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Abstract 
 

Monocular depth estimation is becoming a very interesting problem in computer vision to 

solve due to the several tasks that require as an input the spatial structure of a scene, such 

as 3D reconstruction, 3D object detection, localization and mapping. The most effective 

techniques for monocular depth estimation are based on large deep learning-based 

architectures that cannot be deployed on systems with limited computational resources and 

therefore preventing its use in application fields where the advantages of monocular 

cameras (i.e., low cost, small size, low weight and low-energy consumption) could also be 

exploited. Under this context, the research of low-latency deep learning architectures for 

monocular depth estimation is a very promising topic for which just a few methods have 

been proposed until now. In this master thesis, a very low-latency fully convolutional 

network is proposed. The quantitative results on the NYU-Depth V2 dataset show that the 

proposed method is 1.6x faster than the state-of-the art related method while also reducing 

the RMSE metric by 1.16%. 
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Resumen 
 

La estimación de profundidad monocular se está convirtiendo en un problema muy 

interesante de resolver en la visión por computadora debido a las diversas tareas que 

requieren como entrada la estructura espacial de una escena, como la reconstrucción 3D, la 

detección de objetos 3D, la localización y el mapeo. Las técnicas más efectivas para la 

estimación de la profundidad monocular se basan en grandes arquitecturas basadas en 

aprendizaje profundo que no se pueden implementar en sistemas con recursos 

computacionales limitados y, por lo tanto, impiden su uso en campos de aplicación donde 

las ventajas de las cámaras monoculares (es decir, de bajo costo, tamaño pequeño, etc. bajo 

peso y bajo consumo de energía) también podrían aprovecharse. En este contexto, la 

investigación de arquitecturas de aprendizaje profundo de baja latencia para la estimación 

de la profundidad monocular es un tema muy prometedor para el que hasta ahora solo se 

han propuesto pocos métodos. En esta tesis de maestría, se propone una red totalmente 

convolucional de muy baja latencia. Los resultados cuantitativos en el conjunto de datos 

NYU-Depth V2 muestran que el método propuesto es 1.6 veces más rápido que el método 

relacionado con el estado de la técnica y, al mismo tiempo, reduce la métrica RMSE en un 

1.16%. 
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CHAPTER 1 

Introduction 
 

Depth estimation is considered one of the most fundamental problems in the field of 

computer vision as it is an essential function for the realization of several tasks such as 

localization, mapping, motion planning, 3D object detection and augmented reality 

applications. Overall, depth estimation refers to the set of techniques and algorithms 

designed to obtain a representation of the spatial structure of a scene. In other words, the 

main objective of the depth estimation methods is to achieve a representation of the absolute 

or relative distance from the 3D sensor to each point of the scene of interest (Zhao, Sun, 

Zhang, Tang, & Qian, 2020). 

 It is well known that depth estimation from digital images has been based primarily on 

a stereoscopic vision approach, which requires a pair of images captured from the same 

scene but from different angles in order to triangulate the 3D position of each pixel in the 

image. Nonetheless, in the last few years, there has been an increasingly interest in monocular 

depth estimation, i.e., using a single RGB input image. The latter refers to a very complex and 

inherently ambiguous problem since there is no correlation between the intensity value 

(color saturation) and the relative depth associated with each pixel in an RGB image (Yang, 

2017). 

The task of estimating relative depth maps from a single RGB image can be understood 

as a highly non-linear transformation that requires the extraction of relevant features from 

the input RGB image to generate a representation of latent space, from which, the relative 

depth map corresponding to the input image can be reconstructed. Considering the above, 

pioneering studies in this line of research began to consider machine learning as a promising 

approach to solve the problem in question. The main reason of the latter has been due to the 

fact that machine learning is precisely the branch of artificial intelligence that studies 

approximation methods to estimate highly complex functions through the development of 

statistical and connectionist models of certain phenomena for which a large amount of data 

is available (Bhoi, 2019). 
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In particular, recent advances in deep learning related to convolutional neural networks 

(CNNs) have shown that estimating relative depth from a single input image is feasible, a 

factor which has further aroused the interest of the scientific community (Eigen, Puhrsch, & 

Fergus, 2014). 

 

1.1  Problem description 

As mentioned previously, depth estimation is considered an essential function for 

perception subsystems that require obtaining a representation of the spatial structure of a 

scene. A clear example is that of embedded processor-based autonomous systems, whose 

main tasks such as localization, mapping, motion planning and 3D obstacle detection 

depend closely on a previous prediction of a depth map. 

Despite the fact that there have been recent advances in depth estimation from a single 

RGB image, the state-of-the-art deep learning architectures have been found to be too large 

for real-time inference on an embedded platform (Poggi, Aleotti, Tosi, & Mattoccia, 2018). 

This makes it impossible to deploy these emerging algorithms in application fields where 

the computational resources (e.g., processing power, RAM, etc.) are very restricted. 

Moreover, it should be noted that almost any practical software system consists of a complex 

pipeline where several programs are executed in a multi-process approach. The latter 

implies that the embedded processor would not be exclusively dedicated to the monocular 

depth estimation task, an aspect that further aggravates the problem in question. 

At the time of writing this thesis, very few studies have been proposed to tackle the 

monocular depth estimation problem using low-latency deep learning architectures. From 

this perspective, it can be said that there is a lack of research efforts on the convergence of 

monocular depth estimation and the edge computing paradigm.  

 

1.2  Justification 

Currently, there are two popular approaches for depth estimation. On the one hand, the 

LIDAR (Light Detection and Ranging) sensor is considered highly precise and reliable. 

Nevertheless, it is quite expensive (around $75,000 USD), which makes it unsuitable for low-

budget projects (You et al., 2020). Additionally, the LIDAR sensor is a fragile component that 

consists of an electromechanical assembly that requires periodic maintenance and 

calibration. On the other hand, stereo-cameras are also commonly used to estimate depth 

through triangulation techniques. However, this approach requires a laborious hardware 

setup and continuous calibration schemes (Larsson, 2019). 
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The limitations and disadvantages of the approaches above-mentioned have driven the 

research and development of maintenance-free, cheaper and power-efficient alternatives for 

depth estimation. Among these alternatives, monocular depth estimation is currently 

regarded as one of the most promising approaches to that end. The latter has been mainly 

due to the fact that deep learning-based methods have ultimately shown outstanding 

performance in computer vision problems and monocular depth estimation is no exception. 

As already mentioned, recent developments have demonstrated that relative depth 

information can be recovered from a single RGB image using end-to-end deep learning 

techniques (Zhao et al., 2020). 

The main purpose of developing monocular depth estimation techniques is not to 

replace the previously mentioned approaches but to provide a low-cost alternative for 

specific use cases. Moreover, the development of low-latency monocular depth estimation 

algorithms would enable its use in application fields where the advantageous characteristics 

of monocular cameras such as high-energy efficiency (i.e., low-energy consumption), small 

size and low weight could be exploited. These camera features are expected to keep 

improving continuously during the next decade and more importantly, many common 

devices and machines are now capable of supporting monocular camera functionalities (e.g., 

eyeglasses, smartphones, smartwatches, drones, motor vehicles, etc.). These are just a few 

examples to illustrate that adding monocular cameras to common devices is becoming a 

disruptive trend in many sectors involved with the research and development of goods and 

services. 

On the other hand, low-latency monocular depth estimation techniques could contribute 

to the democratization of software-based systems that rely on a 3D perception pipeline. For 

instance, the technology behind some advanced active safety features in vehicles that would 

help to prevent or mitigate road crashes is currently quite expensive mainly due to the 

LIDAR sensors that are now being used (You et al., 2020).  

Similarly, in recent years, research efforts have been made to use augmented reality 

devices for cognitive prosthesis to help blind people navigate unfamiliar spaces (Liu, Stiles, 

& Meister, 2018). The main drawback of the latter is also the price of the augmented reality 

device. These are just a few examples where low-cost depth estimation techniques, such as 

monocular depth estimation, have the potential to democratize technologies that could 

improve human safety and ultimately increase the quality of life. 
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1.3  Hypothesis 

By using deep learning techniques, it is feasible to decrease the error metric for relative 

depth estimation from monocular images in embedded systems. 

 

1.4  Objectives 

1.4.1 General objective 

Develop, implement and evaluate an algorithm for relative depth estimation from 

monocular images in an embedded system using deep learning-based methods. 

 

1.4.2 Specific objectives 

▪ Develop, implement and train the deep learning algorithm for relative monocular 

depth estimation using a personal computer. 

▪ Select the embedded system with the necessary specifications to carry out the 

inference stage. 

▪ Define the evaluation metrics relevant to relative monocular depth estimation. 

▪ Develop standard performance tests that can verify that the error metric has been 

improved. 

▪ Execute the standard performance tests on a personal computer and on an 

embedded system. 

▪ Validate the obtained results by comparing against some established method. 

 

1.5  Scope and limitations 

1.5.1 Scope 

▪ Follow a hand-crafted design approach to develop low-latency deep learning 

models for a pixel-level regression task. 

▪ Select a state-of-the-art encoder to perform the feature extraction process. 

▪ Train the proposed models using a single benchmark dataset for monocular depth 

estimation. 

▪ Perform the model validation in the standard way as defined by prior state-of-the-

art studies (i.e., using official splits). 

▪ The model deployment considers a single pre-selected embedded system. 
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1.5.2 Limitations 

▪ Low-latency architecture design from scratch is out of the scope of this thesis. 

▪ Lack of a high-performance computer limited the ability to carry out exhaustive 

model trainings. 

▪ Inability to use the google colab tool to accelerate the model training since its usage 

is limited to smaller datasets (<15Gb). 

▪ No post-processing steps to improve latency will be considered since it is well 

known that such techniques could impact the model performance. 

▪ K-fold cross validation is not considered due to the lack of computational resources. 

▪ Hyperparameter optimization techniques are not considered due to lack of high-end 

computational resources and time constraints. 

▪ No video capture devices were considered for testing. 

 

1.6  Thesis organization 

The above introduction offers a brief overview of the research topic, describes the problem 

that is addressed in this thesis and the motivation behind it. Chapter 2 presents the literature 

survey of classical and state-of-the-art studies that are related to the specific research topic. 

Chapter 3 describes the theoretical background and fundamental concepts that are relevant 

to monocular depth estimation. In this sense, Chapter 3 establishes the formal framework 

that supports the research methodology.  

Chapter 4 gives a detailed description of the scientific method’s steps that were 

developed to test the hypothesis that was initially stated. Chapter 5 presents the quantitative 

and qualitative experimental results that were obtained by evaluating several monocular 

depth estimation models on the validation dataset on an embedded system. Furthermore, 

the obtained results are compared against a well-established state-of-the-art method. Lastly, 

a thorough discussion of the obtained quantitative and qualitative results is presented. In 

particular, the results are analyzed and interpreted from a theoretical standpoint in order to 

explain the causal relationships that were found between the different factors (i.e., 

architectural design and hyperparameter values) that govern the performance of low-

latency deep learning algorithms for monocular depth estimation.   

Finally, Chapter 6 presents the conclusion of the research in terms of the contributions 

and provides the future work that may further improve the methodology. 
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CHAPTER 2 

Literature Review  
 

This chapter first describes the classic literature that is relevant to three-dimensional 

reconstruction in order to provide enough context to the reader. The second section of this 

chapter presents the state-of-the-art research papers that are relevant to monocular depth 

estimation. Likewise, the methods that use low-latency algorithms to solve the problem in 

question are highlighted.  

 

2.1  Three-dimensional reconstruction 

As already stated, recovering 3D information from a scene represents one of the most 

fundamentals problems in the field of computer vision and its solution can be found 

through very diverse techniques. According to (Rocchini, Cignoni, Montani, Pingi, & 

Scopigno, 2001), the techniques for 3D reconstruction can be divided into two large groups: 

contact acquisition and non-contact acquisition (see Fig. 2.1).  

 

 
Fig. 2.1: Taxonomy of 3D information acquisition techniques. Adapted from (Rocchini et al., 2001). 
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The contact acquisition techniques are divided into destructive and non-destructive. The 

destructive techniques include slice-based methods by which it is possible to reduce the 

dimension of the analysis by successively sectioning an object into 2D shapes. On the other 

hand, the non-destructive techniques consist in using prismatic or revolute instruments that 

record the coordinates of the object using a probe (Giancola, Valenti, & Sala, 2018). 

In contrast, the non-contact techniques are of special interest since these avoid any 

physical contact with the object to be measured and, therefore, eliminate any risk of 

inducing mechanical stress or damage to it. Within this group of techniques, there are 

transmissive and reflexive. The former uses the projection of electromagnetic signals toward 

the object to identify changes in density within it, while the latter process the reflection of 

the signal emitted by the object. In particular, reflective techniques can be non-optical and 

optical. Non-optical techniques refer to those that use signals that are not included in the 

visible and infrared spectrum, e.g., RADAR-based systems use radio waves as the type of 

electromagnetic signal (Giancola et al., 2018). 

On the contrary, optical techniques operate in the visible and infrared wavelength 

spectrum to obtain information from a scene. In turn, optical techniques for shape 

acquisition can be divided into passive and active methods (see Fig. 2.2). Passive methods 

use the reflection of natural light on a given target to measure its 3D shape. In other words, 

passive methods do not interfere with the object being measured, they just use a sensor to 

measure the radiation reflected by the surface of the object and infer its 3D structure through 

image understanding. For instance, stereoscopy uses the theory of triangulation and 

epipolar geometry to search for homogeneous multi-camera features to reconstruct a 3D 

shape (Giancola et al., 2018). 

