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ABSTRACT 
The lack of air quality affects population´s health exposed to it. This makes it a topic 

of current interest. There are different pollutants that contribute to this problem, such 

as particulate matter (PM) generated mainly by industrial development and traffic 

flow. Since the Metropolitan Zone of the Valley of Mexico’s geographic 

characteristics do not allow proper ventilation and due to its population’s density a 

significant quantity of poor air quality events are registered. The World Health 

Organization (WHO) stipulates air quality guidelines globally based in their risk 

assessment which allows certain airborne pollution. This thesis proposes a 

methodology to improve the prediction of exceedances and modelling of PM10 and 

PM2.5 made by a recurrent long-term/short term memory (LSTM) network using the 

Ant Colony Optimization (ACO) algorithm. The results show an improvement on the 

classification of exceedances of an averaged 2.57% in accuracy, 1.88% in precision, 

3.58% in recall and 3.63% in F1-score, and reducing the error by around 13.00% in 

RMSE and 14.82% in MAE using as reference the results obtained with the LSTM 

deep neural network. Overall, the current study proposes a methodology to be 

studied in the future more profoundly to improve different modeling and classification 

techniques in real life applications where there’s no short-time prediction condition. 
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RESUMEN 
La mala calidad del aire afecta la salud de la población expuesta a esta. Este factor 

lo convierte en un tema de interés actual. Existen diferentes contaminantes que 

contribuyen a este problema, como la materia particulada (PM por sus siglas en 

inglés) generada principalmente por el desarrollo industrial y el flujo de tráfico. Dado 

que las características geográficas de la Zona Metropolitana del Valle de México no 

permiten una ventilación adecuada y debido a su alta densidad poblacional se 

registra una cantidad significativa de eventos de mala calidad del aire. La 

Organización Mundial de la Salud (OMS) estipula pautas de calidad del aire a nivel 

mundial basadas en su evaluación de riesgos que permiten cierta contaminación 

atmosférica. Esta tesis propone una metodología para mejorar la predicción de 

excedencias y modelado de PM10 y PM2.5 realizada por una red recurrente de 

memoria a largo/corto plazo (LSTM por sus siglas en inglés) utilizando el algoritmo 

de Optimización por Colonia de Hormigas (ACO por sus siglas en inglés). 

Obteniendo mejoras en la clasificación de excedencias que promedian 2.57% de 

mejor en la tasa de clasificación, 1.88% en precisión, 3.58% en sensibilidad y 3.63% 

en la métrica F1-score. Al igual que, reduciendo el error aproximadamente en 

13.00% en RMSE y 14.82% en MAE usando como referencia los resultados 

obtenidos con una red neuronal profunda LSTM. En resumen, la tesis actual propone 

una metodología que se debería estudiar en el futuro con mayor profundidad para 

mejorar diferentes técnicas de modelado y clasificación en aplicaciones de la vida 

real donde no exista una condición de predicción de corto plazo. 



 

I. INTRODUCTION 

A. Airborne Pollution 
By seeking our comfort and development in society as human beings we have 

developed technological advances that have facilitated transportation, daily habits, 

and the manufacture of various products. Just as these technological advances 

increase, so does environmental deterioration which significantly threatens our 

health and current development [1]. Among this environmental deterioration, one of 

the most challenging issues is atmospheric pollution. This pollution can affect the 

population’s health exposed to it even in low concentrations of these pollutants [2]. 

By atmospheric pollution, we can refer to the presence in the air of substances or 

compounds in an amount that involves discomfort or risk to the health of the 

population exposed to it. The main routes for this pollution to enter the population’s 

organism are through the respiratory route and ingestion [3]. The global mortality 

related to air pollution was found to be 1 million premature deaths in rural and urban 

areas in 2000, it was increased to 3.1 million in 2012, and increased to 4.2 million in 

2016, deaths from lung cancer, respiratory infections, strokes, ischemic heart 

disease, and obstructive pulmonary diseases [4, 5]. According to Babatola and 

North, et al., global air pollution is the leading environmental cause of death 

estimated to contribute to approximately 14 million deaths annually, while leading to 

over 3.2% of global disease in 2019 [6, 7]. In the Metropolitan Zone of the Valley of 

Mexico (ZMVM for its acronym in Spanish) airborne pollution, especially particulate 

matter, has been a growing concern in the field of health and environment due to its 

evident trend to growing motorization and industrialization in the area [8]. 

Particulate matter has become a relevant subject of research between these 

pollutants due to PM10 (particulate matter having an effective aerodynamic diameter 

smaller than 10 µm) and its high correlation to the increase in hospital admissions 

due to various health outcomes such as respiratory diseases, cardiovascular 

diseases, and pregnancy outcomes [9, 10]. In most of the studies, PM10 is introduced 

as the primary pollution in cities with similar characteristics as the ones in ZMVM 
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[11]; For example, in Pecan (China), which is a city with a similar population to the 

ZMVM in terms of industries, transportation, and population, PM10 is responsible for 

approximately 80% of annual air pollution [12]. PM2.5 (particulate matter having an 

effective aerodynamic diameter smaller than 2.5 µm) impacts more negatively the 

population´s health exposed to it than PM10 since it penetrates more deeply in the 

respiratory system due to its smaller size [3]. The World Health Organization (WHO) 

has stated "There is a strong evidence to conclude that fine particles (PM2.5) are 

more hazardous than coarse particles (PM10) in terms of mortality and cardiovascular 

and respiratory endpoints in panel studies" [13]. Figure 1 compares the size between 

coarse particles (PM10), fine particles (PM2.5), and an average thickness of a human 

hair (50-70 µm). 

 

 

Figure 1. PM10 and PM2.5 size comparison [14]. 
 

Exceedance of a particle is determined when such particle exceeds some defined 

standard. The air quality guidelines for particulate matter stipulated by the World 

Health Organization or WHO defines a daily average of 50 µg/m3 and 20 µg/m3 

annually for PM10 and a daily average of 25 µg/m3 and 10 µg/m3 annually for PM2.5 

as the permitted value of each, any value above the averages mentioned is 

considered an exceedance [13]. These standards define the maximum amount of 

pollutants that can be present in outdoor air without harming human health [14]. 

Figure 2 shows how deeply fine particles (PM2.5) and coarse particles (PM10) 

penetrate the respiratory system of human beings exposed to them. 



3  

 

 
 

Figure 2. Pulmonary penetration of PM10 and PM2.5 [15]. 
 

B. Artificial Intelligence 
The concept of using computers to simulate intelligent behavior and critical 

thinking was first described by Alan Turing in 1950 [16]. In the book “Computers and 

Intelligence” he described a simple test (which later became known as the “Turing 

test”) to determine whether computers are capable of human intelligence [17]. Six 

years later, John McCarthy described the term artificial intelligence (AI) as “the 

science and engineering of making intelligent machines” [18]. AI began as a simple 

series of “if-then rules” and has advanced over several decades to include more- 

complex algorithms that perform similar to the human brain. AI is among today’s most 

actively debated developments in information technology with the potential for 

tremendous impact on individuals, organizations, and societies over the next 

decades [19]. Based on early evidence, our average simulation shows around 70 

percent of companies at least one of these types of AI technologies by 2030, and 

less than a half of large companies may be using the full range of AI technologies 

across their organizations. By 2030, AI could potentially deliver an additional 

economic output of around $13 trillion of USD [20]. AI can perform complex tasks 

that were previously thought possible only for humans to perform. Machine learning 

(ML) is an area of AI-related to both cybernetics and computer science, attracting 

recently an overwhelming interest both of professionals and of the general public. In 

the last few years, thanks to the successes of computer science (the emergence of 
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GPUs, leading to significant improvements in the performance of computers and the 

development of special software, allowing to work with big data) machine learning is 

often attributed to computer science [21]. 

The origin of machine learning in its modern sense is usually associated with the 

name of the psychologist Frank Rosenblatt from Cornell University, who, based on 

ideas about the work of the human nervous system, created a group that built a 

machine recognizing the letters of the alphabet Rosenblatt [22]. The machine called 

the “perceptron” by its creator used both analog and discrete signals and included a 

threshold element that converted analog signals into discrete ones. It became the 

prototype of modern artificial neural networks (ANN), and the model of its learning 

was close to the models of animal and human learning developed in psychology [23]. 

ANN, specifically the recent branch termed deep learning, has gained an 

unprecedented revived interest and attention in the past decade from both academia 

and industry. They have achieved the state-of-the-art in many fields, ranging from 

computer vision, natural language processing to niche applications, such as self- 

driving cars [24]. 

For these reasons and possible consequences, it is highly important an accurate 

and precise model of airborne pollution for its analysis and to foresee events and 

trends to take due precautions. Airborne pollution can be classified as a time- 

dependent practical problem which can be analyzed and predicted as a time series 

[25]. These time series problems are more complicated than other statistical data 

due to the long-term trends, cyclical variations, seasonal variations, and irregular 

movements. Predicting such highly fluctuating and irregular data is usually subject 

to large errors [26, 27]. Learning these long-range dependencies that are embedded 

in time series is often an obstacle for most algorithms. 

For datasets with the characteristics mentioned above, with a sequential nature, 

Recurrent Neural Networks (RNN) have been applied successfully due to their 

capacity to model highly non-linear data. RNN’s are a powerful model for processing 

sequential data such as airborne pollution [28]. The RNN’s refer to neural networks 
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that take as input their previous state, this means that the neural network will have 

two inputs, the new information entered in the network and its previous state, shown 

in Figure 3. 

 

 

Figure 3. RNN structure. Adapted figure from [29]. 
 

Where X refers to the input of the model, t refers to the time unit being evaluated, 

C refers to the current state in the unit and h refers to the output of the model. 

Despite traditional recurrent neural networks’ inability to handle long sequences 

of data, a new class of network architectures with learnable gates has been shown 

to effectively alleviate this problem. The most popular of this variant is the Long Short 

Term Memory (LSTM) network architecture [24]. In 1997, Hochreiter and 

Schmidhuder proposed the LSTM model [30], unlike a simple recurrent neural 

network that has a long-term memory in the form of weights, which are modified 

during the training of the network and short-term memory defined as activation 

functions between the communication of the nodes of neurons [31]. The LSTM model 

introduces a block of internal memory, composed of simple blocks connected in a 

specific way [25], as shown in Figure 4. 
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Figure 4. LSTM structure. Adapted figure from [18]. 

A typical LSTM unit have the building blocks shown in Figure 5. 
 

