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Abstract

This work was inspired by the lack of knowledge on how the stock exchange
behaves using conventional techniques. So we set off to discover a new way to
simulate the volatility but for the case of the Mexican stock exchange, seeing on
how this is the second largest stock exchange in Latin America. Our main objec-
tive was to simulate the stock exchange using α-stable Lévy processes, we will
focus primarily on developing an algorithm that will best imitate a single put
option in the Mexican Stock exchange. In this text we will provide theoretical
justification along with empirical evidence to support our claim. We obtained all
our historical data from a free source yahoo finance we also specify the period
with we will be focusing on.

keywords - Brownian motion, Lévy processes, stochastic differential equations, Financial
markets
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Resumen

En este trabajo se presenta se presenta un panorama del mercado financiero mexi-
cano, teniendo como objetivo generar un modelo que aproxime a los datos históricos
de varias acciones. A lo largo de la historia predecir el mercado financiero ha
sido uno de los grandes objetivos de Economistas y Analistas de datos, y es que
con ello se podrı́a obtener información importante para las inversiones en difer-
entes acciones. Es muy importante estar al dı́a y es por ello que en este trabajo se
aborda esta dinámica desde una perspectiva del cálculo diferencial Estocástico. El
cálculo diferencial Estocástico surge como una nueva alternativa a los problemas
donde se consideran a los eventos con inserción de mateáticas de alto nivel. Den-
tro de estos tópicos se abordan los procesos de Lévy, un proceso de Lévy consiste
en la modelización a partir de movimientos Brownianos o caminatas aleatorias.
En este trabajo se presenta la aplicacón de procesos de Lévy a un grupo de ac-
ciones de la bolsa mexicana de valores, que por su naturaleza suelen tener menos
variabilidad que las bolsas de grandes economı́as como la Bolsa de NY o la de
Asia. La implementación se realiza mediante el software R-Studio con las bases
de datos obtenidas de Yahoo-Finance, donde se pueden ver los datos históricos de
las acciones. Por último, podrán encontrarse los algoritmos que fueron utilizados
para la generación de los resultados.
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CHAPTER 1

Introduction

It may be common knowledge that in 1969, the Central Bank of Sweden cre-
ated the Nobel prize in economics. A year later Paul Anthony Samuelson was
awarded this prize, who coincidentally is the first American to receive this honor.Some
years later, 1997 to be exact, Robert Merton and Myron Scholes would also be
awarded this prize, sadly the renowned mathematician and Economist Fisher
Black who died two years earlier in August 30th 1995.It may be noteworthy to
mention that Robert Merton was an assistant to Paul Samuelson at MIT for two
years, from 1968 to 1970 during the same time Myron scholes was a teacher’s as-
sistant at a MIT as well luck would have it that they would coincide at the same
time.

A bit more insight and how this this is it organized the order is as followed.
In the next three sections a review of historical, social and economic context is
provided in which Louis Bachelier realized his research/investigation. In in the
following section a historical review on the phenomenon known as Brownian
movement and its conceptual evolution. After we discuss the contributions made
by Albert Einstein In the explanation of Brownian movement. Then we will es-
tablish a relationship between the work of Samuelson and Bachelier. Following
that we discuss the connection between the work of Black, Scholes and Merton
and the circumstances that leading up to it. Afterwards a probabilistic model
which was developed by Bachelier in order to study the stochastic dynamics of
asset price and to determine the value of a call option on said asset. Then cover-
ing Brownian movement and we compared those results to those of Bacheliers.
The estimate of the options, in which the price of the underlying asset is driven
by Geometric Brownian movement, which is what prevents the price of the un-
derlying asset from taking on negative values, which is the case with Bachelier
models. Then we present the work of black and scholes in which, under condi-
tions of equilibrium, developed a model to estimate the value a call option and
which is driven by Geometric Brownian Motion. In their research, two unknown
parameters are considered in the work of Samuelson, which no longer appear
in the option price. In this same section, we provide an alternative derivation
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of Black and Scholes, which employs the CAPM, in order to obtain estimating
function. In the following section we present the work of Merton, which extends
in various directions the model presented by Black and Scholes, Which include:
stochastic interest rates, continuous payment of dividends, American options and
a generalization of Samuelson’s formula for perpetual options and the valuation
of options with barriers. Finally, we presents a set of conclusions.

1.1 Louis Bachelier

Louis bachelier (1870 - 1946), who is of French nationality isn’t known as, “ the
father of modern Financial mathematics,” due to his exceptional contributions
to financial Theory. Whose doctoral thesis “Théorie de la Spéculation”,[1] Which
he presented in 1900 at the Sorbonne in Paris which distinguishes finance as a
science, subject to same mathematical rigor as other fields. Louis Bachelier was
ahead of his time with the introduction of concepts such as: Brownian movement,
Markovian process, conditional expectation, and martingale. what is surprising
is that these Concepts would be rediscovered and made popular years later by
prominent mathematicians, for example Markovian processes appeared in 1906,
the formal notations for conditional expectation was introduced by Kolmogorov
om 1933, and the concept of Martingale was developed by Lévy until 1937.

It is important to mention a few of the contributions bacheliers doctoral thesis
in the area of mathematical Finance, some of these are: modeling the dynamics
of stock prices in the Paris stock exchange through Brownian movement, the first
graphic representation of the price of a contract for an option, the formulation of
efficient markets, the first estimating formula of an option and the first quantita-
tive definition of “market risk.”

Undoubtedly, Louis Bachelier was ahead of his time. When several sub-branches
of physics were subjected to mathematical rigor and pure mathematics reached
the height of an era, it was impossible to think of a ”mathematical theory” that
studied the behavior of the prices of financial assets, let alone think of an actual,
”mathematical models” [1]that described the movements of said prices. How-
ever, Louis Bachelier, who was convinced of the importance of the study of finan-
cial markets, through mathematical models, so he continued with his adventure
obtaining results that, to this day, continue to be surprising. Unfortunately Bache-
lier and his work would remain in the shadows for many years. Little is known,
even to this date, about this enigmatic and mysterious character. Sadly Louis
Bachelier died without any recognition from France’s scientific elite of the time.
It wasn’t until the 1970’s when, mainly, from the work of Paul Samuelson, Bache-
lier’s contributions were finally unveiled, albeit long after his death.

Finally, it must be stated that even the great Louis Bachelier took or was in-
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spired by previous works/investigations, i. E. the work of the economist and
French financier Jean Joseph Nicolás Regnault, who used the pseudonym of Jules
Regnault, ”Calcul des chance et philosophie de la Bourse” published in 1863,
already mentioned that the average deviation of the prices of the actions were
proportional to the square root of the time in which the observations were taken,
which is a central property of the Brownian movement.

1.2 Additional information on Louis Bachelier’s life

In 1889 when Louis was 19, just out of High school, tragedy struck, both of his
parents died. Which was the determining factor on why he abandoned his edu-
cation, he had to take control and keep his family’s business open and support
his two younger bothers. Even though he couldn’t continue with his education
it was running his family’s business he was introduced to the world of financial
markets, and experience that would mark young Louis for life, sparking his inter-
est in the behavior of different assets which even included product derivatives.
Another even that would mark young Louis’ life would come in 1891, when he
choose to enlist in the military in order to take care of his military service (in some
countries military service is required as part of becoming a citizen). It would not
be until 1892, at the age of 22 when young Louis would have the opportunity to
continue his education at the university Sorbonne thanks to a letter of recommen-
dation written by Emile Borel, thanks to this letter young Louis was able to obtain
a scholarship. With a four year gap between graduating high school and being
accepted to the university it is not surprising that young Louis would struggle.
In fact his grades were actually lower then those of his classmates (two notewor-
thy classmates are: Legenvin and Liénard), but despite these set backs in 1895
he would obtain a B.S in mathematics then in 1897 he would go on to obtain his
master’s degree in mathematical physics. On the 29th of March, 1900 Bachelier
was a doctoral student at Sorbonne and he presented his doctoral thesis, ”Thórie
de la Spéculation” in the faculty of science at the Paris Academy. His sinodales were
none other than Henri Poincaré, Paul Appel, and Joseph Boussinesq. Unfortu-
nately for Bachelier mathematical finance was still not seen as an exact science,
so the comments of Hadamard, Borel, Lesbesque, Lévy, and Baire were not ex-
pected and in a sence under valued Bachelier’s contribution, again in this time in
France Physics and pure Mathematics were the main areas of study[1].