 

 
Fig. 2.2: Classification of optical techniques. Adapted from (Rocchini et al., 2001). 
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On the other hand, the monocular approach exploits machine learning methods for 

passive depth estimation using a single RGB input image, thus avoiding acquisitions from 

multiple points of view for this purpose (Poggi et al., 2018). 

By contrast, active methods are characterized for using an external light source that 

provides additional information to improve the acquisition of 3D shapes. These techniques 

are based on the disturbance of the detected environment to infer the corresponding depth 

maps. Among the most relevant active methods are LIDAR systems, whose operating 

principle is the same used in TOF (Time-of-Flight) systems. The operating principle consist 

on estimating depth maps by measuring the delay time between the emission of an 

electromagnetic pulse and its reception through the reflected signal. Interferometry-based 

methods are another example of active techniques. These consist on the projection of fringe 

patterns to estimate the 3D shapes and a subsequent iterative spatial refinement of the 

projected pattern (Giancola et al., 2018). 

Despite the effectiveness and high reliability of the active techniques, passive techniques 

have been gaining greater interest in recent years. In large part, this is due to the fact that 

the implementation of passive optical techniques is much cheaper since they do not require 

specific lighting conditions for their operation (Molleda, 2008). 

 

2.2  State-of-the-art 

This thesis work aims to study the monocular passive technique by using low-latency 

machine learning methods for relative depth estimation. This passive technique is better 

known as monocular depth estimation and consists in predicting relative a depth map from 

a single RGB input image. As mentioned above, the monocular technique is regarded as an 

emerging research topic and is currently considered as a promising approach due to its 

advantages over other alternatives. Furthermore, the recent advances in the field of 

Artificial Intelligence have boosted the research and development of machine learning 

algorithms for monocular depth estimation (Bhoi, 2019). 

The initial works on relative depth estimation using monocular images are based on 

traditional machine learning algorithms. In particular, Saxena, Chung, and Ng (2006) 

proposed the first study related to monocular depth estimation by using hand-crafted image 

features and discriminative training of a MRF (Markov Random Field) model. However, 

their method was characterized by poor performance in uncontrolled environments. On the 

other hand, Karsch, Liu, and Kang (2012) suggested a method based on K-NN (K-Nearest 

Neighbors) and SIFT Flow for depth estimation in images with static background. Despite 
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the progress that these studies represented, both methods are known to require laborious 

alignment procedures. 

As already mentioned, it was not until the implementation of deep learning techniques 

that significant advances were made in this line of research (see Table 2.1). One of the first 

studies that proposed this approach was (Eigen et al., 2014). Their proposal consists in using 

two coupled convolutional neural networks to infer the depth associated with each pixel in 

an image. This work also stood out as the first to introduce the concept of multi-scale 

information in monocular depth estimation. 

Later studies, such as (Liu, Shen, Lin, & Reid, 2016), focused on obtaining sharper visual 

transitions by incorporating a CRM (Conditional Random Field) model as a regularization 

stage. At the same time, Laina, Rupprecht, Belagiannis, Tombari, and Navab (2016) 

proposed the use of fully convolutional networks (also known as FCNs) with residual 

connections for monocular depth estimation. In contrast to the previous studies, this 

approach does not require additional post-processing or other refinement steps. From this 

point in time, the fully convolutional network architecture began to establish itself as one of 

the most promising deep learning-based methods in this line of research. 

Subsequent works to (Laina et al., 2016) are mostly based on FCNs and have been 

focused on improving the accuracy metric in various ways, e.g., through the inclusion of 

semantic information in the training stage (Gurram, Urfalioglu, Halfaoui, Bouzaraa, & 

López, 2016), the use of dilated convolution techniques to improve the overall robustness of 

the architecture (Fu, Gong, Wang, Batmanghelich, & Tao, 2018) or by defining novel 

perceptual loss functions to improve the retention of local details (Kumari, Jha, Bhavsar, & 

Nigam, 2019). Common to the deep learning-based methods mentioned above is the 

supervised learning strategy, which requires labeled data during the training stage. 

 

Table 2.1: State-of-the-art methods for non-efficient monocular depth estimation. 

Author Model Architecture Learning strategy 

(Saxena et al., 2006) MRF N/A Supervised 

(Eigen et al., 2014) CNN GCSN-LFSN Supervised 

(Liu et al., 2016) CNN DCNF Supervised 

(Godard et al., 2017) CNN FCN Unsupervised 

(Gurram et al., 2018) CNN DSC-DRN Supervised 

(Fu et al., 2018) CNN DORN Supervised 

(Pilzer et al., 2018) CNN CycleGAN Unsupervised 
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On the other hand, the unsupervised learning strategy is the orthogonal approach to the 

one described above. This approach attempts to exploit the potential of deep learning 

methods without the use of labeled data. In this sense, (Godard, Mac Aodha, & Brostow, 

2017) proposed depth estimation as an image reconstruction problem, for which they define 

a new loss function capable of imposing consistency between the disparities produced 

between the right and left images. Similarly, (Pilzer, Xu, Puscas, Ricci, & Sebe, 2018) 

proposed a novel method for depth estimation based on an antagonistic cyclical generative 

network (CGAN or CycleGAN). Both unsupervised methods previously mentioned take 

advantage of direct or indirect measurement of disparity as a previous step for depth 

estimation. 

However, all the previously mentioned state-of-the-art methods stand out for using 

highly complex convolutional neural networks whose inference stage cannot be deployed 

in real-time on systems with limited computational resources. From this perspective, very 

few studies have been proposed to tackle the monocular depth estimation problem using 

low-latency convolutional architectures (see Table 2.2).  

On the one hand, Poggy et al. (2018) adopts an unsupervised learning strategy to train a 

low-latency pyramidal convolutional network (PyD-Net) on the KITTI dataset. Their study 

is the first proposal in this research area to achieve a significant reduction in the number of 

learnable parameters which enabled them to dramatically decrease the execution time. 

Overall, their learning strategy is based on (Godard et al.,2017) and compared to such work, 

their model is almost 94% smaller. 

Similarly, Wofk, Ma, Yang, Karaman, and Sze (2019) propose a lightweight fully 

convolutional network that uses the MobileNet feature extractor as the encoder and a low-

latency decoder. Also, the authors suggest the use of additional model compression 

algorithms to further decrease the number of learnable parameters and inference time. Their 

proposed architecture (without the compression stage) is smaller than (Poggy et al., 2018) 

and is evaluated on the NYU-Depth V2 dataset instead. 

 

Table 2.2: State-of-the-art methods for efficient monocular depth estimation. 

Author Model Architecture Learning strategy 

(Poggy et al., 2018)  CNN PyD-Net Unsupervised 

(Wofk et al., 2019) CNN low-latency FCN Supervised 

(Wang et al., 2020) CNN DepthNet Nano Supervised 
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In contrast to the studies above described, Wang, Famouri, and Wong (2020) have 

recently proposed a compact convolutional neural architecture obtained by employing a 

human-machine collaborative design strategy. Their proposal is smaller than the typical 

studies that use large deep learning architectures but even so, it is not as lightweight and 

fast as the convolutional architectures proposed in (Poggy et al., 2018; Wofk et al., 2019). 

This thesis project addresses the monocular depth estimation problem using a novel 

low-latency fully convolutional network that yields better performance (both at run time 

and in error) when compared to (Wofk et al., 2019) and which is considered the most efficient 

state-of-the-art method from those shown in Table 2.2. 
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CHAPTER 3 

Theoretical Framework 
 

This chapter presents the theory related to artificial intelligence that is relevant to this master 

thesis. Specifically, this chapter offers a brief overview of the fundamentals of deep learning 

and a detailed introduction to fully convolutional networks which are the cornerstone of this 

research topic. Furthermore, some concepts related to low-latency convolutional layers for 

deep learning at the edge are also outlined. The last section of this chapter presents the 

standard problem formulation for monocular depth estimation. 

 

3.1  Machine learning 

Machine learning is the subfield of artificial intelligence that studies computer algorithms 

that are capable of finding patterns in large amounts of raw data. In other words, machine 

learning is the data-driven approach to artificial intelligence (Goodfellow, Bengio, & Courville, 

2016). 

According to Mitchell (1997), the concept of machine learning can be formally defined as 

follows: 

 

“A computer program is said to learn from experience E with respect to some class of 

tasks T and performance measure P, if its performance at tasks in T, as measured by P,  

improves with experience E.” 

 

At the same time, machine learning can be divided into two different subsets of 

techniques: classical machine learning and representation learning. On the one hand, classical 

machine learning profoundly depends on the representation of the data that is to be 

analyzed. The latter implies that it is first necessary to design the correct features to extract 

for a specific task. Nonetheless, knowing what features need to be extracted can be very 

difficult. On the other hand, representation learning solves the above- mentioned problem 

by using machine learning to also find the proper representation of the input data and not 
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just the mapping from representation to output. This means that some machine learning 

algorithms can be used for feature extraction in order to obtain the desired representation. 

However, designing algorithms for learning features can usually be as complicated as 

solving the task by the classical machine learning approach (Goodfellow et al., 2016). 

Deep learning is a representation learning approach that uses multilayer artificial neural 

networks to avoid the quoted difficulty by allowing the computer program to build complex 

representations on top of simpler representations. Fig. 3.1 shows how deep learning is a 

subset of machine learning and also representation learning (Goodfellow et al., 2016). 

 

 
Fig. 3.1: Subfields of artificial intelligence. Adapted from (Goodfellow et al., 2016). 

  

3.2  Artificial neural networks 

An artificial neural network (ANN) is a machine learning technique that is somehow 

inspired on the mechanism of learning in biological organisms. It is also commonly 

regarded as a connectionist approach due to the use of a set of processing units called neurons 

which are connected to each other (Haykin, 2008). 

More formally, an artificial neural network can be considered as a computational graph 

composed of nodes that interconnect which each other for the transmission of information 

from an input layer to an output layer. The inputs to a neuron are scaled through parameters 
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known as synaptic weights which serve as the strength of the connections. These parameters 

need to be adjusted during the training phase to find the mapping of interest (Haykin, 2008). 

The simplest ANN model consists of a single neuron as illustrated in Fig. 3.2. 

 

 
Fig. 3.2: Non-linear model of a neuron. Adapted from (Haykin, 2008). 

 

In general, for a vector 𝑥 containing the input signals (𝑥1, 𝑥2, … , 𝑥𝑚), a vector of synaptic 

weights 𝑤, a bias value 𝑏 and an activation function 𝜑(∙), the output 𝑦 of a neuron is given 

by the equation in (1) (Haykin, 2008).  

 

𝑦 = 𝜑 (𝑏 + ∑ 𝑥𝑖𝑤𝑖

𝑚

𝑖=1

)                                                              (1) 

 

The model shown in Fig. 3.2 is considered non-linear since the activation function 𝜑(∙) 

is known to introduce the required non-linearities to the output. It should be noted that the 

most common activation function is the rectifier function better known as ReLU (Haykin, 

2008). A more detailed discussion on activation functions is presented in section 3.4.2. 

As mentioned before, several neurons can be interconnected with each other to create a 

specific structure which is commonly referred to as an architecture. The simplest kind of 

architectures consist of an input layer of source nodes that feed signals to the next layer which 

can be either an output layer or a hidden layer. In both cases, the network is considered to be 

a feed-forward type. Overall, an artificial neural network receives inputs from other neurons 

in an analogous way such as the biological nervous system. Moreover, a neural network is 

said to be fully or densely connected when every neuron in each layer of the network is 
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interconnected to every other neuron in the next layer (Haykin, 2008). A fully connected 

feed-forward layer with one hidden layer is shown in Fig. 3.3. 

 

 

Fig. 3.3: Feed-forward neural network with a single hidden layer.  

Adapted from (Haykin, 2008). 

 

3.3  Deep learning 

Artificial neural networks with more than one hidden layer are referred to as deep neural 

networks or deep learning algorithms (see Fig. 3.4). Although the latter is the most general 

definition of deep learning, it should be noted that not all deep learning models explicitly 

use neurons as hidden layers (see Section 3.5) (Goodfellow et al., 2016). 

As already mentioned before, deep learning is considered a representation learning 

technique that is capable of breaking down a desired complex mapping into simpler non-

linear mappings. Similar to a FFNN (feed-forward neural network) with one hidden layer, 

the simpler mappings are linked together by composition to approximate the desired 

transformation (Goodfellow et al., 2016). 

The feed-forward neural network illustrated in Fig. 3.3 can be converted into a deep 

learning model by just adding a hidden layer (see Fig. 3.4). Recall that each of the hidden 

layers extracts progressively abstract features from the input signal. Overall, the training 

stage helps the model to determine which parameter values on the hidden layers are useful 

for explaining the relationships in the input data (Goodfellow et al., 2016). 
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Fig. 3.4: A feed-forward neural network with two hidden layers is the most 

simple deep learning model. Adapted from (Haykin, 2008). 

 

The procedure to adjust the learnable parameters for any of the previously described 

neural networks is known as training phase. At the same time, this learning process can be 

carried out under two main different approaches: supervised and unsupervised (Goodfellow 

et al., 2016). 

On the one hand, the supervised learning approach consists in learning the most 

appropriate synaptic weights of the model by searching the function that maps an input to 

an output based on examples or labeled training data that is part of a dataset. Broadly 

speaking, every sample of the labeled training data is an ordered pair formed by an input 

object and its corresponding output value (Goodfellow et al., 2016). 

In contrast, the unsupervised learning approach takes place when no labeled training 

data is used for the training phase, that is, the input vectors are known but not their 

corresponding output values. Although this approach is ultimately gaining some 

popularity, it is less used compared to the supervised approach. Furthermore, there are 

some variants of the main approaches such as the semi-supervised, self-supervised and weakly-

supervised strategies. Although in essence these novel learning strategies are different from 

the supervised and unsupervised approaches, they inherit and combine the theoretical 

principles from those (Goodfellow et al., 2016). 

