
Universidad Autónoma de Querétaro
Facultad de ingenierı́a
Automation Engineering

SCADA Hardware Framework based on Modular FPGA

THESIS

That as part of the requirements to obtain the degree of
Bachelor in Automation Engineering

Present:
Luis Ernesto Fernández Rodrı́guez

Main Advisor:
Dr. Juvenal Rodrı́guez Reséndiz

Committee Members

Dr. Juvenal Rodrı́guez Reséndiz
President

Dr. Moisés Agustı́n Martı́nez Hernández
Secretary

M.C. Carlos Miguel Torres Hernández
Vocal

Dr. Edgar Alejandro Rivas Araiza
Substitute

M.C. José Luis Avendaño Juárez
Substitute

Centro Universitario
Querétaro, Qro.
December, 2020

Dire
cc

ión
Gen

era
l d

e B
ibl

iot
ec

as
 U

AQ

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Declaration of Authorship

I, Luis Ernesto Fernández Rodrı́guez, declare that this thesis titled, ”SCADA Hardware Framework
based on Modular FPGA” and the work presented in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree at this
University.

• Where any part of this thesis has previously been submitted for a degree or any other quali-
fication at this University or any other institution, this has been clearly stated.

• Where I have consulted the published work of others, this is always clearly attributed.

• Where I have quoted from the work of others, the source is always given. With the exception
of such quotations, this dissertation is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made clear
exactly what was done by others and what I have contributed myself.

Luis Ernesto Fernández Rodrı́guez
Querétaro, Qro. December, 2020

c©2020 by Luis Ernesto Fernández Rodrı́guez
All Rights Reserved

i

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Dedication

I dedicate this thesis to my parents Arturo and Margarita.

I hope that this achievement will be proof
of the dream you had for me all those years ago

when you chose to give me the best education you could.

iii

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Acknowledgements

I would like to thank the following people who have helped me undertake this research:

My supervisors Dr. Juvenal Rodrı́guez Reséndiz and Dr. Moisés Agustı́n Martı́nez Hernández,
for their enthusiasm for the project, for their support, encouragement and lots of patience. Thanks
for the opportunity to start working on projects for the university.

The Autonomous University of Querétaro, for input throughout this Bachelor programme.

Professor José Luis Avendaño Juárez for his constant care since the moment he encouraged
me to enter the faculty of engineering when I stumbled into the lab one day.

To my committee members for taking the time to read my thesis and their valuable comments
that enriched my project.

To my dear ”kommilitone”, fellow class mates, and friends thanks to all of you the restless
nights and long days at the lab where never dull even if we were always striving to surpass each
other.

To my brother who offered my invaluable support on during the good and the bad moments
of my life.

To my grand parents who gave me all their support and care but were not able to see the
project all the way to the end.

And to my loving parents, who set me off on the road to this Bachelors degree and in the
pursuit of a doctor’s degree a long time ago.

To everyone involved and who accompanied me throughout this journey, I would like to
express my deepest gratitude to all those who have been side by side with me, along the long, but
also short hours.

v

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

SCADA Hardware Framework based on Modular FPGA
by

Luis Ernesto Fernández Rodrı́guez

Abstract

This project describes the hardware design of a Supervision, Control and Monitoring System,
SCADA, implemented by means of a Field Programmable Gate Array, FPGA. Implementing an
FPGA allows the end user to tailor the controller to the application, with capabilities such as par-
allel processing, reconfiguration, and deployment of hardware accelerators. In an industrial envi-
ronment this entails a system that is more economical than the commercially available alternatives
(PLCs, SCADAs and distributed control systems), up to 90 % considering the cost of developing
the prototype, and with a flexible, adaptable architecture and higher performance. The proposed
hardware consists of four parts, analog and digital input and output cards, communications, and a
base board connected to the FPGA.

As presented on the results this project serves as proof of concept and a basis to continue
development of the controller with the necessary improvements and corrections to improve signal
integrity on the hardware. Its performance in response time is a testament of the improvements
provided by the use of a FPGA along with the modularity that allows to port the FPGA in between
prototypes saving the additional cost implicated on the device.

Keywords:

• ASIC: Application Specific Integrated Circuits are used to implement both analog and digital func-
tionalities in high volume or high performance. ASICs require higher development costs in order to
be designed and implemented and are not reprogrammable.

• FPGA: Field Programmable Gate Array is a semiconductor IC where a large majority of the electrical
functionality can be changed even after the equipment has been shipped out in the ‘field’.

• HDL: A Hardware Description Language is a programming language used to describe the behavior or
structure of digital circuits (ICs). HDLs are also used to stimulate the circuit and check its response.
Many HDLs are available, such as VHDL and Verilog.

• IP Core: An Intellectual Property Core is a block of logic or data that is used in making a FPGA
or ASIC design. Essentially they are reusable and portable elements that can be inserted into any
vendor technology or design methodology as soft cores, hard cores or firm cores to easily implement
functionality.

• PLC: Stands for Programmable Logic Controller. They are industrial computers used to control
different electro-mechanical processes in many automation environments.

• RLC: Reconfigurable Logic Controller are industrial Automation controllers based on FPGA tech-
nology.

vii

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

• SCADA: Acronym for Supervisory Control and Data Acquisition is a system of software and hard-
ware elements that allow industrial organizations to have complete control and overview of their
productive processes.

• Soft Processor: A Soft Core Processor is a reusable hardware module in the form of synthesizable
HDL code. On FPGA devices soft cores are implemented using programmable logic resources, as
opposed to hard cores baked into the silicon of the IC.

viii

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

List of Figures

1.1 Strengths of FPGAs . 2
1.2 Weaknesses of FPGAs . 3
1.3 Single-Chip PLC Development Platform (ARM Architecture) 3
1.4 NI RIO platform . 4

3.1 General structure of an FPGA. 14
3.2 Nios II core configuration. 16
3.3 JTAG UART configuration. 16
3.4 On-Chip memory configuration. 17
3.5 System ID configuration. 17
3.6 PLL configuration. 17

4.1 System architecture centred on NIOS II soft-processor . 21
4.2 Interconnection base overview . 22
4.3 Digital I/O module architecture . 23
4.4 Analog I/O module architecture . 23
4.5 Communications module architecture . 23
4.6 Base board version 2 block diagram . 24
4.7 Motor control module boardarchitecture . 25
4.8 Adapter for new connector and EEPROMs . 25
4.9 Front panel interface block diagram . 25
4.10 Basic Configuration required for NIOS II processor . 26
4.11 Complete configuration of the NIOS II used for the project 27
4.12 Header files for abstraction functions . 28

5.1 Assembly and functional validation tests . 30
5.2 Digital outputs test data . 30
5.3 Digital inputs test data . 31
5.4 DAC test data . 31
5.5 ADC test data . 31
5.6 Digital outputs test data . 33
5.7 Digital input test data . 33
5.8 DAC test data . 34
5.9 ADC test data . 34
5.10 Response time test data . 35
5.11 Stress test data frames . 35
5.12 Voltage spikes on the data lines . 36

A.1 Base Board Schematic Diagram . 41

ix

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.2 Expansion Bay Schematic Diagram . 42
A.3 HMI Add-on Schematic Diagram . 42
A.4 Communication Module Schematic Diagram . 43
A.5 Digital I/O Module Schematic Diagram . 44
A.5 Digital I/O Module Schematic Diagram . 45
A.6 Analog I/O Module Schematic Diagram . 45
A.7 Power Delivery Module Schematic Diagram . 46
A.8 Base Board Schematic Diagram . 47
A.8 Base Board Schematic Diagram . 48
A.9 Expansion Bay Schematic Diagram . 48
A.9 Expansion Bay Schematic Diagram . 49
A.10 Front Panel Schematic Diagram . 50
A.10 Front Panel Schematic Diagram . 51
A.11 EEPROM Adapter Schematic Diagram . 51
A.12 Motor Controller Module Schematic Diagram . 52
A.13 4 Phase Inverter Schematic Diagram . 52

B.1 Interconnection Base Board PCB . 53
B.2 Communication Module PCB . 54
B.3 Digital I/O Module PCB . 54
B.4 Analog I/O Module PCB . 55
B.5 Power delivery module PCB . 55
B.6 Interconnection Base Board PCB . 56
B.7 Front Panel PCB . 57
B.8 EEPROM Adapter PCB . 57
B.9 Motor control module PCB . 58

C.1 Platform Designer Configuration . 59

x

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

List of Tables

2.1 Previous works at the university. 7
2.2 Previous related works. 9

3.1 FPGA innovation features. 14
3.2 Advantages of FPGAs over ASICs. 15

E.1 Financial estimate. 67

xi

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Contents

Abstract vii

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Justification and Motivation . 2
1.2 Problem Statement and Context . 3
1.3 Hypothesis . 4
1.4 Objectives . 5

1.4.1 General Objective . 5
1.4.2 Specific Objectives . 5

1.5 Thesis Overview . 5

2 Literature Review 7
2.1 Previous Works at UAQ . 7
2.2 Main References in Literature . 9

3 Theoretical Framework 11
3.1 Overview of a SCADA . 11
3.2 Characteristics of a SCADA System . 11
3.3 Benefits and Requirements of a SCADA . 12
3.4 Hardware Components . 13
3.5 Reconfigurable Computing . 13
3.6 FPGA . 14
3.7 Embedded IP . 15

3.7.1 Nios II processor . 16
3.7.2 JTAG UART . 16
3.7.3 On-Chip Memory . 17
3.7.4 System-ID . 17
3.7.5 Clock Source and PLL . 17

4 Methods 19
4.1 Specification . 19

4.1.1 Software . 19
4.1.2 Hardware and Equipment . 19

4.2 Design . 20

xiii

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

4.2.1 Architecture . 20
4.2.2 Hardware Proposal . 21

4.3 Implementation . 22
4.3.1 First Prototype . 22
4.3.2 Second Prototype . 24
4.3.3 Programming and Implementation of NIOS II Processor 26
4.3.4 IP Block Design for Peripheral Interfaces . 26

5 Results 29
5.1 Functional Validation . 29

5.1.1 Modules Communication Data Frames . 30
5.1.2 NIOS II and Peripheral controller Test . 32

5.2 Performance Verification . 34
5.2.1 Response Time . 34
5.2.2 Stress Tests . 35

5.3 Results Analysis . 36
5.4 Future Works . 37

6 Conclusions 39

A Circuit Diagrams 41
A.1 First Prototype . 41
A.2 Second Prototype . 47

B PCB Design 53
B.1 First Prototype . 53
B.2 Second Prototype . 56

C Platform Designer Code 59
C.1 HDL top module for NIOS II processor test . 60
C.2 Example test code for NIOS II processor . 61

D ATmega 328p test Code 63
D.1 Digital I/O Test . 63
D.2 DAC Test . 65
D.3 ADC Test . 66

E Financial Statement 67

Bibliography 72

xiv

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 1

Introduction

When it comes to machine control, engineers today have more technology choices than ever: programmable
logic controllers (PLCs), motion controllers, programmable automation controllers (PACs), industrial PCs,
and even embedded solutions like field-programmable gate arrays (FPGAs). Before you swim through the
alphabet soup to make a decision, you have to know where to start. As every controller’s architecture is
specifically designed with a certain application scenario in mind and continuously advance and innovate
into new and more powerful solutions.

For decades, automation depended on electromechanical relays as the primary control fabric. Relays
were basically designed to turn things off and on. As a result, even control of a simple task required nested
layers of relays: one relay to turn the equipment on and off and a second relay to turn the power off and on
to that first relay. Each had to be wired independently. Except for the most simple designs, systems quickly
became expensive, complex, and power-hungry, as well as consuming a significant amount of space for the
cabinet alone. Even worse, those walls of relays offered little flexibility. Making changes to the function
or operating parameters of the machine typically required wholesale changes to the hardware, which was
expensive, time-consuming, and difficult.

As time moved on relay based technology was eventually replaced by the programmable logic con-
troller (PLC) as a more flexible, robust, and compact alternative. The PLC is a ruggedized control device
consisting of a microprocessor and memory, along with select peripherals. Initial devices were programmed
using ladder logic, to make them user-friendly to electricians accustomed to relays. More recently, in keep-
ing with the EIC 61131 standard, they can be programmed with a variety of other languages, including
structured text and function block.

PLCs are good at tasks like counting and timing, and managing I/O. However more computationally
demanding applications are not properly fulfilled or accomplished with such devices. Alternatives to solve
this problem like distributed control systems (DCSs), which offload certain process-control functionality to
dedicated subsystems, and PC based solutions, like SCADA systems which use a collection of hardware and
software tools to provide higher capabilities in terms of control and monitoring. Effective SCADA systems
can result in significant savings of time and money. Numerous case studies have been published highlighting
the benefits and savings of using a modern SCADA software solutions.

As new alternatives lately, embedded control systems have emerged. Devices that leverage field pro-
grammable gate arrays (FPGAs) to customize performance using hardware rather than software in order
to satisfy unusual requirements that can’t be satisfied by conventional control solutions. FPGAs provide
a more accessible solution than the more expensive and difficult-to-develop application-specific integrated
circuit (ASIC). The approach can be used to address one-off, high-performance projects that can’t be ad-
dressed with a conventional solutions. Alternatively, FPGAs can be used to offload tasks like control logic
and I/O triggering in highly complex systems, freeing CPU cycles to handle more complex tasks. Industrial

1

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://library.e.abb.com/public/81478a314e1386d1c1257b1a005b0fc0/2101127.pdf

2 CHAPTER 1. INTRODUCTION

automation systems are in the advent of embedded single chip solutions with the capability to satisfy today’s
requirements and through reconfiguration provided by the use of FPGAs, those of problems to come.

1.1 Justification and Motivation
Automation systems have become very complex to achieve better performance, faster turnaround times,
reduce waste, and downtime. Current equipment requires various functionalities, such as predictive mainte-
nance, intelligent fault handling, fast response times or custom control algorithms, in addition to logical or
process control.

This functionality is difficult to implement in traditional PLC-based architectures. Machines now a
days need a combination of embedded systems and PLCs to deliver the expected functionality and perfor-
mance.

Recently, the flexibility and benefits of FPGA technology have been demonstrated to carry out Recon-
figurable Logic Controllers (RLCs) to implement parallel control strategies naturally. The implementation
of SCADA and PLC systems according to the standard EIC 61131-3 [3] in FPGAs as demonstrated in works
[17] and [5] allows to obtain shorter response times as well as to perform multiple tasks in parallel.

PLCs and SCADA hardware are widely used in the industrial market. This coupled with the need
to continually improve your processes makes the deployment of reconfigurable hardware solutions an ideal
alternative. Implementing controllers with FPGAs has advantages such as:

Figure 1.1: Strengths of FPGAs

• Parallel data processing: (such as multiple PID loops, multiple simultaneous analog-to-digital con-
version channels or multiple processors as demonstrated in [9] with its multi-core PLC system).

• They are deterministic systems with high response speeds. (as shown in [14] with its remote terminal
unit).

• Signal processing: (including digital filtering, demodulation, detection algorithms, frequency do-
main processing, image processing, or control algorithms).

• Controller reconfiguration according to the needs of the application (implementation of hardware
accelerators)

These are all factors that make reconfigurable logic implementation a viable and highly competitive
alternative.

With any significant benefit, there is often a corresponding drawback. In the case of FPGAs, the
following are generally the main disadvantages of these kind of solutions.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://library.e.abb.com/public/81478a314e1386d1c1257b1a005b0fc0/2101127.pdf

1.2. PROBLEM STATEMENT AND CONTEXT 3

Figure 1.2: Weaknesses of FPGAs

• Complex calculations performed infrequently: if most of the implemented algorithms need to make
computations less than 1 % of the time, logical resources are still allocated for each particular function
even if they are kept idle.

• Sort/Find: These are processes of a sequential nature. There are algorithms that try to reduce the
amount of computation involved, but in general, this is a sequential process that does not lend itself
easily to the efficient use of parallel logical resources.

• Floating point arithmetic: The basic arithmetic elements within an FPGA are fixed point binary
elements. In some cases, floating point calculations can be achieved, but will consume a lot of logical
resources. There are certain exceptions, the floating point DSP blocks built into some FPGAs like the
Aria Series from Altera.

• Very low power: some FPGAs have low power modes (hibernate and/or suspend) to help reduce
current consumption. However, if power consumption is critical, generally a better option are low-
power architecture microprocessors or microcontrollers.

• Very low cost: While FPGA costs have dropped dramatically in the past decade, they are generally
more expensive than sequential processors.

1.2 Problem Statement and Context
Industrial automation consists of governing the activity and evolution of processes without the continuous
intervention of a human operator. In recent years, systems called SCADA has been developed, through
which the different variables that occur in a process or plant can be supervised and controlled. For this,
various peripherals, application software, remote units, PLCs, communication systems, etc. must be used,
which allow the operator to have full access to the process through a computer screen.

Figure 1.3: Single-Chip PLC Development Platform (ARM Architecture)

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://www.intel.com/content/www/us/en/industrial-automation/programmable/applications/automation/programmable-logic-controller.html

4 CHAPTER 1. INTRODUCTION

The programmable logic control systems employed range from small compact PLCs to high-end PLCs
that can control thousands of nodes, their architecture must be scalable and flexible to accommodate size and
performance requirements together. In order to implement hardware platforms with these characteristics and
that allow the end user to adapt the controller according to the application, it is required to combine a high-
performance application processor with a programmable logical network, such as those found in modern
FPGAs, for customization and implementation of purpose specific hardware.