 
Figure 5. Components of LSTM. Adapted figure from [29]. 
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a) Cell status: A conveyor of information with only a few linear interactions. 

b) Forgotten gate: This gate is used to control the state of the cell where the 

previous state and the input of the LSTM unit pass through a sigmoid 

function producing a value between 0 (do not allow any data to pass 

through) and 1 (allow every data to pass through). 

c) Input gate: This gate determines the added information to the state cell. It 

contains two parts: a sigmoid input (input signal control) and a tanh 

function (the input content). 

d) Update: Updates the cell status. 

e) Output gate: This gate determines the output of the unit. It contains two 

parts: a sigmoid function (output signal control) and a tanh function (the 

output content). 

C. Swarm Intelligence 

As computer-related technologies are more widely used, many nondeterministic 

polynomial problems or NP-hard problems have emerged in areas like big data, 

spam detection, image processing, and environmental concerns [32, 33, 34, 35]. 

However, when traditional gradient descent and other deterministic methods are 

used to solve these complicated issues, the degree of finding the global optima, or 

an acceptable approach, is extremely unsatisfactory in these scenarios [36]. 

Recently, Swarm Intelligence (SI), or Bio-inspired computation, has gained a lot of 

attention approaching this kind of problem [37]. The term swarm intelligence was first 

introduced in 1989 by Gerardo Beni and Jing Wang to describe the dynamics of 

cellular robots that could be framed as a form of intelligent collective behavior [38]. 

This marks the point at which swarm behaviors were started to be studied outside 

natural sciences, although animal behavior has always continued to be a major 

source of inspiration for swarm intelligence development [39]. There are various 

reasons responsible for the growing popularity of such swarm intelligence-based 

algorithms, most importantly being the flexibility and versatility offered by these 

algorithms [40]. 
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Among the concept of swarm intelligence, there are algorithms based on animal 

behaviors that demonstrate social intelligence but not particular intelligence as an 

individual. Within these algorithms, we can highlight the algorithm of ant colony 

optimization or ACO [41]. The ACO algorithm was proposed by Dorigo in 1992 [42]. 

It is a well-explored metaheuristic evolutionary algorithm based on population, which 

is inspired by the research results of the collective behavior of real ants in nature. 

The ACO algorithm relies on the activities of many individualities and feedback of 

information. Although the activity of an ant is very simple, the activity of a whole ant 

colony is characterized by its intelligent behavior [43]. This algorithm is based on the 

pheromone paths that real ants deposit and follow, this behavior is simulated through 

simple units that process information (artificial ants), which interact with each other 

through artificial pheromone modifying the computational environment, which 

characterizes this interaction as indirect and local, only artificial ants in the modified 

area perceive this modification [44]. In Figure 6, a graphic description of ants’ 

behavior is shown. 

 

 
Figure 6. Ants’ behavior in ACO algorithm and their pheromone traces (own authorship). 

 

In Figure 6 it can be seen how the first iteration (a) the artificial ant chooses a 

route or solution randomly, but in such a way that the algorithm iterates (b) the weight 

of the pheromone traces, represented by the thickness of the dotted red line, the 

optimal route changes, and gains more and more weight. In (c) it is shown how the 
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pheromone trail of less optimal paths disappears completely. This algorithm belongs 

to metaheuristic algorithms, which refer to algorithms that are designed to solve 

combinatorial problems. 

This algorithm works as follows: artificial ants use pheromone traces in a search 

space to construct routes, choosing different positions or nodes in the search space, 

through the possible solutions in the optimization problem combinatorial. Each of the 

artificial ants chooses its next move (to the next position) according to the 

pheromone concentration value, which is normally initialized as 0 or a constant. This 

means that the first solutions constructed by the artificial ant colony are random. This 

trace of artificial pheromones’ weight or concentration, which is updated after each 

solution is built, is inversely related to the solution’s cost which is the variable that it 

is being reduced, therefore, optimizing the problem’s solution. The increase in the 

pheromones’ concentration will have as a consequence a tendency of the artificial 

ants to take that route or solution, the traces not taken by the ants will have a 

tendency of losing their pheromones through the process of evaporation through 

time, or in this case, iterations [45]. This process is repeated until the stop condition 

is met. A simple version of the ACO algorithm is presented in Figure 7 as a flowchart. 
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Figure 7. Ant Colony Optimization algorithms (own authorship). 
 

In Figure 7 can be seen how a simple version of the ACO algorithm works, where 

ants are created and introduced into an entry state in a search space composed of 

multiple nodes. An artificial ant has built a solution (passing through all nodes) 

pheromones in the solution are deposited. This pheromone concentration deposited 

is directly related to how efficient the solution is. At the end of each iteration 

pheromones in the search space will evaporate at some rate. The evaporation takes 

place to allow less efficient solutions to get lost through iterations. Finally, if 

convergence is reached, a stop condition is met where a solution can be identified 

because it possesses the highest pheromone concentration deposited by the 

artificial ants [46], [47]. 
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II. BACKGROUND 
As seen in the section above, PM2.5 and PM10 have high impacts on the 

population’s health exposed to them. The development of a robust model for PM2.5 

and PM10 concentrations and classifier of exceedances provides invaluable 

information for local authorities to take precautionary measures and implement 

significant actions to improve air pollution status. Due to the current impact of this 

topic, multiple authors are exploring different modeling techniques to predict PM10 

and PM2.5 concentrations and classification techniques to classify them as 

exceedance or not exceedance. These different modeling techniques will be 

described in this section and results will be compared with the ones obtained in this 

work in results and discussion. 

A. Air pollution modeling approaches 
A PM10 and PM2.5 modeling methodology was proposed by Shtein, et. al. based 

in a spatio-temporal hybrid, based in spatial (predictors based on land-use, 

population, density, normalized difference vegetation index, elevation, roads 

density) and temporal (predictors based on air temperature, relative humidity, wind 

speed, rainfall and Nitrogen Oxides concentrations) modeling approach. This 

modeling technique consists of three stages which are calibration (using 

concentrations obtained from stations), estimation (modeling for locations with 

satellite information) and modeling (modeling for locations without satellite 

information) [48]. 

A different approach for modeling PM10 was proposed by Abdullah, et. al. based 

on linear (Multiple Linear Regression, MLR) and nonlinear (Multilayer Perceptron) 

models forecasting capability in the industrial area of Pasir Gudang, Johor. This 

study was conducted based on 8 years of data covered from the year 2007-2014. 

The data was divided into two parts; 70% for model training and 30% for model 

testing. PM10, relative humidity, wind speed, ambient temperature, and gaseous 

pollutants (CO, NO2, and SO2) were known as input parameters (7 inputs) and the 

output parameter is the next day PM10 concentration [49]. A similar approach was 
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proposed by Feng, et al. using an MLP is used to analyze and predict ambient PM2.5 

in eight regional core cities in China to resolve clashes. This model had as an input 

temperature, relative humidity, atmospheric pressure, wind speed, and wind 

direction having as output the concentration of PM2.5 of the next day [50]. 

A model called Prophet Forecasting Model (PFM) developed by Facebook®, 

which forecasts the desired variable with respect to time. PFM’s novel ability to 

forecast accurately without plenty of complex parameters (meteorology) drastically 

increases the versatility and applications of PFM. The PFM was used by Shen, et. 

al. to predict both short-term and long-term air pollution in South Korea, Seoul, which 

has experienced high levels of air pollution. This model was implemented using input 

parameters like changepoints, seasonality, and holidays [51]. 

A land-use regression (LUR) model, which has been proving to be an effective 

method for predicting the spatial distribution of pollutants, was proposed by Han, et. 

al. to analyze and model PM10 and PM2.5. These LUR models consist in working using 

pollutant concentration data collected at a limited number of monitoring stations in 

conjunction with characteristic variables such as land use information to evaluate 

pollutant concentrations in areas that lack monitoring stations. To construct the PM10 

and PM2.5 models a total of 87 independent variables were extracted, which are 

significantly correlated with each other [52]. A similar approach was proposed by Miri, 

et. al. who used LUR models to predict PM2.5 and PM10 in Sabzevar, Iran. In this work, 

104 predictive variables were used as input parameters (ranked by strength of 

correlation) [53]. 

In the study implemented by Pak, et. al. a spatiotemporal convolutional neural 

network (CNN) and LSTM (CNN-LSTM) model was proposed and used to predict the 

next day’s daily average PM2.5 concentrations in Beijing City. The CNN was designed 

to efficiently extract the inherent feature essential for the prediction of PM2.5 from input 

data; the LSTM was designed to fully represent the long-term historic process of 

input time series data. The input parameters used in this study were air quality and 

meteorological data from 384 monitoring stations which represent the 
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whole area of China with Beijing City [54]. A similar approach was proposed by 

Zhang, et. al. which used CNN-BiLSTM to predict the PM2.5 concentrations in Shunyi 

District, Beijing. A BiLSTM-based structure also allows the training of the prediction 

model to use both the future features and the past features for a specific time range 

efficiently, which improves the prediction accuracy to a certain extent [55]. 

To approach this airborne pollution issue in Liverpool, England, Collazo, et. al. 

compares the Fuzzy C-Means Clustering (FCM) methodology, which consists of an 

iterative optimization algorithm that minimizes a cost function using clustering 

techniques that have membership values between 0 and 1, and a Fuzzy Clustering 

Subtractive (FCS), which assumes each data point is a potential cluster center and 

calculates a measure of the likelihood that each data point would define the cluster 

center. The proposed methodology uses the FCM algorithm to partition each point to 

belong to several clusters with membership values between 0 and 1, and the FCS 

algorithm to determine the number of clusters of the data being proposed, to model 

PM10 in Liverpool [56]. 

A number of studies have proposed different methodologies to model airborne 

pollution in Mexico City, as in the present work. A combination of the Support Vector 

Machine (SVM) algorithm using the Gaussian, Polynomial, and Spline kernel 

functions to model different airborne pollutants, PM10 between them. This 

methodology was proposed by Sotomayor, et. al. [57]. A Gated Recurrent Unit (GRU) 

deep neural networks, that was proposed by Cho, et. al. in 2014 [58], was used to 

approach this issue in Mexico City was proposed by Becerra, et. al. which is an RNN 

that is considered a variation of the LSTM algorithm, in the sense that uses the same 

functions, but they are organized in a different way. Similar to this work an RNN was 

used to model PM10 in Mexico City [59]. To approach the PM10 modeling issue in 

Mexico City a methodology was proposed by Aceves, et. al. in which Deep 

Convolutional Neural Networks (CNNs), which its main characteristic is the 

convolutional layer was used as an application of a filter to the input data. To forecast 

these concentrations PM10, temperature, wind direction, wind speed, relative 
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humidity, solar ultraviolet radiation type A and solar ultraviolet radiation type B were 

used as input parameters [60]. Table 1 shows an overview of the techniques used 

for modeling, the location in which the methodology was applied, the particle 

modeled, and the year in which was proposed, these works are presented in 

chronological order. A model optimization approach was proposed by Cabrera, et. 

al. which modeled PM10 in Mexico City using an Adaptive Neuro Fuzzy Inference 

System (ANFIS) which is later optimized using a swarm intelligence technique, 

named Bacteria Foraging Optimization Algorithm (BFOA) [61]. A similar approach 

was proposed by Ordóñez, et. al. in which PM10 and PM2.5 were modeled through 

ANFIS and were later optimized by another swarm intelligence algorithm called 

Particle Swarm Optimization (PSO) [62]. 

