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RESUMEN 

El Deep Learning (DL) se ha utilizado ampliamente para detectar anomalías en 

imágenes retinianas. Por lo general, esta tarea se ha centrado en un dominio 

específico, como las enfermedades relacionadas con el glaucoma o la retinopatía 

diabética, pero no ambas. En este estudio, proponemos identificar lesiones 

asociadas a ambas enfermedades utilizando un único modelo base, evitando el uso 

de múltiples modelos de DL. Se comenzó el estudio con un análisis comparativo 

del rendimiento de varios modelos de detección de objetos en la tarea de segmentar 

el disco y la copa ópticos. Los resultados arrojaron resultados excelentes y se 

seleccionó el modelo Cascade R-CNN. La tarea se complica por la necesidad de 

anotaciones en conjuntos de datos relacionados con daños en otro dominio para el 

que fue creado. Además, el tamaño y la forma de los objetos y el sesgo hacia las 

clases predominantes son evidentes. Varias técnicas caracterizan este trabajo, 

incluido el etiquetado suave para predicciones de máscaras, la distancia de 

Wasserstein normalizada para manejar objetos pequeños y experimentos en el 

muestreo de imágenes durante el entrenamiento con pérdida de entropía cruzada 

combinada con Online Hard Negative Mining o pérdida asimétrica. Para el 

refinamiento de resultados, el cluster-weighted con Distance IoU mejoró las 

predicciones finales. Basado en la precisión media promedio (mAP), una métrica 

estándar en modelos de detección de objetos, el resultado informado fue de 0.46. 

Cuatro conjuntos de datos públicos fueron empleados, REFUGE, ORIGA, G1020 y 

DDR. Se proporcionó un análisis de error detallado por categoría. En conclusión, 

se demostró la viabilidad de usar un solo modelo, mientras que las técnicas 

empleadas ayudaron a aumentar las métricas relacionadas con mAP. Nuestra 

investigación proporciona información novedosa sobre el uso de fotografías de 

retina para la predicción de biomarcadores sistémicos asociados con múltiples 

enfermedades. 

Palabras claves: Glaucoma, Retinopatía Diabética, Detección de Objetos, Cascade 

R-CNN, Distancia Wasserstein, Pérdida Asimétrica, mAP  
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ABSTRACT 

Deep learning (DL) has been widely used to detect abnormalities in retinal 

images. Typically, this task has been focused on a specific domain, such as 

diseases related to glaucoma or diabetic retinopathy, but not both. In this study, we 

propose to identify lesions associated with both diseases using a single base model, 

avoiding the use of multiple DL models. The study began with a comparative 

analysis of the performance of several object detection models on the task of 

segmenting the optic disc and cup. The results yielded excellent results and the 

Cascade R-CNN model was selected. The task is complicated by the need for 

annotations in datasets related to damage in another domain for which it was 

created. In addition, the size and shape of objects and bias towards predominant 

classes are evident. Several techniques characterize this work, including soft 

labeling for mask predictions, normalized Wasserstein distance for handling small 

objects, and experiments in image sampling during training with cross-entropy loss 

combined with Online Hard Negative Mining or asymmetric loss. For result 

refinement, cluster-weighted with Distance IoU improved final predictions. Based on 

mean average precision (mAP), a standard metric in object detection models, the 

reported result was 0.46. Four public datasets were employed, REFUGE, ORIGA, 

G1020, and DDR. A detailed error analysis by category was provided. In conclusion, 

the feasibility of using a single model was demonstrated, while the techniques 

employed helped to increase mAP-related metrics. Our research provides novel 

insights into the use of retinal photographs for the prediction of systemic biomarkers 

associated with multiple diseases. 

Keywords: Glaucoma, Diabetic Retinopathy, Object Detection, Cascade R-CNN, 

Wasserstein Distance, Asymmetric Loss, mAP. 
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1. INTRODUCCIÓN 

En esta sección se presenta el tema de investigación, su relevancia, así como 

los objetivos de esta. Elementos importantes que podrán ser encontrados son la 

motivación, la justificación de la investigación, el planteamiento del problema y la 

hipótesis. Una breve descripción del método de investigación fue agregada. 

1.1. Motivación 

A nivel mundial alrededor de 2200 millones de personas tienen deficiencia visual 

o ceguera, de ellas 1000 millones presentan una condición que pudo haberse 

evitado o que aún no ha sido tratada [1]. Una mejor comprensión de la magnitud de 

las necesidades de atención oftalmológica que actualmente se satisfacen en el 

sistema de salud es fundamental para una planificación eficaz. 

Las enfermedades crónicas son un trastorno orgánico o funcional que obliga a 

una modificación del modo de vida del paciente y que persiste durante largo tiempo, 

entre ellas se encuentran las enfermedades cardíacas y la diabetes [2]. 

Enfermedades crónicas asociadas a la vista son la retinopatía (diabética e 

hipertensiva), la degeneración macular asociada a la edad, el glaucoma, entre 

otras, ver Figura 1-1. 

Más allá de la prevención en el manejo de estas enfermedades es preciso dar 

un paso hacia delante enfocado en el análisis y detección de estas en fases 

tempranas de sus evoluciones, ya que un análisis es un estudio detallado, un 

examen cualitativo y cuantitativo de los componentes o sustancias del organismo 

según métodos especializados, con un fin diagnóstico [3]; mientras que detectar es 

la extracción de información particular de un flujo de información más grande sin 

cooperación específica o sincronización con el remitente. También se interpreta 

como la inspección y medición del objeto o fenómeno que no se puede observar 

directamente [4]. 
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Figura 1-1: Prevalencia de enfermedades crónicas en la retina [1]. 

La retina es la capa de células nerviosas que recubren la pared posterior en el 

interior del ojo. Esta capa detecta la luz y envía señales al cerebro a través de unos 

elementos llamados conos y bastones para la formación de la imagen [5]. 

El empleo de imágenes de retina se justifica ya que es el único lugar del cuerpo 

humano donde se puede apreciar imágenes de las venas y arterias directamente, 

lo que nos brinda la oportunidad de apreciar la estructura y patología en vivo de la 

circulación humana [6]. 

Las imágenes médicas constituyen un nicho importante de información y 

diferentes técnicas de DL se han empleado para detectar patrones. El DL es una 

forma de representación del aprendizaje que utiliza múltiples pasos de 

transformación para identificar características muy complejas. Esta representación 

es jerárquica y permite al ordenador aprender conceptos complejos a partir de otros 

más simples. Los conceptos se construyen unos encimas de otros, quedando un 

gráfico de muchas capas, de ahí su definición de DL [7], [8]. 

Con esta investigación se diseñará una plataforma de software que permita la 

2600 mill con 
Miopia

1800 mill con 
Presbyopia

196 mill con 
AMD

146 mill con 
RD

76 mill con 
Glaucoma

2.5 mill con 
Triquiasis

tracomatosa
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detección de enfermedades crónicas en imágenes de retina haciendo uso de 

metodologías de procesamiento de dichas imágenes y técnicas de DL y que nos 

permita describir la causalidad de las detecciones en la toma de decisiones 

médicas. 

1.2. La Retina 

La vista es el sentido más fundamental que poseemos y la ceguera es quizás la 

mayor de todas las tragedias, ya que nos priva del sentido de la visión. Aunque 

todas las partes del ojo son importantes para percibir una buena imagen, la capa 

más vital para la visión es la retina. La retina es esencialmente una extensión del 

tejido cerebral, que recibe estimulación directa de la luz y las imágenes del mundo 

exterior. 

En la retina se pueden apreciar estructuras como la red vascular, el disco óptico, 

donde confluyen las venas y arterias, así como la mácula y fóvea; además se 

pueden detectar biomarcadores de daño relacionados con alguna enfermedad 

crónica como microaneurismas (MA), hemorragias (HE), exudados duros (EX), etc., 

ver Figura 1-2. 

 

Figura 1-2: Imagen de retina (tomada y modificada de [9]). 

Un biomarcador es definido como aquellas características biológicas, 

bioquímicas, antropométricas, fisiológicas, etc., objetivamente mesurables, 

capaces de identificar procesos fisiológicos o patológicos [10]. 

La retina humana es una organización delicada de neuronas, glía y vasos 
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sanguíneos nutritivos. En algunas enfermedades oculares, la retina se daña o se 

compromete, y se producen cambios degenerativos que eventualmente conducen 

a daños graves en las células nerviosas que transmiten los mensajes vitales sobre 

la imagen visual al cerebro [11]. Indicamos tres condiciones diferentes donde la 

retina está enferma y la ceguera puede ser el resultado final. 

La degeneración macular relacionada con la edad es un problema retinal común 

del ojo envejecido y una de las principales causas de ceguera en el mundo. El área 

macular y la fóvea se comprometen debido a la degeneración del epitelio 

pigmentario detrás de la retina, que forma drusen (manchas blancas) y permite la 

fuga de líquido detrás de la fóvea. Los conos de la fóvea mueren, lo que causa una 

pérdida de visión central, por lo que no podemos leer ni ver detalles finos. 

El glaucoma también es un problema común en el envejecimiento, donde la 

presión dentro del ojo aumenta. La presión aumenta porque la cámara anterior del 

ojo no puede intercambiar líquido correctamente por los métodos normales de flujo 

de salida acuoso. La presión dentro del vítreo aumenta y compromete los vasos 

sanguíneos de la cabeza del nervio óptico y eventualmente los axones de las 

células ganglionares, por lo que estas células vitales mueren. El tratamiento para 

reducir la presión intraocular es esencial en el glaucoma. 

La retinopatía diabética es un efecto secundario de la diabetes que afecta la 

retina y puede causar ceguera. Los vasos sanguíneos vitales que nutren el ojo se 

comprometen, se distorsionan y se multiplican de manera incontrolable. El 

tratamiento con láser para detener la proliferación de vasos sanguíneos y la fuga 

de líquido hacia la retina es el tratamiento más común en la actualidad. 

En esta investigación se abordarán biomarcadores de daño en la retina 

asociados al glaucoma y a la retinopatía diabética. 

1.3. Justificación del problema 

En 2021, la International Diabetes Federation estimó que uno de cada diez 

adultos (20–79 años) tiene diabetes (537 millones de personas), uno de cada dos 

adultos con diabetes no está diagnosticado (240 millones de personas) y el 9% del 
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gasto en salud mundial se destina a la diabetes (966,000 millones de dólares), entre 

otros datos relevantes [12]. En el mismo estudio se estima, que para el 2030 uno 

de cada nueve adultos tendrá diabetes (643 millones) y el gasto en salud 

relacionado con dicha enfermedad alcanzará 1 billón de dólares; así mismo para el 

año 2045 será un adulto cada ocho (783 millones) y el gasto asociado alcanzará 

los 1.1 billones de dólares. 

La retinopatía diabética (RD) es una complicación de la diabetes que puede 

causar ceguera si no se trata a tiempo. La RD es la quinta causa principal de 

ceguera y deficiencia visual moderada a grave en adultos de 50 años o más. La 

prevalencia mundial estandarizada por edad de la ceguera debida a la RD ha 

aumentado del 14,9% al 18,5% entre 1990 y 2020 [13]. La RD puede desarrollarse 

incluso sin síntomas, por lo que es importante que las personas con diabetes se 

sometan a exámenes oftalmológicos regulares. Se sabe que la incidencia de la RD 

es de un 35% en pacientes diabéticos, que uno de cada tres pacientes con diabetes 

tendrán algún grado de RD, y uno de cada diez tendrán baja de visión por este 

motivo y que 145 millones de personas en el mundo sufren algún tipo de daño 

ocular por diabetes [14]. 

