llegan a 0.075 (Gráfica 4.35).

Para este marco elastoplástico, el factor de ajuste con respecto a las curvas de retención es de 56.7.

Gráfica 4.34. Marco elastoplástico para la muestra compacta inicialmente cargada con 588 kPa

Gráfica 4.35. Comparación teórico-experimental de la deformación volumétrica. Muestra compacta, carga inicial de 588 kPa

4.7.2.2 Muestra compacta con carga inicial de 2320 kPa

Como parte de la experimentación se realizó una prueba con carga inicial de 2320, sin embargo, las condiciones en las que se llevó a cabo no fueron las óptimas. La temperatura ambiente alcanzó temperaturas de 24°, por lo que la muestra perdió humedad desde el inicio de la prueba.

Se realizaron ajustes de la humedad conociendo la humedad y grado de saturación final, sin embargo, no se llegó a un ajuste adecuado. No obstante, se registraron los resultados obtenidos, y se reportan en este trabajo.

En la Gráfica 4.36 se muestra el marco elastoplástico, donde la trayectoria de humedecimiento cruza la superficie de fluencia inicial, por lo que se calcula una nueva. Se puede observar que a partir de un valor de succión de 1.47 MPa, la trayectoria de humedecimiento cruza la segunda superficie de fluencia LCYS, por lo que a partir de este punto se tendrían deformaciones de colapso de acuerdo con la teoría.

El factor de ajuste con respecto a las curvas de retención es de 59.7.

Gráfica 4.36. Marco elastoplástico para la muestra compacta inicialmente cargada con 2320 kPa.

En la prueba de laboratorio, la muestra con grado de saturación inicial aproximado de 58.2%, colapsó con el primer incremento de agua, probablemente por el acomodo superficial de las partículas, y, además, a partir de un tiempo t de 198 s, las deformaciones fueron mayores, posiblemente debido a la pérdida de humedad por la falta de control de temperatura.

Posteriormente, con los siguientes incrementos de agua se tuvieron deformaciones principalmente de expansión, registrando deformaciones de colapso al final de las etapas dos y tres de humedecimiento, como se puede observar en la Gráfica 4.37. Se atribuyen estas deformaciones de colapso a la pérdida de humedad de la muestra, lo que hizo que la muestra redujera su volumen.

Las deformaciones volumétricas para cada etapa de humedecimiento se muestran en la Gráfica 4.38. La deformación teórica final resultó de 0.0039, de colapso. Experimentalmente, la deformación fue de expansión y resultó de 0.0057.

Gráfica 4.37. Deformaciones unitarias para la muestra con carga inicial de 2320 kPa.

Gráfica 4.38. Comparación teórico-experimental de la deformación volumétrica. Muestra compacta, carga inicial de 2320 kPa

4.7.2.3 Muestra compacta con carga inicial de 2623 kPa

Finalmente, la última muestra densa se cargó con 2623 kPa; con un grado de saturación de 75.4%, que corresponde con una succión ajustada de 1.38 MPa. La muestra experimentó deformaciones de expansión desde la primera etapa de humedecimiento, con un ligero colapso al final de la etapa de humedecimiento 1, esto debido posiblemente a la pérdida de humedad por la falta de control de temperatura durante el proceso de la prueba.

Debido a que no se tuvo control de la temperatura en todo el tiempo que duró la prueba, se realizaron ajustes del grado de saturación. Esto se realizó conociendo el grado de saturación al final de la prueba (100%) y la relación de vacíos final, así como la cantidad de agua agregada. Con estos datos se pudo conocer el grado de saturación para cada etapa.

Así, el marco elastoplástico teórico para esta prueba, se puede observar en la Gráfica 4.39, que el valor de la carga aplicada supera la superficie de fluencia LCYS inicial, por lo que se calcula una nueva, por lo que teóricamente se tienen deformaciones de colapso (Gráfica 4.40).

Gráfica 4.39. Marco elastoplástico para la muestra compacta inicialmente cargada con 2623 kPa.

Gráfica 4.40. Comparación teórico-experimental de la deformación volumétrica. Muestra compacta, carga inicial de 2623 kPa

Para este marco elastoplástico, el factor de ajuste para las curvas de retención fue de 60.2.

4.7.2.4 Resumen Muestras Compactas

jire

La Tabla 4.8 muestra un resumen de las deformaciones obtenidas tanto en los ensayes como por medio del marco elastoplástico. Como se puede observar, el porcentaje de diferencia con respecto a la experimental va de 41.5% a 169%, sin embargo, el modelo arroja deformaciones de colapso para las muestras con carga inicial de 2623 kPa y 2320 kPa.

 Tabla 4.8 Comparación de las deformaciones volumétricas obtenidas experimental y teóricamente para muestras compactas.

Carga aplicada	٤ _v (Exp)	ε ν (Teoría)	Diferencias ϵ_v	% diferencia	
σ= 588 kPa	0.075	0.106	0.031	41.5	
σ= 2623 kPa	σ= 2623 kPa 0.032		0.039	120.9	
σ= 2320 kPa 0.0057		-0.0039	0.0096	168.9	

4.8 Modificación del marco elastoplástico

Para muestras sueltas, el comportamiento volumétrico del suelo fue similar al teórico, principalmente para muestras cargadas por encima de la presión de expansión, y más aproximado conforme aumenta el esfuerzo, además, en resultados publicados anteriormente para muestras naturales (Silva García, 2019 y Verdín Montes, 2018) mostraron resultados favorables al comparar su comportamiento volumétrico con el marco elastoplástico. Sin embargo, la teoría no refleja correctamente el comportamiento volumétrico para las muestras densas. Posiblemente el factor más importante en el modelo es el esfuerzo aplicado antes del humedecimiento, ya que de este depende la ubicación de la superficie de fluencia SFCBC inicial.

Considerando que la muestra cargada con 2623 kPa expandió ligeramente, se concluye que el esfuerzo de compactación del suelo es mayor a este valor. Dicho esfuerzo no podría ser calculado a partir del método de la curva de compresibilidad, ya que, extrapolando la línea del tramo virgen, a este esfuerzo se tendría una relación de vacíos de aproximadamente 0.1, cuando la relación de vacíos para una muestra seca es de 0.356.

Para muestras compactadas al óptimo, el grado de saturación del suelo se aproxima a uno y la succión a cero mientras que el esfuerzo neto alcanza un valor importante. En estas condiciones, la superficie de fluencia de colapso bajo carga toma una geometría diferente.

De acuerdo con resultados publicados por Tarantino y De Col (2008), muestras fuertemente compactadas y con humedad cercana a la óptima, llegan a un grado de saturación cercano a 100%, por lo que la succión prácticamente es nula. Sin embargo, cuando la muestra se descarga, la succión es mayor a la inicial.

Esto se puede representar en el plano (p',s) de la siguiente manera (Figura 4.2): El suelo se prepara con una cierta humedad, en este caso la humedad óptima. En este

punto (A) el suelo presenta un esfuerzo efectivo de $\chi_A s_A$. Posteriormente el suelo se compacta, aplicando un esfuerzo neto $\overline{p_c}$. Se llega al punto B que representa el máximo esfuerzo que ha sufrido el suelo P_0^* , con una succión cercana a cero, por lo que la superficie de fluencia SFCBC₀ se debe colocar en esta posición y aparece como una línea vertical porque ocurre mientras la succión se reduce.

En seguida se deja de aplicar la carga. Se elimina el esfuerzo neto aplicado, pero aumenta la succión (Tarantino y De Col, 2008), motivo por el cual el punto C queda por encima y a la derecha del punto A.

Se inicia el proceso de secado hasta alcanzar una succión s_0 (punto D). Si en este punto se aplica una carga a succión constante, la trayectoria sigue la superficie de fluencia de incremento de succión SFIS.

Si los ensayes de laboratorio no se realizan a succión constante, más bien se sigue la trayectoria DE, donde se aumenta el esfuerzo neto, disminuye la relación de vacíos y por ende aumenta el grado de saturación y disminuye la succión (Tarantino y De Col, 2008). Si la carga aplicada es menor a la que el suelo ha experimentado (P_0^*) , al cargar en E habrá deformaciones elásticas.

Si en cambio, se carga más allá de la carga que ha experimentado, entonces se producirán deformaciones plásticas y cambiará la superficie de fluencia, acercándose a la forma curva. Aunque la forma final de la nueva superficie de fluencia SFCBC para suelos que sobrepasan la primera superficie de fluencia SFCBC₀ tendría que verificarse a partir de resultados de laboratorio.

Asimismo, al compactar fuertemente el suelo, los poros interagregados son reducidos. Si el suelo una vez descargado (punto C de la Figura 4.3) se somete a secado hasta cierto grado de saturación (D), entonces disminuye el volumen de los poros intra e interagregados (Li y Zhang, 2009). Si a continuación el suelo se carga a un esfuezo suficientemente grande, el volumen de poros interagregados disminuye nuevamente (Li y Zhang, 2009), aumentando el grado de saturación y por ende disminuyendo la succión, resultando en una estructura mayormente matricial (Romero y Vaunat, 2000). Si el esfuerzo efectivo aplicado antes del humedecimiento es cercana a P_0^* (punto F), donde el grado de saturación es cercano a 100%, entonces la deformación durante el humedecimiento será prácticamente nula.

Figura 4.3 Marco elastoplástico para suelos fuertemente compactados, aplicando un esfuerzo efectivo cercano a P_0^* .

Para afinar la forma de la SFCBC, es necesario conocer el esfuerzo aplicado para compactar el suelo, preferiblemente utilizando compactación estática. Además, es importante conocer cómo cambia la succión durante y después de cada etapa, dato que solo se pueden obtener con el equipo adecuado.

4.8.1 Comparación de resultados

Para el caso particular de las muestras densas, estas fueron compactadas dinámicamente con la humedad óptima por medio de la prueba de compactación Proctor modificada, por lo que no hubo un control para conocer el esfuerzo máximo que fue aplicado a la muestra, ya que inicialmente no se tomó en cuenta que este valor fuera necesario para el modelo. Se sugiere que en trabajos futuros la compactación inicial se realice de manera estática en el odómetro.

Por otro lado, las muestras una vez compactadas fueron sometidas a un secado controlado, con lo que se llegó a una humedad del 11.7% en promedio, apenas por debajo de la humedad microestructural, que de acuerdo con las pruebas de contracción volumétrica es de alrededor del 11.8%, por lo que en el secado las muestras ensayadas se encuentran al inicio del tramo elastoplástico (Gráfica 4.41). De acuerdo con Tarantino y De Col (2008), la succión en muestras con humedad menor a la microestructural no se verá afectada por el cambio en su densidad, por lo que durante y al final de la etapa de carga, la succión será igual a aquella al final de la etapa de secado.

Gráfica 4.41. Contracción volumétrica de las muestras densas en función de la humedad y la relación de vacíos.

Ya que se desconoce el valor de P_0^* , en este trabajo se ubicará la superficie de fluencia SFCBC₀ en la intersección de la trayectoria de humedecimiento y la superficie de fluencia de incremento de succión SFIS, es decir, SFCBC = P_c + χ_0 s₀, donde P_c es la carga aplicada por el odómetro una vez que terminó la etapa de secado. De la Gráfica 4.42 a la Gráfica 4.44 se muestra el marco elastoplástico para cada muestra ensayada.

Las deformaciones teóricas calculadas a partir de esta nueva SFCBC se presentan a partir de la Gráfica 4.45.

Trecci

Gráfica 4.42 Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 588 kPa.

Gráfica 4.43 Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 2320 kPa.

Gráfica 4.44. Marco elastoplástico con SFCBC vertical. Muestra compacta, carga inicial: 2622.6kPa

Gráfica 4.45 Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 588 kPa.

tre

Gráfica 4.46 Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 2320 kPa.

Gráfica 4.47. Comparación de las deformaciones teóricas y experimentales para muestras compactas utilizando la nueva SFCBC. Carga inicial: 2623 kPa.