Table 1. Modeling approaches for PM10 and PM2.5. 
 

Authors Year Region Techniques Particle 

Collazo, et. al. 2010 Liverpool, England Fuzzy clustering PM10 

Sotomayor, et. al. 2013 Mexico City, Mexico SVM/Kernel functions PM10 

Shtein, et. al. 2018 Israel Spatial-temporal PM10 and PM2.5 

Abdullah, et. al. 2018 Pasir Gudang, Malaysia Multilayer Perceptron PM10 

Miri, et. al. 2019 Sabzevar, Iran Land use regression PM10 and PM2.5 

Pak, et. al. 2019 Beijing, China CNN PM2.5 

Cabrera, et. al. 2019 Mexico City, Mexico ANFIS-BFOA PM10 

Ordónez, et. al. 2019 Mexico City, Mexico ANFIS-PSO PM10 and PM2.5 

Shen, et. al. 2020 Seoul, South Korea Prophet Forecast Model PM10 and PM2.5 

Han, et. al. 2020 Guanzhong basin, China Land use regression PM10 and PM2.5 

Feng, et. al. 2020 China Multilayer Perceptron PM2.5 

Becerra, et. al. 2020 Mexico City, Mexico GRU PM10 

Aceves, et. al. 2020 Mexico City, Mexico CNN PM10 

Zahng, et. al. 2021 Beijing, China CNN-BiLSTM PM2.5 
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B. Exceedance classification approaches 

As seen in the section above, exceedances are defined when a particle exceeds 

some defined standard stipulated. These standards define the maximum amount of 

pollutants that can be present in outdoor air without harming human health [14]. Due 

to this definition involving a standard defined by the WHO and its direct correlation 

with the impact in the population’s health exposed to it, a number of authors are 

constantly proposing new techniques to classify and predict exceedances as 

accurately as possible. 

A method based on Decision Trees called CART was proposed by Snezhana, et. 

al. which is used for solving classification or regression predictive modeling problems 

in the class of machine learning data mining methods. This method was used to 

classify exceedances of PM10, averaging daily air data for the city of Pleven, Bulgaria 

for a period of 5 years. This model uses seven meteorological variables, time 

variables, as well as lagged PM10 variables and some lagged meteorological 

variables, delayed by 1 or 2 days with respect to the initial time series, respectively 

[63]. 

A combination of ordered multiple computational intelligence techniques was 

proposed by Dotse, et. al. which consists in using the random forest algorithm and 

genetic algorithms to initially determine the optimal set of inputs from the initial data 

sets of largely available meteorological, persistency of high pollution levels, short 

and long term variations of emissions rates parameters. This optimal set of inputs is 

used to classify and predict PM10 exceedances in Brunei Darussalam through back 

propagation neural networks model [64]. 

An MLR model was proposed by Biancofiore, et. al. which is one of the statistical 

techniques used in several research applications, it can be applied to analyze the 

relationship among various variables and predict the outcome of a response 

variable. This model was used to classify PM10 exceedances in central Italy using as 

inputs temperature, pressure, humidity, wind speed, direction, and PM10 

concentrations [65]. 
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This work will be directly compared with the proposal made by Ramírez, et. al. 

which consists in using the LSTM algorithm to predict and classify exceedances of 

airborne pollution in Mexico City where the input parameter was the PM10 

concentration and the output parameters were obtained the exceedance predictions 

for the next 24, 48 and 72 hours [66]. Table 2 shows an overview of the techniques 

used to classify exceedances, the location in which the methodology was applied, 

the particle modeled, and the year in which was proposed. 

Table 2. Exceedance classification approaches for PM10 and PM2.5. 
 

Authors Year Region Techniques Particle 

Biancofiore, et. al. 2017 Pescara, Italy MLR PM10 and PM2.5 

Dotse, et. al. 2017 Brunei Darussalam Multiple 

computational 

techniques 

PM10 

Snezhana, et. al. 2018 Pleven, Bulgaria CART PM10 

Ramírez-Motañez 2019 Mexico City, Mexico LSTM PM10 
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III. HYPOTHESIS 
The application of swarm intelligence techniques in PM10 and PM2.5 models will 

improve the accuracy of the exceedance predictions as well as the performance of 

this modeling. 

 

IV. OBJECTIVES 

General objective 
To Develop an algorithm capable of modeling the pollutant densities, classify them 

as exceedances according to air quality guidelines stipulated by the World Health 

Organization, in order to optimize it using swarm intelligence techniques, which will 

improve modeling and classification results. 

Specific objectives 
 To use the database obtained by the Automatic Atmospheric Monitoring 

Network to be able to carry out a predictive algorithm based on real data. 

 To identify erroneous data and correct it through multiple imputation 

techniques in order to be able to use it in the algorithm. 

 To make PM10 and PM2.5 density predictions based on the model obtained by 

deep learning techniques. 

 To classify these predictions as pollutants exceedances and obtain the 

precision results of this classification according to the air quality guidelines 

stipulated by the World Health Organization. 

 To optimize this algorithm using swarm intelligence techniques to improve 

prediction results. 
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V. MATERIAL, METHODS AND EVALUATION 

A. Materials 
The metropolitan area of the valley of Mexico has a continuous atmospheric 

monitoring network called Automatic Atmospheric Monitoring Network (or RAMA for 

its acronym in Spanish). There are 24 stations that belong to this network. Each of 

these stations registers the concentrations of different pollutants, including PM10 and 

PM2.5, among others [67]. This database is maintained and updated by RAMA. The 

stations used in this work were chosen to take into account two considerations: 

1. The availability of PM10 and PM2.5 data from 2012 to 2019. 

2. The available data must have a maximum of 30% missing data during the 

whole evaluated period. Otherwise, the modeling and prediction may be 

biased. 

Based on these considerations 6 stations were chosen. These stations are San 

Agustín (SAG), Tlanepantla (TLA), Merced (MER), Xalostoc (XAL), Camarones 

(CAM) and Hospital General de México (HGM). The stations chosen differ in traffic 

flow density by a wide range calculated by Tellez using the number of vehicles 

registered per 1000 habitats [68]. These categories of traffic flow density are: low 

density (XAL, TLA and SAG), intermediate density (CAM and MER) and high density 

(HGM). The locations of these stations are shown in Figure 8 as yellow circles. 
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Figure 8. All stations available in RAMA (red), stations used in this work (yellow) [67]. 
 

The databases for these stations available in RAMA give the concentration in 

µg/m3 which is captured every hour. The period chosen for this work is from 2012 to 

2019 given that the stations chosen meet the requirements mentioned above only 

during this period. The ideal size of each of these databases should be 70,080. 

Nevertheless, all of the stations have a certain percentage of missing data which are 

in the range of 13.29% to 26.35%. Since it is necessary for the LSTM algorithm to be 

trained by a database without missing data, an imputation algorithm needed to be 

implemented. 

B. Methodology 
To solve the missing data problem, the Multivariate Imputation by Chained 

Equations or MICE algorithm was applied to the database with the shape of x1, x2, 

..., xn, where n refers to the length of the dataset and a subset of missing values is 

present [69]. To implement the MICE algorithm, the first step is to fill the missing data 

with random values. The first missing value of the set, for instance x1, is then 

regressed on the other variables x2, ..., xn. The next missing value, x2, is regressed 

on all the other variables x1, x3, ..., xn. The process is repeated for all other missing 

values in turn, this is called a cycle Royston and White (2011). Most authors report 

that a total of 5 cycles is enough to reach convergence [70-73]. The full methodology 

for the MICE algorithm is shown in Figure 9. 



20  

 

 

 

Figure 9. Multiple Imputation by Chained Equations (MICE) (own authorship). 
 

Once the data is completed with both raw and imputed data, the training stage 

using LSTM is performed as in [66]. The first step is to normalize the data into a scale 

from -1 to 1, this normalization intends to facilitate training in the LSTM model by 

decreasing the non-linearity of the data [74]. 

The network used for modeling consists in: 

 

 Layer 1 consists of 50 LSTM neurons, which will take the first 50 data, the 

window being evaluated, and expand them to feed the second layer.

 Layer 2 is the hidden layer that consists of 256 LSTM neurons, this layer is in 

charge of controlling memory in the network.

 Layer 3 is a simple neuron, which based on the previously recorded data will 

generate a new value, successively.

The predictive neural network of the model consists in: 

 

 Layer 1 each neuron receives a value from the input data vector which

generates an output response, this vector’s length depends the prior number 

of hours being evaluated, in this case, 24 hours. 
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 Layer 2 receives the results of the first network and generates a classification, 

given that initially the days with exceedances are known. The network uses a

continuous regression to adjust its weights and obtain the expected result. 

 
The complete model of the LSTM predictive network is shown in Figure 10 where 

the first three layers correspond to the modeling network and layers 4 and 5 

correspond to the classification network. 

 

 
Figure 10. Complete predictive model [66]. 

 

The construction of the ACO algorithm needs to consider that the search 

space in which the ant colony will look for the optimized model is a matrix of n by m, 

n being the quantity of LSTM algorithms trained and m being the vector size that 

describes the days’ concentration prediction from the model. The ACO algorithm has 

to select one of these daily concentrations given by one of the multiple LSTM models 

to have as a result an optimized LSTM-ACO model. 