Although FPGAs are often used embedded in industrial automation control products, they do not
provide access to the full functionality of the FPGA. There are products available in the market as the
CompactRIO from National Instruments, controllers with a processor and FPGA, programmable by the user
through the LabVIEW software suite and through modules provide connectivity and special functions. The
CompactRIO architecture is made up of three main parts:

• The embedded real-time controller.

• The interconnect base containing the FPGA and communication peripherals.

• Interchangeable I/O modules.

Figure 1.4: NI RIO platform

NI RIO technology reduces the complexity of embedded hardware and of low-level and Hardware
Description Languages (HDL) to provide easy, yet powerful, access to FPGAs. However, the system is
closed architecture and prevents the end user from directly accessing the FPGA without using LabVIEW or
developing their own expansion modules.

Hence the relevance of research and development of open architecture hardware for the implementa-
tion of SCADA systems. In this way the objective of the product resulting from the research is that it can be
continued by other researchers and in the future develop a low-cost alternative commercial system open to
the user.

1.3 Hypothesis

A SCADA type hardware system based on reconfigurable logic is capable of generating high performance
tasks in scalable environments, while reducing the cost with respect to similar commercial architectures
(PLCs, SCADAs and Distributed Control Systems), up to a 90% considering the cost of development of the
prototype.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://www.ni.com/en-us/shop/compactrio.html
https://www.ni.com/en-us/shop/compactrio.html

1.4. OBJECTIVES 5

1.4 Objectives

1.4.1 General Objective
Develop a modular monitoring, control and data acquisition system (SCADA) using a reconfigurable logic
device as the main controller, so that MSMEs have access to cutting-edge technology.

1.4.2 Specific Objectives
• Develop hardware modules for system expansion (communications, digital and analog inputs and

outputs)

• Design the main controller, its architecture and interface with the modules, using a reconfigurable
FPGA logic system with the focus on modularity and reconfiguration.

• Manufacture a functional prototype of the system, as well as its documentation for future development
of expansion modules or further developments.

• Document of design guidelines for expansion modules.

• Validation of the correct operation of the hardware in an applied environment.

1.5 Thesis Overview
The present thesis is structured in the following manner.

• Chapter 2 details through references to researchers and authors the theoretical bases and past projects
related to this work.

• Chapter 3 exposes the theoretical framework of the different aspects approached by the project.

• Chapter 4 describes a methodology that starts from the architecture and hardware design and con-
tinues onward with its execution on two hardware prototypes and implementation on digital devices.
The main IP blocks and processor to be loaded into the FPGA are also illustrated.

• Chapter 5 and ?? present and analyze the results obtained.

• Chapter 6 establishes the conclusions of the project and if the objectives and hypotheses were achieved
and verified along with future works and lines of research to develop.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

6 CHAPTER 1. INTRODUCTION

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 2

Literature Review

The literature review of this work has been built with a examination of the literature of different national and
international authors that have had the most influence on this work and their contents are briefly described.

2.1 Previous Works at UAQ
As a part of the faculty of engineering at the Autonomous University of Querétaro the present and previous
works of all alumni follow the tenet el ingenio para crear no para destruir which drives the academic
personnel towards the continuous advancement of technology and works of knowledge at the university.
The table 2.1 presents previous works developed at the university as a precedent to the proposed hardware
system.

Table 2.1: Previous works at the university.

Year Author Title Description
2007 R. Osornio Rı́os Diseño de sistema de control

para CNC de alta velocidad
This project shows the relevance that programmable
logic has for high speed CNC controllers. Pro-
grammable logical devices, such as FPGA, have ad-
vantages over microprocessors and DSPs; this is be-
cause their open architecture that allows the designer
to specify the particular structure which is best for the
application. The contribution of this work are: de-
velopment of a control law and generator of polyno-
mial profiles based on a FPGA applied to a high-speed
CNC milling machine. As results demonstrate, recon-
figurable logic is the most appropriate platform for
developing high-speed digital controllers; it is prefer-
able to other technologies available. [11].

7

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

8 CHAPTER 2. LITERATURE REVIEW

2008 R. Santos Cruz Diseño e implementación de
teclado industrial aplicado
a una máquina de inyección
de plástico

This work presents the design and implementation
of a communication protocol for a non-array indus-
trial keyboard through its design in hardware. Due to
the demand of automation equipment, local MSMEs
(Micro Small and Medium companies) invest great
amounts of money acquiring foreign machinery and
devices. As effect, this investigation proposes a low
cost digital module of programmable communication
to be installed in an injection moulding machine. The
advantage that the prototype offers is the use of a digi-
tal structure that allows simultaneous interaction with
other keyboards. The implementation of this proto-
type was made using a Spartan 3 FPGA card, an in-
terface and the keyboard by itself. [13].

2011 B. Muñoz Barrón Controlador modular y re-
configurable para máquina
de inyección de plástico
basado en FPGA

Plastic injection molding is a complex process that in-
volves many variables and several discrete input/out-
put events, which represent a big computational load
for the controller. Another problem is that com-
mercially available controllers are close architecture,
which conditions performance and efficiency. A
way to solve the computational-intensive problem
is to use a high performance device such a field
programmable gate array (FPGA) to implement a
PLC (Programmable Logic Controller). This work
presents a FPGA-based PLC, fuzzy controllers, and
a microprocessor network to control a plastic injec-
tion molding machine. The system was developed
on a modular way and includes several control mod-
ules for continuous events, a processor for discrete
events control, as well as communication modules.
The result obtained showed the efficiency of the sys-
tem to perform the injection process. The system de-
veloped is an excellent option for small and medium
enterprises (MSMEs) dedicated to the plastic indus-
try. [10].

2013 J. Sánchez Gómez Desarrollo de compilador
para lenguaje escalera
de controladores lógicos
programables para aplica-
ciones industriales

The need of more sophisticated tools has recently in-
creased in order to improve production in industry
and meet customer demand. These tools are gener-
ally fully integrated systems (Hardware and Software)
which allow the implementation of more comprehen-
sive processes. Integrated FPGA based developments
(Field Programmable Gate Array) to these systems
have greatly improved, due to their advantages, repro-
grammability, reduced development costs and paral-
lelism. Due to this, the present work shows the devel-
opment of a compiler for a programmable logic con-
troller (PLC) based on an FPGA, which will make the
programming of the PLC faster and easier. In addition
to the development of a GUI that will enable the use
of ladder diagrams. Both the compiler and the GUI
are based on structured and modular programming,
making it upgradeable, scalable and portable. [12].

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

2.2. MAIN REFERENCES IN LITERATURE 9

2.2 Main References in Literature
Industrial automation is one of the most important aspects of the digitization of production processes in
industry. Thanks to automation systems and solutions, companies can control all their activity and manage
the evolution of all processes without the continuous intervention of an engineer. SCADA technology allows
exhaustive control of all devices in real time and also creates alarms and warnings and combines inputs and
outputs within the same system as necessary without the need to migrate to another technology.

Given the rapid advance in the industry, areas for improvement are constantly being sought in automa-
tion systems and solutions. The table 2.2 below deals with some of the main references in literature on the
development of industrial control systems related to the proposed hardware.

Table 2.2: Previous related works.

Year Author Title Description
2006 A.Mililk High Level Synthesis-

Reconfigurable Hard-
ware Implementation
of Programmable Logic
Controller

Implementation of a PLC (Hardware and Software) with
the use of reconfigurable logic devices (based on FP-
GAs). Different architectures and the synthesis process
of the control algorithm given in LAD are presented. The
logical requirements of the controller and its performance
are also compared against standard industrial solutions
[8].

2006 C. Silva,
C. Quintáns,
J. Lago,
E. Mandado

An Integrated System for
Logic Controller Implemen-
tation Using FPGAs

An integrated system for the implementation of a logical
controller using FPGA is presented. The hardware, in ad-
dition to performing typical automation tasks, contributes
to obtaining additional features such as simulation and
monitoring [15].

2007 C. Silva,
C. Quintáns,
M. Castro,
E. Mandado

Methodology to Implement
Logic Controllers with
both Reconfigurable and
Programmable Hardware

A hardware and software platform is described that al-
lows the implementation of logic controllers with PLC
(programmable logic controllers) and RLC (reconfig-
urable logic controllers). The software assists in the de-
velopment of logic controllers by translating into instruc-
tion lists or hardware description language (HDL) codes.
The hardware used consists of a commercial Simatic S7
and specific reconfigurable hardware consisting of a main
board, which combines a Cyclone FPGA and a USB con-
troller, and a set of analog and digital I/O boards. This
hardware, in addition to performing typical automation
tasks, contributes to additional features such as simula-
tion and monitoring [16].

2010 S. Shirali,
S. Ensafi,
M. Naseri

RTU Hardware Design for
SCADA Systems Using
FPGA

This work presents a new hardware design for an RTU
(remote terminal unit) that performs basic functions. This
method has completely parallel computing that increases
the speed of tasks, RTU without delay. By not using a
processor, the risk of system crash is eliminated and RTU
reliability is improved. The design consists of four main
modules that include analog input, digital input, commu-
nication interface, and digital output. Being made with
FPGA, there is a wide possibility of various reconfigura-
tions so that you can generate adequate I/O using the cor-
rect number of these modules and have a suitable RTU
[14].

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

10 CHAPTER 2. LITERATURE REVIEW

2013 R. Czerwinski,
M. Chmiel,
W. Wygrabek

FPGA Implementation of
Programmable Logic Con-
troller Compliant with EN
61131-3

The document discusses the process of designing a sim-
ple programmable logic controller. The development of
a PLC is presented, which is compatible with the EN
61131-3 standard. This part of the standard refers to pro-
gramming languages. However, the PLC instructions are
directly related to the hardware structure of the PLC. The
instruction set, coding, and some elements of the design
are presented (the translation of the instruction list to a
hardware design implemented in an FPGA device) [6].

2014 D. Lee,
E. Kim,
J. Yoo

FBD to Verilog 2.0: An
automatic translation of
FBD into Verilog to develop
FPGA

The paper proposes an automatic translation from FBD
(Function Block Diagram: A PLC Software Program-
ming Language) to HDL (Hardware Description Lan-
guage). Implementing a machine translation tool, ”FBD
to Verilog 2.0”, which helps software engineers design
FPGA-based systems with their experience and knowl-
edge. The case study using a prototype version of an
FPGA-based control system showing that ”FBD to Ver-
ilog 2.0” reasonably translates FBD programs for PLC to
HDL [7].

2015 M. Chmiel,
J. Kulisz,
R. Czerwinski,
A. Krzyzyk

An IEC 61131-3-based PLC
implemented by means of an
FPGA

The document discusses the design process of a pro-
grammable logic controller implemented by means of an
FPGA device. The PLC implements at the machine lan-
guage level a subset of the instruction set defined in the
EN 61131-3 standard. Different aspects of the instruc-
tion list and the design of the hardware architecture are
presented. All operations are fully implemented in hard-
ware, so the solution is fast. The developed PLC is imple-
mented using an FPGA device with the option of easily
porting to an ASIC [5].

2015 M. Aamir,
J. Poncela,
M. Aslam,
B. Chowdhry

Hardware Implementation
and Testing of Reconfig-
urable RTU for Wireless
SCADA

This document presents the implementation and testing
of a remote terminal unit (RTU) design to control and
monitor the industries of the oil and gas, water and en-
ergy sector. This particular implementation is based
on a field programmable gate array (FPGA) that con-
fers reliability and reconfigurability properties to the de-
sign. This results in a more powerful and optimized solu-
tion for executing monitoring data and control wirelessly.
The features of the developed RTU are also compared
to commercially available hardware considering its cost
effectiveness.[4].

2018 A.Milik Multiple-Core PLC CPU
Implementation and Pro-
gramming

The document presents a complete approach to multi-
threading of a control program in accordance with the
IEC 61131-3 standard. The program is assigned to a
multi-core CPU unit. The CPU consists of multiple in-
dependent bit and word CPUs. The computational syn-
chronization mechanism is based on memory cells with
semaphore access, which allow synchronization at the
hardware level. The document presents in detail the ar-
chitecture, the results of the implementation and the per-
formance achieved. Likewise, a compiler is developed
that translates the standard programming languages into
an executable form with multiple threads [9].

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 3

Theoretical Framework

3.1 Overview of a SCADA
According to Rodrı́guez [19], SCADA systems allow the management, data collection and control of any
local or remote system thanks to a graphical interface that communicates the user with the system and allows
him to make decisions about the operations to be carried out.

A SCADA system is a set of software applications, designed for production control, and hardware
designed to act as an interface with instruments and actuators and a high-level graphical interface for the
operator.

The system allows communication with field devices (programmable robots, data acquisition systems,
etc.) to control the process automatically from the user interface, which is configurable and can be easily
modified. In addition, it provides access to all the information generated by the process variables.

The programmable controllers and remote units used operate in accordance with the specification
IEC-61131, developed by the International Electrotechnical Commission (IEC). This standard details the
guidelines for the execution of the operating system, the data definitions, the programming languages and
the set of instructions. For its implementation, current systems use microcontrollers, microprocessors or
even computers for the implementation of control and supervision algorithms.

3.2 Characteristics of a SCADA System
Bailey and Wright [1] mention that a SCADA involves the collection of information and the transfer of data
to the central site, carrying out the necessary analysis and control, and then displaying the information on a
series of operator screens and in this way allow interaction, when the required control actions are transported
back to the process.

According to Gómez et al. [20], SCADAs offer a tool that sets them apart from other industrial control
systems: that of supervision. The control part is implemented by the hardware and instruments (PLC, logic
controllers, etc.) applied on the plant. However, the responsibility of directing or correcting the actions that
take place rests with the process supervisor; decision-making is in the hands of the operator.

This distinctly differentiates SCADA from classic automation systems, in which the control variables
are distributed over the electronic plant controllers. This makes variations in the process very difficult, since
once implemented, these systems do not allow optimal control in real time.

According to Gómez et al. [20], the main characteristics of a SCADA are the following:

• Acquisition and storage of data to collect, process and store the information received in a continuous
and reliable way.

11

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://library.e.abb.com/public/81478a314e1386d1c1257b1a005b0fc0/2101127.pdf

12 CHAPTER 3. THEORETICAL FRAMEWORK

• Graphical and animated representation of process variables and their monitoring by means of alarms

• Execute control actions to modify the evolution of the process, acting either on the basic autonomous
regulators (setpoints, alarms, menus, etc.) or directly on the process through the connected outputs.

• Open and flexible architecture with capacity for expansion and adaptation.

• Connectivity with other applications and databases, local or distributed in communication networks.

• Supervision, to observe from a monitor the evolution of the control variables.

• Transmission of information with field devices and other PCs.

• Database, data management with low access times.

• Presentation, graphical representation of the data. Operator interface or HMI.

• Exploitation of the data acquired for quality management, statistical control, production management
and administrative and financial management.

• Alert the operator about changes detected in the plant, both those that are not considered normal
(alarms) and those that occur in their daily operation (events). These changes are stored in the system
for further analysis.

3.3 Benefits and Requirements of a SCADA
The SCADA package comprises a series of functions and utilities aimed at establishing the clearest possible
communication between the process and the operator. According to Cerrada [2], the benefits and require-
ments offered by a SCADA system are as follows:
Benefits of SCADA systems

• Possibility of creating alarm panels to recognize downtime or an alarm situation, with incident log.

• Generation of historical data of the monitored variables of the plant.

• Creation of reports, notices and documentation in general.

• Execution of programs that modify the control law on the automaton (under certain conditions).

• Possibility of numerical programming, which allows high-resolution arithmetic calculations to be
carried out on the computer’s CPU and not on that of the automaton.

Requirements for SCADA systems

• They must be open architecture systems, capable of growing or adapting according to the changing
needs of the company.

• They must communicate completely easily and transparently for the user with the plant team.

• Programs should be easy to install and use, with user-friendly interfaces.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

3.4. HARDWARE COMPONENTS 13

3.4 Hardware Components
For Gómez et al. [20], a SCADA system needs certain inherent hardware components in its system to be
able to process and manage the captured information, these are described below.

• Central Computer or MTU (Master Terminal Unit): This is the main computer of the system,
which monitors and collects the information from the rest of the substations connected to the field
instruments. This computer is usually a computer that supports the HMI interface. The simplest
SCADA system is made up of a single ordinate that supervises the entire station.

The main functions of the MTU are as follows:

– Periodically interrogates the RTUs and transmits instructions to them; usually following a
master-slave scheme.

– Acts as an operator interface, including displaying variable information in real time, managing
alarms, and collecting and displaying historical information.

– You can run specialized software that performs specific functions associated with the process
supervised by SCADA.

• Remote Computers or RTU (Remote Terminal Unit): These computers are located at the strategic
nodes of the system, managing and controlling the substations; they receive the signals from the
field sensors and command the final control elements by running the SCADA application software.
Currently, programmable logic controllers (PLCs) are used with the ability to function as RTUs thanks
to a higher level of integration and CPU with greater computing power.

• Communication network: This is the level that manages the information that the field instruments
send to the computer network from the system. SCADA is found on standard formats such as RS-232,
RS-422 and RS-485 from which, and through a TCP/IP protocol, the system can be connected to the
existing network.

• Field Instruments: They are all those that allow both automation or control of the system (PLC,
industrial process controllers and actuators in general) and those that are responsible for capturing
system information (sensors and alarms).

3.5 Reconfigurable Computing
The reconfigurable computation consists of the use of hardware that can be adapted at a logical level to solve
specific problems. It is based on two basic ideas: the first is that the architecture adapts to the algorithm to
be implemented and not vice versa; the second is that it provides hardware support only to the algorithmic
functions currently active.