In any case, the learning process can be formulated in terms of the minimization of 

associated loss function. In broader terms, the loss function is an objective function that is 

used to assess the performance of the model for a given set of the learnable parameter values 

obtained during the training phase. The error is typically used to measure the performance 

for artificial neural networks and deep neural networks (Goodfellow et al., 2016). 
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The minimization of the loss function is carried out by using optimization algorithms (e.g., 

stochastic gradient descent, Adam, Adamax, just to mention a few). Overall, for models with 

several layers it is required to employ an algorithm known as backpropagation to consistently 

compute the gradients of the model. These gradients are then used by the optimization 

algorithm to minimize the error and update the learnable parameters values of the model 

(Goodfellow et al., 2016). 

Every time an epoch of the training phase ends, it is highly recommended to evaluate 

the current trained model on the validation dataset (validation phase) in order to continuously 

analyze its performance and decide whether or not the hyperparameters values are a good 

selection. Ultimately, the performance to be reported is the one obtained on the validation 

dataset, which contains samples that are not used for training (Goodfellow et al., 2016). 

After the training and validation phases have finished, it is possible to use the obtained 

model to perform predictions on unseen data that is not available on the selected dataset. 

This stage is known as the inference phase (Goodfellow et al., 2016). 

 

3.4  Convolutional neural networks 

Convolutional neural networks (CNNs) are neural networks specially designed for processing 

grid-structured input data that has noticeable spatial dependencies in local regions (e.g., 

image data and time-series data). In general, any deep neural network that use a 

convolutional operation in at least one layer is considered a convolutional neural network. 

Nonetheless, most of these neural networks use the convolution operation in more than one 

layer (Aggarwal, 2018). 

There are three main operations present in a CNN: convolution, activation functions and 

pooling. These operations can be thought of as different kind of layers within a convolutional 

neural network. In this sense, it is very common that most CNNs contain multiple groups 

of layers, where each group is composed by stacking the operations mentioned above 

(Aggarwal, 2018). 

 Other important operations commonly used in current convolutional architectures are 

batch normalization and drop-out. These operations are used as regularization techniques and 

will be discussed in section 3.7. 
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3.4.1 Convolutional layers 

A convolution is a mathematical operation that quantifies the overlap between two functions 

𝑥(∙) and 𝑤(∙) when one function is flipped and shifted by 𝑡. Such operation is given by (2) 

(Goodfellow et al., 2016): 

 

𝑠(𝑡) =  ∫ 𝑥(𝑎)𝑤(𝑡 − 𝑎) 𝑑𝑎                                                            (2) 

 

In simpler terms, 𝑠(𝑡)  represents a weighted average operation that measures the 

overlap between the two involved functions at a moment 𝑡 . In machine learning 

terminology, the function 𝑥(∙) is referred to as the input and the second function 𝑤(∙) as the 

kernel. The output of this operation is commonly denoted as the feature map (Goodfellow et 

al., 2016). 

The convolution operation as used in convolutional neural networks is also often 

referred to as the cross-correlation operation. Now, since the focus of this thesis project is 

related to image data, it is required to rewrite (2) as the discrete expression given in (3): 

 

[S]𝑖,𝑗,𝑑 =  ∑ ∑ ∑[X]𝑖+𝑎,𝑗+𝑏,𝑐[W]𝑎,𝑏,𝑐,𝑑  

𝑐

Δ

𝑏=−Δ

Δ

𝑎=−Δ

                                       (3) 

 

where W is the convolutional kernel or filter that contains the learnable parameters, X is the 

input image or input tensor, 𝑖 denotes the vertical pixel index and 𝑗 denotes the horizontal 

pixel index. The indices 𝑎, 𝑏 and 𝑐  allow to cover both the entire spatial resolution and 

depth of the input image for an offset Δ. The index 𝑑 allows to support multiple channels in 

both the input X  and the feature map S  (Zhang, Lipton, Li, & Smola, 2021). A basic 

illustration of the convolution operation applied to a 2D image is shown in Fig. 3.5. 

 

 
Fig. 3.5: Convolution operation applied to a 2D image. Adapted from (Aggarwal, 2018). 
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Broadly speaking, the input tensor X is convolved with a kernel W by sliding the latter 

over each region of the former. During the sliding process, the convolutional operation can 

be understood as an element-wise product between the filter and the defined region (also 

called window) on the input tensor, followed by the addition of each result to obtain a single 

number (see Fig. 3.5) (Aggarwal, 2018).  

In general, the convolutional layers enable a process known as automatic feature extraction 

of the input tensor. The latter means that when the convolutional filters are given the 

appropriate parameters values for a specific task (i.e., classification, regression, etc.), these 

are capable of extracting the most relevant features from the input tensor to build a hidden 

representation that contains valuable information of it. In general, filters in the initial layers 

of a convolutional neural network tend to extract more primitive features, while filters in 

intermediate or final layers are capable of building complex compositions from those 

primitive features (Aggarwal, 2018). 

On the one hand, the convolutional layers have the effect of reducing the spatial 

resolution of the input tensor. Moreover, it should be noted that the input tensor and the 

filter must have the same number of channels. The latter implies that each 𝑘th slice of the 

filter operates on the 𝑘th channel of the input tensor to generate a ‘partial’ feature map. All 

resulting ‘partial’ feature maps are added together in a traditional way to obtain a single 

feature map. Since its common to increase the number of channels during a feature 

extraction process, it is necessary to apply 𝑛 different filters to the input tensor to produce 

an output with depth equal to 𝑛 (see Fig. 3.6) (Aggarwal, 2018). 

 

 

Fig. 3.6: Convolution between an input tensor (32 x 32 x 3) and a kernel of size (5 x 5 x 3). The number 

of feature maps in the output depends on the number of filters applied. Adapted from (Aggarwal, 

2018). 

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ



 
 

20 
 

Furthermore, one of the most important properties of a convolutional neural network is 

its receptive field. The receptive field is basically the size of the region in the input that 

produces the feature map. It is well known that the performance of a CNN can be improved 

if the size of its receptive field is increased. Overall, a larger receptive field is able to capture 

complex hidden representations in a larger spatial region of the input image (Aggarwal, 

2018). 

An important hyperparameter that impacts the size of the receptive field in a CNN is 

the stride. The stride defines the number of pixels the kernel moves when sliding over the 

input tensor. Overall, its common to select the stride value as 1 or 2 for most applications. 

For instance, the example shown in Fig. 3.6 uses a stride value of 1. It is also worth 

mentioning that the reduction in spatial resolution produced by the convolution layer is 

known to cause the loss of information at the edges of the input image or feature maps. This 

effect can be decreased by using a technique known as padding. This technique consists in 

adding pixels with a value set to zero all around the edges of the input tensor in order to 

preserve its spatial resolution after the convolution operation (Aggarwal, 2018). 

Another parameter that is commonly used is the bias. Similar to conventional artificial 

neural networks, each convolutional filter can be associated with a bias. Note that the bias 

value of each filter is also adjusted during the training phase. Finally, the convolutional 

filters are usually square in terms of its spatial dimensions. It is also quite common for the 

size of a kernel to be small and odd (e.g., 3 or 5). Finally, in order to achieve a clean fit of the 

convolutional filters with a given stride value, it is highly recommended to work with 

square images. Otherwise, an additional preprocessing step will be required for proper 

handling (Aggarwal, 2018). 

 

3.4.2 Activation functions 

Similar to traditional ANNs, activation functions are used in convolutional neural networks 

to introduce non-linearities into the linear model. This enables the convolutional neural 

network’s training stage to find a non-linear transformation in the search space (Aggarwal, 

2018). 

The activation function is applied as an element-wise operation, so it does not change 

the spatial dimensions of the feature maps. As of today, the most common activation 

function is called ReLU (Rectified Linear Unit). The main advantages of the ReLU activation 

function are two-fold: its simplicity that allows fast computations and a reduced likelihood 

of vanishing gradients (Aggarwal, 2018). 
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Furthermore, some of its most popular variants, such as Leaky ReLU, improve the ReLU 

function by preventing the dying ReLU problem. The latter refers to the issue when the nodes 

become irreversibly inactive on any data point (Goodfellow et al., 2016). The functions are 

shown in Fig. 3.7. 

 

 

Fig. 3.7: Graphical representation of some activation functions. (a) ReLU and (b) Leaky ReLU. 

 

3.4.3 Pooling layers 

Unlike the convolution operation, the pooling operation does not modify the number of 

channels or feature maps. This operation has two purposes: to improve the feature 

extraction process by alleviating the sensitivity of convolutional layers to location 

(producing invariance to translation) and to further reduce the spatial resolution of the 

feature maps (Aggarwal, 2018). 

The pooling operation are typically dedicated to calculate either the maximum or the 

average value in a pooling window. The pooling window refers to a small square region of 

a feature map. Similar to convolutional layers, the pooling operation consists in sliding the 

pooling window over all regions in the input feature map from left to right and top to 

bottom with a specific stride value. It should be noted that this operation works 

independently on each feature map to generate another feature map (Aggarwal, 2018). 

Overall, the max pooling operation is widely preferred over the average pooling operation 

for its better performance at feature extraction (Aggarwal, 2018). Fig. 3.8 shows a basic 

example of max pooling of one feature map with a stride of 2 and its corresponding output.  
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Fig. 3.8: Example of max pooling of one feature map of size 4 x 4  

with a stride of 2. Adapted from (Aggarwal, 2018). 

 

3.5  Fully convolutional networks 

A fully convolutional network (FCN) is a deep learning architecture that only contains 

convolution, pooling and upsampling operations, i.e., it does not contain any fully 

connected layer (see Fig. 3.9). This kind of architecture was initially proposed by (Long, 

Shelhamer, & Darrell, 2015) as a method to solve the semantic segmentation problem. In 

general, this kind of networks can be used for pixel-wise continuous regression problems. 

Note that a fully convolutional network is sometimes referred to as convolutional 

autoencoder due to the fact that there is an encoder stage followed by a decoder stage (see 

Fig. 3.9). Nonetheless, the term convolutional autoencoder is more often used to denote a 

method for visualization through unsupervised learning (Aggarwal, 2018).  

 

 

Fig. 3.9: A typical illustration of a fully convolutional network. Adapted from (Long et al., 2015). 

 

The encoder part of the network is basically a feature extractor in charge of obtaining the 

latent-space representation. This means that any convolutional neural network (without the 

fully connected layers) can be used. On the other hand, the decoder part consists of several 

layers of convolution, unpooling and upsampling operations. The objective of these layers 

is to reconstruct an image or map from the obtained latent-space representation (Aggarwal, 

2018). 
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In particular, FCNs are heavily considered one of the best deep learning-based methods 

to solve the monocular depth estimation problem since the latter can be directly formulated 

as a regression problem as shown in section 3.9. 

 

3.6  Low-latency convolutional layers 

It is very well known that modern convolutional neural networks have become larger and 

more complex, which in turn requires much more computational resources not only to train 

the models but to perform the inference phase. As a consequence, it is almost impossible to 

deploy state-of-the-art deep learning models on embedded systems whose computational 

resources (e.g., processing power, RAM, etc.) are very restricted (Howard et al., 2017). 

From this perspective, some research in the last few years has focused on the design of 

low-latency convolutional layers that improve the execution time and memory footprint on 

resource constrained devices. These research efforts have led to the design of a less 

expensive operation known as depthwise separable convolution. Although this kind of 

convolution operation has shown promising results, it should be pointed out that the 

noticeable trade-off between resource efficiency and accuracy still needs to be considered 

for low-latency models. The latter means that current low-latency deep learning models are 

not as accurate as the larger and more complex ones (Howard et al., 2017). The following 

section describes the above-mentioned low-latency convolution operation. 

 

3.6.1 Depthwise separable convolutions 

A depthwise separable convolution is a low-latency convolution operation designed to split 

the standard convolution layer into separate convolution operations. The difference 

between this and the standard convolution is the number of FLOPs, i.e., the number of 

multiply-adds operations associated with each approach. In general, a depthwise separable 

convolution reduces significantly the number of learnable parameters of a standard 

convolution by factoring the latter into simpler operations (Howard et al., 2017). 

Nonetheless, as the number of learnable parameters of a deep learning model decreases, 

its performance is known to decrease as well. In order to take the maximum advantage of a 

low-latency model, it is needed to find by experimentation the best hyperparameters that 

exploit the performance of the model (Zhao et al., 2020). 
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The separate convolution operations into which a depthwise separable convolution is 

divided are described as following: 

 

▪ Depthwise convolution 

A depthwise convolution reduces the spatial resolution but does not change the depth of the 

resulting hidden representation. Basically, a kernel of size 𝐹𝑞 x 𝐹𝑞 x 1 iterates independently 

on a single channel of the input tensor. The obtained independent feature maps are 

concatenated together to create the output (Howard et al., 2017). 

 

▪ Pointwise convolution 

A pointwise convolution helps to increase the number of channels without impacting the 

spatial resolution of the resulting hidden representation. In this case, 𝑛 different kernels of 

size 1 x 1 x 𝑑𝑞 operate on the input tensor. The latter means that each filter has the same 

depth 𝑑𝑞  as the input tensor and iterates through every single pixel of it. Similar to the 

standard convolution, the pointwise convolution uses 𝑛 different kernels to create an output 

of 𝑛 feature maps (Howard et al., 2017). 

As will be explained in the following chapter, these low-latency convolution operations 

can be used together with other novel operators, such as channel split and channel shuffle to 

significantly reduce the network latency (Ma, Zhang, Zheng, & Sun, 2018). 