To accomplish this, the cost matrix must be initialized. The cost matrix refers to 

a matrix that describes how "distantly" distributed the nodes in the problem are. This 

"distance" refers to the variable trying to be minimized or maximized [75]. For this 
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work, the variable being optimized is the difference between the evaluated value with 

the centroid of the n LSTM-given values. This means that ants will tend to go where 

the concentration of these values given by the LSTM algorithm is higher, the cost 

matrix was generated using Equations (1) and (2): 

 

𝑛 
1 

𝑦𝑖𝑗 = |(
𝑛 

∗ ∑ 𝑥𝑖𝑗) − 𝑥𝑖𝑗| 

𝑗=1 
 

𝑦11 … 𝑦1𝑘 

 
(1) 

𝑐𝑜𝑠𝑡 𝑚𝑎𝑡𝑟𝑖𝑥 = [ ⋮ ⋱ ⋮  ] 
𝑦𝑛1 … 𝑦𝑛𝑘 

 
(2) 

 

Where yij refers to the cost value of the i-th row and the j-th column. In this work, 

the columns refer to the day being evaluated and rows refer to the prediction of the 

LSTM model being evaluated. n refers to the quantity of LSTM models included in 

the algorithm and k refers to the quantity of days that compose the prediction. 

The next stage consists of the pheromone matrix being updated. This matrix 

describes how pheromones are distributed in each of the nodes. The pheromone 

matrix is initialized with a single value chosen for the whole matrix or with custom 

values chosen by the user. This method is used if the user wants to give ants a 

preference of a solution. For this work the pheromone matrix is going to be initialized 

with 1 single value tau calculated with Equation (3) [76]: 

 

𝑘 𝑛 
1 

𝑡𝑎𝑢 = 10 ∗ (
𝑛 

∗ ∑ ∑ 𝑥𝑖𝑗) 

𝑖=1 𝑗=1 

 

(3) 

 

Once the matrices have been initialized, the following stage is the ant colony 

parameter initialization, in which each ant is going to refer to a solution of the 

problem, where the ant will be constructing the solution by deciding which node it is 

going to choose next. This decision is made using the probability described in 

Equation (4): 
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𝑖𝑗 𝑖𝑗 

 

𝛼 
(𝑟𝑖𝑗) 

𝛽 
(𝜂𝑖𝑗) 

𝑃𝑖𝑗 = 𝛼 
∑(𝑟𝑖𝑗) 

𝛽 

(𝜂𝑖𝑗) (4) 

 

Where Pij refers to the probability of traveling the path between node i and node j 

and τij refers to the concentration of pheromones between node i and node j, this 

pheromone concentration is obtained from pheromone matrix and is updated in each 

iteration. Where ηij refers to the feasibility between node i and node j. This feasibility 

is obtained through the reciprocal value of the cost matrix describing the cost 

between node i and node j. Also α refers to the weight that pheromone concentration 

will be given and β refers to the weight that feasibility will be given [77]. 

When the ants have the solutions fully constructed the pheromone matrix is 

updated through Equation (5), and Equation (6): 

∆𝑟𝑓 = 
1

 
 

𝑖𝑗 𝐿𝑓 (5) 

 

Where Lf refers to the summation of all costs in the trajectory that are part of the 

solution of ant f. 

 
𝑟𝑓   = (1 − 𝜌)𝑟 

 
 

𝑖𝑗 

𝑔 

+ ∑ ∆𝑟𝑓 

𝑓=1 

 
 

(6) 

 

Where ρ refers to the evaporation rate of the pheromones and ց to the quantity 

of ants. 

A flowchart of the entire methodology is shown in Figure 11. The preprocessing 

and prediction stage are covered in greater detail in [66]. 
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Figure 11. Proposed methodology (own authorship). 
 

C. Evaluation 
To evaluate the model, a number of metrics will be used throughout the 

methodology. To evaluate the MICE algorithm, the standard deviation was 

calculated for the imputed and raw database using Equation (7): 

 

∑𝑛 (𝑥𝑖 − 𝑥̅)2 

𝑆𝑡𝑑. 𝐷𝑒𝑣. = √ 𝑖=1 
 

𝑛 − 1 (7) 

 

Where xi refers to the i-th element of the database, x refers to the mean 

concentration for the whole data set and n refers to the number of the data points in 

the data set. 

To evaluate the LSTM-ACO model and successfully compare it with the previous 

LSTM model, the root mean squared error (RMSE), which represents a more 

appropriate error to represent model performance when the error distribution is 

expected to be Gaussian, the correlation coefficient (r), the coefficient of 

determination (r2), which is a well-defined for linear regression models, and is 

popularly used in practice as a measure of goodness-of-fit of the underlying models, 

and mean absolute error (MAE), which gives the same weight to every error of the 

model, were implemented. The comparison was made between the resulting LSTM- 
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ACO model and the mean of the measurements between the n LSTM models trained 

[78,79,80]. According to Zhou, et. al. “a combination of metrics is often required to 

accurately evaluate model performance” [81]. The RMSE represents the standard 

deviation between actual and predicted values as Equation (8) describes: 

 
 

1 
𝑅𝑀𝑆𝐸 = √ 

𝑛 

𝑛 

∑(𝑌𝑀𝑖 − 𝑌𝑅𝑖)2 

𝑖=1 

 
 
 

(8) 

 

Where YMi refers to the i-th element of the prediction model and YRi refers to the 

i-th element of the real data. 

 
RMSE is a representation of how close distance between the prediction and real 

values are. This value will be used to decide the optimal number of LSTM models to 

use as the search space in the ACO algorithm [80]. 

In order to evaluate the precision of the model obtained, the MAE was 

implemented using Equation (9): 

𝑛 
1 

𝑀𝐴𝐸 = 
𝑛 

∑|𝑌𝑀𝑖 − 𝑌𝑅𝑖| 
𝑖=1 

(9) 

 

Where YMi refers to the i-th element of the prediction model and YRi refers to the 

i-th element of the real data. 

 
To evaluate how strong is the relationship between the predicted model and the 

real data the correlation coefficient was implemented [79]. The correlation 

coefficient’s values may vary between -1, a perfect negative correlation between 

data sets, and 1, a perfect correlation between data sets. The correlation coefficient 

(r) was implemented using Equation (10): 
 

𝑛(∑𝑛 (𝑌𝑀 )(𝑌𝑅𝑖)) − (∑𝑛 𝑌𝑀𝑖)(∑𝑛 𝑌𝑅𝑖) 

𝑟 = 𝑖=1 𝑖 𝑖=1 𝑖=1 

√[𝑛 ∑𝑛 𝑌𝑀 2 − (∑𝑛 𝑌𝑀 )
2
] − [𝑛 ∑𝑛 𝑌𝑅 2 − (∑𝑛 2 

𝑌𝑅 ) ] (10) 
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Where YMi refers to the i-th element of the prediction model and YRi refers to the 

i- th element of the real data. 

 
In order to explain how much variability of one factor can be caused by its 

relationship to another factor the coefficient of determination was implemented (r2) 

which is calculated by squaring the correlation coefficient [79]. 

A classification evaluation was implemented in which a confusion matrix is 

calculated with 4 different values that are described below: 

 True positive or TP: Which is interpreted as predicted positive and it’s true. 

 False positive or FP: Which is interpreted as predicted negative and it’s true. 

 True negative or TN: Which is interpreted as predicted positive and it’s false. 

 False negative or FN: Which is interpreted as predicted negative and it’s false. 

These measurements fit right with this classification problem because it may have 

1 of 2 possible classifications, exceedance or not exceedance, 50 µg/m3 daily 

permissible for PM10 and 25 µg/m3 daily permissible for PM2.5 [82]. Each of the 

following equations describe the measurements implemented for this classification 

problem: 

 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 

𝑇𝑃 
 

 

𝑇𝑃 + 𝐹𝑃 

𝑇𝑃 

(11) 

 

 
(12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =   

𝑇𝑃 + 𝐹𝑁 

𝑇𝑃 + 𝑇𝑁 

 
 

(13) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 
𝑇𝑜𝑡𝑎𝑙 

2 ∗ 𝑇𝑃 

 

 
(14) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 
(2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁) 
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VI. RESULTS AND DISCUSSION 
As mentioned in the materials section above, the only stations considered for this 

work were the ones with less than a 30% of data missing in both particles evaluated, 

PM2.5 and PM10. Initial missing data is shown in Table 3 per particle and station. 

Table 3. Initial missing data per particle and station. 
 

Station Initial data Missing 
PM2.5 PM10 

SAG 26.35% 26.35% 

TLA 19.27% 19.24% 

MER 13.64% 13.29% 

XAL 18.28% 18.21% 

HGM 16.49% 16.49% 

CAM 24.02% 24.02% 

 

 
To evaluate the effect, the MICE imputation has upon the preprocessed data, the 

mean and the standard deviation was calculated before and after the imputation. 

The relationship between the percentage of the initial missing data in the 

database and the difference between the mean of the imputed database and the 

mean of the initial database is shown in Figure 9 a) and the relationship between the 

percentage of the initial missing data in the database and the absolute difference 

between the standard deviation of the imputed database and the standard deviation 

of the initial database is shown in Figure 9 b). 
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Figure 12. Relationship between initial missing data in set and the absolute difference of mean 
after imputation was implemented (own authorship). 

 

As shown in Figure 9 a), the trend in the relationship between initial missing 

data in set and absolute difference of mean after imputation is exponential 

according to the results obtained. This seems to indicate that the greater 

percentage of missing data in databases is considered, less reliable the model 

will be related to the real PMx concentration in the area evaluated. Conversely, 

the highest difference presented in this work being the case of PM10 in SAG 

station only presented a decrease of 4.91% in its mean. As shown in Figure 12 

b) the trend in the relationship between initial missing data in set and absolute 

difference of standard deviation after imputation is similar to the trend obtained 

in Figure 12 a). The same case of PM10 for SAG station is shown as the highest 

difference in the standard deviation after imputed but, only presented a rise of 

3.09% in its standard deviation. 

An example of how the MICE algorithm imputed the database is shown in 

Figure 13, showing the case of the Merced station between January and 

February of 2018. 

a) b) 
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Figure 13. Example of how MICE algorithm imputes the data base (own authorship). 
 

To decide the optimal number of LSTM models that make up the ACO search 

space, an experiment was implemented. This experiment consists in executing 

the ACO algorithm using a search space of 3 LSTM models following by a 

comparison between the RMSE error of the LSTM and the LSTM optimized 

model. Subsequently, 1 LSTM will be concatenated to the search space and the 

process will be repeated. The objective of this experimentation is to find a 

correlation between the quantity of LSTM that compose the search space with 

the RMSE. These results are shown in Figure 14. 
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Figure 14. RMSE improvement percentage vs number of LSTM models that compose the search 

space (own authorship). 
 

In Figure 14 the data shown represents the difference between the LSTM-ACO 

model RMSE and the mean RMSE of the LSTM models being evaluated. Also, 

Figure 14 shows an improvement in RMSE can be seen with a quantity of models 

equal or greater than 3. These experiments indicate that the best results are given 

with 8 LSTM models. Also, this experiment was implemented using the PM10 data 

from the Merced station, since this is the station with less missing PMx data, the 

missing PM10 data represented 13.29% from the chosen range from 2012 to 2019. 