High density programmable devices based on LUTs technology are used in most of today’s reconfig-
urable computing applications, such devices are Field Programmable Gate Arrays (FPGAs) and Complex
Programmable Logic Devices (CPLDs). In theory, it is possible to make changes to the architecture design,
even when the system is already installed and working. Another way to implement it is through processors
that can be modified to include new functions and instructions designed to solve a particular problem. Re-
configurable logic can be used to implement functional units within the processor, co-processors, processing
units, other processors, or a separate external unit.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

14 CHAPTER 3. THEORETICAL FRAMEWORK

3.6 FPGA
An FPGA is a general-purpose programmable multi-level device that integrates a large number of such
logical devices on one chip. The size and speed of FPGAs are comparable to Application Specific Integrated
Circuits (ASICs), but FPGAs are more flexible and have a shorter design cycle [18].

In technical terms, the FPGA is an array of programmable logic blocks placed in a programmable
interconnect structure; In addition, it is possible to determine the functionality of the logical blocks, the in-
terconnections between blocks and the connections between outputs and inputs. An FPGA is programmable
at the hardware level, so it provides the benefits of a general-purpose processor and specialized circuit.

Figure 3.1: General structure of an FPGA.

The basic elements that make up an FPGA are shown in Figure 3.1 and are as follows:

• Logical blocks, whose structure and content is called architecture, in which we find a great variety,
mainly in complexity, ranging from a simple gate to more complicated PLD-like structures.

• Interconnection resources, whose constitution and content is called routing structure.

• RAM memory that is loaded during the RESET to configure blocks and connect them.

• I/O Cells that allow the to connect to external interfaces.

A Programmable Logic Device (PLD) is a general-purpose device capable of integrating the logic
of tens or hundreds of packets. It is programmed by the user using inexpensive programming hardware;
however they are limited by their power consumption and delays. However, this allows a machine to be
configured according to the needs that arise in an application, while allowing the feature to be reused at any
time. These benefits have made FPGAs popular [21].

Development with FPGAs directs applications in new ways by presenting certain characteristics that
are described in Table 3.1.

Table 3.1: FPGA innovation features.

Feature Description
Instant implementation. Because in-memory wiring is usually short, designs can, in effect, be

implemented ”instantaneously.” This is a distinction from the con-
ventional VLSI design, where it takes several weeks from it to man-
ufacturing.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

3.7. EMBEDDED IP 15

Dynamic Reconfiguration With some architectures, part of the FPGA can be configured at run-
time.

Design Safety The configuration of an FPGA disappears when the chip is turned off.
There is a range of applications where this additional level of design
security is important; however, there is another family of FPGAs
where the configuration can be programmed only once remaining
fixed.

The main advantages of FPGAs compared to other devices for the design of digital systems are shown
in Table 3.2.

Table 3.2: Advantages of FPGAs over ASICs.

Advantage Description
Low Tooling Costs For each design implemented in an ASIC, the cost of each one is

around thousands of dollars, which must be amortized over the total
number of units manufactured. The more units that are built, the
impact of the development cost is reduced. FPGAs do not require
this process, so they are excellent for relatively small volumes (1,000
to 10,000 units).

Rapid development The ASICs manufacturing process takes several weeks from the
completion of the design to the release of the developed parts. An
FPGA can be programmed in minutes by the user. Similarly in an
FPGA a modification to correct the design can be done quickly and
cheaply. Immediate development, in turn, makes the appearance of
new products faster and reduces the time for sale.

Effective design verification Due to non-recurring engineering costs and manufacturing delays,
ASIC users must verify their designs by extensive simulation prior
to manufacturing. To test the functionality of the design in a system,
it must be simulated over long periods of time. FPGAs reduce these
problems since they can perform a check on the circuit. Designers
can house the design and use functional parts as a prototype.

Low cost of testing All integrated circuits must be tested to verify correct manufacture.
The test is different for each design. Those implemented in an ASIC
incur associated costs. Manufacturers programs verify that each
FPGA can work for any possible design that is implemented in it.
Users only need specific tests for their scheduled architectures.

3.7 Embedded IP
Altera’s Nios II processor is the most widely used processor in the FPGA industry, since provides a great
flexibility and supports RTOS. It is an Altera’s 32 bit proprietary architecture, whose modules are interfaced
through the Avalon bus. These modules can be from interval timers to RAM controllers. To implement the
Nios II processor, Quartus provides a tool called Platform designer, wich allows us to define and customize
all modules of the embedded system.

The basic modules that comprise our system are listed below:

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

16 CHAPTER 3. THEORETICAL FRAMEWORK

• Nios II processor

• On-Chip Memory

• JTAG UART

• System-ID

• Clock Source and PLL

3.7.1 Nios II processor
Designer can choose among three options when selecting the processor, depending on the hardware re-
sources he wants to use. Obviously, the more resources used, the processor provides higher performance.
The three options are: economy core, standard core and fast core. The economy core uses only 600 logic
elements and two M9Ks. This is the simplest core, whereas standard and fast cores are absolutely deter-
ministic, jitter free real-time performance with unique hardware real-time features. Economy core would be
enough for this application, but the fast core was used since the FPGA provides enough resources.

Figure 3.2: Nios II core configuration.

This processor has a RISC architecture of 32 bits, using between 1’400 and 1’800 logic elements.
Besides, it works at 50 MHz, which is enough for this application (in fact the frequency of work is tuneable,
but it was not needed to change it). Both the reset vector and the exception vector are located on the On-Chip
memory.

3.7.2 JTAG UART
This is the controller needed to program the processor form the user’s PC.

Figure 3.3: JTAG UART configuration.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

3.7. EMBEDDED IP 17

3.7.3 On-Chip Memory
On-Chip memory with data width of 32 bits and a total size of 20’480 bytes was implemented. This is the
RAM used by the processor and where the program is stored.

Figure 3.4: On-Chip memory configuration.

3.7.4 System-ID
The system ID core with Avalon interface is a simple read-only device that provides Platform Designer sys-
tems with a unique identifier. Nios II processor systems use the system ID core to verify that an executable
program was compiled targeting the actual hardware image configured in the target FPGA.

Figure 3.5: System ID configuration.

3.7.5 Clock Source and PLL
The PLL core provides access to the dedicated on-chip PLL circuitry in the Intel Stratix and Cyclone series
FPGAs. The core takes a system clock as its input and generates PLL output clocks locked to the input.

Figure 3.6: PLL configuration.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

18 CHAPTER 3. THEORETICAL FRAMEWORK

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 4

Methods

This chapter documents the description and implementation of the SCADA hardware platform developed.
The explanation of the system architecture and design is addressed to later analyze each of the modules
and interface IP for the NIOS II processor. A list of the software and hardware resources necessary for its
implementation is also added.

4.1 Specification
The research tests will be carried out in the facilities of the Autonomous University of Querétaro in the
Mechatronics Laboratory in a first phase and will subsequently be carried out in the field to verify the
capabilities of the system. Below are the software, instruments and equipment that are required for system
implementation.

4.1.1 Software
• Autodesk Eagle Student Software 9.6.2

• Software Suite Quartus Prime Lite 18.1

• NI LabVIEW Student Edition Software Suite 2019

4.1.2 Hardware and Equipment
• Soldering iron station and material (Weller WES-51)

• Personal computer (DELL G5-5587 Intel i7-8750H, 32GB, Nvidia 1050ti)

• Measuring devices

– Oscilloscope

– Multimeter

– Signal Generator

– Logic Analyzer

• Electronic devices

19

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

20 CHAPTER 4. METHODS

– DE10-Nano FPGA Cyclone V Development Board

– Electronic components (check materials used on Appendix E)

4.2 Design
The scope development of an industrial control solution is quite large encompassing development of the
hardware platform, programming software and compiler, monitoring software and interface firmware. In
order to make the project feasible considering the available resources and equipment the extent of this
work is currently limited to the hardware framework as a starting point to kick off the software side of
development.

The design of the proposed SCADA hardware framework requires a large amount of work to be de-
veloped in various areas such as circuit board design, digital systems, programming, among others demon-
strating the skills and knowledge obtained during last 5 years of undergraduate studies.

4.2.1 Architecture
Starting with the conception of the project the initial statement and requirements were established as the
design guidelines to adhere as development progressed and to clarify a development milestone to be reached.
As stated on the hypothesis the final product should have the following requirements:

• Low cost system (comparing cost of development against similar commercially available alterna-
tives).

• Final product must be capable to tailor the controller to the application, with capabilities such as
parallel processing, reconfiguration, and deployment of hardware accelerators.

• Implement an FPGA as the main controller along with the necessary IP blocks to interface with the
hardware.

• The hardware platform must comprise of a minimum of analog and digital input and output cards,
communications card and base for interconnection.

• The FPGA device must be fully isolated from the rest of the system for protection of the device.

• Communications card should include a couple of the following: CAN, RS-485, UART, Ethernet of
WiFi and RS-232.

• The base for interconnection should allow to easily customize the system by adding or removing
expansion cards.

• Power delivery must be through the base board (no external power necessary for each module).

• Hardware must be manufacturable (this according to the capabilities of the contracted board house).

As a target device the DE-10 Nano Cyclone V SoC development kit was selected as Intel’s SoC
FPGA platform integrates in a single device a dual-core ARM Cortex-A9 processor and a Cyclone V FPGA
allowing development to follow two different paths if desired, using the embedded ARM processor as the
main CPU along with the IP cores developed to interface with the hardware or using a NIOS II 32-bit soft-
processor developed by Altera as the main CPU. The latter was selected as the development tool-chain for
the NIOS II is easier to work with but still leaves the option to switch platform in the future.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

4.2. DESIGN 21

Figure 4.1: System architecture centred on NIOS II soft-processor

Complying with these guidelines and with a target in mind the following architecture was developed
as presented on figure 4.1

The design revolves around the NIOS II as stated before with IP blocks to interface with the peripherals
of the system. The hardware features as follows:

• LCD display as a HMI integrated on the controller.

• Communications through SPI CAN Bus controller and UARTs for RS-232, RS485 and USB.

• Digital I/O that can be directly addressed.

• SPI and CAN Buses for accessing expansion modules.

• Isolation from power and data lines for the FPGA.

4.2.2 Hardware Proposal
As part of the design of a fully integrated system a specialized hardware platform tailored to the application
is required. In a manner similar to the Compact RIO from national instruments the proposed implementation
consists of a base which interconnects, powers and isolates the FPGA and the interface modules.

• The main controller operates at 3.3V and is susceptible to noise from the 24V digital I/O or the 0-10V
analog inputs or the 0-5 analog outputs.

• Communications done through SPI bus allow to interface with peripherals such as ADCs, DACs, I/O
controllers, sensors, among many other devices as SPI and I2C are commonly used protocols for
peripheral devices. On the other hand CAN bus allows fast transfer of critical data collected from an
external controllers as the protocol includes CRC checks and is designed for noise suppression.

• Power distribution for the expansion modules is designed for 24V 1A and 5V 1A, additional power
required must be provided externally to the module. The system is designed as to use a single 24V

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

22 CHAPTER 4. METHODS

power supply with the use of integrated isolated regulators for the FPGA and non-isolated regulators
for the expansion bus.

• Additional communication interfaces allow to interface with the UART ports on the FPGA with
the use of isolated RS-232, RS485 and USB controllers (communication protocols for RS-485 like
Modbus-RTU must be implemented in software).

• Interface modules to be implemented include analog and digital I/O as they represent the basic inter-
faces required for industrial controllers and must comply with the IEC-61131 standard for the voltage
levels used, 0-24V digital 0-10V analog I/O.

4.3 Implementation
The following sections describe the development of the first run of the prototype on its final revisions,
describing each of the modules that composes it.

4.3.1 First Prototype
The first prototype implemented many of the characteristics just described and worked as a alpha version,
proof of concept prototype, in order to better visualize how the hardware would interact and begin refining
details on the devices operation. In a manner similar to the agile software development methodology imple-
menting a complete ”build of the system” allowed to start HDL development directly on a prototype, remark
necessary changes, design errors, and new features to be added on the next iteration.

Interconnection Base

The main circuit board is the interconnection base that provides data isolation and power passthrough for
the expansion modules and connection to the FPGA device. Figure 4.2a provides a block diagram overview
of the connection between the different parts of the system. The base board and the expansion bay design
can be seen in closer detail in figure 4.2b. The main data bus between the expansion bay and the FPGA
are two instances of SPI IP blocks that use ADUM3154 Spisolator from Analog devices to provide galvanic
isolation and the necessary slave select lines.

(a) Proposed hardware block diagram (b) Base board block diagram

Figure 4.2: Interconnection base overview

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://library.e.abb.com/public/81478a314e1386d1c1257b1a005b0fc0/2101127.pdf

4.3. IMPLEMENTATION 23

Digital I/O Module

The following block diagram illustrates the design of the digital I/O module. The module operates with
the MCP23S17 a 16-bit general purpose I/O expander. The IC contains 2 banks of 8-bit I/O with bank A
dedicated as 24V tolerant inputs and bank B dedicated as Relay Outputs.

(a) Inputs (b) Outputs

Figure 4.3: Digital I/O module architecture

Analog I/O Module

The following block diagram illustrates the design of the analog I/O module. The module operates with the
MCP3202 a 12-bit successive approximation analog to digital converter (ADC) and a MCP4822 a 12-bit
digital to analog converter (DAC). Each IC contains 2 independent channels with the DAC capable to output
in the range of 0-5V and the ADC capable to input in the range of 0-5V.

Figure 4.4: Analog I/O module architecture

Communications Module

The following block diagram illustrates the design of the communications module. The module provides
CAN, RS-232, RS-485 and USB UART connectivity with their corresponding transceivers. The CAN bus
is looped back into the interconnection base to provide connectivity though the expansion bay.

Figure 4.5: Communications module architecture

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

24 CHAPTER 4. METHODS

More details on the design can be observed on appendix A on the schematic diagrams and appendix
B for the circuit board designs.

4.3.2 Second Prototype
Following the same line as the first prototype on the agile development, its second iteration is based on
the results of the initial tests, with the implementation of additional missing features and new functionality
added. Acting as a beta version its basic functionality is better defined and perfected but all changes and
additions still require further testing and validation. Some of the features considered to be added on the
second run of the prototype are:

• ROM information to identify on software each expansion module.

• Correct separation between modules on expansion bay.

• Motor control and sensor modules added to the system.

• Raspberry Pi based controller variant.

• Numerical displays on expansion bay to show slave number

• 0-10V tolerant inputs on analog I/O module.

• Signal filtering and additional channels on analog I/O module.

• Multiplexing of the 2 SPI buses to control allocation.

• Isolation on all communication interfaces

• Better integration of the FPGA development board on the device.

• Front panel with LCD display.

Interconnection Base

The interconnection base presents also a different design as part of the change of connectors from 2x DB9
to D25 in addition to multiplexers to control allocation of the SPI bus on the expansion ports with number
displays to show the corresponding slave allocated to that port. Controlling allocation time of the SPI bus
enables the user to prioritize access to certain ports over others for faster data collection.

Figure 4.6: Base board version 2 block diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

4.3. IMPLEMENTATION 25

Motor Control Module

The implementation of a motor controller module allows the system to be used as a robotics platform in
addition to its main purpose as a SCADA controller. The motor driver module is designed based on the
CY8CKIT-037 from Cypress Semiconductor as it allows the user to configure it to operate as a stepper,
BLDC or DC motor controller with encoder feedback.

Figure 4.7: Motor control module boardarchitecture

EEPROM Adapters

Identification of the connected modules through software was not originally planned when designing the
original modules, adding such functionality requires a connector with more I/O and the EEPROM memory.
Such changes implicate the design of a new PCB or the use of a ”mod-board” which is cheaper and easier
as the smaller PCB interfaces with the existing modules while making the necessary changes.

Figure 4.8: Adapter for new connector and EEPROMs

Front Panel

The front panel is designed to better integrate the communication ports of with a small user interface.
Communication ports remain the same as in its prior iteration with the addition of a USB-UART bridge
for direct connection with a PC if required. The main change is the interface which consists on a 8x2
character display, quadrature encoder and indicator LEDs for RUN, STOP, and ERROR status.

Figure 4.9: Front panel interface block diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://www.cypress.com/documentation/development-kitsboards/cy8ckit-037-psoc-4-motor-control-evaluation-kit

26 CHAPTER 4. METHODS

4.3.3 Programming and Implementation of NIOS II Processor
The center of the HDL design is the NIOS II processor that interfaces with the different peripherals using
IP blocks that interface the Avalon Memory Map interface of the processor with the Parallel, UART, SPI,
etc ports as necessary. Use of the embedded processor requires a clock and PLL component to establish its
operating frequency, a RAM memory used to map the peripherals registers and use as program memory and
a ID to identify each of the processors used (in case more than one processor is used a mutex is required
to mediate the access to memory and the peripherals or each processor must be implemented independently
with the downside of having no shared resources between them).

Figure 4.10: Basic Configuration required for NIOS II processor

As initially planned having a FPGA allows the use of such functionality with parallel processing of
communications, control signals, etc. in addition to the use of hardware accelerators to improve performance
if required.

4.3.4 IP Block Design for Peripheral Interfaces
The present implementation of the system has the required interfaces by the second iteration of the hardware.
The following peripherals are used:

• 3 UART ports for communication with USB, RS-232 and RS-485.

• 1 UART port for interface with the EEPROMS on the expansion modules, the FPGA is capable of
I2C communication but a small microcontroller is used as a bridge for the current implementation.

• 2 SPI and 3 Parallel I/O for the spi interface on the expansion bus, one of the PIO is used to control
bus allocation with the high speed muxes.

• 2 Parallel I/O to control the direct integrated I/O.