Dado que la superficie de fluencia SFCBC se encuentra a la derecha de la trayectoria de humedecimiento, las deformaciones teóricas para este modelo serán de expansión. Calculando las deformaciones para cada una de las etapas de humedecimiento, estas se aproximan más a las deformaciones obtenidas a partir

de los ensayes de laboratorio, excepto para la muestra que fue cargada con un esfuerzo inicial de 2320 kPa, que fue la muestra labrada y ensayada en condiciones desfavorables (Tabla 4.9).

Carga aplicada	ε _{v (Exp)}	ε _{ν (Exp)} ε _{ν (Teoría)}		% diferencia
σ= 588 kPa	0.0751	0.0629	0.012	16.2
σ= 2623 kPa	0.0321	0.0414	0.009	28.9
σ= 2320 kPa	0.0057	0.0460	0.0403	706.9

Tabla 4.9	Comparación de las deformaciones volumétricas obtenidas expe	rimental
	teóricamente para muestras compactas, con la SFCBC vertical.	

Con estos resultados es evidente que la diferencia será mayor si la superficie de fluencia SFCBC se coloca a en P_0^* , por lo que en trabajos futuros se deberá replantear la forma en que se determina el esfuerzo de succión, con el objetivo de obtener mejores resultados.

5 OBSERVACIONES Y CONCLUSIONES

- Ya que los valores de succión medidos con papel filtro son muy elevados, se realiza una modificación para determinar este valor; utilizando la curva de compresibilidad con la pendiente del tramo virgen, se determina el esfuerzo necesario para llevar una muestra a una relación de vacíos determinada. Con ello se escalan las curvas de retención en secado y humedecimiento obtenidas por el método del papel y se obtienen mejores resultados al utilizar el marco elastoplástico de esfuerzos efectivos.
- Las muestras de densidad suelta únicamente presentaron expansión al cargarse inicialmente con un esfuerzo de 7.6 kPa, mientras que todas las muestras fuertemente compactadas experimentaron deformaciones de expansión a pesar de ser cargadas inicialmente con esfuerzos de hasta 2.6MPa.
- Con ello se infiere que los meniscos de agua de las muestras sueltas se rompieron rápidamente al aumentar el grado de saturación, provocando el colapso.
- Las muestras densas presentan una estructura de poros pequeños que permitieron la comunicación de la expansión de las partículas de arcilla hacia las fronteras de la muestra, a diferencia de las muestras sueltas, donde la estructura evidentemente presenta un gran volumen de poros interagregados
- Posiblemente el parámetro más importante para el marco elastoplástico es el esfuerzo de succión, ya que de este depende la ubicación de la superficie de fluencia SFCBC.

Para muestras sueltas, el modelo se aproxima mejor a los resultados obtenidos en laboratorio para muestras cargadas más allá de la presión de expansión. Para la muestra con un esfuerzo inicial de 621.3 kPa, las deformaciones teórica y experimental fueron prácticamente iguales.

- Para muestras densas, el modelo no reflejó los resultados obtenidos en los ensayes de laboratorio, dado que todas las muestras expandieron mientras que en el modelo se obtuvieron deformaciones de colapso.
- Debido a que la succión disminuye prácticamente a cero cuando un suelo se compacta al óptimo, se sugiere que la superficie de fluencia de colapso bajo carga sea vertical a partir del esfuerzo máximo aplicado. Sin embargo, en este trabajo se hace una primera aproximación ubicándola a la altura de la intersección de la superficie de fluencia SFIS y la trayectoria de humedecimiento, debido a que se desconoce el esfuerzo máximo aplicado.
- Se determinaron las deformaciones teóricas para este modelo con la superficie de fluecia SFCBC vertical; se obtuvieron resultados más aproximados a los determinados en los ensayes de laboratorio.
- Como la superficie de fluencia de colapso bajo carga cambia en los suelos cargados por encima de la presión de expansión, su geometría deberá ser verificada a partir de resultados de laboratorio.
- Con los ensayes realizados no se llegó a la combinación de densidad y carga aplicada a la cual el colapso se compensa con la expansión, sin embargo, de acuerdo a las observaciones realizadas, se deduce que las muestras sueltas deberán cargarse ligeramente por encima de la presión de expansión para que las deformaciones se compensen.
- Con respecto a las muestras densas, cuando una muestra fuertemente compactada se somete a secado hasta una humedad por encima de la humedad microestructural y posteriormente es cargada a un esfuerzo efectivo cercano al mayor aplicado durante la primera compactación, la deformación será casi nula.

Si la muestra en cambio es secada por debajo de la humedad microestructural, a la cual la relación de vacíos dejará de disminuir de forma importante, como fue el caso de las muestras ensayadas en este trabajo, entonces deberá cargarse por encima del mayor esfuerzo aplicado en la primera compactación P_0^* para que la deformación de colapso se compense con la de expansión.

6 **RECOMENDACIONES**

- Es importante cuidar la temperatura del lugar de trabajo a la hora de realizar pruebas odométricas, ya que dependiendo de la humedad inicial, el suelo puede ganar o perder agua en mayor o menor medida (dependiendo si la humedad del material se encuentra en la zona elástica del secado o en la zona elastoplástica), lo que se traduce en cambios de grado de saturación, factor importante para el cálculo del esfuerzo de succión y de las deformaciones, y con ello afecta la modelación.
- Para pruebas odométricas, es importante cuidar la temperatura para evitar la pérdida de agua de la muestra, lo cual genera contracción de la muestra y errores en la determinación del grado de saturación.
- Para escalar las curvas de retención, es necesario conocer la relación de vacíos de la muestra saturada y la relación de vacíos de la muestra ensayada.
- La humedad microestructural del suelo se puede conocer a través de la medición del cambio de volumen durante el secado.
- Se sugiere para trabajos futuros realizar ensayes para muestras fuertemente compactadas cargadas más allá de la presión máxima aplicada durante la primera compactación para determinar la forma de la superficie de fluencia SFCBC. Para ello se recomienda que la primera compactación se realice estáticamente.
- Para los ensayes odométricos utilizar mayores grados de saturación inicial, para que la deformación sea casi nula al saturar bajo un esfuerzo efectivo cercano al máximo aplicado durante la primera compactación.

Ya que el factor más importante en el modelado del comportamiento volumétrico es el esfuerzo de succión, no se descarta la opción de implementar otro tipo de metodología para determinar este valor.

7 REFERENCIAS

Aitchison, . G. D. & Holmes, J. W., 1961. Suction profiles in soils beneath covered and uncovered areas.

Alonso, E. E., Gens, A. & Josa, A., 1990. A constitutive model for partially saturated soils. *Gèotechnique 40,* 40(3), pp. 405-430.

Alonso, E. E., Vaunat, J. & Gens, A., 1999. Modelling the mechanical behaviour of expansive clays. *Engineering Geology*, Volumen 54, pp. 173-183.

ASTM C128-12, 2012. Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate. s.l.:s.n.

ASTM D1140-00, 2000. Standard Test Methods for Amount of Material in Soils Finer Than the No. 200 (75-um) Sieve. s.l.:s.n.

ASTM D1557-00, 2000. Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (56,000 ft-lbf/ft3(2,700 kN-m/m3)). s.l.:s.n.

ASTM D2216-10, 2010. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. s.l.:s.n.

ASTM D2435-04, 2004. Standard Test Methods for One-Dimensional Consolidation Properties of Soils Using Incremental Loading. s.l.:s.n.

ASTM D427-04, 2004. Standard Test Method for Shrinkage Factors of Soils by the Mercury Method.. s.l.:s.n.

ASTM D4318-00, 2000. Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils.. s.l.:s.n.

ASTM D5298-03, 2003. Standard Test Method for Measurement of Soil Potential (Suction) Using Filter Paper.. s.l.:s.n.

ASTM-D422-63, 2002. Standard Test Method for Particle-Size Analysis of Soils. s.l.:s.n.

Barrera Bucio, M., 2002. Estudio experimental del comportamiento hidro-mecánico de suelos colapsables. s.l.:Universitat Politècnica de Catalunya.

Bishop, A. W., 1959. The principle of effective stress. *Teknisk ukeblad*, Volumen 39, pp. 859-863.

Curiel Iñiguez, N. P., 2018. Análisis del efecto de la contaminación con gasolina en los asentamientos por consolidación secundaria en una arcilla expansiva. Querétaro: Universidad Autónoma de Querétaro.

Fredlund, D. G. & Morgenstern, N. R., 1977. Stress State Variables for Unsaturated Soils. *Journal of the Geotechnical Engineering Division,* 103(ASCE 12919), pp. 447-466.

Fredlund, D. G. & Rahardjo, H., 1993. *Soil mechanics for unsaturated soils.* United States of America: Inter-Science.

Gens, A. & Alonso, E. E., 1992. A framework for the behaviour of unsaturated expansive clays. *Canadian Geotechnical Journal,* Volumen 29, pp. 1013-1032.

González Blanco, L., 2012. La microestructura en el comportamiento volumétrico de un suelo compactado. Barcelona: s.n.

Gromko, G. J., 1974. Review of expansive soils. *Journal of Geotechnica and Geoenvironmental Engineering*, pp. 667-687.

Hoffmann, C., Alonso, E. E. & Romero, E., 2007. Hydro-mechanical behaviour of bentonite pellet mixtures. *Physics and Chemistry of the Earth, Parts A/B/C*, 32(8-14), pp. 832-849.

Hurtado Maldonado, D., Zepeda Garrido, J. A. & Flores Flores, M., 2004. Naturaleza, propiedades índice y distribución de los suelos expansivos. En: J. A. Zepeda Garrido, ed. *Mecánica de Suelos no Saturados.* Querétaro: Universidad Autónoma de Querétaro, pp. 19-43.

Jennings, J. E. B. & Burland, J. B., 1962. Limitations to the Use of Effective Stresses in Partly Saturated Soils. *Géotechnique*, 12(2), pp. 125-144.

Josa, A., Alonso, E. E., Lloret, A. & Gens, A., 1987. Stress-strain behaviour or partially saturated soils. *European conference on soil mechanics and foundation engineering,* Volumen 9, pp. 561-564.

Juárez Badillo, E. & Rico Rodríguez, A., 2011. *Mecánica de Suelos. Tomo 1. Fundamentos de la Mecánica de Suelos..* México: Limusa.

Li, X. & Zhang, L. M., 2009. Characterization of dual-structure pore-size distribution of soil. *Canadian Geotechnical Journal*, 46(2), pp. 129-141.

Lu, N. & Likos, W. J., 2004. Unsaturated soil mechanics. New Jersey: Wiley.

Nowamooz, H. & Masrouri, F., 2010. Mechanical behaviour of expansive soils after several drying and wetting cycles. *Geomechanics and Geoengineering: An International Journal*, 5(4), pp. 213-221.

Pérez García, A. & Zepeda Garrido, J. A., 2004. Succión y estado del agua en el suelo. En: J. A. Zepeda Garrido, ed. *Mecánica de suelos no saturados.* Querétaro: Universidad Autónoma de Querétaro, pp. 45-72. Rahardjo, H., Thang, N. C., Kim, Y. & Leong, E.-C., 2018. Unsaturated elasto-plastic constitutive equations for compacted kaolin under consolidated drained and shearing-infiltration conditions. *Soils and Foundations*, 58(3), pp. 534-546.

Rojas González, E., 2017. Descifrando el enigma de los suelos expansocolapsables. *Geotecnia,* Issue 242, pp. 16-24.

Rojas, E., 2013. *Towards a Unified Soil Mechanics Theory*. Querétaro: Bentham Science Publishers.

Rojas, E. & Chávez, O., 2013. Volumetric behavior of unsaturated soils. *Canadian Geotechnical Journal*, 50(2), pp. 209-222.

Romero, E. & Vaunat, J., 2000. *Retention curves of deformable clays.* Rotterdam, A.A. Balkema, pp. 91-106.

Silva García, E., 2019. *Un modelo acoplado para suelos expansivos.* Querétaro: Universidad Autónoma de Querétaro.

Tarantino, A. & De Col, E., 2008. Compaction behavior of clay. *Géotechnique*, 58(3), pp. 199-213.