1.3 Mathematical Finance and Probability, the lost years

In the XX century, 1970’s and early 1980’s to be specific, what is known today as
mathematical finance was considered an area of interest for the mathematician
of that era. And even less considered would be derivative product theory, which
was seen as an area lacking mathematical rigor and scrutiny and was far from the
areas of interest i.e. algebraic topology, differential geometry, function analysis,
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complex variable, modern algebra, etc. Which is far from what is seen today, now
a days each mathematical department has and area dedicated to mathematical fi-
nance and even offer postgraduate degrees.

Probability theory would share a similar, not until Kiyosi Itô (1915 - 2008),
who was one of the most noteworthy mathematician of the 20th century who as
well a progenitor of the famous stochastic calculus, he stated,

”Since I started my studies in mathematics (beginning of the 1930’s) I was really in-
terested in the discovering the statistical laws which resided in random phenomenon. I
knew that with probability theory I would be able to discover said phenomenon, hence I
dedicated to it. When i was a student there were very few investagor in probablity, a few
of them are Andrei Kolmogorov from Rusia and Paul Lévy of France.”

Is how his passion was born.

1.4 From Robert Brown to Louis Bachelier, a Brief His-
torical Review of Brownian Motion

In 1827, a Scottish botanist by the name of Robert Brown (1773 - 1858) while ex-
amining a particulates of pollen under a microscope, he observed that when the
particle of pollen was suspended in water the particle would continue moving
in an erratic manner with no signs of stopping. Brown’s original thoughts were
that the particle had its own movement, he even considered the possibility of the
particle of pollen being ”alive”. Given the implied possibilities investigation in
to this was intensified and soon, and to the dismay of Brown, he obtained evi-
dence where non-organic material i.e. find dust, had the same behavior as did
the pollen, which quickly disproved his initial hypothesis. Two years later, 1829,
Robert Brown renounces his hypothesis about living particulates and possessing
its own movement. He later went on to state,

”... I am unaware what causes a small particle of solid matter being organic or inor-
ganic while suspended in water or oter liquids exhibit erratic or irregular behavior.”

After this the investigation was divided in to different facets or areas.

• Attraction or repulsion between suspended particles.

• The instability of equilibrium of the liquid the particles find themselves in.

• The presence of minuscule bubbles in the liquid or on the particles.

As it may no to come to a big surprise most of these were almost immediately
discarded and what evidence was collected was inconclusive or not very favor-
able.
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1.5 From Robert Brown to Albert Einstein

Two centuries would paste with no satisfactory explanation on what caused the
Brownian movement. It was not until the beginning of 20th century, when it was
proven that the erratic or irregular movement of the pollen particle was caused
by random collisions with water molecules.

In 1905, the famous Jewish and German born physicist Albert Einstein pub-
lished three pivotal works:

• Photoelectric effects.

• Special Relativity.

• Statistical mechanics.

For his first work the Academy of Switzerland awarded him Nobel prize in
1921. For this second contribution he was credited for uniting classical mechan-
ics and electrodynamics and as for his last pivotal work just the satisfaction of
being able to answer a problem that has had almost two centuries that has gone
with out one i.e. Brownian motion. Einstein proposed an explanation and math-
ematical foundation of Brownian motion, from which it is derived that average
dispersion of movement or its trajectory of the particle suspended in a liquid is
proportional to the squared root of time.

√
t. Bachelier predated Einstein with

his own mathematical explanation of Brownian movement, Bacheliers explana-
tion was just as elegant but covering or focusing on a completely different to the
erratic movement of the pollen particle.

1.6 Paul Samuelson and Louis Bachelier, a reunion
between titans

One of the most important limitations of Bacheliers work was that the asset prices
could take on negative values and this was flaw wasn’t corrected until 1965 by
none else than Paul A. Samuelson in his work about estimating the price of
warrants does Samuelson mention the work of Bachelier. An interesting side
note, when Samuelson visited Sorbonne in 1960 he entered the library and chance
would have it that he would run into Bachelier’s doctoral thesis, an event that
would greatly influence later work.

In 1965, Paul Samuelson published his article, ”Rational Theory of Warrant
Prices” where he introduced the concept of ”economic” Brownian motion, what
today is known as Geometric Brownian motion. When Samuelson resolved the
issue Bachelier had by eliminating the possibility the asset prices can taking on
negative values he unwittingly created a few more inconveniences like the ap-
pearance of unknown parameters. In the article he published the price of the
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underlying asset is driven by Geometric Brownian motion and the option price is
calculated by taking the present value of the expected value at its maturity date.
In this situation the price of the option is determined by two unknown parame-
ters: the first is the average return expected, which is a parameter linked to the
risk agents prefer. The second, is the return that will be paid by the option which
is used to calculate its present value which is expected when the option reaches
maturity.

1.7 Fischer Black, Myron Scholes, and Robert Mer-
ton. A dream team.

Fischer Black and Myron Scholes published their article, ”The Pricing of Options
and Corporate Liabilities.” In the Journal of Political Economy in 1973, Admir-
ingly maybe the choice of ”journal” was not the best or most adequate for the
work. It was held up in review for almost 2 years before being published. Despite
the fact that Black and Scholes work had been previously reviewed by Robert
Merton, Merton Miller, and Eugene Fama who gave validity to said work. Under
the assumption of general equilibrium, Black and Scholes were able to develop
a formula that estimated the value of a European option that does not pay divi-
dends, and whose price is driven by a Geometric Brownian Motion. The deficien-
cies in Paul Samuelson’s article were rectified given that there are no unknown
parameters in the price of the option and, more importantly, no additional lim-
itations emerged. The perfect formula was born. As if this was not enough in
the SAME article Blakc and Scholes proposed an alternative derivation of their
formula using the Capital Asset Pricing Model or C.A.P.M for short.

In their article Black and Scholes developed a second order partial differen-
tial equation which is also parabolic and linear. Whose solution is the price of a
European option when the final condition is the intrinsic value of the option. In
Black and Scholes research, this partial differential equation is transformed into
the heat diffusion equation, which has explicit solutions. Soon after this Black
and Scholes’ partial differential equations becomes extremely popular, seeing as
it can be a base for estimating a wide and very diverse variety of derivative prod-
ucts, given that for different boundary conditions, their solutions represent the
prices of many available derivative products in the stock market.

It goes without saying that Roberts Merton’s article, ”Theory of Rational Op-
tion Pricing,” which was published in 1973 in the Bell Journal of Economics and
Management Science is very noteworthy given that he (Merton) not only ob-
tained similar results as Black and Scholes but found various extensions. Merton
continued his work on valuation of options in a series of truly impressive articles.
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For the exceptional contribution to what is known today as, ”financial Math-
ematics in continuous time,” Robert Merton and Myron Scholes won the Nobel
prize in economics in 1997. Sadly by then Fischer Black had passed away two
years earlier. For his (Merton) considerable contribution the Black and Scholes
model could easily be called the Black, Scholes, Merton model. In fact this is how
this auther refers to this model as such.

Next we will briefly review the works of Bachelier, Samuelson, Black, Scholes,
and Merton. The objective is to show the reader the can see the evolution of the
ideas and concepts formulated, some assumptions are simplified and we will use
conventional notation. Given that the notations used by Bachelier in his work is
convoluted and difficult to fallow.

1.8 Bachelier’s Thesis.

Bachelier starts out his thesis giving an explanation as description of the products
available at the time in the French stock market i.e forwards, options futures, etc.
He then continues by developing a probabilistic model that described the move-
ment of a financial asset and established the principal that the conditional expec-
tation of profit for the speculator is zero. Here the term conditional refers to the
fact that actual information is taken as given. Bachelier also accepts that the stock
market price evolves like a homogeneous Markovian process in time. He follows
by demonstrating that the probability distribution function (PDF) associated with
this process satisfies what we currently call the Chapman-Kolmogorove equation,
he also verifies that Gaussian PDF with an increasing linear variance in time is a
solution to this equation. Although he makes no argument for uniqueness, he
does offer a few arguments in order to confirm his conclusion. It is also note-
worthy to state that Bachelier demonstrated that the family of density functions
associated with the process that drives the price also satisfies the heat equation.
Lastly the probabilistic model that describes the behavior of the price of a finan-
cial asset is used in order to estimate the value of a French option whose earning
are paid upon maturity or when the expiry date is reached.