A nivel local, México ocupa el 5to lugar mundial de personas que viven con 

diabetes, con un total de 12 millones. De ese total un 5% puede padecer un edema 

macular (engrosamiento de la parte fina de la visión) con significativo deterioro de 

la visión central y hasta un 54% de las personas con diabetes tienen visión 

disminuida [14]. 

El glaucoma es una causa común de ceguera irreversible y está asociado con 

una pato-fisiología esencial que afecta a las células ganglionares de la retina, el 

estroma, los fotorreceptores, el cuerpo geniculado lateral y la corteza visual [15]. 

Se estima que esta enfermedad afecta a 80 millones de personas, de ellas, 1.5 

millones son en México [16] y que hay hasta un 50% de personas que desconocen 

que presentan la enfermedad. 

La tendencia del glaucoma a nivel global tampoco es muy poco esperanzadora. 
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De acuerdo a un estudio del 2006, para el año 2010 el número de personas con 

glaucoma sería de 60.5 millones, incrementándose a 79.6 millones de personas 

para el año 2020 y para el año 2040 este número se elevaría a 111 millones [17]. 

Solo en Estados Unidos el impacto económico asociado a la enfermedad es de 

1500 millones de dólares. 

Uno de los grandes desafíos para realizar el diagnóstico de las enfermedades 

antes mencionadas es la falta de cultura de la población para realizarse estudios 

periódicos. Incluso, personas diabéticas diagnosticadas, quienes deberían 

realizarse evaluaciones de retina periódicas, no las llevan a cabo por diferentes 

razones. 

Por lo que se deriva la necesidad de un sistema automatizado, que proporcione 

una detección oportuna y confiable de enfermedades crónicas oculares, para 

mejorar la calidad de vida de las personas, la convivencia con las enfermedades y 

como posible influencia una reducción en los gastos económicos asociados al 

tratamiento. 

Además, se busca una detección temprana, ya que puede permitir disponer de 

mejores indicadores económicos-financieros en los presupuestos de sanidad [18]. 

El sistema también puede proveer a médicos y especialistas de una herramienta 

de apoyo a los diagnósticos médicos; así como una plataforma para la 

experimentación con nuevas formas de detección en otras áreas de imágenes 

médicas. 

1.4. Descripción del problema 

En la actualidad, el incremento de la capacidad de cómputo y el desarrollo de 

nuevos algoritmos de IA, han propiciado el incremento de nuevas herramientas 

para el diagnóstico de enfermedades de la retina. Sin embargo, pocas han sido 

aprobadas para su uso comercial. Algunos ejemplos de softwares aprobados por la 

Food and Drug Administration son el sistema IDx-DR, para el diagnóstico de la RD, 

pero solo puede ser modificado por sus creadores y comercializado en USA, 

además que no emite un diagnóstico para otras posibles afecciones que tengan los 
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pacientes; el otro es el sistema EyeArt AI Eye Screening System, con permiso en 

la Unión Europea y Canadá, también para el diagnóstico de la RD [19]. Las 

capacidades de EyeArt recientemente fueron ampliadas, siendo capaz de detectar, 

adicionalmente Degeneración Macular asociada a la Edad y Glaucoma, así como 

utilizar diferentes equipos para la toma de imágenes [20]. Otros softwares han sido 

desarrollados o siguen en investigación, pero aún no son comerciales. 

Otras limitantes actuales son la escasez de imágenes para el entrenamiento y 

validación de los modelos, mientras más cantidad mayor exactitud, precisión y 

sensibilidad de los modelos, contrarrestando también el problema de los falsos 

negativos que arrojan estos modelos, a pesar de los altos valores de exactitud de 

estos en la actualidad. Este tipo de errores son críticos para la atención de los 

pacientes. 

Por otro lado, la no homogeneidad de los equipos de captura de las imágenes, 

con diferentes calidades y resoluciones constituyen un obstáculo para los 

algoritmos de DL. 

También nos encontramos con sistemas con poca capacidad explicadora para 

los profesionales de la salud, lo que los hace en muchos casos rechazar el uso de 

las nuevas tecnologías. Este problema es conocido como el fenómeno de “caja 

negra”, ya que el resultado obtenido está basado en un entrenamiento y aprendizaje 

intensivo [21]. 

Siguiendo la tendencia mundial en el diagnóstico por telemedicina, el 

Departamento de Retina y Vítreo del Instituto Mexicano de Oftalmología a través 

del Mexican Advanced Imaging Laboratory for Ocular Research (MAILOR) creó un 

sistema de software de telemedicina para dar diagnóstico a pacientes de manera 

remota. La adquisición de imágenes se realiza por medio de cámaras portátiles no 

midriáticas, en 25 unidades localizadas en toda la República Mexicana. Las 

imágenes se envían por internet mediante el software especializado, desarrollado 

por el MAILOR y este es analizado en el laboratorio por médicos certificados. El 

resultado de la evaluación es enviado en máximo 48 horas. En el 2019, se realizó 
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el escrutinio de alrededor de 12,000 pacientes [9]. 

A partir de lo analizado se busca realizar un sistema automatizado que no solo 

nos dé una mayor exactitud en los análisis sobre imágenes de retina, sino que nos 

dé una retroalimentación instantánea de una decisión clínica en tiempo real y un 

resultado consistente sin importar edad, raza y etnicidad. Además de que provea 

una capacidad explicadora sobre las predicciones hechas en las imágenes 

adquiridas y normalizadas en los centros de salud nacionales. 

La incógnita científica de esta propuesta de investigación es determinar si la 

detección de múltiples biomarcadores de daño en imágenes de retina, a través de 

su preprocesamiento y posterior análisis a través de técnicas de DL, generará 

patrones y predicciones de enfermedades crónicas en la retina que deriven en 

clasificaciones y aprendizajes. 

1.5. Hipótesis 

La detección y localización de diferentes anomalías en imágenes de retina de 

fondo de ojo, a través del ajuste de modelos de detección de objetos, se logrará 

con precisiones equiparables a algoritmos de DL especializados, mientras 

proporciona una base a las decisiones del usuario de manera interpretable. 

1.6. Objetivo general 

Desarrollar un marco de trabajo integral que permita la detección de patrones de 

riesgo de enfermedades crónicas en imágenes de retina a través de algoritmos de 

DL. 

1.7. Objetivos específicos 

• Diseñar y desarrollar algoritmos de DL para clasificar y detectar 

enfermedades crónicas en imágenes de retina. 

• Diseñar un marco de trabajo que permita integración de modelos de redes 

neuronales. 

• Desarrollar la integración entre herramienta de software y marco de trabajo 
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para la visualización y evaluación de enfermedades crónicas en imágenes de retina. 

• Determinar el grado de aproximación de los modelos propuestos contra otras 

técnicas de DL y por un equipo de médicos especializados. 

1.8. Estrategia de investigación 

La investigación exploratoria es la estrategia adecuada para este estudio, ya que 

se trata de un tema poco conocido y que requiere una comprensión más profunda. 

El objetivo de este tipo de investigación es familiarizar al investigador con el tema, 

la situación actual y los métodos y técnicas utilizados. Las fuentes de información 

más apropiadas son la bibliografía existente y las entrevistas a personas vinculadas 

a la problemática. 

1.9. Métodos científicos 

En esta investigación se utilizaron los siguientes métodos científicos: 

• Histórico-lógico: Este método permitió analizar el desarrollo histórico de la 

detección de lesiones en imágenes de retina, identificando deficiencias y 

proponiendo soluciones. 

• Hipotético-deductivo: A partir de una hipótesis, se dedujeron nuevos 

conocimientos y predicciones, que se verificaron mediante experimentos. 

• Analítico-sintético: Se analizó la teoría existente sobre el tema, para aplicarla al 

diseño de un algoritmo y adquirir una mayor comprensión del fenómeno. 

• Modelación: Se creó un modelo matemático del fenómeno, que se asemeja al 

objeto real mediante una abstracción. 

1.10. Estructura de la tesis 

El presente documento cuenta con 3 capítulos: 

Capítulo 1 - Marco Teórico: El marco teórico de la investigación describe los 

conceptos fundamentales del dominio del problema y el objeto de estudio. También 

analiza la situación actual del problema y revisa el estado del arte de trabajos 

similares. Finalmente, presenta la fundamentación de las tecnologías utilizadas 
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para el diseño del sistema y las propuestas para su implementación y desarrollo. 

Capítulo 2 - Metodología: Se realiza un análisis de los principales procesos 

vinculados al objeto de estudio y al campo de acción del trabajo. Se pasa al diseño 

del modelo a desarrollar teniendo en cuenta los resultados del análisis de los 

procesos vinculados al objeto de estudio. Se implementa el modelo mediante su 

codificación. 

Capítulo 3 - Resultados y Evaluación: En este apartado son mostrados los 

resultados tras implementar la metodología propuesta. Tablas numéricas y figuras 

descriptivas son proveídas, a la vez que se establece una comparación con el 

estado del arte investigado previamente. Finalmente, un extenso sub-epígrafe de 

discusión de resultados nos da evidencias claras de la aportación de la 

investigación. 

Conclusiones - Recomendaciones y trabajos futuros: Por último, se abordan 

las conclusiones de la investigación, el aporte, limitaciones encontradas y posibles 

líneas de investigación identificadas. 

2. MARCO TEÓRICO 

En este capítulo se aborda la fundamentación teórica de la investigación a través 

de plantear los elementos básicos asociados a los conceptos médicos y las bases 

y principios de la tecnología utilizada. Una descripción de las herramientas y 

materiales utilizados fue proveída para que una reproducción de la investigación se 

pueda llevar a cabo. El estado del arte fue analizado, identificando las fortalezas 

actuales, así como las debilidades que dan pie a la propuesta de solución de la 

investigación. 

2.1. Revisión médica 

2.1.1. Glaucoma 

Es difícil definir el glaucoma con precisión, en parte porque el término engloba 

un grupo diverso de trastornos. Todos los glaucomas tienen un común una típica 
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neuropatía óptica potencialmente progresiva, que se asocia a pérdida de campo 

visual a medida que avanza la lesión, y en la que la presión intraocular es un factor 

modificable fundamental [22].  

De acuerdo con la etiología del glaucoma, este se clasifica: Glaucoma Primario, 

Glaucoma Congénito, Glaucoma Secundario y Glaucoma Absoluto; todas las 

clasificaciones con subcategorías, pero el glaucoma primario de ángulo abierto es 

el más común de todos. El principal mecanismo de pérdida visual en el glaucoma 

es la apoptosis de las células ganglionares de la retina, que son las células que 

transmiten la información visual al cerebro. Esta apoptosis conduce al 

adelgazamiento de las capas nuclear interna y de fibras nerviosas de la retina, así 

como a la pérdida de axones en el nervio óptico. El disco óptico, que es el punto de 

salida del nervio óptico del ojo, se vuelve atrófico, con agrandamiento de la copa 

óptica. En todos los pacientes con glaucoma, la necesidad de tratamiento y su 

eficacia se evalúan mediante la determinación periódica de la presión intraocular 

(tonometría), inspección de los discos ópticos y medición de los campos visuales 

[23]. 

En el diagnóstico del glaucoma, los especialistas se centran en la cabeza del 

nervio óptico, donde se evalúa el anillo neurorretiniano, que es el tejido anaranjado-

rosado situado entre el límite externo de la excavación y el borde de la papila óptica, 

también conocida como copa óptica, analizando la regla ISNT, donde, dónde es 

más ancha la parte inferior, seguido por las zonas superior, nasal y temporal. 

