

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO FACULTAD DE CIENCIAS NATURALES LICENCIATURA EN BIOLOGÍA

Patrones de Distribución Geográfica de Nolina Michx. (Nolinaceae).

TESIS

Que para obtener el título de Licenciado en Biología

Presenta

Diana Olvera Valerio

Santiago de Querétaro, Abril 2006

BIBLIOTECA CENTRAL UAO

No. Adq. 1472286

No. Título
Clas TS
581
0520

Por y para mi familia

AGRADECIMIENTOS

A mi familia por su amor y apoyo incondicional.

A I Dr. Luis Hernández Sandoval por la confianza que me ha brindado y por todas sus enseñanzas.

A Yolanda Pantoja Hernández por su apoyo en la elaboración de este trabajo y sobre todo por su amistad y los buenos y divertidos momentos. ¡Gracias Yola!

A la Dra. Mahinda Martínez por su comprensión, apoyo y acertados comentarios hacia este trabajo.

A la Maestra Maricela Gómez por revisar y mejorar este trabajo.

Al Dr. Rolando T. Bárcenas por enriquecer esta tesis con sus comentarios.

A CONACyT por el apoyo económico brindado.

A la Biól. Patricia Velásquez Ocampo por su amistad, sus enseñanzas y por encaminarme a la biología.

A Victor, Lucero, Alejandro y Jorge por el apoyo y por ser mis compañeros de andanzas.

A Hugo Luna por el apoyo técnico brindado.

Al Laboratorio de Mastozoología de la licenciatura por la información facilitada.

A todos aquellos que hicieron de mi estancia lejos de casa algo tolerable.

RESUMEN.

Se generaron mapas de distribución actual y potencial para 20 especies del género Nolina. Para ello se utilizaron registros que se obtuvieron a partir de ejemplares de herbario, colectas y de consultas en bases de datos compartidas. Los registros fueron procesados con los programas computacionales Arc View y GARP (Genetic Algorithm for Rule-Set Prediction) para obtener los mapas de distribución actual y potencial respectivamente. Se obtuvieron un total de 402 registros repartidos de forma desigual entre las especies dado que el intervalo fue de dos hasta 96 registros por especie. Los mapas de distribución actual se generaron para todas las especies, sin embargo, los de distribución potencial sólo se elaboraron para 19 taxa, debido a la escasez de datos, no se pudo generar el de *Nolina pumila*. Ocho de los mapas elaborados con GARP presentan cierto grado de subestimación o sobrestimación de las áreas probables de presencia de las especies, debido tanto a la falta de registros como de variables físico-ecológicas.

CONTENIDO.

DEDICATORIA	Página
DEDICATORIA	
AGRADECIMIENTOS	
RESUMEN	
ÍNDICE	IV
ÍNDICE DE FIGURAS	V
ÍNDICE DE CUADROS	VII
I. INTRODUCCIÓN	1
II. ANTECEDENTES	3
III. OBJETIVOS	7
3.1 General	7
3.2 Particulares	7
IV. MÉTODOS	8
4.1 Recopilación de datos	8
4.2 Zona de estudio	8
4.3 Distribución actual	9
4.4 Distribución potencial	10
V. RESULTADOS	
5.1 Distribución actual del género	15
5.2 Distribución de la especies	18
VI. DISCUSIÓN	69
6.1 Distribución actual	69
6.2 Distribución potencial	69
6.3 Comparación de las distribuciones	71
VII. CONCLUSIONES	
VIII. REFERENCIAS	75
IX. ANEXOS	
9.1 ANEXO 1	78
9.2 ANEXO 2	79

ÍNDICE DE FIGURAS.

	Pág	ina
Figura	1. Cuatro especies de Nolina	2
	2. Zona de estudio	
Figura	3. Divisiones de la zona de estudio	.12
Figura	4. Distribución actual del género Nolina	.17
Figura	5. Distribución actual de Nolina beldingi	.20
Figura	6. Distribución potencial de Nolina beldingi	.21
Figura	7. Distribución actual de Nolina bigelovii	.22
Figura	8. Distribución potencial de Nolina bigelovii	.23
Figura	9. Distribución actual de Nolina cespitifera	.24
Figura	10. Distribución potencial de Nolina cespitifera	.25
Figura	11. Distribución actual de Nolina durangensis	.28
Figura	12. Distribución potencial de Nolina durangensis	.29
	13. Distribución actual de Nolina elegans	
Figura	14. Distribución potencial de Nolina elegans	.31
Figura	15. Distribución actual de Nolina erumpens	.32
Figura	16. Distribución potencial de Nolina erumpens	33
Figura	17. Distribución actual de Nolina humilis	.36
Figura	18. Distribución potencial de Nolina humilis	.37
Figura	19. Distribución actual de Nolina interrata	.38
Figura	20. Distribución potencial de Nolina interrata	.39
Figura	21. Distribución actual de Nolina juncea	.40
Figura	22. Distribución potencial de Nolina juncea	.41
	23. Distribución actual de Nolina longifolia	
	24. Distribución potencial de Nolina longifolia	
	25. Distribución actual de Nolina matapensis	
	26. Distribución potencial de Nolina matapensis	
	27. Distribución actual de Nolina micrantha	
	28. Distribución potencial de Nolina micrantha	
	29. Distribución actual de Nolina microcarpa	
	30. Distribución potencial de Nolina microcarpa	
	31. Distribución actual de Nolina nelsonii	
	32. Distribución potencial de Nolina nelsonii	
Figura	33. Distribución actual de Nolina palmeri	54
	34. Distribución potencial de Nolina palmeri	
	35. Distribución actual de Nolina palmeri var. brandegreei	
	36. Distribución potencial de Nolina palmeri var. brandegreei	
	37. Distribución actual de Nolina parviflora	
	38. Distribución potencial de Nolina parviflora	
	39. Distribución actual de Nolina pumila	
	40. Distribución actual de Nolina texana	
	41. Distribución potencial de Nolina texana	
Figura	42. Distribución actual de Nolina sp.1	65

Figura 43.	Distribución potencial de Nolina sp.1	.66
	Distribución actual de Nolina sp.2	
Figura 45.	Distribución potencial de Nolina sp.2	.68

ÍNDICE DE CUADROS.

	Página
Cuadro 1. Área geográfica de distribución de las especies	11
Cuadro 2. Parámetros utilizados en GARP	
Cuadro 3. Criterios para asignar las áreas de mayor probabilidad de preser	
las especies	13
Cuadro 4. Registros de Nolina para México y sur de Estados Unidos	
Cuadro 5. Número de registros para los estados de México	15

I. INTRODUCCIÓN

La familia Nolinaceae sensu Bogler (1998) está constituida por cuatro géneros (Beaucamea, Calibanus, Dasylirion y Nolina) y cerca de 60 especies. México representa su centro de diversidad con más de 50 especies nativas y hasta 70 por ciento de endemismo. El género Nolina es el más extenso con un número aproximado de 25-30 especies (Micheaux 1803; Correll y Johnston 1979; Rzedowski et al. 2001) aunque existen complejos de especies que están sujetos a revisión.

Este grupo está conformado por plantas xerófilas distribuidas en regiones con climas templados a semiáridos. En Estados Unidos, la mayoría de las especies se localizan en las áreas del oeste de Texas, Nuevo México, sur de Colorado, Arizona y sur de California (Thorne 1965). En México, el género se encuentra ampliamente difundido en el Altiplano Central y Centro sur. Estas plantas se desarrollan en altitudes mayores a los 1000 msnm, sobre suelos pobres y áreas rocosas de calizas o basaltos y laderas pronunciadas.

Las plantas del género *Nolina* son polígamo dioicas, arborescentes, acaules o con tallos enterrados, con crecimiento secundario del tipo monocotiledóneo. Las hojas son lineares fibrosas, con márgenes serrulados. Tiene inflorescencias tirsoideas, flores blancas y pequeñas (Hernández y Zamudio 2003) (Fig. 1). Conocidas como "soyates", "palmillas", "sotolillos" o, en países de habla inglesa como "bear grass", las especies de *Nolina* tiene diversos usos como ornamentales, para el techado de casas y la extracción de fibras (Sánchez y Zerecero 1980; Nabham y Burns 1985).



Figura 1. Cuatro especies de Nolina. a) N. juncea, b) N. affinis, c) N. elegans, y d) N. durangensis.

II. ANTECEDENTES

El último estudio crítico y sistemático del género *Nolina* lo desarrolló Trelease en 1911. Los estudios más recientes son de tipo taxonómico (revisiones del grupo y descripciones de especies) entre los que destacan los de Johnston (1943) para especies del norte de México, Gentry (1978) para las especies del Desierto de Sonora, Thorne (1965) para especies del sureste de Estados Unidos (*Nolina atopocarpa*, *N. brittoniana* y *N. georgiana*) y Dice (1988) quien trabajó el complejo *N. bigelovii-N. parryi*. Dentro de los estudios florísticos destacan los trabajos de Shreve y Wiggins (1964), Gentry (1972, 1978) y Correll y Johnston (1979).

La distribución del género no ha sido abordada de forma integral y los trabajos existentes están confinados a determinadas especies y regiones. Por ejemplo, Baker (1881) y Trelease (1911) señalan que la distribución de *Nolina humilis* corresponde a San Luis Potosí, México. Mientras que García-Mendoza y Galván (1995) señalan el endemismo de la especie para la provincia florística de la Sierra Madre Oriental.

Baker (1881) afirma que *Nolina watsonii*, se distribuye en San Luis Potosí, México, en sitios que van de los 1820 a 2430 metros de altura. Trelease (1911) menciona su presencia en el centro-este de México y García-Mendoza y Galván (1995) señalan el endemismo de ésta, para la provincia florística de la Altiplanicie. A *N. cespitifera*, Trelease (1911) la ubica en el centro del norte de México, en Coahuila, mientras que García-Mendoza y Galván (1995) señalan su presencia en Coahuila y Nuevo León, así como su endemismo a la provincia florística de la Altiplanicie.

Gentry (1972) da cuenta de la presencia de *Nolina matapensis*, *N. bigelovii*, *N. microcarpa* y *N. texana* en Sonora y sureste de Arizona. Hacia 1995, García-Mendoza y Galván, citan el endemismo de *Nolina longifolia* a la provincia florística de las Serranías Meridionales. Zoe (1890) señala la distribución de *N. beldingi* en lo alto de las montañas de la Región del Cabo, en el bosque de encino y pino, en la Sierra de la Laguna.

Dado el conocimiento parcial de la distribución geográfica del género *Nolina*, los métodos indirectos resultan de gran utilidad para conocerla. Las herramientas computacionales se han convertido en un recurso indispensable para el estudio de la distribución de los organismos, particularmente porque han abierto la puerta a muchas posibilidades de uso y aplicación. Estos mapas o modelos de distribución de las especies, generados por computadora, actualmente representan una importante herramienta para la biogeografía, evolución, ecología y la conservación de las especies (Anderson *et al*, 2003).

Uno de los programas más utilizados es el Algoritmo Genético de Predicción por Conjuntos de Reglas o GARP por sus siglas en inglés (Genetic Algorithm for Rule-Set Prediction), el cual genera modelos de nichos ecológicos para las especies. Estos modelos describen condiciones ambientales donde las especies pueden ser capaces de mantener una población, usando registros existentes y datos ambientales. GARP busca correlaciones no azarosas entre la presencia y ausencia de las especies y los parámetros ambientales usando diferentes tipos de reglas. Cada regla implementa un método diferente para la construcción de mapas de distribución (Payne y Stockwell 1995).

Este método posee ventajas sustantivas sobre otros métodos para generar áreas de distribución potencial de las especies. El método resuelve disparidad de los datos, obtenidos directamente de las colecciones científicas al 1) uniformizar los datos, seleccionando al azar puntos geográficos de la cobertura geográfica inicial, para corroborar su presencia y ausencia; 2) incluir variables tales como topografía, geología y tipo de vegetación y no restringir el análisis considerando exclusivamente variables climáticas; e 3) incluir reglas o condicionantes ambientales heterogéneas (Sánchez-Cordero et al. 2001).

Estudios recientes han probado la efectividad predictiva del GARP en grupos de plantas y animales en comparación con otros métodos. Por ejemplo, GARP, resultó ser un modelo adecuado para predecir la distribución de ciertas especies de flora y fauna de distribución restringida como las endémicas, la de especies que incluyen pocas localidades de recolecta como las raras o de difícil captura y la de especies de amplia distribución geográfica en Australia (Stockwell y Noble 1991).

Feria-A y Peterson (2002), obtuvieron mapas de distribución potencial para 89 especies de aves y observaron la correspondencia de la distribución de 11 especies endémicas a la Región del Balsas al suroeste de México. Por su parte Anderson *et al.* (2002) analizaron la correspondencia de las distribuciones de *Heteromys anomalus* y *H. australis* en las costas del Noroeste de Sudamérica, donde la distribución disyunta de *H. australis* fue corroborada por el modelo.

Por lo útil y efectivo que es GARP en la predicción de distribuciones potenciales para especies endémicas, de pocos registros o de amplia distribución, se espera que este modelo sea adecuado para obtener los mapas de distribución potencial de *Nolina*, debido a que algunas de sus especies tienen estas características.

III. OBJETIVOS

3.1. General

Definir la distribución actual y potencial del género Nolina en México.

3.2. Particulares

- 3.2.1 Obtener mapas de distribución para al menos 20 especies de Nolina a partir de los registros de herbario y de campo.
- 3.2.2 Obtener los mapas de distribución potencial para cada una de las 20 especies estudiadas.

IV. MÉTODOS

4.1. Recopilación de datos

Los registros se obtuvieron a partir de una base de datos que se generó en un estudio previo denominado "Taxonomía y Biogeografía del Género Nolina (Nolinaceae) en México" llevado a cabo por Hernández (2005). Esta base fue construida a partir de colectas, consultas de ejemplares de herbarios como el de la Escuela Nacional de Ciencias Biológicas (ENCB), Herbario IEB del Instituto de Ecología, A.C. (IEB), Herbario Nacional (MEXU), entre otros (Anexo 1). Además se consultaron bases de datos compartidas como la Red Mundial de Información sobre Biodiversidad (REMIB) de la Comisión Nacional de para el Conocimiento y Uso de la Biodiversidad (CONABIO). A esta información previa, se le adicionaron 180 registros de ejemplares de herbario y de colectas llevadas a cabo entre los meses de Abril y Junio del 2005, lo que dio un total de 402 registros.

4.2. Zona de estudio.

Nolina es un género exclusivo de Norteamérica, por ello la zona de estudio se limitó a la parte sur de Estado Unidos y México (Fig. 2), el cual se caracteriza por la presencia de grandes cadenas montañosas, planicies y desiertos. Dentro de las primeros están: la Sierra Nevada en estado de California en Estados Unidos y que es de origen volcánico, la Sierra de Baja California que se extiende hasta el suroeste de Estados Unidos donde recibe el nombre de montañas de California (Niehaus y Ripper 1976), los Montes Guadalupe y Chiricahua en Texas y Arizona. En México, las Sierras Madre Oriental (de origen sedimentario) y Occidental (de origen volcánico), así como el Eje Neovólcanico, que se constituyen como las principales elevaciones.

Las zonas desérticas ocupan áreas extensas al sur de Estados Unidos y norte de México. Dentro de estas se encuentran el Desierto de Mojave el suroeste de Estados Unidos, el Desierto Sonorense, el Desierto de Colorado, el Desierto Chihuahuense que se extiende hasta la parte sur de los estados de Nuevo México y suroeste de Texas. Además, grandes planicies se localizan en la región central y costas del sur de Estados Unidos, en el centro norte de México (Altiplano Mexicano) y sus zonas costeras.

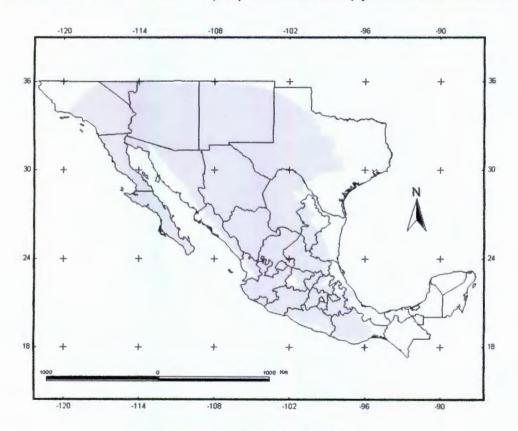


Figura 2. Zona de estudio.

4.3. Distribución actual

Para conocer la distribución actual de las especies, se elaboraron mapas a partir de las coordenadas geográficas (latitud y longitud en grados decimales) de la base de datos de las especies de *Nolina* mediante el programa Arc View versión 3.2. Todos los mapas se generaron con el datum WGS 84, que es el más parecido al datum ITRF92 utilizado por el INEGI.

4.4. Distribución potencial

Para obtener las zonas de distribución potencial de las especies, se utilizaron las coordenadas geográficas en grados decimales de los registros de la base de datos (sólo se utilizaron especies con más de cinco registros). Las variables físico-ecológicas o capas utilizadas fueron: clima, distribución de las lluvias, edafología y geología, obtenidas de la página electrónica de la CONABIO (1998), además de la precipitación promedio, temperatura promedio, temperaturas máximas y mínimas, el modelo digital de elevación (DEM) que se encuentran disponibles en la página electrónica de WorldClim (Berkeley University 2002). También se utilizó un mapa de pendiente que se elaboró a partir del DEM y utilizando el programa ARC INFO versión 8.1.

Las variables disponibles en CONABIO sólo tienen datos para la superficie de México por lo que se generó una diferencia en el número de capas utilizadas. Para México se contó con diez variables físico-ecológicas mientras que para el Sur de Estados Unidos sólo hubo seis capas disponibles, debido a que la mayor parte de la información no está elaborada en formatos compatibles con los Sistemas de Información Geográfica (SIG) y su transformación es muy compleja y costosa. Para poder utilizar las capas de CONABIO en GARP, tuvieron que transformarse de formato "shape" a "grid". Las variables de WorldClim se encontraban en formato ASCII, que es compatible con GARP, por lo que no requirieron de un cambio de formato.

Se hicieron seis recortes a la zona de estudio para disminuir la sobrestimación de áreas de presencia probable con base en la distribución conocida de las especies. Los cuatro primeros se hicieron para especies localizadas en áreas geográficas extensas (Cuadro 1 y Fig. 3: letras **a-d**) y los dos restantes para especies endémicas como es el caso de *Nolina humilis y N. nelsonii*. (Fig. 3: letras **e** y **f** respectivamente).

Cuadro 1. Área geográfica de distribución de las especies.

Especies	Área geográfica
N.cespitifera, N. durangensis, N. elegans, N. juncea, N.sp.1, N. sp.2	Altiplano
N.longifolia, N. parviflora, N. pumila	Centro-Sur
Nolina beldingi, N. bigelovii, N. interrata, N. palmeri	California
	Centro-Norte
N. humilis	Guanajuato y San Luis Potosí
N. nelsonii	Coahuila y Nuevo León

Acorde con Illoldi-Rangel et. al. 2004, se hicieron 100 corridas con 1000 iteraciones para generar los modelos (mapas) de distribución potencial de cada una de las especies. El porcentaje de puntos utilizados para el entrenamiento o training, variaron de acuerdo al número de registros de cada especie (Cuadro 2), esto con la finalidad de que los modelos fueran elaborados con la mayor cantidad posible de puntos y compensar la falta de registros. Los puntos de entrenamiento se definen como el número de puntos para generar un modelo o mapa de prueba, estos puntos no son tomados en cuenta para elaborar el modelo final

Cuadro 2. Parámetros utilizados en GARP.

Numero de registros de la especie	% de registros utilizados como entrenamiento (training)
5-10	20
11-20	40
>21	50

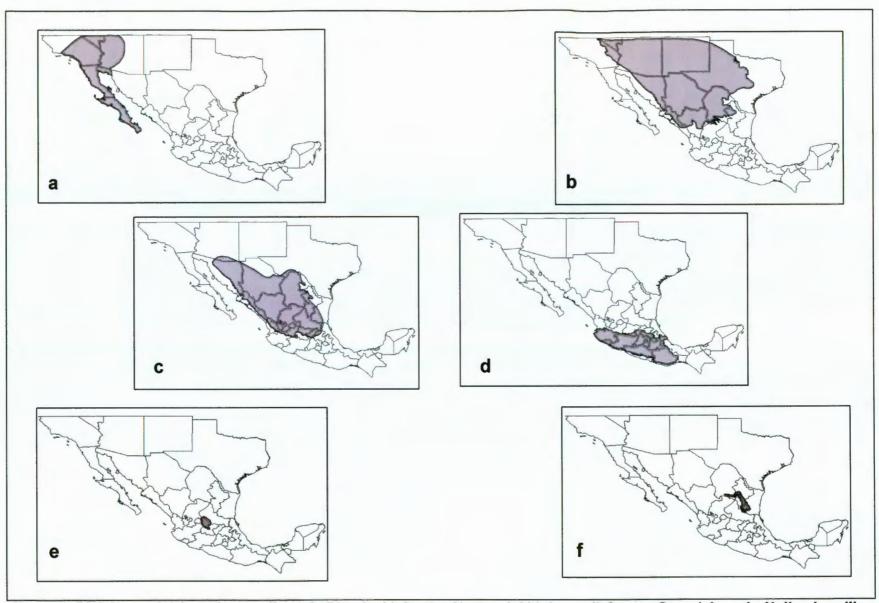


Figura 3. Divisiones del área de estudio a) California, b) Centro-Norte, c) Altiplano, d) Centro-Sur, e) área de *Nolina humilis*, y f) área de *N. nelsonii*.