1.8.1 Probabilistic law behind pricing a financial asset.

In this section we will present the probabilistic model developed by Bachelier in
order to study the stochastic behavior of the price of a financial asset. Also as
previously mention we will use ”modern” notation in order to help understand,
given that Bacheliers notation is a bit convoluted and hard to fallow.

Let St1 be the price of a financial asset in time t1 > 0. Now let us assume that
St1 is a random variable (R.V) over a fixed probability space (Ω,F, P). We will
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also assume that St1 , has a conditional density function fSt1 |S0
(s|S0) and we know

that the probability that at time t1, the price of the financial asset, St1 is located in
the interval [s, s + ds given S0, can be written as:

P[s ≤ St1 ≤ s + ds|S0] =
∫ s+ds

s
fSt1 |S0

(u|S0)du = fSt1 |S0
(s|S0)ds + o(ds) (1.1)

Where
o(ds)

ds
→ 0 when ds→ 0. Next it is is convenient if we represent the value

of fSt1 |S0
(s|S0)ds with p(s, t|S0, 0)ds. Thus,

P[s ≤ St1 ≤ s + ds|S0] ≈ p(s, t1|S0, 0)ds (1.2)

We also have:

P[u ≤ St2 + s ≤ u + du|St1 = s] = P[u− s ≤ St2 ≤ u− s + du|St1 = s]

= fSt1+t2 |S0
(u|St1)du + o(du) (1.3)

If we denote fSt1+t2 |S0
(u|St1) as p(u, t1 + t2|s, t1)du we then have that:

P[u ≤ St2 + s ≤ u + du|St1 ] ≈ P[u, t1 + t2|s, t1]du (1.4)

This way, the conditional probability that St1+t2 is located in [u + du], given
S0, and can be calculated as:

P[u ≤ St1+t2 ≤ u + du|S0]

=
∫

s∈R
P[u ≤ St2 + s ≤ u + du|S1 = s] ∗P[s ≤ St1 ≤ s + ds|S0] (1.5)

1.8.2 Chapman-Kolmogorov equation.

Given P[s ≤ St1 ≤ s + ds|S0] ≈ p(s, t1|S0, 0)ds and P[u ≤ St2 + s ≤ u + du|St1 ] ≈
p(u, t1 + t2|s, t1)du and working under the assumption that the approximation
error is negligible, we can write P[u ≤ St1+t2 ≤ u + du|S0] =

∫
s∈R

P[u ≤ St2 +
s ≤ u + du|S1 = s] ∗P[s ≤ St1 ≤ s + ds|S0] as

p(u, t1 + t2|S0, 0) =
∫ −∞

∞
p(u, t1 + t2|s, t1) ∗ p(s, t1|S0, 0)ds (1.6)

This expression is known as the Chapman-Kolmogorov equation (for the con-
tinuous case). The Only function that satisfies P[u ≤ St1+t2 ≤ u + du|S0] =∫

s∈R
P[u ≤ St2 + s ≤ u + du|S1 = s] ∗P[s ≤ St1 ≤ s + ds|S0] is given by:

p(u, t + h|s, h) = q(t)e−πq(t)2(u−s)2
(1.7)
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Where q(·) is a function of time that will be determined. It should be observed
that, ∫ ∞

−∞
p(u, t + h|s, h)du =

∫ ∞

−∞
q(t)e−πq(t)2(u−s)2

du = 1

In particular (for simplicity Bachelier assumes S0 = 0).

p(s, t1|S0, 0) = q(t1) ∗ e−πq(t1)
2(s−S0)

2
(1.8)

Also if we observe that if s = 0, we then have p(u, t1 + t2|s, t) = q(t1)

In the same manner,

p(0, t1 + t2|s, t1) = q(t2) ∗ e−πq(t2)
2(u−s)2

(1.9)

Next we will prove that, p(u, t + h|s, h) = q(t)e−πq(t)2(u−s)2
satisfies p(u, t1 +

t2|S0, 0) =
∫ −∞

∞ p(u, t1 + t2|s, t1) ∗ p(s, t1|S0, 0) but first observe that from p(s, t1|S0, 0) =
q(t1) ∗ e−πq(t1)

2(s−S0)
2

and p(0, t1 + t2|s, t1) = q(t2) ∗ e−πq(t2)
2(u−s)2

We have,

p(u, t1 + t2|S0, 0) =
∫ −∞

∞
q(t2)e−πq(t2)

2(u−s)2 ∗ q(t1)e−πq(t1)
2(u−s)2

ds;

= q(t1) ∗ q(t2) ∗ e−π[q(t2)
2u2+q(t1)

2S2
0]
∫ −∞

∞
e−π[(q(t1)

2+q(t2)
2)s2+2(q(t2)

2u+q(t1)
2S0)s]ds

(1.10)
If we define the change of variable as:

w = s ∗
√

q(t1)2 + q(t2)2 − q(t2)
2u + q(t1)

2S0√
q(t1)2 + q(t2)2

Then,

p(u, t1 + t2|S0, 0) =
q(t1)q(t2)√

q(t1)2 + q(t2)2
∗ e
−π[q(t2)

2u2+q(t1)
2S2

0]+
π[q(t2)

2u + q(t1)
2S0]

2

q(t1)2 + q(t2)2

Where ∫ −∞

∞
e−πw2

dw = 1

consequently,

p(u, t1 + t2|S0, 0) =
q(t1) ∗ q(t2)√
q(t1)2 + q(t2)2

∗ e
−π

q(t1)
2 ∗ q(t2)

2

q(t1)2 + q(t2)2 (u−S0)
2

(1.11)
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Now, in virtue of: p(u, t + h|s, h) = q(t)e−πq(t)2(u−s)2
, we obtain,

p(u, t1 + t2|S0, 0) = q(t1 + t2)e−πq2(t1+t2)
2(u−S0)

2
(1.12)

So then we have

q2(t1 + t2) =
q2(t1) ∗ q2(t2)

q2(t1) + q2(t2)
(1.13)

Now if we set equal the partial derivatives of p(u, t1 + t2|S0, 0) = q(t1 + t2)e−πq2(t1+t2)
2(u−S0)

2

with respect to t1 and t2, or put another way:

∂q2(t1 + t2)

∂t1
=

∂q2(t1 + t2)

∂t2

Which satisfies:

q′(t1)

q3(t1)
=

q′(t2)

q3(t2)
(1.14)

To put it simply, the quotient
q′(t)
q3(t)

is independent of t. Or put another way, it is

independent of time. So we observed that,
q′(t)
q3(t)

= a = constant. The solution to

this differential equation is given by:

q(t1) =
b√

t
(1.15)

Where b is a positive constant. Now if we redefine b as b =
1√
2π

we have,

p(u, t + h|s, h) = q(t)e−πq(t)2(u−s)2
=

1√
2πt

e
−(u− s)2

2t (1.16)

Now if we take into consideration that p(s, t + h|Sh, h) = fs|Sh
(s|Sh) we have:

fst|S0
(s|S0) = p(s, t|S0, 0) =

1√
2πt

e
−(u− s)2

2t (1.17)

This is a density function Bachelier obtained with S0 = 0 for a financial asset in
the French market. Finally we can see that the Chapman-Kolmogrove equation
can be written as:

fSt1+t2 |S0
(s|S0) =

∫ ∞

−∞
fSt1+t2 |St1

(s|St1) fSt1 |S0
(St1 |S0)dSt1 (1.18)
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1.8.3 Fourier’s equation

The first person to describe heat flow was french born Joseph Fourier (1768 -
1830); the heat equation. Which is second order partial differential equation with
exact solutions, that describe how heat disperses over time on an infinitely long
metal rod after its been heated for an initial time.