También se analiza la razón entre el disco y la copa óptica, normalmente el cociente 

vertical, más que el horizontal. Las copas con diámetro pequeño tienen 

excavaciones pequeñas y viceversa. Cualquier persona que presente una razón 

entre el disco y la copa óptica mayor a 0.2 se considera sospechosa, ver Figura 2-

1. 
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Figura 2-1: Nervio óptico sin presencia de glaucoma. Se identifican el disco y copa ópticas, así como el anillo 
neurorretiniano. 

2.1.1.1. Copa y disco ópticos 

El disco óptico normal es redondo y de color rosa. En el centro del disco óptico 

hay una depresión, llamada copa fisiológica. El tamaño de la copa fisiológica varía 

de persona a persona, pero en general es más pequeña en los ojos hipermétropes 

y más grande en los ojos miopes. 

El glaucoma es una enfermedad que daña el nervio óptico. El primer signo de 

glaucoma es el adelgazamiento de la capa de fibras nerviosas retinianas en la 

región que rodea el disco óptico. La atrofia óptica glaucomatosa produce cambios 

específicos en el disco caracterizados principalmente por la pérdida de tejido del 

disco, que se manifiesta como agrandamiento de la copa del disco óptico y palidez 

en el área de la excavación. La Figura 2-2 muestra cambios comunes en un ojo 

glaucomatoso. 
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Figura 2-2: Excavación glaucomatosa ("en forma de olla") del disco óptico con desplazamiento nasal de los 
vasos retinianos y apariencia completamente ahuecada del disco óptico [23]. 

La relación de diámetro entre la copa y disco ópticos (RCD), se ha utilizado 

tradicionalmente para describir la cabeza del nervio óptico, así como para 

semicuantificar el glaucoma que puede presentar un paciente. En ojos normales, el 

RCD horizontal es mayor que el vertical, ya que la copa tiene una forma ovalada 

horizontal y el disco una forma ovalada vertical. Por lo tanto, el anillo neurorretiniano 

es más ancho en las áreas inferiores y superiores que las temporales y nasales. 

Dado que el glaucoma afecta en sus primeras y medias etapas avanzadas de forma 

preferente las regiones inferior y superior del disco óptico, la RCD vertical aumenta 

más que la RCD horizontal en los ojos con glaucoma progresivo. Esto es un 

indicador de que la relación de RCD vertical es más importante que la horizontal en 

el diagnóstico del glaucoma [24]. 

La RCD es una medida independiente de la magnificación, lo que significa que 

no se ve afectada por el tamaño del ojo o por la potencia de las lentes utilizadas 

para examinarlo. Esto hace que la RCD sea una medida muy útil para evaluar el 

daño al nervio óptico en pacientes con glaucoma. La mayoría de los métodos para 

medir la RCD no requieren el uso de ningún dispositivo especial, por lo que se 

pueden realizar en cualquier consultorio oftalmológico. Esto hace que la RCD sea 

una medida muy accesible y práctica para el seguimiento de los pacientes con 

glaucoma. 
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2.1.1.2. Atrofia peripapilar (Alfa y Beta) 

Recientes estudios han demostrado en cierto grado la relación entre algunas 

regiones peripapilares y el glaucoma, así como un indicador de lesión precoz en 

pacientes con hipertensión ocular. La atrofia peripapilar (APP) se localiza alrededor 

de la cabeza del nervio óptico y cuatro zonas se pueden diferenciar, la Alfa, la Beta, 

la Gamma y la Delta. Las más comunes son las dos primeras, donde centraremos 

este estudio [22]. 

La atrofia Alfa se caracteriza por alteraciones del epitelio pigmentario retiniano 

superficial y la presencia de la Membrana de Brush (MB). Es la más periférica de 

todas las zonas y está presente en casi todos los ojos normales y se estima que 

tiende a ser más grande y frecuente en ojos glaucomatosos [22], [24]. 

La atrofia Beta está definida por la presencia de la MB y la ausencia del epitelio 

pigmentario retiniano. La aparición y el tamaño de la zona beta se correlacionan 

con la pérdida glaucomatosa del borde neurorretinal dentro del disco óptico, la 

pérdida glaucomatosa del campo visual, la disminución del diámetro de las arterias 

retinianas en los ojos con glaucoma y la disminución del diámetro de la parte 

retrobulbar del nervio óptico medida por sonografía [24]. 

Una zona Beta grande, se asocia a menudo con las siguientes características: 

• Excavación glaucomatosa poco profunda del disco. 

• Baja frecuencia de hemorragias del disco. 

• Defectos localizados detectables de la capa de fibras nerviosas retinianas. 

• Pérdida mayormente concéntrica del borde neurorretinal. 

• Mediciones de la presión intraocular normales o casi normales. 

Tanto la zona Alfa como la zona Beta son significativamente mayores y esta 

última ocurre con mayor frecuencia en ojos con atrofia glaucomatosa del nervio 

óptico en comparación a ojos normales. En la Figura 2-3 pueden apreciar la 

presencia de ambas atrofias. 
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Figura 2-3: Presencia de atrofias peripapilares. Alfa (flecha blanca), Beta (flecha negra) [22]. 

2.1.2. Retinopatía diabética 

La RD se caracteriza por daños en los vasos sanguíneos de la retina que se 

vuelven permeables o se bloquean. La pérdida de visión se produce con mayor 

frecuencia debido a la inflamación de la parte central de la retina, lo que puede 

provocar un deterioro de la visión. También pueden crecer vasos sanguíneos 

anormales de la retina, que pueden sangrar o causar cicatrices en la retina y 

ceguera [1]. 

La RD es una microangiopatía progresiva. La hiperglucemia crónica conduce a 

una respuesta metabólica mediada por un aumento de los productos finales de 

glicación avanzada, polioles, especies reactivas de oxígeno, eicosanoides, óxidos 

nítricos y moléculas de adhesión intercelular, y por la activación de la vía de la 

proteína kinasa C, lo que produce un daño endotelial microvascular, leucoestasis 

en los capilares retinianos y oclusión capilar. La isquemia retiniana interna 

resultante desencadena el crecimiento de nuevos vasos sanguíneos, que a su vez 

produce la ruptura de la barrera retiniana interna de la sangre y la fuga vascular 
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[23]. 

La clasificación empleada en el Early Treatment Diabetic Retinopathy Study es 

muy utilizada en el mundo y engloba las siguientes categorías: 

• Retinopatía diabética no proliferativa (RDNP). 

o Ausencia de RD. 

o RDNP muy leve. 

o RDNP leve. 

o RDNP moderada. 

o RDNP grave. 

o RDNP muy grave. 

• Retinopatía diabética proliferativa (RDP). 

o RDP leve-moderada. 

o RDP de alto riesgo. 

o Oftalmopatía diabética avanzada. 

Normalmente se asocia a la RD la presencia de HE, MA, EX y exudados blandos 

(soft exudates, SE), los cuales se describen a continuación [22]. Ver Figura 2-4 para 

una identificación gráfica. 

2.1.2.1. Hemorragias 

Se presentan en una variedad que engloban hemorragias de la capa de fibras 

nerviosas retinianas y se forman a partir de las arteriolas precapilares superficiales, 

hemorragias intrarretinianas que proceden del extremo venoso de los capilares y 

se localizan en las capas intermedias más compactas, y las hemorragias redondas 

oscuras más profundas que representan infartos retinianos. 

2.1.2.2. Microaneurismas 

Son evaginaciones de la pared capilar que pueden formarse por dilatación focal 

de zonas con ausencia de pericitos o por fusión de dos ramas de un asa capilar. 

Los MA pueden rezumar elementos del plasma hacia la retina debido a la alteración 

de la barrera hematorretiniana o bien trombosarse. Suelen ser el signo más precoz 

de RD. Se identifican a menudo como puntos rojos. 
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Figura 2-4: Imagen de retina con lesiones asociadas a la RD. a) Hemorragia, b) Exudados, c) Micro-
aneurismas [25]. 

2.1.2.3. Exudados duros 

Se deben a edemas retinianos y se forman en la unión de la retina normal y 

edematosa. Se componen de lipoproteínas y macrófagos llenos de lípidos y se 

identifican como lesiones céreas amarillentas, a menudo alrededor de MA y con el 

tiempo tienden a aumentar de número y tamaño. 

2.1.2.4. Exudados blandos (SE) 

Están formados por acumulaciones de residuos neuronales dentro de la capa de 

fibras nerviosas y se producen como resultado de la destrucción isquémica de los 

axones nerviosos. Se identifican como pequeñas lesiones superficiales 

blanquecinas y plumosas. 

2.2. Revisión tecnológica 

En el siguiente epígrafe estaremos revisando le núcleo de la tecnología utilizada 

para abordar el problema antes mencionado. Se propone utilizar el DL, una forma 

de inteligencia artificial que analiza datos para identificar patrones y tendencias. En 

las imágenes médicas, el DL puede utilizarse para predecir enfermedades o 

detectar anomalías. Específicamente en la detección de anomalías, avances 

recientes han introducido los algoritmos de detección de objetos, los cuales serán 

la técnica primaria empleada en esta investigación. 
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2.2.1. Redes neuronales 

Una red neuronal artificial (RNA) es básicamente un modelo matemático para 

procesamiento de información, implementado por software o por hardware y que 

tiene una entidad propia expresada en un conjunto de parámetros internos, 

arquitecturas y modelos que la diferencian de otras técnicas y que reúne algunas 

características comunes con las redes neuronales biológicas [26], [27]. 

Una RNA es un sistema que se compone de una serie de neuronas, cada una 

de las cuales tiene una función de activación. La función de activación determina 

cómo se procesan las entradas de la neurona. Las entradas de una neurona se 

multiplican por sus pesos y luego se suman a un sesgo. Esta suma representa una 

combinación lineal de las entradas y sus pesos. La función de activación se aplica 

a esta suma para agregar un elemento de no linealidad. La representación 

matemática es la siguiente: 

𝜕 =  𝜎(𝑊𝑇𝑥 + 𝑏)  (1) 

Donde 𝑊 es la matriz de pesos, 𝑥 las unidades de entrada y 𝑏 el bias, 𝜎 representa 

la función de transferencia que tradicionalmente son las sigmoides cuya ecuación 

es: 

𝑓(𝑥) =
1

1+𝑒−𝑥   (2) 

y la tangente hiperbólica (Brio and Molina 2006): 

𝑓(𝑥) =
1−𝑒−2𝑥

1+𝑒−2𝑥
  (3) 

El esquema tradicional de una red neural se muestra en la Figura 7, donde se 

aprecia una capa de entrada, una capa oculta y una capa de salida. 



 

 
19 

 

Figura 2-5: Topología de una red neuronal con una capa oculta. 

Donde: 

𝑓: función de transferencia que se aplica. 

(𝑥1, … , 𝑥𝑛): vector extendido de la capa de entrada. 

(𝑥1, … , 𝑥𝑚): vector extendido de la capa oculta. 

(𝑦1, … , 𝑦𝑘): vector extendido de la capa de salida, que se aproxima al valor deseado 

o esperado. 

2.2.2. Redes neuronales profundas 

Las RNA son el tipo de algoritmo de aprendizaje que constituyen la base de los 

métodos de DL. Se consideran profundas cuando tienen múltiples capas ocultas y 

van creciendo en complejidad y abstracción. 