• 1 Parallel I/O to control the character LCD, there are 2 different LCD controllers provided by Intel
but only work with some models when using the old version of the softcore processor as such the
LCD is controlled with port manipulation or commonly known as bit-banging.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

4.3. IMPLEMENTATION 27

• 2 Parallel I/O to control the LEDs, encoder and keys on the front panel.

The interconnection between components is as shown in figure 4.11. The platform designer interface
acts as a patch panel to connect the instruction and data buses, clocks, resets and interrupt signals from the
slave devices to the master or processor used. Interrupts are controlled by assigning priority levels from 0
to 31 with 0 being the highest and reserved for the JTAG UART used by the processor for debugging. As
the memory map interface is used by the peripherals the SDRAM or on-chip memory must be assigned and
mapped for the address ranges occupied, the rest is available to the processor as program memory.

Figure 4.11: Complete configuration of the NIOS II used for the project

The peripherals are designed by Intel to use the memory map interface which maps the registers of the
peripherals within RAM memory for the processor. This interface uses two 32-bit wide buses to commu-
nicate with the processor or a specialized controller in a addressable Read/Write interface between master
and slave components. Other components can be designed following the Avalon Interface Specifications
provided by Intel.

HDL code for the configuration is generated by platform designer and only a top level code to define
the hierarchy and connect other user generated code is necessary as presented on Appendix C.

As part of the design workflow a board support package and libraries are generated for the corre-
sponding configuration of the NIOS II. Low-level functions to access the control and data registers of the
selected peripherals are generated as well a as a header file containing the configuration created on platform
designer. This allows to program and configure the softcore processors operation in a manner similar to any
other 32-Bit microcontroller or microprocessor. For ease of use, functions abstracting the low level access
to registers were developed for the UART, SPI and Parallel I/O interfaces. Operation of this peripherals is
described on the Intel Peripheral IP Handbook.
Functions developed handle:

• Interrupts

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/www/us/en/programmable/documentation/sfo1400787952932.html

28 CHAPTER 4. METHODS

• Initialization and communications configuration

• Data input and output

• Front panel interface (inputs and status LEDs)

• Front panel LCD (commands and data for the 8-Bit interface)

• Simple testing functions

(a) Parallel I/O header file functions (b) UART header file functions

(c) SPI header file functions (d) LCD header file functions

Figure 4.12: Header files for abstraction functionsDire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 5

Results

Employing the manufactured hardware for the second prototype the following tests were performed to val-
idate its proper operation and to verify its performance in terms of response time and stress handling to
ensure the noise isolation barrier is operating correctly.

5.1 Functional Validation

After manufacturing and assembly of the various circuit boards, all were inspected for proper connection
between data and power lines, some small errors were corrected in a couple of them as the pin-out of some
parts did not match the one on its design, others were corrected with the addition of a ”Modboard” to adapt
the PCB without need to re-manufacture. The following procedure was performed on each of the boards:

1. Assembly and probe testing for no open or short circuits.

2. Testing on power rails for 24V, 5V and isolated 3.3V.

3. Operational test on the various ICs with test stimulus

4. Data transmission test through the isolation barrier.

5. Full system operation testing with ATmega328p microcontroller as main processor (initial tests were
performed with a microcontroller to ensure proper operation as the FPGA is a more sensitive device.)

6. Full system operation using the FPGA.

7. Response time testing on digital inputs and outputs.

8. Noise isolation (data frames integrity) during stress tests

29

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

30 CHAPTER 5. RESULTS

(a) SPI multiplexer test (b) SPI isolators test (c) Assembled prototype

Figure 5.1: Assembly and functional validation tests

5.1.1 Modules Communication Data Frames

The expansion modules act as slave devices to modify the ports and capabilities of the main controller.
After validation of the design and manufacturing inspection was performed, the base board was tested for
the signal integrity due to the isolation barrier in between the controller and the modules and for the proper
operation of the analog and digital I/O modules. More in depth detail on the code used for testing is available
on appendix D.

Digital outputs testing

Testing on the digital I/O was performed as a turn-on cycle of each output one at a time while checking
for continuity on the terminals of the relays with a multimeter. On figure below the SPI command string,
denoted by the 0x40 value (frame start for a write operation), can me seen along with the outputs cycling
one a time.

(a) Output cycle. (b) SPI Command string

Figure 5.2: Digital outputs test data

Digital inputs testing

Testing on the digital I/O was performed mirroring the inputs on the outputs of the same module. Below
are presented two read operations denoted by the 0x41 command (frame start for a read operation) at the
beginning, next to the register address and the corresponding values.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

5.1. FUNCTIONAL VALIDATION 31

Figure 5.3: Digital inputs test data

DAC testing

Testing on the digital to analog converter was performed by ranging the outputs from 100mV-2000mV for
output A and from 100mV-4000mV for output B correspondingly. On the figure below a SPI string for
2.32V on output A can be seen with the first 4 bits for the command and the succeeding 12 bits for the DAC
value.

Figure 5.4: DAC test data

ADC testing

Testing on the analog to digital converter was performed by ranging the input voltage with a potentiometer
while monitoring the obtained value with a oscilloscope and a serial monitor. On input A a value of 1.55V
and on input B a value of 2.53V can be measured which is close to the 1.58V applied on input A and the
2.27V applied on input B.

Figure 5.5: ADC test data

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

32 CHAPTER 5. RESULTS

5.1.2 NIOS II and Peripheral controller Test
In a similar manner to the tests performed using a microcontroller for the functional validation. The modules
were put through their paces using the NIOS II on the FPGA. Using the function for the Parallel I/O and
SPI described on chapter 4. A necessary 10ms delay was added in order to not saturate the storage memory
from the oscilloscopes serial decoder and to more easily verify the data frames.

The SPI isolators installed on the prototype have an integrated CS multiplexer so an additional function
is necessary to control which slave is selected and deselected on the 2 SPI buses.

1 void slaveSelect(unsigned char spiChannel){
2 alt_u16 controlByte;
3 if(0 <= spiChannel && spiChannel < 4){
4 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_EXPANSSION_0_BASE, 1<<0);
5 controlByte = IORD_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_0_BASE);
6 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_0_BASE, (controlByte|

ALTERA_AVALON_SPI_CONTROL_SSO_MSK));
7 IOWR_ALTERA_AVALON_PIO_DATA(SPI_EXPANSSION_0_MUX_BASE, spiChannel);
8 }else if(4 <= spiChannel && spiChannel < 8){
9 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_EXPANSSION_1_BASE, 1<<0);

10 controlByte = IORD_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_1_BASE);
11 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_1_BASE, (controlByte|

ALTERA_AVALON_SPI_CONTROL_SSO_MSK));
12 IOWR_ALTERA_AVALON_PIO_DATA(SPI_EXPANSSION_1_MUX_BASE, spiChannel);
13 }
14 }
15

16 void slaveDeSelect(unsigned char spiChannel){
17 if(0 <= spiChannel && spiChannel < 4){
18 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_EXPANSSION_0_BASE, 1<<0); /* no need

to setup slave select register as only one slave but just in case*/
19 //controlByte = IORD_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_0_BASE);
20 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_0_BASE, 0);//(controlByte|(˜

ALTERA_AVALON_SPI_CONTROL_SSO_MSK)));
21 IOWR_ALTERA_AVALON_PIO_DATA(SPI_EXPANSSION_0_MUX_BASE, 0);
22 }else if(4 <= spiChannel && spiChannel < 8){
23 IOWR_ALTERA_AVALON_SPI_SLAVE_SEL(SPI_EXPANSSION_1_BASE, 1<<0); /* no need

to setup slave select register as only one slave but just in case*/
24 //controlByte = IORD_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_1_BASE);
25 IOWR_ALTERA_AVALON_SPI_CONTROL(SPI_EXPANSSION_1_BASE, 0);//(controlByte|(˜

ALTERA_AVALON_SPI_CONTROL_SSO_MSK)));
26 IOWR_ALTERA_AVALON_PIO_DATA(SPI_EXPANSSION_1_MUX_BASE, 0);
27 }
28 }

The following function performs a turn-on cycle of each of the outputs one at a time. Sending the
necessary command through SPI to the module of the specified slave number and address (the address
number is part of the data frame and allows to have 8 different modules on the same bus).

1 void test_outputs(unsigned char slave, unsigned char address){
2 MCP23S17_PUT_CHAR(slave, address, GPIOB_value);
3 GPIOB_value = GPIOB_value<<1;
4 if (!GPIOB_value) GPIOB_value = 0x01;
5 }

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

5.1. FUNCTIONAL VALIDATION 33

Figure 5.6: Digital outputs test data

The following function verifies the state of the digital inputs on the module and loops it back to the
outputs of the same module.

1 void test_inputs(unsigned char slave, unsigned char address){
2 GPIOA_value = MCP23S17_GET_CHAR(slave, address);
3 MCP23S17_PUT_CHAR(slave, address, GPIOA_value);
4 }

Figure 5.7: Digital input test data

The following code tests the digital to analog converter by ranging the outputs from 100mV-2000mV
on output A and from 100mV-4000mV on output B.

1 void test_dac(unsigned char spiChannel){
2 MCP4822_PUT_CHAR(spiChannel, 0, mVConvert(DAC_value));
3 MCP4822_PUT_CHAR(spiChannel, 1, mVConvert(DAC_value*2));
4 DAC_value = DAC_value + 100;
5 if(DAC_value*2 > SUPPLY_VOLTAGE){
6 DAC_value = 100;
7 }
8 }

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

34 CHAPTER 5. RESULTS

Figure 5.8: DAC test data

The following code obtains the data on the analog to digital converter and prints it to the NIOS console.

1 void test_adc(unsigned char spiChannel){
2 alt_u16 dataADC;
3 dataADC = MCP3202_GET_CHAR(spiChannel, 1);
4 alt_printf("Data from ADC...%4d\n", dataADC);
5 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, dataADC & 0x00FF);
6 }

Figure 5.9: ADC test data

5.2 Performance Verification

5.2.1 Response Time
In order to quantify the performance of the system, its response time was measured using the digital I/O
module. As the system has a isolation barrier, measurement of the time required to obtain an input or assert
an output was not possible without the use a sync signal to time the measurement that would itself have
an additional delay. As such the ”two way response time” was measured as to obtain an approximation

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

5.2. PERFORMANCE VERIFICATION 35

of the time required to obtain an input or assert an output considering the delay and processing time is
approximately the same for both directions.

For the measurement a signal generator was used to send a pulse of 30us every 300us on one of the
digital inputs and the signal was looped back by the controller to one of the outputs (the relay output was
disabled as the switching frequency would be too high for it withstand, relays usually operate up to 50Hz).

Figure 5.10: Response time test data

On figure 5.10 the data frames for the output input and output commands are shown, 40 13 XX for the
output command where XX are the states for the outputs and 41 12 XX for the input command where XX
are the states for the inputs.The time required for the system to loop back the signal from the generator is
approximately 42us measuring it with the help of the timestamps. Approximating that the response time is
equal in both directions give us a value of 21us.

5.2.2 Stress Tests
Following performance tests, the integrity of the communication signal lines were tested with the use of a
switching 12V 1.68A DC load from a server fan motor. Setting the relay output to switch at a frequency of
50Hz caused certain issues to arise on the data and power lines of the expansion modules.

(a) Load side (b) Controller side

Figure 5.11: Stress test data frames

As seen on figure 5.11 the data is transmitted by the controller and received on the module making it
switch normally, as expected with no missed data packets. But a dip on the 5V power line of 400mV can

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

36 CHAPTER 5. RESULTS

be seen whenever the load is turned on and off with only 1 module and 1 load active it’s not a problem but
since the system can have up to 56 outputs connected at once with the correct configuration of modules (it
was not possible to test such scenario since only 2 such circuit boards were manufactured) this could be a
potential problem that could cause data packets to be lost, the controllers on the modules to continuously
reset and to cause a problem with the equipment it’s controlling.

The other issue identified was when ever the load was switched off, the data lines were affected by
the return current causing spikes of voltage on the data lines. As can be clearly seen on figure 5.12 the load
experiences a spike from -33.2V of 17V but isn’t affected by it and keeps operating. On the other hand, this
introduces noise on the data lines as a pulse of 2.1us that oscillates between -6.5V and 15V. Data packets
don’t seem to be lost at a significant percentage as the speed difference between the data transmission rates
and how often the ”glitch” is presented is orders of magnitude higher. The possible causes for the this
problem are the ground pour used on the top and bottom layers of the PCBs that is not grounded and acts as
an antenna making the data lines susceptible to noise and due to the non continuous return path for the data
lines which is bad to signal integrity.

Figure 5.12: Voltage spikes on the data lines

5.3 Results Analysis

It’s important to observe that the system operates properly with its digital and analog I/O modules as seen on
the results with fast response times of approximately 21us as proper data and power isolation between the
controller and load sides of the device. Tests performed for functional validation demonstrates the system
works as designed and the same goes for the IP cores used on the FPGA, the NIOS II allows a high level
of customization that would be difficult to reproduce with a microcontroller or microprocessor, need more
UART lines, need more parallel I/O, with a softcore processor you got it. The cost to pay is the use of
low level access functions for the processor, requiring the user to abstract them to perform more difficult
operations.

Nevertheless the device requires a third iteration with better layout considering the return paths of the
signals as well as better use of reference planes and decoupling capacitors to route power and reduce voltage
dips on the power lines. Further testing and validation is required for the device to be robust and reliable
while remaining low cost as it was intended from the beginning.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

5.4. FUTURE WORKS 37

5.4 Future Works
This work is considered as a first delivery on the development of a the control and monitoring of systems
using FPGAs as its core. As shown on the results it’s still a work in progress with a pending third iteration
designed to address many of the concerns of the first 2 prototypes used at the time of writing.

Many of the changes made were already discussed but following is a series of developments required
for the prototype to perform as expected of a industrial grade controller.

• PC interface for the device, to properly be a data acquisition system the user must have a interface
that displays the data from the device in real time.

• I/O controllers, ADC, DAC and Communication ICs must be Industrial grade components.

• Network controller implemented for remote access.

• Use of a SOM FPGA instead of development board or design of proprietary board for better device
integration.

• Testing using higher loads, was not possible at the time of writing due to difficulties accessing such
equipment.

• Real time clock integration for scheduling events and time stamps on data acquisition.

• Design specification and documentation for user developed modules.

• Development of 0-20mA/4-20mA sensor interface modules.

One of the objectives of this work is to open and facilitate research on the following topics:

• Motor control modules and Sensors for the system to act as a possible robotics platform

• Development of lesser equipped versions with a microprocessor like a raspberry pi or similar.

• Make use of this thesis to address development of IP cores for application specific controllers using
the platform.

• Make use of the prototype and hardware for digital systems courses as a development platform.

• Development of a ladder or FBD to C compiler for its use with the hardware platform.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

38 CHAPTER 5. RESULTS

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Chapter 6

Conclusions

On this work a hardware framework to implement a Supervisory Control And Data Acquisition system by
means of an FPGA to develop a new and economic industrial controller compared to existing commercial
alternatives like the Compact RIO from National Instruments. As presented on Appendix E the total cost
of both runs of the prototype are about 1/5 of the cost of the embedded base of Compact RIO alone with
most of it spent toward the FPGA development board currently in use. Better integration of the IC onto
the Base board would greatly reduce its cost. During the development of the objectives the challenge of
designing a complete hardware platform and complementary HDL code was proposed with basic functions
such as digital and analog I/O and UART communications as well as the necessary documentation for further
developments. Certain milestones have been achieved, mainly on documentation, design and development
of the first prototypes and testing the capabilities of the NIOS II processor as a customizable controller. As
demonstrated on chapter 5 the system operates as expected with performance issues to be resolved in terms
of signal integrity and protection, certain additional features are still not implemented and will be passed on
to the third run of the prototype.

As presented the scope of this project requires further R&D with development necessary on the soft-
ware side to be comparable to the Hardware and Software suites provided by large companies producing
this kind of control systems. This work contributes toward existing development of FPGA based industrial
controller platforms by providing a flexible and open source hardware framework and to make cutting-edge
industrial control technology available at a low cost. Further developments on the project will be presented
in due course.