Now we must state that in order to save time and not go off a tangent, now if
we simplify some of Bachelier’s original arguments will be simplified, now let us

consider the following equation p(u, t+ h|s, h) = q(t)e−πq(t)2(u−s)2
=

1√
2πt

e
−(u− s)2

2t

now from that we have

p(u, t|s, 0) =
1√
2πt

e
−(u− s)2

2t (1.19)

And we obtain

∂p
∂t

=
1
2

(
(u− s)2

t2 − 1
t

)
∗ p(u, t.|s, 0) (1.20)

And

∂2p
∂2t

=

(
(u− s)2

t2 − 1
t

)
∗ p(u, t.|s, 0) (1.21)

There for

2 ∗ ∂p
∂t

=
∂2p
∂u2 , −∞ < u < ∞, t ≥ 0. (1.22)

Now if we define P[u, t] =
∫ ∞
−∞ p(u, t|s, 0)ds, it also holds true, trivially, that:

2 ∗ ∂P

∂t
=

∂2P

∂u2 , −∞ < u < ∞, t ≥ 0. (1.23)

Now if we apply a change of variable t = 2Ä we can evidently see that

p(s, 2τ|u, 0) =
1√
2πτ

e
−1
4τ

(s−u)2

We can write is as

V(u, τ) =
∫ ∞

∞
p(u, 2τ|s, 0)ds (1.24)

It fallows that

∂V
∂τ

=
∂2

∂s2 , −∞ < u < ∞, τ ≥ 0. (1.25)
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The equations 2 ∗ ∂p
∂t

=
∂2p
∂u2 , −∞ < u < ∞, t ≥ 0., 2 ∗ ∂P

∂t
=

∂2P

∂u2 , −∞ <

u < ∞, t ≥ 0. and
∂V
∂τ

=
∂2

∂s2 , −∞ < u < ∞, τ ≥ 0. have the same format

as Fourier’s second order partial differential equation c2 ∂ϕ

∂t
=

∂2ϕ

∂u2 where c is a

constant. Especially the equation
∂V
∂τ

=
∂2

∂s2 , −∞ < u < ∞, τ ≥ 0. if we

restrict V(u, 0) ≡ 1.

1.8.4 Markovian Processes

We denote a stochastic processes as a Markovian process if the probability dis-
tribution of a future event is solely dependent on actual information and not on
previous information. Now if we trivially define the random variable ∆(h)St =

St+h − Sh, with h ≥ 0, the distribution of ∆(h)St only depends on information
available at time h, or to put it another way, it only depends on the value of Sh
and not on previous values i.e. Sm, where m, d ≤ h. This implies that ∆(h)St is a
Markovian process.

1.8.5 Homogeneous Processes in Time

Now we can observe that from p(u, t+ h|s, h) = q(t)e−πq(t)2(u−s)2
=

1√
2πt

e
−(u− s)2

2t ,

for whichever h ≥ 0, it satisfies the property:

p(u, t + h|s, h) = p(u, t|s, 0) =
1√
2πt

e
−(u− s)2

2 ∗ t (1.26)

If we define the random variable ∆(h)St = St+h − Sh with an arbitrary h ≥ 0

we have, from p(u, t + h|s, h) = p(u, t|s, 0) =
1√
2πt

e
−(u− s)2

2 ∗ t , that ∆(h) and

∆(0)St have the same distribution N(0, t). The distribution ∆(h)St depends on the
difference between t + h and h. If we denote x = u− s, we then have:

p(x, t|0, 0) =
1√
2πt

e
−x2

2t

If we further generalize, if h and m are non negative arbitrary numbers, then ∆(h)

and ∆(m)St have the same distribution.
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1.8.6 Martingales

One of the most important concepts in the study of financial markets is that of
efficient markets, which are defined by martigale process. If we observe that
condition E[St+h − S|Sh] = 0 we have:

E[St+h|Sh] = Sh (1.27)

Which is the best projection of St+h, given that its actual value is Sh, is precisely
Sh. A stochastic process (St)t≥0 which satisfies E[St+h|Sh] = Sh for all t, h ≥ 0
which we denote as a martingale.

1.8.7 Brownian Motion

Both theoretical and applied aspects of Brownian motion have been the focus of
numerous studies in financial mathematical. It can not be denied that Brown-
ing motion is found either implicitly or explicitly in just about every area of
continuous-time financial theory. The precursor to what is currently known as
Brownian motion is found in Bachelier’s work (1900) and before that in Jules
Regnault (1863). No if we consider the density function obtained by Bachelier,
including the volatility parameter Ã, for the price of a financial asset:

fST |S0
(s|S0) =

1√
2πtσ

e
−s2

2σ2t , t ≥ 0 (1.28)

With S0 = 0. We can observe that the above is equivalent to writing St N(0, σt).
If we define Wt N(0, t), then we can write St = σWt. In this case, if t = 0, then
W0 ≡ 0. If we define ∆(h)St = St+h − Sh and ∆(h) = Wt+h −Wh, h > 0, if
follows that

∆(h)St = σ∆(h)Wt (1.29)

Finally, notice that if the changes are infinitesimal, equation (1.29) can be replaced
by

dSt = σdWt, dWt ∼ N(0, dt) (1.30)

Which is more in line with modern notation.

1.8.8 Estimation of Options (France)

In this section we use the probabilistic model of the price of an asset to value a
special type of options, the french options, whose premium is paid upon matu-
rity. A (financial) call option, or call option contract, It is an agreement between
two parties that obligates (legally) one of the parties to sell a financial asset, while
the counterpart grants the right, but not the obligation, to buy said asset at a pre-
set price at a future date. It is assumed that the sale can only be carried out on the
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date of maturity. It is customary to say that the buyer takes a long position while
the seller a short position.

If we assume the option was established a time t (the present) and that the pur-
chase and sale of the asset at a predetermined price, K, is carried out at a future
date, T. The agreed price, K, is called the price of exercise (of the option). It is
important to mention that at the time the contract reaches maturity, is when the
premium is paid. An agent, who thinks that the price of the asset will increase,
can speculate taking a long position on the option. Let ST be the price of the op-
tion at the date of maturity. If ST < K, then the long position does not exercise
its right to purchase the call option. While if ST > K, the long position does,
obtaining a profit of ST − K. In either case the premium C is paid. The princi-
ple that Bachelier establishes how to estimate the value of the option is that the
expectation of profit (long position) be zero, better stated:∫ K

−∞
−CfST |S0

(s|S0)ds +
∫ ∞

K
(s− K− C)fST |S0

(s|S0)ds = 0 (1.31)

where

fST |S0
(s|S0) =

1√
2πtσ

e
−(s−S0)

2

2σ2t

We have introduced the parameter of volatility Ã in order to give Bachelier’s
equation a modern touch. Equation

∫ K
−∞−CfST |S0

(s|S0)ds+
∫ ∞

K (s−K−C)fST |S0
(s|S0)ds =

0 will lead to:

C =
∫ ∞

K
(s− K)fST |S0

(s|S0)ds

=
∫ ∞

K
sfST |S0

(s|S0)ds− KP{ST ≥ K}

=
∫ ∞

K
sfST |S0

(s|S0)ds− KΦ(−K/σ
√

T) (1.32)

Where Φ(̇) is the cumulative distribution function of a standard normal random
variable. Evidently Φ(−K/σ

√
T is the probability of exercising the option of buy-

ing the option. Of course, if the premium would have to be paid at the moment
the contract is struck, the price c, would be given by:

c = e−rT
∫ ∞

K
sfST |S0

(s|S0)ds− e−rTKΦ(−K/σ
√

T) (1.33)

where r is a constant interest rate and risk free. If we observe that equation
c = e−rT ∫ ∞

K sfST |S0
(s|S0)ds − e−rTKΦ(−K/σ

√
T) is independent of the level of

risk deemed acceptable by those in the market. On the other hand, the Average
expected return on any asset, including the option, is the risk-free interest rate,
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r, that is, agents are risk neutral. For this reason, the option price is discounted
from the rate r.

1.9 Albert Einstein and the irregular movement of a
particle suspended in a liquid and its relation to
the heat diffusion equation

In this section we will present the main ideas of Albert Einstein’s work on the
irregular motion of a particle suspended in a liquid and its relationship with the
heat diffusion equation.

Now consider a particle suspended in a stationary liquid. It is assumed that the
movement of the particle at different time intervals are independent processes.