Van Genuchten, M. T., 1980. A closer-form equation for predicting the hydraulic conductivity of unsaturated soils. *Soil Science Society of America Journal,* 44(5), pp. 892-898.

Verdín Montes, C. I., 2018. *Modelación de suelos expansivos mediante esfuerzos efectivos.* Querétaro: Universidad Autónoma de Querétaro.

Zhou, A.-N., Sheng, D., Sloan, S. W. & Gens, A., 2012. Interpretation of unsaturated soil behavior in the stress - Saturation space, I: Volume change and water retention behavior. *Computers and Geotechnics*, pp. 178-187.

ANEXOS

Anexo 1. Granulometría

Granulometría por tamices:

Malla	Tamaño (mm)	Wretenido (mm)	Porcentaje retenido (%)	Porcentaje acumulado (%)	Porcentaje que pasa (%)
3/8"	9.52	0	0.00	0.00	100.00
1/4"	6.35	0	0.00	0.00	100.00
4	4.75	0	0.00	0.00	100.00
10	1.9	0.0785	0.03	0.03	99.97
20	0.84	0.3322	0.13	0.17	99.83
40	0.42	0.355	0.14	0.31	99.69
60	0.25	0.8438	0.34	0.65	99.35
80	0.178	0.618	0.25	0.91	99.09
100	0.149	0.2262	0.09	1.00	99.00
200	0.074	2.3751	0.97	1.96	98.04
Pasa 200		241.284	98.04	100.00	0.00
Total		246.1128			

Granulometría por método de hidrómetro:

Corrección por menisc	0.14	
	Ss =	2.58
Factor de correc	ción a =	1.016
0	Ws =	50
% pa:	sa 200 =	98.4

												-
Tiempo (min)	Temp. °C	Lectura real del hidrómetro	Corrección por temperatura	Corrección por defloculante	Lectura corregida	% más fino	Lectura corregida por menisco	L (cm)	L/t (cm/min)	к	D (mm)	% más fino respecto al total
1	24.5	49.0	1.2	3.7	46.45	94.39	48.86	8.290	8.290	0.013219	0.038	92.88
2	24.5	48.0	1.2	3.7	45.45	92.35	47.86	8.454	4.227	0.013219	0.027	90.88
3	24.5	47.0	1.2	3.7	44.45	90.32	46.86	8.618	2.873	0.013219	0.022	88.88
4	24.5	45.0	1.2	3.7	42.45	86.26	44.86	8.945	2.236	0.013219	0.020	84.88
5	24.5	44.0	1.2	3.7	41.45	84.23	43.86	9.109	1.822	0.013219	0.018	82.88
7.33	24.5	43.0	1.2	3.7	40.45	82.19	42.86	9.273	1.265	0.013219	0.015	80.88
11.83	24.5	41.0	1.2	3.7	38.45	78.13	40.86	9.601	0.811	0.013219	0.012	76.88
15	24.5	40.0	1.2	4.0	37.15	75.49	39.86	9.765	0.651	0.013219	0.011	74.28
39.5	24.0	35.0	1.0	4.0	32.00	65.02	34.86	10.584	0.268	0.013294	0.007	63.98
60	24.0	33.0	1.0	4.0	30.00	60.96	32.86	10.912	0.182	0.013294	0.0057	59.98
110	24.0	31.0	1.0	4.0	28.00	56.90	30.86	11.240	0.102	0.013294	0.0042	55.99
245	24.0	28.0	1.0	4.0	25.00	50.80	27.86	11.732	0.048	0.013294	0.0029	49.99
488	25.0	25.0	1.3	3.5	22.80	46.33	24.86	12.223	0.025	0.013144	0.0021	45.59
1550.5	23.0	20.0	0.7	5.0	15.70	31.90	19.86	13.043	0.008	0.013454	0.0012	31.39
3008	23.0	17.0	0.7	5.0	12.70	25.81	16.86	13.535	0.004	0.013454	0.0009	25.39
5958	23.0	12.0	0.7	4.5	8.20	16.66	11.86	14.354	0.002	0.013454	0.0007	16.40
7432	23.5	9.0	0.9	4.5	5.35	10.87	8.86	14.846	0.002	0.013374	0.0006	10.70
8982	25.0	6.0	1.3	3.7	3.60	7.32	5.86	15.338	0.002	0.013144	0.0005	7.20
11658	24.0	5.0	1.0	4.0	2.00	4.06	4.86	15.501	0.001	0.013294	0.0005	4.00

PO

Curva granulométrica:

Anexo 2. Límites de plasticidad

LÍMITE LÍQUIDO								
Flanera	Wf (g)	No. Golpes	Wfm (g)	Wfs (g)	ω (%)			
2L	119.416	33	138.9346	130.1769	81.384457			
1L	117.341	25	134.6897	126.8703	82.056394			
5L	120.9576	20	139.5702	131.1256	83.050747			
4L	136.907	18	151.178	144.6907	83.344682			
6L	123.245	12	142.1137	133.433	85.205143			

	LÍI	MITE PLÁSTICO		
Flanera	Wf (g)	Wfm (g)	Wfs (g)	w (%)
2L	119.416	130.8367	127.7761	36.60961
4L	136.907	144.2788	142.3014	36.656533
				_
	LÍMITE PL	ÁSTICO (%):	36.63	
				_
	ÍNDICE PL	ÁSTICO (%):	45.60	

Anexo 3. Densidad de sólidos:

~ ~

Calibración matraz					
Temp (°C)	W _{M+w}				
56.0	663.02				
52.0	664.05				
42.0	666.20				
25.0	668.76				
20.0	669.55				
13.0	670.32				
7.0	670.61				

		VVs (g)=	50.02	
	Temperatura (°C)	Wfsw (g)	Wfw (g)	Ss
(25	699.6	668.873	2.593
	29	698.9	668.309	2.575
. 6	33	698.3	667.684	2.578
			Promedio:	2.582
CO				
Oire				

....

Anexo 4. Pruebas Odométricas

Curvas de consolidación, muestra suelta, expansión libre:

Curvas de consolidación, prueba de consolidación con esfuerzo inicial de 7.6 kPa, muestra suelta, etapas de humedecimiento:

Curvas de consolidación, prueba de consolidación con esfuerzo inicial de 50 kPa, muestra suelta, etapas de humedecimiento:

Curvas de consolidación, prueba de consolidación con esfuerzo inicial de 203.6 kPa, muestra suelta, etapas de humedecimiento:

Curvas de consolidación, prueba de consolidación con esfuerzo inicial de 621.3 kPa, muestra suelta:

Curvas de consolidación, prueba de expansión libre, muestra densa:

Curvas de consolidación, esfuerzo inicial de 588 kPa, muestra densa:

Curvas de consolidación, esfuerzo inicial de 2320 kPa, muestra densa:

Curvas de consolidación, esfuerzo inicial de 2623 kPa, muestra densa:

	_	D		. /
Anova	h	Drucha	~ ~	CULOCION
AIIEXU		FILLEDA	5 UE	SULLION
/	•••			

HUMEDECIMIENTO - MUESTRAS SUELTAS													
Muestra	W _{molde} (g)	W _m (g)	T _{c2} (g)	$T_{c2}+W_{ph2}$	T _{c2} +W _{ps2}	W2%	h ₂ (Log kPa)	Succión mátrica (kPa)	w%	Gw (%)			
B21	21.28	73.25	0.3704	0.511	0.5073	2.70	5.1165	130755.348	6.4	11.4			
B25	21.41	75.67	0.4838	0.618	0.6122	4.52	4.9751	94431.147	11.0	19.6			
B11	21.30	81.52	0.3425	0.4988	0.4752	17.78	3.9416	8741.567	23.9	35.3			
B23	21.21	84.41	0.5035	0.669	0.6335	27.31	3.1997	1583.911	28.8	39.9			
B27	21.46	88.44	0.4281	0.5995	0.5586	31.34	2.8855	768.310	36.0	46.7			
B13	20.83	88.69	0.4894	0.6805	0.6254	40.51	2.1709	148.219	43.2	56.9			
B24	21.31	95.30	0.4575	0.6984	0.5921	78.97	1.3458	22.174	52.8	71.1			
B15	22.59	105.02	0.4525	0.787	0.5891	144.88	0.4562	2.859	61.4	76.0			
B16	21.42	102.31	0.4461	0.7509	0.5544	181.44	-0.0374	0.917	69.6	81.2			
A120	22.85	107.73	0.4378	0.7622	0.5641	156.85	0.2945	1.970	67.2	81.5			
B25	21.41	108.16	0.4324	0.7702	0.5397	214.82	-0.4880	0.325	6.4	86.5			
							0						
				SECADO -	MUESTR	AS SUEL	TAS						

							· · ·			
Muestra	W _{molde} (g)	W _m (g)	T _{c2} (g)	$T_{c2}+W_{ph2}$	T _{c2} +W _{ps2}	w ₂ %	h ₂ (Log kPa)	Succión mátrica (kPa)	w%	Gw (%)
B23	21.21	74.68	0.5101	1.1028	0.7075	200.253	-0.2914	0.51119	6.99	89.0
B25	21.42	75.67	0.7266	1.0557	0.8656	136.763	0.5657	3.679	77.44	83.0
B19	21.55	86.48	0.4473	0.7747	0.5831	141.090	0.5073	3.216	74.00	77.2
B15	22.55	92.08	0.5177	0.826	0.656	122.921	0.7526	5.657	70.31	75.8
B26	21.12	86.67	0.8137	1.1293	0.982	87.522	1.2304	17.000	67.20	70.5
B12	21.58	82.79	0.8742	1.0675	1.0064	46.218	1.7881	61.385	55.75	64.4
103	20.42	81.71	0.7073	0.887	0.8442	31.264	2.8916	779.037	47.51	59.5
B11	21.37	75.60	0.7288	0.8645	0.8592	4.064	5.0104	102419.323	10.85	20.4
B21	21.35	70.40	0.8308	0.9654	0.9654	0.000	5.3270	212324.446	0.20	0.4

				UMEDECIN	<u>MIENTO - N</u>	IUESTR	AS COM	PACTAS						
	Muestra W _m (g		W _m (g) T _{c2} (g)		$T_{c2}+W_{ps2}$	W ₂ %	h ₂ (Log kPa)	Succión mátrica (kPa)	w%	Gw (%)				
	1	82.96	0.428	0.5702	0.5696	0.424	5.2940	196784.789	0.1	0.4				
	2	64.14	0.5833	0.7213	0.7212	0.073	5.3214	209580.552	0.4	2.8				
	3	41.59	0.5751	0.723	0.7223	0.476	5.2900	194964.331	0.9	6.9				
	- 4	97.93	0.4403	0.5752	0.5751	0.074	5.3212	209517.869	1.2	8.5				
	5	101.39	0.3441	0.5199	0.5187	0.687	5.2735	187698.361	2.2	15.8				
. ()	6	62.33	0.5213	0.6532	0.6518	1.073	5.2434	175157.654	3.3	23.3				
	7	87.87	0.3978	0.5224	0.5187	3.060	5.0886	122629.896	4.5	30.7				
	8	88.24	0.3985	0.5527	0.5398	9.130	4.6158	41286.783	13.2	62.3				
	9	97.22	0.6956	0.833	0.8199	10.539	4.5060	32063.465	13.6	73.5				
	10	70.30	0.5325	0.6962	0.6779	12.586	4.3466	22210.225	22.5	78.7				
	11	75.44	0.4076	0.5501	0.5298	16.612	4.0329	10787.394	23.2	96.5				