El poder del DL proviene de la capacidad de las RNA para aprender patrones 

complejos en los datos. Esto se logra mediante la composición de múltiples 

funciones no lineales. Cada función no lineal aprende a transformar los datos de 

una manera específica. Al componer estas funciones, las RNA pueden aprender 

patrones cada vez más complejos [29]. 
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Para el trabajo con redes neuronales profundas hasta la actualidad se ha 

comprobado que la función de activación, unidad lineal rectificada (ReLU, por sus 

siglas en inglés) ha brindado el mejor desempeño, ya que ha obtenido resultados 

de menor error comparada con las funciones logísticas antes mencionadas [30]. La 

ecuación 4 muestra su definición y para una representación gráfica, ver Figura 2-6. 

𝑓(𝑥) = max(0, 𝑥)  (4) 

 

Figura 2-6: Gráfica de función ReLU [31]. 

Sin embargo, si se utilizan demasiadas funciones, la red puede sobreajustarse a 

los datos de entrenamiento. El sobreajuste ocurre cuando la red aprende los datos 

de entrenamiento tan bien que no puede generalizar a nuevos datos. Esto significa 

que la red no podrá realizar predicciones precisas para datos que no ha visto antes. 

Hay varias formas de evitar el sobreajuste en las RNA. Una forma es utilizar una 

RNA con menos parámetros. Esto se puede lograr utilizando funciones más 

eficientes o reduciendo el número de capas en la red. Otra forma de evitar el 

sobreajuste es utilizar técnicas de regularización, como la deserción neuronal o la 

normalización por lotes [32]. 

Las redes neuronales profundas fueron consideradas difíciles de entrenar hasta 

que, en 2006, Bengio, Hilton y Salakhudinov desarrollaron un método de 
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entrenamiento capa a capa no supervisado seguido de un ajuste supervisado sobre 

una red apilada. Este método mostró un buen rendimiento, y las redes neuronales 

profundas se han convertido en una herramienta popular en el procesamiento de 

imágenes médicas. Las redes neuronales convolucionales (CNN, por sus siglas en 

inglés) son una de las arquitecturas más populares, y se describirán a continuación. 

Otras arquitecturas también usadas en imágenes médicas son las auto-encoder, 

las máquinas de Boltzmann restringidas, redes neuronales convolutivas multi-

stream y U-Net [27]. 

Las computadoras leen las imágenes como píxeles y se expresan como una 

matriz de NxNx3. La capa convolucional utiliza un conjunto de filtros para detectar 

la presencia de características o patrones específicos presentes en la imagen 

original de entrada, el filtro se desliza por la imagen y se calcula un producto de 

puntos para obtener un mapa de activación, posteriormente se aplica la función de 

activación ReLU antes comentada para romper la linealidad de la imagen; después 

se pasa a la capa de pooling, la que se encarga de reducir la cantidad de 

parámetros y el cálculo de la red, controlando el sobreajuste y reduciendo 

progresivamente el tamaño espacial de la red, la técnica utilizada aquí comúnmente 

es max-pooling, el paso posterior es introducir los parámetros dentro de una capa 

completamente conectada, siendo el último paso [33]. La Figura 2-7 muestra la 

breve descripción antes expuesta. 

Independientemente del diseño o arquitectura que se emplee, algo que 

definitivamente a contribuido al auge de estas técnicas ha sido la disponibilidad de 

GPU y librerías relacionadas con estos como CUDA y OpenCL. Junto al avance del 

hardware han aparecido diferentes paquetes de software libre que proveen 

eficiencia al diseño de nuestras RNA. Los paquetes más populares son Caffe, 

Tensorflow, Theano y Torch [27]. 
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Figura 2-7: Ejemplo de arquitectura de red neuronal convolutiva (tomado de [34]). 

El uso de CNN se justifica debido a su modelo, donde la red compuesta por 

neuronas convolucionales extrae características de las imágenes suministradas y 

reduce su dimensionalidad, comportamiento parecido al de la corteza visual 

primaria de nuestro cerebro biológico [33]. 

La profundidad y la anchura de esta capacidad pueden controlarse para obtener 

mejores suposiciones sobre la naturaleza de las imágenes. Por ejemplo, una 

profundidad mayor permite modelar relaciones a mayor distancia, mientras que una 

anchura mayor permite modelar relaciones entre más píxeles. Por lo tanto, en 

comparación con las redes neuronales de retroalimentación estándar con capas de 

tamaño similar, las CNN tienen muchas menos conexiones y parámetros, siendo 

más fáciles de entrenar, mientras que su rendimiento teóricamente óptimo 

probablemente sea sólo ligeramente peor [35]. 

2.2.3. Transfer Learning 

El entrenamiento de una CNN desde cero puede ser muy exigente en términos 

de tiempo y recursos computacionales, especialmente si el conjunto de datos es 

grande. El área médica es un ejemplo, donde las imágenes juegan un rol importante 

para el diagnóstico de enfermedades. Dichas imágenes son generadas por equipos 

médicos especializados y el etiquetado a menudo es realizado por médicos 

especializados, siendo la tarea costosa y en la mayoría de los casos es difícil 
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colectar suficientes datos para el entrenamiento. Por esta razón, es común pre-

entrenar una CNN en un conjunto de datos muy grande, como ImageNet [36], y 

luego utilizar esta CNN preentrenada como punto de partida para entrenar una CNN 

para una tarea específica [37]. 

Los tres grandes escenarios del aprendizaje por transferencia son los siguientes: 

• Red convolucional como extractor de características fijo: para usarlo se 

deben seguir los siguientes pasos: 

o Eliminar la última capa totalmente conectada de la red 

convolucional. 

o Extraer las características o códigos de la CNN para todas las 

imágenes del nuevo conjunto de datos. 

o Entrenar un clasificador lineal para el nuevo conjunto de datos 

utilizando los códigos CNN como entrada.  

• Ajuste fino de la red convolucional: es una técnica que permite mejorar el 

rendimiento de la CNN en una tarea específica con menos datos y 

recursos computacionales. Para realizar el ajuste fino hacer los siguientes 

pasos: 

o Reemplazar la última capa totalmente conectada de la CNN 

preentrenada por un nuevo clasificador específico para la nueva 

tarea. 

o Entrenar el nuevo clasificador utilizando los códigos CNN de las 

imágenes del nuevo conjunto de datos. 

o Ajustar los pesos de las capas de la CNN preentrenada utilizando 

la retropropagación. Es posible ajustar todos los niveles de la CNN, 

o es posible mantener algunos de los niveles anteriores fijos 

(debido a preocupaciones de sobreajuste) y sólo ajustar una parte 

de alto nivel de la red. 

• Modelos preentrenados: la red se reentrena completamente, pero a partir 

de pesos que ya han sido entrenados en otro conjunto de imágenes. Esto 

reduce el número de iteraciones necesarias para alcanzar el nivel de 
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precisión deseado. 

Para decidir qué tipo de aprendizaje por transferencia utilizar depende de dos 

factores fundamentales, el tamaño del nuevo conjunto de datos y su similitud con 

el conjunto de datos original. Teniendo en cuenta que las características de las CNN 

son más genéricas en las primeras capas y más específicas del conjunto de datos 

original en las capas posteriores, aquí hay algunas reglas generales comunes para 

navegar por los 4 escenarios principales [38]: 

• El nuevo conjunto de datos es pequeño y similar al conjunto de datos 

original. 

• El nuevo conjunto de datos es grande y similar al conjunto de datos 

original. 

• El nuevo conjunto de datos es pequeño pero muy diferente del conjunto 

de datos original. 

• El nuevo conjunto de datos es grande y muy diferente del conjunto de 

datos original. 

2.2.4. Modelos de detección de objetos 

La detección de objetos tiene por objetivo contar los objetos de una escena y 

determinar y rastrear sus ubicaciones precisas, etiquetándolos con exactitud. Estos 

modelos son más resistentes a las oclusiones, iluminación difícil y escenas 

complejas. 

En la actualidad, los modelos de detección de objetos se utilizan para la 

estimación de la pose, la detección de vehículos y la vigilancia, entre otras 

aplicaciones. Estos algoritmos intentan dibujar una caja delimitadora alrededor del 

objeto de interés. No tiene por qué ser necesariamente una, pueden ser varias las 

dimensiones de la caja y diferentes los objetos. 

Con el desarrollo tecnológico, el auge del DL y la irrupción de las CNN, los 

modelos de detección de objetos se han agrupado en dos categorías: detección de 

un estado y detección de dos estados, donde el primero es un proceso de detección 

en un solo paso, mientras que el segundo es un proceso de refinamiento en dos 
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pasos. 

Dentro de los modelos de un solo estado se encuentran YOLO (You Only Look 

Once), SSD (Single Shot Multibox Detector) y RetinaNet. Estos modelos son 

simples y rápidos, pero típicamente tienen menor precisión. Por otro lado, los 

modelos de dos estados primero generan un conjunto de cuadros delimitantes, para 

luego clasificar el objeto y refinar la detección, permitiendo estas características un 

rendimiento superior en cuanto a precisión. Debido a esto, esta investigación se 

centró en los de dos estados, en la Figura 2-8 se puede ver una presentación de 

los modelos utilizados. 

 

Figura 2-8: Modelos de detección de objetos de dos estados utilizados en esta investigación. 

2.2.4.1. Fundamentos en los modelos de detección de objetos con DL. 

El objetivo de esta sección es comprender los elementos críticos de cómo 

funcionan estos modelos, por qué son relativamente lentos pero poderosos y el 

proceso de compartir características mejora el detector de dos etapas. 

• R-CNN [39]: se presentó el primer sistema exitoso para la localización, 

clasificación y segmentación de objetos, tomando de las imágenes 

originales alrededor de 2000 parches, conocidos como regions. Luego 

calcula la característica para cada propuesta usando una CNN y 
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finalmente clasifica cada región usando máquinas de vectores de soporte 

lineales específicas de cada clase. 

• Fast R-CNN [40]: R-CNN es lento porque cada región propuesta pasa por 

una CNN sin compartir cálculos. En Fast R-CNN se pasa toda la imagen 

por una CNN. Se introduce el ROI pooling como una concatenación de 

entrada a salida de las características extraídas de cada región propuesta 

y se alimenta a una capa completamente conectada durante la predicción 

de categorías, con dos salidas: una probabilidad softmax y un 

desplazamiento de regresión de caja delimitadora por clase. 

• Faster R-CNN [41]: Los modelos anteriores de detección de objetos 

todavía tienen un cuello de botella con la búsqueda selectiva, que tiene 

una mecánica letárgica y procesos que consumen mucho tiempo y que 

afectan el rendimiento de la red. En Faster R-CNN se propuso el concepto 

de redes de propuesta de regiones (RPN): se colocan sobre las 

características de la CNN, luego se reformulan utilizando ROI y se 

clasifican, y se llevan a cabo ambas tareas de caja delimitadora. 

• Mask R-CNN [42]: se introdujo para predecir máscaras de segmentación 

en cada ROI con una Fully Connected Network pequeña en cada una. 

Este modelo extiende Faster R-CNN, agregando una nueva rama paralela 

a la rama existente para clasificar y usar la caja delimitadora. Este modelo 

aumenta ligeramente el costo computacional, pero sigue siendo un 

sistema rápido y permite una experimentación rápida. Mask R-CNN 

agrega una nueva rama a la arquitectura de Faster R-CNN para predecir 

máscaras de segmentación. 

2.2.4.2. Componentes comunes en las arquitecturas de modelos de 

detección de objetos. 

Los componentes estándares en arquitecturas de detección de objetos de dos 

etapas son: 

• Backbone: La red toma una imagen como entrada y extrae el mapa de 

características sin la última capa completamente conectada. El backbone 
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puede ser una red neuronal pre-entrenada. 