Por último, se seleccionaron los diez mejores modelos para cada especie y fueron aquellos que tuvieron los valores más bajos de omisión (predicción de ausencia en áreas donde la especie está presente) y de comisión (predicción de presencia en áreas donde la especie está ausente) (Sánchez-Cordero et al. 2001; Peterson y Kluza 2003; Illoldi-Rangel et al. 2004). Estos modelos se sumaron a través del módulo Spatial Analyst versión 1.1 en el programa Arc View, para obtener un mapa de consenso, donde se reclasificaron las áreas de distribución probable de las especies. Cada zona se clasificó como de alta, media y baja probabilidad acorde al número de veces que una área se repitió en los diez mejores modelos (Cuadro 3). La escala de los mapas generados es de 1 pixel =0.083 grados que son equivalentes a una distancia de 0.85 km por pixel.

Cuadro. 3. Criterios para asignar las áreas de mayor probabilidad de presencia de las especies.

Probabilidad de presencia de la especie	Número de modelos en los que se repite el área.
Alta	10-8
Media	7-4
Baja	1-3

V. RESULTADOS.

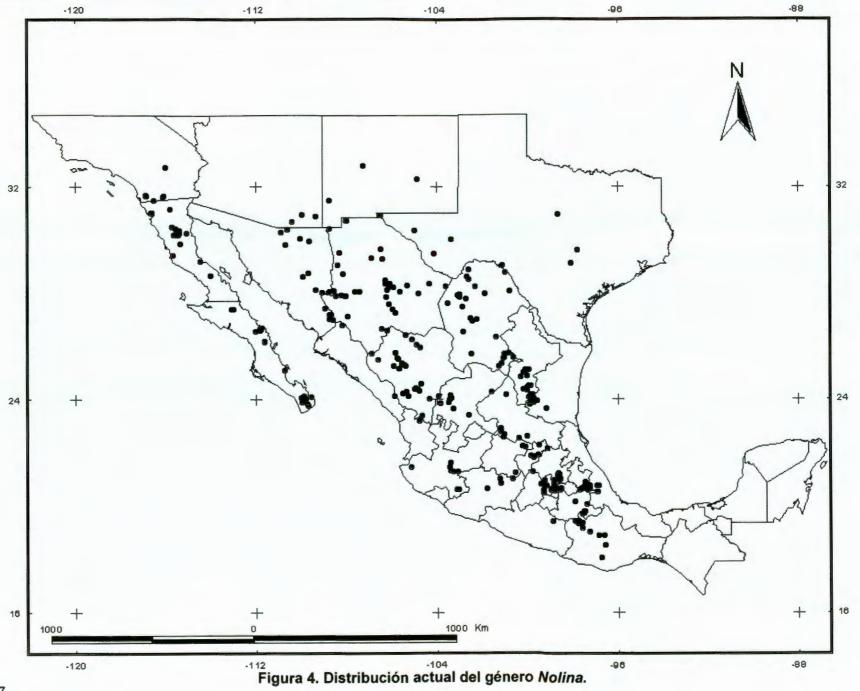
Para México se encontraron registros de 20 especies y una variedad, dos de las especies no pudieron ser determinadas. *Nolina parviflora* presentó el mayor número de registros con 96, mientras que *N. pumila y N. humilis* fueron las especies con menos registros (dos y cinco respectivamente). El resto de las especies están en un intervalo de siete a 37 registros (cuadro 4).

Cuadro 4. Registros de Nolina encontrados para México y sur de Estados unidos.

Especie	Registros
Nolina beldingi Brandegee.	16
N. bigelovii S. Watson.	14
N. cespitifera Trel.	33
N. durangensis Trel.	23
N. elegans Rose.	8
N. erumpens S. Watson.	8
N. humilis S. Watson.	5
N. interrata Gentry.	9
N. juncea Macbride.	14
N. longifolia Hemsl.	25
N. matapensis Wiggins	7
N. micrantha I. M. Johnst.	19
N. microcarpa S. Watson.	37
N. nelsonii Rose.	16
N. palmeri S. Watson	20
N. palmeri S. Watson var. brandegreei Trel.	12
N. parviflora (HBK) Hemsl.	96
N. pumila Rose.	2
N. texana S. Watson.	14
Nolina sp. 1	13
Nolina sp. 2	11

Nota: Los nombres científicos fueron tomados del International Plant Names Index (2005).

5.1. Distribución actual del género

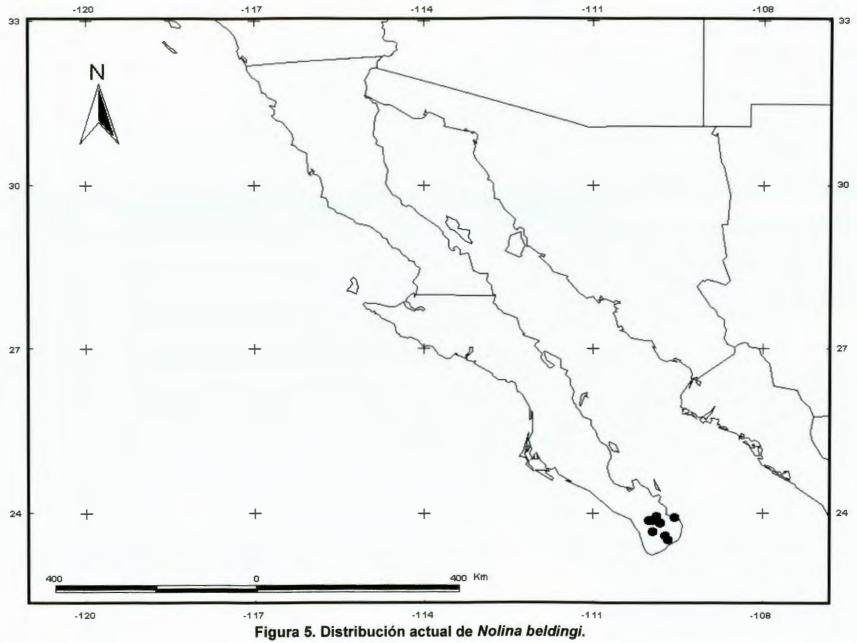

De acuerdo a los registros y al mapa de distribución actual generado, se tiene que en México, *Nolina* se encuentra ampliamente difundida en zonas montañosas, como las Sierras Madre Occidental y Oriental, el Eje Neovolcánico Transversal y el Sistema Montañoso del Norte de Oaxaca (Fig. 4). El Altiplano Central también concentra un considerable número de especies pese a no presentar grandes elevaciones. Este género se desarrolla en altitudes desde 160 msnm, pero generalmente se encuentra de los 1500 a los 3000 m, en planicies y en laderas que van de moderadas a pronunciadas, siendo más frecuente encontrarlas en las últimas. Los tipos de vegetación en los que habita son los bosques de pino y pinoencino, chaparrales, matorrales (rosetófilos, micrófilos y espinosos) así como en pastizales. Se puede colectar en climas templados hasta semiáridos. Los estados con el mayor número de registros son Chihuahua, Durango, Coahuila y Baja California Norte y el género no se localiza en el Sureste de nuestro país.

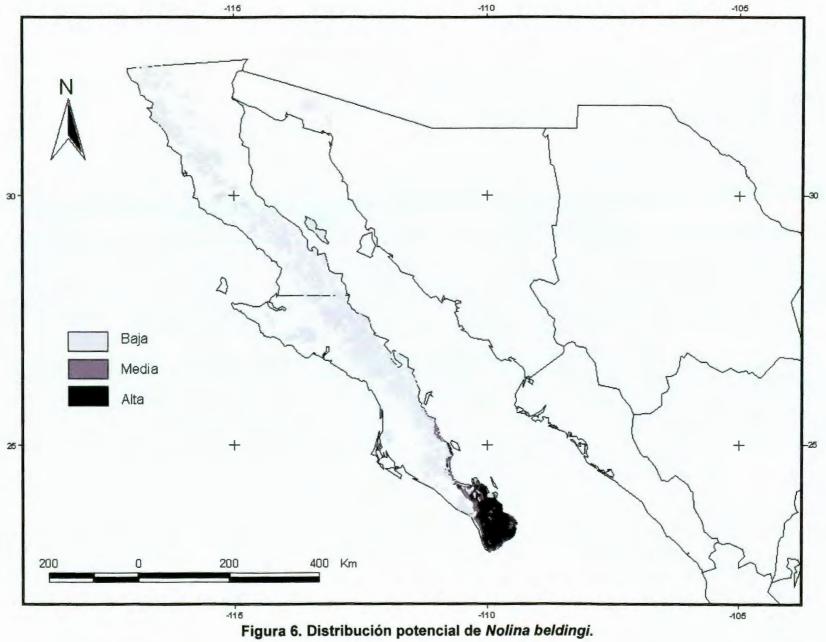
Cuadro 5. Número de registros para los estados de México.

Estado	Numero de registros
Chihuahua	56
Baja California	40
Coahuila	30
Durango	30
Puebla	25
Veracruz	21
Baja California Sur	20
Sonora	20
Oaxaca	19
Estado de México	15
Hidalgo	15
Tamaulipas	13

Cuadro 5. Número de registros para los estados de México (Continuación).

Estado	Numero de registros
Nuevo León	12
Jalisco	10
Querétaro	8
Zacatecas	8
San Luís Potosí	6
Guanajuato	5
Distrito Federal	4
Michoacán	4
Nayarit	2
Sinaloa	2
Tlaxcala	2
Morelos	1


5.2. Distribución de las especies.


Nolina beldingi es una especie cuya distribución se restringe al sur de Baja California (Fig. 5), en altitudes entre 1000 y 1800 msnm. Los tipos de vegetación en los que se localiza son el bosque de encino y de pino-encino. En cuanto a su distribución potencial tenemos que las zonas de alta y mediana probabilidad se limitan al sur de la península de Baja California (Fig. 6), específicamente a la región conocida como la Sierra de San Lázaro. Hay menos probabilidad de encontrarla en Baja California y Sonora.

Nolina bigelovii se distribuye en al norte de Baja California y la parte suroccidental de Estados Unidos (Arizona y California) (Fig. 7). Se localiza en altitudes que van desde los 540 hasta los 1250 msnm, en zonas con pendientes pronunciadas. Su distribución potencial (Fig. 8), muestra que la especie puede localizarse al norte del sistema montañoso de Baja California, en las porciones conocidas como Sierra Juárez y Sierra San Miguel. En zonas montañosas de Baja California Sur, Arizona y Nevada la probabilidad de su presencia disminuye

Nolina cespitifera prospera sólo en dos estados de la República Mexicana, Nuevo León y Coahuila (Fig. 9). Esta especie crece en altitudes entre 1400 y 2900 msnm, en matorral espinoso y rosetófilo, bosque de pino y bosque de encino y se localiza en barrancos y otros lugares de pendiente pronunciada. El mapa de distribución potencial (Fig. 10), indica que las áreas de mayor probabilidad de encontrar esta especie son las porciones más elevadas del Altiplano Mexicano y la porción de la

Sierra Madre Oriental correspondiente al estado de Nuevo León (Sierra de los Borregos, Sierra Peña Nevada y Sierra Vieja). Existe una alta probabilidad de que la especie se extienda a parte del Eje Neovolcánico en porciones serranas de San Luis Potosí, Guanajuato, Querétaro e Hidalgo.

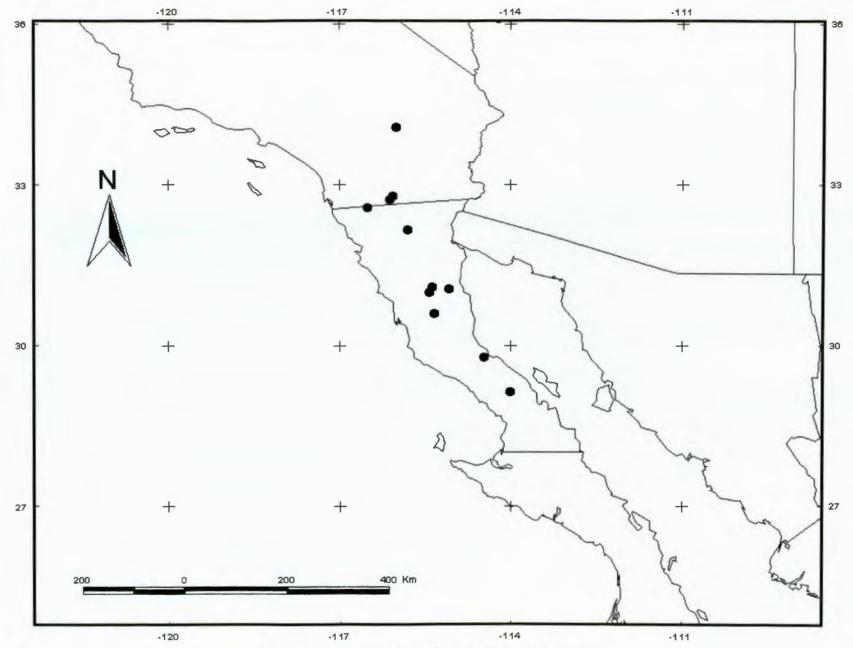


Figura 7. Distribución actual de Nolina bigelovii.

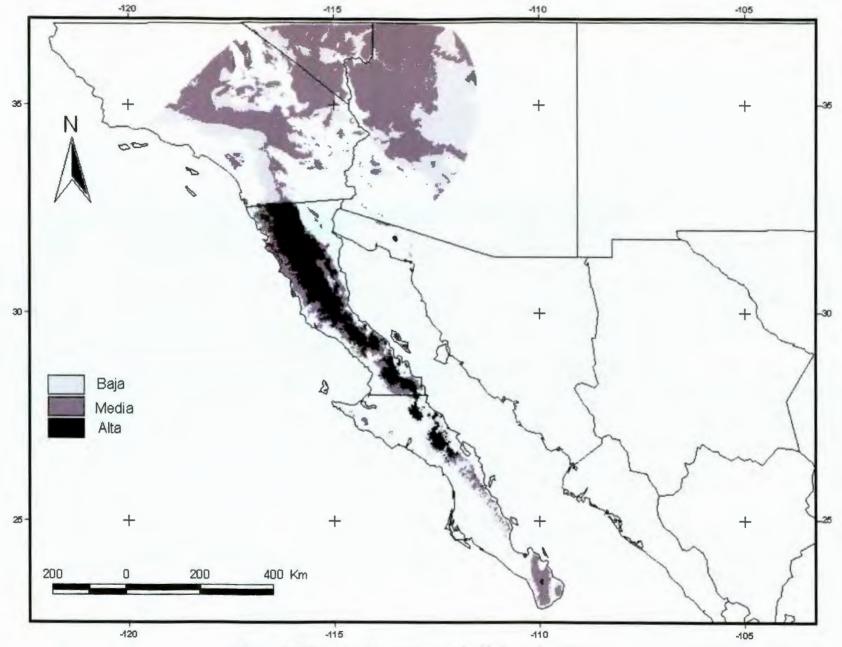
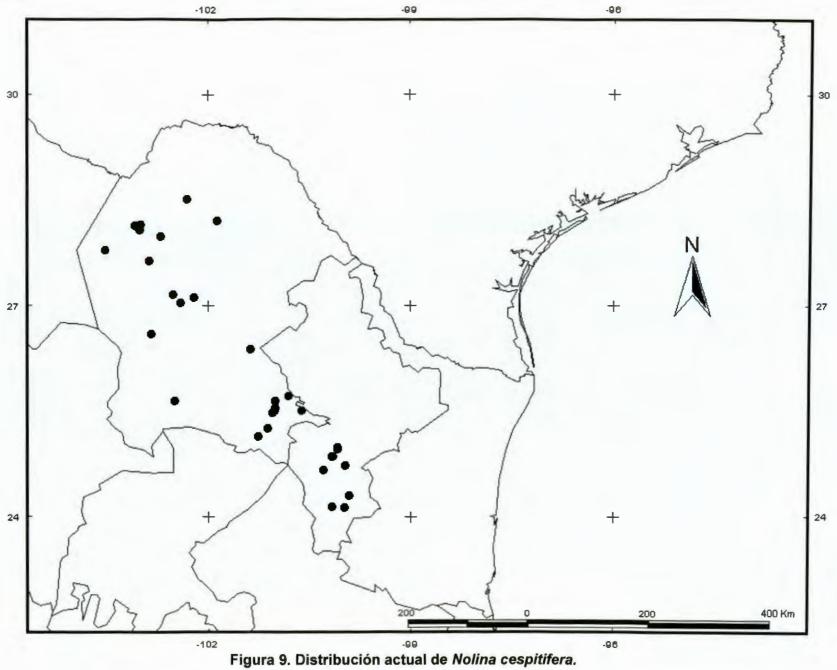



Figura 8. Distribución potencial de Nolina bigelovii.

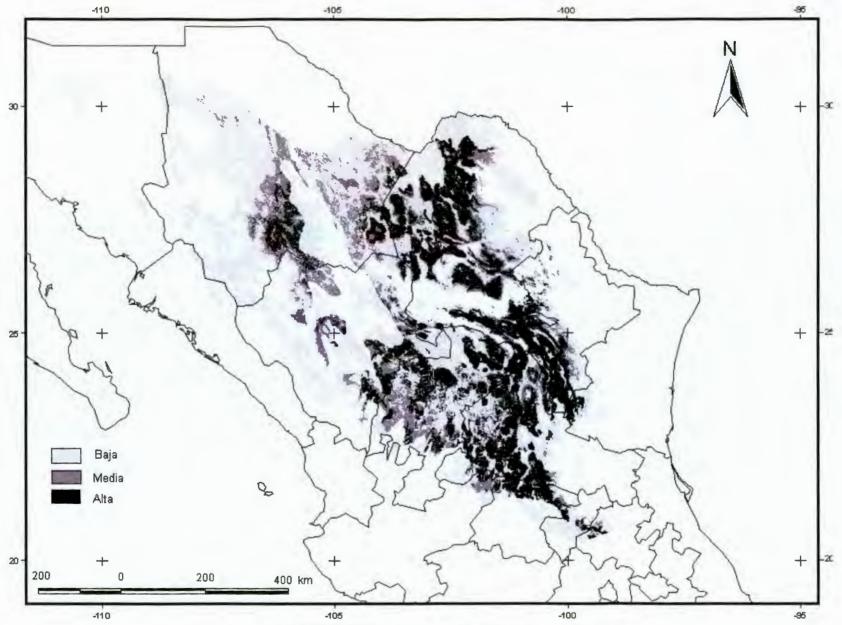


Figura 10. Distribución potencial de Nolina cespitifera.

Nolina durangensis se encuentra en los estados de Chihuahua y Durango (Fig. 11) en altitudes que van de 1300 hasta los 2700 msnm. Los tipos de vegetación a los que generalmente se encuentra asociada son los bosques de pino y pino-encino y habita en laderas o paredes de cañadas. Su área de distribución potencial es amplia (Fig. 12), abarcando toda la Sierra Madre Occidental, sureste del Altiplano Mexicano y la parte sur de la Sierra Madre Oriental en su porción correspondiente a los estados de Coahuila, Nuevo León, San Luis Potosí y Tamaulipas (Fig. 12).

Nolina elegans se ha registrado en los estados de Durango y Zacatecas (Fig. 13), en altitudes que van de los 2000 a 2780 msnm, asociadas a bosques de pino y pino-encino y crecen en sustratos rocosos con pendientes pronunciadas. Potencialmente está distribuida en la Sierra Madre Occidental, en los estados de Chihuahua, Durango y Zacatecas (Fig. 14). Específicamente en las siguientes regiones: Sierra la Catarina (Chih.), Sierra de Santiago Beyacora (Dgo.) y Sierra de Valparaíso (Zac.). Otras zonas potenciales se ubican en el sur del Altiplano Mexicano y son la Sierra del Sombrerete (Zac.) y Sierra Álamos (S.L.P.).

Nolina erumpens se distribuye en México y Estados Unidos. En México se localiza en los estados de Coahuila y Chihuahua, mientras que en los Estados Unidos habita en Nuevo México y Arizona (Fig. 15). Esta especie se localiza en altitudes entre 1200 y 2400 msnm, en tipos de vegetación como matorral espinoso y bosque de encino. Su área de distribución potencial (Fig. 16) corresponde al norte

del Altiplano Mexicano en las zonas serranas de Chihuahua, oeste de Coahuila, Durango, Nuevo León, Sonora y norte de Zacatecas.

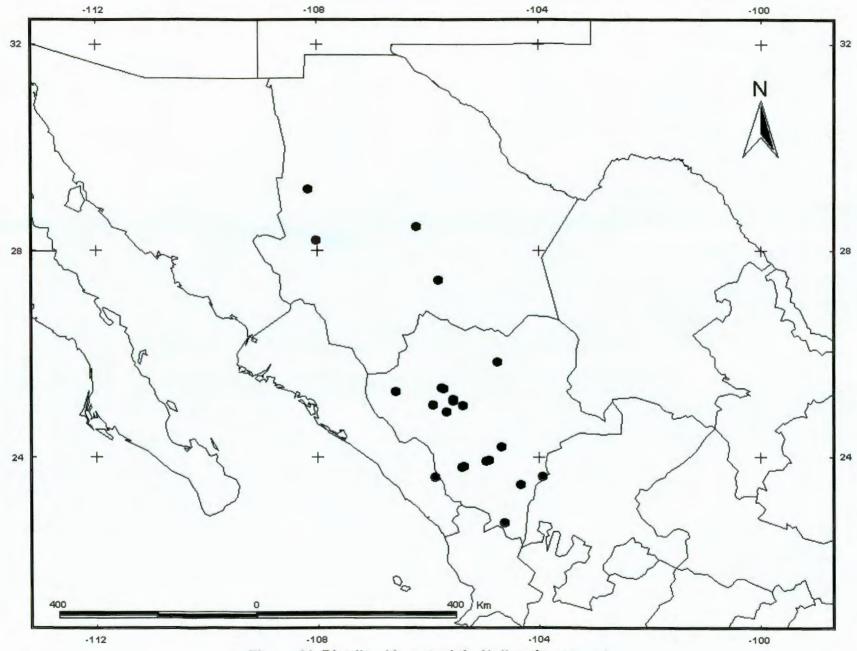


Figura 11. Distribución actual de Nolina durangensis.