	SECADO - MUESTRAS COMPACTAS													
Muestra	W _m (g)	T _{c2} (g)	$T_{c2}+W_{ph2}$	$T_{c2}+W_{ps2}$	W ₂ %	h ₂ (Log kPa)	Succión mátrica (kPa)	w%	Gw (%)					
1	64.61	0.4166	0.5634	0.5402	18.770	3.8648	7324.860	26.91	99.0219					
2	81.89	0.464	0.6229	0.5985	18.141	3.9138	8199.654	25.41	98.8761					
3	130.30	0.7822	0.9264	0.9137	9.658	4.5747	37554.138	18.25	92.6477					
4	114.82	0.6003	0.7419	0.7327	6.949	4.7857	61052.142	15.36	87.5918					
5	113.97	0.7286	0.88	0.8713	6.097	4.8521	71132.254	14.87	84.2370					
6	51.41	0.466	0.6068	0.6015	3.911	5.0223	105268.611	11.03	64.8855					
7	71.67	0.9522	1.1002	1.0972	2.069	5.1658	146496.614	7.21	42.5642					
8	49.47	0.6033	0.7425	0.7389	2.655	5.1202	131882.096	9.10	54.1962					
9	76.88	0.573	0.707	0.707	0.000	5.3270	212324.446	0.07	0.501					

Anexo 6. Pruebas de contracción volumétrica

Densidad del mercurio:	13.6	g/cm ³
Densidad de la parafina:	0.843	g/cm ³
Ss=	2.58	

MUESTRA 1

Wm (g)	Wmp (g)	W'mp (g)	Vm (cm ³)	γm (g/cm ³)	е	Gw (%)
27.44	32.40	11.90	14.62	1.88	0.7277	91.16
26.21	30.50	12.00	13.41	1.95	0.5852	88.51
26.10	29.30	12.20	13.30	1.96	0.5725	88.20
24.70	27.60	12.00	12.16	2.03	0.4373	77.63
24.20	25.30	12.20	11.80	2.05	0.3942	71.14
21.54	24.40	10.40	10.61	2.03	0.3947	63.88
20.90	23.50	7.60	10.50	1.99	0.3806	44.15
19.80	22.40	8.90	10.42	1.90	0.3579	0.36

MUESTRA 2

Wm (g)	Wmp (g)	W'mp (g)	Vm (cm ³)	γm (g/cm ³)	е	Gw (%)
63.10	1915.46	457.59	33.65	1.88	0.7363	91.8
61.60	68.60	28.00	32.297	1.91	0.6707	90.4
60.50	65.90	28.50	30.995	1.95	0.5902	88.8
58.60	62.80	28.70	29.118	2.01	0.4962	86.9
56.00	57.90	28.23	27.416	2.04	0.4097	73.1
52.70	59.10	25.30	26.209	2.01	0.4044	60.3
51.30	55.80	24.40	26.062	1.97	0.3966	42.6
47.90	53.80	21.20	25.602	1.87	0.3796	0.3

MUESTRA 3

	47.90	53.80	21.20	25.602	1.87	0.3796	0.3
. 'c	2		MUE	STRA 3			
	Wm (g)	Wmp (g)	W'mp (g)	Vm (cm ³)	γm (g/cm ³)	е	Gw (%)
0	62.48	1915.39	457.66	33.65	1.86	0.7538	89.71
	60.80	68.50	27.60	31.766	1.91	0.6434	87.88
	59.10	64.00	28.40	29.788	1.98	0.5290	85.75
	57.20	61.00	28.10	28.393	2.01	0.4797	83.60
	54.50	56.20	27.60	26.584	2.05	0.3854	67.54
	51.50	58.30	25.10	25.134	2.05	0.3774	64.21
	50.30	53.20	24.80	24.960	2.02	0.3679	47.99
	46.80	52.70	21.40	24.302	1.93	0.3404	0.38

Wm (g)	Wmp (g)	W'mp (g)	Vm (cm ³)	γm (g/cm ³)	е	Gw (%)	
72.24	1841.17	531.88	39.11	1.85	0.7628	88.65	
71.80	80.10	31.80	38.455	1.87	0.7195	87.64	
71.10	77.40	32.30	37.627	1.89	0.6715	86.14	
68.50	74.20	32.70	34.739	1.97	0.5331	83.12	5
65.30	67.20	32.40	32.546	2.01	0.4734	79.48	
60.60	66.70	29.70	29.764	2.04	0.3857	62.56	
59.30	65.70	28.50	29.609	2.00	0.3785	47.77	
55.40	61.40	25.20	29.083	1.90	0.3551	0.36	
	Wm (g) 72.24 71.80 71.10 68.50 65.30 60.60 59.30 55.40	Wm (g)Wmp (g)72.241841.1771.8080.1071.1077.4068.5074.2065.3067.2060.6066.7059.3065.7055.4061.40	Wm (g)Wmp (g)Wmp (g)72.241841.17531.8871.8080.1031.8071.1077.4032.3068.5074.2032.7065.3067.2032.4060.6066.7029.7059.3065.7028.5055.4061.4025.20	Wm (g)Wmp (g)Wm (cm³)72.241841.17531.8839.1171.8080.1031.8038.45571.1077.4032.3037.62768.5074.2032.7034.73965.3067.2032.4032.54660.6066.7029.7029.76459.3065.7028.5029.60955.4061.4025.2029.083	Wm (g)Wmp (g)Wm (cm³)γm (g/cm³)72.241841.17531.8839.111.8571.8080.1031.8038.4551.8771.1077.4032.3037.6271.8968.5074.2032.7034.7391.9765.3067.2032.4032.5462.0160.6066.7029.7029.7642.0459.3065.7028.5029.6092.0055.4061.4025.2029.0831.90	Wm (g)Wmp (g)Vm (cm³)ym (g/cm³)e72.241841.17531.8839.111.850.762871.8080.1031.8038.4551.870.719571.1077.4032.3037.6271.890.671568.5074.2032.7034.7391.970.533165.3067.2032.4032.5462.010.473460.6066.7029.7029.7642.040.385759.3065.7028.5029.6092.000.378555.4061.4025.2029.0831.900.351	Wm (g)Wmp (g)Wm (cm³)γm (g/cm³)eGw (%)72.241841.17531.8839.111.850.762888.6571.8080.1031.8038.4551.870.719587.6471.1077.4032.3037.6271.890.671586.1468.5074.2032.7034.7391.970.533183.1265.3067.2032.4032.5462.010.473479.4860.6066.7029.7029.7642.040.385762.5659.3065.7028.5029.6092.000.378547.7755.4061.4025.2029.0831.900.3510.361

MUESTRA 4

Anexo 7. Marco elastoplástico

														A		
	Anex	o 7. Mai	rco el	ast	oplá	stico)						5			
					_	M	uestra s	suelta, 7	7.6 kPa.	Comple	eto.					
	Esfuerzo	Relación	0 (0/)	D -	2		s (MPa)	s (MPa)	s (MPa)	s (MPa)	xs (MPa)	xs (MPa)	s (MPa)	SFCBC	P'hum=Pc+xs	D-
	neto kPa	de vacios e	Gw (%)	Dr	лех	лсех	Hum	Sec	⊓um Aiustada	Sec Aiustada	Hum Aiustada	Aiustada	Escaneo	0	(MPa)	Dε _v
1	1.00	1.4608	17.7	0.36	0.1012	0.1604	16.836	139.833	0.046	0.379	0.008	0.067	0.379	0.135	0.075	-0.0343
2	5.15	1.4529	17.8	0.36	0.1020	0.1596	16.530	137.120	0.045	0.372	0.008	0.066	0.371	0.134	0.074	-0.0350
3	5.15	1.4507	17.9	0.36	0.1022	0.1594	16.443	136.357	0.045	0.370	0.008	0.066	0.368	0.133	0.073	-0.0352
4	5.15	1.4507	17.9	0.36	0.1022	0.1594	16.443	136.357	0.045	0.370	0.008	0.066	0.367	0.133	0.073	-0.0353
5	5.15	1.4487	17.9	0.37	0.1024	0.1592	16.368	135.686	0.044	0.368	0.008	0.066	0.365	0.133	0.073	-0.0356
6	5.15	1.4476	17.9	0.37	0.1025	0.1591	16.327	135.329	0.044	0.367	0.008	0.066	0.363	0.133	0.073	-0.0357
7	7.55	1.4459	17.9	0.37	0.1027	0.1589	16.262	134.750	0.044	0.366	0.008	0.065	0.361	0.133	0.072	-0.0360
8	7.55	1.4457	17.9	0.37	0.1027	0.1589	16.252	134.662	0.044	0.365	0.008	0.065	0.360	0.133	0.072	-0.0361
9	7.55	1.4450	17.9	0.37	0.1028	0.1588	16.227	134.439	0.044	0.365	0.008	0.065	0.359	0.133	0.072	-0.0362
10	7.55	1.4450	17.9	0.37	0.1028	0.1588	16.227	134.439	0.044	0.365	0.008	0.065	0.359	0.133	0.072	-0.0363
11	7.55	1.4437	17.9	0.37	0.1030	0.1586	16.176	133.996	0.044	0.364	0.008	0.065	0.357	0.132	0.072	-0.0365
12	7.55	1.4426	18.0	0.37	0.1031	0.1585	16.136	133.642	0.044	0.363	0.008	0.065	0.355	0.132	0.071	-0.0366
13	7.55	1.4421	18.0	0.37	0.1031	0.1585	16.116	133.465	0.044	0.362	0.008	0.065	0.354	0.132	0.071	-0.0368
14	7.55	1.4415	18.0	0.37	0.1032	0.1584	16.091	133.244	0.044	0.362	0.008	0.065	0.353	0.132	0.071	-0.0367
15	7.55	1.4416	18.2	0.37	0.1032	0.1584	15.282	126.107	0.041	0.342	0.008	0.062	0.334	0.130	0.068	-0.0377
16	7.55	1.4424	18.5	0.37	0.1031	0.1585	14.542	119.612	0.039	0.325	0.007	0.060	0.316	0.127	0.066	-0.0387
17	7.55	1.4437	18.8	0.37	0.1030	0.1586	13.863	113.661	0.038	0.308	0.007	0.058	0.300	0.125	0.064	-0.0396
18	7.55	1.4445	19.0	0.37	0.1029	0.1587	13.204	107.913	0.036	0.293	0.007	0.056	0.284	0.123	0.062	-0.0406
19	7.55	1.4428	19.3	0.37	0.1030	0.1586	12.507	101.842	0.034	0.276	0.007	0.053	0.268	0.121	0.059	-0.0417
20	7.55	1.4415	19.6	0.37	0.1032	0.1584	11.861	96.247	0.032	0.261	0.006	0.051	0.252	0.118	0.057	-0.0429
21	7.55	1.4413	19.9	0.37	0.1032	0.1584	11.286	91.276	0.031	0.248	0.006	0.049	0.239	0.117	0.055	-0.0439
22	7.55	1.4412	20.2	0.37	0.1032	0.1584	10.743	86.597	0.029	0.235	0.006	0.047	0.226	0.115	0.053	-0.0450
23	7.55	1.4411	20.4	0.37	0.1032	0.1584	10.229	82.190	0.028	0.223	0.006	0.046	0.214	0.113	0.051	-0.0460
24	7.55	1.4409	20.7	0.37	0.1032	0.1584	9.744	78.036	0.026	0.212	0.005	0.044	0.203	0.111	0.050	-0.0471
25	7.55	1.4408	21.0	0.37	0.1033	0.1583	9.285	74.119	0.025	0.201	0.005	0.042	0.193	0.109	0.048	-0.0482
26	7.55	1.4407	21.3	0.37	0.1033	0.1583	8.850	70.424	0.024	0.191	0.005	0.041	0.183	0.108	0.046	-0.0492
27	7.55	1.4396	21.6	0.37	0.1034	0.1582	8.419	66.767	0.023	0.181	0.005	0.039	0.173	0.106	0.045	-0.0504
28	7.55	1.4386	21.9	0.37	0.1035	0.1581	8.011	63.319	0.022	0.172	0.005	0.038	0.164	0.105	0.043	-0.0515
29	7.55	1.4352	22.2	0.37	0.1038	0.1578	7.578	59.673	0.021	0.162	0.005	0.036	0.154	0.103	0.042	-0.0529
30	7.55	1.4378	22.5	0.37	0.1036	0.1580	7.200	56.506	0.020	0.153	0.004	0.034	0.146	0.102	0.040	-0.0540

Muestra suelta, 7.6 kPa. Completo.