• Neck: Después del backbone, la capa neck extrae mapas de características 

más elaborados de diferentes etapas. 

• DenseHead: Este componente funciona en ubicaciones densas de mapas 

de características. Un ejemplo es RPN, donde las cajas de anclaje se 

generan a partir de puntos de anclaje que se encuentran en los mapas de 

características. Las escalas y las relaciones de aspecto son elementos 

cruciales que se utilizan para crear cajas candidatas. 

• ROIExtractor: Este componente extrae características de ROI utilizando 

técnicas de ROI Pooling y ROI Aling, lo que permite transformar celdas de 

destino no uniformes al mismo tamaño. 

• ROIHead: Este componente toma características de ROI en una tarea 

específica, como la clasificación/regresión de cajas delimitadoras y la 

predicción de máscaras en la segmentación de instancias. 

2.3. Herramientas y materiales 

2.3.1. Python 

Python es un lenguaje de programación de alto nivel potente y fácil de aprender, 

con una sintaxis simple y concisa que puede utilizarse en una amplia gama de 

tareas, que van desde el desarrollo web hasta el aprendizaje automático (ML). 

Tiene una biblioteca estándar que incluye una amplia gama de estructuras de datos 

eficientes, además de un sistema de programación orientado a objetos que permite 

a los desarrolladores crear código reutilizable y extensible [43]. 

Python es un lenguaje interpretado, lo que significa que no necesita ser 

compilado antes de su ejecución. Esto hace que sea ideal para scripting y desarrollo 

rápido de aplicaciones. 

Su creador fue Guido Van Rossum en la década de los 90 y actualmente es 

administrado por Python Software Foundation bajo una licencia de código abierto, 
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llamada Python Software Foundation License [44]. 

Su selección para esta investigación se debió a su amplia gama de facilidades 

para el ML, la ciencia de datos y la visión por computadoras. Con este lenguaje se 

puede corregir y eliminar datos incorrectos, extraer y seleccionar características 

relevantes de los mismos y visualizarlos mediante el uso de tablas y gráficas. 

Ingenieros e investigadores de diferentes campos de la ciencia también utilizan 

clasificadores basados en Python para tareas como clasificación imágenes, texto, 

reconocimiento del habla, reconocimiento facial y DL. 

Se utilizó Python en su versión 3.10.11. 

2.3.2. Pytorch 

Pytorch es una biblioteca de ML de código abierto que permite a los 

desarrolladores crear modelos de ML, especialmente redes neuronales, de forma 

rápida y eficiente. 

Pytorch está basado en la biblioteca Torch, que fue desarrollada originalmente 

por el laboratorio de investigación de IA de Facebook. Esta biblioteca es compatible 

con Python y permite la ejecución de cálculos en GPU para acelerar el rendimiento. 

Pytorch se utiliza para una amplia gama de aplicaciones de ML, incluyendo la 

visión por computadora, el procesamiento del lenguaje natural y el ML de refuerzo 

[45]. 

En esta investigación se utilizó Pytorch en su versión 2.0.1. 

2.3.3. Anaconda 

Anaconda es una distribución de Python y R que incluye paquetes científicos, 

bibliotecas y herramientas para la ciencia de datos. Es la herramienta elegida por 

los científicos de datos de todo el mundo. 

Anaconda es popular por su escalabilidad, seguridad y simplicidad. Es fácil de 

instalar y usar, y proporciona una amplia gama de paquetes y bibliotecas para la 

ciencia de datos [46]. 
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Permite desarrollar e implementar modelos de visión por computadoras, ML y DL 

rápidamente proporcionando herramientas para: 

• La recopilación y análisis de datos. 

• Gestión de entornos de paquetes con Conda, lo que facilita el control de 

diferentes versiones de software y paquetes para diferentes proyectos. 

• Compatibilidad con múltiples plataformas, documentación y soporte 

amplio y una licencia gratuita. 

2.3.4. Spyder como IDE 

Spyder es un entorno de desarrollo integrado (IDE) de código abierto para 

Python, diseñado para científicos, ingenieros y analistas de datos. Es una 

herramienta poderosa que proporciona una combinación única de funcionalidad de 

edición, análisis, depuración y análisis de rendimiento de un entorno de desarrollo 

completo con las capacidades de análisis de datos de Python. Sus características 

principales son: 

• Edición de código: Spyder proporciona un editor de código potente y 

extensible que incluye funciones como resaltado de sintaxis, 

autocompletado, finalización de código y navegación de código. 

• Análisis de datos: Spyder incluye una amplia gama de herramientas para el 

análisis de datos, como un explorador de datos, un visor de gráficos y una 

calculadora numérica. 

• Depuración: Spyder proporciona un potente depurador que permite a los 

desarrolladores rastrear el flujo de ejecución de su código y encontrar 

errores. 

• Análisis de rendimiento: Spyder incluye herramientas para analizar el 

rendimiento de su código, lo que le ayuda a identificar áreas que pueden 

optimizarse. 

Además de estas características principales, Spyder también incluye una serie 

de otras funciones que lo convierten en una herramienta versátil para el desarrollo 

de Python. Estas funciones incluyen integración con Anaconda, soporte para 
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múltiples lenguajes y ajustabilidad [47]. 

2.3.5. MMDetection 

Por lo general las tareas de detección son más complejas que las de clasificación 

y llevan a diferentes implementaciones con diferentes resultados. Para reportar un 

resultado consistente se adoptó la herramienta de código base MMDetection, la 

cual provee implementaciones integradas para la detección de objetos y la 

segmentación de instancias basadas en Pytorch. 

Esta herramienta pertenece al proyecto MMLab, un proyecto de código abierto 

para investigadores académicos y de la industria. Las características 

fundamentales de MMDetection son su diseño modular, soporte para múltiples 

entornos de trabajo de detección, una alta eficiencia que permite que todas sus 

operaciones básicas se ejecuten en la GPU y que las velocidades de entrenamiento 

sean altas, así como una constante actualización con las principales y nuevas 

investigaciones del estado del arte [48]. 

La versión utilizada para MMDetection fue 2.27 y de MMCV 1.6. 

2.3.6. Colab 

Google Colab se utilizó en esta investigación, el cual es un producto de Google 

Research que le permite a cualquier persona escribir y ejecutar código de Python a 

través del navegador y es muy adecuado para el ML y el análisis de datos. Los 

recursos asignados fueron una plataforma con un sistema operativa Linux y una 

GPU NVIDIA A100-SXM4 con 40 gigabytes de memoria RAM. 

2.3.7. Hardware utilizado 

El equipo utilizado durante todas las fases de la investigación fue una PC con un 

procesador Intel(R) Core(TM) i5-8400, con una velocidad de CPU a 2.80 GHz, con 

16 GB de RAM y una tarjeta de video NVIDIA GeForce GTX 1070, con 8 GB de 

RAM dedicada al video. 

2.3.8. Fuente de datos 

Las bases de datos de imágenes utilizadas en esta investigación fueron las 
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siguientes: 

a) REFUGE [49]: El Retinal Fundus Glaucoma Challenge fue el primer desafío 

sobre la evaluación del glaucoma a partir de fotografías del fondo de retina 

y es uno de los conjuntos de datos públicos más extensos disponibles para 

la segmentación de copa/disco. Consta de 1200 imágenes retinianas en 

formato JPEG. Se utilizaron dos dispositivos: una cámara de fondo de ojo 

Zeiss Visucam 500 con una resolución de 2124 x 2056 píxeles (400 

imágenes) y una Canon CR-2 con una resolución de 1634 x 1634 píxeles 

(800 imágenes). La mácula y el disco óptico son visibles en cada imagen, 

centrados en el polo posterior. 

b) G1020 [50]: Se recopiló un nuevo conjunto de datos públicos para la 

segmentación de imágenes de la copa/disco en una clínica privada en 

Kaiserslautern, Alemania, entre los años 2005 y 2017. Las imágenes tienen 

un campo de visión de 45 grados después de las gotas de dilatación. Los 

expertos marcaron los límites del disco óptico y de la copa y las anotaciones 

de las cajas delimitadoras utilizando Labelme [51], una herramienta de 

anotaciones gratuita y de código abierto. Las imágenes se almacenan en 

formato JPG con tamaños entre 1944 x 2108 y 2426 x 3007 píxeles. 

c) ORIGA [52]: Conjunto de datos utilizado para el análisis del glaucoma. Este 

conjunto de datos se utilizó para segmentar la atrofia peripapilar en su 

clasificación, alfa y beta. Se seleccionaron 267 imágenes de fondo de ojo en 

formato JPG, con un tamaño de 3072 x 2048. El proceso de anotación se 

realizó a través de Roboflow [53], una plataforma de código abierto para 

manejar imágenes con técnicas de visión artificial, bajo la supervisión de 

especialistas del Instituto Mexicano de Oftalmología. 

d) DDR [54]: Este es el conjunto de datos principal para esta investigación, ya 

que tiene la lesión más compleja de detectar. Consta de 13673 imágenes de 

fondo de ojo en color, de hospitales de China entre los años 2016 y 2018. 

Estas imágenes fueron tomadas con una amplia gama de cámaras de fondo 

de ojo, 42 en total con 45º de campo de visión, y en formato JPG. De ese 

número de imágenes, se seleccionaron 757 para anotar las lesiones de RD, 
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MA, EX, SE y HE. 

2.4. Estado del arte 

La RD afecta a los pequeños vasos sanguíneos de la retina. Puede causar 

inflamación en la mácula, la parte central de la retina, o crecimiento anormal de 

nuevos vasos sanguíneos que pueden sangrar o tirar de la retina [23]. Dependiendo 

de la gravedad, aparecen diferentes biomarcadores de daño, como HE en forma de 

llama, MA, EX y manchas de algodón (SE) [22]. 

Por otro lado, en la examinación de imágenes de fondo de ojo, la región del disco 

óptico es comúnmente analizada para evaluar el glaucoma. Importantes 

marcadores que son extraídos de esta área son la RCD, el área del anillo 

neurorretiniano, así como ISNT, donde la región inferior debe ser mayor a la 

superior, esta a su vez que la nasal y esta que la temporal para completar la regla 

[22]. 

Estos marcadores no son los únicos mecanismos que permiten evaluar el 

glaucoma. Los estudios longitudinales sugieren que una gran zona beta de APP 

predice la progresión del glaucoma en pacientes con glaucoma crónico de ángulo 

abierto [55]. 

Las características descritas anteriormente son características morfológicas que 

se utilizan como parte de la evaluación del glaucoma y deben detectarse [56], y 

características asociadas a la retinopatía diabética que deben detectarse y 

localizarse. Tradicionalmente, esta tarea ha dependido de la inspección manual por 

parte de oftalmólogos cualificados, lo que requiere mucho tiempo, es subjetivo y 

propenso a errores humanos. 

Por esta razón, una cantidad considerable de investigaciones propone la 

detección y segmentación del disco óptico para extraer información de él. 

Se puede encontrar una amplia revisión de la literatura en [57], con métodos 

como los basados en conjuntos de niveles, en umbrales, en clústeres y en RNA, 

este último con una precisión más general y menos tiempo de procesamiento, pero 
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con un alto coste computacional. Un documento revisado recientemente [58] 

resume los conjuntos de datos públicos existentes, así como los métodos de ML y 

DL para el disco óptico (DO) y la copa óptica (CO). Se presentaron un total de 29 

arquitecturas, y la mayoría de los trabajos emplean CNN, enfoques basados en U-

Net y redes generativas adversariales (GAN), y solo uno utilizó una R-CNN, [59], 

donde los autores utilizaron una R-CNN más rápida y transformaron el cuadro 

delimitador predicho en una elipse vertical y no rotada. Ninguno de los modelos 

revisados utilizaba R-CNN para la tarea de segmentación, excepto uno. 