39

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

40 CHAPTER 6. CONCLUSIONS

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Appendix A

Circuit Diagrams

A.1 First Prototype

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

3.3V

5V

DGND

DGND DGND

VCCVCC

DGND DGND

VCCVCC

LD09S24A4GV00LF

LD09S24A4GV00LF+24V

AGND

VCCA

VCC

DGND

DGND DGND

VCCVCC

0.1uF

DGND

VCCVCCA

AGND AGNDDGND

VCCVCCA

VCC

0.1uF

VCC

0.1uF

AGND

0.1uF

AGND

FUSESH22,5

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

TL2285EE

+24V

VCCA

AGND

AGND

+24V

VCCA

AGND

H1

H2

H100

H103

26
24
22
20
18
16
14
12
10
8
6
4
21

3
5
7
9
11
13
15
17
19
21
23
25
27 28
29 30
31 32
33 34
35 36
37 38
39 40

10
8
6
4
2

9
7
5
3
1

11 12

10
8
6
4
2

9
7
5
3
1

11 12

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J2

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J4

ADUM3154BRSZ

VDD11

VDD220

SSA07

SSA18 SS1 14

SS0 15

SS2 13

SS3 12

MSS6

MCLK3

MI 5

MO4

NC 9

SCLK18

SI 17

SO16

1_GND1 2

2_GND1 10

1_GND2 11

2_GND2 19

U1

ADUM3154BRSZ

VDD11

VDD220

SSA07

SSA18 SS1 14

SS0 15

SS2 13

SS3 12

MSS6

MCLK3

MI 5

MO4

NC 9

SCLK18

SI 17

SO16

1_GND1 2

2_GND1 10

1_GND2 11

2_GND2 19

U2

+VIN223

-VIN23

+VOUT 14

-VOUT 16

+VIN122

-VIN12 NC1 9

NC2 11

+VIN223

-VIN23

+VOUT 14

-VOUT 16

+VIN122

-VIN12 NC1 9

NC2 11

X1
-1

X1
-2

10
8
6
4
2

9
7
5
3
1

11 12

C2 C4

C1 C3

1
2

F1

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

H101

H102

NC_11

NO_12

COMM_13

COMM_2 4

NO_2 5

NC_2 6

S1

OUT_8

OUT_8

OUT_6

OUT_6

OUT_4

OUT_4

OUT_2

OUT_2

OUT_1

OUT_1

OUT_3

OUT_3

OUT_5

OUT_5

OUT_7

OUT_7

SCK

MOSI

IN_1

IN_1

IN_3

IN_3

IN_5

IN_5

IN_7

IN_7

IN_2

IN_2

IN_4

IN_4

IN_6

IN_6

IN_8

IN_8

CAN_H

CAN_H

CAN_L

CAN_L

CAN_CS

CAN_CS

CAN_MOSI

CAN_MOSI

CAN_INT

CAN_INT

CAN_SCK

CAN_SCK

CAN_MISO

CAN_MISO

CAN_RESET

CAN_RESET

TX

TX

RX

RX

CS_1 CS_1

CS_2

CS_2

CS_3

CS_3

CS_5

CS_5

CS_4

CS_4

CS_6

CS_6

CS_7

CS_7

ISO_CS_MUX_1

ISO_CS_MUX_1

ISO_MOSI_0

ISO_MOSI_0

ISO_SCK_0

ISO_SCK_0

ISO_CS_0

ISO_CS_0

ISO_MISO_0

ISO_MISO_0

ISO_CS_MUX_0

ISO_CS_MUX_0

ISO_CS_MUX_2

ISO_CS_MUX_2

ISO_CS_MUX_3

ISO_CS_MUX_3

MISO_1

MISO_1

MOSI_1

MOSI_1

ISO_SCK_1

ISO_SCK_1

SCK_1

SCK_1

ISO_CS_1

ISO_CS_1

MISO_0

MISO_0

SCK_0

SCK_0

MOSI_0 MOSI_0

CS_0

CS_0

ISO_MISO_1

ISO_MISO_1

ISO_MOSI_1

ISO_MOSI_1

CS_B

MISO

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.1: Base Board Schematic Diagram

41

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

42 APPENDIX A. CIRCUIT DIAGRAMS

LD09S24A4GV00LF

+24V

VCCA

AGND

LD09S24A4GV00LF

LD09S24A4GV00LF

+24V

VCCA

AGND

LD09S24A4GV00LF LD09S24A4GV00LF

LD09S24A4GV00LF

+24V

VCCA

AGND
LD09S24A4GV00LF

+24V

VCCA

AGND

AGND

+24VVCCA

AGND

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

+24VVCCA

AGND

LD09S24A4GV00LF

AGND AGND AGND

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J2

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J6

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J4

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J7

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J8

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J1

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J3

H1

H2

3
1

2 SJ103

3
1

2 SJ106

3
1

2 SJ102

3
1

2 SJ104

3
1

2 SJ101

3
1

2 SJ105
3

1

2 SJ100

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP1

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J5

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP2

CAN_H CAN_H CAN_H CAN_H CAN_H

CAN_H

CAN_L CAN_L CAN_L CAN_L

CAN_L

CAN_L

CS_0

CS_0

CS_0

CS_1

CS_1

CS_1

CS_2

CS_2

CS_2

CS_3

CS_3

CS_3

CS_4

CS_4

CS_4

CS_5

CS_5

CS_5

CS_6

CS_6

CS_6

CS_7

CS_7

CS_7

SCK_0

SCK_0

SCK_0

MISO_0

MISO_0

MISO_0

MOSI_0

MOSI_0

MOSI_0

SCK_1

SCK_1

SCK_1

MISO_1

MISO_1

MISO_1

MOSI_1

MOSI_1

MOSI_1

CS_A

CS_A

MOSI

MOSI MOSI MOSI MOSI

MISO

MISO MISO MISO MISO

CS_B

CS_B

CS_C

CS_C

SCK

SCK SCK SCK SCK

CS_D

CS_D

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.2: Expansion Bay Schematic Diagram

LCD-16X2SILK

DGND

DGND

VCC

VCC DGND

VCC

DGND

DGND

VCC

DGND

VCC

DGND

A

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

E

K

R/W
RS

VDD
VO

VSS

LCD1

1
3

2

R
10

2

DTR
RXI
TXO
VCC
CTS
GND

1
3

2

R
4

LED1

LED2

LED3

D0
D1
D2
D3
D4
D5
D6
D7

D8
D9
D10
D11
D12
D13
GND
AREF

A5/SCL
A4/SDA

A3
A2
A1
A0

VIN
GND1
GND2

5V
3V

/RESET
IOREF

RESERVED

SCL
SDA

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

16
x2

 L
C

D

1
3

1
3AR

D
U

IN
O

U
N

O
 R

3

Figure A.3: HMI Add-on Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.1. FIRST PROTOTYPE 43

MAX3232

1u
F

1u
F

1uF

DGND

1u
F

1u
F

DGND

DGND

DGND

DGND DGND

3.3V 3.3V 3.3V

DGND DGND

VCCVCC

AGND

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0 MOUNT-PAD-ROUND3.0

3.3V

C1+1

C1-3

C2+4

C2-5

T1IN11

T2IN10

R1OUT12

R2OUT9

V+ 2

V- 6

T1OUT 14

T2OUT 7

R1IN 13

R2IN 8G
N

D
15

VC
C

16
U1

1
6

2
7

3
8

4
9

5

C
3

C
4

C1

C
2

C
5

LE
D

1

1

2
3

Q2

LE
D

2

1

2
3

Q3

1
62
73
84
95

10
8
6
4
2

9
7
5
3
1

11 12

H3

H1 H2

232_TX/2.8A

232_RX/2.8B

CAN_CS/2.2C

CAN_MOSI/2.2C

CAN_INT/2.3BCAN_SCK/2.2C

CAN_MISO/2.3C

CAN_RESET/2.2C

SCK

MISO

CAN_H/2.3A

CAN_L/2.3A

CS

TX/2.7A

TX/2.7A

RX/2.7B

RX/2.7B

MOSI

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

 MAX3485CSA

VCC

DGND

DGND

DGND

DGND

DGND

3.3V

3.3V

MCP2515-I/SO

MCP2562T-H/SN

16MHz

DGND

3.3V

DGND

DGND

3.3V

RO
/RE
DE
DI

VCC
B
A

GND

U100

1
2
3
4

8
7
6
5

J3

RJ45

1

2
3

Q100

1
2
3
4

8
7
6
5

J5

RJ45

VDD18

RXCAN2

~TX0RTS4

~TX1RTS5

~TX2RTS6

OSC18

SCK13

SI14

~CS16

~RESET17

VSS9

TXCAN 1

CLKOUT/SOF 3

OSC2 7

~RX1BF 10

~RX0BF 11

~INT 12

SO 15

U2

RXD4

CANL 6
CANH 7

VSS2

STBY 8

TXD 1VIO5
VDD3

U101

Q1

7
8
9

10
11
12 1

2
3
4
5
6

SW1

485_TX

485_TX

485_TX

485_RX

485_RX

CAN_SCK/1.7B

CAN_MOSI/1.7B

CAN_CS/1.7B

CAN_RESET/1.7B

CAN_MISO/1.7B

CAN_INT/1.7B

B

B

A

A

CAN_H/1.7C

CAN_H

CAN_L/1.7C

CAN_L

232_TX/1.2C

232_RX/1.2C

TX/1.7B

RX/1.7B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Org

Blu

Brn

W/Grn

Grn

Org

Blu

Brn

W/Grn

Grn

1
2

3
4

5
6

O
N

Figure A.4: Communication Module Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

44 APPENDIX A. CIRCUIT DIAGRAMS

AGND

+24V

DGND DGND

VCCVCC

DGND DGND

VCCVCC

SW
S0
03

AGND

AGND

VCCA

VCCA

VCCA

ULN2803ADW

AGND

+24V VCCA

AGND

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MCP23S17SO

1
62
73
84
95

1
62
73
84
95

10
8
6
4
2

9
7
5
3
1

11 12

10
8
6
4
2

9
7
5
3
1

11 12

456
1 2 3

S1

1B1

2B2

3B3

4B4

5B5

6B6

7B7

8B8

GND9

1C 18

2C 17

3C 16

4C 15

5C 14

6C 13

7C 12

8C 11

COM 10

U1

3
1

2

SJ
1

H2

H4

H1

H3

CS11

SCK12

SI13

SO14

A015

A116

A217

RESET18

INTA20

INTB19

GPB0 1

GPB1 2

GPB2 3

GPB3 4

GPB4 5

GPB5 6

GPB6 7

GPB7 8

GPA0 21

GPA1 22

GPA2 23

GPA3 24

GPA4 25

GPA5 26

GPA6 27

GPA7 28

VDD9

VSS10

IC100

OUT_8/2.1D

OUT_6/2.1D

OUT_4/2.1A

OUT_2/2.1BOUT_1/2.1B

OUT_3/2.1B

OUT_5/2.1E

OUT_7/2.1D

INPUT_1/3.2A

INPUT_2/3.2A

INPUT_3/3.2B

INPUT_4/3.2B

INPUT_5/3.2C

INPUT_6/3.2C

INPUT_7/3.2D

INPUT_8/3.2DCS

CS

SCK

SCK

MOSI

MOSI

MISO

MISO

OUTPUT_1/2.4B

OUTPUT_2/2.4B

OUTPUT_3/2.4A

OUTPUT_4/2.4A

OUTPUT_5/2.4D

OUTPUT_6/2.4D

OUTPUT_7/2.4D

OUTPUT_8/2.4D

IN_1/3.5A

IN_3/3.5B

IN_5/3.5C

IN_7/3.5D

IN_2/3.5B

IN_4/3.5B

IN_6/3.5D

IN_8/3.5D

CAN_H

CAN_L

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

ON

1 2 3

TCMD4000

1k

AGNDDGND

TCMD4000

1k

+2
4V

AGNDDGND

VC
C
A

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

1

2

16

15

3

4

14

13

5

6

12

11

7

8

10

9

U102

34.51.7.005.0010

A2 A1

12
1114

K8

1 8
2 7
3 6
4 5

RN2

LED8

LED7

LED6

LED5

34.51.7.005.0010

A2 A1

12
1114

K7

34.51.7.005.0010

A2 A1

12
1114

K6

34.51.7.005.0010

A2 A1

12
1114

K5

1

2

16

15

3

4

14

13

5

6

12

11

7

8

10

9

U103

34.51.7.005.0010

A2 A1

12
1114

K4

1 8
2 7
3 6
4 5

RN1

LED4

LED3

LED2

LED1

3 1

2

SJ108

34.51.7.005.0010

A2 A1

12
1114

K3

34.51.7.005.0010

A2 A1

12
1114

K2

34.51.7.005.0010

A2 A1

12
1114

K1

31

2

SJ107

31

2

SJ106

31

2

SJ105

31

2

SJ104

31

2

SJ103

31

2

SJ102

31

2

SJ101

31

2

SJ100

1
1

2
2

J4

1
1

2
2

J3

1
1

2
2

J7

1
1

2
2

J6

1
1

2
2

J2

OUT_3/1.7B

OUT_4/1.8B

OUT_7/1.7B

OUT_8/1.8B

OUTPUT_3/1.5B

OUTPUT_4/1.5B

OUTPUT_7/1.5B

OUTPUT_8/1.5B

OUT_2/1.8B

OUT_1/1.7B

OUT_6/1.8B

OUT_5/1.7B

OUTPUT_2/1.5B

OUTPUT_1/1.5B

OUTPUT_6/1.5B

OUTPUT_5/1.5B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.5: Digital I/O Module Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.1. FIRST PROTOTYPE 45

TCMD4000

1k

VCC

DGND

AGND

TCMD4000

1k

VCC

DGND

AGND

DGND

DGND

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

1

2

16

15

3

4

14

13

5

6

12

11

7

8

10

9

U101

1 8
2 7
3 6
4 5

RN3

LED9

LED10

LED11

LED12

1

2

16

15

3

4

14

13

5

6

12

11

7

8

10

9

U100

1 8
2 7
3 6
4 5

RN4

LED13

LED14

LED15

LED16

3
1

2SJ
2

3
1

2

SJ
3

3
1

2

SJ
4

3
1

2

SJ
5

3
1

2

SJ
6

3
1

2

SJ
7

3
1

2

SJ
8

3
1

2

SJ
9

11 2 2

J8

11 2 2

J10

11 2 2

J11

11 2 2

J13

INPUT_1/1.3A

IN_1/1.7A

IN_2/1.8A

IN_3/1.7A

IN_4/1.8A

IN_5/1.7A

IN_6/1.8A

IN_7/1.7A

IN_8/1.8A

INPUT_2/1.3A

INPUT_3/1.3A

INPUT_4/1.3A

INPUT_5/1.3B

INPUT_6/1.3B

INPUT_7/1.3B

INPUT_8/1.3B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.5: Digital I/O Module Schematic Diagram

AGND

+24V

VCCA

AGND

MCP3202SN

VCCA

AGND

MCP4822-E/SN

VCCA

AGND

1uF

AGND

1uF

AGND

MOUNT-PAD-ROUND3.0 MOUNT-PAD-ROUND3.0

1-2834011-2

1-2834011-2

1
62
73
84
95

1
62
73
84
95

CS/SHDN1

CH0 2

CH1 3

VSS4

DIN5

DOUT6

CLK7
VDD/VREF8

U1

VDD1

SCK3

~CS2

SDI4

~LDAC5

~VOUTB 6

VSS7

VOUTA 8

U2

1
2
3

JP1

C3

C2

H2 H1

1 122

J3

11 2 2

J2

CS

CS

SCK

SCK

SCK

MOSI

MOSI

MOSI

MISO

MISO

CAN_H

CAN_L

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.6: Analog I/O Module Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

46 APPENDIX A. CIRCUIT DIAGRAMS

AGND

+24V

VCCA

AGND

MOUNT-PAD-ROUND3.0 MOUNT-PAD-ROUND3.0

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2

1-2834011-2VCCA +24V

AGND

1
62
73
84
95

1
62
73
84
95

H2 H1

1 122

J9

1 122

J8

1 122

J1

1 122

J2

1 122

J4

1 122

J5

1 122

J6

CS

SCK MOSI

MISO

CAN_H

CAN_L

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.7: Power Delivery Module Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.2. SECOND PROTOTYPE 47