	Esfuerzo neto kPa	Relación de vacíos e	Gw (%)	Dr	λex	λcex	s (MPa) CRAS Hum	s (MPa) CRAS Sec	s (MPa) Hum Ajustada	s (MPa) Sec Ajustada	xs (MPa) Hum Ajustada	xs (MPa) Sec Ajustada	s (MPa) Escaneo	SFCBC 0	P'hum=Pc+xs (MPa)	Dε _v
31	7.55	1.4398	22.8	0.37	0.1034	0.1582	6.833	53.439	0.019	0.145	0.004	0.033	0.138	0.100	0.039	-0.0550
32	7.55	1.4408	23.1	0.37	0.1033	0.1583	6.472	50.433	0.018	0.137	0.004	0.032	0.130	0.099	0.038	-0.0562
33	7.55	1.4424	23.4	0.37	0.1031	0.1585	6.142	47.692	0.017	0.129	0.004	0.030	0.122	0.098	0.036	-0.0573
34	7.55	1.4430	23.8	0.37	0.1030	0.1586	5.817	45.002	0.016	0.122	0.004	0.029	0.115	0.096	0.035	-0.0585
35	7.55	1.4466	24.1	0.37	0.1027	0.1589	5.555	42.839	0.015	0.116	0.004	0.028	0.110	0.095	0.034	-0.0594
36	7.55	1.4478	24.4	0.37	0.1025	0.1591	5.273	40.522	0.014	0.110	0.003	0.027	0.104	0.094	0.033	-0.0605
37	7.55	1.4489	24.7	0.37	0.1024	0.1592	5.007	38.347	0.014	0.104	0.003	0.026	0.098	0.093	0.032	-0.0616
38	7.55	1.4493	25.0	0.36	0.1024	0.1592	4.746	36.221	0.013	0.098	0.003	0.025	0.092	0.092	0.031	-0.0628
39	7.55	1.4496	25.4	0.36	0.1023	0.1593	4.499	34.212	0.012	0.093	0.003	0.024	0.087	0.091	0.030	-0.0640
40	7.55	1.4496	25.7	0.36	0.1023	0.1593	4.263	32.300	0.012	0.088	0.003	0.023	0.082	0.090	0.029	-0.0652
41	7.55	1.4493	26.1	0.36	0.1024	0.1592	4.038	30.482	0.011	0.083	0.003	0.022	0.077	0.089	0.028	-0.0664
42	7.55	1.4493	26.4	0.36	0.1024	0.1592	3.829	28.798	0.010	0.078	0.003	0.021	0.073	0.088	0.027	-0.0676
43	7.55	1.4411	26.9	0.37	0.1032	0.1584	3.546	26.536	0.010	0.072	0.003	0.019	0.067	0.087	0.026	-0.0699
44	7.55	1.4315	27.4	0.37	0.1042	0.1574	3.271	24.343	0.009	0.066	0.002	0.018	0.061	0.085	0.024	-0.0723
45	7.55	1.4319	27.8	0.37	0.1042	0.1574	3.074	22.781	0.008	0.062	0.002	0.017	0.057	0.084	0.024	-0.0737
46	7.55	1.4323	28.2	0.37	0.1041	0.1575	2.890	21.328	0.008	0.058	0.002	0.016	0.054	0.084	0.023	-0.0750
47	7.55	1.4357	28.6	0.37	0.1038	0.1578	2.743	20.170	0.007	0.055	0.002	0.016	0.051	0.083	0.022	-0.0759
48	7.55	1.4395	28.9	0.37	0.1034	0.1582	2.608	19.109	0.007	0.052	0.002	0.015	0.048	0.082	0.021	-0.0767
49	7.55	1.4404	29.3	0.37	0.1033	0.1583	2.459	17.945	0.007	0.049	0.002	0.014	0.045	0.082	0.021	-0.0779
50	7.55	1.4411	29.7	0.37	0.1032	0.1584	2.317	16.844	0.006	0.046	0.002	0.014	0.042	0.081	0.020	-0.0792
51	7.55	1.4424	30.1	0.37	0.1031	0.1585	2.189	15.850	0.006	0.043	0.002	0.013	0.040	0.080	0.019	-0.0803
52	7.55	1.4433	30.5	0.37	0.1030	0.1586	2.066	14.901	0.006	0.040	0.002	0.012	0.037	0.080	0.019	-0.0814
53	7.55	1.4474	30.8	0.37	0.1026	0.1590	1.970	14.162	0.005	0.038	0.002	0.012	0.035	0.079	0.018	-0.0821
54	7.55	1.4450	31.3	0.37	0.1028	0.1588	1.841	13.178	0.005	0.036	0.002	0.011	0.033	0.078	0.018	-0.0836
55	7.55	1.4462	31.8	0.37	0.1027	0.1589	1.715	12.217	0.005	0.033	0.001	0.011	0.030	0.078	0.017	-0.0849
56	7.55	1.4466	32.3	0.37	0.1027	0.1589	1.595	11.300	0.004	0.031	0.001	0.010	0.028	0.077	0.017	-0.0863
57	7.55	1.4476	32.8	0.37	0.1025	0.1591	1.486	10.481	0.004	0.028	0.001	0.009	0.026	0.077	0.016	-0.0875
58	7.55	1.4500	33.2	0.36	0.1023	0.1593	1.392	9.770	0.004	0.027	0.001	0.009	0.024	0.076	0.016	-0.0885
59	7.55	1.4514	33.7	0.36	0.1021	0.1595	1.300	9.082	0.004	0.025	0.001	0.008	0.022	0.076	0.015	-0.0896
60	7.55	1.4545	34.1	0.36	0.1018	0.1598	1.221	8.493	0.003	0.023	0.001	0.008	0.021	0.075	0.015	-0.0905

,20

														8	9	
	Esfuerzo neto kPa	Relación de vacíos e	Gw (%)	Dr	λex	λcex	s (MPa) CRAS Hum	s (MPa) CRAS Sec	s (MPa) Hum Ajustada	s (MPa) Sec Ajustada	xs (MPa) Hum Ajustada	xs (MPa) Sec Ajustada	s (MPa) Escaneo	SFCBC 0	P'hum=Pc+xs (MPa)	Dε _v
61	7.55	1.4555	34.6	0.36	0.1017	0.1599	1.139	7.891	0.003	0.021	0.001	0.007	0.019	0.075	0.014	-0.0916
62	7.55	1.4558	35.1	0.36	0.1017	0.1599	1.061	7.313	0.003	0.020	0.001	0.007	0.018	0.074	0.014	-0.0927
63	7.55	1.4562	35.6	0.36	0.1017	0.1599	0.989	6.782	0.003	0.018	0.001	0.007	0.017	0.074	0.013	-0.0938
64	7.55	1.4567	36.1	0.36	0.1016	0.1600	0.922	6.295	0.003	0.017	0.001	0.006	0.015	0.073	0.013	-0.0949
65	7.55	1.4592	36.6	0.36	0.1013	0.1603	0.866	5.887	0.002	0.016	0.001	0.006	0.014	0.073	0.013	-0.0956
66	7.55	1.4596	37.1	0.36	0.1013	0.1603	0.808	5.465	0.002	0.015	0.001	0.005	0.013	0.073	0.012	-0.0966
67	7.55	1.4623	37.6	0.36	0.1010	0.1606	0.746	5.015	0.002	0.014	0.001	0.005	0.012	0.072	0.012	-0.0975
68	7.55	1.4647	38.2	0.36	0.1008	0.1608	0.687	4.598	0.002	0.012	0.001	0.005	0.011	0.072	0.012	-0.0983
69	7.55	1.4654	38.9	0.36	0.1007	0.1609	0.630	4.190	0.002	0.011	0.001	0.004	0.010	0.072	0.011	-0.0994
70	7.55	1.4689	39.4	0.36	0.1003	0.1613	0.584	3.862	0.002	0.010	0.001	0.004	0.009	0.071	0.011	-0.1000
71	7.55	1.4739	39.9	0.35	0.0998	0.1618	0.544	3.583	0.001	0.010	0.001	0.004	0.009	0.071	0.011	-0.1004
72	7.55	1.4765	40.5	0.35	0.0995	0.1621	0.503	3.295	0.001	0.009	0.001	0.004	0.008	0.071	0.011	-0.1010
73	7.55	1.4769	41.1	0.35	0.0995	0.1621	0.461	3.003	0.001	0.008	0.001	0.003	0.007	0.071	0.011	-0.1019
74	7.55	1.4778	41.7	0.35	0.0994	0.1622	0.424	2.743	0.001	0.007	0.000	0.003	0.007	0.070	0.010	-0.1027
75	7.55	1.4784	42.4	0.35	0.0994	0.1622	0.389	2.503	0.001	0.007	0.000	0.003	0.006	0.070	0.010	-0.1035
76	7.55	1.4805	42.9	0.35	0.0991	0.1625	0.359	2.299	0.001	0.006	0.000	0.003	0.006	0.070	0.010	-0.1040
77	7.55	1.4798	43.6	0.35	0.0992	0.1624	0.328	2.087	0.001	0.006	0.000	0.002	0.005	0.070	0.010	-0.1048
78	7.55	1.4798	43.6	0.35	0.0992	0.1624	0.328	2.087	0.001	0.006	0.000	0.002	0.005	0.070	0.010	-0.1048
79	7.55	1.4818	48.4	0.35	0.0990	0.1626	0.168	1.019	0.0005	0.003	0.000	0.001	0.002	0.069	0.009	-0.1090
80	7.55	1.4844	53.3	0.35	0.0987	0.1629	0.085	0.494	0.0002	0.001	0.000	0.001	0.001	0.068	0.008	-0.1114
81	7.55	1.4988	57.6	0.34	0.0972	0.1644	0.045	0.251	0.0001	0.001	0.000	0.000	0.001	0.068	0.008	-0.1113
82	7.55	1.5157	61.8	0.33	0.0955	0.1661	0.024	0.127	6.53E-05	3.46E-04	4.03E-05	2.13E-04	3.03E-04	0.067	0.008	-0.1103
83	7.55	1.5277	66.0	0.33	0.0942	0.1674	0.012	0.061	3.27E-05	1.65E-04	2.16E-05	1.09E-04	1.44E-04	0.067	0.008	-0.1095
84	7.55	1.5327	70.6	0.32	0.0937	0.1679	0.005	0.026	1.48E-05	7.02E-05	1.04E-05	4.96E-05	6.13E-05	0.067	0.008	-0.1092
85	7.55	1.5359	75.2	0.32	0.0934	0.1682	0.002	0.010	6.00E-06	2.68E-05	4.51E-06	2.01E-05	2.34E-05	0.067	0.008	-0.1090
86	7.55	1.5503	79.1	0.32	0.0919	0.1697	0.001	0.004	2.46E-06	1.03E-05	1.95E-06	8.16E-06	8.97E-06	0.067	0.008	-0.1075
87	7.55	1.5578	83.4	0.31	0.0911	0.1705	0.0003	0.001	7.96E-07	3.07E-06	6.64E-07	2.56E-06	2.67E-06	0.067	0.008	-0.1067
88	7.55	1.5636	87.8	0.31	0.0905	0.1711	0.0001	0.0002	1.89E-07	6.59E-07	1.66E-07	5.78E-07	5.72E-07	0.067	0.008	-0.1061
89	7.55	1.5695	92.1	0.31	0.0899	0.1717	0.00001	0.00003	2.61E-08	7.89E-08	2.41E-08	7.26E-08	6.83E-08	0.067	0.008	-0.1054
90	7.55	1.5803	96.1	0.30	0.0888	0.1728	4.43E-07	1.07E-06	1.20E-09	2.90E-09	1.16E-09	2.79E-09	2.51E-09	0.067	0.008	-0.1042
91	7.55	1.5942	99.8	0.29	0.0874	0.1742	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.067	0.008	-0.1027

Etapa	Esfuerzo kPa	Lectura	Σ Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformació n unitaria ε (%)	ε _{v (Exp)}	Gw (%)	s escaneo (MPa)	Dε _{v teoría}	ε _{v (Teoría)}
Carga	1	1	0	18.74	1.4608	0.000		17.73	0.3788	-0.0343	
Carga	5.153	0.9	-0.1	18.64	1.4476	-0.534		17.89	0.3635	-0.0357	
Carga	7.550	0.853	-0.147	18.593	1.4415	-0.784	0.0000	17.97	0.3530	-0.0367	0
1er increm.	7.550	0.805	-0.195	18.545	1.4352	-1.041	-0.0026	22.18	0.1542	-0.0529	0.0529
2do increm.	7.550	0.777	-0.223	18.517	1.4315	-1.190	-0.0041	27.43	0.0614	-0.0723	0.1252
3er increm.	7.550	0.88	-0.12	18.62	1.4450	-0.640	0.0015	31.28	0.0327	-0.0836	0.2088
4to increm.	7.550	0.991	-0.009	18.731	1.4596	-0.048	0.0074	37.07	0.0133	-0.0966	0.3054
5to increm.	7.550	1.145	0.145	18.885	1.4798	0.774	0.0157	43.59	0.0050	-0.1048	0.4102
Inundación	7.550	2.016	1.016	19.756	1.5942	5.422	0.0626	99.78	0.0000	-0.1027	0.5129
Descarga	1.000	2.322	1.322	20.062	1.6344	7.054					

Muestra suelta, 7.6 kPa. Resumen.