Once the quantity of LSTM models was defined, the next stage consists of an 

experiment to determine the optimum parameter combination for the ACO algorithm. 

The definition of efficiency considered in the experiment was to reach the smallest 

RMSE difference between the obtained model and the imputed data using the least 

amount of time. This experiment was repeated 25 times to observe repeatability 

through the standard deviation of the RMSE results per combination of parameters. 

Table 4 shows the results for time, root mean square error (RMSE) and standard 

deviation of such experiments using different hyperparameter combinations. This 

test consisted in combining values for the number of ants (g in Equation (6)) in the 
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algorithm and for the evaporation rate (ρ in Equation (6)), the weight of the 

pheromone concentration (α in Equation (4)) and the weight of feasibility (β in 

Equation (4)) were defined to 1 in order to avoid any bias for the parameter 

initialization. The results considering a quantity of ants of 1, 3, 5,10, 25 and 50, and 

the evaporation rate of 0.1%, 1%,5%, 10% and 20% are shown in Table 4, this testing 

was developed using PM10 data of station in Xalostoc. The termination criteria for the 

algorithm considered the ants to reach a 25 iterations without finding a better solution 

than the local best. 

Table 4. Evaporation rates and ant quantities tested with respective scale of colors. 
 

 

 
Results in Table 4 presented ρ= 10% and ants =5 as the most efficient 

combination of parameters show the lowest RMSE, 5.46, having a low amount of 

time, 3.41 seconds. The repeatability of this combination of parameters is considered 

as high as the standard deviation of the 25 RMSE’s obtained is 0.03. This 

experimentation demonstrates that a better result, in this case, not necessarily 

corresponds to a greater number of ants but it seems that a greater evaporation rate 

is directly related to execution time. The challenge here was to find a combination of 

parameters that got the best results with high repeatability in the least amount of 

time. 
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A. Concentration modelling results 
To evaluate the optimized LSTM-ACO model the RMSE, MAE, and the coefficient 

of determination was implemented, it is noteworthy that when evaluating the RMSE 

and MAE the lower the value the better [78] and, when evaluating the coefficient of 

determination, the higher the value the better [79]. The purpose of these repetitions 

is to compare them with the averaged result of the 8 LSTM models obtained for each 

station for both PM2.5 and PM10, and to compare the results with a baseline using 

different methodologies including a MultiLayer Perceptron (MLP) model, a hybrid 

model using spacial and temporal variables, land use regression models, a 

forecasting model developed by Facebook called Prophet, a Convolutional Neural 

Network (CNN), and Convolutional Neural Network-LSTM model for the particle 

evaluated obtained from a number of different authors [48–55,60]. These 

methodologies will be compared by its corresponding evaluation metric and the 

particle modeled above from Figure 15 to Figure 20. 

The results of the predicted PM10 RMSE for the 25 LSTM-ACO models, the 

averaged RMSE of the 8 LSTM models and the RMSE obtained by [49,52,48] is 

shown in Figure 15. The RMSE presented in [49] obtained through the MLP model 

equals to 11.389 µg/m3, which seems to indicate that the results obtained in this 

contribution are 61.717% better than a baseline MLP model. The RMSE presented 

in [52] obtained through the land use regression model equals to 14.842 µg/m3, 

which seems to indicate that the results obtained in this contribution are 70.624% 

better than a baseline land use regression model. The RMSE presented in [60] 

obtained through CNN equals to 19.44 µg/m3, which seems to indicate that the 

results obtained in this contribution are 77.572% better than a baseline CNN model. 

The RMSE presented in [48] obtained through the spatio-temporal hybrid model 

equals to 19.94 µg/m3, which seems to indicate that the results obtained in this 

contribution are 78.134% better than a baseline spatio-temporal hybrid model and 
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9.892% better than the LSTM recurrent network without the optimized model for 

PM10. 

 

Figure 15. PM10 RMSE of LSTM models, LSTM-ACO models and MLP implemented by [49], land use 
regression model implemented by [52] and spatio-temporal hybrid model implemented by [48]. 

 

The results of the predicted PM2.5 RMSE for the 25 LSTM-ACO models, the 

averaged RMSE of the 8 LSTM models and the RMSE obtained by [50,52,48] is 

shown in Figure 16. The averaged RMSE for 8 cases in China presented in [50] 

equals to 19.2125 µg/m3, which seems to indicate that the results obtained in this 

contribution are 84.786% better than a baseline MLP model. The RMSE presented 

in [52] obtained through the land use regression model equals to 8.355 µg/m3, which 

seems to indicate that the results obtained in this contribution are 65.937% better 

than a baseline land use regression model. The RMSE presented in [48] obtained 

through the spatio-temporal hybrid model equals to 6.16 µg/m3, which seems to 

indicate that the results obtained in this contribution are 53.799% better than a 
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baseline spatio-temporal hybrid model and 16.113% better than the LSTM recurrent 

network without the optimized model for PM2.5. 

 
 

 
Figure 16. PM2.5 RMSE of LSTM models, LSTM-ACO models and MLP implemented by [50], land 

use regression model implemented by [52] and spatio-temporal hybrid model implemented by [48]. 
 

The results of the predicted PM10 MAE for the 25 LSTM-ACO models, the 

averaged MAE of the 8 LSTM models and MAE obtained by [49,51] is shown in 

Figure 17. The MAE presented in [49] equals to 8.519 µg/m3, which seems to indicate 

that the results obtained in this contribution are 61.04% better than a baseline MLP 

model. The MAE presented in [51] obtained through the Prophet model equals to 7.6 

µg/m3, which seems to indicate that the results obtained in this 
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contribution are 55.526% better than a baseline Prophet model and 10.933% better 

than the LSTM recurrent network without the optimized model for PM10. 

 
 

 
Figure 17. PM10 MAE of LSTM models, LSTM-ACO models and MLP implemented by [49] and 

Prophet forecasting implemented by [51]. 
 

The results of the predicted PM2.5 MAE for the 25 LSTM-ACO models, the 

averaged MAE of the 8 LSTM models and MAE obtained by [54,51,55] is shown in 

Figure 18. The MAE presented in [54] equals to 28.881 µg/m3, which seems to 

indicate that the results obtained in this contribution are 92.31% better than a 

baseline MLP model. The MAE presented in [51] obtained through the Prophet model 

equals to 12.6 µg/m3, which seems to indicate that the results obtained in this 

contribution are 85.159% better than a baseline Prophet model. The MAE presented 

in [55] obtained through the land use regression model equals to 7.032 µg/m3, which 

seems to indicate that the results obtained in this contribution are 73.41% better than 
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a baseline Prophet model and 18.71% better than the LSTM recurrent network 

without the optimized model for PM2.5. 

 
 

 
Figure 18. PM2.5 MAE of LSTM models, LSTM-ACO models and MLP implemented by [54], Prophet 

forecasting implemented by [51] and CNN-LSTM implemented by [55]. 
 

The results of the predicted PM10 coefficient of determination for the 25 LSTM- 

ACO models, the averaged coefficient of determination of the 8 LSTM models and 

coefficient of determination obtained by [49,48] is shown in Figure 19. The coefficient 

of determination presented in [49] equals to 0.839, which seems to indicate that the 

results obtained in this contribution are 16.508% better than a baseline MLP model. 

The coefficient of determination presented in [48] obtained through the spatio- 

temporal hybrid model equals to 0.92, which seems to are 6.52% better than a 
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baseline spatio-temporal hybrid model and 0.167% better than the LSTM recurrent 

network without the optimized model for PM10. 

 
 

 
Figure 19. PM10 coefficient of determination of LSTM models, LSTM-ACO models and MLP 

implemented by [49] and spatio-temporal hybrid model implemented by [48]. 
 

The results of the predicted PM2.5 coefficient of determination for the 25 LSTM- 

ACO models, the averaged coefficient of determination of the 8 LSTM models and 

the coefficient of determination obtained by [50,48,55] is shown in Figure 20. The 

averaged coefficient of determination for 8 cases in China presented in [50] equals 

to 0.79625, which seems to indicate that the results obtained in this contribution are 

22.441% better than a baseline MLP model. The coefficient of determination 

presented in [48] obtained through the spatio-temporal hybrid model equals to 0.87, 

which seems to indicate that the results obtained in this contribution are 11.49% 

better than a baseline spatio-temporal hybrid model. The coefficient of determination 
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presented in [55] obtained through the CNN-LSTM model equals to 0.906, which 

seems to indicate that the results obtained in this contribution are 7.06% better than 

a baseline CNN-LSTM model and 0.168% better than the LSTM recurrent network 

without the optimized model for PM2.5. 

 
 

 

Figure 20. PM2.5 coefficient of determination of LSTM models, LSTM-ACO models and MLP 
implemented by [50], spatio-temporal hybrid model implemented by [48] and CNN-LSTM 

implemented by [55]. 

The synthesized results for the LSTM-ACO models obtained for PM10 and PM2.5 

are shown in Table 5 and Table 6 respectively. These results include mean RMSE 

and its standard deviation, mean MAE and its standard deviation and mean 

coefficient of determination and its standard deviation for the 6 stations evaluated. 
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Table 5. Evaluation metrics of LSTM-ACO models predicting PM10 concentrations. 
 

Stations RMSE (μg/m3) MAE (μg/m3) Coef. of det. 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
SAG 5.726 0.013 4.341 0.008 0.981 0.000 

TLA 3.733 0.002 3.011 0.003 0.976 0.000 

MER 4.386 0.001 3.088 0.002 0.964 0.000 

XAL 5.474 0.045 4.268 0.028 0.979 0.000 

HGM 2.829 0.015 2.124 0.008 0.98 0.000 

CAM 4.039 0.006 3.084 0.006 0.985 0.000 

 
 

Table 6. Evaluation metrics of LSTM-ACO models predicting PM2.5 concentrations. 
 

Stations RMSE (μg/m3) MAE (μg/m3) Coef. of det. 

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 
SAG 3.523 0.019 2.683 0.006 0.976 0.000 

TLA 1.985 0.012 1.589 0.006 0.974 0.000 

MER 2.698 0.001 2.053 0.001 0.976 0.000 

XAL 3.87 0.006 2.932 0.002 0.965 0.000 

HGM 2.597 0.008 1.939 0.004 0.975 0.000 

CAM 2.863 0.003 2.131 0.005 0.984 0.000 

 
 

It is worth highlighting that the standard deviation results shown in Table 5 and 

Table 6 where in all of the cases the standard deviation represents less than 1% of 

the evaluation metric being evaluated. Having no outliers for both tables, the 

convergence of the LSTM-ACO models can be assured. These results may be 

translated to robust models with high replicability of both PM2.5 and PM10. 