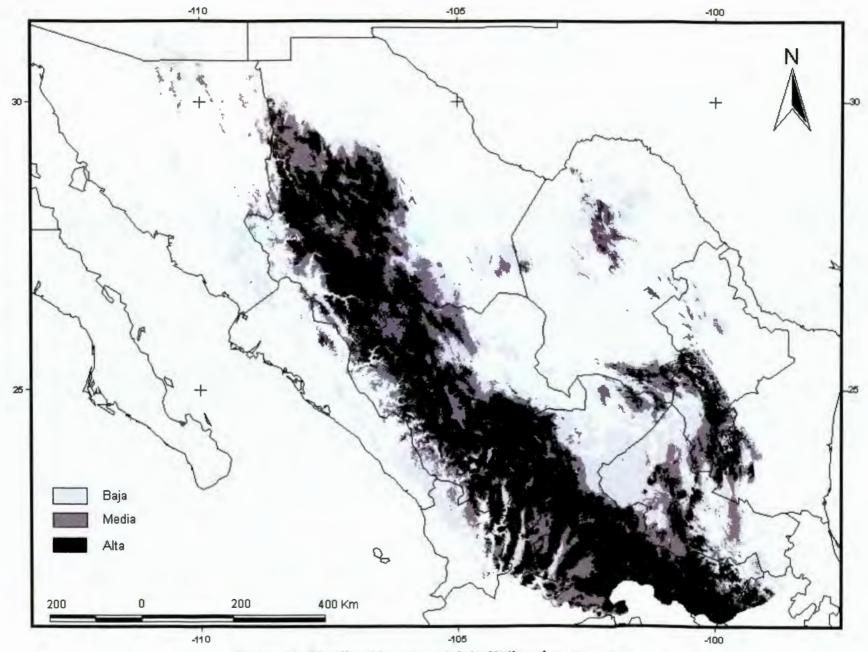


Figura 12. Distribución potencial de Nolina durangensis.

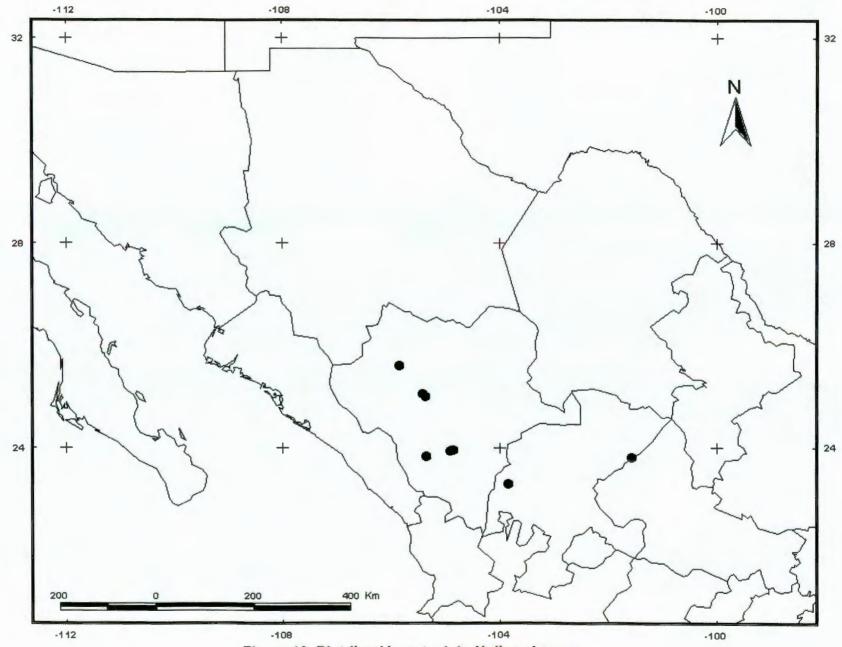


Figura 13. Distribución actual de Nolina elegans.

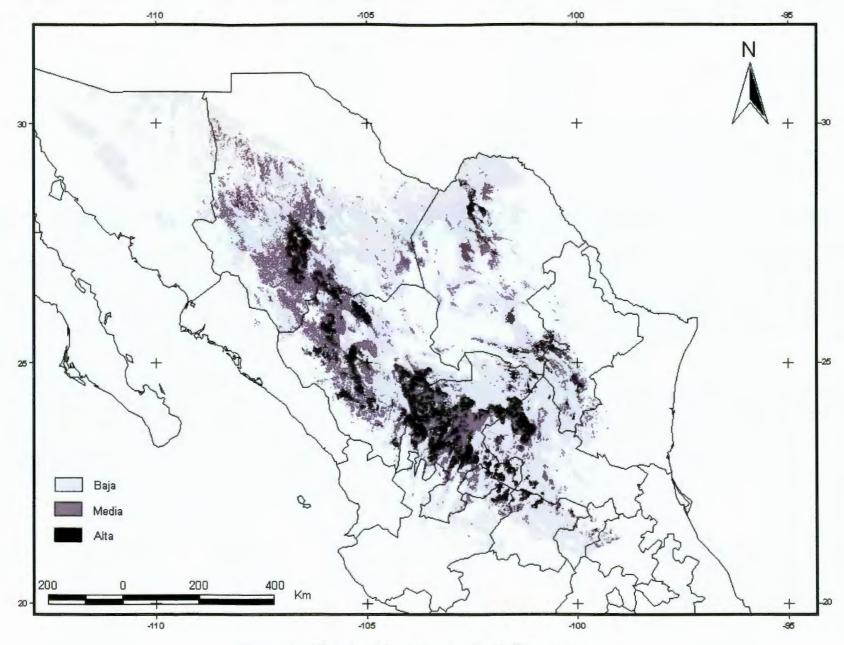
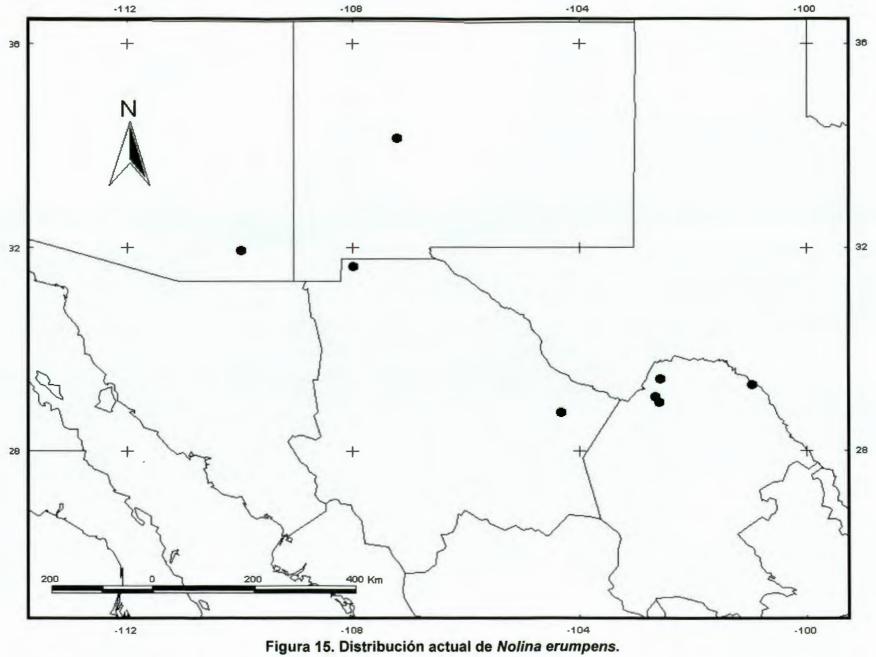
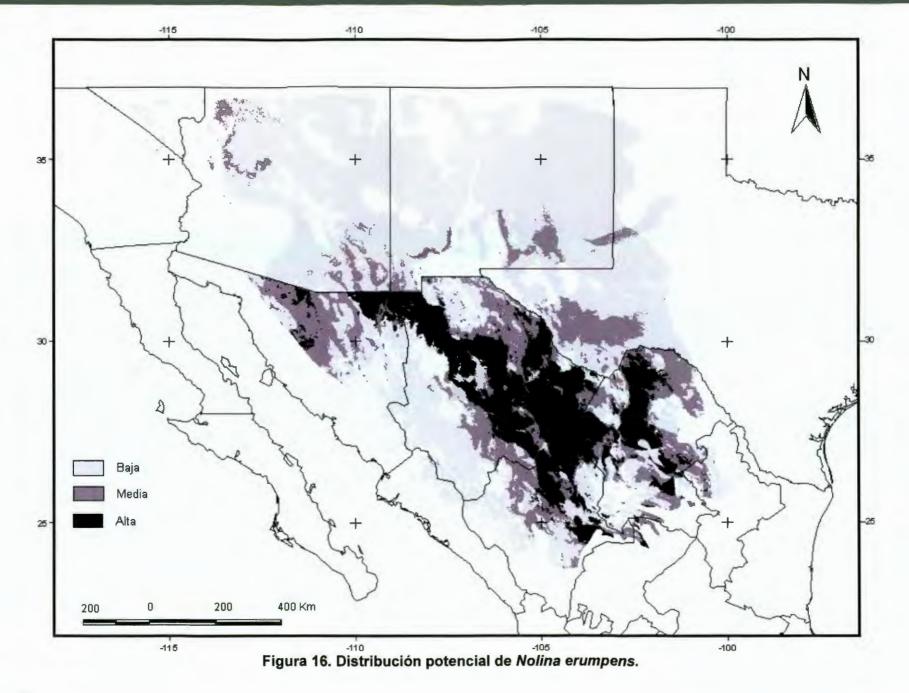
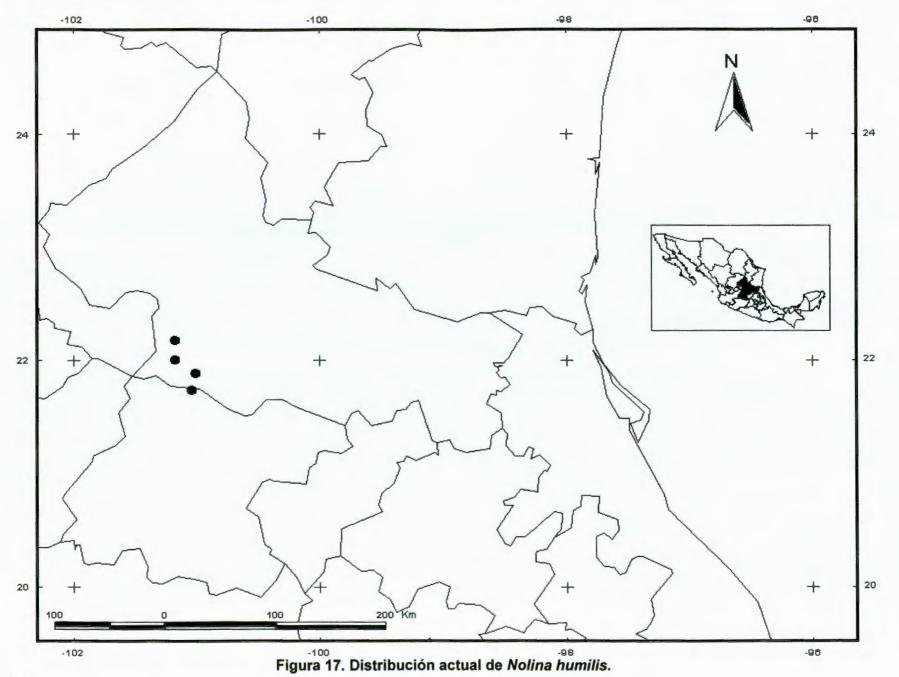




Figura 14. Distribución potencial de Nolina elegans



Nolina humilis es una especie de distribución restringida y de la cual se conocen sólo seis registros en los últimos 120 años. La especie se localiza únicamente en los estados de Guanajuato y San Luis Potosí (Fig. 17), en altitudes entre 2300 y 2400 msnm, asociada a bosques de *Pinus cembroides*, matorrales rosetófilos y pastizales, sobre sitios con pendientes pronunciadas y sustrato rocoso. Su distribución potencial indica que las zonas con la mayor probabilidad de localizarla son la Sierra de San Miguelito (S.L.P.), Cerro de los Huacales (Zac.) y Cerro de las Nieves en Guanajuato (Fig. 18).

Nolina interrata se localiza en Baja California y California (Fig. 19) habita en altitudes entre 340 y 580 msnm, en sitios con pendiente y asociada a chaparrales. Su distribución potencial abarca la parte norte de la planicie costera de Baja California en México y se extiende hasta las zonas costeras del sur de California en Estados Unidos, siendo todavía menos probable su presencia en Baja California Sur y Arizona (Fig. 20).

Nolina juncea prospera en los estados de Durango y Zacatecas (Fig. 21). Esta especie se localiza en altitudes entre 1300 y 2500 msnm asociada a bosques de pino-encino, matorrales espinosos y pastizales, sobre sitios con pendiente e incluso en planicies. El área de su distribución potencial corresponde al sur de la Sierra Madre Occidental, sur del Altiplano Mexicano (estados de Durango, Zacatecas y San Luis Potosí, Jalisco, Guanajuato Querétaro e Hidalgo) así como

en una porción pequeña de la Sierra Madre Oriental que corresponde a las Sierras de San Antonio, El Potosí y Los Borregos en Nuevo León (Fig. 22).

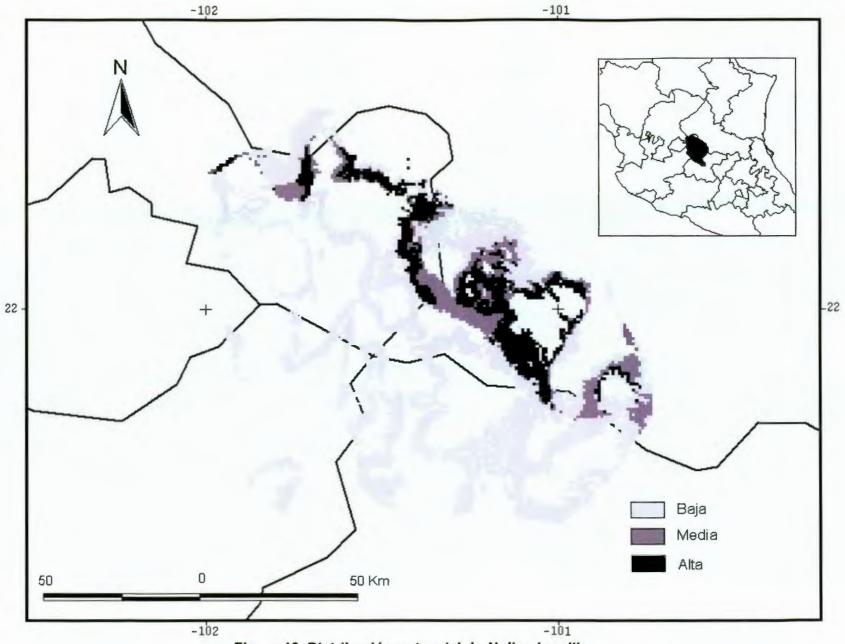
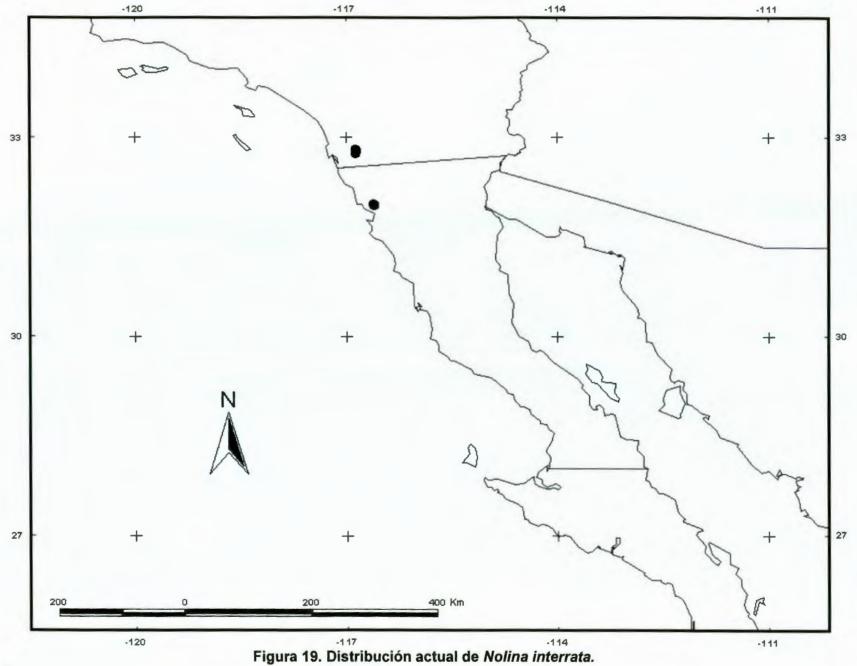



Figura 18. Distribución potencial de Nolina humilis.

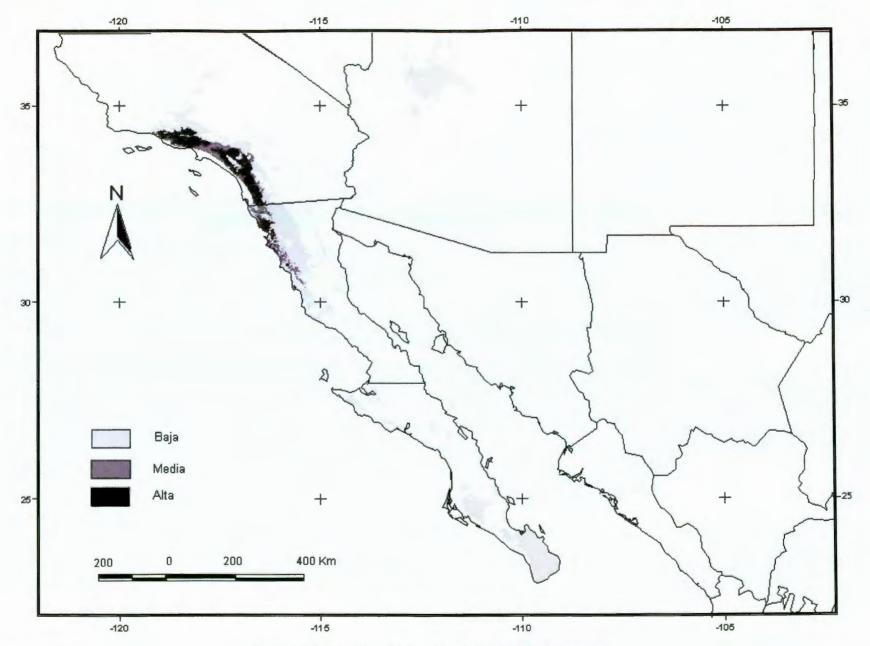
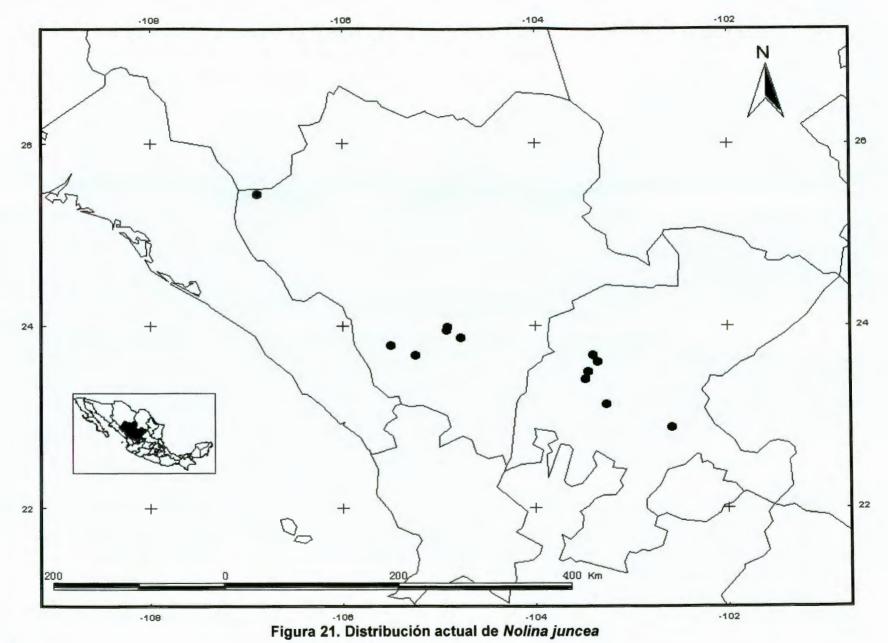



Figura 20. Distribución potencial de Nolina interrata.