Muestra suelta, 50 kPa. Resumen.

				C							
	Esfuerzo kPa	Lectura	Σ Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformació n unitaria ε (%)	٤ _v (Exp)	Gw (%)	s (MPa)	Dε _{v teoría}	ε v (Teoría)
	1	0.7	0.000	16.073	1.523	0.000		18.6	0.283252	-0.0018	
	49.87	0.6601	-1.013	15.060	1.363	-6.305	0	20.8	0.178303	-0.0035	0.0000
1er increm.	49.87	0.6452	-1.392	14.681	1.304	-8.660	-0.025	36.0	0.029787	-0.0044	0.0044
2do increm.	49.87	0.6368	-1.605	14.468	1.271	-9.987	-0.039	51.2	0.002676	-0.0043	0.0088
3er increm.	49.87	0.6251	-1.902	14.171	1.224	-11.836	-0.059	67.2	0.000484	-0.0044	0.0131
4to increm.	49.87	0.6157	-2.141	13.932	1.187	-13.322	-0.075	83.0	0.000012	-0.0045	0.0176
5to increm.	49.87	0.6153	-2.151	13.922	1.185	-13.385	-0.076	97.9	4.09E-08	-0.0045	0.0221
Inundación	49.87	0.6147	-2.167	13.907	1.183	-13.480	-0.077	100.0	0.00E+00	-0.0045	0.0266
Descarga 1	38.78	0.616	-2.134	13.940	1.188	-13.274					
Descarga 2	26.01	0.6182	-2.078	13.996	1.196	-12.927					
Descarga 3	1	0.6368	-1.605	14.468	1.271	-9.98722522					

															A)		
000000000000000000000000000000000000000	Esfuerzo neto kPa	Relación de vacíos e	Gw (%)	Dr	λex	λcex	Mue s (MPa) CRAS Hum	Stra SUE s (MPa) CRAS Sec	lta, 203 s (MPa) Hum Ajustada	.6 kPa, s (MPa) Sec Ajustada	Comple xs (MPa) Hum Ajustada	tO. xs (MPa) Sec Ajustada	s (MPa) Escaneo	SFCBC 0	P'hum=Pc+ xs (MPa)	Δp ₀	SFCBC ₂	Dε _{v cex}
1	1.00	1.4999	18.8	0.34	0.0971	0.1645	13.647	111.777	0.037	0.307	0.007	0.058	0.306	0.116	0.261	0.14576	0.26144	-9.329E-05
2	203.60	1.3120	21.5	0.43	0.1166	0.1450	8.447	67.002	0.023	0.184	0.005	0.040	0.182	0.097	0.243	0.12282	0.22030	8.556E-03
3	203.60	1.3080	21.6	0.43	0.1170	0.1446	8.352	66.200	0.023	0.182	0.005	0.039	0.179	0.097	0.242	0.12237	0.21950	8.665E-03
4	203.60	1.3060	21.6	0.44	0.1172	0.1444	8.305	65.801	0.023	0.181	0.005	0.039	0.178	0.097	0.242	0.12215	0.21910	8.690E-03
5	203.60	1.3040	21.7	0.44	0.1174	0.1442	8.258	65.404	0.023	0.180	0.005	0.039	0.176	0.097	0.242	0.12193	0.21870	8.716E-03
6	203.60	1.2972	21.8	0.44	0.1181	0.1435	8.099	64.065	0.022	0.176	0.005	0.038	0.172	0.096	0.241	0.12118	0.21735	8.945E-03
7	203.60	1.2792	22.1	0.45	0.1200	0.1416	7.688	60.604	0.021	0.166	0.005	0.037	0.162	0.095	0.239	0.11921	0.21383	9.639E-03
8	203.60	1.2772	22.1	0.45	0.1202	0.1414	7.643	60.227	0.021	0.165	0.005	0.037	0.160	0.094	0.239	0.11899	0.21344	9.669E-03
9	203.60	1.2740	22.2	0.45	0.1205	0.1411	7.572	59.627	0.021	0.164	0.005	0.036	0.158	0.094	0.239	0.11865	0.21282	9.748E-03
10	203.60	1.2672	22.3	0.45	0.1212	0.1404	7.422	58.363	0.020	0.160	0.005	0.036	0.154	0.094	0.238	0.11792	0.21151	9.975E-03
11	203.60	1.2664	22.3	0.45	0.1213	0.1403	7.404	58.216	0.020	0.160	0.005	0.036	0.153	0.094	0.238	0.11783	0.21136	9.958E-03
12	203.60	1.2680	22.3	0.45	0.1212	0.1404	7.439	58.511	0.020	0.161	0.005	0.036	0.153	0.094	0.238	0.11800	0.21166	9.842E-03
13	203.60	1.2648	22.3	0.46	0.1215	0.1401	7.369	57.921	0.020	0.159	0.005	0.036	0.151	0.093	0.237	0.11766	0.21105	9.924E-03
14	203.60	1.2648	22.3	0.46	0.1215	0.1401	7.369	57.921	0.020	0.159	0.005	0.036	0.150	0.093	0.237	0.11766	0.21105	9.191E-03
15	203.60	1.2600	23.1	0.46	0.1220	0.1396	6.474	50.451	0.018	0.139	0.004	0.032	0.130	0.090	0.234	0.11324	0.20312	1.104E-02
16	203.60	1.2560	23.9	0.46	0.1224	0.1392	5.709	44.115	0.016	0.121	0.004	0.029	0.113	0.087	0.231	0.10934	0.19613	1.276E-02
17	203.60	1.2500	24.7	0.46	0.1230	0.1386	5.009	38.362	0.014	0.105	0.003	0.026	0.098	0.084	0.228	0.10566	0.18953	1.444E-02
18	203.60	1.2440	25.5	0.47	0.1236	0.1380	4.397	33.385	0.012	0.092	0.003	0.023	0.085	0.081	0.225	0.10236	0.18359	1.600E-02
19	203.60	1.2400	26.3	0.47	0.1241	0.1375	3.889	29.279	0.011	0.080	0.003	0.021	0.074	0.079	0.223	0.09953	0.17852	1.741E-02
20	203.60	1.2380	27.1	0.47	0.1243	0.1373	3.465	25.885	0.010	0.071	0.003	0.019	0.065	0.077	0.221	0.09710	0.17417	1.867E-02
21	203.60	1.2360	27.8	0.47	0.1245	0.1371	3.090	22.908	0.008	0.063	0.002	0.017	0.058	0.075	0.220	0.09491	0.17024	1.986E-02
22	203.60	1.2320	28.6	0.47	0.1249	0.1367	2.739	20.141	0.008	0.055	0.002	0.016	0.051	0.074	0.218	0.09280	0.16646	2.100E-02
23	203.60	1.2300	29.4	0.47	0.1251	0.1365	2.447	17.853	0.007	0.049	0.002	0.014	0.045	0.072	0.217	0.09101	0.16324	2.202E-02
24	203.60	1.2292	30.1	0.47	0.1252	0.1364	2.197	15.910	0.006	0.044	0.002	0.013	0.040	0.071	0.216	0.08943	0.16042	2.295E-02
25	203.60	1.2288	30.8	0.47	0.1252	0.1364	1.976	14.212	0.005	0.039	0.002	0.012	0.035	0.070	0.214	0.08802	0.15788	2.382E-02
26	203.60	1.2284	31.5	0.47	0.1253	0.1363	1.780	12.706	0.005	0.035	0.002	0.011	0.031	0.069	0.213	0.08673	0.15557	2.463E-02
27	203.60	1.2272	32.3	0.47	0.1254	0.1362	1.599	11.331	0.004	0.031	0.001	0.010	0.028	0.068	0.213	0.08552	0.15340	2.538E-02
28	203.60	1.2232	33.1	0.48	0.1258	0.1358	1.421	9.994	0.004	0.027	0.001	0.009	0.025	0.067	0.212	0.08431	0.15123	2.610E-02
29	203.60	1.2168	34.0	0.48	0.1265	0.1351	1.252	8.726	0.003	0.024	0.001	0.008	0.021	0.066	0.211	0.08313	0.14911	2.676E-02
30	203.60	1.1880	37.0	0.49	0.1294	0.1322	0.818	5.538	0.002	0.015	0.001	0.006	0.013	0.063	0.209	0.07996	0.14343	2.833E-02

Muestra suelta, 203.6 kPa, Completo.