 

3.7 Regularization techniques 

Regularization techniques are used to reduce overfitting during the learning process. This 

allows the deep learning model to improve its performance on unseen data (Aggarwal, 

2018). The most common techniques are described below. 

 

3.7.1 Data augmentation 

One of the strongest prerequisites for deep learning is having access to a large-scale dataset. 

The latter is crucial for a deep neural network to improve its ability to generalize on new 

data. In this sense, data augmentation provides a way to expand the existing dataset by 

generating new training samples through the transformation of the original samples. The 

transformation of the original samples consists in applying operations such as flipping, 

rotation, cropping, translation and scaling (Aggarwal, 2018). 

 

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ



 
 

25 
 

3.7.2 Batch normalization 

This technique is implemented as a distinct operation layer within a convolutional neural 

network. It consists in standardizing the input tensors for each mini-batch in order to adjust 

the magnitudes of the activations. This adjusting is known to improve the behavior of the 

gradient updates. The batch normalization operation is performed after the convolution 

operation and before the activation function (Aggarwal, 2018). 

 

3.7.3 L2 regularization 

Also known as weight decay, this regularization technique is applied after the gradient 

updates step. It consists in forcing the values of the learnable parameters to be small but 

different from zero. It can be considered as a set of penalty values that are added to the loss 

function that is being optimized during the training phase (Aggarwal, 2018). 

 

3.7.4 Dropout 

Similar to the batch normalization technique, this regularization method is implemented as 

an additional layer that randomly sets inputs to zero during the training phase in order to 

prevent a phenomenon known as feature co-adaptation that occurs when two or more filters 

detect the same features repeatedly. In general, dropout avoids this problem by forcing the 

model to perform the forward propagation using only a subset of the inputs (Aggarwal, 

2018). 

 

3.8  Transfer learning 

Transfer learning is a deep learning technique where a pretrained model on one dataset is 

used to initialize the filters of the model that is to be trained on a different dataset (regardless 

of the type of task). This technique is well-known to improve not only the training time but 

also the performance of the model on the objective task (Aggarwal, 2018).  

According to (Goodfellow et al., 2016), the concept of transfer learning can be defined as 

a “Situation where what has been learned in one setting is exploited to improve 

generalization in another setting”. In the context of machine learning, generalization refers to 

the model ability to perform a prediction in an expected way for any unseen sample 

obtained from the same distribution as the one used to train the machine learning model. 

Both concepts, transfer learning and generalization, represent two of the most important 

topics in machine learning research (Goodfellow et al., 2016). 
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3.9  Monocular depth estimation 

According to (Bhoi, 2019), monocular depth estimation is a pixel-wise continuous regression 

problem that can be formulated as follows: 

Let 𝐼  be the space of RGB images and 𝒟 the codomain of real-valued depth maps. Given 

a training dataset 

 

𝒯 =  {(𝐈𝑖, 𝐃𝑖)}𝑖=1
𝑀  , 𝐈𝑖 ∈ 𝐼  and  𝐃𝑖 ∈ 𝒟,                                                (4) 

 

the objective is to find the non-linear transformation stated by (5): 

𝜑:  𝐼 → 𝐷 .                                                                           (5) 

 
This formulation assumes the availability of a pixel-wise ground truth, i.e., a large 

training dataset of RGB-depth pair images. Finally, it should be noted that the latter is only 

applicable to the supervised learning approach, which is used in this thesis. 

 

3.9.1 Benchmark datasets 

As with any research topic in deep learning, the monocular depth estimation task requires 

large amounts of data to train a model. For this research topic, there are two standard and 

widely used datasets to train and evaluate the performance of a deep learning model under 

a specific learning strategy.  

It is also important to consider that these datasets are divided according to an official 

split to consistently compare the different studies on this research topic. Both datasets are 

described as following. 

 

▪ NYU-Depth V2 

The NYU-Depth V2 dataset was proposed by (Silberman, Hoiem, Kohli, & Fergus, 2012). 

This dataset focuses on indoor scenes and was collected by means of an RGB-D camera 

(Microsoft Kinect sensor). It is the common benchmark for supervised monocular depth 

estimation.  

This dataset contains 120,000 samples for training and 654 samples for validation with a 

resolution of 640 x 480 pixels. Due to the size of the training set, it is infeasible to perform 

the k-fold cross-validation technique. The next chapter describes this dataset in more detail. 
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▪ KITTI 

The KITTI dataset was proposed by (Geiger, Lenz, Stiller, & Urtasun, 2013). This dataset 

only contains outdoor scenes and its ground truth images were collected using a LIDAR 

sensor (Velodyne 3D). In contrast to the NYU-Depth V2 dataset, this dataset is the common 

benchmark for unsupervised and semi-supervised monocular depth estimation. 

An official split of this dataset is known as Eigen split (Eigen et al., 2014), which contains 

22,600 samples for training and 697 samples for validation with a resolution of 1224 x 368 

pixels. Similar to the NYU-Depth V2, it is impractical to perform k-fold cross-validation due 

to the large size of the training set.  
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CHAPTER 4 

Methodology 
 
In this chapter, the implemented methodology for this research project is described in detail. 

Considering that the base concept of this project is the design and implementation of a low-

latency fully convolutional network architecture for the pixel-wise continuous regression 

task known as monocular depth estimation, this chapter presents the development, training 

and validation of such an architecture. A simplified illustration of the implemented 

methodology is shown in Fig. 4.1. 

 

 
Fig. 4.1: Flow diagram of the implemented methodology. 
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4.1  Dataset definition 

As mentioned in the previous chapter, the state-of-the-art architectures for monocular depth 

estimation are trained on standard datasets that are separated according to an official split 

(i.e., specific samples are for training and others for validation). The latter allows to compare 

the different studies on this research topic in a consistent manner.  

In this sense, the selected dataset to train and validate the proposed low-latency FCN 

architecture is the standard NYU-Depth V2 dataset. This dataset is publicly available since 

2012 and contains RGB images of indoor scenes with their corresponding relative depth 

maps. It has been widely used in state-of-the-art studies related to supervised monocular 

depth estimation (Silberman et al., 2012). Some samples of the NYU-Depth V2 dataset are 

shown in Fig. 4.2. 

 

 

Fig. 4.2: Samples of the NYU-Depth V2 dataset (Silberman et al., 2012). 

 

Although the official dataset contains 120,000 training samples, many studies have 

shown that using a subset of 50,000 samples for training does not negatively impact the 

network performance but it can dramatically reduce the training time. On the other hand, 

the dataset contains 654 samples for validation. The original samples with resolution of 640 

x 480 are downsampled to 224 x 224 for direct comparison purposes with a state-of-the-art 

work (Silberman et al., 2012). 
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4.2  Data augmentation 

As part of the implemented regularization techniques, data augmentation is performed 

before the training stage in order to artificially expand the number of training samples 

during the data loading process. Recall that data augmentation refers to (online) affine 

transformations applied to the training data (NYU-Depth V2). The data augmentation 

policy is similar to (Eigen et al., 2012) and is described as following: 

 

▪ Scaling. Input RGB images and target depth maps are scaled. Input images are 

scaled by a uniform random number 𝑠 𝜖 [1, 1.5], while depth maps are divided by 𝑠. 

 

▪ Rotation. Input RGB images and target depth maps are rotated by a uniform random 

number (degrees of rotation) 𝑟 𝜖 [−5,5]. 

 

▪ Translation. Input RGB images and target depth maps are randomly cropped to 228 

x 304. 

 

▪ Flips. Input RGB images and target depth maps are both horizontally flipped with 

a probability of 0.5. 

 

▪ Color jittering. Only for input RGB images: the brightness, contrast, saturation and 

hue are randomly changed. 

 

▪ Color normalization. Input RGB images are standardized through the z-score 

normalization technique (the mean is subtracted to each value and the result is 

divided by the standard deviation). 

 

Finally, the input RGB images and target depth maps are cropped to 224 x 224 in order 

to match the input layer size of the deep learning architecture. 

 

4.3  Error metrics 

In order to quantitatively evaluate a deep neural network for a pixel-wise continuous 

regression task, it is required to define the appropriate metrics for such task. For almost any 

research topic, the state-of-the-art methods usually indicate which error metrics have been 

found to be the most useful for evaluation and comparison purposes to related methods.  
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Taking into account the latter, this thesis project uses the following error metrics for 

model evaluation: 

 

▪ Root mean squared error (RMSE): 

 

RMSE = √
1

𝑛
∑(𝑦𝑝 − 𝑦̂𝑝)

2
𝑛

𝑝=1

                                                          (6) 

 

▪ Absolute relative error: 

 

Abs rel =
1

𝑛
∑

|𝑦𝑝 − 𝑦̂𝑝|

𝑦̂𝑝

𝑛

𝑝=1

                                                           (7) 

 

▪ Threshold accuracy (𝛿1):  

 

𝛿1 = % of 𝑦𝑝 s. t. max (
𝑦𝑝

𝑦̂𝑝
,
𝑦̂𝑝

𝑦𝑝
) < 1.25                                             (8) 

 

The threshold accuracy 𝛿1 should be understood as the percentage of pixels of the 

predicted depth map 𝑦̂ for which the relative error is less than or equal to 25%.  

 

For all the above-described continuous metric equations, 𝑦𝑝 is a pixel of the target depth 

map 𝑦, 𝑦̂𝑝 is a pixel in the predicted depth map 𝑦̂ and 𝑛 is the total number of pixels in the 

depth map 𝑦̂. Furthermore, the proposed method is compared to a related state-of-the-art 

method through the of the average latency (in milliseconds) associated to the inference time. 

It should be noted that RMSE is considered the main error metric for evaluating 

monocular depth estimation methods mainly because it has become the standard metric to 

validate regression models. A reason for its popularity lies in its ability to give a relatively 

high weight to large error values due to the fact that errors are squared first before 

averaging. According to Wofk (2020), RMSE provides a much more intuitive way to 

determine the performance of the monocular depth estimation method when compared to 

the threshold accuracy 𝛿1 simply because the former does not rely on a fixed relative error 

threshold. For the reasons stated above, throughout this thesis it is assumed that RMSE is 

the error metric with the highest precedence when evaluating the performance of any 

proposed low-latency fully convolutional network. 
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4.4  Baseline FCN architecture 

As already stated, the fully convolutional network (FCN) architecture is currently 

considered the preferred approach for solving the monocular depth estimation task. In 

particular, the main focus of this thesis project is to develop a novel low-latency FCN 

architecture and perform its deployment on an embedded system.  

Since the research topic associated to the design of low-latency deep learning-based 

methods for monocular depth estimation is still in its infancy and therefore may be 

considered a non-trivial task, it was decided to choose a baseline FCN state-of-the-art 

architecture for analysis in order to detect the possible areas of improvement. Throughout 

the following sections of this chapter, the motivation behind every proposed change is 

described in a detailed manner. The baseline FCN architecture is shown in Fig. 4.3. 

 

 

Fig. 4.3: Baseline FCN architecture. Adapted from (Wofk et al., 2019). 

 

As mentioned in the previous chapter, the FCN architecture is often referred to as an 

encoder-decoder architecture since the input image is initially fed to an encoder network 

and the resulting latent space representation is then fed to the decoder network that uses the 

extracted features to reconstruct the associated relative depth map. The selected baseline 

architecture is the one proposed in (Wofk et al., 2019) that uses the MobileNet V1 feature 

extractor as the encoder network. This feature extractor network has been recognized as one 

of the first convolutional neural networks to address the latency problem on mobile devices 

for classification tasks on the computer vision domain (Howard et al., 2017).  

The MobileNet V1 network consists essentially of depthwise separable convolutions 

with depthwise and pointwise layers followed by batch normalization and ReLU layers. In 

this regard, the depthwise decomposition has become the common approach to significantly 

reduce the latency of a deep convolutional neural network. Recall that the depthwise 

decomposition enables the factorization of a conventional convolutional layer through the 
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use of 𝑛 different depthwise kernels of size 𝐹𝑞 x 𝐹𝑞 x 1 (each one applied independently on 

each channel of the input tensor) followed by a 1 x 1 x 𝑑𝑞 pointwise kernel (Howard et al., 

2017). 

Although the MobileNet V1 with a depth multiplier equal to 1 (default size) is 

considered a milestone within the low-latency deep learning research, Howard et al. (2017) 

claimed this network could be further optimized by using low-dimensional tensors in order 

to reduce the number of learnable parameters, memory access cost and FLOPs. Nonetheless, 

applying a depthwise convolutional layer to low-dimensional tensors is limited in the 

amount of information it is able to extract. In this regard, there have been several proposals 

ranging from using expand/projection layers or instead, novel operators to replace certain 

convolution layers. On the one hand, the expand/projection layers allow to decompress the 

hidden representation before a depthwise separable convolution is applied to it. In this way, 

the feature extraction process is performed using the large tensor representation before a 

projection layer compresses the data again (Sandler, Howard, Zhu, Zhmoginov, & Chen, 

2018).  

The approach using expand/projection layers led to the next generation known as 

MobileNet V2. Although their proposed mechanism was proved to work as expected on 

computer systems with limited resources, Ma et al. (2018) found that the MobileNet V2 

violates several design principles for low-latency deep learning architectures. In this regard, 

these design principles showed that some novel operators could be used together with low-

latency convolution operations instead in order to replace certain layers in a network and 

thus, to reduce the number of learnable parameters. These guidelines were proposed in (Ma 

et al., 2018) and state the following: 

1. The number of channels at both ends of a layer should be kept the same to minimize 

the cost of memory access (MAC). 

2. Overuse of convolution groups should be avoided as this increases the memory 

access cost. 

3. It is suggested to minimize the use of fragmented operators to maintain a high 

degree of parallelism. 