Φ(s, 0) ≡ p(s, t|0, 0) = fST |S0
(s|S0) (1.34)

and

Φ(s, 0) = Φ(−s, 0)

Obviously
∫ ∞
−∞ Φ(s, 0)ds = 1.

Φ(u, t + h)du = du
∫ ∞

−∞
Φ(u− s, t)Φ(s, 0)ds, (1.35)

Where Φ(u, t + u) = p(u, t + h|0, 0) and Φ(u− s, t) = p(u, t + h|s, t) now if h
is small enough, we have

Φ(u, t + h) ≈ Φ(u, t) + h
∂Φ(u, t)

∂t
(1.36)

Φ(u− s, t) = Φ(u, t)− s
∂Φ(u, t)

∂u
+

1
2

s2 ∂2Φ(u, t)
∂u2 − · · · (1.37)

Φ(u, t) + h
∂Φ(u, t)

∂t
= Φ(u, t)

∫ ∞

−∞
Φ(s, 0)ds +

1
2

∂2Φ(u, t)
∂u2

∫ ∞

−∞
s2Φ(s, 0)ds (1.38)

h
∂Φ(u, t)

∂t
=

1
2

∂2Φ(u, t)
∂u2

∫ ∞

−∞
s2Φ(s, 0)ds

If we define

1
h

∫ ∞

−∞
s2Φ(s, 0)ds = D,
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we obtain

∂Φ(u, t)
∂t

= D
∂2Φ(u, t)

∂t2 (1.39)

Φ(u, 0) = 0 and
∫ ∞
−∞ Φ(u, t)du = 1

Φ(u, t) =
1√

4πDt
e−u2/4Dt (1.40)

Φ(u, t) = p(u, t|0, 0) =
1√

2πtσ
e−u2/2σ2t (1.41)

1.10 Samuelson’s Model to estimate the value of Eu-
ropean Options

dSt = αStdt + σStdWt, dWt ∼ N(0, dt) (1.42)

f (α)ST |S0
(s|S0) =

1√
2πTσs

exp{−1
2
(

ln( s
S0
)− (α− 1

2 σ2)T

σ
√

T
)2} (1.43)

(α− 1
2

Ã2)T

f (α)ST |S0
(s|S0) =

∫ ∞

−∞
f (α)ST−U |Su

(s|Su)f
(α)
Su|Su

(Su|S0)dSu (1.44)

E[ST|S0] =
∫ ∞

0
sf (α)ST |Su

(s|Su)ds = S0eαT (1.45)

c(S0, T; α, β) = e−βT
∫ ∞

0
max(s− K, 0)f (α)ST |St

(s|St)ds

= e−βT
∫ ∞

K
(s− K)f (α)ST |St

(s|St)ds

= e−βT
∫ ∞

K
sf (α)ST |St

(s|St)ds− Ke−βTP{ST ≥ K} (1.46)

= e−βT
∫ ∞

K
f (α)ST |St

(s|St)ds− Ke−βTΦ(d)

d =
ln(S0

K ) + (α− 1
2 σ2)T

σ
√

T
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c(S0, T; α, β) = e−βT
∫ ∞

K
(s− K)f (α)ST |St

(s|St)ds

= e−βT
∫ ∞

0
(s− K)f (α)ST |St

(s|St)ds− e−βT
∫ K

0
(s− K)f (α)ST |St

(s|St)ds

= e−βT(S0e−αT − K) + e−βT(KP{ST ≤ K} −
∫ K

0
sf (α)ST |St

(s|St)ds)

= S0e(α−β)T − Ke−βT + e−βT(K(1−Φ(d))−
∫ K

0
sf (α)ST |St

(s|St)ds)

= S0e(α−β)T − Ke−βT + e−βT(KΦ(−d)−
∫ K

0
sf (α)ST |St

(s|St)ds) (1.47)

c(S0, T; α, β) = S0 − Ke−αT + Ke−αTΦ(−d)− e−αT
∫ K

0
sf (α)ST |St

(s|St)ds

= S0 − e−αT
∫ K

0
sf (α)ST |St

(s|St)ds− Ke−αTΦ(d)

= S0e−αT
∫ ∞

K
sf (α)ST |St

(s|St)ds− Ke−αTΦ(d) (1.48)

= S0Φ(d + σ
√

T)− Ke−αTΦ(d)

c(S0, ∞; α, β) =
(γ− 1)γ−1

γγ
Sγ

0 (1.49)

γ = (
1
2
− α

σ2 ) +

√
(

1
2
− α

σ2 )
2 + 2(

β

σ2 −
α

σ2 )

1.11 Motivation

In the aftermath of each economical crisis both past and present it has become
extremely evident that further research is need, given that the current models lack
the sophistication to correctly model the current market. The current and most
acceptable model, which is the Black-Scholes-Merton has shown quite a few draw
back, given that right from the beginning it makes assumptions of the market
which are not present in the real world. An example of this is the they assumption
that the volatility of a market is constant, and with this most recent financial crisis
we were shown the hard way that the volatility is most definitely not constant.
Another motivator for this work is that when a financial crisis occurs many hard
working people are affected and this is a humble attempt to lessen that burden.
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1.12 Problem Formulation

1.13 Objectives

The objective of this work is to demonstrate how Levy processes better model
real world stock market behavior and develop a beta version of an open-source
desk top application for the operating system Windows that will model a specific
real world stock option price in the Bolsa Mexicana de Valores (BMV) or in English
the Mexican Stock Exchange.

1.13.1 Specific Objectives

The specific objectives of this project are as follows:

• Find where the current models fails.

• Develop and replace the current underlying distribution (Normal(µ, σ2))
with a Lévy process.

• Run the necessary simulations.

• Do a statistical study to see, if any, levels of significance.

• Study the results.

• Conclusions and discussions.

1.14 Thesis Structure

The thesis is organized as follows:

• Chapter 2 is a review on theories, lemmas, concepts and ideas covered
throughout this work.

• Chapter 3 is dedicated on showing how we went about proving that the
underlying Normal distribution fails. Mathematical proofs are given to
demonstrate our findings.

• Chapter 4 we propose our model and and run preliminary simulations.
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CHAPTER 2

Preliminary information

This chapter is dedicated to give further context of this thesis. Brief definitions
of mathematical theories, lemmas as well as terms, concepts, and ideas needed
to fully understand this work. As well as a few references if additional review is
required.

2.1 Background

2.1.1 Financial Assets

Bolsa Mexicana de Valores (Mexican Stock Exchange)

Bolsa Mexicana de Valores, S.A.B. de C.V. (BMV)- is a financial entity that operates
by concession of the Mexican equivalent of the Internal Revenue Service (I.R.S)
(Sectretarı́a de Hacienda y credito público) and must abide by Ley del Mercado del Val-
ores, or Stock Market Law which governs said market.

The main objective of the BMV is to seek market development, facilitate market
transactions, promote its expansion and competitiveness, through the following
functions:

• Establish facilities, logistics and means that facilitate the interactions be-
tween supply and demand of stock options, hedge funds among other fi-
nancial instruments that are registered in Registro Nacional de Valores or Na-
tional Securities Registry (RNV).

• Compile and maintain as well as openly publish information about any and
all financial entities and instruments registered in the BMV.

• Establish norms and regulations that ensure a the integrity of the BMV. As
well as overseeing any and all operations to ensure this standard is upheld.
They also have the power to imply disciplinary sanction if there is a breach
of conduct.
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Stocks

In this modern economic world it isn’t unheard of a company being owned by its
shareholder, pro rata investments and in turn these shares provide partial owner-
ship of the company. Company’s issue these stocks in order to raise funds. They
also reflect the companies earning power as well as the value of the company’s ac-
tual assets. Theses shares are more colloquially known as ”stocks”, these shares
are traded and quoted in what we know as stock exchanges. The concept of
stock exchanges is nothing new the earliest one was seen almost 500 years ago in
Atwerp.

Indices

Also refered to as index fallows the value of a basket of bonds, stocks (i.e. BMV,
S&P 500, EUROSTOXX 600), etc. Also derivative instruments on these indices
can be used for hedge funds or hedging, which is essentially covering against
risk. Additionally institutional funds, pension funds for example, who often
manage large and diverse portfolios try to imitate specific stock indices and who
use derivatives on stock instruments as a tool to aid in their portfolio manage-
ment.