The LSTM-ACO model was built by the ACO algorithm with the characteristics 

mentioned above using the 8 LSTM models as the ant’s search space and 

minimizing the cost in Equation (1). This is why it is necessary to compare the results 

for the LSTM models and the results for the LSTM-ACO models. The results shown 

are taken by Equation (15): 

𝑑𝑒𝑙𝑡𝑎 = (
𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒

) ∗ 100 (15) 

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 
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Where the optimized value refers to the LSTM-ACO models mean result and the 

initial value refers to the LSTM models mean result. 

These percentage differences are shown in Table 7 (PM2.5) and Table 8 (PM10). 

 
Table 7. Difference between LSTM-ACO model and LSTM model predicting PM2.5 concentrations. 

 

Stations RMSE MAE Coef. of det 
SAG -25.15% -30.17% +0.13% 

TLA -18.26% -18.46% +0.11% 

MER -22.24% -24.90% +0.15% 

XAL -14.51% -16.71% +0.30% 

HGM -8.48% -11.21% +0.16% 

CAM -8.04% -10.81% +0.16% 

 
 

Table 8. Difference between LSTM-ACO model and LSTM model predicting PM10 concentrations. 
 

Stations RMSE MAE Coef. of det 
SAG -9.01% -7.57% +0.00% 

TLA -4.63% -1.77% +0.11% 

MER -15.61% -18.59% +0.57% 

XAL -14.31% -15.85% +0.07% 

HGM -9.00% -11.89% +0.11% 

CAM -6.79% -9.93% +0.04% 

 

 
Table 7 and Table 8 show the impact in which the ACO algorithm improve an 

LSTM modeling capacity, for the case evaluated in this thesis, by a significant delta 

that varies between 4.63% - 25.15% for RMSE, and 1.77% - 30.17% for MAE. A 

possible explanation for the wide range of improvements shown is, LSTM-ACO 

models “merge” LSTM predictions and when these LSTM predictions differ a lot from 

each other, the LSTM-ACO algorithm makes a better “merging” between them. 

Summarizing, LSTM-ACO models describe closer predictions to real concentrations 

than LSTM models. 

B. Exceedance classification results 
Once the 8 LSTM models per particle and station were trained they were 

evaluated using precision (Equation 11), recall (Equation 12), accuracy (Equation 
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13) and f1-score (Equation 14). The mean results of the 8 LSTM models are shown 

in Table 9 (PM2.5) and Table 10 (PM10). 

 

 
Table 9. Evaluation metrics of LSTM models predicting PM2.5 exceedances. 

 

Stations Precision Accuracy Recall F1-Score 
SAG 83.77% 84.95% 75.41% 73.39% 

TLA 89.87% 91.87% 89.42% 88.63% 

MER 88.74% 91.38% 93.47% 90.47% 

XAL 84.27% 86.20% 91.68% 86.43% 

HGM 93.12% 93.52% 88.08% 89.81% 

CAM 94.13% 93.08% 91.50% 92.41% 

 

 
Table 10. Evaluation metrics of LSTM models predicting PM10 exceedances. 

 

Stations Precision Accuracy Recall F1-Score 
SAG 93.97% 95.46% 94.75% 94.22% 

TLA 91.81% 94.47% 93.61% 92.47% 

MER 94.07% 93.48% 93.02% 93.35% 

XAL 91.93% 91.41% 96.31% 93.81% 

HGM 95.06% 96.85% 89.23% 91.71% 

CAM 93.90% 95.32% 95.72% 94.58% 

 

 
The LSTM-ACO model was built by the ACO algorithm with the characteristics 

mentioned above using the 8 LSTM models as the ant’s search space and 

minimizing the cost in Equation (1). The improvement in the results of the evaluation 

metrics applied to the LSTM-ACO model are shown in Table 11 (PM2.5) and Table 

12 (PM10). The results shown are taken by a simple difference between the LSTM- 

ACO result and the LSTM result. 

Table 11. Difference between LSTM-ACO model and LSTM model predicting PM2.5 exceedances. 
 

Stations Precision Accuracy Recall F1-Score 
SAG +6.39% +9.28% +14.75% +16.77% 

TLA +1.57% +3.67% +7.25% +5.35% 

MER +1.21% +1.65% +0.97% +1.67% 

XAL +4.12% +6.60% +6.18% +6.45% 

HGM +2.26% +0.63% +3.63% +3.10% 

CAM +0.72% +1.61% +2.32% +1.92% 
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Table 12. Difference between LSTM-ACO model and LSTM model predicting PM10 exceedances. 
 

Stations Precision Accuracy Recall F1-Score 
SAG +1.71% +1.18% +0.93% +1.46% 

TLA +1.59% +1.08% +0.68% +1.37% 

MER +1.48% +1.23% +0.67% +1.26% 

XAL +0.09% +2.25% +2.93% +1.68% 

HGM +1.20% +0.41% +0.44% +1.08% 

CAM +0.26% +1.26% +2.26% +1.45% 

 

Table 11 and Table 12 show the impact in which the ACO algorithm improve an 

LSTM classification capacity, for the case evaluated in this thesis, by a significant 

delta that varies between 0.09% - 6.39% for precision, 0.41% - 9.28% for accuracy, 

0.44% - 14.75% for recall, and 1.08% - 16.77% for F1-score. Summarizing, LSTM- 

ACO classifications are more accurate, precise, and sensitive than LSTM 

classification results. 

Classification results obtained by [63-65] are described and compared with the 

ones obtained by the LSTM-ACO algorithm in Table 13. 

Table 13. LSTM-ACO results compared with other techniques. 
 

 
Author 

 
Year 

Used 
techniques 

Evaluation 
metrics 

Author’s 
results 

LSTM-ACO 
results 

Snezhana, 
et. al. 

 

2018 
 

CART 
 

Accuracy 
 

80.4% 
 

94.9% 

 

Biancofiore, 
F. et. al. 

 
2017 

 
MLR 

 

TN and TP 
percentage 

 

98% TN and 
57% TP 

 

94.3% TN and 
95.3% TP 

 
Dotse, S. et. 

al. 

 
 

2018 

 

Multiple 
computational 

techniques 

 
 

Recall 

 
 

80% 

 
 

94.6% 
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In Table 13 we can observe how the presented work compares with other projects 

classifying exceedances for PM2.5 and PM10 in which we can observe that most of the 

evaluation metrics show an improvement in this work. In the case of Biancofiore there 

is a -3.7% difference between TN results, but a + 38.3% difference in TP meaning that 

it is highly possible, depending on the sample size, that accuracy, precision, recall, and 

F1-Score would get better results in the present work. 

 
 

VII. CONCLUSIONS 
With the present work, a methodology was proposed, which consiste on taking 

raw PMx data, impute the data for all missing values. Based on this imputed data, the 

data is trained in order to obtain a series of LSTM models and finally improve the 

predicted PMx concentrations of the recurrent network using the Ant Colony 

Algorithm. The proposed LSTM-ACO model was tested through various evaluation 

metrics that demonstrated high repeatability and a very high correlation with the 

original PMx databases averaging a RMSE of 3.604 µg/m3, a MAE of 2.78 µg/m3 and 

a coefficient of determination of 0.976 taking into consideration the 6 stations for both 

PM10 and PM2.5. Similarly, the LSTM-ACO methodology to predict exceedances for 

PM10 and PM2.5 was tested through precision, accuracy, recall and F1-score that 

average 93.10%, 94.90%, 94.59% and 93.74% respectively, demonstrating a high 

repeatability as well. It is worth noting that the ACO getting improvements on the 

classification of exceedances of an averaged 2.57% in accuracy, 1.88% in precision, 

3.58% in recall and 3.63% in F1-score, and reducing the error by around 13.00% in 

RMSE and 14.82% in MAE. Referring to the previous results it is highly demonstrable 

that the hypothesis in this thesis is valid. 

These results seem to indicate a highly reliable and generalized model to 

predict PMx concentrations. For future work, it may be pertinent to apply this 

methodology in different sequential (time-dependent) phenomenon and evaluate 

their results. 
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Abstract—The lack of air quality affects popula- 
tion´s health exposed to it. This makes it a topic of 
current interest. There are different pollutants that 
contribute to this problem, such as particulate matter 
generated mainly by industrial development and 
traffic flow. The World Health Organization 
stipulates air quality guidelines globally based in 
their risk assessment which allows certain airborne 
pollution. This paper proposes a methodology to 
improve the prediction of exceedances of PM10 and 
PM2.5 made by a recurrent long-term/short term 
memory (LSTM) network using the Ant Colony 
Optimization (ACO) algorithm. Getting improve- 
ments of an averaged 2.57% in accuracy, 1.88% in 
precision, 3.58% in recall and 3.63% in F1-score 
using as reference the averaged results obtained with 
the LSTM network. 

Index Terms—Air pollution, Ant Colony Op- 
timization, Recurrent Neural Network, Predictive 
models 

 

I. INTRODUCTION 

A. Air Quality 

By seeking our comfort and development in 

society as human beings we have developed tech- 

nological advances that have facilitated transporta- 

tion, daily habits and the manufacture of various 

products. Just as these technological advances in- 

crease, so does environmental deterioration which 

significantly threatens our health and current de- 

velopment [1]. Among this environmental deteri- 

oration, one of the most challenging issues is the 

atmospheric pollution. By atmospheric pollution 

we can refer to the presence in the air of sub- 

stances or compounds in an amount that involves 

discomfort or risk to the health of the population 

exposed to it. This paramount importance affects 

all countries causing 4.2 million of premature 

deaths in rural and urban areas only in 2016, deaths 

from lung cancer, respiratory infections, strokes, 

ischemic heart disease and obstructive pulmonary 

diseases [2]. Particulate matter (PM) has become a 

relevant subject of research between these 

pollutants due to PM10 (particulate matter having 

an effective aerodynamic diameter smaller than 10 

µm) and its high correlation to the in- crease in 

hospital admissions for lung and heart disease [3]. 

PM2.5 (particulate matter having an effective 

aerodynamic diameter smaller than 2.5 µm) 

impacts more negatively population´s health 

exposed to it than PM10 since it penetrates more 

deeply in the respiratory system due to its smaller 

size [4]. 