4. It is recommended to reduce the use of element-wise operations since its 

computational cost is not negligible. 

 

As already described, the MobileNet V2 network uses an expand/projection layer which 

is also known as an inverted residual layer with linear bottleneck. According to (Ma et al., 

2018), this proposed layer violates the guideline number 1 (i.e., G1) as it does not preserve 
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the number of input and output channels to be equal. Moreover, the MobileNet V2 uses 

depthwise decomposition followed by ReLU activation functions on thick feature maps 

which violates the guideline number 4 (i.e., G4).  

As a result of those guidelines, Ma et al. (2018) designed and proposed a novel low-

latency feature extractor architecture for classification tasks named as ShuffleNet V2. On the 

one hand, the ShuffleNet V2 encoder can be considered one of the best low-latency feature 

extractors for classification tasks on mobile devices. According to the authors, this feature 

extractor was designed in such a way that the number of multiply-adds operations (FLOPs), 

memory access cost (MAC) and the number of learnable parameters were minimized. Table 

4.1 shows a comparison between different low-latency encoders (Ma et al., 2018). 

 

Table 4.1: Complexity metrics for different encoders (depth mult. = 1.0x) with dense layers. 

Architecture FLOPs [G] Weights [M] 

MobileNet V1 0.569 4.2 

MobileNet V2 0.300 3.4 

ShuffleNet V2 0.146 2.3 

 

Although the different encoders that have been described are considered to belong the 

low-latency category, Table 4.1 shows significant difference between the models for two of 

the most important complexity metrics (i.e., number of weights and FLOPs). On the one 

hand, FLOPs represent the number of multiply-adds operations that is carried out by a 

model. In contrast, the number of weights represent the number of learnable parameters a 

model has. In general, a higher value for each metric indicates a more complex and slower 

model. 

However, it should be noted that Ma et al. (2018) also found that there are cases for which 

two different convolutional networks have similar FLOPs but have different speeds. 

Overall, they argued that is much better practice to use direct metrics (e.g., latency and 

MAC) instead of indirect metrics such as FLOPs for the design of low-latency convolutional 

neural network architectures. In particular, the ShuffleNet V2 efficient performance is 

mostly due to the incorporation of two novel operators named as channel split and channel 

shuffle which will be described in the next section in a detail manner. 

All of the above represent and summarizes the motivation behind the selection of the 

ShuffleNet V2 feature extractor as the backbone for the monocular depth estimation task, 

on which it has not been tested yet as the encoder. 
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4.5  Selected encoders 

This section describes in detail the two different low-latency feature extractors that were 

selected as the encoders for the monocular depth estimation task. Since none of these were 

designed specifically for the above-mentioned task, the ultimate purpose is to determine 

which of these contribute the most in terms of performance for such a pixel-level regression 

task. 

 

4.5.1 ShuffleNet V2 

As already stated, the ShuffleNet V2 feature extractor is selected as one of the encoders to 

be used as part of the proposed low-latency FCNs models. To the best knowledge of the 

author, this low-latency feature extractor has not been tested for the monocular depth 

estimation task. Overall, the ShuffleNet V2 employs two novel operators that can be used 

in conjunction with depthwise decomposition to further reduce the number of learnable 

parameters of a convolutional neural network (Ma et al., 2018).  

 

Building block 

Similar to most feature extractors, the ShuffleNet V2 has a main building block from which 

the network is built upon. The main building block is shown in Fig. 4.4. 

 

 

Fig. 4.4: Main building block of the ShuffleNet V2. Adapted from (Ma et al., 2018). 
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On the one hand, the channel split operator was designed to replace the group 

convolutions to minimize memory access cost. As shown in Fig. 4.4, the channel split 

operator receives the input tensor (input feature maps) with n channels and divides it into 

two different branches with n – n’ and n’ channels, respectively. While one of these branches 

performs the identity operation, the other one performs three convolutions with the same 

number of input and output feature maps in order to satisfy the guideline number one of 

the above-mentioned numbered list. In contrast with other approaches, the pointwise 

convolutions (i.e., 1x1) of the building block shown in Fig. 4.4 are not group-wise, a design 

decision that matches with the guideline number two. Despite the absence of a group-wise 

operation, it should be noted that the channel split operator produces itself two groups of 

feature maps which in turn allows to reduce the number of learnable parameters since only 

half of the input feature maps is processed (Ma et al., 2018).  

After the convolution operations, the feature maps are concatenated and finally shuffled 

by means of the channel shuffle operator. The main purpose of using the channel shuffle 

operator is to allow an information communication process between the two branches. The 

information flow between two or more channel groups is considered critical since it has 

been shown to have an impact in the performance of the network. As described in (Zhang, 

Zhou, Lin, & Sun, 2018), the channel shuffle operator allows to build a stronger hidden 

representation by relating the outputs of any channel group to the inputs of any other 

channel group. The latter represents an advantage that has led to several achievements 

within the low-latency convolutional network design (Ma et al., 2018). An illustration of the 

channel shuffle operator is shown in Fig. 4.5. 

 

 

Fig. 4.5: Channel shuffle operator. Adapted from (Zhang et al., 2018). 
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According to the authors, their approach consists on using the above-described channel 

operators together with depthwise convolutions to achieve an efficient design. As already 

explained before, the results obtained also allowed them to present four practical guidelines 

for hand-crafted design of low-latency architectures. Their main suggestion is that low-

latency design should consider also the latency on specific devices (i.e., the impact of MAC 

in the execution time) and not only the number of FLOPs (Ma et al., 2018).  

The authors also found that their ShuffleNet V2 model is capable of outperforming other 

feature extractors especially under limited computational resources. For instance, they 

noted that MobileNet V2 has a lower performance due to the fact that it uses too few 

channels with the aim of reducing its complexity. In contrast, the efficient design of the 

ShuffleNet V2 model allows using a higher number of channels as the hidden representation 

and therefore, is capable of reusing and preserving the most important features of an input 

image (Ma et al., 2018). 

Generally speaking, the main building block shown in Fig. 4.4 is the basic structure that 

can be used repeatedly to build larger blocks known as ‘stages’ as illustrated in Table 4.2. 

Some other layers are exempt from using the main building block and instead, use standard 

convolutions or pooling operations (Ma et al., 2018). 

 

Table 4.2: Architecture details of the ShuffleNet V2 (1.0x model) (Ma et al., 2018). 

Layer Output size  Output channels 

Input 224 x 224 3 

Conv1 112 x 112 24 

MaxPool 56 x 56 24 

Stage2 28 x 28 116 

Stage3 14 x 14 232 

Stage4 7 x 7 464 

Conv5 7 x 7 1024 

GlobalPool 1 x 1 - 

FC - 1000 

 

Similar to other architectures, the ShuffleNet V2 was designed specifically for 

classification tasks and therefore has two distinctive layers at the end for that purpose. It is 

important to note that these layers should not be considered for a fully convolutional 

network. 
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4.5.2 MobileNet V3 

In order to allow a thorough comparison, it was also determined to include an additional 

state-of-the-art feature extractor as part of the experimentation. In this sense and following 

the above discussion related to the MobileNet-based architectures, it was decided to use the 

next generation of the MobileNet family: the MobileNet V3 architecture. 

Even though the MobileNet V3 is the latest version of MobileNet, its design is mostly 

inspired on a low-latency feature extractor known as MnasNet-A1, the smaller version of 

the MnasNet architecture, and which in turn was inspired on the MobileNet V2. In other 

words, the MnasNet design approach was used as the baseline for the MobileNet V3. The 

obtained network was later improved by hand and refined using specialized algorithms 

such as NetAdapt. To provide some context, both the MnasNet and MobileNet V3 networks 

are low-latency architectures that were found through a sophisticated technique known as 

neural architecture search (NAS). The latter is an automated method for designing artificial 

neural networks on a specific task and dataset. Its main drawback is that it requires a fairly 

large amount of computing power. For instance, the engineers that developed MnasNet 

reported their automated search to last a total of 288 days of execution on highly specialized 

Google TPU processors (Howard et al., 2019). 

Overall, the MobileNet V3 architecture can be considered as a hand-crafted 

improvement over MobileNet V2 in the following aspects: 

 

▪ Some layers of the feature extractor are upgraded with a modified swish non-

linearity known as h-swish. The original swish non-linearity is a relatively novel 

activation function that can be used as a drop-in replacement for ReLU. According 

to (Howard et al., 2019), the swish non-linearity is capable of improving the accuracy 

of the model at the expense of a higher computational cost in embedded devices. To 

deal with that problem, they replaced the sigmoid function with a simpler 

equivalent function and only used the activation function in the deeper layers of the 

network where they found the computational cost to be reduced (Howard et al., 

2019). 

 

▪ Lightweight attention modules based on the squeeze-and-excite block were 

included into the expand/projection layers that were first introduced in MobileNet 

V2. These modules implement an attention mechanism that allow the network to 

extract only the most relevant features for the task at hand (Howard et al., 2019). 
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▪ In contrast to earlier versions of the MobileNet family, the MobileNet V3 is the first 

low-latency architecture to suggest the use of hardware-aware NAS algorithms 

together with hand-crafted network design principles as a way to harness the 

advantages from both approaches (Howard et al., 2019). 

 

Building block 

Similar to the ShuffleNet V2, the MobileNet V3 has also a main building block from which 

the network is built upon. The main building block is shown in Fig. 4.6. 

 

 

Fig. 4.6: Main building block of the MobileNet V3. Adapted from (Howard et al., 2019). 

 

As shown in Fig. 4.6, the MobileNet V3 begins with a 1x1 pointwise convolutional block 

that has 16 filters. In contrast to MobileNet V1 and V2, the authors in (Howard et al., 2019) 

found out that using 32 filters for initial layers (e.g., input layer for a 224 x 224 x 3 tensor) is 

too expensive, despite having a small number of parameters. Their experiments showed 
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that the use of 16 filters is sufficient without affecting the performance of the model, but 

reduces the number of multiply-adds operations.  

After the regular convolution, the non-linear h-swish activation function is applied to the 

obtained hidden representation. The h-swish activation function is given by the following 

expression: 

 

h − swish[𝑥] =   𝑥 [
ReLU6(𝑥 + 3)

6
]                                               (9) 

 

where ReLU6( ∙ ) is equal to min(max(0, 𝑥) , 6). The plot for this activation function is shown 

in Fig. 4.7. 

 

 

Fig. 4.7: Graphical representation of the h-swish activation function. 

 

Following the structure in Fig. 4.6, the output is fed into a depthwise convolutional layer 

to further reduce its spatial resolution while extracting relevant features in an efficient 

manner and without changing the number of feature maps. The h-swish mapping is then 

applied to the output feature maps to introduce the required nonlinearities (Howard et al., 

2019). 

As depicted in Fig. 4.6, the hidden representation is sent through two branches. While 

the left-hand side branch is maintained intact, an average pooling operation is applied to 

the right-hand side branch before processing the hidden representation with two 

consecutive dense layers (one that uses a simple ReLU and other that uses a ReLU6). The 

resultant hidden representation is scaled back before a regular convolutional layer is 

applied. Finally, the output from the two branches is added (Howard et al., 2019). 
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Overall, the main building block shown in Fig. 4.6 serves as a predefined structure 

(known as bottleneck with residual or simply abbreviated as ‘bneck’) that is used repeatedly 

in order to construct the complex architecture that is given in Table 4.3. Note that this 

architecture has some layers that do not use the above-mentioned building block but 

implement a single specific operation (Howard et al., 2019). 

 

Table 4.3: Architecture details of the MobileNet V3 (1.0x large model) (Howard et al., 2019). 

Layer Output size  Output channels 

Input 224 x 224 3 

conv2d 112 x 112 16 

bneck, 3x3 112 x 112 16 

bneck, 3x3 56 x 56 24 

bneck, 3x3 56 x 56 24 

bneck, 5x5 28 x 28 40 

bneck, 5x5 28 x 28 40 

bneck, 5x5 28 x 28 40 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 112 

bneck, 3x3 14 x 14 112 

bneck, 5x5 7 x 7 160 

bneck, 5x5 7 x 7 160 

bneck, 5x5 7 x 7 160 

conv2d, 1x1 7 x 7 960 

pool, 7x7 - - 

conv2d 1x1, NBN - - 

conv2d 1x1, NBN - - 

 

Similar to other state-of-the-art feature extractors, the MobileNet V3 uses a tunable 

parameter known as depth multiplier. By modifying this parameter, the number of filers 

used throughout the network can be increased or decreased and therefore, the size of the 

model varies accordingly. Overall, the latter means that this architecture defines a family of 

models and not just a single one (Howard et al., 2019). 
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4.6  Decoder 

The decoder is the final stage that allows the reconstruction of the relative depth map. In 

particular, it takes as input the latent space representation obtained through the encoding 

stage. From this perspective, the decoder is responsible for gradually increasing the spatial 

resolution and reducing the number of channels associated to the hidden representation. In 

contrast to encoders, there are no state-of-the-art low-latency decoders architectures from 

which to select for our experimentation purposes (Long et al., 2015).  

Since the design of low-latency decoders from scratch is out of the scope of this thesis, it 

was decided to use a depthwise separable convolution layer as the main building block, 

interleaved with a simple interpolation operator. This decoding approach is inspired by the 

low-latency decoder proposed in (Wofk et al., 2019) and can be considered one of the 

simplest, yet most efficient upsampling methods to reconstruct a dense map, which in this 

case, is a relative depth map. The architecture details of a low-latency decoder are given in 

Table 4.4. 

 

Table 4.4: Architecture details of a generic low-latency decoder. 