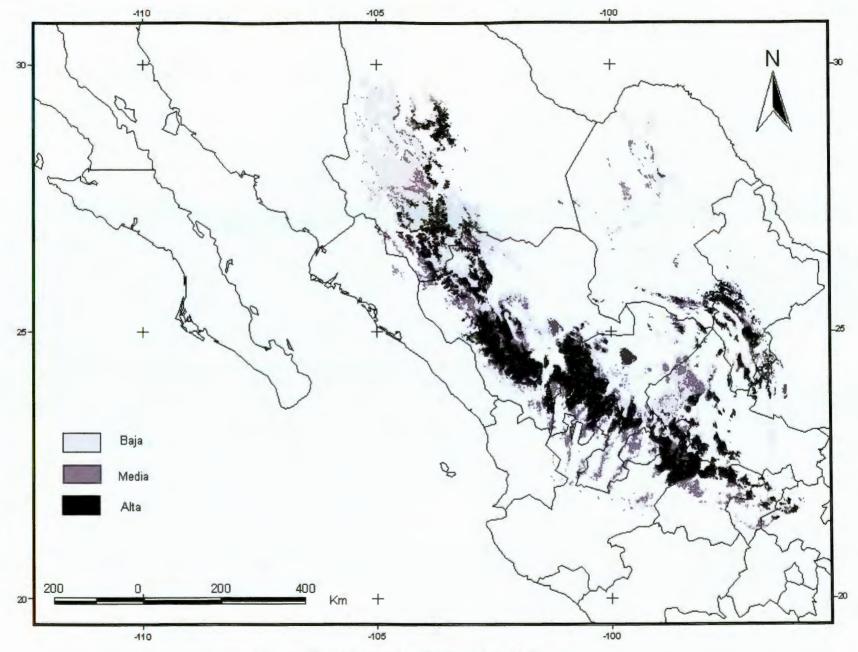


Figura 22. Distribución potencial de Nolina juncea.

Nolina longifolia, se registra principalmente en Oaxaca y en algunas localidades en Puebla y Guerrero (Fig. 23), en altitudes de 1700 a 1800 msnm y en los tipos de vegetación como matorral rosetófilo y bosques de pino-encino. La distribución potencial de esta especie se encuentra en el Eje Neovolcánico, la porción oaxaqueña de la Sierra Madre del Sur y el sistema montañoso del norte de Oaxaca, disminuyendo la probabilidad hacia la región del Balsas (Fig. 24).

Nolina matapensis habita en los estados de Sinaloa, Sonora y Chihuahua (Fig. 25), en la porción correspondiente a la Sierra Madre Occidental. Ocupa sitios con altitudes que van de los 1170 hasta los 1500 msnm y se asocia a los bosques de encino, pino y bosque tropical caducifolio. Acorde al modelo de distribución potencial, los sitios con alta probabilidad de presencia de la especie, corresponden al norte de la Sierra Madre Occidental en su porción correspondiente al este de Sonora, suroeste de Chihuahua y noroeste de Sinaloa (Fig. 26).

Nolina micrantha se distribuye principalmente en el estado de Chihuahua en México y Arizona y Texas en Estados Unidos (Fig. 27). Crece entre los 1800 y 2400 msnm, en bosques de encino, matorral y pastizal. Su distribución potencial corresponde al norte del Altiplano Mexicano y norte de la Sierra Madre Occidental, en las montañas de Chihuahua y norte de Durango y en las Sierras La Encantada, Sierra el Fuste y la Madera, Coahuila. La probabilidad disminuye hacia Arizona, Nuevo México y Texas (Fig. 28).

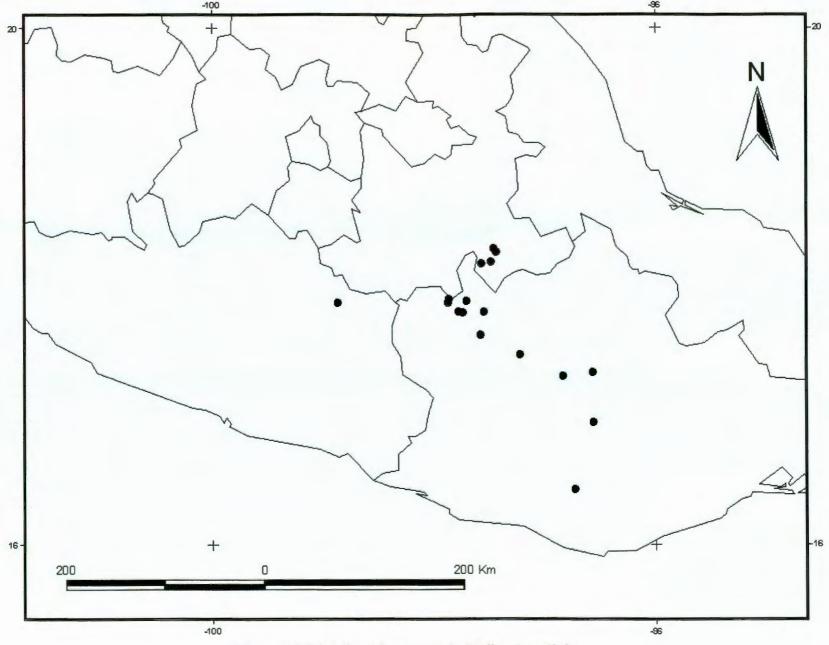


Figura 23. Distribución actual de Nolina longifolia.

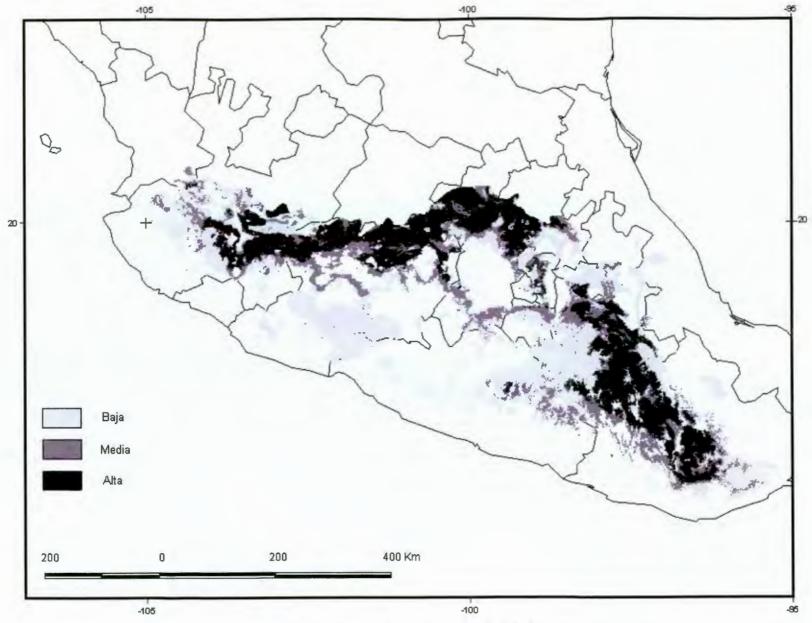
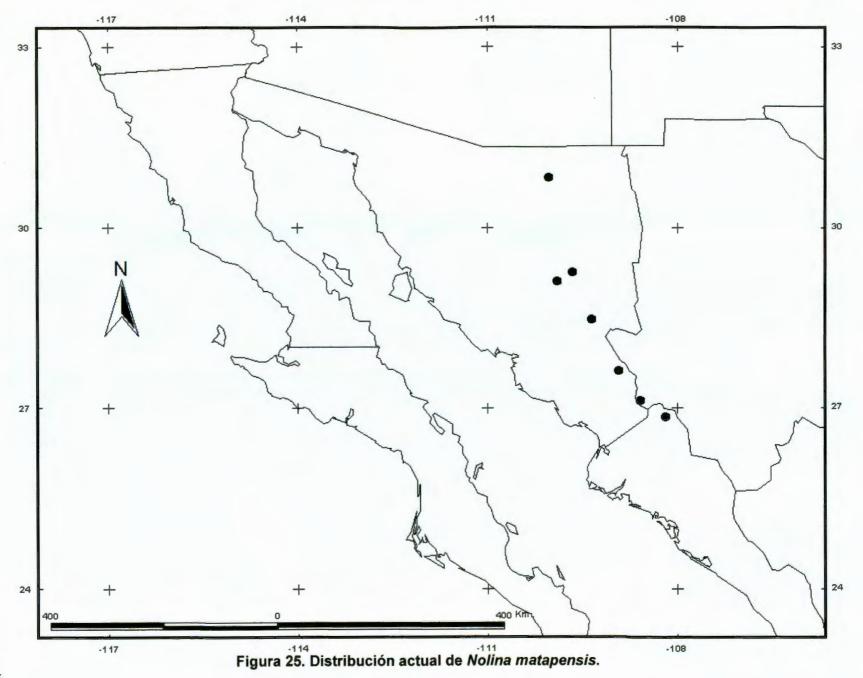



Figura 24. Distribución potencial de Nolina longifolia.

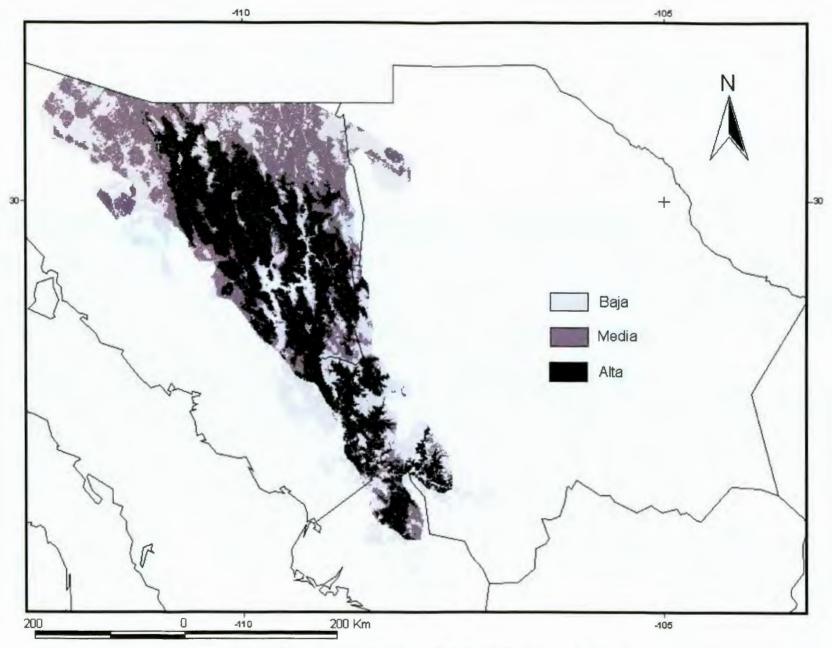
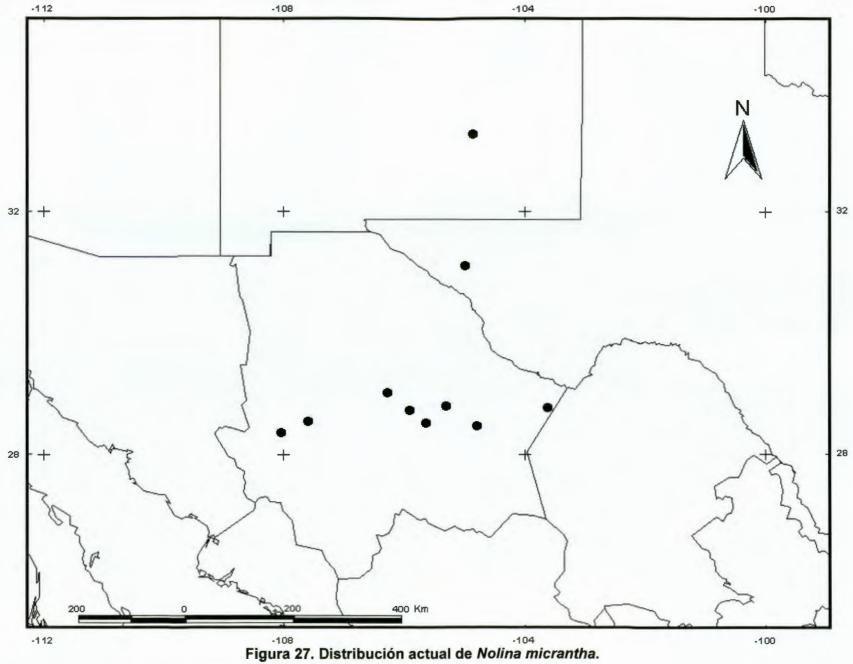



Figura 26. Distribución potencial de Nolina matapensis.

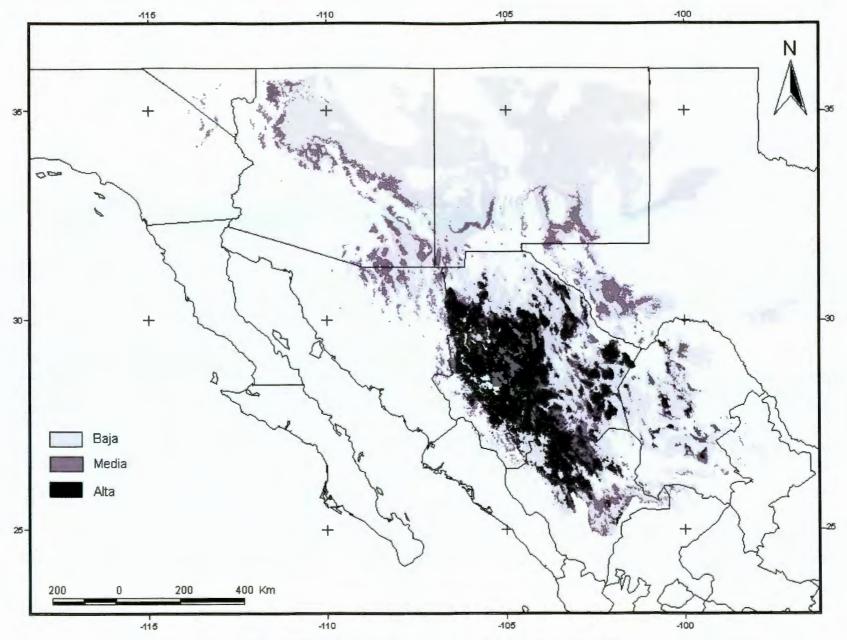


Figura 28. Distribución potencial de Nolina micrantha.

Nolina microcarpa se distribuye al noroeste de México, en los estados de Sonora y Chihuahua y en Arizona y Nuevo México al suroeste de Estados Unidos (Fig. 29). La altitud a la que se ha encontrado va de los 1300 y 2700 msnm. Los tipos de vegetación en que crece son: bosque de encino, bosque de pino y matorral rosetófilo. Su distribución potencial corresponde a la Sierra Madre Occidental y norte del Altiplano Mexicano, extendiéndose a las montañas de Galiuro, Mogollón y Chiricahua en Arizona así como los Montes Sacramento y Guadalupe en Nuevo México (Fig. 30).

Nolina nelsonii se restringe al sur de los estados de Nuevo León y Tamaulipas (Fig. 31). Se localizan en altitudes de los 1700 a los 2800 msnm. Prospera en diferentes tipos de vegetación como bosque de pino, bosque de pino-encino, bosque mesófilo, chaparral, matorral espinoso, rosetófilo y submontano. Potencialmente se distribuye en las Sierras de San Antonio y La Muralla en San Luis Potosí, la Sierra Playa Madero en Coahuila, la Sierra Grande y la Servilleta en Tamaulipas y al sur de Coahuila (Fig. 32).

Nolina palmeri se registra únicamente en Baja California (Fig. 33). Se localiza en altitudes entre 1200 y 2800 msnm, en chaparrales, bosque de encino con pastizal y bosques de pino. Las zonas potenciales de su distribución se concentran en las Sierras Juárez y San Miguel en Baja California, disminuyendo esta probabilidad hacia la parte sur del estado (Fig. 34).

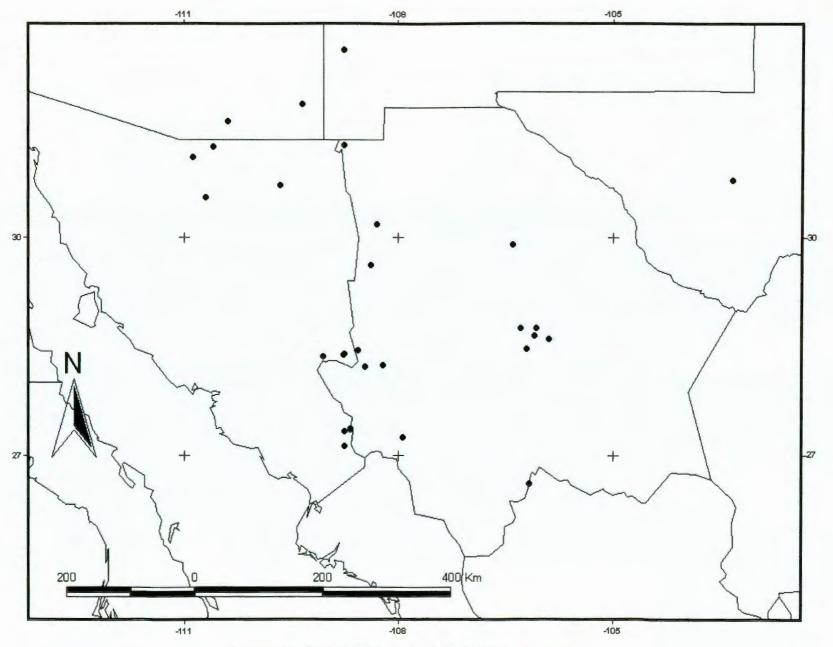
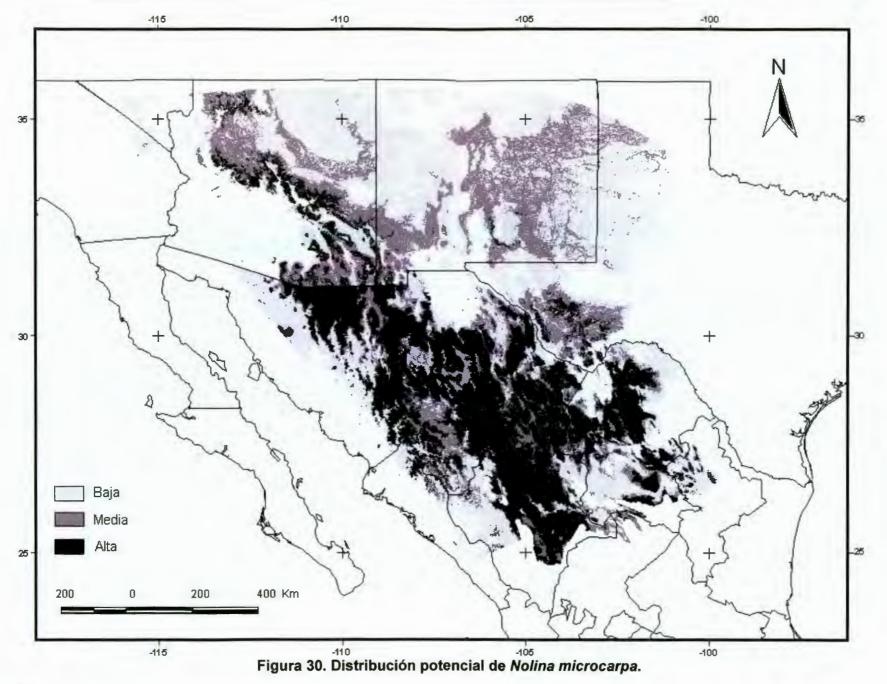



Figura 29. Distribución actual de Nolina microcarpa.

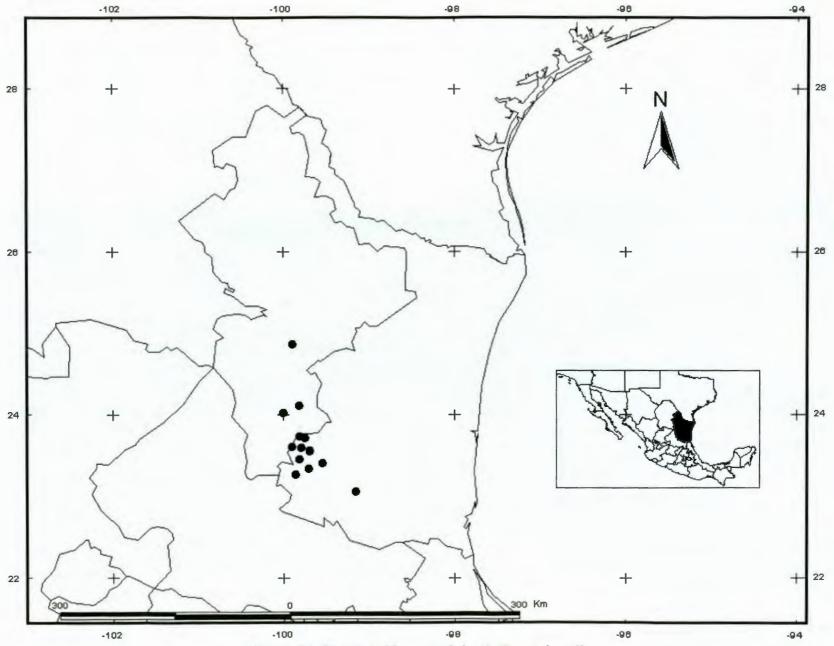


Figura 31. Distribución actual de Nolina nelsonii.