An exceedance of a particle is determined when 

such particle exceeds some defined standard. The 
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air quality guidelines for particulate matter stipu- 

lated by the World Health Organization or WHO 

defines a daily average of 50 µg/m3 and 20 µg/m3 

annually for PM10 and a daily average of 25 µg/m3 

and 10 µg/m3 annually for PM2.5 as the permitted 

value of each, any value above the aver- ages 

mentioned is considered an exceedance [5]. 

B. Health problems related to environmental pol- 

lution 

The human being is exposed to atmospheric 

pollution since it can enter the organism through 

different routes, mainly through the respiratory 

route and ingestion [4]. The exhibition of the 

population to these pollutants in the air can cause 

serious physiological effects, which include se- 

rious illness and even death [3]. Even if the 

concentration of these air pollutants stay below 

international standards there is direct correlation 

between these concentrations and deterioration of 

pulmonary functions that could lead to some 

degree of asthma [6]. 

C. Recurrent Neural Networks 

One of the most powerful instruments within 

artificial intelligence refers to Artificial Neural 

Networks or ANN’s. ANN’s are mathematical 

models built based on biological neural networks. 

This means that the fundamental units of ANN’s 

are artificial neurons [7]. ANN’s are specially 

useful in modeling complex phenomena where the 

presence of non-linear relationships between 

variables is common [8]. 

The Long-Short Term Memory or LSTM algo- 

rithm is an algorithm that belongs to the recurrent 

neural networks or RNN’s. The RNN’s refer to 

neural networks that take as an input their previous 

state, this means that the neural network will have 

two inputs, the new information entered in the 

network and its previous state, shown in Figure 

1. With this model we are able to have short- term 

memory in the neural network [9]. These neural 

networks have applications in sequential 

predictions, that is, predictions that depend on a 

temporal variable. 

As shown in Figure 1 the LSTM model intro- 

duces a block of internal memory, composed of 

simple blocks connected in a specific way, each 

of them described as follows [10] : 

 

 
 

Fig. 1. Basic LSTM Model. Adapted figure from [10] 

 

 
• Input node: represented as "a1" weights the 

input values. 

• Input gate: represented as "a2" acts a block 
memory control. 

• Internal state: represented as "S" prevents the 
error from increasing. 

• Oblivion gate: represented as "a4" provides a 

method by which the network can adjust to the 

content of its internal state. 

• Output gate: The value that the model shown 

outputs is the internal state multiplied by the 

node represented as "a3". 

 

D. Swarm Intelligence 

One of the problem-solving areas covered by 

artificial intelligence is swarm intelligence. Swarm 

intelligence refers to the ability that arises from 

the interaction of simple units capable of pro- 

cessing information [11]. This concept suggests 

multiplicity, stochasticity, randomness and disor- 

der for problem solving. There are various models 

that follows this concept with different logical 

approaches, although having in common the in- 

teraction of their processing units. 

Among the concept of swarm intelligence, there 

are algorithms based on animal behaviors that 

demonstrate a social intelligence but not particular 

intelligence as an individual. Within these algo- 

rithms we can highlight the algorithm of the ant 

colony that is used for problems of optimization, 

ant colony optimization algorithm or ACO [12]. 

This algorithm is based on the pheromone paths 
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that real ants deposit and follow, this behavior is 

simulated through simple units that process infor- 

mation (artificial ants) which interact with each 

other through artificial pheromone. This algorithm 

works as follows, artificial ants randomly con- 

struct traces of pheromones through the possible 

solutions in the optimization problem combinato- 

rial. This trace of artificial pheromones’ weight or 

concentration is inversely related to the solution’s 

cost which is the one we are trying to reduce by 

optimizing the problem’s solution. The increase 

is the pheromones’ concentration will have as 

a consequence a tendency of the ants to take that 

route or solution, the traces not taken by the ants 

will have a tendency of losing their pheromones 

through the process of evaporation through time 

[13]. In Figure 2, a graphic descrip- tion of ants’ 

behavior is shown. 

 

 

 
Fig. 2. Ants’ behavior in ACO algorithm and their pheromone 
traces. (own authorship) 

 

 

 

In Figure 2 it can be seen how the first iteration 

(a) the artificial ant chooses a route or solution 

randomly, but in such a way that the algorithm 

iterates (b) the weight of the pheromone traces, 

in Figure 2 represented by the thickness of the 

dotted red line, the most optimal route changes 

and gains more and more weight. In (c) it is shown 

how the pheromone trail of less optimal paths 

disappear completely. This algorithm belongs to 

metaheuristic algorithms which refer to algorithms 

that are design to solve combinatorial problems. 

 

II. MATERIAL AND METHODS 

A. Materials 

The metropolitan area of the valley of Mexico 

has a constant atmospheric monitoring network 

called Automatic Atmospheric Monitoring Net- 

work (or RAMA for its acronym in Spanish). There 

are 24 stations that belong to this net- work. Each 

of these stations register the concen- trations of 

different pollutants, including PM10 and PM2.5, 

among others [14]. This database is maintained and 

updated by RAMA. 

The stations used in this work were chosen 

taking into account two considerations: 

• The availability of PM10 and PM2.5 data from 
2012 to 2019. 

• The available data has a maximum of 30% 

missing data during the whole evaluated pe- 

riod. Otherwise, the modeling and prediction 

may be biased. 

Based in these considerations 6 stations were 

chosen. These stations are San Agustín (SAG), 

Tlanepantla (TLA), Merced (MER), Xalostoc 

(XAL), Camarones (CAM) and Hospital General 

de México (HGM). The locations of these stations 

are shown in Figure 3 painted in yellow. 

 

Fig. 3. All stations available in RAMA (red), stations used in 
this work (yellow) [14]. 

 

The databases for these stations available in 

RAMA give the concentration in µg/m3 which is 

captured every hour. The period chosen for this 

work is from 2012 to 2019 given that the stations 

chosen meet the requirements mentioned above 

only during this period. The ideal size of each of 

these databases should be 70,080. Nevertheless, all 

of the stations have a certain percentage of missing 
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data which are in the range of 13.29% to 26.35%. 

Since it is necessary for the LSTM algorithm to 

be trained by a database without missing data an 

imputation algorithm needed to be implemented. 

B. Methodology 

To solve the missing data problem the Multi- 

variate Imputation by Chained Equations or MICE 

algorithm was applied to the data base. Consider 

the n-dimensional vector x refering to the database 

combining the no -dimensional vector xo of cap- 

tured values and the nm-dimensional vector xm of 

missing values. For each variable x with missing 

values, in the first step the missing values are 

initialized with a simple imputation where they 

are replaced by the mean of the captured values. 

In the second step, consider one variable y and 

linear-regress the observed values in vector yo on 

the other variables in an imputation model. In the 

third step, the missing values in vector ym are 

replaced with predictions from the estimated 

imputation model and, when y is subsequently used 

as an independent variable in the imputation model 

for another variable, both the observed and these 

imputed values will be used. In the fourth step, the 

previous two steps are repeated for each variable 

with missing data to complete a cycle, and 

multiple cycles are then performed with the 

imputations being updated at each one until 

convergence [15] . 

Once the database is full with real and impu- 

tated data it is ready to train the LSTM model 

design and construction which is based in the au- 

thor’s work [10]. The first step is to normalize the 

data into a scale from -1 to 1, this normalization 

intends to facilitate training in the LSTM model 

by decreasing the non-linearity of the data. 

The network used for modeling consists in: 

• Layer 1 consists of 50 LSTM neurons, which 

will take the first 50 data and expand them 

to feed the second layer, generating a record 

of them. 

• Layer 2 is the hidden layer that consists in 256 
LSTM neurons. 

• Layer 3 is a simple neuron, which based on 

the previous recorded data will generate a new 

value, successively. 

The predictive neural network of the model con- 

sists in: 

 

• Layer 1 each neuron receives a value from the 

input data vector which generates an output 

response. 

• Layer 2 receives the results of the first net- 

work and generates a classification, given that 

initially the days with exceedances are known. 

The network uses a continuous re- gression to 

adjust its weights and obtain the expected 

result. 

The complete model of the LSTM predictive net- 

work is shown in Figure 4 where the first three 

layers correspond to the modeling network and 

layer 4 and 5 correspond to the classification 

network. 

 

 
Fig. 4. Complete predictive model [10]. 

 
The construction of the ACO algorithm needs 

to consider that the search space in which the ant 

colony will look for the optimized model is a 

matrix of n by m, n being the quantity of LSTM 

algorithms trained and m being the vector size that 

describes the days’ concentration prediction from 

the model. The ACO algorithm has to select one of 

these daily concentrations given by one of the 

multiple LSTM models to have as a result an 

optimized LSTM-ACO model. 

To accomplish these the cost matrix must be 

initialized. The cost matrix refers to a matrix that 

describes how "distantly" distributed the nodes in 

the problem are, these "distance" refers to the vari- 

able trying to be minimized or maximized [16]. For 

this work the variable being optimized is the 

difference between the evaluated value with the 

centroid of the n LSTM-given values, this means 

that ants will tend to go where the concentration 

of these values given by the LSTM algorithm is 

higher, the cost matrix was generated using the 
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following equations: 
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matrix describing the cost between node i and 

node j. Also αrefers to the weight that pheromone 

 

 

yi j · · · y1k  
cos t matrix =  ...................................  

 
(2) 

structed the pheromone matrix is updated through 

the following equation:     
 

  a f 1 
Where yi j refers to the cost value of the i-th row 
and the j-th column. In this work the columns refer 

to the day being evaluated and rows refer to the 

prediction of the LSTM model being evaluated. n 

Where Lf refers to the summation of all costs in 

the trajectory that are part of the solution of ant 

f. 
g 

refers to the quantity of LSTM models included in 

the algorithm and k refers to the quantity of days 
τf i j  =  (1 ρ) τi j + τf i j 

f =1 

(6) 

that compose the prediction. 

The pheromone matrix needs to be initialized 

next, this matrix describes how pheromones are 

distributed in each of these nodes. The pheromone 

matrix is initialized with a single value chosen for 

all the matrix or with custom values chosen by the 

user, this method is used if the user wants to give 

ants a preference of a solution. For this work the 

pheromone matrix is going to be initialized with 

1 single value tau calculated with the following 

equation: 

Where ρrefers to the evaporation rate of the 

pheromones and g to the quantity of ants. 

A flowchart of the entire methodology is shown 

in Figure 5. Where the sections describing pre- 

processing of data and LSTM methodology where 

taken from [10]. 

l
ı 

1 X X \
ı
 

Z i=1  j=1 l 

Once the matrices have been initialized the ini- 

tialization of the ant colony is next, in which each 

ant is going to refer to a solution of the problem 

where the ant will be constructing the solution 

by deciding which node it is going to choose next. 