Layer Output size  Output channels 

Latent space (input) 7 x 7 1024 

Dec_dwconv1 7 x 7 464 

Dec_dwconv2 + interpolat. 14 x 14 232 

Dec_dwconv3 + interpolat. 28 x 28 116 

Dec_dwconv4 + interpolat. 56 x 56 64 

⋮ ⋮ ⋮ 

Dec_dwconv𝑛 + interpolat. 224 x 224 𝑐𝑜𝑢𝑡 

Dec_pwconv 224 x 224 1 

 

As shown in Table 4.4, the generic structure of a low-latency decoder is made up of 𝑛 

layers of depthwise separable convolutions followed by a single pointwise convolution. The 

depthwise separable convolutions layers uses a 𝐹𝑞 x 𝐹𝑞 x 1  kernel and may perform 

interpolation using the nearest neighbor method if required (e.g., the second layer of the 

decoder example does not perform interpolation). A single pointwise convolution is applied 

to the last hidden representation (224 x 224 x 𝑐𝑜𝑢𝑡) to reduce the number of channels and 

obtain the corresponding relative depth map. It is important to note that the depth and 

structure of the decoder needs to be defined based on the coupling requirements with the 

selected encoder (Wofk et al., 2019).  
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In this sense, the decoder implementation should not only allow the ability to add and 

remove any number of layers, but also to define the number of input/output channels of the 

k-th layer. The latter allows the implementation of additive residual connections between 

the encoder and decoder. These residual connections allow to reduce the vanishing gradient 

problem and the subsequent loss of sharpness on the resultant depth map (Alhashim & 

Wonka, 2018). 

 

4.7  Low-latency FCN architectures 

After defining the encoding and decoding architectures separately as described in the 

previous section, the following step is to dock these architectures together to construct the 

low-latency FCN models suitable for monocular depth estimation.  

It should be noted that before the coupling procedure, there is a critical action item 

related to the encoder architecture that needs to be resolved first. The latter refers to the fact 

that most of the state-of-the-art pretrained encoders are currently being used solely for 

classification tasks and not for pixel-wise regression tasks, and therefore, those architectures 

need to be modified for a proper docking with a decoder. More specifically, some layers 

(i.e., global pooling and fully connected) need to be removed in order to keep the latent 

space representation intact and ready to be fed into the decoding stage. 

 

4.7.1 ShuffleNet-based model 

After modifying the ShuffleNet V2 architecture shown in Table 4.2 and coupling it with a 

customized decoder based on the structure given in Table 4.4, the low-latency FCN 

architecture shown in Fig. 4.8 was obtained. 

 

 

Fig. 4.8: Proposed low-latency ShuffleNet-based model (Shuff-dw-res-1.0). 
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As shown in Fig. 4.8, three residual additive connections between the encoder and 

decoder were added, which are illustrated as dotted arrows. The architecture details 

are shown in Table 4.5. 

Table 4.5: Architecture details of the proposed low-latency ShuffleNet-based model. 

Layer Output size  Output channels 

Input 224 x 224 3 

Conv1 112 x 112 24 

MaxPool 56 x 56 24 

Stage2 28 x 28 116 

Stage3 14 x 14 232 

Stage4 7 x 7 464 

Conv5 7 x 7 1024 

Dec_dwconv1 7 x 7 464 

Dec_dwconv2 + interpolat. 14 x 14 232 

Dec_dwconv3 + interpolat. 28 x 28 116 

Dec_dwconv4 + interpolat. 56 x 56 64 

Dec_dwconv5 + interpolat. 112 x 112 24 

Dec_dwconv6 + interpolat. 224 x 224 12 

Dec_pwconv 224 x 224 1 

 

4.7.2 MobileNet-based model 

After removing the last layers of the MobileNet V3 architecture, it was possible to couple its 

initial layers with a symmetrical decoder based on the structure given in Table 4.4. The 

resultant low-latency FCN architecture is shown in Fig. 4.9. 

 

 

Fig. 4.9: Proposed low-latency MobileNet-based model (Mob-dw-res-1.0). 
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Similar to the ShuffleNet-based model, three residual additive connections between 

the encoder and decoder were added, which are depicted as dotted arrows in Fig. 4.9. 

The architecture details are shown in Table 4.6. 

 
Table 4.6: Architecture details of the proposed low-latency MobileNet-based model. 

Layer Output size  Output channels 

Input 224 x 224 3 

conv2d 112 x 112 16 

bneck, 3x3 112 x 112 16 

bneck, 3x3 56 x 56 24 

bneck, 3x3 56 x 56 24 

bneck, 5x5 28 x 28 40 

bneck, 5x5 28 x 28 40 

bneck, 5x5 28 x 28 40 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 80 

bneck, 3x3 14 x 14 112 

bneck, 3x3 14 x 14 112 

bneck, 5x5 7 x 7 160 

bneck, 5x5 7 x 7 160 

bneck, 5x5 7 x 7 160 

conv2d, 1x1 7 x 7 960 

Dec_dwconv1 7 x 7 160 

Dec_dwconv2 + interpolat. 14 x 14 80 

Dec_dwconv3 + interpolat. 28 x 28 40 

Dec_dwconv4 + interpolat. 56 x 56 24 

Dec_dwconv5 + interpolat. 112 x 112 16 

Dec_pwconv + interpolat. 224 x 224 1 
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4.8  Materials 

This section briefly describes both the hardware configuration and the software 

development tools used for the project implementation. Finally, the training protocol is 

explained in detail considering the supervised training strategy as the selected one. 

 

4.8.1 Hardware setup 

The implementation, training and host validation was done using Python 3.7 using the 

PyTorch 1.4.0 framework installed on an ASUS X556U 8GB RAM laptop with a single 

NVIDIA GeForce 930MX GPU with 2GB VRAM running a Linux Ubuntu environment. 

With respect to the validation in target, the selected embedded system is the NVIDIA 

Jetson Nano which is shown in Fig. 4.10. 

 

 

Fig. 4.10: NVIDIA Jetson Nano development kit. 

 

Some technical specifications of the embedded system are indicated in Table 4.7. 

 

Table 4.7: Technical specifications of the NVIDIA Jetson Nano. 

Feature Specification 

CPU Quad-core ARM A57 @1.43 GHz 

GPU 128-core Maxwell architecture 

Memory 4GB 64-bit LPDDR4 

USB 4x USB 3.0, USB 2.0 Micro-B 

Power supply 5V DC / 2A 

Board dimensions 100mm x 80mm x 29mm 
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4.8.2 Training protocol 

The training protocol includes some implementation details and the selected 

hyperparameter values. Note that this section only applies to the initial benchmark between 

the ShuffleNet-based models and the MobileNet-based models, where the training protocol 

remains fixed while the architecture details vary.  

Regarding the initialization of the learnable parameters, the encoders are pretrained on 

ImageNet (Deng, Dong, Socher, Li, Li, & Fei-Fei, 2009). On the other hand, the decoders’ 

filters are randomly initialized using a Gaussian distribution. The Stochastic Gradient 

Descent (SGD) is used as the optimizer with a momentum of 0.90 and a weight decay 

enabled with a value of 0.0001. The learning rate is initialized in 0.01 and is configured to 

decrease its value by a factor of 3 every 5 elapsed epochs. Finally, the batch size for the 

training stage is set to 16 and the maximum number of epochs is set to 20. Some of these 

hyperparameter values were taken from (Ma & Karaman, 2018). 

Since the monocular depth estimation is a pixel-level regression task, it requires a 

regression loss function. Under this context, the regression loss functions consider the 

difference between the target depth map 𝑦 and the prediction of the deep convolutional 

neural network 𝑦̂. In this sense, the Mean Absolute Error (MAE) was selected as the loss 

function for the training stage (Carvalho, Saux, Trouvé-Peloux, Almansa, & Champagnat, 

2018): 

 

𝐿1(𝑦, 𝑦̂)  =
1

𝑛
∑|𝑦𝑝 − 𝑦̂𝑝|,

𝑛

𝑝=1

                                                          (10) 

 

where 𝑦𝑝 is a pixel of the target depth map 𝑦, 𝑦̂𝑝 is a pixel in the predicted depth map 𝑦̂ and 

𝑛 is the total number of pixels in the depth map. 
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CHAPTER 5 

Results 
 

In this chapter, the quantitative and qualitative results obtained after evaluating the 

proposed models on the official NYU-Depth V2 validation dataset are initially presented. 

This initial benchmark allowed to determine the best low-latency FCN from those proposed. 

After the benchmark, an ablation study is performed to determine the appropriate training 

protocol and hyperparameter values. Finally, the performance of the best FCN model is 

presented and compared against a related state-of-the-art method on the selected embedded 

system. 

 

5.1  Proposed FCNs 

As stated in Chapter 4, eight different low-latency FCN architectures are proposed with the 

main intention of generating a diversified search space of low-latency models. All proposed 

networks differ from each other from an architectural standpoint and therefore, the number 

of learnable parameters (weights) and number of FLOPs are also quite different. Despite of 

the latter, all of them can be considered as low-latency FCN architectures. To the best 

knowledge of the author, these architectural configurations have not been tested yet for the 

monocular depth estimation task. The architecture details for each configuration are shown 

in Table 5.1. 

 

Table 5.1: Architecture details of the proposed low-latency fully convolutional networks. 

Network name 
Feature 

extractor 

Depth 

multiplier 

Residual 

connections 

Upsampling 

blocks 

Weights 

[M] 

FLOPs 

[G] 

Shuff-dw-0.5 ShuffleNet V2  0.5x No 7 w/(3x3) 0.58 0.07 

Shuff-dw-1.0 ShuffleNet V2 1.0x No 7 w/(3x3) 1.90 0.21 

Shuff-dw-res-0.5 ShuffleNet V2 0.5x Yes 7 w/(5x5) 0.60 0.08 

Shuff-dw-res-1.0 ShuffleNet V2 1.0x Yes 7 w/(5x5) 1.93 0.22 

Mob-dw-0.75 MobileNet V3 0.75x (Large) No 6 w/(3x3) 1.90 0.17 

Mob-dw-1.0 MobileNet V3 1.0x (Large) No 6 w/(3x3) 3.16 0.24 

Mob-dw-res-0.75 MobileNet V3 0.75x (Large) Yes 6 w/(5x5) 1.91 0.17 

Mob-dw-res-1.0 MobileNet V3 1.0x (Large) Yes 6 w/(5x5) 3.18 0.24 
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5.2  Initial benchmark 

In order to evaluate the performance of the proposed FCN architectures (see Table 5.1) 

under the same conditions, a specific training protocol and hyperparameter values were 

defined. The purpose of this initial benchmark is to rank the architectures according to their 

performance, including the inference time achieved in a personal computer (see 

specifications below). Furthermore, this analysis also made it possible to select the best 

baseline architecture for the ablation study. The settings for the training protocol are shown 

in Table 5.2. 

 

Table 5.2: Training protocol and the hyperparameter values. 

Setting Value 

Batch size 16 

Optimizer 

Stochastic Gradient Descent 

Momentum = 0.90 

Weight decay = 0.0001 

Loss function MAE 

Transfer learning Yes 

Learning rate 

Initialization = 0.01 

Decay factor = 3 

Periodicity = 5 epochs 

Data augmentation Yes 

Total epochs 20 

 

The hardware configuration consists of an ASUS X556U 8GB RAM laptop with a single 

NVIDIA GeForce 930MX GPU with 2GB VRAM. 

 

5.2.1 Quantitative results 

In this section, the quantitative results obtained after evaluating the proposed low-latency 

FCN architectures against the official NYU-Depth V2 validation dataset are presented. Table 

5.3 shows a comparison of the different proposed low-latency models using the standard 

metrics used in prior works (Eigen et al., 2014). Similar to the state-of-the-art studies, each 

metric value in Table 5.3 represents the average on the official NYU-Depth V2 validation 

dataset. Note that the ↑ symbol means that a higher value is better and the ↓ symbol means 

that a lower value is better. 
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Table 5.3: Quantitative results obtained on the official NYU-Depth V2 validation dataset. 

Network name RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

Shuff-dw-0.5 0.670  0.705 0.502 0.192 13 77 

Shuff-dw-1.0 0.615 0.748 0.453 0.169 14 71 

Shuff-dw-res-0.5 0.661 0.707 0.494 0.192 13 77 

Shuff-dw-res-1.0 0.601 0.757 0.445 0.168 15 66 

Mob-dw-0.75 0.596 0.757 0.442 0.172 14 71 

Mob-dw-1.0 0.595 0.760 0.441 0.174 16 62 

Mob-dw-res-0.75 0.613 0.739 0.459 0.175 14 71 

Mob-dw-res-1.0 0.605 0.749 0.452 0.177 16 62 

 

As shown in Table 5.3, the first four columns after the ‘Network name’ column show the 

obtained average error metrics for each of the proposed low-latency FCN models. The last 

two columns indicate the associated latency in two different formats. At a first glance, the 

results suggest that the Mobilenet-based architectures are capable of achieving a slightly 

better performance than their counterpart ShuffleNet-based architectures. 

The smaller FCN architectures from Table 5.1 (i.e., Shuff-dw-1.0 and Shuff-dw-res-0.5) 

achieved the worst performance. The latter is expected since it is well known that as the 

number of learnable parameters of a network decreases, its performance also decreases. 

Despite the previous fact, the RMSE performance of these lightweight networks is within 

0.670 meters, which is 23% smaller than that obtained in (Eigen et al., 2014), the first paper 

to propose a convolutional neural network to solve the monocular depth estimation 

problem. Both networks are able to achieve an average execution time of 13 milliseconds 

per RGB image on the above described hardware configuration. 