														4	A,	5		
	Esfuerzo neto kPa	Relación de vacíos e	Gw (%)	Dr	λex	λcex	s (MPa) CRAS Hum	s (MPa) CRAS Sec	s (MPa) Hum Ajustada	s (MPa) Sec Ajustada	xs (MPa) Hum Ajustada	xs (MPa) Sec Ajustada	s (MPa) Escaneo	SFCBC 0	P'hum=Pc+ xs (MPa)	Δp₀	SFCBC ₂	Dε _{v cex}
30	203.60	1.1880	37.0	0.49	0.1294	0.1322	0.818	5.538	0.002	0.015	0.001	0.006	0.013	0.063	0.209	0.07996	0.14343	2.833E-02
31	203.60	1.1840	37.8	0.50	0.1299	0.1317	0.726	4.872	0.002	0.013	0.001	0.005	0.012	0.063	0.208	0.07926	0.14216	2.874E-02
32	203.60	1.1800	38.7	0.50	0.1303	0.1313	0.643	4.284	0.002	0.012	0.001	0.005	0.010	0.062	0.208	0.07862	0.14101	2.910E-02
33	203.60	1.1780	39.5	0.50	0.1305	0.1311	0.576	3.803	0.002	0.010	0.001	0.004	0.009	0.062	0.207	0.07808	0.14005	2.944E-02
34	203.60	1.1744	40.4	0.50	0.1309	0.1307	0.511	3.349	0.001	0.009	0.001	0.004	0.008	0.062	0.207	0.07756	0.13911	2.973E-02
35	203.60	1.1712	41.2	0.50	0.1312	0.1304	0.454	2.953	0.001	0.008	0.001	0.003	0.007	0.061	0.207	0.07709	0.13828	2.999E-02
36	203.60	1.1656	42.2	0.50	0.1318	0.1298	0.399	2.569	0.001	0.007	0.000	0.003	0.006	0.061	0.206	0.07663	0.13745	3.019E-02
37	203.60	1.1636	43.0	0.51	0.1320	0.1296	0.356	2.277	0.001	0.006	0.000	0.003	0.005	0.061	0.206	0.07627	0.13680	3.041E-02
38	203.60	1.1608	43.8	0.51	0.1323	0.1293	0.317	2.008	0.001	0.006	0.000	0.002	0.005	0.060	0.206	0.07593	0.13619	3.059E-02
39	203.60	1.1592	44.7	0.51	0.1324	0.1292	0.283	1.782	0.001	0.005	0.000	0.002	0.004	0.060	0.205	0.07563	0.13566	3.076E-02
40	203.60	1.1560	45.5	0.51	0.1328	0.1288	0.251	1.566	0.001	0.004	0.000	0.002	0.004	0.060	0.205	0.07535	0.13515	3.090E-02
41	203.60	1.1513	46.5	0.51	0.1333	0.1283	0.220	1.362	0.001	0.004	0.000	0.002	0.003	0.060	0.205	0.07507	0.13465	3.098E-02
42	203.60	1.1469	47.4	0.51	0.1337	0.1279	0.194	1.186	0.001	0.003	0.000	0.002	0.003	0.059	0.205	0.07482	0.13421	3.105E-02
43	203.60	1.1453	48.2	0.51	0.1339	0.1277	0.173	1.049	0.000	0.003	0.000	0.001	0.002	0.059	0.205	0.07463	0.13386	3.116E-02
44	203.60	1.1433	49.1	0.52	0.1341	0.1275	0.153	0.925	0.000	0.003	0.000	0.001	0.002	0.059	0.205	0.07445	0.13354	3.124E-02
45	203.60	1.1145	52.9	0.53	0.1371	0.1245	0.089	0.518	0.000	0.001	0.000	0.001	0.001	0.059	0.204	0.07383	0.13242	3.096E-02
46	203.60	1.1141	54.0	0.53	0.1371	0.1245	0.077	0.441	0.000	0.001	0.000	0.001	0.001	0.058	0.204	0.07370	0.13220	3.104E-02
47	203.60	1.1129	55.1	0.53	0.1372	0.1244	0.066	0.373	0.000	0.001	0.000	0.001	0.001	0.058	0.204	0.07359	0.13200	3.109E-02
48	203.60	1.1125	56.1	0.53	0.1373	0.1243	0.056	0.317	0.000	0.001	0.000	0.000	0.001	0.058	0.204	0.07349	0.13183	3.115E-02
49	203.60	1.1125	57.1	0.53	0.1373	0.1243	0.049	0.270	0.000	0.001	0.000	0.000	0.001	0.058	0.204	0.07341	0.13168	3.122E-02
50	203.60	1.1101	58.3	0.53	0.1375	0.1241	0.041	0.225	0.000	0.001	0.000	0.000	0.001	0.058	0.204	0.07333	0.13153	3.121E-02
51	203.60	1.1073	59.5	0.53	0.1378	0.1238	0.034	0.186	0.000	0.001	0.000	0.000	0.000	0.058	0.204	0.07326	0.13141	3.119E-02
52	203.60	1.1045	60.6	0.53	0.1381	0.1235	0.029	0.153	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07320	0.13130	3.116E-02
53	203.60	1.1009	61.9	0.54	0.1385	0.1231	0.024	0.125	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07315	0.13120	3.111E-02
54	203.60	1.0973	63.1	0.54	0.1389	0.1227	0.019	0.101	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07310	0.13112	3.105E-02
55	203.60	1.0685	68.9	0.55	0.1418	0.1198	0.007	0.036	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07296	0.13087	3.037E-02
56	203.60	1.0685	69.7	0.55	0.1418	0.1198	0.006	0.030	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07295	0.13085	3.038E-02
57	203.60	1.0681	70.6	0.55	0.1419	0.1197	0.005	0.026	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07294	0.13083	3.038E-02
58	203.60	1.0693	71.4	0.55	0.1418	0.1198	0.005	0.022	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07293	0.13082	3.042E-02
59	203.60	1.0713	72.1	0.55	0.1415	0.1200	0.004	0.019	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07293	0.13081	3.048E-02
60	203.60	1.0729	72.9	0.55	0.1414	0.1202	0.003	0.016	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07292	0.13079	3.052E-02

															, >			
	Esfuerzo neto kPa	Relación de vacíos e	Gw (%)	Dr	λex	λcex	s (MPa) CRAS Hum	s (MPa) CRAS Sec	s (MPa) Hum Ajustada	s (MPa) Sec Ajustada	xs (MPa) Hum Ajustada	xs (MPa) Sec Ajustada	s (MPa) Escaneo	SFCBC 0	P'hum=Pc+ xs (MPa)	Δp ₀	SFCBC ₂	Dε _{v cex}
61	203.60	1.0737	73.7	0.55	0.1413	0.1203	0.003	0.014	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07291	0.13078	3.055E-02
62	203.60	1.0649	75.2	0.55	0.1422	0.1194	0.002	0.010	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07290	0.13077	3.032E-02
63	203.60	1.0469	77.4	0.56	0.1441	0.1175	0.001	0.006	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07289	0.13075	2.984E-02
64	203.60	1.0405	78.7	0.57	0.1447	0.1169	0.001	0.004	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07289	0.13074	2.967E-02
65	203.60	1.0381	79.8	0.57	0.1450	0.1166	0.001	0.003	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07289	0.13074	2.961E-02
66	203.60	1.0361	80.8	0.57	0.1452	0.1164	0.001	0.002	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07289	0.13073	2.955E-02
67	203.60	1.0285	86.1	0.57	0.1460	0.1156	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07288	0.13072	2.935E-02
68	203.60	1.0285	87.1	0.57	0.1460	0.1156	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07288	0.13072	2.935E-02
69	203.60	1.0277	88.2	0.57	0.1461	0.1155	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07288	0.13072	2.933E-02
70	203.60	1.0289	89.1	0.57	0.1459	0.1157	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.058	0.204	0.07288	0.13072	2.936E-02
71	203.60	1.0289	90.1	0.57	0.1459	0.1157	2.59E-05	8.40E-05	7.12E-08	2.31E-07	6.41E-08	2.08E-07	1.77E-07	0.058	0.204	0.07288	0.13072	2.936E-02
72	203.60	1.0289	91.2	0.57	0.1459	0.1157	1.57E-05	4.92E-05	4.32E-08	1.35E-07	3.94E-08	1.23E-07	1.03E-07	0.058	0.204	0.07288	0.13072	2.936E-02
73	203.60	1.0289	92.2	0.57	0.1459	0.1157	9.01E-06	2.70E-05	2.47E-08	7.43E-08	2.28E-08	6.85E-08	5.66E-08	0.058	0.204	0.07288	0.13072	2.936E-02
74	203.60	1.0293	93.2	0.57	0.1459	0.1157	4.91E-06	1.41E-05	1.35E-08	3.87E-08	1.26E-08	3.61E-08	2.94E-08	0.058	0.204	0.07288	0.13072	2.938E-02
75	203.60	1.0293	94.2	0.57	0.1459	0.1157	2.38E-06	6.48E-06	6.53E-09	1.78E-08	6.15E-09	1.68E-08	1.35E-08	0.058	0.204	0.07288	0.13072	2.938E-02
76	203.60	1.0293	95.2	0.57	0.1459	0.1157	1.01E-06	2.58E-06	2.76E-09	7.08E-09	2.63E-09	6.74E-09	5.34E-09	0.058	0.204	0.07288	0.13072	2.938E-02
77	203.60	1.0313	96.1	0.57	0.1457	0.1159	4.30E-07	1.04E-06	1.18E-09	2.85E-09	1.14E-09	2.73E-09	2.14E-09	0.058	0.204	0.07288	0.13072	2.943E-02
78	203.60	1.0241	99.9	0.57	0.1464	0.1152	3.33E-13	2.89E-13	9.15E-16	7.92E-16	9.13E-16	7.91E-16	5.94E-16	0.058	0.204	0.07288	0.13072	2.924E-02
79	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02
80	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02
81	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02
82	203.60	1.0233	100.0	0.57	0.1465	0.1151	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.921E-02
83	203.60	1.0237	100.0	0.57	0.1465	0.1151	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.922E-02
84	203.60	1.0245	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.925E-02
85	203.60	1.0241	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.924E-02
86	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02
87	203.60	1.0241	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.924E-02
88	203.60	1.0241	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.924E-02
89	203.60	1.0241	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.924E-02
90	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02
91	203.60	1.0249	100.0	0.57	0.1464	0.1152	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.058	0.204	0.07288	0.13072	2.926E-02

Muestra suelta, 203.3 kPa. Resumen.

										0	
Etapa	Esfuerzo neto kPa	Lectura	Σ Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformación unitaria ε (%)	ε _{ν (Exp)}	Gw (%)	s (MPa)	Dε _{v teoría}	ε _{ν (Teoría)}
	1	0.6	0.000	15.880	1.500	0.000		18.8	0.305622	0.0000	0
Carga	203.60	0.5412	-1.494	14.386	1.265	-9.405	0	22.3	0.150038	0.0000	0.0000
1er increm.	203.60	0.5222	-1.976	13.904	1.189	-12.444	-0.034	36.2	0.021310	0.0268	-0.0268
2do increm.	203.60	0.5036	-2.449	13.431	1.114	-15.419	-0.066	51.9	0.002136	0.0312	-0.0580
3er increm.	203.60	0.4921	-2.741	13.139	1.068	-17.259	-0.087	68.0	0.000226	0.0310	-0.0890
4to increm.	203.60	0.4822	-2.992	12.888	1.029	-18.842	-0.104	85.0	0.000005	0.0296	-0.1186
5to increm.	203.60	0.481	-3.023	12.857	1.024	-19.034	-0.106	99.9	5.94E-16	0.0292	-0.1478
Inundación	203.60	0.4812	-3.018	12.862	1.025	-19.002	-0.106	100.0	0.00E+00	0.0293	-0.1771
Descarga 1	153.73	0.4836	-2.957	12.923	1.034	-18.618					
Descarga 2	102.49	0.487	-2.870	13.010	1.048	-18.074					
Descarga 3	1	0.519	-2.057	13.823	1.176	-12.9559194					

Muestra suelta, 621.3 kPa, Resumen.

Etapa	Esfuerzo kPa	Lectura	Σ Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformació n unitaria ε (%)	ε _{ν (Exp)}	Gw (%)	s (MPa)	Dε _{v teoría}	ε _{ν (Teoría)}
	1	6	0.000	15.890	1.495	0.000		18.7	0.313458	0.0000	
Carga	621.34	4.905	-2.781	13.109	1.059	-17.503	0	26.4	0.080247	0.0203	0.0000
1er increm.	621.34	4.521	-3.757	12.133	0.906	-23.642	-0.074	40.1	0.022972	0.0287	-0.0287
2do increm.	621.34	4.359	-4.168	11.722	0.841	-26.231	-0.106	53.2	0.001539	0.0309	-0.0596
3er increm.	621.34	4.215	-4.534	11.356	0.783	-28.533	-0.134	67.8	0.000282	0.0303	-0.0899
4to increm.	621.34	4.059	-4.930	10.960	0.721	-31.027	-0.164	85.3	0.000027	0.0291	-0.1191
5to increm.	621.34	4.013	-5.047	10.843	0.703	-31.762	-0.173	99.5	7.29E-10	0.0266	-0.1457
Inundación	621.34	4.012	-5.050	10.840	0.702	-31.778	-0.173	100.0	0.00E+00	0.0262	-0.1719
Descarga 1	569.96	4.019	-5.032	10.858	0.705	-31.666					
Descarga 2	518.58	4.055	-4.940	10.950	0.720	-31.091					
Descarga 3	1, (4.868	-2.875	13.015	1.044	-18.0949025					

Etapa	Esfuerzo neto (kPa)	Lectura	Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformació n unitaria ε (%)	ε _{v (Exp)}	Gw (%)	s (MPa)	Dε _{v teoría}	ε _{ν (Teoría)}
Carga	1.000	6	0	14.6333333	0.3940	0.000		75.121	1.4676	-0.01568677	
Carga	42.846	5.923	-0.1956	14.4378	0.3754	-1.337		78.84925639	1.3405	-0.01646667	
Carga	125.401	5.859	-0.1626	14.2752	0.3599	-1.111		80.80835212	1.2624	-0.01725723	
Carga	279.091	5.778	-0.2057	14.0695	0.3403	-1.406		83.94627264	1.1487	-0.01817756	
Carga	587.706	5.682	-0.2438	13.8256	0.3171	-1.666	0.0000	88.46904491	0.9766	-0.01963442	0
1er increm.	587.706	5.684	0.0051	13.8307	0.3175	0.035	0.0004	89.87730465	0.9165	-0.01725328	0.0173
2do increm.	587.706	5.698	0.0356	13.8663	0.3209	0.243	0.0029	90.45540607	0.8952	-0.01741924	0.0347
3er increm.	587.706	5.722	0.0610	13.9272	0.3267	0.417	0.0073	91.84702326	0.8162	-0.01790963	0.0526
4to increm.	587.706	5.708	-0.0356	13.8917	0.3233	-0.243	0.0048	94.3246322	0.6930	-0.01790963	0.0705
5to increm.	587.706	5.748	0.1016	13.9933	0.3330	0.694	0.0121	95.99728408	0.5969	-0.01790963	0.0884
Inundación	587.706	6.091	0.8712	14.8645	0.4160	5.954	0.0751	100	0.0000	-0.01790963	0.1063

Muestra compacta, 588 kPa. Resumen (SFCBC curva).