Otros ejemplos de arquitecturas basadas en DL han sido liberadas. Ejemplos de 

arquitecturas U-Net revisadas pueden consultarse en [60]–[63], y segmentaciones 

basadas en GAN pueden verse en [64]–[67]. Otro trabajo reciente basado en CNN 

es el presentado por [68]. Los autores emplean una capa de convolución separable 

en profundidad y una entrada de pirámide de imágenes, con una puntuación de 

dados de 0,96 para DO y 0,89 para CO en el conjunto de datos REFUGE. Z. Tian 

et.al. en [69], propusieron una red convolucional gráfica que toma el mapa de 

características concatenado con los nodos gráficos como entrada para la 

segmentación de DO y CO, consiguiendo un índice Dice de 0.9776 y 0.9558, 

respectivamente. Y. Zheng et. al. en [70], presentaron una CNN multiescala para 

generar parámetros iniciales de contorno y evolución, reportando sobre el conjunto 

de datos REFUGE una intersección sobre unión (IoU) de 0.9669 para DO y 0.9361 

para CO. Finalmente, J. Zhang et. al. emplearon un enfoque novedoso en imágenes 

láser de escaneo multicolor en [71], donde los autores producen anotaciones 

funcionales a través de un crowdsourcing no experto, que aprovecha un par de 

redes de regularización y segmentación. 

Recientes avances en la visión por computadoras y el ML han introducido los 

algoritmos de detección de objetos, los cuales automáticamente identifican y 

localizan objetos dentro de una imagen. La detección de objetos tiene como objetivo 

contar objetos en una escena y determinar y rastrear sus ubicaciones exactas 

mientras los etiqueta con precisión. Estos modelos tienen como ventajas que son 

más resistentes a las oclusiones, los retos en la iluminación y las escenas 
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complejas. 

La detección de objetos se ha utilizado ampliamente en imágenes médicas, 

específicamente en el sistema digestivo, respiratorio, cardiovascular, ocular y 

mamario [72]. La detección de objetos médicos es la tarea de identificar objetos 

médicos dentro de una imagen, y algunos ejemplos son la detección y localización 

de aneurismas intracraneales [73], la detección de fracturas en radiografías de 

muñeca [74], relacionadas con el sistema digestivo [75]–[78], y en patología [79], 

[80]. Sin embargo, muchos de estos trabajos son de detección de una sola clase; 

ejemplos de detección de múltiples clases, el objetivo de esta investigación, son la 

detección de células, la detección de lesiones en imágenes de tomografía 

computarizada y la gravedad del acné [81]–[85]. 

Algunos trabajos aplican técnicas de detección de objetos como en [86], para la 

localización de DO, donde utilizan un Faster R-CNN para lograr una precisión 

satisfactoria y una alta velocidad en comparación con otros trabajos, y el de [87] 

detecta el glaucoma a través de un Faster R-CNN. Los autores [88] propusieron 

una Red de Enfoque de Regiones, donde se diseñó una nueva rama de máscara 

multiclase. En el trabajo [89] mostraron un estudio comparativo detallado entre 

cuatro algoritmos de DL diferentes: YOLOv2, YOLOv2 reducido, YOLOv3 y Mask 

RCNN, donde en términos de precisión, YOLOv3 muestra el mejor rendimiento; sin 

embargo, en términos de IoU, Mask R-CNN muestra los mejores resultados. Los 

autores, en [90], propusieron un Mask R-CNN basado en Densenet-77 para abordar 

las imágenes retinianas borrosas, reportando una IoU de 0,972. Un problema de 

desplazamiento de dominio esencial entre diferentes conjuntos de datos fue 

propuesto por Y. Guo et. al. [91], a través de un Faster R-CNN adaptativo de grueso 

a fino para la segmentación conjunta de DO y CO. En el trabajo de [92], utilizaron 

un Mask R-CNN simple de dos etapas, que primero detecta y corta alrededor del 

disco óptico, luego introduce la imagen recortada con la original en la nueva red de 

detección utilizando diferentes escalas. Por último, [93], en lugar de detectar una 

caja delimitadora, estiman directamente los parámetros de una elipse que es 

suficiente para capturar la morfología de cada región de DO y CO para calcular la 
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RCD. 

Se ha investigado menos sobre la APP, pero la evolución ha progresado desde 

técnicas de visión por computadora como [94], [95], hasta técnicas de DL como las 

CNN y la arquitectura U-Net [96] en los siguientes trabajos [97], [98]. Chai et al. 

propusieron un enfoque interesante que combina múltiples características 

relacionadas con el glaucoma (DO, CO, APP, capa de fibras nerviosas de la retina) 

y el conocimiento del dominio a través de una red neuronal multitarea [99]. 

En la RD, muchas investigaciones se han centrado en el diagnóstico de la 

enfermedad a nivel de imagen, la clasificación del estado y la localización de las 

características relacionadas. Los siguientes trabajos se centraron en la extracción 

de lesiones de la retina asociadas a la RD, concretamente MA [100], MA y HE en 

[101], EX y SE en [102], y todas estas lesiones juntas en [103]. Los siguientes 

estudios son investigaciones más completas, ya que clasifican y localizan las 

lesiones [104]–[106]. 

Todos estos estudios previos se centran en una sola enfermedad. Es bien sabido 

que la retina es el único lugar de nuestro cuerpo donde podemos ver patologías en 

tiempo real que afectan a la retina [107], y son varias. Por ello, nuevas 

investigaciones están comenzando a clasificar, localizar y calificar diferentes 

afecciones dentro de la retina simultáneamente. 

Son et al. en [108] desarrollaron un sistema de DL para el cribado de doce 

anomalías retinianas. Utilizan doce redes neuronales profundas, una para cada 

enfermedad. Wang et al. en [109] y Karthikeyan et al. en [110] crearon un sistema 

para la clasificación multietiqueta, que es una clasificación a nivel de imagen, y se 

proporcionan algunos indicios de cómo se realizó la predicción. Un enfoque similar 

sigue en [111]. 

El progreso va más allá con el trabajo de [112], que fueron capaces de detectar 

39 enfermedades con imágenes de fondo de ojo utilizando cuatro grupos de CNN 

y un modelo de detección de objetos, y [113] predijeron 47 biomarcadores 

sistémicos como variable de resultado a partir de fotografías retinianas, incluyendo 
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el sexo, la edad, la presión arterial, los perfiles lipídicos, la cantidad y otros. 

Emplearon un total de 47 algoritmos de DL. 

2.5. Propuesta de solución 

En las extensas revisiones del estado del arte se utilizan muchas técnicas, 

principalmente las asociadas a las CNN, las arquitecturas U-Net y los modelos 

basados en GAN. Se pueden observar dos ramas principales: una relacionada con 

la extracción de características, generalmente con un modelo para una enfermedad 

específica, y la otra centrada en la clasificación multietiqueta, que deriva en la 

identificación de múltiples enfermedades, pero que requiere varios modelos de DL. 

Estos modelos se entrenan y prueban en diversos conjuntos de datos que deben 

ser aumentados. Por otro lado, la detección de objetos no se ha abordado 

ampliamente en esta área, por lo que la motivación de esta investigación es en 

primer lugar realizar un análisis detallado del comportamiento de diferentes 

modelos de detección de objetos en la detección y segmentación del DO y CO, 

enriqueciendo la literatura actual al tiempo que se establecen las métricas típicas 

de estos modelos como base para futuras comparaciones, y como segunda etapa, 

haciendo uso de uno de estos modelos, realizar la detección simultánea de 

múltiples lesiones relacionadas con el glaucoma y la RD en imágenes de retina. 

Otra razón es que estos nuevos modelos se prueban tradicionalmente en 

conjuntos de datos clásicos como Common Objects in Context (COCO) [114] y The 

Pascal Visual Object Classes [115], y se emplearán en imágenes de la retina del 

fondo del ojo, abordando el número de imágenes necesarias para entrenar redes 

neuronales profundas, probando modelos en conjuntos de datos reducidos y 

completos y realizando comparaciones estables. 

Adicionalmente, en lugar de dar un diagnóstico, proporcionar características de 

cada enfermedad que pueden ser útiles para los no especialistas, especialmente 

en regiones remotas, y por lo tanto puedan remitir a un especialista que pueda 

complementar el diagnóstico con otros factores de riesgo e información sistémica. 

Para lograrlo, es crucial manejar objetos pequeños y clases desequilibradas; un 
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problema recurrente en la detección de objetos que aparece cuando una clase es 

mucho más grande que otra y cuando los objetos son más pequeños de 32 x 32 

píxeles. La Tabla 2-1 muestra la declaración de significancia de esta investigación. 

Tabla 2-1: Declaración de significancia del presente trabajo de investigación. 

 

  

Problema • La interpretación de la segmentación del DO y la CO es 
crucial para el diagnóstico del glaucoma. Unos resultados 
precisos pueden marcar la diferencia entre una buena y una 
mala predicción. 

• Los médicos pueden detectar muchas enfermedades a la 
vez en la retina, pero los sistemas de asistencia de IA suelen 
detectar una sola enfermedad. 

¿Qué es conocido? • Las redes neuronales profundas se utilizan para la 
segmentación, centrándose en los modelos codificador-
decodificador. 

• Gran trabajo de preprocesamiento y posprocesamiento. 

• Los flujos de trabajo se basan en la extracción previa de la 
región de interés para realizar la segmentación en esa área 
recortada. 

• La mayoría de los trabajos se centra en extraer lesiones de 
una sola enfermedad. 

• Predicción multietiqueta y clasificación multiclase utilizando 
más de una red neuronal profunda para realizar la tarea. 

¿Qué aporta esta 
investigación? 

• Evaluar el estado del arte de los nuevos modelos de 
detección de objetos con un enfoque de dos etapas, 
destacando la mejor precisión media. Estos modelos 
unifican la tarea de detección y segmentación. 

• Abordar la pregunta tradicional de cuántas imágenes son 
necesarias para entrenar un modelo de red neuronal 
profunda. Experimentar con el rendimiento en un 
subconjunto y en el conjunto de datos completo. 

• El efecto de la técnica de aumento de datos a múltiples 
escalas y la importancia de una configuración correcta de la 
escala de las anclas para la localización de objetos. 

• Implementar una estrategia para evitar los falsos negativos 
con datos parcialmente etiquetados. 

• Justificación de una arquitectura específica para manejar el 
desequilibrio en la distribución. 

• Abordar los desafíos de la detección de objetos pequeños 
implementando la distancia Wasserstein normalizada. 

• Mejorar el posprocesamiento con una selección refinada de 
cajas delimitadoras. 

• Establecer una comparación de vanguardia sobre un 
conjunto de datos específico. 
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3. Metodología 

De manera general se pretende seguir un flujo de trabajo en el cual se integren 

fases como parte del diseño de un entorno de trabajo que agrupe la detección de 

lesiones en imágenes de retina asociadas a enfermedades oculares (RD y 

Glaucoma). 

Para darle cumplimiento a los objetivos de la investigación se diseñaron cuatro 

estrategias que nos guiaron hacia su conclusión: 

• Estrategia 1: Identificación, desarrollo y prueba de algoritmos de DL para 

detectar lesiones, validando su desempeño y estableciendo una 

comparación entre ellos. 

