Por favor, use este identificador para citar o enlazar este ítem: https://ri-ng.uaq.mx/handle/123456789/8442
Registro completo de metadatos
Campo DC Valor Lengua/Idioma
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_ES
dc.contributorJuan Manuel Ramos Arreguínes_ES
dc.creatorRodrigo González Huertaes_ES
dc.date2023-06-01-
dc.date.accessioned2023-06-02T19:14:35Z-
dc.date.available2023-06-02T19:14:35Z-
dc.date.issued2023-06-01-
dc.identifier.urihttps://ri-ng.uaq.mx/handle/123456789/8442-
dc.descriptionEnvironmental sound classification is a computational task that belongs to the branch of artificial intelligence called sound recognition. Several techniques and different approaches exist to tackle this task; one that yields excellent results is through the utilization of deep learning techniques, i.e., neural networks. Despite their good results, neural networks in some cases fail to generalize well to new data when the amount of training data is scarce. This can lead to a phenomena called overfitting. A solution to this inconvenience is based on the use of deep generative models to generate synthetic data through the approximation of high-dimensional probability distributions. This allow to generate new samples, similar to the ones used to train the generative model. Generative Adversarial Networks (GANs) are a kind of generative model which trains two neural networks simultaneously in an adversarial way, i.e., pitting one against the other. In this work it is shown the effect of using GANs as data augmentation technique that could be used to improve the performance of different sound classification models.es_ES
dc.formatAdobe PDFes_ES
dc.language.isospaes_ES
dc.publisherIngenieríaes_ES
dc.relation.requiresSies_ES
dc.rightsAcceso Abiertoes_ES
dc.subjectIngeniería y Tecnologíaes_ES
dc.subjectCiencias Tecnológicases_ES
dc.subjectOtras especialidades tecnológicases_ES
dc.titleClassification of multiple sound events in a single frame using generative adversarial networkses_ES
dc.typeTesis de maestríaes_ES
dc.creator.tidCURPes_ES
dc.contributor.tidCURPes_ES
dc.creator.identificadorGOHR910829HQTNRD06es_ES
dc.contributor.identificadorRAAJ710606HGTMRN01es_ES
dc.contributor.roleDirectores_ES
dc.degree.nameMaestría en Ciencias en Inteligencia Artificiales_ES
dc.degree.departmentFacultad de Ingenieríaes_ES
dc.degree.levelMaestríaes_ES
Aparece en: Maestría en Ciencias en Inteligencia Artificial

Ficheros en este ítem:
Fichero Descripción Tamaño Formato  
RI007523.pdf6.46 MBAdobe PDFPortada
Visualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.