Eventhough the other six FCN architectures achieved similar quantitative results among 

them, the MobileNet-based models without skip additive connections achieved the best 

performance overall. Similar to state-of-the-art studies, the qualitative results are also 

required for a complete comparison. To gain some context, it should be also noted that the 

proposed networks can be considered as very lightweight FCNs due to their much more 

compact size compared to other similar studies. Table 5.4 indicates that even the largest 

proposed model (i.e., Mob-dw-res-1.0) is smaller than the low-latency FCN model proposed 

in (Wofk et al., 2019). 
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Table 5.4: Size comparison between different low-latency FCN models. 

Network name Weights [M] FLOPs [G] 

Wofk et al. 3.93 0.74 

Shuff-dw-res-1.0 1.93 0.22 

Mob-dw-res-1.0 3.18 0.24 

 

As part of the quantitative results, Fig. 5.1 shows how the average training loss value for 

each low-latency FCN at each epoch during the training stage. As also shown in Fig. 5.1, 

only five out of the eight FCN architectures are capable of reaching a loss value less than 

0.30, while no model could achieve a loss value less than 0.25.  

 

 

Fig. 5.1: Average training loss of the proposed low-latency FCN architectures. 

 

Similar to many interesting optimization problems, the MAE loss function associated to 

each proposed FCN is generally non-convex. The latter means that there are potentially 

many local minima, which makes it difficult to achieve convergence during traning without 

overfitting. As it will be discussed in Section 5.3, an ablation study is important to determine 

the appropriate training protocol and hyperparameter values for a specific architecture 

given a training dataset. As already stated, this initial benchmark used the training protocol 

stated in Table 5.2. 

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ



 
 

52 
 

Since the ultimate goal is to find the best coefficients for the non-linear transformation 

between the space of RGB images and the codomain of real-valued depth maps, it is 

important to identify whether a best model has been obtained after a specific training epoch 

ends. For that reason, the model validation step is required to be done right after a training 

epoch has ended. The plot of the average validation loss at each epoch is illustrated in Fig. 

5.2. Note that since the validation loss at each epoch is computed using a batch size equal to 

one, it is considered normal for it to oscillate. 

 

 

Fig. 5.2: Average validation loss of the proposed low-latency FCN architectures. The left-hand red 

circle indicates that Shuff-dw-res-1.0 and Mob-dw-0.75 achieved their lowest loss value in epoch 16. 

The right-hand red circle shows that Mob-dw-1.0 achieved its lowest point in epoch 20. 

 

For instance, Fig. 5.2 shows circled in red the number of epoch at which the lowest MAE 

loss values were obtained for the best performing low-latency FCN models. On the one 

hand, both Shuff-dw-res-1.0 and Mob-dw-0.75 achieved their best performance in epoch 16. 

On the other hand, the best model for Mob-dw-1.0 was obtained until epoch 20. It should be 

noted that the networks were not trained further epochs mainly to avoid a negative effect 

known as network overfitting. Up to approximately the epoch 20, the performance of the 

low-latency FCNs were observed to improve on the official NYU-Depth V2 validation 

dataset (unseen data). However, beyond that point, the improvement of the model on the 

training data comes at the expense of a decrease in its generalization capability. 

 

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ



 
 

53 
 

5.2.2 Qualitative results 

The predicted relative depth maps obtained on the official NYU-Depth V2 validation 

dataset for each of the proposed low-latency FCN architectures in Table 5.1 are presented in 

Fig. 5.3 and Fig. 5.4. On the one hand, Fig. 5.3 shows the comparison for the low-latency 

FCN architectures that use the ShuffleNet V2 as the feature extractor.  

 

      

      

      
                                  (a)                (b)                (c)                 (d)                (e)                (f) 

Fig. 5.3: Comparison of qualitative results on some samples of the NYU-Depth V2 

validation dataset when using the ShuffleNet V2 encoder. From left to right: (a) Input RGB 

image; (b) Ground-truth; (c) Shuff-dw-0.5; (d) Shuff-dw-1.0; (e) Shuff-dw-res-0.5; (f) Shuff-

dw-res-1.0. 

 

Similarly, Fig. 5.4 shows the comparison for the low-latency FCN architectures that use 

the MobileNet V3 as the encoder. 

 

      

      

       
                                  (a)                (b)                (c)                 (d)                (e)                (f) 

Fig. 5.4: Comparison of qualitative results on some samples of the NYU-Depth V2 

validation dataset when using the MobileNet V3 encoder. From left to right: (a) Input RGB 

image; (b) Ground-truth; (c) Mob-dw-0.75; (d) Mob-dw-1.0; (e) Mob-dw-res-0.75; (f) Mob-

dw-res-1.0.  
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In order to select the most appropriate low-latency FCN architecture for the ablation 

study (see section 5.3), the following points were taken into account: 

1. The expected model performance given the number of learnable parameters. 

2. The proportion between the size of the model and its associated execution time on 

the official validation dataset. 

3. The sharpness of the qualitative results compared to the ground truth depth maps. 

4. The allocated VRAM for a given model during the training stage (considering the 

limited resources an embedded system has). 

The assessment consisted on evaluating the pros and cons of the proposed models 

considering them mainly as two different subsets depending on their feature extractor. On 

the one hand, the MobileNet-based models, specifically the Mob-dw-1.0, achieved the best 

performance among the proposed models. Overall, it was actually expected for this model 

to achieve the lowest RMSE since it is the largest model (i.e., it has 3.16 M learnable 

parameters) compared to the rest of the proposed architectures (see Table 5.3). Because of 

its size, the allocated VRAM during training (~1.8 GB with batch size equal to 16) was 

considerably larger than that of the ShuffleNet-based largest model (~1.3 GB with batch size 

equal to 16). The major drawback of the MobileNet-based models is their low sharpness on 

the qualitative results, which is due to the fact that Mob-dw-1.0 and Mob-dw-0.75 do not use 

additive skip connections. 

On the other hand, the ShuffleNet-based models achieved a RMSE performance slightly 

lower on the given training protocol and hyperparameter values. Nonetheless and as 

indicated in Table 5.3, the average relative error (Rel ↓) for Shuff-dw-res-1.0 and Shuff-dw-1.0 

is in fact lower than that obtained by any of the MobileNet-based models. The latter 

indicates there is no significant performance gap between the two different approaches. 

Considering only the ShuffleNet-based architectures, the Shuff-dw-res-1.0 stands as the 

model with the best quantitative results. In regard to the execution time, this model is 

capable of processing a 224 x 224 RGB image in 15 milliseconds using the above-mentioned 

hardware configuration. If we also consider the qualitative results, the depth images 

obtained by Shuff-dw-res-1.0 are clearly the sharpest from the eight proposed low-latency 

FCN architectures (see column (f) in Fig. 5.3). 

Given the previous analysis, it is clear that Shuff-dw-res-1.0 is the most promising model 

from those that were proposed. Therefore, this specific ShuffleNet-based architecture is 

selected as the model on which an ablation study would be performed. 
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5.3  Ablation studies 

After selecting the Shuff-dw-res-1.0 model as the best performing model, it was decided to 

further analyze its performance against variations of the hyperparameter values. Each of the 

hyperparameters is analyzed in isolation, i.e., only the hyperparameter of interest is varied 

while the others remain fixed. However, if a hyperparameter setting improves the 

performance of the model, it is considered as the new baseline for the next test. The only 

hyperparameter that was initially modified from those of Table 5.2 was the number of total 

epochs which was set to 25.  

 

5.3.1 Batch size 

According to some authors such as (Goodfellow et al., 2016), it is recommended to use a 

large value for batch size (e.g., 8, 16, 32, etc.) since it helps the optimization algorithm to 

obtain a better estimate of the gradient. However, considering that the batch size is limited 

by the 2GB GPU VRAM capacity, it was only possible to test with values of 8 and 16. Fig. 

5.5 shows the average validation loss for the above-mentioned batch sizes. 

 

 

Fig. 5.5: Average validation loss for different batch sizes on the NYU-Depth V2 dataset. 

 

Fig. 5.5 indicates that a batch size equal to 8 produces bigger fluctuations in the loss 

value before it abruptly diverges in the last epochs. In contrast, it is observed that using 16 
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samples to update the model learnable parameters allows to find a better local minimum. 

The quantitative results are shown in Table 5.5. 

 

Table 5.5: Quantitative results for different batch sizes on the NYU-Depth V2 validation dataset. 

Batch size RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

8 0.634  0.736 0.472 0.182 15 66 

16 0.601 0.757 0.445 0.168 15 66 

 

5.3.2 Optimizer 

An important ablation study was to determine the best optimizer (i.e., optimization 

algorithm) for the low-latency FCN on the monocular depth estimation task. According to 

(Wilson, Roelofs, Stern, Srebro, & Recht, 2017), there are currently two main trends when it 

comes to the loss function optimization. Specifically, there is the standard method known 

as Stochastic Gradient Descent (SGD) and adaptive gradient optimization methods (e.g., 

Adam, RMSProp, AdaGrad, etc.). In particular, the state-of-the-art methods for monocular 

depth estimation use either SGD with momentum or Adam (Wofk et al., 2019; Alhashim et 

al., 2019). Due to the above, it was decided to train and validate the model using both 

optimizers. The learning rate for Adam optimizer was set to 0.0001 as in (Alhashim et al., 

2019). The results are shown in Fig. 5.6. 

 

 

Fig. 5.6: Average validation loss for different optimizers on the NYU-Depth V2 dataset. 
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The quantitative results are shown in Table 5.6. 

 

Table 5.6: Quantitative results for different optimizers on the NYU-Depth V2 validation dataset. 

Optimizer RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

SGD  

+ momentum 
0.601 0.757 0.445 0.168 15 66 

Adam 0.673 0.685 0.511 0.198 15 66 

 

Similar to the findings in (Wilson et al., 2017), the obtained quantitative results indicate 

that SGD with momentum significantly outperforms the adaptive gradient method (Adam). 

In other words, it can be said that the solution (local minimum) found by the Adam 

algorithm generalizes poorly on the official validation dataset. 

 

5.3.3 Learning rate 

The next logical step was to further analyze the impact of the learning rate on the model 

performance. Undoubtedly, the learning rate initialization is regarded as a very important 

hyperparameter, as it controls how quickly the search space is explored. Fig. 5.7 shows the 

average validation loss for three different learning rates.  

 

 

Fig. 5.7: Average validation loss for different learning rates on the NYU-Depth V2 dataset. 
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As shown in Fig. 5.7, a learning rate that is too large (i.e., 0.1) causes the low-latency FCN 

model to reach to a suboptimal solution. In the other hand, a very small learning rate (i.e., 

0.005) is not enough to trigger significant changes to the weights at each update step, which 

in turn caused the learning process to stagnate. The quantitative results are illustrated in 

Table 5.7. 

 

Table 5.7: Quantitative results for different learning rates on the NYU-Depth V2 validation dataset. 

Learning rate RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

0.1 0.715  0.653 0.544 0.207 15 66 

0.01 0.601 0.757 0.445 0.168 15 66 

0.005 0.612 0.740 0.458 0.174 15 66 

 

The obtained results in Table 5.7 clearly indicate that using 0.01 is a good learning rate 

for this pixel-level continuous regression task.  

 

Decay factor 

 

Overall, the learning rate decay is a technique that consists on gradually decreasing the 

learning rate by a factor during the training stage. In this regard, it is important to determine 

the optimal value ∈ ℕ to use as the decay factor. Fig. 5.8 shows the average validation loss 

for different decay factors considering a learning rate initialized as 0.01. 

 

 
Fig. 5.8: Average validation loss for different decay factors on the NYU-Depth V2 dataset. 
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It is interesting to note in Fig. 5.8 that a decay factor equal to 1 (i.e., constant learning 

rate) has the worst performance overall. Furthermore, this ablation study allowed to observe 

that a decay value of 2 is capable of improving the generalization capability of the low-

latency FCN model on new data. The quantitative results are shown in Table 5.8. 

 

Table 5.8: Quantitative results for different factors on the NYU-Depth V2 validation dataset. 

Decay factors RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

1 0.634 0.729 0.473 0.174 15 66 

2 0.600 0.759 0.443 0.166 15 66 

3 0.601 0.757 0.445 0.168 15 66 

5 0.608 0.749 0.454 0.175 15 66 

 

Weight decay 

 

Another important optimizer hyperparameter (related to SGD) is known as weight decay or 

L2 regularization. As already described in a previous chapter, the weight decay is simply a 

method to penalize large weight values in order to avoid an overfitted model. Fig. 5.9 shows 

the average validation loss for two different weight decay values. 

 

 
 
Fig. 5.9: Average validation loss for different weight decay values on the NYU-Depth V2 dataset. 

 

 

Dire
cc

ión
 G

en
era

l d
e B

ibl
iot

ec
as

 U
AQ



 
 

60 
 

It can be said that a larger penalization value improves the validation performance of 

the model as shown in Table 5.9. 

 

Table 5.9: Quantitative results for different L2 values on the NYU-Depth V2 validation dataset. 

Weight decay RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

0.0001 0.600 0.759 0.443 0.166 15 66 

0.0005 0.596 0.758 0.442 0.166 15 66 

 

 

5.3.4 Transfer learning 

One of the main factors that positively impact the performance of the proposed low-latency 

FCN is the usage of the state-of-the-art technique known as transfer learning. Fig. 5.10 shows 

that when transfer learning is used, it enables significant improvement in performance for 

the Shuff-dw-res-1.0 architecture. Note that all three models in Fig. 5.10 were trained using 

the same hyperparameter values. 

 

 

 
Fig. 5.10: Impact of encoder pre-training on the average validation loss. 

 

 

After analyzing the Fig. 5.10, it is quite clear that the Shuff-dw-res-1.5 model could have 

outperformed the Shuff-dw-res-1.0 model if only the pretrained model had been used. 