The reader should keep in mind that this thesis will be applied in the BMV
index, from January 4, 2008 until December 4, 2018 which was obtained from
yahoo finance.

Dividends

Are individual share earnings which are distributed among the share holders
and is paid in proportion of their individual holdings. And are often pain either
in currency or additional shares in the company. For our purposes we will look
at assets which do not pay dividends, if time and recourse allow we will look at
how to incorporate dividend paying assets in the model.

The Stock Price Processes

Throughout this theses we will be using a continuous-time processes to model
the price processes of our asset be it a stock or index. We will denote this asset
price processes also known as the stock price processes by:

S = St, t ≥ 0 St gives us the price at time t ≥ 0

We will need to compare investment in different securities and in order to do
this we look at the returns or relative price changes over the time s > 0:

St+s − St

St
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Even though this last method is valid we will be focusing on the logarithmic
return or log-return:

log(St+s)− log(St) or log(
St+s

St
)

The main reason that we will be utilizing this method to calculate the returns
is because if we wish to calculate the log return of a period of length k x s it would
be the same thing if we calculate the log return of K periods of length s:

(log(St+s)− log(St))+ (log(St+2s)− log(St+s))+ · · ·+(log(St+ks)− log(St+(k−1)s)) = log(St+ks)− log(St)

Another reason why other authors also use this method is because in most
models the stock price St will be modeled by an exponential of some basic stochas-
tic process. And to be quite frank for continuous-time processes (like the ones we
will be using in this thesis), returns with continuous compounding log returns
are the natural choice.

2.1.2 Derivative Securities

Options

Is a financial instrument that gives one the right but not the obligation to makea
specific transaction at/by a specified date and at a specified price. And you could
view an option as a sale of privileges by one group or party to another. The person
or group who the sells the option is called the option seller/writer. The person
who buys is called the option buyer, no surprises there.

Types of Options

It it is noteworthy to state that there are many different types of options that exist,
here we will give a description of the basic types.

• Call options gives one the right to buy.

• Put options gives one the right to sell.

• European options one the right to buy/sell on the specified date, the date of
maturity or expiration.

Markets

Mercado de dinero o monetario (”money market”) - issues and advertises what is
known as ”instruments” of credit in short-term contracts with very low risk, and
whose return is known in advance. Examples of these ”instruments” are:

21

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 de
 la

 U
AQ



• Certificados de Tesorerı́a de la Federacı́on (CETES) - In the need to finance ad-
ditional projects and to help control the amount of currency in circulation
and interest rates the federal government emits by way of BVM investment
contracts which do not have the highest return but is one of the only items
that has a guaranteed return.

• Pagaré bancario (Bank promissory note) - In a sense it is an I.O.U that banks
or financial institutions emit in B.M.V that offers an immediate payout once
the the contract expires, again not with the highest returns but the fact that
come rain or shine the payout in full will be done when the contract is up.

• Bonos de Desarrolo del Gobieron Federal (Government bonds) - These are sim-
ilar to the ones above but with the difference is that they are auctioned off
by Mexico’s central bank (Banco de México) and are usually purchased by
other banks or financial institutions.

• Petrobonos (Petro-bonds) - As the name may imply they are bonds but that
are honored and emitted by the national petroleum which was state owned
but has been privatized.

Mercado de Capitales (”capital market”) - In this market the contracts are high risk
with higher payouts but are usually long-term. and the interest rate can either be
fixed or vary with the market. An example of what is emitted, bought, sold or
negotiated in this market:

• Acciones (Stock)- Are just as the name implies is stock in a company, and just
like in the U.S. stock holder do not have direct control of the company they
do share in the equity and benefit from the profits obtained.

2.1.3 Stochastic Processes

To serve our purpose we will assume that, T sometimes called the parameter set
is an interval, i.e. T = [a, b], [a, b), [a, ∞) for a > b. We will also assume that X is
continuous-time processes.

Definition:

A Stochastic process X is a collection of random variables

(Xt, t ∈ T) = (Xt(ω), t ∈ T, ω ∈ Ω)

define on some space Ω.

It may be obvious, but the index t of the random variable Xt is referred to as time.
We will adopt this as well for our purpose.
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Definition:

A Stochastic processes X is a two variable function.

For a fixed instant of time t, is a random variable:

Xt = Xt(ω), ω ∈ Ω.

For a fixed random outcome ω ∈ Ω, it is a function of time:

Xt = Xt(ω), t ∈ T.

This function is called realization, a trajectory or a sample path of the process X.

2.1.4 Martingales

The underlying idea of a martingales is a fair game whose net winnings are eval-
uated through conditional expectation. This is worth mentioning given that an
understanding of martingales notation is indispensable in order to understand
Itô stochastic integral. Now assume that (Ft, t ≥ 0) is a collection of σ−fields
in the same space as Ω further more that all of the Ft’s are a subset of a larger
σ−field F on Ω.

Definition:

The collection (Ft, t ≥ 0) of σ−field on Ω is called a filtration, if

Fs ⊂ Ft, ∀ 0 ≤ s ≤ t.

Ergo a filtration is an increasing stream of data. If (Fn, n = 0, 1, 2, . . .) is a
sequence of σ−field on Ω and Ft ⊂ Fn+1 ∀ n, we call (Fn) a filtration as well.

It must be mentioned that for our application, a filtration is frequently associ-
ated with stochastic processes.

Definition:

The stochastic process Y = (Yt, t ≥ 0) is said to be adapted to the filtration (Ft, t ≥
0) if:

σ(Yt) ⊂ Ft ∀t ≥ 0

The stochastic process Y is always adapted to the natural filtration generated by
Y :

Ft = σ(Ys, s ≤ t).

Hence this stochastic process adaptation Y means that Yt’s do not carry more
information than Ft,

23

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 de
 la

 U
AQ



Definition:

If Y = (Yn, n = 0, 1, 2, . . .) is a discrete-time process we define adaptedness is an
analogous way: for a filtration (Fn, n = 0, 1, 2, . . .) we require that σ(Yn) ⊂ Fn

Definition:

The stochastic process X = (Xt, t ≥ 0) is called a continuous-time martingale with
respect to the filtration (Ft, t ≥ 0), we write (X, (Ft)), if:

• E|Xt| < ∞ ∀ t ≥ 0

• X is adapted to (Ft)

•
E[Xt|Fs] = Xs ∀ 0 ≤ s < t,

i.e. Xs is the best prediction of Xt given Fs.

It is also possible to define a discrete-time martingale X = (Xn, n = 0, 1, 2, . . .).
In this case, we adapt the defining property as fallows:

E[Xn+k|Fn] = Xn, k ≥
We show that it suffices to require for k = 1.

E[Xn+1|Fn] = E[E(Xn+2|Fn+1)|Fn] = E[Xn+2|Fn]

= E[E(Xn+3|Fn+2)|Fn] = E[Xn+3|Fn]

...

= E[E(Xn+k|Fn+(k−1))|Fn] = E[Xn+k|Fn]

Now we defined a martingale in the discrete-time case.

Definition:

The stochastic process X = (Xn, n = 0, 1, 2, . . .) is called a discrete-time martingale
with respect to the filtration (Fn, n = 0, 1, 2, . . .), we write (X, (Fn)), if:

• E|Xt| < ∞ ∀ n = 0, 1, 2, . . .

• X is adapted to (Fn)
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•
E[Xn+1|Fn] = Xn ∀ n = 0, 1, 2, . . .

i.e. Xn is the best prediction of Xn+1 given Fn.

It is not difficult to see that the defining property can be rewritten in the form:

E[Yn+1|Fn] = 0; where Yn+1 = Xn+1 − Xn, n = 0, 1, 2, . . .

The sequence (Yn) is then called a martingale difference sequence with respect to
the filtration (Fn).
In what fallows, we often say that ”(Xt, t ≥ 0), repectivley(Xn, n = 0, 1, 2, . . .), is
a martingale” without pointing out which filtration we use. This will clear from
the context:

”A martingale has a remarkable property that its expectation function is constant.”

Indeed, using the definition property E[Xt|Fs] = Xs for s < t and Rule 2,
we obtain:

EXs = E[E(Xt|Fs)] = EXt, ∀ s and t.