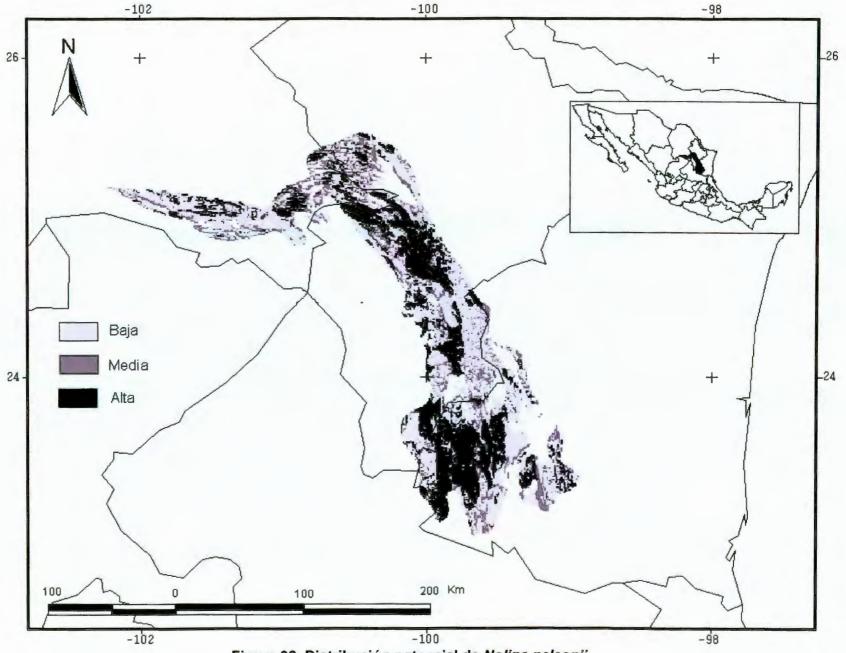
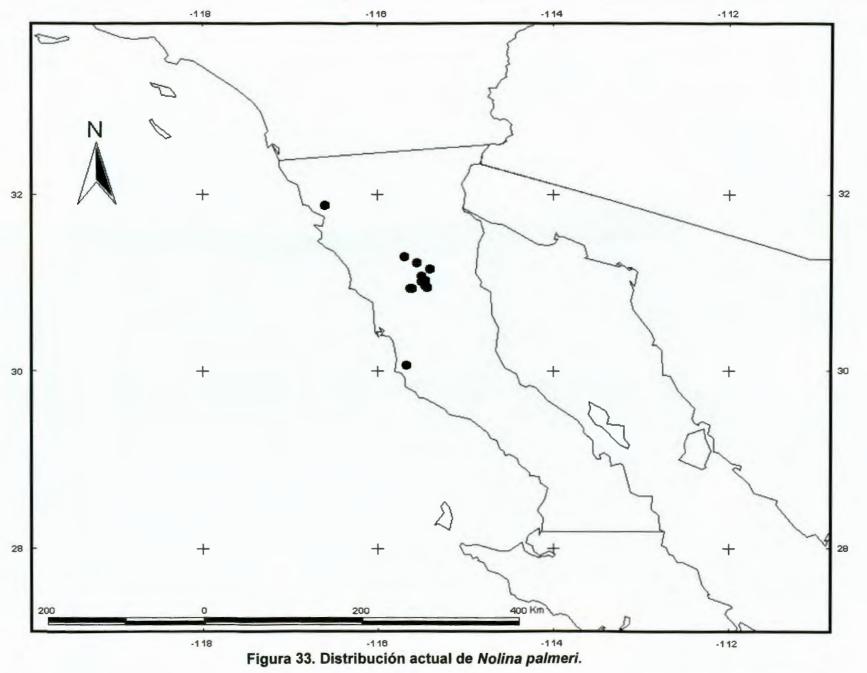
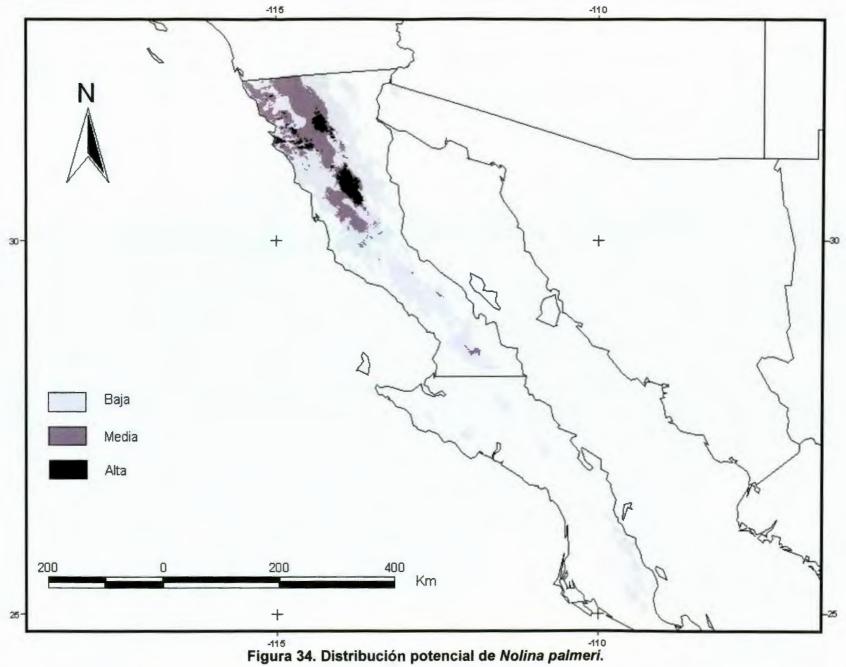




Figura 32. Distribución potencial de Nolina nelsonii.

Nolina palmeri var. brandegreei actualmente sólo se registra en las Sierras de San Francisco y La Giganta, en Baja California Sur. Se localiza en altitudes que van de los 700 hasta los 1500 msnm, creciendo en bosque de encino y matorrales espinosos, en sitios con pendiente moderadas (Fig. 35). Su distribución potencial se extiende a la mayor parte del sistema montañoso de Baja California, en las sierras de San Miguel y San Francisco (Fig. 36). Es probable que esta especie habite también en el estado de Sonora, en la Sierra del Pinacate, cuya altitud sobrepasa los 1100 msnm y podría tener las características ambientales favorables para el desarrollo de este taxón.

Nolina parviflora es el taxón que tiene la distribución más amplia del género, encontrándose frecuentemente a lo largo del Eje Neovolcánico, atravesando el país de este a oeste. La mayor concentración de registros proviene de Veracruz y Puebla, en los límites del Eje Neovolcánico con la Sierra Madre Oriental (Fig. 37). La distribución potencial se concentra en el D.F., Estado de México, Hidalgo, Puebla, Morelos y Tlaxcala. En zonas urbanas como el D.F. su presencia debe estar restringida a los remanentes boscosos, así que parte de lo observado sería una distribución histórica del género (Fig. 38).

Nolina pumila sólo se conoce del estado de Nayarit. Esta especie se localiza en altitudes mayores a 2200 msnm y se encuentra en bosques de pino (Fig. 39).

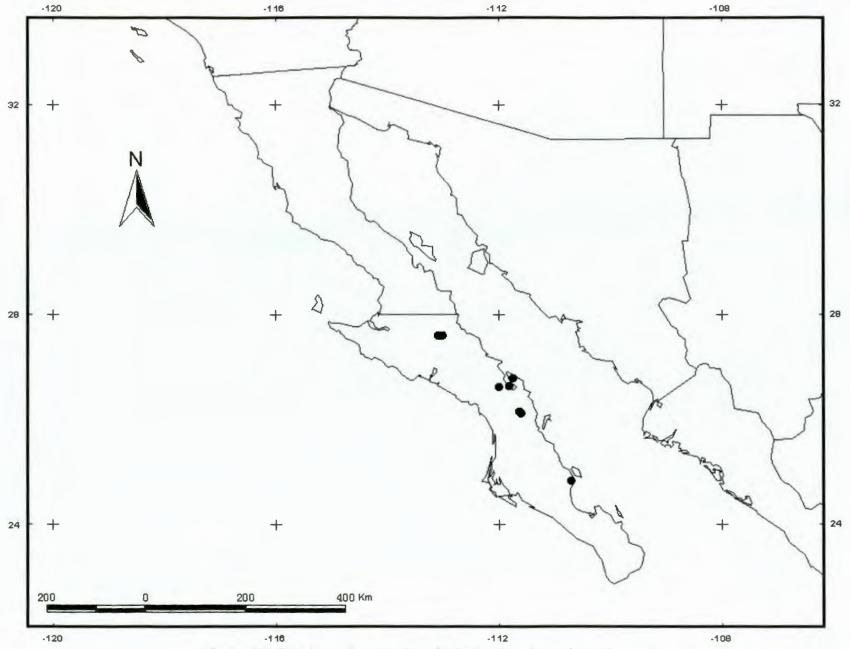


Figura 35. Distribución actual de Nolina palmeri var. brandegreei.

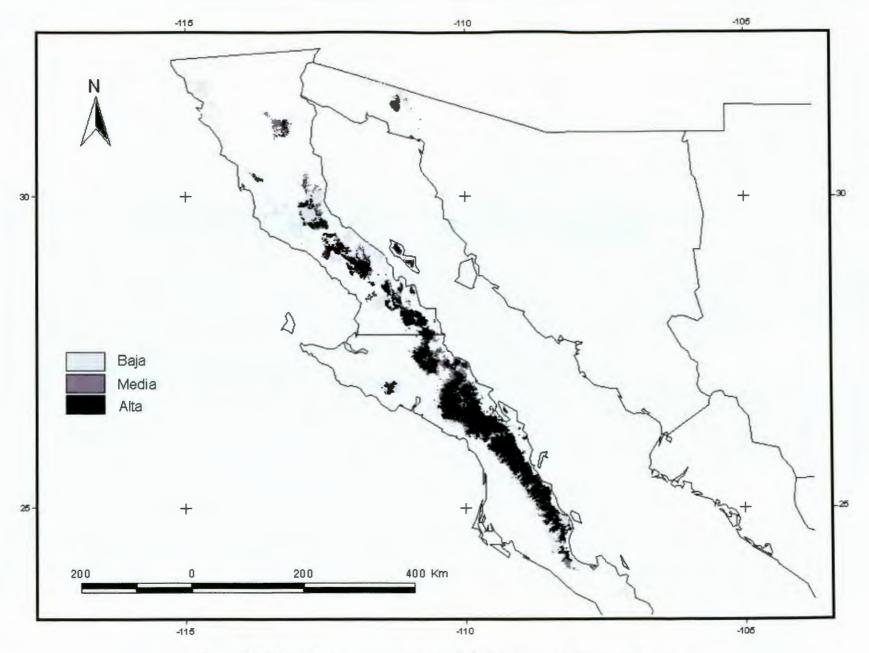
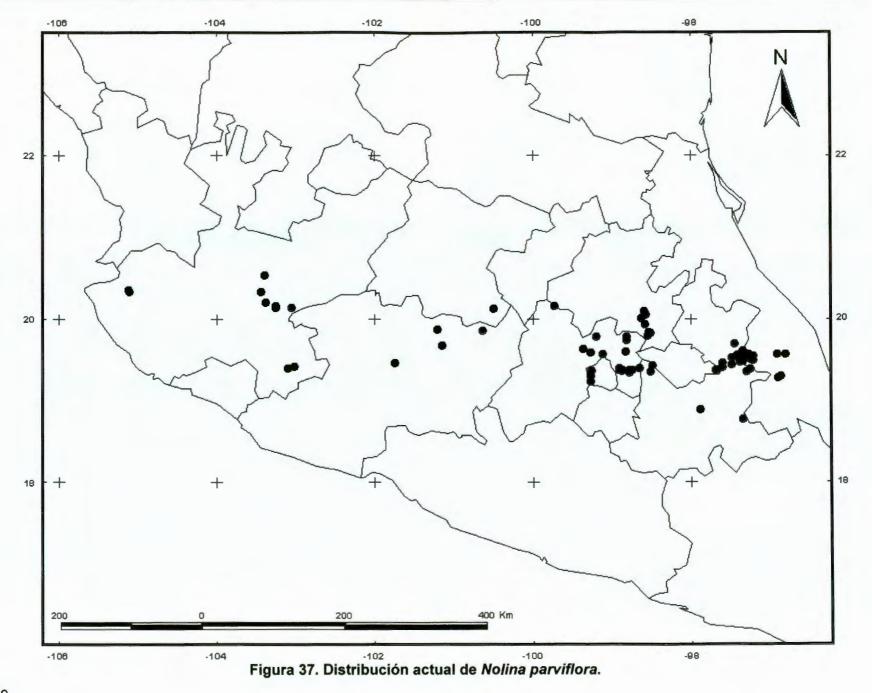
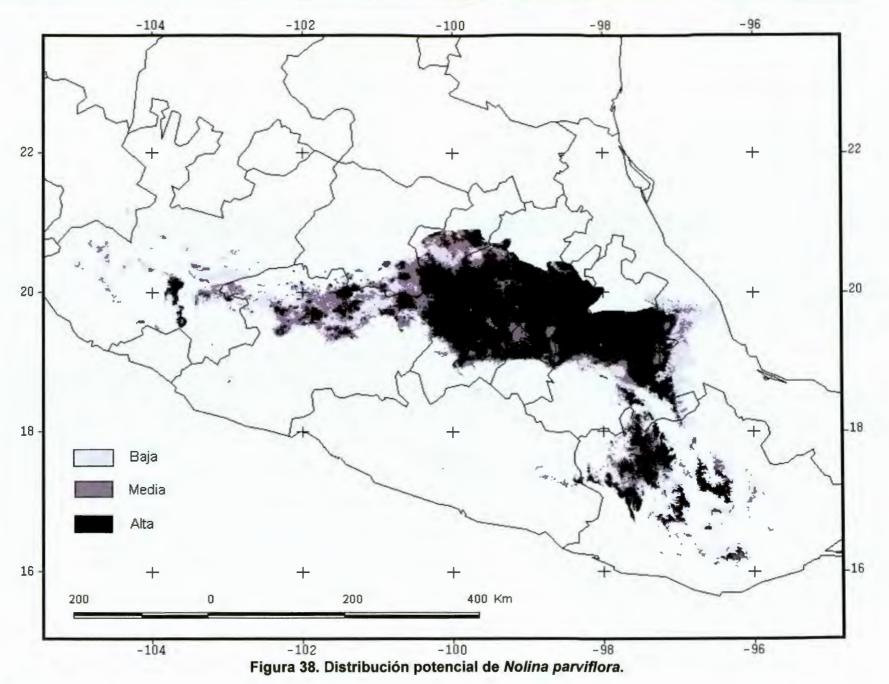
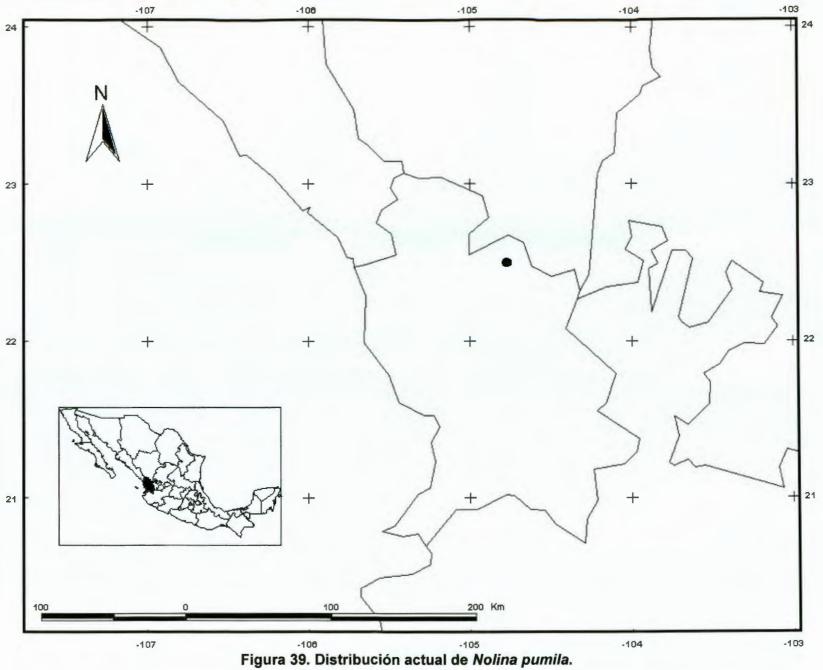





Figura 36. Distribución potencial de Nolina palmeri var. Brandegreei

Nolina texana es otra de las especies con amplia distribución, registrándose en dos estados de la República Mexicana (Chihuahua y Coahuila) y en dos de Estados Unidos (Nuevo México y Texas) (Fig. 40). Su distribución potencial es igualmente amplia, aunque no contempla al estado de Nuevo México. Esta especie podría prosperar en la parte norte del Altiplano Mexicano y de la Sierra Madre Occidental, así como en la región montañosa del centro de Texas (Fig. 41).

Nolina sp. 1 tiene una distribución restringida a tres estados del centro del país, Guanajuato, Querétaro y San Luis Potosí (Fig. 42), ocupando altitudes que van de los 1800 a 2500 msnm y asociada a bosques de pino, encino, pino-encino y matorrales esclerófilos. Su distribución potencial se ubica en los mismos estados en donde se ha registrado (Fig. 43).

Nolina sp. 2 se desarrolla en los estados de Chihuahua y Durango (Fig. 44), en altitudes que van de los 1600 a los 2200 msnm, se localiza en chaparrales, matorrales espinosos, así como en bosques de encino. Su distribución potencial corresponde a la porción norte de la Sierra Madre Occidental. En el altiplano Mexicano es poco probable encontrarla (Fig. 45).

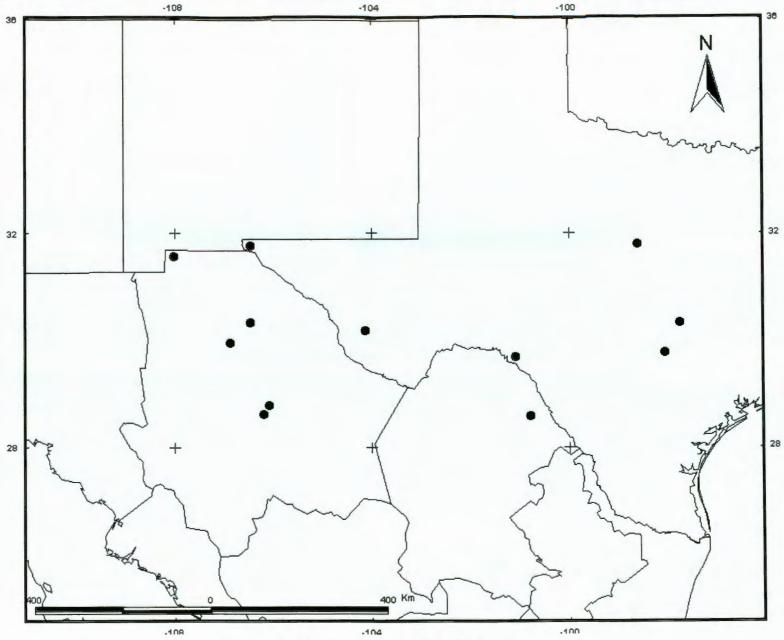
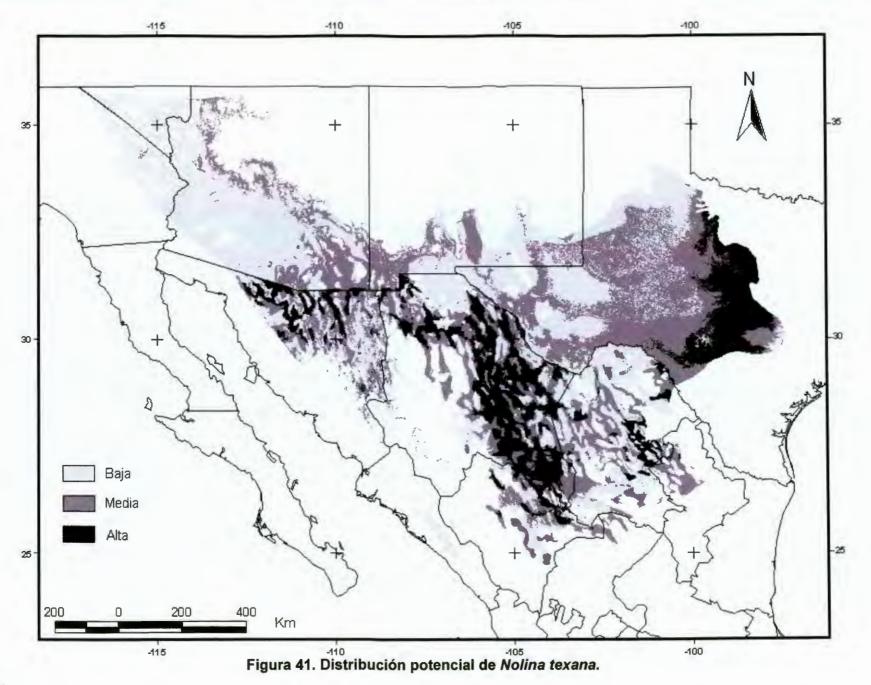



Figura 40. Distribución actual de Nolina texana.

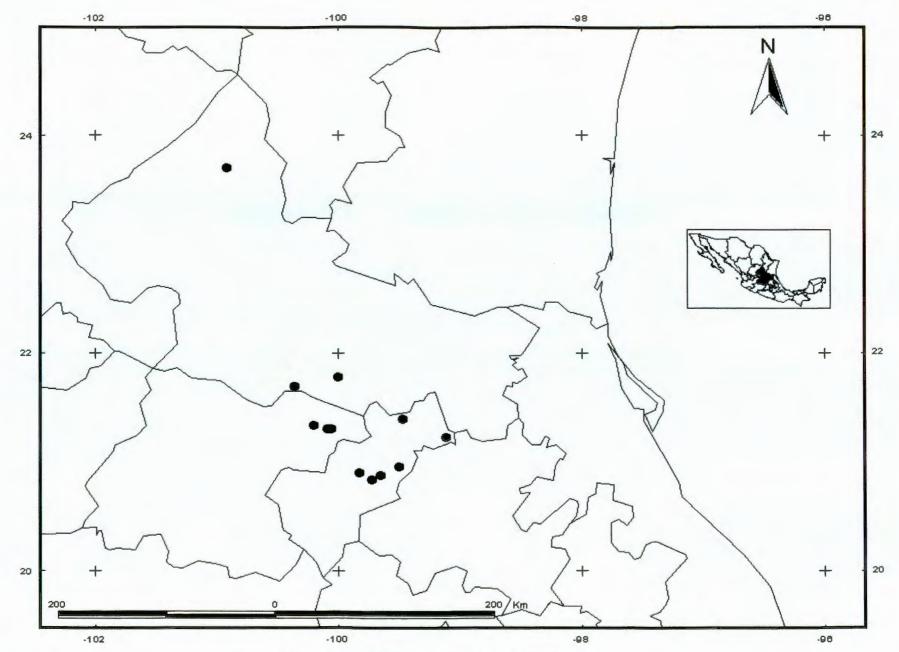


Figura 42. Distribución actual de Nolina sp.1.