However, it was not possible to get neither the pretrained model nor the required ImageNet 
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dataset to generate it. After several attempts, the ImageNet dataset administrators did not 

respond to any of the requests made by the research team. 

The quantitative results for the two different encoder weights initialization approaches 

(i.e., pretrained and not pretrained) are shown in Table 5.10 for different depth multipliers. 

 

Table 5.10: Quantitative comparison between the two different encoders initialization strategies. 

Model RMSE [m] ↓ 𝜹𝟏 ↑ MAE ↓ Rel ↓ GPU [ms] ↓ fps ↑ 

Shuff-dw-res-1.0 

(pretrained) 
0.596 0.758 0.442 0.166 15 66 

Shuff-dw-res-1.0 

(not pretrained) 
0.755 0.634 0.576 0.219 15 66 

Shuff-dw-res-1.5 

(not pretrained) 
0.733 0.659 0.557 0.214 16 62 

 

The results in Table 5.10 confirm that transfer learning allows to reduce the RMSE metric 

by 21.06% for the Shuff-dw-res-1.0 model. 

 

5.4  Comparison with prior work 

Once the Shuff-dw-res-1.0 best model was obtained, it was directly compared to the state-of-

the-art low-latency fully convolutional network proposed by Wofk et al. (2019) on the official 

NYU-Depth V2 validation dataset.  

The quantitative comparison was performed using both devices: the host computer and 

the selected target device. Furthermore, a qualitative comparison between the proposed 

method and the state-of-the-art method is also considered at the end of this section. 

 

5.4.1 Quantitative comparison 

This section shows a quantitative comparison between results of the related state-of-the-art 

method and the proposed method on the above-mentioned validation dataset. Note that the 

initials NP for some of the following result tables stand for the method from Wofk et al. 

(2019) with additional post-processing based on a network pruning technique. It should be 

noted that the ↑ symbol means that higher is better and the ↓ symbol means that lower is 

better. 
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Comparison in host 

Table 5.11 shows the quantitative comparison between the results of the proposed method 

against those from the related state-of-the-art- method. 

 

Table 5.11: Comparison of quantitative results on the official NYU-Depth V2 validation dataset in 

the host personal computer (ASUS X556U 8GB RAM with a single NVIDIA GeForce 930MX GPU 

with 2GB VRAM).         

Model RMSE [m] ↓ 𝜹𝟏 ↑ GPU [ms] ↓ fps ↑ Weights [M] FLOPs [G] 

Wofk et al. 0.599 0.775 24 41 3.93 0.74 

Wofk et al.+NP 0.604 0.771 17 58 1.34 0.37 

Proposed model 0.596 0.758 15 66 1.93 0.22 

 

As shown in Table 5.11, the RMSE value for the proposed method is lower when 

compared to the related method (without and with compression) by 0.5% and 1.16% 

respectively. The latter demonstrates that a more compact deep learning model than the 

state-of-the-art method is indeed capable of achieving less error.  

Additionally, the execution time in milliseconds achieved by the proposed method is 

lower than that obtained by the related method (without compression) by 37.5% (i.e., 1.6x 

faster). Furthermore, the execution time obtained by the proposed method is even less than 

that achieved using the compressed model of the related method by 11.7% (i.e., 1.1x faster). 

In general, it can be said that the proposed FCN is significantly more lightweight, while 

achieving a noticeable improvement in the RMSE metric. 

 

Comparison in Jetson Nano 

The successful deployment of deep learning models in embedded systems depends on 

several factors that are explained in detail in the following chapter. Once the installation 

dependencies were solved, the results of Table 5.12 were obtained. 

 

Table 5.12 Comparison of quantitative results on the official NYU-Depth V2 validation dataset in the 

target device (NVIDIA Jetson Nano with 4GB VRAM – 10W power mode). 

Model RMSE [m] ↓ 𝜹𝟏 ↑ GPU [ms] ↓ fps ↑ Weights [M] FLOPs [G] 

Wofk et al. 0.599 0.775 59 17 3.93 0.74 

Wofk et al.+NP 0.604 0.771 62 16 1.34 0.37 

Proposed model 0.596 0.758 68 15 1.93 0.22 
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5.4.2 Qualitative comparison 

Once the low-latency FCN model was already deployed in the embedded system, the next 

step was to perform a qualitative comparison using some validation samples between the 

proposed method and the related work is shown in Fig. 5.11.  

It should be noted that the relative depth on each sample scene increases as the color of 

the pixels in the depth map becomes lighter and vice versa. Furthermore, an error map 

between each model predictions and the ground-truth depth maps are also presented. For 

the sake of clarity, both colormaps are attached to Fig 5.11. 

 

 

      

      

      

      
                                      (a)                (b)                (c)                (d)                 (e)                (f) 

Fig. 5.11: Comparison of qualitative results on some samples of the NYU-Depth V2 

validation dataset. From left to right: (a) Input RGB image; (b) Ground-truth; (c) Wofk et al. 

(2019); (d) Error map between Wofk et al. (2019) and ground-truth; (e) Proposed method 

(Shuff-dw-res-1.0); (f) Error map between proposed method and ground-truth. 

 

The corresponding depth maps obtained by the proposed method are shown in column 

(e) of Fig. 5.11, while the qualitative results of the related work are shown in column (c). 

Although the related method shows slightly better sharpness in some regions, note how the 

proposed method achieves a more accurate relative depth estimation for the closest objects 

in almost every image shown in Fig. 5.11. The latter observation can be confirmed by looking 

at the error maps that are shown in column (f) for the proposed method and in column (d) 

for the related work. Note how there are fewer red areas for the proposed method. 
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Finally, the model predictions are compared to each other using a 3D representation as 

shown in Fig. 5.12.  

 

 

   

   

   
                                      (a)                                          (b)                                           (c)              

Fig. 5.12: Comparison of 3D representations of model predictions against their ground-

truth depth map on some samples of the NYU-Depth V2 validation dataset. From left to 

right: (a) Ground-truth; (b) Wofk et al. (2019); (c) Proposed method (Shuff-dw-res-1.0). 

 

Overall, it is clear that the proposed method achieves a comparable or better qualitative 

performance to that of the state-of-the-art method. On the other hand, it is also fair to say 

that the qualitative performance of low-latency FCNs for monocular depth estimation is still 

limited in terms of resolution. 

 

5.5  Inference phase results 

The inference phase refers to the stage when the machine learning model is used to obtain 

predictions on unseen input data that does not belong to the training nor the validation 

dataset used to train/validate the model. 

It should be noted that there is no ground truth available for this phase so it cannot be 

quantitatively evaluated. In this sense, the qualitative results can be used to estimate the 

correctness of the predictions (see Fig. 5.13). Overall, it is observed that the Shuff-dw-res-1.0 
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model has a very good generalization capability on unseen data. However, it is also 

observed that adding objects with fine details (i.e., furniture) or people is still challenging. 

 

  

  

   

  

  
 (a)                (b) 

Fig. 5.13: Qualitative results in indoor scenes that do not belong to the NYU-Depth V2 

validation dataset. From left to right: (a) Input RGB image; (b) Prediction of the proposed 

method (Shuff-dw-res-1.0). 

 

Although the obtained model is intended to be used exclusively to predict the relative 

depth of indoor scenes, it was tested on some outdoor scenes as shown in Fig. 5.14. Although 

performance at the local level is poor, less error is observed at a global structure level. 

 

  

  
(a)                (b) 

Fig. 5.14: Qualitative results in outdoor scenes. From left to right: (a) Input RGB image; (b) 

Prediction of the proposed method (Shuff-dw-res-1.0). 
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5.6  Discussion 

This section presents a discussion of the obtained quantitative and qualitative performance 

of the proposed method.  

 

5.6.1 Model performance 

On the one hand, the quantitative results in Table 5.11 and Table 5.12 related to error 

metrics (i.e., RMSE) indicate that the proposed method outperforms the low-latency state-

of-the-art method. The latter observation is considered notable given the fact that the 

encoder network used in the related method (without compression) has 3.9x more FLOPs 

and 1.8x more parameters than the one used as part of the proposed method. As a result, 

the mean latency of the proposed method is 37.5% less than that obtained with the related 

method (without compression). Furthermore, the proposed method is even faster than the 

compressed model of the related method in about 11%.  

The results imply that using low-latency convolutional layers (i.e., depthwise separable 

convolutions) together with channel shuffle and split operators can also be seriously 

considered for pixel-wise continuous regression tasks where computational resources are 

very restricted. In general, the proposed approach shows that the selected feature extractor 

(i.e., ShuffleNet V2) is capable of achieving an appropriate latent space representation of the 

input with fewer computational cost than the related method. Despite the fact that the 

proposed method uses a smaller FCN model than Wofk et al. (2019), it is noticeable in both 

quantitative and qualitative results that the proposed method achieves predictions with less 

error. It is also observed in Fig. 5.11 column (e) that most of the nearest objects in the 

predicted depth maps appear to be more visually consistent with the ground truth maps on 

the NYU-Depth V2. 

 

5.6.2 Transfer learning 

The quantitative results that are shown in Table 5.10 indicate that the performance of a low-

latency fully convolutional network on the NYU-Depth V2 dataset is strongly correlated to 

the initialization of the weights. In this sense, it was observed that the best performance for 

the proposed FCN architectures is obtained when the transfer learning technique is used, 

i.e., when the learnable parameters of the encoder are initialized with a pretrained model 

on the ImageNet dataset.  

It should be noted that the availability of these pretrained models was found to be quite 

limited, not only because the training process would necessarily require a high-performance 
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computer with a high-end GPU, but mainly because it was not possible to gain access to the 

ImageNet dataset. For this reason, it can be said that the lack of a pre-trained model to 

initialize the encoder of a low-latency FCN could severely limit its performance. 

 

5.6.3 Framework maturity 

As stated by Wofk et al. (2019), most of the deep learning frameworks (e.g., PyTorch, 

Tensorflow, etc.) have not yet reached a production-ready maturity level to fully support 

lightweight models. The latter means that most of the implementations of the deep learning 

operators (e.g., depthwise decomposition, channel shuffle, etc.) are hardware-specific (e.g., 

x64 and ARM) and could vary between the several official frameworks’ releases. Moreover, 

since low-latency convolutional architectures are part of a quite recent research topic, it is 

also expected that some of these operators are not yet fully optimized in the 

abovementioned deep learning frameworks. 

In addition, the deep learning frameworks are usually tailored by the embedded system 

supplier (e.g., NVIDIA) to enable their installation on their specific embedded operating 

system (e.g., Linux4Tegra). Overall, all of these customizations and lack of optimizations 

are responsible for the discrepancies related to the obtained model performance in terms of 

the execution time on the embedded system. 
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CHAPTER 6 

Conclusion and future work 
 

 

This chapter presents the conclusion of the research in terms of the contributions and 

provides the future work that may further improve the methodology. 

 

6.1  Conclusion 

Due to their enhanced performance, deep learning-based methods are increasingly being 

used to solve specific problems in almost any scientific and technological domain. As 

described in Chapter 4, the monocular depth estimation task is no exception to this 

emerging trend. While the latter is the overall picture of the state-of-the-art methods for this 

research topic, most of these studies are mostly focusing on improving the accuracy at the 

cost of complex and large deep learning architectures that cannot be deployed on embedded 

systems.  

It has been said that a very promising direction in this research area is the development 

of smaller and lightweight networks since these will have greater implications for practical 

use cases (Zhao et al., 2020). This thesis contributes to this goal by proposing a very low-

latency fully convolutional network whose performance is comparable to state-of-the-art 

methods with a lower execution time. In particular, this work proposes a low-latency FCN 

architecture for monocular depth estimation in systems with limited computational 

resources. The experimental results of the proposed approach show that the low-latency 

convolution layers (depthwise separable convolutions) and the operators (channel shuffle 

and channel split) that are used as part of the ShuffleNet V2 encoder can help lay the 

foundation on the design of very lightweight FCNs architectures for real-time monocular 

depth estimation. 

To the best of the authors’ knowledge, the ShuffleNet V2 feature extractor had not been 

tested in the monocular depth estimation task, until now. It should also be noted that, 

without the additional use of compression techniques, the obtained model is capable of 

achieving a shorter inference time than the related state-of-the-art method (Wofk et al., 2019), 
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while also reducing the RMSE metric by 1.16%. In particular, the proposed fully 

convolutional network achieves a reduction of 37.5% in inference time with respect to the 

related state-of-the-art method. As a consequence, it should be also noted that the reduced 

size of the proposed architecture allows the training and validation stages to be carried out 

on a typical laptop with technical specifications well below from those required by state-of-

the-art methods that are not considered efficient. 

Overall, it should be noted that low-latency FCNs for monocular depth estimation is a 

relatively new research topic that was started just a couple of years ago and therefore it can 

be said that it has a great future ahead of it. According to (Zhao et al., 2020), the ability to 

execute high-performance deep learning models for monocular depth estimation on 

embedded devices could have disruptive applications in the not-too-distant future, which 

makes this research topic so worthwhile. 

 

6.2  Recommendations for future work 

The following are research ideas that could be explored as future work: 

 

▪ To validate the proposed method in the outdoor scene’s dataset known as KITTI 

(Geiger et al., 2013). 

 

▪ To include both the channel shuffle and channel split novel operators as part of a 

new decoder design. 

 

▪ To investigate if there is another public classification dataset that can be used to 

generate pretrained models capable of obtaining similar performance as those from 

ImageNet. 

 

▪ To explore hyperparameter optimization methods such as grid search or random 

search to determine optimal hyperparameter values. For this pixel-level regression 

task, it would be necessary a very high-performance computer to achieve this. 

 

▪ To include the Akaike’s information criterion as a method to compute the so-called 

goodness-of-fit test statistics of the proposed model. 
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