• Estrategia 2: Diseño de un marco de trabajo que permita, la ingestión de 

datos con su correspondiente preprocesamiento y transformación; así 

como la integración de modelos de DL en un único ecosistema, que 

permita la detección de múltiples lesiones bajo un solo entorno. 

• Estrategia 3: Desarrollo de la integración entre herramienta de software y 

marco de trabajo para la visualización de resultados y uso en instituciones 

de salud. 

• Estrategia 4: Determinación del grado de aproximación del marco de 

trabajo creado con los resultados del estado del arte. 

3.1. Segmentación de instancias 

Para darle comienzo a la primera etapa se seleccionaron varios modelos de 

segmentación de instancias para extraer tanto el DO como la CO. La tarea de 

extracción está relacionada con la segmentación de instancias, que permite 

detectar y localizar un objeto en una imagen. El objetivo de la segmentación de 

instancias es obtener objetos de la misma clase divididos en diferentes instancias; 

aunque por concepto, el disco y la copa son clases diferentes, tienen una forma 

muy similar y se superponen. Por esta razón, es necesario extraerlos por separado. 

Los modelos de detección de objetos pueden abordar este problema y se cubrirán 

aquí, evaluando el rendimiento de las arquitecturas recientes. 
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En la Figura 3-1 se puede ver la metodología seguida en esta etapa, la cual nos 

permite analizar el comportamiento de los modelos de detección de objetos 

basados en diferentes enfoques de arquitecturas, diferentes enfoques en el 

Backbone y en el Neck. El flujo de trabajo general comienza con la recuperación de 

las imágenes y su anotación correspondiente. A continuación, se configura la 

experimentación con y sin datos aumentados a múltiples escalas y con una 

configuración adecuada de las anclas antes de entrenar y predecir el área 

segmentada. 

 

Figura 3-1: Flujo de trabajo propuesto para la segmentación del DO y CO con diferentes modelos de 
detección de objetos. 

3.1.1. Modelos 

3.1.1.1. Cascade R-CNN 

Cascade R-CNN es una arquitectura de detección de objetos de varias etapas 

en la que se utilizan umbrales de IoU crecientes en un detector de orden secuencial, 

utilizando la salida de uno como entrenador del siguiente, mejorando la calidad, 

garantizando un conjunto de entrenamiento positivo y minimizando el sobreajuste 

[116]. Esta arquitectura es una extensión de Faster R-CNN, y la obtención de 

máscaras se puede abordar de dos maneras: colocando la rama de segmentación 

al principio o al final de Cascade R-CNN o en cada etapa. Esta última maximiza la 
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diversidad de muestras utilizadas para aprender la tarea de predicción de 

máscaras. 

3.1.1.2. Mask Scoring R-CNN 

Para la mayoría de los modelos de segmentación de instancias, la confianza de 

la clasificación de instancias se utiliza como una puntuación de calidad de la 

máscara. Sin embargo, en la práctica, la máscara de instancias y el ground truth no 

suelen estar bien correlacionadas con las puntuaciones de clasificación. La idea 

detrás de esta arquitectura es tomar la característica de la instancia y la máscara 

predicha correspondiente juntas para regresionar la IoU de la máscara a través de 

un cabezal MaskIoU [117]. En esta propuesta, la máscara predicha y la 

característica ROI se toman como entrada para el cabezal MaskIoU. 

3.1.1.3. PointRend: Segmentación de imágenes como renderizado 

Este módulo nos aporta flexibilidad para realizar predicciones de segmentación 

basadas en puntos en ubicaciones seleccionadas de forma adaptativa mediante un 

algoritmo de subdivisión iterativo. El modelo PointRend proporciona bordes de 

objetos nítidos en regiones que han sido suavizadas en exceso por métodos 

anteriores [118]. PointRend selecciona un conjunto de puntos para realizar la tarea 

y predice cada punto individualmente con un pequeño perceptrón multicapa, 

utilizando características interpoladas calculadas en estos puntos. Este proceso se 

aplica secuencialmente para optimizar las regiones conflictivas de la máscara 

predicha. 

3.1.1.4. CARAFE 

Content-Aware ReAssembly of Features (CARAFE), explota un gran campo de 

visión, agregando información contextual. Permite el manejo de contenido 

específico de la instancia, generando kernels adaptables instantáneamente, y es 

liviano y rápido de calcular [119]. CARAFE está compuesto por dos componentes 

principales: el módulo de predicción del kernel genera kernels de reensamblaje de 

forma consciente del contenido. Por el contrario, el módulo de reensamblaje 

consciente del contenido reconstruye las características de cada kernel de 

reensamblaje dentro de una región local con una función específica. 
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3.1.1.5. GCNet 

Global Context Network (GCNet) fue propuesto para mejorar NLNet, cuya tarea 

es capturar dependencias de largo alcance a través de la agregación de contexto 

global específico de la consulta a cada posición de la consulta. La mejora se 

estableció en tres pasos: un marco general que obtiene una mejor instanciación 

basada en una formulación independiente de la consulta [120]. 

3.1.1.6. SOLO 

Segmentando objetos por ubicación [121] introduce las "categorías de instancia", 

un enfoque que asigna categorías a cada píxel dentro de una instancia según su 

ubicación y tamaño. Este enfoque transforma la segmentación de instancias en un 

problema de clasificación de un solo paso. El modelo propuesto divide la imagen 

de entrada en una cuadrícula uniforme y, si el centro de un objeto cae en una celda 

de la cuadrícula, esta predice la categoría semántica y segmenta esa instancia de 

objeto. 

3.1.2. Anotación y preprocesamiento 

El preprocesamiento de datos en el DL es el proceso de preparar los datos para 

que los puedan utilizar los modelos de DL. Esto incluye tareas como la limpieza, la 

normalización y la transformación de los datos. 

El preprocesamiento de datos es una parte esencial del DL, ya que puede tener 

un impacto significativo en el rendimiento de los modelos. Los datos limpios y bien 

preparados pueden ayudar a los modelos a aprender más rápido y con mayor 

precisión. 

El marco de trabajo con el que se trabajó fue MMDetection, el cual provee los 

modelos antes mencionados. Este marco de trabajo soporta el conjunto de datos 

de estilo COCO y es un conjunto de datos de detección de objetos, segmentación 

y subtitulado a gran escala. Es crucial para la localización precisa de los discos 

ópticos y de copa. Se utilizó el software VGG Image Annotator (VIA) [122] para 

generar las anotaciones de la ROI para un procedimiento de entrenamiento 

adecuado y correcto. Este software es de código abierto y es una plataforma de 
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anotación manual independiente y directa para imágenes, audio y vídeo. El 

conjunto de datos REFUGE se configuró a través de estas herramientas y luego se 

exportó en formato COCO. 

Un ejemplo puede verse en la Figura 3-2. Se seleccionó una forma elíptica ya 

que es la que mejor se ajusta a los discos ópticos y de copa. Se utilizó el ground 

truth original de ambos conjuntos de datos como guía. 

 

Figura 3-2: Ejemplo de anotación de una imagen REFUGE. Se seleccionó la forma elíptica. El número uno 

anota la clase de disco y el número dos anota la clase de copa. 

El preprocesamiento y la ampliación de imágenes son siempre una parte vital del 

comportamiento exitoso de una red neuronal; sin embargo, las transformaciones 

agresivas no siempre conducen a mejores resultados. En esta fase de la 

investigación se realizaron algunos pasos. Primero, se redimensionaron las 

imágenes, adoptando un esquema simple de aumento de datos basado en el 

entrenamiento a múltiples escalas, en el que las imágenes se tomaron en tamaños 

entre 1333 x 640 y 1333 x 960 con un paso de 32 entre cada una de ellas. Este 

enfoque muestra un alto rendimiento en términos de precisión media (AP), caja 

delimitadora y máscaras con respecto a un tamaño fijo. Luego, se realizó un giro 

aleatorio seguido de una normalización basada en la media y la desviación estándar 

de ImageNet [36], comúnmente utilizado como aprendizaje de transferencia para 

acelerar el proceso de entrenamiento. 
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3.2. Detección múltiple de lesiones 

Esta etapa de la investigación está asociada a la estrategia dos y se enfrenta a 

diferentes problemas en múltiples niveles que deben abordarse. Busca la creación 

de un ecosistema que permita la detección de lesiones en la retina que pertenecen 

a dos enfermedades diferentes, RD y Glaucoma, bajo un único modelo de detección 

de objetos. 

La metodología propuesta tiene dos partes principales, un proceso de anotación 

y la detección de lesiones a múltiples escalas y tamaños, con mejoras claves en 

cada etapa dentro del flujo del proceso. Se eligió un modelo de detección de objetos 

de dos fases para alcanzar el objetivo, ya que puede disminuir una gran cantidad 

de ejemplos negativos en el proceso de extracción de características [41]. 

La Figura 3-3 describe el proceso general, comenzando con la anotación del 

conjunto de datos, donde se utilizaron técnicas de etiquetado suave y visión por 

computadora. Se utiliza un modelo Cascade R-CNN [116]. Para extraer 

características, se utiliza Resnet50 [123] como Backbone en combinación con 

Feature Pyramid Network (FPN) [124] en el módulo Neck. En RPN se adoptó una 

métrica de Distancia de Wasserstein Normalizada, inicialmente inspirada en [125]; 

mientras tanto, se empleó Online Hard Example Mining (OHEM) para muestrear 

ejemplos positivos/negativos durante el entrenamiento en regiones de interés. 

Alternativamente, se empleó una función de pérdida asimétrica, en reemplazo de 

la entropía cruzada, para mejorar la selección de muestras. Finalmente, se aplicó 

una técnica mejorada de supresión de no máximo (NMS) en el paso de 

posprocesamiento para mitigar resultados duplicados o superpuestos. 
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Figura 3-3: Diagrama de flujo de la investigación propuesta. Dos fases, iniciando por el etiquetado suave, 
seguido de la detección a través de mejoras dentro del modelo Cascade R-CNN. 

3.2.1. Proceso de anotación 

La anotación de imágenes es la práctica de etiquetar imágenes para entrenar 

modelos de IA y ML. A menudo implica que anotadores humanos utilicen una 

herramienta de anotación de imágenes para etiquetar imágenes o etiquetar 

información relevante, por ejemplo, asignando clases relevantes a diferentes 

entidades en una imagen. Los datos resultantes, también conocidos como datos 

estructurados, se envían a un algoritmo de ML, que a menudo se entiende como 

entrenamiento de un modelo. 

Diferentes tareas requieren que los datos se anoten en diferentes formas. Las 

tareas complejas como la segmentación y la detección de objetos requieren que los 

datos tengan anotaciones de mapa de pixeles y anotaciones de cuadros 

delimitadores respectivamente. 

Dado que esta investigación pretende detectar múltiples lesiones relacionadas 

con diferentes enfermedades, una decisión lógica podría ser fusionar conjuntos de 

datos con anotaciones de diferentes lesiones. Sin embargo, esto crea un problema 

de datos parcialmente etiquetados, que aparece cuando hay anotaciones faltantes 

en un conjunto de datos de detección etiquetado, lo que significa la presencia de 

un falso negativo en el ground truth (objetos presentes en el conjunto de datos, pero 
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no anotados). En consecuencia, dañará el proceso de aprendizaje de los modelos 

de detección de objetos porque todo lo que no se etiquetó o no coincidió con un 

ancla se considerará fondo. 

El proceso por el cual un modelo etiqueta imágenes por sí solo a menudo se 

denomina etiquetado asistido por modelo o soft labeling, el cual fue empleado en el 

conjunto de datos DDR, con un modelo entrenado sobre otro conjunto de datos, 

completando las anotaciones con predicciones [126]. 