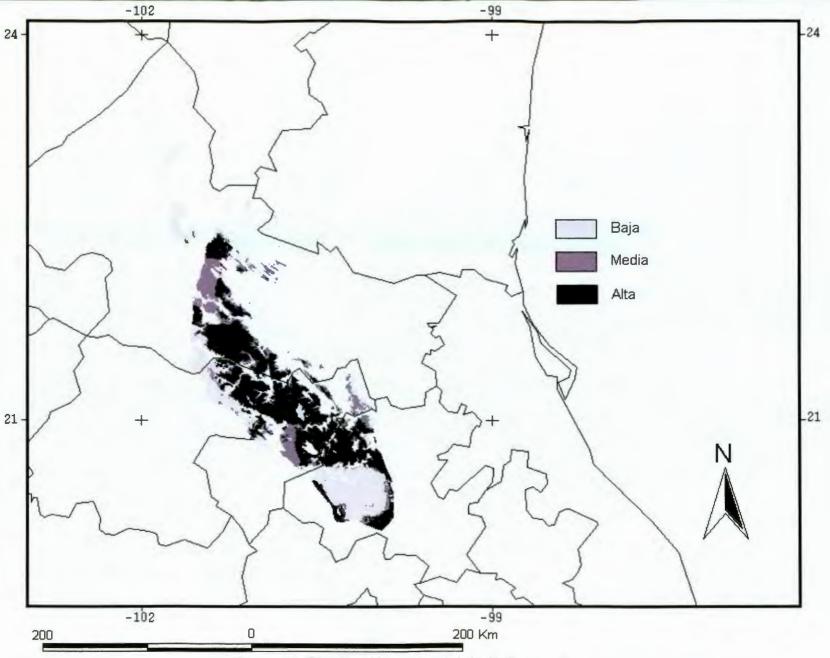
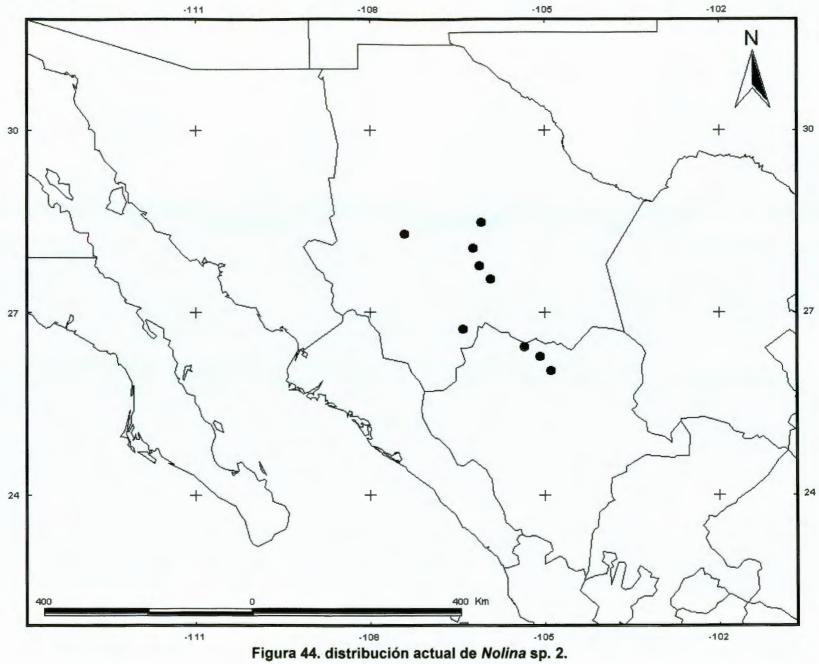



Figura 43. Distribución potencial de Nolina sp. 1.

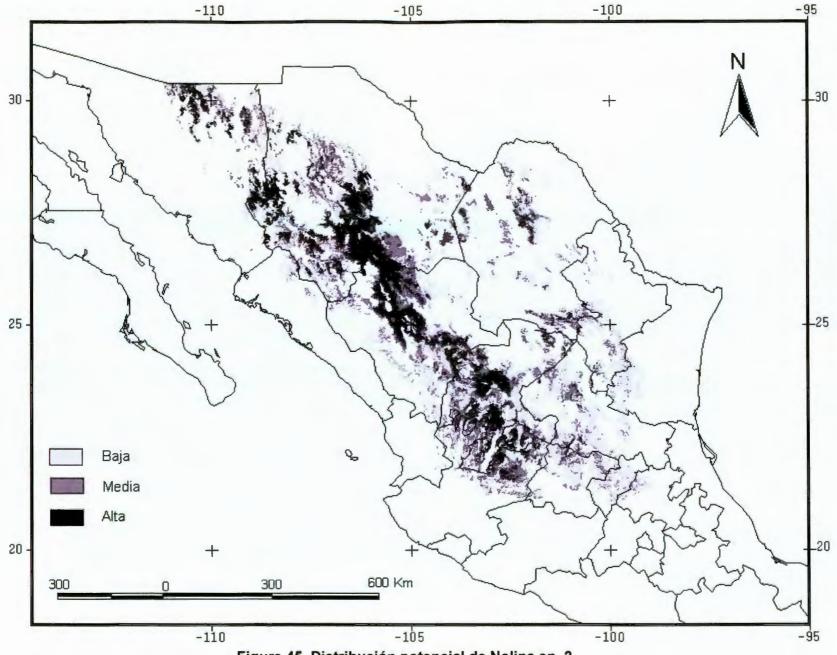


Figura 45. Distribución potencial de Nolina sp. 2.

VI. DISCUSIÓN.

A continuación se discuten los resultados obtenidos comenzando por el mapa de distribución actual y siguiendo con los de distribución potencial. De estos últimos se hace una separación en dos grupos: los primeros que presentan una sobrestimación de las áreas y el segundo en el cual las áreas con más alta probabilidad se consideran adecuadas. Por último se hace una comparación de la distribución de algunas de las especies aquí registrada en relación con referencias de la literatura.

6.1. Distribución actual.

La distribución del género *Nolina* sólo se conocía de forma parcial, de tal modo que los mapas generados en este trabajo, son los primeros que incluyen registros para más de una quincena de especies.

6.2. Distribución potencial.

Algunos de los mapas de distribución potencial presentaron cierto grado de subestimación. Es el caso de *Nolina bigelovii y N. erumpens*, cuya área de distribución potencial se restringe a México pese a que también existen colectas de estas especies en el sur de Estados Unidos. Las áreas potenciales de alta probabilidad terminan abruptamente en la línea fronteriza de México y Estados Unidos debido al diferente número de capas utilizadas para los dos países, puesto que para México se encontraron disponibles diez características físico-ecológicas (capas) y para Estados Unidos sólo seis.

Aunque existe más información físico-ecología para ambos países, los datos no están disponibles en formatos compatibles con los Sistemas de Información Geográfica. La transformación a un formato compatible con los SIG requiere de métodos costosos y complicados, por lo que no fue posible utilizar un mayor número de variables ni homogenizar la cantidad de capas entre ambos países.

En otros casos como los de *Nolina cespitifera*, *N. durangensis*, *N. microcarpa* y *N. longifolia*, los mapas de distribución potencial mostraron cierto grado de sobrestimación puesto que las áreas potenciales resultantes son muy extensas y abarcan zonas cuyas características no concuerdan con los requerimientos de las especies, o bien corresponde a zonas urbanas. En el caso específico de *N. durangensis* existe un registro que no concuerda con la zona geográfica donde habita la especie, es probable que este registro se trate de una mala determinación, que sin embargo, no influye en sobrestimación del área potencial.

Los registros de *Nolina pumila* son escasos, esto impidió la obtención del modelo de distribución potencial de esta especie debido a que GARP requiere de un mínimo de cinco registros para generar los mapas. En otros como los de *Nolina elegans* y *N. erumpens* se pudo generar la distribución potencial pese a no sobrepasar los diez registros.

La sobreestimación y la subestimación en los mapas de distribución potencial son resultado de los siguientes factores: a) La escasez de registros. Pese a que GARP puede originar los modelos a partir de cinco registros, los mejores resultados se obtienen cuando se tiene una cantidad superior a los 30. b) La distancia entre colectas debido a que se trata de especies diferentes y han sido mal determinadas. c) La falta de variables físico-ecológicas, que contienen requerimientos específicos que pueden limitar la presencia de las especies a determinadas áreas. d) Es posible que la distribución potencial sea en realidad la distribución histórica de las especies.

La sobrestimación de los modelos puede disminuirse con la utilización de un mayor número de variables físico-ecológicas como el tipo de suelo, debido a que algunas especies habitan en suelos específicos. Incluir esta variable puede restringir las áreas de distribución de las especies.

6.3. Comparación de las distribuciones.

Anónimo (1890) señaló que *Nolina beldingi* se localiza en la región del Cabo en Baja California Sur. Los mapas de distribución actual y potencial generados coinciden con esta afirmación, haciendo evidente que esta especie se restringe a la Sierra de San Lázaro en el Municipio de La Paz (Fig. 6).

Gentry (1972) señala que Nolina matapensis, N. microcarpa, N. texana y N. bigelovii se encuentran en Sonora y sureste de Arizona, los mapas generados confirman esta aseveración para las tres primeras especies. Sin embargo, para N. bigelovii no se

encontraron registros para el estado de Sonora aunque el modelo de distribución potencial indica que hay una alta probabilidad de que se encuentre en este estado.

El mapa de distribución actual de *Nolina cespitifera* coincide con los señalamientos de Trelease (1911) y García-Mendoza y Galván (1995), quienes ubican a *N. cespitifera* en los estados de Coahuila y Nuevo León. Asimismo, estos autores señalan el endemismo de la especie a la provincia florística de la Altiplanicie, lo cual coincide con los mapas de distribución actual y potencial generados aquí (Fig. 10).

La distribución de *Nolina humilis*, acorde con Baker (1881) y Trelease (1911), corresponde al estado de San Luis Potosí. Sin embargo, se encontraron registros de esta especie en el estado de Guanajuato. La distribución potencial de *N. humilis* incluye áreas serranas de Guanajuato y Zacatecas. García-Mendoza y Galván (1995) ubican a esta especie como endémica a la provincia florística de la Sierra Madre Oriental, pero los registros y los mapas obtenidos indican que *N. humilis* se encuentra sólo en el Altiplano.

VII. CONCLUSIONES.

- La información sobre algunas especies del género es deficiente, por ello, los mapas de distribución potencial son de gran utilidad para la obtención de nuevas colectas que ayuden a ampliar el conocimiento sobre estas especies.
- 2. Los modelos (mapas) de distribución potencial son de gran utilidad. Estos son herramientas a larga distancia que permiten ahorrar tiempo y esfuerzo en las colectas, cobrando mayor importancia cuando la distribución es poco conocida como el caso de Nolina y pueden servir de referencia para colectas futuras.
- Los mapas de distribución potencial generan información sobre la presencia histórica, la cual puede utilizarse para estudios biogeográficos, evolutivos y otros.
- 4. La obtención de variables físico-ecológicas es muy complicada debido a que ésta se encuentra en formatos que no son compatibles con los sistemas de información geográfica.
- 5. En como los de Nolina bigelovii, N. cespitifera, N. durangensis, N. erumpens, N. longifolia, Nolina microcarpa, Nolina parviflora y N. pumila los mapas de distribución potencial presentan diferentes grados de sobrestimación y subestimación. Esto fue resultado de la escasez de registros de algunas especies y la falta de variables físico-ecológicas que restrinjan la presencia de las especies a determinados sitios.

6. Es indispensable que se verifique la efectividad de los mapas de distribución probable a través de visitas a sitios selectos.

VIII. REFERENCIAS

- Anderson R. P., M. Gómez-Landaverde y A. T. Peterson. 2002. Geographical distributions of spiny pocket mice in South America: insights from predictive models. *Global Ecology and Biogeography-* **11**:131-141.
- Anderson R. P., D. Lew y A. T. Peterson. 2003. Evaluating predictive models of species distributions: criteria for selecting optimal models. *Ecological Modeling* 162: 211-232.
- Anónimo 1890. A new Nolina. Zoe. 305-306 p.
- Baker J. C.1881. Beaucamea Lemaire. Aloieae y Yuccoideae. pp. 236-237.
- Berkeley. University. 2002. WorldClim. Disponible en: http://biogeo.berkeley.edu/worldclim/worldclim.htm.
- Bogler D. 1998. Nolinaceae. En: The Families and genera of vascular plants, Vol. III. Ed. K. Kubitzki. Springer. Berlin. pp. 392-397.
- CONABIO 1998. Metadatos y cartografía en línea. Disponible en: http://www.conabio.gob.mx
- Correll D. S y M. C. Johnston. 1979. Manual of the Vascular Plants of Texas. Second Printing. The University of Texas at Dallas, Austin, Texas.
- Dice J. 1988. Systematic studies in the Nolina bigelovii-N. parryi complex. Master of Science Thesis. San Diego State University, California, EUA.
- Feria-A. T. P. y A. T. Peterson. 2002. Prediction of bird community composition based on point-ocurrence data and inferential algorithms: a valuable tool in biodiversity assessments. Diversity and Distributions 8: 49-64.
- García-Mendoza A. y R. Galván. 1995. Riqueza de las familias Agavaceae y Nolinaceae en México. *Bol. Soc. Bot. México* **56**: 7-24.

- Gentry H.S. 1972. The Agave Family in Sonora. Agriculture Handbook 399. Agricultural Research Service. United States Department of Agriculture, pp. 177-183.
- Gentry H.S. 1978. Nolina in and near the Sonoran Desert. Saguaroland Bulletin. Dec. pp. 112-116.
- Illoldi-Rangel P., V. Sánchez-Cordero y A.T. Peterson. 2004. Predicting distributions of mexican mammals using ecological niche modeling. *Journal of Mammalogy*. 85(4):658-662.
- Johnston I. 1943. New Phanerogams from Mexico V. Journal of the Arnold Arboretum 24(1):90-98.
- Hernandez L. 2005. Taxonomía y biogeografía del género *Nolina* (Nolinaceae). Consejo Nacional de Ciencia y Tecnología.
- Hernández L. y Zamudio S. 2003. Two new remarkableNolinaceae from Central Mexico.

 Brittonia 55(3): 226-232.
- Holmgren P.K. y N.H. Holmgren. 1998. Index Herbariorum, New York Botanical Garden.

 Disponible en: http://scieb.nybg.org/science2/IndexHerbariorum.asp
- International Plant Names Index. 2005. Disponible en: www.ipni.org
- Michaux A. 1803. Flora Boreali-Americana, Volumen I. Caroli Crapelet, Paris.
- Nabham G. y B. Burns. 1985. Palmilla (Nolina) fiber: a native plant industry in arid and semiarid U.S. Mexico Borderlands. *Journal of Arid Environments* 9: 97-103.
- Niehaus T. F. y C. L. Ripper. 1976. A field Guide Pacific States Wildflowers. The Peterson field Guides Series. Houghton Mifflin Company. Boston.
- Payne K. y D.R.B. Stockwell. 1995. GARP (Genetic Algorithm for Rule-Set Prediction).

 Disponible en:
 - http://biodiversity.sdcs.edu/cgi-bin/BSW/screen.cgi

- Peterson A. T. y D. A. Kluza. 2003. New distributional modelling approaches for gap analysis. *Animal Conservation*. **6**:47-54.
- Rzedowski C. G. de J. Rzedowski y colaboradores. 2001. Flora Fanerogámica del Valle de México. 2da. ed., Instituto de Ecología, A. C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro (Michoacán), p. 1240.
- Sánchez J. y G. Zerecero. 1980. La palmilla y su aprovechamiento en el Estado de Sonora. En: Primera Reunión Nacional sobre ecología, manejo y domesticación de plantas útiles del desierto. Memorias INIF-SARH. Pp. 412-415.
- Sánchez-Cordero V., A. T. Peterson y P. Escalante-Pliego.2001. El modelado de la distribución de especies y la conservación de la diversidad biológica. En: Enfoques conteporáneos para el estudio de la biodiversidad. Eds. Hernández H.M., A.N. García Alderete, F. Álvarez y M. Ulloa. Instituto de Biología, UNAM, México, pp 359-379.
- Shreve F. and I.L. Wiggins. 1964. Vegetation and flora of the Sonora Desert. 2 v. Stanfort Univ. Press.
- Stockwell D. y I. R. Noble. 1991. Inducton of set rules from animal distribution data: A robust and informative method of data analysis. *Mathematical and Computer Simulation* 32: 249-254.
- Thorne F. 1965. The taxonomy of the genus Nolina Michx. (Agavaceae) in the Southeastern United States. Ph. D. dissertation. Stetson University, Athens, Georgia. pp 195
- Trelease W. 1911. The desert group Nolineae. Proceedings of the American Phylosophical Society 50: 404-442.

ANEXO 1. Herbarios consultados.

Acrónimo*	Institución	Ubicación					
ARIZ	University of Arizona	Tucson, Arizona, E.U.A.					
ASU	Arizona State University	Tempe, Arizona, E.U.A.					
BCMEX	Universidad Autónoma de Baja California	Ensenada, Baja Califronia México.					
ВМ	The Natural History Museum	Londres, Inglaterra.					
CAS	California Academy of Sciences	San Francisco, California, E.U.A.					
CIIDIR	Instituto Politécnico Nacional	Durango, Durango, México.					
CHAPA	Colegio de Postgraduados	Chapingo, México, México					
ENCB	Instituto Politécnico Nacional	Ciudad de México, D.F., México.					
G	Conservatoire et Jardin Botaniques de la Ville de Genève	Ginebra, Suiza.					
GH	Harvard University	Cambridge,					
	, , , , , , , , , , , , , , , , , , , ,	Massachussetts, E.U.A.					
HCIB	Centro de Investigaciones Biológicas del	La Paz, Bajacalifornia Su					
	Noroeste, S.C.	México.					
IEB	Instituto de Ecología A.C.	Pátzcuaro, Michoacán, México.					
K	Royal Botanical Gardens	Kew, Ingleterra.					
LL	University of Texas at Austin	Austin, Texas, E.U.A.					
MEXU	Universidad Nacional Autónoma de México	Ciudad de México, D.F. México.					
MICH	University of Michigan	Ann Arbor, Michigan, E.U.A.					
MO	Missouri Botanical Garden	San Luis, Missouri, E.U.A					
NMC	New Mexico State University	Las Cruces, Nuevo México, E.U.A.					
NY	New York Botanical Garden	Bronx, Nueva York, E.U.A					
P	Musèum National d'Histoire Naturelle	Paris, Francia.					
QMEX	Universidad Autónoma de Querétaro	Querétaro, Querétaro, México.					
TEX	University of Texas at Austin	Austin, Texas, E.U.A.					
XAL	Instituto de Ecología A.C.	Xalapa, Veracruz, México					
UAMIZ	Universidad Autónoma Metropolitana, Iztapalapa.	Ciudad de México, D.F. México.					
UAT	Universidad Autónoma de Tamaulipas	Ciudad Victoria, Tamaulipas, México.					
US	Smithsonian Institution	Washington, Distrito de Columbia, E.U.A.					
USON	Universidad Autónoma de Sonora	Hermosillo, Sonora, México					

^{*} Tomado del Index Herbariorum, Holmgren y Holmgren 1998.

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos.

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
Nolina beldingii	ВС	-109.663	23.153	ND	Gilmartin A. G.	1840	1972	MEXU
N. beldingii	ВС	-109.793	23.489	1350	Carter A.	3331	1955	MEXU, TEX
N. beldingii	BC	-109.933	23.317	1000	Moran R.	7369	1959	MEXU
N. beldingii	ВС	-109.933	23.317	1000	Moran R.	7369A	1959	MEXU
N. beldingii	ВС	-109.967	23.550	1680	Moran R.	7428	1959	MEXU
N. beldingii	BC	-109.700	23.241	1800	Martínez M.	s/n	1944	MEXU
N. beldingii	BCS	-109.811	23.511	ND	Carter A y Ferris R. S.	ND	ND	TEX, LL
N. beldingii	BCS	-109.860	23.620	1030	Hernández L.	5543	2005	QMEX
N. beldingii	BCS	-109.933	23.550	ND	Domínguez R.	ND	1989	HCIB
N. beldingii	BCS	-109.933	23.550	ND	León de la Luz J. L.	ND	1980	HCIB
N. beldingii	BCS	-109.933	23.550	ND	León de la Luz J. L.	ND	1986	HCIB
N. beldingii	BCS	-109.933	23.550	ND	León de la Luz J. L.	ND	1947	HCIB
N. beldingii	BCS	-109.54	23.59	ND	Gillmartin A.J.	1840	1972	MEXU
N. beldingii	BCS	-109.700	23.241	1800	Gentry H. S.	4424	1939	MO
N. beldingii	BCS	-109.933	23.550	ND	Fishbein M.	ND	1998	HCIB
N. beldingii	BCS	-112.432	26.798	1800	Lowe C.H. y R.L. Turner	3064	1959	TEX, LL
N. bigelovii	ARZ	-113.320	34.475	1040	Dice J.	664, 665	1986	ND
N. bigelovii	ARZ	-114.390	35.043	850	Dice J.	603, 604	1985	ND
N. bigelovii	BC	-114.460	29.766	ND	Clark W. H.	ND	1979	BCMEX
N. bigelovii	BC	-115.330	30.580	ND	Moran R.	ND	1963	BCMEX
N. bigelovii	BC	-115.366	31.083	ND	Moran R.	ND	1971	BCMEX
N. bigelovii	ВС	-115.410	30.983	ND	Moran R.	ND	1978	BCMEX
N. bigelovii	ВС	-115.800	32.150	ND	Thorne R.	ND	1986	BCMEX
N. bigelovii	BC	-115.070	31.046	1050-1200	Gentry H. S. y L. McGill	23291	1973	ASU
N. bigelovii	ВС	-116.052	32.776	ND	Ramírez, O.	ND	2004	QMEX
N. bigelovii	BC	-114.007	29.119	540	Dice J., et al.	669	1986	ND
N. bigelovii	ВС	-116.502	32.553	ND	Baltazar, O.	ND	ND	ND
N. bigelovii	CAL	-115.995	34.049	1000	Dice J.	611, 612	1985	ND

BC=Baja California, BCS=Baja California Sur, ARZ=Arizona, CAL=California, ND=No determinado *

^{*} Algunos ejemplares de herbario no presentaban la información completa.