This decision is made using the probability 

described in the following equation: 

 

 

 

 

 
Fig. 5. Methodology used. 

 
C. Evaluation 

P = 
τi j 

 α  
η  

  β 
To evaluate the LSTM-ACO model and suc- 

cessfully compare it with the previous LSTM 
i j X   

τi j 
 α   

ηi j  

  β (4) 
model, the RMSE, accuracy, precision, recall and 

F1-score were implemented. The comparison was 

Where Pi j refers to the probability of traveling 

the path between node i and node j and τi j  refers 

to the concentration of pheromones between node 

i and node j, this pheromone concentration is 

obtained from pheromone matrix and its update in 

made between the resulting LSTM-ACO model 

and the mean of the measurements between the n 

LSTM models trained. The RMSE represents the 

standard deviation between actual and predicted 

values as the following equation describes: 

each iteration. Where ηi j refers to the feasibility 
between node i and node j. This feasibility is 

obtained through the reciprocal value of the cost 

 
RMSE  = 

v, 
1 X

 
 

 

n 

(Y Mi Y Ri )2 

i=1 

 
(7) 

 

 

 

 

(1) concentration will be given and βrefers to the 

weight that feasibility will be given [13]. 

When the ants have the solutions fully con- 

n 

tau = 10 × (3) 

τ i j = 
L

 
f 

(5) 
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Where YMi refers to the i-th element of the 

prediction model and YRi refers to the i-th element 

of the real data. 

RMSE is a representation of how close distance 

between the prediction and real values are, this 

value will be used to decide the optimal number 

of LSTM models to use as the search space in the 

ACO algorithm. 

A classification evaluation was implemented in 

which a confusion matrix is calculated with 4 

different values that are described below: 

• True positive or TP: Which is interpreted as 
predicted positive and it’s true. 

• False positive or FP: Which is interpreted as 
predicted negative and it’s true. 

• True negative or TN: Which is interpreted as 
predicted positive and it’s false. 

• False negative or FN: Which is interpreted as 
predicted negative and it’s false. 

These measurements fit right with this classifica- 

tion problem because it may have 1 of 2 possible 

classifications, exceedance or not exceedance, 50 

µg/m3 daily permisible for PM10 and 25 µg/m3 

daily permisible for PM2.5. Each of the following 

equations describe the measurements implemented 

for this classification problem: 

 
TABLE I 

INITIAL  MISSING  DATA  AND  EXCEEDANCES  PER  STATION 

 

Station Initial missing data Days with Exc. 
PM2.5 PM10 PM2.5 PM10 

SAG 26.35% 26.35% 29.33% 38.94% 
TLA 19.27% 19.24% 35.96% 35.96% 
MER 13.64% 13.29% 43.27% 49.52% 
XAL 18.28% 18.21% 47.95% 67.64% 
HGM 16.49% 16.49% 33.04% 19.69% 
CAM 24.02% 24.02% 47.09% 42.30% 

 
 

To decide the optimal number of LSTM models 

that make up the ACO search space an experiment 

was implemented. This experiment consists in run 

the ACO algorithm using a search space of 3 

LSTM models and then comparing the RMSE of 

the LSTM-ACO model to the mean RMSE of 

the LSTM models. Subsequently, 1 LSTM will 

be concatenated to the search space and the process 

will be repeated. The objective of this 

experimentation is to find a correlation between the 

quantity of LSTM that compose the search space 

with the RMSE, these results are shown in Figure 

6. 

Precision   =  
TP 

TP + FP 

 
Recall   =  

TP 

TP + FN 

 

Accuracy = 
TP + T N

 
Total 

 

F1 score =
 2 ∗ TP 

 

(2 ∗ TP + FP + FN ) 

III. RESULTS AND DISCUSSION 

(8) 

 

 
(9) 

 

 
(10) 

 

 
(11) 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 6. RMSE improvement percentage vs number of LSTM 
models that compose the search space. 

As mentioned in the materials section above, 

the only stations considered for this work were 

the ones with less than a 30% of data missing 

in both particles evaluated, PM2.5 and PM10. 

After applying the MICE algorithm the days with 

exceedances following the WHO guidelines were 

calculated. Initial missing data and days with 

exceedances are shown in Table I per particle and 

station. 

In Figure 6 the data shown represents the dif- 

ference between the LSTM-ACO model RMSE 

and the mean RMSE of the LSTM models being 

evaluated. The number LSTM models that this 

experiment proves to be the optimal is 8. This 

experiment was implemented using the PM10 data 

from the Merced station which was chosen because 

it is the station with less missing PM10 data, the 

missing PM10 data represented 13.29% 
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from the chosen range, 2012 to 2019. 

Once the quantity of LSTM models was de- 

 
TABLE III 

EVALUATION  METRICS  OF  LSTM MODELS  PREDICTING 
PM2.5  EXCEEDANCES. 

fined, an experiment to find an efficient combi-    

nation of parameters for the ACO algorithm was 

developed. The definition of efficiency considered 

in the experiment was to reach the least RMSE 

difference between the obtained model and the 

imputated data using the least amount of time. 

This experiment was repeated 25 times to observe 

repeatability through the standard deviation of the 

RMSE results per combination of parameters, each 

of the results shown in Table II is the mean 

of these 25 repetitions. The experiment consisted 

in combining values for the number of ants (g 

in Equation (6)) in the algorithm and for the 

evaporation rate ( ρin Equation (6) ), the weight 

of the pheromone concentration (αin Equation (4) 

) and the weight of feasibility ( βin Equation (4) 

) were defined as 1 because there was no interest in 

giving the algorithm any bias towards any of them. 

The results considering a quantity of ants of 5,10 

and 25, and the evaporation rate of 1%,5% and 

10% are shown in Table 2, these test was 

developed using PM10 data of station in Merced. 

The stop condition considered for the ants is to 

reach a 100 iterations without finding a better 

solution than the best one found. 

 
TABLE II 

EVAPORATION  RATES  AND  ANT  QUANTITIES  TESTED 

 
 

No.    ρ= 1% ρ= 5% ρ= 10% 

Station  Precision Accuracy Recall F1- 
score 

SAG 83.77% 84.95% 75.41% 73.39% 
TLA 89.87% 91.87% 89.42% 88.63% 
MER 88.74% 91.38% 93.47% 90.47% 
XAL 84.27% 86.20% 91.68% 86.43% 
HGM 93.12% 93.52% 88.08% 89.81% 

CAM 94.13% 93.08% 91.50% 92.41% 

 

TABLE IV 
EVALUATION  METRICS  OF  LSTM MODELS  PREDICTING 

PM10  EXCEEDANCES. 
 

Station Precision Accuracy Recall F1- 
score 

SAG 93.97% 95.46% 94.75% 94.22% 
TLA 91.81% 94.47% 93.61% 92.47% 
MER 94.07% 93.48% 93.02% 93.35% 
XAL 91.93% 91.41% 96.31% 93.81% 
HGM 95.06% 96.85% 89.23% 91.71% 

CAM 93.90% 95.32% 95.72% 94.58% 

 

 
The LSTM-ACO model was built by the ACO 

algorithm with the characteristics mentioned above 

using the 8 LSTM models as the ant’s search space 

and minimizing the cost in Equa- tion (1). The 

improvement in the results of the evaluation 

metrics applied to the LSTM-ACO model are 

shown in Table V (PM2.5) and Table IV (PM10). 

The results shown are taken by a simple difference 

between the LSTM-ACO result and the LSTM 

result. 

t(s)  rms std.    t(s)    rms std.    t(s)    rms std. 
5 14.89 4.40 0.011 10.78 4.39 0.002 7.46 4.39 0.001 
10 25.42 4.39 0.006 21.38 4.39 0.002 16.85 4.39 0.001 
25 59.84 4.39 0.007 46.28 4.39 0.002 30.84 4.39 0.001 

 
Results in Table II presented ρ= 10% and ants 

=5 as the most efficient combination of parameters 

by the less RMSE reached, 4.39, in the least 

amount of time, 7.46 seconds. The repeatibility of 

this combination of parameters is considered as 

high as the standard deviation of the 25 RMSE’s 

obtained is 0.001. 

Once the 8 LSTM models per particle and 

station were trained they were evaluated using 

precision (Equation (8)), accuracy (Equation (10)), 

recall (Equation (9) ) and f1-score (Equation (11) 

). The mean results of the 8 LSTM models are 

shown in Table III (PM2.5) and Table IV (PM10). 

 

TABLE V 
DIFFERENCE  BETWEEN  LSTM-ACO MODEL  AND  LSTM 

MODEL   PREDICTING   PM2.5  EXCEEDANCES. 
 

Station Precision Accuracy Recall F1-score 
SAG +6.39% +9.28% +14.75% +16.77% 
TLA +1.57% +3.67% +7.25% +5.35% 
MER +1.21% +1.65% +0.97% +1.67% 
XAL +4.12% +6.60% +6.18% +6.45% 
HGM +2.26% +0.63% +3.63% +3.10% 
CAM +0.72% +1.61% +2.32% +1.92% 

 

 

IV. CONCLUSIONS 

With the present work, a methodology was pro- 

posed to take raw PMx data, impute the database to 

complete it, based on this imputed data train a 

series of LSTM models and finally improve the 

predicted classifications of the recurrent network 
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TABLE VI 

DIFFERENCE  BETWEEN  LSTM-ACO MODEL  AND  LSTM 
MODEL   PREDICTING   PM10  EXCEEDANCES. 

 

Station Precision Accuracy Recall F1-score 
SAG +1.71% +1.18% +0.93% +1.46% 
TLA +1.59% +1.08% +0.68% +1.37% 
MER +1.48% +1.23% +0.67% +1.26% 
XAL +0.09% +2.25% +2.93% +1.68% 
HGM +1.20% +0.41% +0.44% +1.08% 
CAM +0.26% +1.26% +2.26% +1.45% 

 
 

using the Ant Colony Algorithm. The proposed 

LSTM-ACO model was tested through various 

evaluation metrics that demonstrated high repeat- 

ibility in precision, accuracy, recall and F1-score 

that average 93.10%, 94.90%, 94.59% and 93.74% 

respectively. These averages were calculated tak- 

ing into consideration both particles for every 

station evaluated in this work, which seems to 

indicate that a highly reliable, generalized PMx 

model to predict exceedances may be achieved. 

To improve this predicted classifications it 

would be helpful to carry out a characterization 

of the whole methodology evaluating different pa- 

rameter combinations. To make a complete charac- 

terization it is proposed to apply this methodology 

in different phenomenons which have a sequential 

nature in their and evaluate their results. 
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