Muestra compacta, 2320 kPa. Resumen (SFCBC curva).

Etapa	Esfuerzo kPa	Lectura	Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Gw (%)	٤ _{v (Exp)}	s escaneo (MPa)	Dε _{v teor]ia}	ε _{v (Teoría)}
Carga	1	4	0	14.41	0.39858621	58.1586919		1.8611693	0.0000	
Carga	371.095	3.505	-0.4950	13.9150	0.3505	65.3935218		1.66093369	0.0000	
Carga	1089.08 kPa	2.695	-1.3050	13.1050	0.2719	72.4394098		1.46654548	0.0000	
Carga	2319.907	1.878	-2.1220	12.2880	0.1926	90.8740557	0.0000	0.87560013	0.0004	0
1er increm.	2319.907	1.8	-2.2000	12.2100	0.1851	94.3942652	-0.0063	0.70198015	0.0004	-0.0004
2do increm.	2319.907	1.722	-2.2780	12.1320	0.1775	95.3075786	-0.0127	0.64468459	0.0004	-0.0007
3er increm.	2319.907	1.822	-2.1780	12.2320	0.1872	96.1314863	-0.0046	0.64468459	0.0004	-0.0011
4to increm.	2319.907	1.893	-2.1070	12.3030	0.1941	98.4699374	0.0012	0.40561217	0.0007	-0.0018
5to increm.	2319.907	1.921	-2.0790	12.3310	0.1968	98.7120804	0.0035	0.40561217	0.0007	-0.0024
Inundación	2319.907	1.948	-2.0520	12.3580	0.1994	100	0.0057	0	0.0015	-0.0039

AL

			Muestra	Compac	ta, 2623 k	⟨Pa. Resu	men (SF(CBC curva	a).	A	
Etama	Esfuerzo	Lastura	Σ	Altura	Relación	Deformació	-	O (0()		D-	_
Етара	kPa	Lectura	n (mm)	muestra (mm)	de vacios e	n unitaria ɛ (%)	ε _{v (Exp)}	GW (%)	s (MPa)	Dε _{v teor]ia}	ε _ν (Teoría)
Carga	1.000	10	0	22.12	0.4094	0.000		75.407	1.3720	-1.24571E-05	
Carga	307.998	9.268	-0.7320	21.3880	0.3627	-3.309		81.546167	1.1468	2.48264E-05	
Carga	976.664	8.706	-1.2940	20.8260	0.3269	-5.850	•	88.1105315	0.9085	0.000254	
Carga	2622.610	7.502	-2.4980	19.6220	0.2502	-11.293	0.0000	92.4395583	0.7296	0.000479104	0
1er increm.	2622.610	7.512	-2.4880	19.6320	0.2508	-11.248	0.0005	92.7826166	0.7015	0.000475021	-0.0005
2do increm.	2622.610	7.615	-2.3850	19.7350	0.2574	-10.782	0.0058	94.339163	0.6178	0.000621257	-0.0011
3er increm.	2622.610	7.738	-2.2620	19.8580	0.2652	-10.226	0.0120	95.3579648	0.5553	0.000526531	-0.0016
4to increm.	2622.610	7.902	-2.0980	20.0220	0.2757	-9.485	0.0204	97.4644994	0.4456	0.000786115	-0.0024
5to increm.	2622.610	7.916	-2.0840	20.0360	0.2766	-9.421	0.0211	99.3533562	0.2390	0.001489618	-0.0039
Inundación	2622.610	8.132	-1.8680	20.2520	0.2903	-8.445	0.0321	100	0.0000	0.002802969	-0.0067

Muestra Compacta, 2623 kPa. Resumen (SFCBC curva).

Muestra Compacta, 588 kPa. Resumen (SFCBC recta).

Etapa	Esfuerzo kPa	Lectura	Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformació n unitaria ε (%)	٤ _{v (Exp)}	Gw (%)	s (MPa)	Dε _{v teor]ia}	ε _ν (Teoría)
Carga	1.000	6	0	14.6333333	0.3940	0.000		75.121	1.4676	0	
Carga	42.846	5.923	-0.1956	14.4378	0.3754	-1.337		78.84925639	1.3405	-0.00165846	
Carga	125.401	5.859	-0.1626	14.2752	0.3599	-1.111		80.80835212	1.2624	-0.0030517	
Carga	279.091	5.778	-0.2057	14.0695	0.3403	-1.406		83.94627264	1.1487	-0.00523284	
Carga	587.706	5.682	-0.2438	13.8256	0.3171	-1.666	0.0000	88.46904491	0.9766	-0.0093538	0
1er increm.	587.706	5.684	0.0051	13.8307	0.3175	0.035	0.0004	89.87730465	0.9165	-0.0094267	0.0094
2do increm.	587.706	5.698	0.0356	13.8663	0.3209	0.243	0.0029	90.45540607	0.8952	-0.00996318	0.0194
3er increm.	587.706	5.722	0.0610	13.9272	0.3267	0.417	0.0073	91.84702326	0.8162	-0.01088649	0.0303
4to increm.	587.706	5.708	-0.0356	13.8917	0.3233	-0.243	0.0048	94.3246322	0.6930	-0.01088649	0.0412
5to increm.	587.706	5.748	0.1016	13.9933	0.3330	0.694	0.0121	95.99728408	0.5969	-0.01088649	0.0520
Inundación	587.706	6.091	0.8712	14.8645	0.4160	5.954	0.0751	100	0.0000	-0.01088649	0.0629

Muestra Compacta, 588 kPa. Resumen (SFCBC recta).											
Etapa	Esfuerzo kPa	Lectura	Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Deformación unitaria ε (%)	ε _{v (Exp)}	Gw (%)	s (MPa)	Dε _{v teor]ia}	ε v (Teoría)
Carga	1.000	6	0	14.6333333	0.3940	0.000		75.121	1.4676	0	
Carga	42.846	5.923	-0.1956	14.4378	0.3754	-1.337		78.84925639	1.4676	-0.00165846	
Carga	125.401	5.859	-0.1626	14.2752	0.3599	-1.111	. • . (80.80835212	1.4676	-0.0030517	
Carga	279.091	5.778	-0.2057	14.0695	0.3403	-1.406		83.94627264	1.4676	-0.00523284	
Carga	587.706	5.682	-0.2438	13.8256	0.3171	-1.666	0.0000	88.46904491	1.4676	-0.0093538	0
1er increm.	587.706	5.684	0.0051	13.8307	0.3175	0.035	0.0004	89.87730465	0.9165	-0.0094267	0.0094
2do increm.	587.706	5.698	0.0356	13.8663	0.3209	0.243	0.0029	90.45540607	0.8952	-0.00996318	0.0194
3er increm.	587.706	5.722	0.0610	13.9272	0.3267	0.417	0.0073	91.84702326	0.8162	-0.01088649	0.0303
4to increm.	587.706	5.708	-0.0356	13.8917	0.3233	-0.243	0.0048	94.3246322	0.6930	-0.01088649	0.0412
5to increm.	587.706	5.748	0.1016	13.9933	0.3330	0.694	0.0121	95.99728408	0.5969	-0.01088649	0.0520
Inundación	587.706	6.091	0.8712	14.8645	0.4160	5.954	0.0751	100	0.0000	-0.01088649	0.0629

Muestra Compacta, 588 kPa. Resumen (SFCBC recta).

Muestra Compacta, 2320 kPa. Resumen (SFCBC recta).

Etapa	Esfuerzo kPa	Lectura	Deformació n (mm)	Altura muestra (mm)	Relación de vacíos e	Gw (%)	٤ _{v (Exp)}	s escaneo (MPa)	Dε _{v teor]ia}	ε _{v (Teoría)}
Carga	1	4	0	14.41	0.39858621	58.1586919		1.8611693	0.0000	
Carga	371.095	3.505	-0.4950	13.9150	0.3505	65.3935218		1.8611693	0.0000	
Carga	1089.08 kPa	2.695	-1.3050	13.1050	0.2719	72.4394098		1.8611693	-0.0001	
Carga	2319.907	1.878	-2.1220	12.2880	0.1926	90.8740557	0.0000	1.8611693	-0.0007	0
1er increm.	2319.907	1.8	-2.2000	12.2100	0.1851	94.3942652	-0.0063	0.70198015	-0.0049	0.0049
2do increm.	2319.907	1.722	-2.2780	12.1320	0.1775	95.3075786	-0.0127	0.64468459	-0.0055	0.0104
3er increm.	2319.907	1.822	-2.1780	12.2320	0.1872	96.1314863	-0.0046	0.64468459	-0.0055	0.0159
4to increm.	2319.907	1.893	-2.1070	12.3030	0.1941	98.4699374	0.0012	0.40561217	-0.0082	0.0241
5to increm.	2319.907	1.921	-2.0790	12.3310	0.1968	98.7120804	0.0035	0.40561217	-0.0082	0.0323
Inundación	2319.907	1.948	-2.0520	12.3580	0.1994	100	0.0057	0	-0.0137	0.0460

Etapa	Esfuerzo kPa	Lectura	Σ Deformació n (mm)	Altura muestra (mm)	Relación de vacíos	Deformació n unitaria ε (%)	ε _{ν (Exp)}	Gw (%)	s (MPa)	Dε _{v teor]ia}	ε v (Teoría)
Carga	1.000	10	0	22.12	0.4094	0.000		75.407	1.3720	-1.24571E-05	
Carga	307.998	9.268	-0.7320	21.3880	0.3627	-3.309		81.546167	1.3720	-0.000156741	
Carga	976.664	8.706	-1.2940	20.8260	0.3269	-5.850	٠	88.1105315	1.3720	-0.000304075	
Carga	2622.610	7.502	-2.4980	19.6220	0.2502	-11.293	0.0000	92.4395583	1.3720	-0.000256342	0
1er increm.	2622.610	7.512	-2.4880	19.6320	0.2508	-11.248	0.0005	92.7826166	0.7015	-0.000275852	0.0003
2do increm.	2622.610	7.615	-2.3850	19.7350	0.2574	-10.782	0.0058	94.339163	0.6178	-0.000351355	0.0006
3er increm.	2622.610	7.738	-2.2620	19.8580	0.2652	-10.226	0.0120	95.3579648	0.5553	-0.00680569	0.0074
4to increm.	2622.610	7.902	-2.0980	20.0220	0.2757	-9.485	0.0204	97.4644994	0.4456	-0.008179989	0.0156
5to increm.	2622.610	7.916	-2.0840	20.0360	0.2766	-9.421	0.0211	99.3533562	0.2390	-0.01105843	0.0267
Inundación	2622.610	8.132	-1.8680	20.2520	0.2903	-8.445	0.0321	100	0.0000	-0.0147182	0.0414
Genere irection											
	0,										112

Muestra Compacta, 2623 kPa. Resumen (SFCBC recta).