This provides an easy way to provide that a stochastic process is not a martin-
gale. For example, if B is a Brownian motion, EB2

t = t ∀ t. Hence (B2
t ) cannot

be a martingale. However, we cannot use this means to prove that a stochastic
process is a martingale.

2.1.5 The Stochastic Integral

The Itô Stochastic Integral for Simple Processes

We start the investigation of the Itô stochastic integral for a class of process X =
(Xt, t ≥ 0) is adapted to Brownian motion if X is adapted to (Ft, t ≥ 0). This
means that, for every t, Xt is a function of the past and present of Brownian mo-
tion.

Definition:

Lets now consider the following deterministic differential equation:

dx(t) = a(t, x(t))dt, x(0) = x0.

The desire is to provoke randomness in this equation and the best way to do this
is by randomize the initial condition. This will cause the solution x(t) to become
a stochastic process (Xt, t ∈ [0, T])

dXt = a(t, Xt)dt, X0(ω) = X(ω).
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For our purposes, the randomness in the differential equation is introduced by
an additional random noise term

dXt = a(t, Xt)dt + b(t, Xt)dBt, X0(ω) = X(ω).

If the above equation is interpret as the stochastic integral equation

Xt = X0 +
∫ t

0
a(s, Xs)ds +

∫ t

0
b(s, Xs)dBs, 0 ≤ t ≤ T. (5.1)

Which is known as the Itô stochastic differential equation. Where the first integral
is the Riemann integral and the second is the Itô stochastic integral [23].

Definition 0.2:

A strong solution to the Itô stochastic differential equation () is a stochastic process
X = (Xt, t ∈ [0, T]) which satisfy the following conditions:

• X is adapted to Brownian motion, i.e. at time t it is a function of Bs, s ≤ t.

• The integrals occurring in () are well defined as Riemann or Itô stochastic
integrals, respectively.

• X is a function of the underlying Brownian sample path of the coefficient
functions a(t, x) and b(t, x).

Definition 0.3:

A strong or weak solution X of the Itô stochastic differential equation (5.1) is
called a diffusion. In particular, Taking a(t, x) = 0 and b(t, x) = 1 in (5.1), it
is obvious that Brownian motion is a diffusion process. (We will only consider
strong solutions of the Itô stochastic differential equations.)

Definition 0.4:

Brownian motion B is called the driving process of the itô stochastic differential
equation.

2.1.6 Black-Scholes option pricing formula.

Definition 0.5:

The geometric Brownian motion in the form

Xt = f (t, Bt) = X0e(c−0.5σ2)t+σB0 ()

Gives us the price Xt of a stock (risk asset) at time t

Xt = x0 + c
∫ t

0
Xsds + σ

∫ t

0
XsdBs, (5.3)
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where formally it can be written as:

dXt = cXtdt + σXtdBt ()

Translating this equation in a unsophisticated way, and have it on [t, t + dt]

Xt+dt − Xt = cXtdt + σXtdBt

And in the same manner,

Xt+dt − Xt

Xt
= cdt + σdBt

The left-hand side of this equation informs us that cdt is a linear trend which is
disrupted by σdBt which is a stochastic noise term. The mean rate of return is de-
noted by the constant c > 0 and the volatility is σ > 0

Known in financial theory as a bond which a non-risky asset. Considering the
initial investment of β0 in bonds will return the amount of

β0 = β0ert

at time t.

As mentioned previously the initial investment has been continuously compounded
with a constant interest rate r > 0 which is not realistic given that interest rates
change over time. Something that is note worthy is that β satisfies the determin-
istic integral

βt = β0 + r
∫ t

0
βsds ()

The portfolio is made up of certain amount of shares of stock denoted by at and
bonds denoted by bt. Which is considered as stochastic processes adapted to the
Brownian motion and is given the name of a trading strategy to the pair

(at, bt), t ∈ [0, T].

Wealth also known as the value of your portfolio denoted by

Vt = atXt + btβt

Let us allow at and bt to be any real number. If at < 0 then this means short sale
of stock, i.e at time t is when the stock is sold. If bt < 0 means that you barrow
money at the bond’s interest rate r. Another thing to take into consideration is
that in a real world setting you would have to pay transaction costs which apply
to operations on stock and sale, in this example theses costs will be omitted in the
name of simplicity.
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Additional assumptions are made: the first of which is that at and bt are not
bounded which would in theory imply that you could have an infinite amount
of capital but on the negative side the same amount of debt. Again this is an
over simplification, which is done just to make things a bit ”easier”. Second,
we assume that no money is spent, i.e. the portfolio does not decrease due to
consumption. The last assumption made, is that the trading strategy (at, bt) is self-
financing. Which means that any increase of wealth, which is denoted as Vt in
only due to the change in price of Xt and βt of the assets owned.

The self-financing condition is formulated in terms of differentials

dVt = d(atXt + btβt) = atdXt + btdβt

Which we understand in the Itô sense of the relation

Vt −V0 =
∫ t

0
d(asXs + bsβs) =

∫ t

0
asdXs +

∫ t

0
bsdβs

If we replace dXs with cXsds + σXsdBs (5.3), and if we replace dβs with rβs,(5.4).
Thus the value of the portfolio Vt at time t is exactly equal to the sum of the initial
investment V0 and any capital gains from stock and bonds up to time t.
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CHAPTER 3

Methodology

3.1 Black-Scholes Model

In this section we will discus and develop the most familiar continuous-time,
continuous-variable stochastic process for stock prices [6]. A good understanding
of this type of process is the fist part in understanding on pricing

3.2 Specification

A specification should tell the reader what the software system is required to do.

3.3 Design

The design then gives the top-level details of how the software system meets the
requirement.

3.4 Implementation

3.4.1 Modeling Stochastic Rates

The initial dilemma

Consider the amount of money M(t) at time t invested in a bank account that pays
interest at a constant rate r. The differential equation which models this problem
is:

dM(t) = rM(t)dt

Given the initial investment M(0) = M0, the account balance at time t is given
by the solution of the equation, M(t) = M0e(rt).
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The model in the real world

In the real world the interest rate r is not constant. It may be assumed constant
only for a very small amount of time, such as one day or one week. The interest
rate changes unpredictably in time, which means that it is a stochastic process.
This can be modeled in several different ways. For instance, we may assume
that the interest rate at time t is given by the continuous stochastic process rt =
r + σWt, where σ > 0 is a constant that controls the volatility of the rate, and Wt
is a Brownian motion process. The process rt represents a diffusion that starts
at r0 = r, with constant mean E[rt] = r and variance proportional with the time
elapsed, Var[rt] = σ2t. With this change in the model, the account balance at time
t becomes a stochastic process Mt that satisfies the stochastic equation:

dMt = (r + σWt)Mtdt , t ≥ 0

Solving the equation

In order to solve this equation, we write it as dMt − rtMtdt = 0 and multiply by
the integrating factor e

∫ t
0 rsds We can check that

d(e−
∫ t

0 rsds) = −e−
∫ t

0 rsdsrtdt

dMtd(e−
∫ t

0 rsds) = 0

since dt2 = dtdWt = 0. Using the product rule, the equation becomes exact:

d(Mte−
∫ t

0 rsds) = 0

Integrating yields the solution

Mt = M0e−
∫ t

0 rsds = M0e−
∫ t

0 (r+σWs)ds

= M0ert+σZt

where Zt =
∫ t

0 Wsds is the integrated Brownian motion process. Since the

moment generating function of Zt is m(σ) = E[eσZt ] = e
σ2t3

6 , we obtain

Conclusion

We shall make a few interesting remarks. If M(t) and Mt represent the balance at
time t in the ideal and real worlds, respectively, then

E[Mt] = M0erte
σ2t3

6 > M0ert = M(t)
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.
This means that we expect to have more money in the account of an ideal

world rather than in the real world account. Similarly, a bank can expect to make
more money when lending at a stochastic interest rate than at a constant interest
rate. This inequality is due to the convexity of the exponential function. If Xt =
rt + σZt, then Jensen’s inequality yields

E[eXt ] ≥ eE[Xt] = ert.