A.2 Second Prototype

0.1uF

DGND

VCCVCCA

AGND

AGNDDGND

VCCVCCA

VCC

0.1uF

VCC

0.1uF

AGND

0.1uF

AGND

ADUM1250WSRZ-RL7DGND AGND

TCMD4000

1k

AGNDDGND

VCCA

VCCA

0.1uF

AGNDDGND

0.1uF

VCC

VCC VCC VCCA VCCA

ADUM3154BRSZ

VDD11

VDD220

SSA07

SSA18 SS1 14

SS0 15

SS2 13

SS3 12

MSS6

MCLK3

MI 5

MO4

NC 9

SCLK18

SI 17

SO16

1_GND1 2

2_GND1 10

1_GND2 11

2_GND2 19

U102

ADUM3154BRSZ

VDD11

VDD220

SSA07

SSA18 SS1 14

SS0 15

SS2 13

SS3 12

MSS6

MCLK3

MI 5

MO4

NC 9

SCLK18

SI 17

SO16

1_GND1 2

2_GND1 10

1_GND2 11

2_GND2 19

U103

C105

C107

C104

C106

VDD11

SDA12

SCL13

GND14

VDD2 8

SDA2 7

SCL2 6

GND2 5

U101

1

2

16

15

3

4

14

13

5

6

12

11

7

8

10

9

U1

1 8
2 7
3 6
4 5

RN1

C102C103

CS_1/2.8B

CS_2/2.7B

CS_3/2.8B

CS_5/2.7B

CS_4/2.8B

CS_6/2.8B

CS_7/2.7B

ISO_CS_MUX_1/2.5B

ISO_MOSI_0/2.5B

ISO_SCK_0/2.5B

ISO_CS_0/2.5B

ISO_MISO_0/2.5B

ISO_CS_MUX_0/2.5B

ISO_CS_MUX_2/2.5A

ISO_CS_MUX_3/2.5A

MISO_1/2.7B

MOSI_1/2.8B

ISO_SCK_1/2.5B

SCK_1/2.7B

ISO_CS_1/2.5A

MISO_0/2.8B

SCK_0/2.8B

MOSI_0/2.7B

CS_0/2.7B

ISO_MISO_1/2.5A

ISO_MOSI_1/2.5B

ISO_SDA/3.8B

ISO_SCL/3.8B

SDA/2.1D

SCL/2.2D

BUS_A/2.7B

BUS_B/2.8B

BUS_C/2.7B

BUS_D/2.8B

ISO_BUS_A/2.5B

ISO_BUS_B/2.5B

ISO_BUS_C/2.5B

ISO_BUS_D/2.5B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

3.3V

DGND

DGND DGND

VCCVCC

DGND DGND

VCCVCC

3.3V

5V

DGND

3.3V

5V

DGND

+24VVCCA

AGNDAGND

+24V VCCA

AGND AGND

VCCA

AGND

26
24
22
20
18
16
14
12
10
8
6
4
21

3
5
7
9
11
13
15
17
19
21
23
25
27 28
29 30
31 32
33 34
35 36
37 38
39 40

1 2
3 4
5 6
7 8
9 10
11 12

1 2
3 4
5 6
7 8
9 10
11 12

26
24
22
20
18
16
14
12
10
8
6
4
21

3
5
7
9
11
13
15
17
19
21
23
25
27 28
29 30
31 32
33 34
35 36
37 38
39 40

26
24
22
20
18
16
14
12
10
8
6
4
21

3
5
7
9
11
13
15
17
19
21
23
25
27 28
29 30
31 32
33 34
35 36
37 38
39 40

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22
10 23
11 24
12 25
13

X2

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32

JP2

OUT_8

OUT_8

OUT_6

OUT_6

OUT_4

OUT_4

OUT_2

OUT_2

OUT_1

OUT_1

OUT_3

OUT_3

OUT_5

OUT_5

OUT_7

OUT_7

SCK

MOSI

IN_1

IN_1

IN_3

IN_3

IN_5

IN_5

IN_7

IN_7

IN_2

IN_2

IN_4

IN_4

IN_6

IN_6

IN_8

IN_8

CAN_H

CAN_H

CAN_H

CAN_L

CAN_L

CAN_L

CAN_CS CAN_CS

CAN_MOSI CAN_MOSI

CAN_INT CAN_INTCAN_SCK CAN_SCK

CAN_MISO CAN_MISO

CAN_RESET CAN_RESET

CS_1/1.7ACS_2/1.7A

CS_3/1.7A

CS_5/1.7C CS_4/1.7C

CS_6/1.7CCS_7/1.7C

ISO_CS_MUX_1/1.6A

ISO_MOSI_0/1.6A ISO_SCK_0/1.6A

ISO_CS_0/1.6B ISO_MISO_0/1.7A

ISO_CS_MUX_0/1.6A

ISO_CS_MUX_2/1.6BISO_CS_MUX_3/1.6C

MISO_1/1.6C MOSI_1/1.7B

ISO_SCK_1/1.6C

SCK_1/1.6C

ISO_CS_1/1.6C

MISO_0/1.6A

SCK_0/1.6BMOSI_0/1.7A

CS_0/1.7A

ISO_MISO_1/1.7B

ISO_MOSI_1/1.6C

MISO

CS

SCL/1.8D

SCL/1.8D

SDA/1.8D

SDA/1.8D

I2C_ADDR_1

I2C_ADDR_2I2C_ADDR_0

LCD_D6 LCD_D6

LCD_D4 LCD_D4

LCD_D2 LCD_D2

LCD_RS LCD_RS

LCD_ELCD_E

LCD_D1 LCD_D1

LCD_D3 LCD_D3

LCD_D7 LCD_D7

LCD_RW LCD_RW

LCD_D0 LCD_D0

LCD_D5 LCD_D5

LCD_LED LCD_LED

BTN_ESC BTN_ESCBTN_OK BTN_OK

ENC_A ENC_AENC_B ENC_B

LED_RUN LED_RUN

LED_STOP LED_STOPLED_ERROR LED_ERROR

UART_TX UART_TXUART_RX UART_RX

RS232_RX RS232_RXRS232_TX RS232_TX

ENC_BTN ENC_BTN

RS485_TX RS485_TXRS485_RX RS485_RX

ISO_BUS_B/1.1CISO_BUS_A/1.1B

ISO_BUS_C/1.1C ISO_BUS_D/1.1C

FPGA_SDA/3.8B FPGA_SCL/3.8B

BUS_A/1.3B

BUS_C/1.3C

BUS_B/1.3C

BUS_D/1.3C

DEBUG_RXDEBUG_RX DEBUG_TXDEBUG_TX

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.8: Base Board Schematic DiagramDire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

48 APPENDIX A. CIRCUIT DIAGRAMS

+24V

AGND

VCCA

VCC

DGND

FUSESH22,5

TL2285EE

MOUNT-PAD-ROUND2.8

MOUNT-PAD-ROUND2.8

MOUNT-PAD-ROUND2.8

MOUNT-PAD-ROUND2.8

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

ATMEGA328P_TQFPDGND

VCC

VCC

0.1uF

DGND

DGND

0.1uF

VCC

DGND

VCC

50
32
/2
P

0.
1u
F

0.
1u
F

DGND

+VIN223

-VIN23

+VOUT 14

-VOUT 16

+VIN122

-VIN12 NC1 9

NC2 11

+VIN223

-VIN23

+VOUT 14

-VOUT 16

+VIN122

-VIN12 NC1 9

NC2 11

X1
-1

X1
-2

F1

NC_11

NO_12

COMM_13

COMM_2 4

NO_2 5

NC_2 6

S1

H1

H5

H6

H2

H4

H3

PB5(SCK) 17

PB7(XTAL2/TOSC2)8

PB6(XTAL1/TOSC1)7

GND3

GND5

VCC4

VCC6

AGND21

AREF20

AVCC18

PB4(MISO) 16
PB3(MOSI/OC2) 15
PB2(SS/OC1B) 14

PB1(OC1A) 13
PB0(ICP) 12

PD7(AIN1) 11
PD6(AIN0) 10
PD5(T1) 9

PD4(XCK/T0) 2
PD3(INT1) 1
PD2(INT0) 32
PD1(TXD) 31
PD0(RXD) 30

ADC7 22
ADC6 19

PC5(ADC5/SCL) 28
PC4(ADC4/SDA) 27

PC3(ADC3) 26
PC2(ADC2) 25
PC1(ADC1) 24
PC0(ADC0) 23PC6(/RESET)29

U100

C100

21
SJ101

21
SJ102

21
SJ100

21
SJ103

C101
1 2
3 4
5 6

X3

C1
C2

ISO_SDA/1.6D

ISO_SCL/1.6D

FPGA_SDA/2.5B

FPGA_SCL/2.5B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.8: Base Board Schematic Diagram

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

+24V VCCA

AGND

+24VVCCA

AGNDAGND

AGND

+24VVCCA

AGNDAGND

+24VVCCA

AGNDAGND

+24VVCCA

AGNDAGND

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

+24V VCCA

AGND AGND

AGND

VCCA

AGND

VCCA

AGND

VCCA

AGND

VCCA

H1

H2

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22

10 23
11 24
12 25
13

X2

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22

10 23
11 24
12 25
13

X1

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22

10 23
11 24
12 25
13

X3

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22

10 23
11 24
12 25
13

X4

H3

H4

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32

JP2

1 2
3 4
5 6
7 8
9 10

11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30
31 32

JP1

21
SJ1

21
SJ4

21
SJ621

SJ8

CAN_H

CAN_H

CAN_H

CAN_H

CAN_H

CAN_H

CAN_L

CAN_L

CAN_L

CAN_L

CAN_L

CAN_L

CS_0/2.4C

CS_0/2.4C CS_1/2.8C

CS_1/2.8C

CS_2/3.4C

CS_2/3.4C CS_3/3.8C

CS_3/3.8C

CS_4/2.4C

CS_4/2.4C

CS_5/2.8C

CS_5/2.8C CS_6/3.4C

CS_6/3.4C

CS_7/3.8C

CS_7/3.8C

SCK_0/2.4C

SCK_0/2.4C MISO_0/2.4C

MISO_0/2.4C

MOSI_0/2.4C

MOSI_0/2.4C

SCK_1/2.4C

SCK_1/2.4C MISO_1/2.4C

MISO_1/2.4C

MOSI_1/2.4C

MOSI_1/2.4C

MOSI_D/3.6C

MISO_D/3.6C SCK_D/3.6C

CS_D/3.6C

SCL

SCL

SCL

SCL

SCL

SCL

SDA

SDA

SDA

SDA

SDA

SDA

MISO_A/2.3C

MOSI_A/2.3C

CS_A/2.3C

SCK_A/2.3C MISO_B/2.6C

MOSI_B/2.6C

CS_B/2.6C

SCK_B/2.6C

MISO_C/3.3C

MOSI_C/3.3C

CS_C/3.3C

SCK_C/3.3C

BUS_A/2.1C

BUS_A/2.1C

BUS_C/3.1C

BUS_C/3.1C BUS_B/2.5C

BUS_B/2.5C

BUS_D/3.5C

BUS_D/3.5C

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.9: Expansion Bay Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.2. SECOND PROTOTYPE 49

HD-F103

4543D

AGND

VCCA

AGND

SN74CBT3257DAGND

VCCA

74LVC1G04GW
AGND

VCCA

HD-F103

4543D

AGND

VCCA

AGND

SN74CBT3257DAGND

VCCA

74LVC1G04GW
AGND

VCCA

VCCA

AGND

VCCA

AGND

CC
CC

dp

a
b
c
d
e
f

g
3
2

5

9
10 1

8

4

7

6

DIS1

LD1

IC2
IB3

ID4

IA5

PH6

BI7

A 9

B 10

C 11

D 12

E 13

G 14
F 15

IC2

VCC16

~OE15

S1

1A4

2A7

3A9

4A12

GND8

1B1 2

2B1 5

3B1 11

4B1 14

1B2 3

2B2 6

3B2 10

4B2 13

U1

VCC5

A2

N.C.1

GND3

Y 4

U5
21

SJ2

CC
CC

dp

a
b
c
d
e
f

g
3
2

5

9
10 1

8

4

7

6

DIS2

LD1

IC2
IB3

ID4

IA5

PH6

BI7

A 9

B 10

C 11

D 12

E 13

G 14
F 15

IC1

VCC16

~OE15

S1

1A4

2A7

3A9

4A12

GND8

1B1 2

2B1 5

3B1 11

4B1 14

1B2 3

2B2 6

3B2 10

4B2 13

U2

VCC5

A2

N.C.1

GND3

Y 4

U3
21

SJ3

VDD VSS816 IC
2P VDD VSS816 IC

1P

CS_0/1.7C

CS_4/1.8C

SCK_0/3.4C

SCK_0/3.4C

MISO_0/3.4C

MISO_0/3.4C

MOSI_0/3.4C

MOSI_0/3.4C

SCK_1/3.4C

SCK_1/3.4C

MISO_1/3.4C

MISO_1/3.4C

MOSI_1/3.4C

MOSI_1/3.4C

CS_A/1.4B

MISO_A/1.3B

SCK_A/1.4B

MOSI_A/1.3B

BUS_A/1.7C

BUS_B/1.8C

CS_B/1.6B

MISO_B/1.5B

MOSI_B/1.5B

SCK_B/1.6B

CS_1/1.8C

CS_5/1.7C

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

HD-F103

4543D

AGND

VCCA

AGND

SN74CBT3257DAGND

VCCA

74LVC1G04GW
AGND

VCCA

HD-F103

4543D

AGND

VCCA

AGND

SN74CBT3257DAGND

VCCA

74LVC1G04GW
AGND

VCCA

VCCA

AGND

VCCA

AGND

CC
CC

dp

a
b
c
d
e
f

g
3
2

5

9
10 1

8

4

7

6

DIS3

LD1

IC2
IB3

ID4

IA5

PH6

BI7

A 9

B 10

C 11

D 12

E 13

G 14
F 15

IC3

VCC16

~OE15

S1

1A4

2A7

3A9

4A12

GND8

1B1 2

2B1 5

3B1 11

4B1 14

1B2 3

2B2 6

3B2 10

4B2 13

U4

VCC5

A2

N.C.1

GND3

Y 4

U6
21

SJ5

CC
CC

dp

a
b
c
d
e
f

g
3
2

5

9
10 1

8

4

7

6

DIS4

LD1

IC2
IB3

ID4

IA5

PH6

BI7

A 9

B 10

C 11

D 12

E 13

G 14
F 15

IC4

VCC16

~OE15

S1

1A4

2A7

3A9

4A12

GND8

1B1 2

2B1 5

3B1 11

4B1 14

1B2 3

2B2 6

3B2 10

4B2 13

U7

VCC5

A2

N.C.1

GND3

Y 4

U8
21

SJ7

VDD VSS816 IC
3P VDD VSS816 IC

4P

SCK_0/2.8C

SCK_0/2.8C

MISO_0/2.8C

MISO_0/2.8C

MOSI_0/2.8C

MOSI_0/2.8C

SCK_1/2.8C

SCK_1/2.8C

MISO_1/2.8C

MISO_1/2.8C

MOSI_1/2.8C

MOSI_1/2.8C

BUS_C/1.7C

CS_C/1.4D

MISO_C/1.3D

MOSI_C/1.3D

SCK_C/1.4D

CS_D/1.6D

MISO_D/1.5D

MOSI_D/1.5D

SCK_D/1.6D

BUS_D/1.8C

CS_2/1.7C

CS_6/1.8C

CS_3/1.8C

CS_7/1.7C

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.9: Expansion Bay Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

50 APPENDIX A. CIRCUIT DIAGRAMS

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MAX3232

1u
F

1u
F

1uF

DGND

1u
F

1u
F

DGND

DGND

DGND DGND

VCC VCC VCC
VCC

FT232RL

DGND

DGND

0.1uF 10uF

DGND

0.1uF

VCC VCC

LD09S24A4GV00LF

DGND

VCCA VCC

H101

H102

H1

H100

C1+1

C1-3

C2+4

C2-5

T1IN11

T2IN10

R1OUT12

R2OUT9

V+ 2

V- 6

T1OUT 14

T2OUT 7

R1IN 13

R2IN 8GN
D

15
VC

C
16

U2

C8
C9

C1

C7
C1

0

LE
D1

1

2
3

Q3

LE
D2

1

2
3

Q4

RESET19

OSCI27

OSCO28

DSR 9

DCD 10

RI 6

3V3OUT17

USBDM16

USBDP15

GND77

GND1818

GND2121

TXD 1

RXD 5

VCCIO4

AGND25
TEST26

VCC20

TXLED 23

RXLED 22

RTS 3
CTS 11

DTR 2

PWREN 14

TXDEN 13

SLEEP 12

U4

LE
D6

LE
D7

1
2
3

C2 C6 C3

1
2
3
4
5
6
7
8

J5

1 5

2 4

3 3

4 2

5 1

6 9

7 8

8 7

9 6

MH1 MH1

MH2 MH2

J4

UART_RX/3.2B

UART_TX/3.2B

RS232_RX/3.2B

RS232_RX/3.2B

RS232_TX/3.2B

RS232_TX/3.2B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

	MAX3485CSA

VCC

DGND

DGND

VCC

VCCA

MCP2515-I/SO

16MHz

DGND

VCC

219-02

ADM3050E

AGNDDGND

VCC VCCA

AGND

AGND

AGND

RO
/RE
DE
DI

VCC
B
A

GND

U3

1

2
3

Q2

VDD18

RXCAN2

~TX0RTS4

~TX1RTS5

~TX2RTS6

OSC18

SCK13

SI14

~CS16

~RESET17

VSS9

TXCAN 1

CLKOUT/SOF 3

OSC2 7

~RX1BF 10

~RX0BF 11

~INT 12

SO 15

U5

Q1

3
4 1

2

S4

VDD11

TXD2

RXD3

GND14 GND2 5
CANL 6
CANH 7
VDD2 8

U1

RD+ 4

CTD 2

RD- 6

TD+ 1

TD- 3

CRD 5
12
11

9
10

SHIELD1 Z1

SHIELD2 Z2

8 8
NC 7

T2

RD+ 4

CTD 2

RD- 6

TD+ 1

TD- 3

CRD 5
12
11

9
10

SHIELD1 Z1

SHIELD2 Z2

8 8
NC 7

T1

CAN_SCK/3.2B

CAN_MOSI/3.2B

CAN_CS/3.2B

CAN_RESET/3.2B

CAN_MISO/3.2B

CAN_INT/3.2B

B

B

A

A

CAN_H

CAN_H/3.2C

CAN_L

CAN_L/3.2C

RS485_TX/3.2B

RS485_TX/3.2B

RS485_RX/3.2B

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8
1

2

ON

LED2_G+

LED2_G-

LED1_Y-

LED1_Y+

LED2_G+

LED2_G-

LED1_Y-

LED1_Y+

Figure A.10: Front Panel Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

A.2. SECOND PROTOTYPE 51

DGND

VCC

DGND

VCC

DGND

DGND

VCC

VCC

VCCA

DGND AGND

DGND

VCC

0.1uF

VCC

DGND

0.1uF

VCC

DGND DGND

VCC

DGND

LCD-16X28X2

DTR
RXI
TXO
VCC
CTS
GND

LED3

LED4

LED5

1
3

2

R1

26
24
22
20
18
16
14
12
10
8
6
4
21

3
5
7
9
11
13
15
17
19
21
23
25
27 28
29 30
31 32
33 34
35 36
37 38
39 40

1

2
3

Q5

B

C

A

C4 C5
A

DB0
DB1
DB2
DB3
DB4
DB5
DB6
DB7

E

K

R/W
RS

VDD
VO

VSS

LCD1

LCD_RS

LCD_RS

LCD_E

LCD_E

LCD_D0

LCD_D0

LCD_D1

LCD_D1

LCD_D2

LCD_D2

LCD_D3

LCD_D3

LCD_D4

LCD_D4

LCD_D5

LCD_D5

LCD_D6

LCD_D6

LCD_D7

LCD_D7

CAN_H/2.3A CAN_L/2.3B

CAN_CS/2.2C

CAN_MOSI/2.2C

CAN_INT/2.3C CAN_SCK/2.2C

CAN_MISO/2.3C

CAN_RESET/2.2C

LCD_RW

LCD_RW

LCD_LED

LCD_LED

BTN_ESC

BTN_ESC

BTN_OK

BTN_OK

ENC_A

ENC_A

ENC_B

ENC_B

LED_RUN

LED_RUN

LED_STOP

LED_STOP

LED_ERROR

LED_ERROR

UART_TX/1.7A UART_RX/1.7A

RS232_RX/1.5BRS232_TX/1.4B

ENC_BTN

ENC_BTN

RS485_TX/2.2E RS485_RX/2.2E

DEBUG_RX

DEBUG_RX

DEBUG_TX

DEBUG_TX

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

1
3

16
x2
	L
CD

Figure A.10: Front Panel Schematic Diagram

+24VVCCA

AGND
AGND

AGND

VCCA

AGND

AGND

+24V

VCCA

AGND

A01

A12

A23 GND 4

SDA5
SCL6

WP7

VCC 8

U11
62
73
84
95

1
62
73
84
95

1 14
2 15
3 16
4 17
5 18
6 19
7 20
8 21
9 22
10 23
11 24
12 25
13

X3

SCK

SCK

MOSI

MOSI

CAN_H

CAN_H

CAN_L

CAN_L

MISO

MISO

CS

CS

SCL

SCL

SDA

SDA

I2C_ADDR_1

I2C_ADDR_1

I2C_ADDR_2

I2C_ADDR_2

I2C_ADDR_0

I2C_ADDR_0

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.11: EEPROM Adapter Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