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	lina en México y sur de Estado Colector	Numero de colecta	Año	Herbario
N. bigelovii	CAL	-116.100	32.708	670	Dice J. y Croft	613, 614	ND	ND
N. bigelovii	NEV	-114.739	35.264	1250	Dice J.	658, 659, 660	1986	ND
N. cespitifera	COAH	-100.612	25.391	ND	Marsh E.G.	ND	1936	TEX, LL
N. cespitifera	COAH	-100.812	25.606	ND	Hinton G.B., et al.	ND	1991	IEB, TEX
N. cespitifera	COAH	-100.998	25.539	1420	Hinton G.B., et al.	ND	1991	IEB
N. cespitifera	COAH	-101.010	25.394	ND	Hernández L.	2344	1989	TEX, UAT
N. cespitifera	COAH	-101.110	25.121	ND	Correll D.S. y I.M. Johnston	21330	1959	TEX, LL
N. cespitifera	COAH	-101.250	25	2100	Stanford L. R. et al.	343	1941	МО
N. cespitifera	COAH	-101.370	26.340	ND	Correl D. S. y I.M. Johnston	ND	1959	
N. cespitifera	COAH	-101.855	28.311	ND	Marsh E.G.	ND	1938	TEX
N. cespitifera	COAH	-101.000	25.433	ND	Gregg	81	1947	ND
N. cespitifera	COAH	-101.050	25.358	ND		308	1941	МО
N. cespitifera	COAH	-102.308	28.643	ND	Chiang F. et al.	ND	1972	LL
N. cespitifera	COAH	-102.305	28.644	ND	Chiang F. et al.	ND	1972	TEX, LL
N. cespitifera	COAH	-102.400	27.050	2870-2935	Henrickson J.	13592	1973	ASU
N. cespitifera	COAH	-102.477	25.540	ND	Skiles J.	ND	1978	TEX/LL
N. cespitifera	COAH	-102.516	27.178	ND	Henrickson J. y B. Prigge	ND	1976	TEX
N. cespitifera	COAH	-102.689	28.079	ND		ND	1941	LL
N. cespitifera	COAH	-102.861	27.694	ND	Carranza M.A., et al.	ND	1993	IEB
N. cespitifera	COAH	-102.983	28.250	ND	Carranza M. A., et al.	ND	1991	XAL
N. cespitifera	COAH	-102.210	27.134	ND	Taylor M.	274	1936	KEW
N. cespitifera	COAH	-102.826	26.583	ND	Keil, D. et al.	6075	1969	ASU
N. cespitifera	COAH	-103.000	28.166	ND	Henrikson J. y B. Prigge	ND	1976	TEX
N. cespitifera	COAH	-103.066	28.237	ND	Johnston I.M. y C.H.Mueller	595	1940	LL
N. cespitifera	COAH	-103.513	27.863	ND	Stewart R. M.	ND	1941	TEX, LL
N. cespitifera	COAH	-103.011	28.194	ND	Henrickson J. y B. Prigge	ND	1976	TEX, LL
N. cespitifera	NL	-100.076	24.806	1620		ND	1981	IEB, TEX
N. cespitifera	NL	-100.076	24.824		Correll D.S. y I.M. Johnston	ND	1958	TEX, LL

CAL=California, NEV=Nevada, COAH= Coahuila, NL=Nuevo León, ND=No determinado*

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. cespitifera	NL	-100.156	24.690	ND	Bogler D. y B. Westlund	ND	1991	TEX
V. cespitifera	NL	-100.144	24.686	ND	Mueller C. H. y M. T. Mueller	ND	1934	TEX
V. cespitifera	NL	-100.158	23.924	ND	Hinton G., et al.	ND	1993	HINTON
V. cespitifera	NL	-100.290	30.483	ND	Muller C.H. y M.T. Muller	ND	1934	TEX, LL
V. cespitifera	NL	-99.910	24.090	ND	Muller C.H.y M.T. Muller	ND	1934	TEX, LL
V. cespitifera	NL	-99.987	23.914	ND	Hinton G. et al.	ND	1993	HINTON
V. cespitifera	NL	-99.970	24.545	ND	Taylor M.	211	1936	MO, TEX
V. durangensis	CHIH	-105.800	27.430	ND	Benítez P. A.	ND	ND	IEB
V. durangensis	СНІН	-106.197	28.452	1719	Hernández L.	5271	2004	QMEX
V. durangensis	СНІН	-108.000	28.200	2000	Spellenberg R. et al.	0	1988	MEXU, NMC
V. durangensis	CHIH	-108.142	29.189	2100	Benitez A.	1406	0	CHAPA, MEXU
V. durangensis	DGO	-103.931	23.616	ND	González S.	2580	1986	TEX, LL
V. durangensis	DGO	-103.931	23.616	2580	Gonzalez S. et. al.	3780	1986	CIDIIR, ENCB, IEB, MEXU
N. durangensis	DGO	-104.328	23.477	ND	González E. S.	ND	1986	IEB
V. durangensis	DGO	-104.630	22.722	940	Patoni C.	ND	ND	MEXU, MO
V. durangensis	DGO	-104.741	25.835	1825	Correll D. S. y I. M. Johnston	ND	1958	TEX
V. durangensis	DGO	-104.950	23.916	2300	García-Mendoza A.	6465	1997	MEXU
V. durangensis	DGO	-104.669	24.186	1307	Palmer E.	249	1896	ENCB, GH, KEW, MO TEX, LI
V. durangensis	DGO	-105.895	24.999	2500	Bravo B. O.	952	1990	CHAPA, MEXU
V. durangensis	DGO	-105.350	23.820	ND	López F., et al.	ND	1993	IEB
V. durangensis	DGO	-105.387	23.792	ND	Gentry H. S. y Gilly	10539	ND	ND
V. durangensis	DGO	-105.533	25.111	1900-2100	Corral Díaz R.	131	1983	TEX
V. durangensis	DGO	-105.652	24.862	ND	Bravo B. O.	ND	1990	IEB
V. durangensis	DGO	-105.714	25.324	ND	Patoni C.	ND	1911	MEXU, MO
V. durangensis	DGO	-105.744	25.336	2000	Hernández R.	8268	1982	MEXU, TEX, LL
l. durangensis	DGO	-105.744	25.336	ND	Palmer E.	329	1908	KEW, MEXU, MO, TEX, LL
l, durangensis	DGO	-105.861	23.611	ND	Levin G. A. et al.	ND	1988	TEX/LL
V. durangensis	DGO	-105.361	24.988	2783	Bogler, D. y J. Bogler	888	1992	MEXU, TEX
N. durangensis	DGO	-105.533	25.083	1900-2100		10830	1983	
V. durangensis	DGO	-106.581	25.261	ND.		264 y 10970		MEXU, MO

NL=Nuevo León, CHIH=Chihuahua, DGO=Durango, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
N. elegans	DGO	-104.870	23.938	ND	López Ferrari A., et al.	ND	1993	UAMIZ
N. elegans	DGO	-105.335	23.820	ND	López Ferran A., et al.	ND		IEB
N. elegans	DGO	-105.419	25.044	2670	Bogler D. y J. Bogler	888		TEX, LL
N. elegans	DGO	-105.419	25.044	2670	Bogler D. y J. Bogler	888		TEX, LL
N. elegans	DGO	-105.361	24.988	2783	Bogler D. y J. Bogler	888		MEXU, TEX
N. elegans	DGO	-105.830	25.583	2000	Levin G. A., et al.	2003		TEX, LL
N. elegans	ZAC	-101.557	23.812	ND	McVaugh, R.	ND	1975	
N. elegans	ZAC	-103.838	23.281	ND	Rose	2398	1897	MO, TEX, LL
N. erumpens	ARZ	-109.960	31.93	ND	Goodman, G. J. y C. L. Hitchcock	1200	1930	
N. erumpens	COAH	-100.958	29.29	ND	Johnston I. M.	ND		МО
N. erumpens	COAH	-102.594	28.961	ND	Henrickson J. y B. Prigge	ND	1976	TEX
N. erumpens	COAH	-102.656	29.063	ND	Skiles J.	ND	1978	TEX
N. erumpens	COAH	-102.583	29.416		Wynd L. y C. H. Mueller	462	1936	KEW, MO
N. erumpens	СНІН	-104.329	28.767	ND	Johnston I. M.	8064		MO
N. erumpens	СНІН	-107.983	31.616	1400-1600	Chiang F., et al.	8721	1972	TEX, LL
N. erumpens	NM	-107.216	34.141	2400	Metcalf, C.B.	232		KEW
N. humilis	GTO	-101.033	21.733	ND	Rzedowski J.	ND	1991	IEB, UAMIZ, XAL
N. humilis	SLP	-101.568	21.658	2450	Hernández L.	5565	2005	QMEX
N. humilis	SLP	-101.165	20.172	2300-2670	Рапу С. y E. Palmer	874		MO
N. humilis	SLP	-101.165	20.172	2300	Rzedowski J.	7910	1956	TEX/LL
N. humilis	SLP	-101.165	20.172	ND	Schaffner	502	1876	
N. humilis	SLP	-101.165	22.000	2300-2670	Parry C. y E. Palmer	875	1878	KEW, MO, NY,GH
N. interrata	BC	-116.613	31.994	ND	Moran R.V.	ND	1981	TEX
N. interrata	BC	-116.594	31.982	340	Dice J. y Croft	625	1985	ND
N. interrata	BC	-116.599	31.961	460	Dice J. y Croft	621	1985	ND
N. interrata	BC	-116.617	31.98	300	Dice J. y Croft	625	1985	
N. interrata	CAL	-116.853	32.782	160	Dice J.	592	1986	
N. interrata	CAL	-116.853	32.782	ND	Gentry H. S.	7330	1945	CAS, ASU, MICH
N. interrata	CAL	-116.853	32.782	160	Higgins E. B.	ND ND	1945	BM
N. interrata	CAL	-116.861	32.75		Dice J.	701, 702		

DGO=Durango, ZAC=Zacatecas, ARZ=Arizona, COAH= Coahuila, NM=Nuevo México, GTO=Guanajuato, SLP=San Luis Potosí, BC=Baja California, CAL=California, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	lina en México y sur de Estado Colector	Numero de colecta	Año	Herbario
N. interrata	CAL	-116.866	32.816	ND	Gentry H. S.	10384	1951	MEXU
N. juncea	CHIH	-106.383	28.933	ND	Correll D.S.	ND		TEX, LL
N. juncea	DGO	-104.773	23.840	ND	González S.	ND	1996	IEB
N. juncea	DGO	-104.908	23.968	ND	Gentry H.S. y Gilly	10557	1951	MEXU
N. juncea	DGO	-105.241	23.630	ND	Espejo A.	ND	1996	IEB
N. juncea	DGO	-105.500	23.750	2725	Iltis H. H., et al.	260a	1978	MEXU
N. juncea	TX	-104.838	31.875	ND	Correl, D. S. y I. M. Johnston	18473	1957	ND
N. juncea	TX	-104.838	31.875	ND	Correl, D. S. y I. M. Johnston	18518	1957	ND
N. juncea	ZAC	-101.400	24.59	ND	Sánchez-Mejorada H.	ND	1987	XAL
N. juncea	ZAC	-102.585	22.781	ND	Hartweg	406		G, K, P
N. juncea	ZAC	-103.396	23.636	2500	H.S. Gentry y C. L. Gilly	10573		MEXU
N. juncea	ZAC	-103.448	23.441	ND	Gentry H.S. y Gilly	10593	1951	MEXU
N. juncea	ZAC	-103.475	23.345	1310	García-Mendoza A. et al.	5982A	1994	MEXU
N. juncea	ZAC	-103.260	23.055	2070	Hernández L.	5267	2004	QMEX
N. juncea	DGO	-106.885	25.542	2170	Gentry H.S. y Gilly	10557	1951	MO
N. longifolia	MOR	-98.821	18.962	ND	Felger R. S.	ND	1960	ND
N. longifolia	OAX	-96.560	16.822	2000	Folsom J.P. et al.	11257	1985	TEX
N. longifolia	OAX	-96.566	17.265	ND	Guizar N., E.	ND	1997	IEB
N. longifolia	OAX	-96.722	16.232	2160	García Mendoza A., et al.	4700	1990	QMEX
N. longifolia	OAX	-96.831	17.236	ND	García Mendoza A.	6616	1998	QMEX
N. longifolia	OAX	-97.224	17.427	ND	Conzatii	1169	ND	ND
N. longifolia	OAX	-97.224	17.427	2200	García Mendoza A. et al.	4701	1990	QMEX
N. longifolia	OAX	-97.433	18.333	ND	Calzada J. I.	ND	1979	XAL
N. longifolia	OAX	-97.541	17.804	2700	García Mendoza A.	4578	1990	QMEX
N. longifolia	OAX	-97.566	18.233	ND	González Medrano F.	ND	1980	MEXU
N. longifolia	OAX	-97.700	17.900	2000	García Mendoza A.	3626	1988	QMEX
N. longifolia	OAX	-97.775	17.805	ND	López F. A., et al.	ND	1988	IEB, UAMIZ
N. longifolia	OAX	-97.858	19.916	1880	López F. A., et al.	ND	1988	MEXU, MO, UAMIZ
N. longifolia	OAX	-98.866	17.883	ND	García Mendoza A.	ND	1988	MEXU
N. longifolia	OAX	-97.866	17.883	ND	García Mendoza A.	ND	1988	MEXU

CAL=California, CHIH=Chihuahua, DGO=Durango, TX=Texas, Zac=Zacatecas, MOR=Morelos, OAX=Oaxaca, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. longifolia	OAX	-97.575	17.597	ND	García Mendoza A. y R. Torres	ND	1987	
V. longifolia					•			
N. longifolia	OAX	-97.735	17.797	ND	García Mendoza A., et al.	ND	1985	
	PUE	-97.461	18.361	ND	Calzada J.I.	ND	1979	
V. longifolia	PUE	-97.461	18.361	ND	Calzada J.I.	ND	1979	XAL
N. longifolia	PUE	-97.483 -97.483	18.250 18.250	ND ND	Felger R.S., et al. Felger R.S., et al.	ND ND	1960 1960	TEX, LL TEX, LL
V. longifolia	CHIH					ND	1997	TEX
V. matapensis V. matapensis		-108.216	28.166	ND	Bogler D.			
V. matapensis	CHIH	-108.694	27.575	ND	Martin P. S.	ND	1986	ARIZ
	SIN	-105.833	23.583	ND	Geoffrey A. Levin	ND	1988	
N. matapensis	SIN	-108.183	26.833	1435	Letho, Nash y Landy	L19564	1975	ASU
N. matapensis	SON	-108.582	27.1	1335-1500	Gentry H. S., et al.	19429	1961	LL
N. matapensis	SON	-108.700	27.3	ND	Yetman D. y P. S. Martin	ND	1991	ARIZ
N. matapensis	SON	-108.932	27.604	ND	Gentry H.S. y Gilly	11584	ND	MO
N. matapensis							4000	
N. matapensis	SON	-109.351	28.469	ND	Ferguson G. M., et al.	ND	1998	
	SON	-109.653	29.253	1170	Wiggins I. L. y R.C. Rollins	439	1941	,
N. matapensis	SON	-109.906	29.090	ND	Wiggins I. L. y R.C. Rollins	7515	1934	Dudley
N. matapensis	SON	-110.029	30.824	ND	Wiggins I. I.	11699	1948	TEX
V. micrantha	COAH	-103.596	28.647	ND	Stewart	490	ND	G
V. micrantha	CHIH	-103.596	28.647	ND	Stewart	193	ND	ND
N. micrantha	CHIH	-104.786	28.319	ND	Stewart y I. M. Johnston	2072	ND	ND
N. micrantha	CHIH	-105.294	28.678	2100 m	Johnston I.M. et al.	12337	1973	LL
N. micrantha	СНІН	-105.623	28.378	ND	Pringle C.G.	2	ND	G
N. micrantha	СНІН	-105.887	28.593	ND	Palmer E.	1939	1908	ND
N. micrantha	CHIH	-106.255	28.908	ND	Correl D. S. y Johnston I.M.	20318	1958	TEX, LL
N. micrantha	CHIH	-106.408	26.700	ND	Gentry H. S., et al.	18017	1959	TEX, LL
N. micrantha	CHIH	-106.408	26.700	ND	Gentry H. S., et al.	18017	1959	TEX, LL
N. micrantha	CHIH	-106.088	28.602	ND	Pringle C. G.	159	1885	BM, K
N. micrantha	CHIH	-106.088	28.602	ND	Pringle C. G.	159	1885	BM, K, P
N. micrantha	CHIH	-107.589	28.4	2353	Hernández L.	5269	2004	QMEX

OAX=Oaxaca, PUE=Puebla, CHIH=Chihuahua, SIN=Sinaloa, SON= Sonora, COAH=Coahuila, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. micrantha	CHIH	-107.589	28.4	2353	Hernández L.	5269	2004	QMEX
V. micrantha	CHIH	-108.033	28.200	1826	Bogler D. J.	1149	1997	TEX, LL
V. micrantha	CHIH	-108.033	28.200	1826	Bogler D. J.	1149	1997	TEX, LL
N. micrantha	TX	-104.838	23.523	ND	Lundell, A. L y A. Lundell	14372	1945	ND
N. micrantha	TX	-104.970	31.175	ND	Correll, D. S. et al.	29759	1964	ND
N. micrantha	TX	-104.970	31.175	ND	Correll, D. S. et al.	29774	1964	ND
N. micrantha	ND	-103.596	28.647	ND	Johston I. M. y C. H. Muller	1326	1940	LL,GH
N. microcarpa	ARZ	-109.330	31.82	2670	Blumer J.	1316	1906	K
N. microcarpa	ARZ	-110.830	31.754	ND	Pringle C. G.	ND	1882	G
N. microcarpa	ARZ	110.380	31.58	ND	Lemon J. G.	ND	1882	G, P
N. microcarpa	ARZ	-113.429	35.575	1340	Dice J.	662, 663	1986	ND
N. microcarpa	ARZ	-113.901	35.111	1745	Dice	661	ND	ND
N. microcarpa	ARZ	-113.056	36.214	1375	Dice J.	656, 657	1986	ND
N. microcarpa	CHIH	-105.887	28.593	1300	Palmer E.	139	1908	MO
N. microcarpa	CHIH	-106.067	28.750	1600	Correll D.S. y I.M. Johnston	21747	1959	TEX, LL
N. microcarpa	CHIH	-106.197	28.452	2135	Pinkava D., et al.	P13279	1976	ASU
N. microcarpa	CHIH	-106.395	29.892	1700	Matuda E.	32702	1958	MO
N. microcarpa	CHIH	-106.395	29.892	ND	Pennington C.W.	36	1970	LL
N. microcarpa	CHIH	-106.163	26.602	ND	Gentry H. S. et al.	ND	1959	LL
V. microcarpa	CHIH	-106.197	28.452	1719	Hernández L.	5270	2004	QMEX
N. microcarpa	CHIH	-106.282	28.748	ND	Correll D. S. y I. M. Johnston	ND	1959	LL
N. microcarpa	CHIH	-106.088	28.635	1300	Palmer E.	355	1908	MO
N. microcarpa	CHIH	-106.395	29.891	ND	Matuda, E.	ND	1969	IEB
N. microcarpa	CHIH	-107.937	27.243	1956	Bye R., et al.	28509	2002	MEXU
N. microcarpa	CHIH	-108.208	28.225	ND	Fishbein M., et al.	1793	1994	TEX
N. microcarpa	CHIH	-108.293	30.167	2200	Spencer J.	688	1998	TEX
N. microcarpa	CHIH	-108.378	29.603	ND	LeSueur H.	578	1936	TEX
N. microcarpa	CHIH	-108.459	28.207	ND	LeSueur H.	570	1936	TEX
N. microcarpa	CHIH	-10333	30.779	2500	Towsend C. H. y C. M. Barber	76	1899	G, MO