3.4.2 Langevin’s Equation

We shall consider another stochastic extension of the equation. We shall allow
for continuously random deposits and withdrawals which can be modeled by an
unpredictable term, given by αdWt, with α constant. The obtained equation:

dMt = rMtdt + αdWt, t ≥ 0

is called Langevin’s equation.
We shall solve it as a linear stochastic equation. Multiplying by the integrating

factor e−rt yields

d(e−rtMt) = αe−rtdWt

Integrating we obtain

e−rtMt = M0 + α
∫ t

0
e−rsdWs

Hence the solution is

Mt = M0ert + α
∫ t

0
er(t−s)dWs

This is called the Ornstein-Uhlenbeck process. Since the last term is a Wiener
integral, by Proposition we have that Mt is Gaussian with the mean

E[Mt] = M0ert + E[α
∫ t

0
er(t−s)dWs] = M0ert

and variance

Var[Mt] = Var[α
∫ t

0
er(t−s)dWs] =

α2

2r
(e2rt − 1)

.
It is worth noting that the expected balance is equal to the ideal world balance

M0ert. The variance for t small is approximately equal to α2t, which is the vari-
ance of αWt.
If the constant α is replaced by an unpredictable function α(t, Wt), the equation
becomes
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dMt = rMtdt + α(t, Wt)dWt, t ≥ 0

.
Using a similar argument we arrive at the following solution:

Mt = M0ert +
∫ t

0
er(t−s)α(t, Wt)dWs

This process is not Gaussian. Its mean and variance are given by:

E[Mt] = M0ert

Var[Mt] =
∫ t

0
e2r(t−s)E[α2(t, Wt)]ds

In the particular case when α(t, Wt) = e
√

2rWt , with λ =
√

2r, we can work out
an explicit form of the solution

Mt = M0ert +
∫ t

0
er(t−s)e

√
2rWt dWs

= M0ert + ert
∫ t

0
e−rse

√
2rWt dWs

Solving the equation

3.4.3 Stock Prices with Rare Events

In order to model the stock price when rare events are taken into account, we
shall combine the effect of two stochastic processes:

• the Brownian motion process Wt, which models regular events given by
infinitesimal changes in the price, and which is a continuous process;

• the Poisson process Nt, which is discontinuous and models sporadic jumps
in the stock price that corresponds to shocks in the market.

Since E[dNt] = λdt, the Poisson process Nt has a positive drift and we need to
”compensate” by subtracting λt from Nt. The resulting process Mt = Nt − λt is
a martingale, called the compensated Poisson process, that models unpredictable
jumps of size 1 at a constant rate λ. It is worth noting that the processes Wt and
Mt involved in modeling the stock price are assumed to be independent.

Let St− = lim Su denote the value of the stock before a possible jump occurs
at time t. To set up the model, we assume the instantaneous return on the stock,
dSt

St−
, to be the sum of the following three components:

• the predictable part µdt;
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• the noisy part due to unexpected news σdWt;

• the rare events part due to unexpected jumps ρdMt,

where µ, σ and ρ are constants, corresponding to the drift rate of the stock,
volatility and instantaneous return jump size (In this model the jump size is con-
stant; there are models where the jump size is a random variable, see [?]) adding
yields:

dSt

St−
= µdt + σdWt + ρdMt

Hence, the dynamics of a stock price, subject to rare events, are modeled by
the following stochastic differential equation:

dSt = µSt−dt + σSt−dWt + ρSt−dMt

It is worth noting that in the case of zero jumps, ρ = 0, the previous equation
becomes the classical stochastic equation

Using that Wt and Mt are martingales, we have:

E[ρStdMt|F ] = ρStE[dMt|F ] = 0

E[σStdMt|F ] = σStE[dMt|F ] = 0

This shows the unpredictability of the last two terms, i.e. given the informa-
tion set Ft at time t, it is not possible to predict any future increments in the next
interval of time dt. The term σStdWt captures regular events of insignificant size,
while ρStdMt captures rare events of large size. The ”rare events” term, ρStdMt,
incorporates jumps proportional to the stock price and is given in terms of the
Poisson process Nt as:

ρSt−dMt = ρSt−d(Nt − λt) = ρSt−dNt − λρSt−dt

Substituting into equation yields:

dSt = (µ− λρ)St−dt + σSt−dWt + ρSt−dNt

The constant λ represents the rate at which the jumps of the Poisson process Nt
occur. This is the same as the rate of rare events in the market, and can be deter-
mined from historical data.
The following result provides an explicit solution for the stock price when rare
events are taken into account
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Proposition

The solution of the stochastic equation is given by:

St = S0e
(µ+λρ−

σ2

2
)t+σWt

(1 + ρ)Nt

where
µ is the stock price drift rate.
σ is the volatility of the stock.
λ is the rate at which rare events occur.
ρ is the size of jump in the expected return when a rare events occurs.

Proof: We shall construct first the solution and then show that it verifies the
equation. If tkdenotes the kth jump time, then Ntk = k. Since there are no jumps
before t1, the stock price just before this time is satisfying the stochastic differen-
tial equation:

dSt = (µ− λρ)Stdt + σStdWt

with the solution given by the usual formula:

St1− = S0e
(µ+λρ−

σ2

2
)t1+σWt1

Since
dSt1

St1−
=

St1 − St1−

St1

, then St1 = (1 + ρ)St1− . Substituting in the aforemen-

tioned formula yield:

St1 = St1−(1− ρ) = S0e
(µ+λρ−

σ2

2
)t1+σWt1 (1 + ρ)

Since there is no jump between t1 and t2, a similar procedure leads to
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CHAPTER 4

Results and Discussion

4.1 Results

At this point of the this thesis it is still early to make any definitive claims, the
reason why is it took rigorous mathematical analysis of the theory in order to see
exactly were the underlying distribution fails. During our investigation we have
concluded UP TO THIS point that the underlying Normal distribution is not an
adequate distribution.

Table 4.1: Major index and corresponding information.

Index Mean SD Skewness Kurtosis
BMV .000279 .019181 .260399 2.585409
S&P 500 .000235 .012653 -0.368830 11.0583
STOXX Europe 600 5.1497E-8 .012669 -.254147 6.161053

In Table 4.1 we have obtained the financial information via yahoo finance form
January 4, 2008 up until December 4, 2018 of three major indices Bolsa Mexicana de
Valores, S&P 500, and the EUROSTOXXX 600, we have calculated thier respective
log returns once we have obtained this, we move to calculating the mean, Stan-
dard Deviation, Skewness, and Kurtosis for each of the indices to show empiri-
cally that in fact the Normal distribution is a poor choice, given that the Normal
distribution has a skewness of 0 and a kurtisis of EXACTLY 3, as we can see this
in not the case in any of these indices.

4.2 Discussion

Interpret and explain your results and justify your approach by answering your
research problem.
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4.3 Significance/Impact

Provide an explanation of the work’s significance, its potential benefits and its
overall impact. The impact of the project should describe the following:

4.3.1 Social Impact

1. With this model we hope to lessen the burden felt by the working class
when a financial crisis occurs.

2. If with this model we could better predict or foresee financial crisis with
enough foresight that people could trade accordingly and in turn lessen
financial loss.

4.3.2 Environmental Impact

1. Impact 1

2. etc. ..

4.3.3 Economic Impact

1. Impact 1

2. etc. ..

4.4 Publications

Provide your list of publications obtained during the project period, such as con-
ference proceedings, journal publications and patents.

4.5 Future Work

• Estimating the parameters for simulation is not a simple process, so it is
important using some software and according to literature do not always
work well for simulations. That’s why working on a tool to generate these
parameters can be very useful.

• Compare Levy’s process with neural networks, genetic algorithms, and other
methodologies related.

• The literature mentions that not every database is always well received with
a Levy process, inquire into the subject and generate some criteria and intro-
duce it to the simulation can help improve and thus know which database
is most suitable for simulation through this process.
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CHAPTER 5

Conclusion

The objectives of the work were fulfilled which were to develop a simulation
for the prices of the shares and understand the topic better. We obtained results
that prove it is possible to simulate share’s prices with Levy’s process. Stochastic
differential equations are undoubtedly a great tool that can be used in many areas.
One of the main objectives was to seek simulation with an action through a Levy
process, however, the execution time of the algorithm was set aside. This leaves
us with the possibility of looking for a more efficient algorithm with which the
simulation can be performed.
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