52 APPENDIX A. CIRCUIT DIAGRAMS

AGND

+24V

VCCA

AGND

AGND

+24V

VCCA

MCP2562T-H/SN

SWS001

VCCA

VCCA

AGND

AGND
AGND

VCCA

AGND

10
k

VCCA

AGND

AGND

AGND

+24V

VCCA

AGND

1
62
73
84
95

1
62
73
84
95

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
291 2

3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30

JP3

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP5
1 2
3 4
5 6
7 8
9 10
11 12

JP2

RXD4

CANL 6
CANH 7

VSS2

STBY 8

TXD 1VIO5
VDD3

U1

2 1

S3

1
3

2

R
2

R
3

LED1

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28
29 30

JP4

1 2
3 4
5 6
7 8
9 10
11 12
13 14
15 16
17 18
19 20
21 22
23 24
25 26
27 28

JP6

1 2
3 4
5 6
7 8
9 10
11 12

JP1

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

AGND

CS

SCK MOSI

MISO

VCCA

VCCA

VCCA

VCCA

VCCA

VCCA

VCCA

VCCA

VCCA

CAN_H

CAN_H

CAN_H

CAN_L

CAN_L

P3_0

P3_0 P3_0

P3_1

P3_1 P3_1

P3_2

P3_2 P3_2

P3_3

P3_3 P3_3

P3_4

P3_4 P3_4

P3_5

P3_5 P3_5

P3_6

P3_6 P3_6

P3_7

P3_7 P3_7

P4_2

P4_2 P4_2

P4_3

P4_3 P4_3

P4_4 P4_4 P4_4

P4_5 P4_5 P4_5

P4_6 P4_6 P4_6

P7_0 P7_0 P7_0

P7_1 P7_1 P7_1

P0_0 P0_0 P0_0

P0_1 P0_1 P0_1

P0_4 P0_4 P0_4

P0_5 P0_5 P0_5

P0_6 P0_6 P0_6

P0_7 P0_7 P0_7

P6_5

P6_5 P6_5

P6_4

P6_4 P6_4

P6_2

P6_2 P6_2

P6_1

P6_1 P6_1

P6_0

P6_0 P6_0

P2_7

P2_7 P2_7

P2_6

P2_6 P2_6

P2_5

P2_5 P2_5

P2_4

P2_4 P2_4

P2_3

P2_3 P2_3

P2_2

P2_2 P2_2

P2_0P2_0 P2_0

P1_7P1_7 P1_7

P1_6P1_6 P1_6

P1_5P1_5 P1_5

P1_4P1_4 P1_4

P1_3P1_3 P1_3

P1_2P1_2 P1_2

P1_1P1_1 P1_1

P5_5P5_5 P5_5

P5_3P5_3 P5_3

P5_2P5_2 P5_2

P5_1P5_1 P5_1

P5_0P5_0 P5_0

/XRES/XRES

/XRES

/XRES

P1_0P1_0 P1_0

TXD

TXD

TXD TXD

RXD

RXD

RXD

RXD

VR

VR

VR

VR

SW2

SW2SW2 SW2

LED2

LED2LED2 LED2

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

O
N 1

1
3

Figure A.12: Motor Controller Module Schematic Diagram

IRF3704S

IRF3704S

IRF3704S

IRF3704S

IRF3704S

IRF3704S

IRF3704S

IRF3704S

30mE/0.5W 30mE/0.5W 30mE/0.5W

AGND

22E

22E

10uF/50V

22E

22E

10uF/50V

22E

22E

10uF/50V

22E

22E

10uF/50V

TL2285EE

AGND

SS12

SS12

SS12

SS12

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

MOUNT-PAD-ROUND3.0

015402.5DRT

+24V

AGND

AGND

AGND

AGND

19
.1
k

0.1uF1k

AGND

AGND

HIN
LIN

COM

VCC
VB

HO
VS
LO

IC1

Q107

Q103

Q106

Q102

Q105

Q101

Q104

Q100

1 2 3

JP
7 1 2 3

JP
8 1 2 3

JP
9

R
17

R
18

R
19

R8

R7

C3

HIN
LIN

COM

VCC
VB

HO
VS
LO

IC2

R10

R9

C4

HIN
LIN

COM

VCC
VB

HO
VS
LO

IC3

R12

R11

C5

HIN
LIN

COM

VCC
VB

HO
VS
LO

IC4

R14

R13

C6

NC_11

NO_12

COMM_13

COMM_2 4

NO_2 5

NC_2 6

S1

X1-1

X1-2

X2-1

X2-2

D1

D2

D3

D4

H4

H2

H1

H3

11
22 F1

X3-1

X3-2

1 2 3

JP
10

R
15

C8

R
16

1
AH

1
AL

1
BH

1
BL

1
CH

1
CL

1
DH

1
DL

1
VMOTOR

1
GND

PHASE_A/2.1A

PHASE_A/2.1A

PHASE_A/2.1A

PHASE_B/2.2A

PHASE_B/2.2A

PHASE_B/2.2A

IA

PHASE_D

PHASE_D

PHASE_D

PHASE_C/2.3A

PHASE_C/2.3A

PHASE_C/2.3A

ICIB

AHAH BH

BH

BL

BL

CH

CH

CL

CL

DL

DL

DH

DH

PWM_AH/2.7C

PWM_AH/2.7CPWM_AL/2.7A

PWM_AL/2.7A

AL

AL

PWM_BH/2.7C

PWM_BH/2.7C

PWM_BL/2.7C

PWM_BL/2.7C

PWM_CH/2.7C

PWM_CH/2.7C

PWM_CL/2.7C

PWM_CL/2.7C

PWM_DH/2.7B

PWM_DH/2.7B

PWM_DL/2.7A

PWM_DL/2.7A

VMOTOR

VMOTORVMOTOR

VMOTOR

VMOTOR

VMOTOR

VMOTOR

VMOTOR

VIN_SENSE/2.7C

A

B

C

D

E

1 2 3 4 5 6 7 8

A

B

C

D

E

1 2 3 4 5 6 7 8

Figure A.13: 4 Phase Inverter Schematic Diagram

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Appendix B

PCB Design

B.1 First Prototype

(a) Base Board Top (b) Base Board Bottom

(c) Expansion Bay Top (d) Expansion Bay Bottom

Figure B.1: Interconnection Base Board PCB

53

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

54 APPENDIX B. PCB DESIGN

(a) Top (b) Bottom

Figure B.2: Communication Module PCB

(a) Top (b) Bottom

Figure B.3: Digital I/O Module PCB

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

B.1. FIRST PROTOTYPE 55

(a) Top (b) Bottom

Figure B.4: Analog I/O Module PCB

(a) Top (b) Bottom

Figure B.5: Power delivery module PCB

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

56 APPENDIX B. PCB DESIGN

B.2 Second Prototype

(a) Base Board Top (b) Base Board Bottom

(c) Expansion Bay Top (d) Expansion Bay Bottom

Figure B.6: Interconnection Base Board PCBDire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

B.2. SECOND PROTOTYPE 57

(a) Top (b) Bottom

Figure B.7: Front Panel PCB

(a) Top (b) Bottom

Figure B.8: EEPROM Adapter PCB

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

58 APPENDIX B. PCB DESIGN

(a) Control Top (b) Control Bottom

(c) 4-Phase Inverter Top (d) 4-Phase Inverter Bottom PCB

Figure B.9: Motor control module PCB

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Appendix C

Platform Designer Code

The following section contains the main codes and configuration for the NIOS II tests performed initially
for development on the FPGA platform prior to the IP core design stage.

Figure C.1: Platform Designer Configuration

59

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

60 APPENDIX C. PLATFORM DESIGNER CODE

C.1 HDL top module for NIOS II processor test

1 //===
2 // This code is generated by Terasic System Builder
3 //===
4

5 module nios2(
6 //////////// CLOCK //////////
7 input CLOCK2_50,
8 input CLOCK3_50,
9 input CLOCK4_50,

10 input CLOCK_50,
11 //////////// SDRAM //////////
12 output [12:0] DRAM_ADDR,
13 output [1:0] DRAM_BA,
14 output DRAM_CAS_N,
15 output DRAM_CKE,
16 output DRAM_CLK,
17 output DRAM_CS_N,
18 inout [15:0] DRAM_DQ,
19 output DRAM_LDQM,
20 output DRAM_RAS_N,
21 output DRAM_UDQM,
22 output DRAM_WE_N,
23 //////////// KEY //////////
24 input [3:0] KEY,
25 //////////// LED //////////
26 output [9:0] LEDR,
27 //////////// SW //////////
28 input [9:0] SW,
29 //////////// GPIO_0, GPIO_0 connect to GPIO Default //////////
30 inout [35:0] GPIO_0,
31 //////////// GPIO_1, GPIO_1 connect to GPIO Default //////////
32 inout [35:0] GPIO_1
33);
34

35 //===
36 // Structural coding
37 //===
38

39 niosII u0 (
40 .clk_clk (CLOCK_50), // clk.clk
41 .reset_reset_n (KEY[0]), // reset.reset_n
42 .switches_export (SW[7:0]), // switches.export
43 .leds_export (LEDR[7:0]), // leds.export
44 .spi_MISO (GPIO_0[0]), // spi.MISO
45 .spi_MOSI (GPIO_0[1]), // .MOSI
46 .spi_SCLK (GPIO_0[2]), // .SCLK
47 .spi_SS_n (GPIO_0[3]) // .SS_n
48);
49 endmodule

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

C.2. EXAMPLE TEST CODE FOR NIOS II PROCESSOR 61

C.2 Example test code for NIOS II processor

1 /*
2 * "Small Hello World" example.
3 *
4 * This example prints ’Hello from Nios II’ to the STDOUT stream. It runs on
5 * the Nios II ’standard’, ’full_featured’, ’fast’, and ’low_cost’ example
6 * designs. It requires a STDOUT device in your system’s hardware.
7 *
8 * The purpose of this example is to demonstrate the smallest possible Hello
9 * World application, using the Nios II HAL library. The memory footprint

10 * of this hosted application is ˜332 bytes by default using the standard
11 * reference design. For a more fully featured Hello World application
12 * example, see the example titled "Hello World".
13 *
14 * The memory footprint of this example has been reduced by making the
15 * following changes to the normal "Hello World" example.
16 * Check in the Nios II Software Developers Manual for a more complete
17 * description.
18 */
19

20 #include "sys/alt_stdio.h"
21 #include "system.h"
22 #include "altera_avalon_pio_regs.h"
23

24 void delay(int time) {
25 volatile int i =0;
26 while(i<time*50000){
27 i++;
28 }
29 }
30

31 int main() {
32 alt_putstr("Hello from Nios II!\n");
33 char count = 0;
34 char select;
35 char led_on = 0;
36

37 /* Event loop never exits. */
38 while (1) {
39 select = IORD_ALTERA_AVALON_PIO_DATA(SWITCHES_BASE)&0xFF;
40 IOWR_ALTERA_AVALON_PIO_DATA(LEDS_BASE, select);
41 /*if(select == 1) {
42 led_on ˆ= 0x0F;
43 }else if(select == 2) {
44 led_on ˆ= (0x0F<<4);
45 }*/
46 count++;
47 delay(10);
48 }
49 return 0;
50 }

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

62 APPENDIX C. PLATFORM DESIGNER CODE

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Appendix D

ATmega 328p test Code

D.1 Digital I/O Test

1 //Test for the MCP23S17 16-Bit I/O Expander
2 #include <SPI.h>
3

4 SPISettings portExpanderSettings(16000000, MSBFIRST, SPI_MODE0);
5

6 const int PORT_EXPANDER_SS_PIN = 7;
7 const uint8_t PORT_EXPANDER_ADDRESS = 0;
8 const uint8_t SLAVE_CONTROL_BYTE = 0b1000000 | (PORT_EXPANDER_ADDRESS << 1);
9

10 #define IOCON (0x0A)
11 #define IODIRA (0x00)
12 #define IODIRB (0x01)
13 #define IOPOLA (0x02)
14 #define IOPOLB (0x03)
15 #define GPIOA (0x12)
16 #define GPIOB (0x13)
17

18 uint8_t INPUT_PIN_1 = 1; // GPA1
19 uint8_t INPUT_PIN_2 = 2; // GPA2
20 uint8_t INPUT_PIN_3 = 3; // GPA3
21 uint8_t INPUT_PIN_4 = 4; // GPA4
22 uint8_t INPUT_PIN_5 = 5; // GPA5
23 uint8_t INPUT_PIN_6 = 6; // GPA6
24 uint8_t INPUT_PIN_7 = 7; // GPA7
25 uint8_t INPUT_PIN_8 = 8; // GPA8
26

27 uint8_t OUTPUT_PIN_1 = 1; // GPB1
28 uint8_t OUTPUT_PIN_2 = 2; // GPB2
29 uint8_t OUTPUT_PIN_3 = 3; // GPB3
30 uint8_t OUTPUT_PIN_4 = 4; // GPB4
31 uint8_t OUTPUT_PIN_5 = 5; // GPB5
32 uint8_t OUTPUT_PIN_6 = 6; // GPB6
33 uint8_t OUTPUT_PIN_7 = 7; // GPB7
34 uint8_t OUTPUT_PIN_8 = 8; // GPB8
35

63

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

64 APPENDIX D. ATMEGA 328P TEST CODE

36 uint8_t GPIOB_value = 0x00;
37 uint8_t GPIOA_value = 0x00;
38

39

40 //Command: setup SPI, ports and interrupts.
41 void setup() {
42 pinMode(PORT_EXPANDER_SS_PIN, OUTPUT);
43 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
44 SPI.begin();
45 SPI.beginTransaction(portExpanderSettings);
46

47 writeByte(IOCON, 0b00001000); // enable hardware address pins; bank=0
addressing

48 writeByte(IODIRA, 0xFF);// set input ports
49 writeByte(IODIRB, 0x00);// set output ports
50 }
51

52

53 void loop() {
54 //test_outputs();
55 test_inputs();
56 delay(500);
57 }
58

59

60 void test_inputs(){
61 GPIOA_value = readByte(GPIOA);
62 writeByte(GPIOB, GPIOA_value);
63 }
64

65

66 void test_outputs(){
67 writeByte(GPIOB, GPIOB_value);
68 GPIOB_value = GPIOB_value<<1;
69 if (!GPIOB_value) GPIOB_value = 0x01;
70 }
71

72

73 //Command: write a single byte to the specified register
74 void writeByte(uint8_t reg, uint8_t data) {
75 digitalWrite(PORT_EXPANDER_SS_PIN, LOW);
76 SPI.transfer(SLAVE_CONTROL_BYTE);
77 SPI.transfer(reg);
78 SPI.transfer(data);
79 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
80 }
81

82

83 //Returns: byte read from specified register
84 uint8_t readByte(uint8_t reg) {
85 digitalWrite(PORT_EXPANDER_SS_PIN, LOW);
86 SPI.transfer(SLAVE_CONTROL_BYTE | 1);
87 SPI.transfer(reg);
88 uint8_t data = SPI.transfer(0);

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

D.2. DAC TEST 65

89 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
90 return data;
91 }
92

93

94 //Command: write two bytes to specified register
95 //demonstrates sequential write and transfer16 alternate SPI method.
96 void writeSequentialBytes(uint8_t reg, uint8_t first, uint8_t last) {
97 digitalWrite(PORT_EXPANDER_SS_PIN, LOW);
98 SPI.transfer16((uint16_t)SLAVE_CONTROL_BYTE << 8 | reg);
99 SPI.transfer16((uint16_t)first << 8 | last);

100 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
101 }

D.2 DAC Test

1 //Test for the MCP4822 12-Bit ADC
2

3 #include <SPI.h>
4

5 SPISettings portExpanderSettings(16000000, MSBFIRST, SPI_MODE0);
6

7 const int PORT_EXPANDER_SS_PIN = 10;
8 const float SUPPLY_VOLTAGE = 4570;
9 int voltage = 100;

10

11 void setup() {
12 pinMode(PORT_EXPANDER_SS_PIN, OUTPUT);
13 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
14 SPI.begin();
15 SPI.beginTransaction(portExpanderSettings);
16 }
17

18 void loop() {
19 writeDAC(0, voltageConvert(voltage));
20 writeDAC(1, voltageConvert(voltage*2));
21 voltage = voltage + 100;
22 if(voltage*2 > SUPPLY_VOLTAGE){
23 voltage = 100;
24 }
25 }
26

27 uint16_t voltageConvert(float voltage){
28 return voltage*4095/SUPPLY_VOLTAGE;
29 }
30

31 //Command: write dac value to selected output
32 void writeDAC(uint8_t channel, uint16_t value){
33 uint8_t dataOut = 0;
34 digitalWrite(PORT_EXPANDER_SS_PIN, LOW);
35 dataOut = (channel == 0) ? 0x10 : 0x90;
36 dataOut = dataOut ˆ (value >> 8);

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

66 APPENDIX D. ATMEGA 328P TEST CODE

37 SPI.transfer(dataOut);
38 SPI.transfer(value & 0x0FF);
39 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
40 }

D.3 ADC Test

1 //Test for the MCP3202 12-Bit ADC
2

3 #include <SPI.h>
4

5 SPISettings portExpanderSettings(16000000, MSBFIRST, SPI_MODE0);
6

7 const int PORT_EXPANDER_SS_PIN = 10;
8 float channel1 = 0;
9 float channel2 = 0;

10

11 void setup() {
12 pinMode(PORT_EXPANDER_SS_PIN, OUTPUT);
13 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
14 SPI.begin();
15 SPI.beginTransaction(portExpanderSettings);
16 Serial.begin(115200);
17 }
18

19 void loop() {
20 channel1 = readADC(0);
21 channel2 = readADC(1);
22 Serial.print(channel1);
23 Serial.print("\t");
24 Serial.println(channel2);
25 }
26

27 //Command: request ADC data from selected channel
28 uint16_t readADC(uint8_t channel){
29 uint8_t dataIn = 0;
30 uint8_t result = 0;
31 digitalWrite(PORT_EXPANDER_SS_PIN, LOW);
32 uint8_t dataOut = 0x01;
33 dataIn = SPI.transfer(dataOut);
34 dataOut = (channel == 0) ? 0xA0 : 0xE0;
35 dataIn = SPI.transfer(dataOut);
36 result = dataIn & 0x0F;
37 dataIn = SPI.transfer(0x00);
38 result = result << 8;
39 result = result | dataIn;
40 //input = input << 1;
41 digitalWrite(PORT_EXPANDER_SS_PIN, HIGH);
42 return result;
43 }

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Appendix E

Financial Statement

The following table E.1 includes an estimate of the budget invested on the project up to date.