CHIH=Chihuahua, TX=Texas, ARZ=Arizona, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
N. microcarpa	CHIH	-108.753	31.255	ND	Barlow B.	ND	1911	MO
N. microcarpa	NM	-107.216	34.147	2670	Metcalfe	232	1903	G, P
N. microcarpa	NM	-108.750	32.566	2500	Mulford I.	427	1895	К
N. microcarpa	SON	-108.666	27.35	ND	Martin P. S., et al.	ND	1936	мо
N. microcarpa	SON	-108.666	27.353	ND	Yetman D., et al.	ND	1992	ARIZ
N. microcarpa	SON	-108.750	27.116	1500	Rondeau R. y G. Rodda	ND	1990	ARIZ
N. microcarpa	SON	-108.743	27.323	ND	Howard Scott Gentry	ND	1936	ARIZ
N. microcarpa	SON	-108.753	28.383	ND	Flores A., et al.	ND	1998	USON
N. microcarpa	SON	-108.758	28.37	ND	Van Devender T. R., et al.	ND	1998	USON
N. microcarpa	SON	-108.551	28.437	1501	Hernández L.	5272	2004	QMEX
N. microcarpa	SON	-109.051	28.35	ND	Joyal E.	ND	1991	USON
N. microcarpa	SON	-109.642	30.71	ND	McGill L. y D. Pinkava	6639A	1970	ASU
N. microcarpa	SON	-110.583	31.233	ND	J.S.C. & R.N.F.	ND	1980	XAL
N. microcarpa	SON	-110.687	30.538	ND	Spencer J. y D. Atwood	331	1997	TEX, LL
N. microcarpa	SON	-110.864	31.094	ND	Herrera S.	ND	1982	USON
N. nelsonii	NL	100.000	24.000	1850	Meyers F. G. y D. J. Rogers	2565	1948	G, MO
N. nelsonii	NL	-99.812	24.091	ND	Hinton B., et al.	ND	1993	IEB
N. nelsonii	NL	-99.894	24.844	2840	Neson G. y J. Norris	7104 c	1989	TEX
V. nelsonii	TAMPS	-99.153	23.036	1750	Martin P. S. y C. Soravia	1211	1961	MEXU
N. nelsonii	TAMPS	-99.694	23.528	2000	Bogler D.	739	1990	IEB, MO, TEX
N. nelsonii	TAMPS	-99.694	23.536	1700	Johnston M. C et al.	11146	1973	LL, MO
V. nelsonii	TAMPS	-99.711	23.325	1935	Bogler D.	740	1990	
V. nelsonii	TAMPS	-99.748	23.693	2600	Hernández L.	2075	1986	
V. nelsonii	TAMPS	-99.797	23.572	ND	Hernández L.	1628	1985	IEB, UAT
V. nelsonii	TAMPS	-99.797	23.572	ND	Hernández, L.	ND	1986	
N. nelsonii	TAMPS	-99.797	23.572	ND	Nelson E. W	4489	1898	
N. nelsonii	TAMPS	-99.811	23.711		Henrickson J. y Sundberg S.	19222	1998	TEX
N. nelsonii	TAMPS	-99.812	23.433		Martínez M.			IEB, UAMIZ, UAT

SON=Sonora, NL=Nuevo León, TAMPS=Tamaulipas, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
N. nelsonii	TAMPS	-99.862	23.245	ND	Folsom J .P. et al.	11076	1985	TEX
N. nelsonii	TAMPS	-99.547	23.391	ND	Hemández L.	4348	1999	QMEX
N. nelsonii	TAMPS	-99.903	23.577	ND	Yañez M.	ND	1986	
N. palmeri	BC	-115.453	31.027	2828	Moran R. V. y Thorne R. F.	ND	1967	BCMEX, LL
N. palmeri	ВС	-115.624	30.968	1596	Hernández L.	5274	2004	QMEX
N. palmeri	BC	-115.624	30.968	1597	Hernández L.	5275	2004	QMEX
N. palmeri	BC	-115.690	31.36	1255	Broder R. E.	559	1961	ВМ
N. palmeri	ВС	-115.452	31.066	ND	Moran R.	ND	1968	BCMEX
N. palmeri	ВС	-115.466	31.05	ND	Delgadillo J.	ND	1985	BCMEX
N. palmeri	BC	-115.393	21.202	ND	Delgadillo J.	ND	1998	BCMEX
N. palmeri	ВС	-115.433	30.983	ND	Rebman J., et al.	ND	1996	BCMEX
N. palmeri	ВС	-115.450	31	ND	Dice J.	ND	1982	BCMEX
N. palmeri	BC	-115.466	31.033	ND	Thome R. F.	ND	1985	BCMEX
N. palmeri	BC	-115.466	31.033	ND	Whiteman H. B.	ND	1959	BCMEX
N. palmeri	BC	-115.500	31.05	ND	Passini-Salazar	ND	1986	HCIB
N. palmeri	BC	-115.500	31.05	ND	Passini-Salazar	ND	1986	BCMEX
N. palmeri	ВС	-115.500	31.05	ND	Salazar M.	ND	1986	ND
N. palmeri	BC	-115.500	31.116	ND	Sanders A. C.	ND	1988	BCMEX
N. palmeri	BC	-115.605	30.965	ND	Moran R.	ND	1977	BCMEX
N. palmeri	BC	-115.866	30.033	ND	Rebman J., et al.	ND	1994	BCMEX
N. palmeri	BC	-115.548	31.28	ND	Hernández L.	5278	2004	QMEX
N. palmeri	BC	-116.446	31.345	ND	Moran R.	ND	1963	BCMEX
N. palmeri	ВС	-116.791	31.985	ND	Moran R.	ND	1967	BCMEX
N. palmeri var. brandegreei	BC	-111.600	26.100	1400-1500	Carter A., et al.	2038	1947	LL, MEXU
N. palmeri var. brandegreei	BCS	-110.717	24.800	1500	Gentry H. S.	4292	1939	
N. palmeri var. brandegreei	BCS	-110.717	24.800	700	•	18892	1971	BM, MEXU
N. palmeri var. brandegreei	BCS	-111.628	26.128	ND	Carter A., et al	ND	ND	TEX, LL
N. palmeri var. brandegreei	BCS	-111.820	26.600	ND	Rebman J.	ND	1997	HCIB
N. palmeri var. brandegreei	BCS	-112.000	26.583	ND	León de la Luz J. L.	ND	1997	BCMEX
N. palmeri var. brandegreei	BCS	-113.000	27.583		Rebman J.	ND		HCIB

TAMPS=Tamulipas, BC=Baja California, BCS=Baja California Sur, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. palmeri var. brandegreei	BCS	-113.050	27.583	ND	Rebman J., et al.	ND	1994	BCMEX
V. palmeri var. brandegreei	BCS	-113.050	27.583	ND	Rebman J., et al.	ND	1994	BCMEX
N. palmeri var. brandegreei	BCS	-113.083	27.584	1050	Dice J. et al.	515	1984	MEXU
N. palmeri var. brandegreei	BCS	-111.500	26.750	1400-1450	Gentry H.S.y N. McGill	23319	1973	AZ, MEXU
V. palmeri var. brandegreei	SON	-113.074	27.581	1148	Baltasar O.	ND	ND	ND
V. parviflora	DF	-99.130	19.535	ND	Rzedowski J.	ND	1971	TEX
N. parviflora	DF	-99.272	19.310	ND	Rzedowski J.	ND	1971	ENCB
V. parviflora	DF	-99.275	19.250	ND	Espinoza J.	648	1965	TEX, LL
V. parviflora	DF	-99.375	19.608	2770	Pringle C. G.	8060	1899	BM, K, MO, P, TEX/LL
N. parviflora	MEX	-98.760	19.325	ND	Galván R.	ND	1981	IEB
N. parviflora	MEX	-98.792	19.333	2700	Hernández L.	4999	2002	QMEX
N. parviflora	MEX	-98.821	19.721	ND	Castilla M. E. y E. Tejero	ND	1980	ENCB
V. parviflora	MEX	-98.821	19.721	ND	Rzedowski J.	ND	1962	ENCB
V. parviflora	MEX	-98.825	19.765	ND	Espinoza J.	ND	1965	ENCB
N. parviflora	MEX	-98.833	19.567	2600	Pringle C. G.	6787	1898	ENCB, G, MO, P
V. parviflora	MEX	-98.878	19.324	ND	Hernández L.	2448	1990	TEX, LL
V. parviflora	MEX	-98.882	19.318	2750	Galvan R.	817a	1981	TEX, LL
V. parviflora	MEX	-98.882	19.319	2750	Galvan R.	752	1981	TEX, LL
N. parviflora	MEX	-98.920	19.323	ND	Rzedowski J.	ND	1967	ENCB
V. parviflora	MEX	-98.922	19.349	ND	Chavelas P.	ND	1967	ENCB
V. parviflora	MEX	-98.790	19.295	ND	ND	ND	1989	UAMIZ
V. parviflora	MEX	-99.205	19.776	2300	Galván J. D.	ND	1981	TEX, LL
V. parviflora	MEX	-99.277	19.566	ND	Equihua M.	ND	1981	ENCB
V. parviflora	MEX	-99.276	19.181	ND	Bourgeau	520	1865	K, P
V. parviflora	GTO	-100.502	20.142	ND	Díaz-Barriga, H.	ND	1986	IEB
V. parviflora	HGO	-98.516	19.818	ND	Rzedowski J.	ND	1973	
V. parviflora	HGO	-98.516	19.818	ND	Ventura A.	ND	1976	ENCB
V. parviflora	HGO	-98.544	19.827	ND	Galván, R.	ND	1981	
V. parviflora	HGO	-98.551	19.784		Mendoza A.	s/n	1964	TEX, LL
N. parviflora	HGO	-98.584	20.064		Galván R.	751		TEX, LL

BCS=Baja California Sur, SON=Sonora, DF=Distrito Federal, MEX=México, GTO=Guanajuato, HGO=Hidalgo, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. parviflora	HGO	-98.584	20.064	2800	Galvan R.	751	1981	ENCB, IEB, TEX
V. parviflora	HGO	-98.587	20.063	ND	Galván R.	ND	1981	IEB
V. parviflora	HGO	-98.587	20.063	ND	Galván R.	751	1981	ENCB, IEB, TEX
V. parviflora	HGO	-98.592	19.938	2500	Galvan R.	1349	1983	TEX, LL
V. parviflora	HGO	-98.592	19.938	2650	Rzedowski J.	16932	1963	TEX, LL
V. parviflora	HGO	-98.593	19.935	ND	Galván R.	ND	1983	IEB
N. parviflora	HGO	-98.635	20.018	ND	Medina M., et al.	ND	1984	IEB
V. parviflora	HGO	-98.635	20.018	ND	Medina A., et al.	ND	1984	
V. parviflora	HGO	-98.602	20.108	ND	Medina M., Barrios & Cota	ND		UAMIZ, XAL
N. parviflora	HGO	-99.737	20.183	ND	Galván R.	ND	1983	ENCB
V. parviflora	JAL	-103.020	19.370	1420+K155	McVaugh, R.	ND	1970	IEB
N. parviflora	JAL	-103.050	20.155	ND	Reyna B., O et al.	ND	1988	IEB
N. parviflora	JAL	-103.104	19.352	1110	García Mendonza A.	3864	1988	QMEX
V. parviflora	JAL	-103.250	20.183	ND	Machuca N.	ND	1991	
V. parviflora	JAL	-103.258	20.154	ND	Machuca N.	ND	1991	IEB
N. parviflora	JAL	-103.377	20.225	ND	Machuca N.	ND	1988	IEB
V. parviflora	JAL	-103.392	20.583	ND	Machuca N.	ND	1986	IEB
N. parviflora	JAL	-103.437	20.367	ND	Machuca N. y B. Cházaro	ND	1990	
N. parviflora	JAL	-105.116	20.383	ND	González-Villarreal L. M et al.	ND	1989	XAL
N. parviflora	JAL	-105.110	20.36	ND	González-Villarreal L. M et al.	ND	1989	XAL
V. parviflora	MICH	-100.646	19.854	ND	Díaz-Barriga, H.	ND	1991	IEB
N. parviflora	MICH	-101.152	19.652	ND	Medina G., C.	ND	1988	IEB
N. parviflora	MICH	-101.216	19.863	ND	Díaz-Barriga, H.	ND	ND	UAMIZ
V. parviflora	MICH	-101.749	19.416	ND	González G. M. et al.	ND	1980	UAMIZ
V. parviflora	OAX	-96.560	16.822	2000	Folsom J.P. et al.	11257	1985	TEX, LL
V. parviflora	OAX	-96.566	17.265	ND	Guizar N.E.	ND	1997	IEB
V. parviflora	OAX	-97.700	17.900	2000	García Mendoza A.	3626	1988	QMEX
N. parviflora	PUE	-97.268	19.341		Galván R.	ND.	1982	

HGO=Hidalgo, JAL=Jalisco, MICH=Michoacán, OAX=Oaxaca, PUE=Puebla

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
V. parviflora	PUE	-97.307	19.300	ND	Bogler D.	662	1989	LL
V. parviflora	PUE	-97.358	18.676	2250	Hemández L.	5005	2002	QMEX
V. parviflora	PUE	-97.368	19.480	2340	Hernández L.	5003	2002	QMEX
N. parviflora	PUE	-97.433	19.505	ND	Calzada J. I. et al.	ND	1978	XAL
N. parviflora	PUE	-97.455	19.680	ND	Acosta P., R. et al.	ND	1992	IEB
V. parviflora	PUE	-97.611	19.415	2570	Bogler D	812	1991	TEX, LL
N. parviflora	PUE	-97.611	19.415	2570	Bogler D.	811	1991	
N. parviflora	PUE	-97.611	19.415	2570	Bogler D.	809	1991	LL
N. parviflora	PUE	-97.611	19.415	2570	Bogler D.	810	1991	LL
N. parviflora	PUE	-97.616	18.633	ND	Tenorio P.	ND	1993	MEXU
N. parviflora	PUE	-97.403	19.425	2380	García Mendoza A. y Galvan R.	6146	1996	LL
N. parviflora	PUE	-97.200	18.318	ND	Berlin I.	ND	1951	ND
N. parviflora	PUE	-97.357	19.445	ND	Zamudio R. S.	ND	2003	IEB
N. parviflora	PUE	-97.491	19.491	ND	Cházaro B. M.	ND	1981	XAL
N. parviflora	PUE	-97.498	19.393	2735	Smith J. G.	451	1892	МО
N. parviflora	PUE	-98.041	20.339	2650	Rzedowski J.	28215		LL
N. parviflora	PUE	-98.666	19.350	ND	Espejo A. y L. de León	ND	1989	UAMIZ
N. parviflora	PUE	98.495	19.381	ND		ND	1981	XAL
N. parviflora	PUE	-98.000	18.190	ND	Castañeda A.	ND	1998	IEB
N. parviflora	PUE	-98.523	19.300	ND	Hernández L.	ND	1990	TEX
N. parviflora	TLX	-97.611	19.361	2600	Bogler D.	808	1991	TEX, LL
N. parviflora	TLX	-97.694	19.325	2400	Folsom J.P et al.	11116		TEX, LL
N. parviflora	V	-96.825	19.535	1400	Barneby R.C. y M. Urbina	ND	ND	XAL
N. parviflora	V	-96.825	19.535	1400	Barneby R.C. y M. Urbina	0	ND	XAL
N. parviflora	V	-96.883	19.250	ND	Purpus C. A.	ND	1907	XAL
N. parviflora	V	-96.911	19.228	ND	Purpus C.A.	ND	1907	XAL
N. parviflora	V	-96.928	19.540	ND	Urbina M.	ND	ND	XAL
N. parviflora	V	-97.233	19.450	2400	Elizondo J. L.	793	1983	XAL
N. parviflora	V	-97.255	19.468	2400	Cházaro M. y R. Acosta	3741	1986	XAL
N. parviflora	V	-97.263	19.485		Castillo- Campos G., et al.	ND	1995	XAL

PUE=Puebla, TLX=Tlaxcala, V=Veracruz, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie N. parviflora	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector Castillo- Campos G., et al.	Numero de colecta	Año Herbario	
			19.485			ND	1995	
V. parviflora	V	-97.263	19.485	ND	Cházaro B., M. v Acosta P.	ND	1986	
V. parviflora	V	-97.228	19.511	ND	Becerra ZJ. y Escamilla B. M.	ND	1997	XAL
N. parviflora	V	-97.228	19.511	ND	Becerra Z., et al.	ND	1995	
N. parviflora	V	-97.280	19.542	ND	Narave F., H. y Vázquez B., F.	ND	1983	IEB, XAL
N. parviflora	V	-97.350	19.517	ND	Ramos C.H.	124	1967	XAL
N. parviflora	V	-97.350	19.517	2250	Nevling L. I. y A. Gómez-Pompa	1070	1969	
N. parviflora	V	-97.351	19.588	2600	Sandoval M. y M. Cházaro	89		XAL, XALU
N. parviflora	V	-97.386	19.428	2340	González M.	1163	1967	
N. parviflora	V	-97,378	19.544	ND	Nevling L.I. y A. Gómez-Pompa	ND	1969	
N. parviflora	V	-97.386	19.428	2340	C.H. Ramos	57	1967	MEXU, XAL
N. parviflora	V	-97.386	19.428	2340	Ramos C.H.	ND	1967	XAL
N. parviflora	V	-97.426	19.529	2400	Sandoval M. et al.	73	1982	MEXU
N. pumila	NAY	-104.764	22.498	ND	Rose	2165	1997	MEXU
N. pumila	NAY	-104.765	22.495	2250	Flores F.G. et al.	2192	1990	IEB, MO
N. sp.1	GTO	-100.056	21.299	ND	Zamudio R. et al.	ND	1996	IEB
N. sp.1	GTO	-100.083	21.300	1800	Zamudio S y E. Pérez	9804	1996	LL
N. sp.1	GTO	-100.193	21.327	ND	Zamudio S., et al.	ND	1996	XAL
N. sp.1	QRO	-99.109	21.216	1850		1652	1990	QMEX
N. sp.1	QRO	-99.109	21.216	1850	Rubio, H.	1653	1990	QMEX
N. sp.1	QRO	-99.734	20.690	2260	Hernández L.	5010a	2002	QMEX
N. sp.1	QRO	-99.468	21.385	ND	Rubio, H.	ND	1990	IEB
N. sp.1	QRO	-99.500	20.950	ND	Rubio, H.	ND	1990	IEB
N. sp.1	QRO	-99.647	20.867	ND	Zamudio R. S.	ND	1978	IEB
N. sp.1	QRO	-99.650	20.867	ND	Zamudio R.S.	ND	1978	IEB
N. sp.1	QRO	-99.720	20.832	2580	Zamudio R. S.	2771	1978	1 - 1 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -
N. sp.1	SLP	-100.000	21.772	1950	Rzedowski J.	7688	1956	1000
N. sp.1	SLP	-100.356	21.691	1475		4352	1999	0.000
N. sp.2	CHIH	-104.898	25.966	1860	Hernández L.	5591	2005	
N. sp.2	CHIH	-105.086	26.217		Hernández L.	5592	2005	QMEX

V=Veracruz, NAY=Nayarit, GTO=Guanajuato, QRO=Querétaro, SLP=San Luis Potosí, CHIH=Chihuahua, ND=No determinado

ANEXO 2. Registros del género Nolina en México y sur de Estados Unidos (continuación).

Especie	Estado o Distrito	Longitud decimal	Latitud decimal	Altura (msnm)	Colector	Numero de colecta	Año	Herbario
N. sp.2	CHIH	-105.353	26.389	1684	Hernández L.	5593	2005	QMEX
N. sp.2	СНІН	-105.936	27.6	1625	Hernández L.	5590	2005	QMEX
N. sp.2	СНІН	-106.408	26.7	ND	Gentry H. S., et al.	18017	1959	TEX/LL
N. sp.2	CHIH	-106.408	26.7	ND	Gentry H. S., et al.	18017	1959	TEX/LL
N. sp.2	CHIH	-106.113	27.833	1493	Hernández L.	5589	2005	QMEX
N. sp.2	CHIH	-106.227	28.155	2250	Hernández L.	5588	2005	QMEX
N. sp.2	CHIH	-106.088	28.602	ND	Pringle C. G.	159	1885	BM, X75G, KEW, P
N. sp.2	CHIH	-106.088	28.602	ND	Pringle C. G.	159	1885	BM, X75G, KEW, P
N. sp.2	CHIH	-107.409	28.408	2201	Hernández L.	5587	2005	QMEX
N. texana	COAH	-100.768	28.421	ND	Correll D.S. y I.M. Johnston	ND	1959	TEX/LL
N. texana	CHIH	-106.197	28.452	1719	Hernández L.	5768	2004	QMEX
N. texana	CHIH	-106.868	29.912	2298	Eggli U., et al.	2160	1992	MEXU
N. texana	CHIH	-106.087	28.635	ND	Pringle C. G.	1	1885	P
N. texana	CHIH	-106.087	28.635	ND	Pringle C. G.	2	1885	G
N. texana	CHIH	-108.011	31.644	ND	Chiang C. et al.	ND	1972	TEX, LL
N. texana	NM	-106.472	31.872	ND	Wright	692	1849	ВМ
N. texana	TX	-101.080	29.614	ND	McVaugh, R.	7736	1947	G
N. texana	TX	-104.125	30.15	5600 ft	Clark O. M.	4231	1931	Р
N. texana	TX	-97.751	30.305	ND		635	1872	G, P
N. texana	TX	-98.038	29.706	ND	Lindheimer	551	1847	BM, P
N. texana	TX	-98.038	29.706	ND	Lindheimer	712	1847	BM, P, GH
N. texana	TX	-98.604	31.899	ND	Lindheimer	1281	1851	G, P
N. texana	ND	-106.466	30.316	ND	Domínguez R.	ND	2001	HCIB

CHIH=Chihuahua, NM=Nuevo México, TX=Texas, ND=No determinado