Table E.1: Financial estimate.

Qty Description Subtotal (USD) Total (USD)
1 DE10-Nano Board $ 110.00 $ 110.00
1 CY8CKIT-037 DEV KIT MOTOR CONTROL PSOC 4 $ 186.56 $ 186.56
1 CY8CKIT-042 PIONEER CY8C4245AXI EVAL BRD $ 28.13 $ 28.13
2 CANDIY-SHIELD V2 - CAN-BUS Shield $ 14.14 $ 28.28
1 SMT ADAPTERS 3 PACK 28SOIC/TSSOP $ 4.95 $ 4.95
1 SMT ADAPTERS 3 PACK 20SOIC/TSSOP $ 4.50 $ 4.50
1 SMT ADAP 6 PACK 8SOIC/MSOP/TSSOP $ 2.95 $ 2.95
6 MCP23S17T-E/SOCT-ND $ 1.30 $ 7.80
3 ADUM3154BRSZ-ND $ 6.75 $ 20.25
1 Traco Power / TEL 5-2411 5V 5W $ 18.30 $ 18.30
1 Traco Power / TEL 5-2410 3.3V 4W $ 18.30 $ 18.30
3 MCP3202-CI/SN-ND $ 2.61 $ 7.83
4 MCP4822-E/SN-ND $ 3.09 $ 12.36
2 MCP2515T-I/SOCT-ND $ 1.87 $ 3.74
4 MCP2562T-E/SNCT-ND $ 0.93 $ 3.72
2 TC7MBL3253CFT $ 0.625 $ 1.25
20 IRFS3607TRLPBF $ 0.49697 $ 9.94
10 IR2102SPBF $ 1.786364 $ 17.86
12 ULN2803A $ 0.132114 $ 1.59
5 MAX3232CSE+T $ 1.1077 $ 5.54
30 2N7002LT1G $ 0.0592 $ 1.78
5 MAX3485ESA+T $ 1.632 $ 8.16
10 TCMT4600 $ 1.0299 $ 10.3
16 HF41F/5-ZS $ 1.069697 $ 17.12
8 K8-8081D-L1 $ 0.15303 $ 1.23
4 015402.5DRT $ 1.219697 $ 4.88
2 DP-06BP $ 0.3985 $ 0.8
10 HAD-03LWA-R $0.2197 $ 2.20

67

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

68 APPENDIX E. FINANCIAL STATEMENT

50 TS5215A 250gf $ 0.0138 $ 0.69
2 DSIC01LSGET $ 0.386364 $ 0.77
30 DS1037-09FNAKT74-0CC $ 0.166667 $ 5.00
40 DS1034-09MUNSi44 $ 0.209091 $ 8.36
20 DS1027-2LBF1 $ 0.02245 $ 0.45
10 DC-005-20A $ 0.081013 $ 0.81
20 Test Ring 5001 $ 0.145455 $ 2.91
2 B5B-EH(LF)(SN) $ 0.12368 $ 0.25
20 JL2EDGR-50802G01 $ 0.028367 $ 0.57
20 JL2EDGK-50802G01 $ 0.095451 $ 1.91
10 C35445 $ 0.0479 $ 0.48
16 C124415 $ 0.0663 $ 1.07
20 C124416 $ 0.0902 $ 1.81
5 C132435 $ 0.0845 $ 0.43
10 A2541HWR-2x7P $ 0.2045 $ 2.05
2 FH1-200CK-G $ 0.1939 $ 0.39
10 DS1128-04-S8B8P-X $ 0.3907 $ 3.91
10 C132439 $ 0.2029 $ 2.03
52 1-2834011-2 $ 0.381 $ 19.81
100 0805W8F1822T5E $ 0.002797 $ 0.28
100 0805W8F1912T5E $ 0.001684 $ 0.17
100 0805W8F2200T5E $ 0.001524 $ 0.15
100 0805W8F4700T5E $ 0.001681 $ 0.17
20 0805X106K250NT $ 0.035928 $ 0.72
20 0805F104M500 $ 0.029385 $ 0.59
60 D-G080508G1-KS2 $ 0.016163 $ 0.97
40 D-B080508B1-KS2 $ 0.016163 $ 0.65
100 WR08X1002FTL $ 0.005438 $ 0.54
100 AC0805FR-072KL $ 0.002988 $ 0.30
20 D-W080508W1-KS2 $ 0.026702 $ 0.53
100 RS-05K3901FT $ 0.001693 $ 0.17
50 CRA034RF1K00P05Z $ 0.008652 $ 0.43
100 CR0805F3K00P05Z $ 0.001936 $ 0.19
100 WR08X22R0FTL $0.001554 $ 0.16
50 0805N331J500CT $ 0.010931 $ 0.55
100 ERJP06F1001V $ 0.023739 $ 2.37
10 RTT25R030FTE $ 0.057 $ 0.57
20 US1AF $ 0.0147 $ 0.3
50 RC1210JR-0722RL $ 0.0067 $ 0.34
10 9C16000132 $ 0.1131 $ 1.14
50 D-R080508L3-KS2 $ 0.0135 $ 0.68
40 D-W080508W1-KS2 $ 0.0242 $ 0.97
50 AF0805JR-07100KL $ 0.0051 $ 0.26
50 AF0805JR-07100RL $ 0.0049 $ 0.25
20 0805B104J500NT $ 0.0258 $ 0.52

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

69

20 0805F105M500NT $ 0.0254 $0.51
10 0805B475K250NT $ 0.0657 $ 0.66
10 0805F106M250NT $ 0.0609 $ 0.61
50 RC0805JR-071KL $ 0.0027 $ 0.14
60 D-G080508G1-KS2 $ 0.0203 $ 1.22
60 D-B080508B1-KS2 $ 0.022 $ 1.32
5 3386P-1-103TLF $ 1.2498 $ 6.25
50 AC0805JR-0710KL $ 0.0131 $ 0.66
100 AF0805JR-07100RL $ 0.0104 $ 1.04
20 CRA064RJ1KE04 $ 0.0602 $ 1.21
50 AC0805JR-07270RL $ 0.0047 $ 0.24
5 Motor Board PCB Production $ 4.00 $ 4.00
5 IO Board PCB Production $ 4.00 $ 4.00
5 4 Phase Inverter PCB Production $ 4.00 $ 4.00
5 Power Board PCB Production $ 2.00 $ 2.00
5 Base Board PCB Production $ 8.50 8.50
5 Expansion Bay PCB Production $ 4.00 $ 4.00
5 FPGA Shield Adapter PCB Production $ 6.70 $ 6.70
5 HMI Board PCB Production $ 2.00 $ 2.00
5 Comunication Board PCB Production $ 2.00 $ 2.00
5 Analog Board PCB Production $ 2.00 $ 2.00
5 Pi Adapter Board PCB Production $ 4.00 $ 4.00

Total $ 664.72

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

70 APPENDIX E. FINANCIAL STATEMENT

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

Bibliography

[1] BENG, D. B. Practical SCADA for Industry (IDC Technology). Newnes, sep 2003.

[2] CERRADA, MARIELA CARDILLO, J. P. A. Diagnóstico de fallas basado en modelos: Una solución
factible para el desarrollo de aplicaciones SCADA en tiempo real. Ciencia e Ingenierı́a (2011).

[3] ELDIJK, V. IEC 61131: General information, Apr 2018.

[4] MUHAMMAD AAMIR AND MUHAMMAD ASLAM UQAILI AND NISHAT AHMAD KHAN AND JAVIER

PONCELA AND B. S. CHOWDHRY. Hardware Implementation and Testing of Reconfigurable RTU
for Wireless SCADA. Wireless Personal Communications 85, 2 (May 2015), 511–528.

[5] M. CHMIEL AND R. CZERWINSKI AND P. SMOLAREK. IEC 61131-3-based PLC Implemented by
means of FPGA. IFAC-PapersOnLine 48, 4 (2015), 374–379.

[6] ROBERT CZERWINSKI AND MIROSLAW CHMIEL AND WOJCIECH WYGRABEK. FPGA Implemen-
tation of Programmable Logic Controller Compliant with EN 61131-3. IFAC Proceedings Volumes 46,
28 (2013), 138–143.

[7] DONG-AH LEE AND EUI-SUB KIM AND JUNBEOM YOO AND JANG-SOO LEE AND JONG GYUN

CHOI. FBDtoVerilog 2.0: An Automatic Translation of FBD into Verilog to Develop FPGA. In 2014
International Conference on Information Science & Applications (ICISA) (May 2014), IEEE.

[8] ADAM MILIK. High level synthesis - reconfigurable hardware implementation of programmable logic
controller. IFAC Proceedings Volumes 39, 21 (Feb. 2006), 138–143.

[9] ADAM MILIK. Multiple-Core PLC CPU Implementation and Programming. Journal of Circuits,
Systems and Computers 27, 10 (May 2018), 1850162.

[10] MUÑOZ BARRÓN, BENIGNO. Controlador modular y reconfigurable para máquina de inyección de
plástico basado en FPGA, Jun 2011.

[11] OSORNIO RIOS, ROQUE ALFREDO. Diseño de sistema de control para CNC de alta velocidad, Aug
2007.

[12] SÁNCHEZ GÓMEZ, JESÚS IVÁN. Desarrollo de compilador para lenguaje escalera de controladores
lógicos programables para aplicaciones industriales, Jun 2013.

[13] SANTOS CRUZ, RAFAEL. Diseño e implementación de teclado industrial aplicado a una máquina de
inyección de plástico, Aug 2008.

[14] SOROUSH SHIRALI AND SHAHAB ENSAFI AND MAHSA NASERI. RTU hardware design for SCADA
systems using FPGA. In 2010 International Conference on Computer Applications and Industrial
Electronics (Dec. 2010), IEEE.

71

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://www.elsevier.com/books/practical-scada-for-industry/bailey/978-0-7506-5805-8
Diagn\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 o\egroup \spacefactor \accent@spacefactor stico de fallas basado en modelos: Una soluci\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 o\egroup \spacefactor \accent@spacefactor n factible para el desarrollo de aplicaciones SCADA en tiempo real
Diagn\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 o\egroup \spacefactor \accent@spacefactor stico de fallas basado en modelos: Una soluci\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {o\global \mathchardef \accent@spacefactor \spacefactor }\accent 19 o\egroup \spacefactor \accent@spacefactor n factible para el desarrollo de aplicaciones SCADA en tiempo real
https://plcopen.org/technical-activities/logic
https://link.springer.com/article/10.1007/s11277-015-2752-0
https://link.springer.com/article/10.1007/s11277-015-2752-0
https://www.sciencedirect.com/science/article/pii/S2405896315008381
https://www.sciencedirect.com/science/article/pii/S2405896315008381
https://www.sciencedirect.com/science/article/pii/S1474667015373134
https://www.sciencedirect.com/science/article/pii/S1474667015373134
https://ieeexplore.ieee.org/document/6847402
https://www.sciencedirect.com/science/article/pii/S1474667017301738
https://www.sciencedirect.com/science/article/pii/S1474667017301738
https://www.researchgate.net/publication/322440984_Multiple-Core_PLC_CPU_Implementation_and_Programming
http://ri-ng.uaq.mx/handle/123456789/256
http://ri-ng.uaq.mx/handle/123456789/256
http://ri-ng.uaq.mx/handle/123456789/874
http://ri-ng.uaq.mx/handle/123456789/756
http://ri-ng.uaq.mx/handle/123456789/756
http://ri-ng.uaq.mx/handle/123456789/749
http://ri-ng.uaq.mx/handle/123456789/749
https://ieeexplore.ieee.org/document/5735058?reload=true&arnumber=5735058
https://ieeexplore.ieee.org/document/5735058?reload=true&arnumber=5735058

72 BIBLIOGRAPHY

[15] CELSO F. SILVA AND CAMILO QUINTANS AND JOSE M. LAGO AND ENRIQUE MANDADO. An
Integrated System for Logic Controller Implementation Using FPGAs. In IECON 2006 - 32nd Annual
Conference on IEEE Industrial Electronics (Nov. 2006), IEEE.

[16] C. F. SILVA AND C. QUINTANS AND E. MANDADO AND M. A. CASTRO. Methodology to Im-
plement Logic Controllers with both Reconfigurable and Programmable Hardware. In 2007 IEEE
International Symposium on Industrial Electronics (June 2007), IEEE.

[17] MILIK, A., AND PULKA, A. On FPGA dedicated SFC synthesis and implementation according to
IEC61131. In 2014 International Conference on Signals and Electronic Systems (ICSES) (Sept. 2014),
IEEE.

[18] OLDFIELD, J. V. Field-Programmable Gate Arrays: Reconfigurable Logic for Rapid Prototyping and
Implementation of Digital Systems. Wiley-Interscience, jan 1995.

[19] PENIN, A. Sistemas SCADA. Alfaomega Marcombo, Mexico, 2013.

[20] SARDUY, J. Temas especiales de instrumentacion y control. Editorial Felix Varela, La Habana, 2005.

[21] TRIMBERGER, S. M. Field-Programmable Gate Array Technology. Springer, jan 1994.

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ

https://ieeexplore.ieee.org/document/4153259
https://ieeexplore.ieee.org/document/4153259
https://ieeexplore.ieee.org/document/4374620/
https://ieeexplore.ieee.org/document/4374620/
https://ieeexplore.ieee.org/document/6948730
https://ieeexplore.ieee.org/document/6948730
https://www.wiley.com/en-mx/Field+Programmable+Gate+Arrays:+Reconfigurable+Logic+for+Rapid+Prototyping+and+Implementation+of+Digital+Systems-p-9780471556657
https://www.wiley.com/en-mx/Field+Programmable+Gate+Arrays:+Reconfigurable+Logic+for+Rapid+Prototyping+and+Implementation+of+Digital+Systems-p-9780471556657
https://www.alfaomega.com.mx/default/catalogo/profesional/sistemas-scada-3a-ed.html
http://www.epfv.com.cu/
https://www.springer.com/gp/book/9780792394198

	Abstract
	List of Figures
	List of Tables
	Introduction
	Justification and Motivation
	Problem Statement and Context
	Hypothesis
	Objectives
	General Objective
	Specific Objectives

	Thesis Overview

	Literature Review
	Previous Works at UAQ
	Main References in Literature

	Theoretical Framework
	Overview of a SCADA
	Characteristics of a SCADA System
	Benefits and Requirements of a SCADA
	Hardware Components
	Reconfigurable Computing
	FPGA
	Embedded IP
	Nios II processor
	JTAG UART
	On-Chip Memory
	System-ID
	Clock Source and PLL

	Methods
	Specification
	Software
	Hardware and Equipment

	Design
	Architecture
	Hardware Proposal

	Implementation
	First Prototype
	Second Prototype
	Programming and Implementation of NIOS II Processor
	IP Block Design for Peripheral Interfaces

	Results
	Functional Validation
	Modules Communication Data Frames
	NIOS II and Peripheral controller Test

	Performance Verification
	Response Time
	Stress Tests

	Results Analysis
	Future Works

	Conclusions
	Circuit Diagrams
	First Prototype
	Second Prototype

	PCB Design
	First Prototype
	Second Prototype

	Platform Designer Code
	HDL top module for NIOS II processor test
	Example test code for NIOS II processor

	ATmega 328p test Code
	Digital I/O Test
	DAC Test
	ADC Test

	Financial Statement
	Bibliography