El modelo de detección de objetos Mask Scoring R-CNN, previamente analizado, 

se entrenó en los conjuntos de datos ORIGA y G1020 para la segmentación de la 

APP y copa/disco, respectivamente. Se seleccionó este modelo porque penaliza 

las puntuaciones de predicción cuando la clasificación es correcta, pero la máscara 

de segmentación no lo es. 

Inicialmente, el conjunto de datos DDR proporcionaba una carpeta para cada 

máscara de segmentación relacionada con las lesiones (MA, EX, SE, HE). Después 

de la operación de soft labeling, se agregaron tres carpetas más con APP alfa, APP 

beta y máscaras para la copa y el disco; la Figura 3-4 es una muestra de una imagen 

y una máscara para cada lesión. 

El próximo paso es la creación de un fichero de anotación con el estilo COCO, 

para que pueda ser utilizado por el marco de trabajo de MMDetection. 

El procedimiento comenzó iterando sobre cada carpeta de máscaras 

 
Original 

 
APP/Alfa 

 
APP/Beta 

 
Copa/Disco 

 
EX 

 
HE 

 
MA 

 
SE 

Figura 3-4: Ejemplo de imagen de entrenamiento y todas sus máscaras de segmentación. El modelo MS R-
CNN generó APP/Alfa, APP/Beta y Copa/Disco como máscaras predichas. Ex, HE, MA y SE son máscaras 

originales en el conjunto de datos DDR. 
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seleccionando cada imagen y encontrando el contorno de cada máscara de lesión. 

OpenCV [127] proporciona una biblioteca de visión por computadora optimizada en 

tiempo real, y se utilizó la función findContours de esta biblioteca. Una descripción 

del algoritmo es el siguiente: 

• La función findContours toma una máscara como entrada y devuelve una 

lista de contornos. 

• El primer paso es encontrar los contornos en la máscara utilizando la función 

cv2.findContours. Esta función toma tres parámetros: la máscara, el modo 

de recuperación y el método de aproximación. El modo de recuperación 

especifica cómo se devuelven los contornos. El método de aproximación 

especifica cómo se simplifican los contornos. En este caso, estamos 

utilizando el modo de recuperación externo y el método de aproximación 

simple. 

• El siguiente paso es cerrar los contornos. Esto se hace recorriendo la lista 

de contornos y agregando el primer punto al final de cada contorno si el 

contorno tiene más de tres puntos. Esto asegura que todos los contornos 

estén cerrados. 

• El paso final es devolver la lista de contornos. 

Después de aplicar el algoritmo findContour, todas las lesiones de diferentes 

carpetas se localizaron bajo anotaciones de cuadros delimitadores. La Figura 3-5 

muestra una imagen de muestra con cuadros delimitadores de color por lesión. 
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Figura 3-5: Imagen de ejemplo con cuadros delimitadores anotados por lesión. Se etiquetó una lesión por 
categoría para fines de aclaración. Se identificaron un total de ocho características. Relacionados con el 

glaucoma son Disco, Copa, APP Alfa y APP Beta. Relacionados con la retinopatía diabética son HE, MA, SE, 
EX. 

3.2.2. Exploración de datos 

La exploración de datos es clave para muchos procesos de ML y cuando 

hablamos específicamente de la detección y segmentación de objetos en 

imágenes, no existe una forma sencilla de realizar una exploración de datos 

sistémica. Para obtener una mejor comprensión de nuestros datos, evaluar la 

calidad de estos es un paso importante, sobre todo si se entrena con conjuntos de 

datos personalizados que son significativamente diferentes de los conjuntos de 

datos de referencia típicos como COCO. 

Una vez establecido el conjunto de datos, se necesita un análisis profundo para 

comprender las características de la imagen y seleccionar el modelo y la 

configuración de hiperparámetros adecuados. Una de las tareas fue inspeccionar 

las relaciones de aspecto de las imágenes. La Figura 3-6 muestra la distribución. 
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Lo que se puede inferir de este gráfico es la presencia de una distribución 

trimodal, con la mayoría de las imágenes con relaciones de aspecto entre 1 y 1.5 y 

algunas cercanas a 2. La relación de aspecto es un hiperparámetro que debe 

ajustarse, y para cubrir el rango de valores identificados en la Figura 3-6, se 

tomaron los valores 0.5, 1.0, 1.5, 2.0 como vector para la variable anchor_ratios. La 

distribución es similar a la del conjunto de datos COCO, lo que permite un cambio 

de tamaño no destructivo seguido de un enfoque de relleno ligero. 

 

Figura 3-6: Relación de aspecto de los cuadros delimitadores en el conjunto de datos DDR. 

A continuación, contar el número de objetos fue obligatorio para identificar las 

distribuciones de clases, véase la Figura 3-7. Como se puede observar, también 

existe un problema de desequilibrio en el área de los objetos. 

Esta información es clave para la selección del modelo y, como se puede ver, 

hay presencia de objetos de diferentes tamaños y un problema de desequilibrio de 

  

Figura 3-7: Conteo de cuadros delimitadores por clase (izquierda). Área media de cuadros delimitadores por 

clase (derecha). 
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cuadros delimitadores. Eso fue una advertencia para evitar las técnicas de recorte 

porque se puede cortar en otros cuadros delimitadores o máscaras de 

segmentación más grandes, por lo que resolver un problema puede crear otro. 

3.2.3. Preprocesamiento y aumento de datos 

El preprocesamiento y el aumento de imágenes son cruciales para el rendimiento 

exitoso de una red neuronal. Sin embargo, las transformaciones agresivas solo a 

veces producen mejores resultados. En este estudio, se tomaron varios pasos para 

el entrenamiento. Después de cargar las imágenes y las anotaciones, se realizó un 

cambio de tamaño, utilizando un esquema de aumento simple a través de un 

entrenamiento a escala múltiple con tamaños que van desde 1333 x 640 hasta 1333 

x 960. Este enfoque demuestra un alto rendimiento en el AP del cuadro delimitador 

en comparación con un tamaño fijo. Posteriormente, se aplica una operación de 

giro aleatorio, seguida de una normalización basada en la media y la desviación 

estándar de las imágenes en ImageNet [128], que se utiliza comúnmente para el 

aprendizaje por transferencia para acelerar el proceso de entrenamiento. 

3.2.4. Marco de trabajo de detección de objetos 

Las técnicas de detección de objetos pueden considerarse un marco de trabajo 

(framework), ya que abarcan múltiples redes neuronales profundas y metodologías 

que trabajan en conjunto para detectar y localizar objetos dentro de imágenes o 

videos. Esto enfatiza su naturaleza integral y sistémica. No se trata de un conjunto 

de herramientas aisladas, sino de una combinación sinérgica de elementos que 

convergen en un objetivo común: la identificación precisa y eficiente de objetos en 

imágenes y videos. Esto le permite a los investigadores y profesionales aprovechar 

los métodos y arquitecturas existentes o desarrollar nuevos para mejorar el 

rendimiento y cumplir con requisitos específicos. 

3.2.4.1. Backbone 

ResNet (Red Neuronal Residual) es una arquitectura de red neuronal 

convolucional profunda conocida por su aplicación exitosa en tareas de 

reconocimiento de imágenes [123]. Introduce bloques residuales, que permiten el 
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entrenamiento de redes profundas al mitigar el problema del desvanecimiento del 

gradiente. La arquitectura ResNet consta de varios bloques, cada uno de los cuales 

contiene múltiples bloques residuales. Estos bloques reducen progresivamente las 

dimensiones espaciales de la entrada al tiempo que aumentan el número de filtros. 

Los bloques residuales dentro de cada bloque utilizan conexiones de salto para 

agregar la entrada original a la salida, facilitando el flujo de gradientes y permitiendo 

que la red aprenda mapeos residuales de manera efectiva. Las capas finales 

incluyen agrupación promedio y capas completamente conectadas con activación 

SoftMax para clasificación. ResNet50, una variante específica, comprende cuatro 

bloques con bloques residuales variables en cada uno, lo que conduce a un 

rendimiento de vanguardia en diversas tareas de reconocimiento visual. En la Tabla 

3-1 se puede encontrar un resumen de la variante ResNet50. 

Tabla 3-1: Cada bloque consta de varios bloques residuales (ResBlock) apilados juntos. El paso indica la 
configuración utilizada en cada bloque. El número de filtros representa el número de filtros convolucionales 

utilizados en cada ResBlock; la función de activación utilizada en toda la red es ReLU. 

Bloque 
Tamaño de 

salida 
Capas Paso 

Número de 
filtros 

Bloque 
1 

56x56x256 
ResBlock1-1, 
ResBlock1-2, 
ResBlock1-3 

1 64, 64, 256 

Bloque 
2 

28x28x512 

ResBlock2-1, 
ResBlock2-2, 
ResBlock2-3, 
ResBlock2-4 

2 
128, 128, 

512 

Bloque 
3 

14x14x1024 

ResBlock3-1, 
ResBlock3-2, 
ResBlock3-3, 
ResBlock3-4, 
ResBlock3-5, 
ResBlock3-6 

2 
256, 256, 

1024 

Bloque 
4 

7x7x2048 
ResBlock4-1, 
ResBlock4-2, 
ResBlock4-3 

2 
512, 512, 

2048 

3.2.4.2. Neck 

"Neck" se refiere a un componente entre el Backbone (a menudo una red 

neuronal convolucional profunda) y la red Head. El Neck es responsable de 

procesar aún más las características extraídas por del Backbone y prepararlas para 

tareas de detección de objetos como clasificación y regresión de cuadros 

delimitadores. 
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En esta investigación, se adoptó FPN, una arquitectura ampliamente utilizada en 

visión por computadora, específicamente para tareas de detección de objetos y 

segmentación semántica [124]. FPN aborda el desafío de capturar información a 

múltiples escalas al crear una pirámide de mapas de características con diferentes 

resoluciones espaciales. Opera en los mapas de características de salida del 

Backbone. 

FPN tiene dos componentes principales: rutas ascendentes y descendentes. La 

ruta ascendente toma los mapas de características de alta resolución del Backbone. 

Aplica capas convolucionales para reducir sus dimensiones espaciales mientras 

aumenta el número de canales. La ruta descendente luego toma los mapas de 

características de menor resolución y los sobremuestrea a través de una secuencia 

de operaciones de sobremuestreo y fusión. Estas características fusionadas se 

combinan con los mapas de características de alta resolución correspondientes de 

la ruta ascendente para crear una pirámide de múltiples escalas de mapas de 

características. Esta pirámide permite capturar detalles más precisos e información 

semántica de alto nivel en múltiples escalas. FPN ha demostrado ser eficaz para 

mejorar el rendimiento de detección y segmentación de objetos al permitir una 

mejor representación de características y el manejo de objetos de diversas escalas 

y tamaños. La Tabla 3-2 lo resume. 

Tabla 3-2: Feature Pyramid Network. Estructura y componentes. 

3.2.4.3. Cascade R-CNN 

Previamente se analizó este tipo de modelos, el cual introduce una cascada de 

Componente Tamaño de salida 
Capas 

Entrada 
Mapa de características de 

alta resolución 

- 

Ruta ascendente 
Mapa de características de 

resolución reducida 

Capas convolucionales 

Ruta descendente 
Mapas de características 

sobremuestrados 

Operaciones de 

sobremuestreo y fusión 

Pirámide de características 
Pirámide de características a 

diferentes escalas 

- 
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detectores progresivamente más precisos. En esta investigación, Cascade R-CNN 

logra una alta precisión de detección al reducir los falsos positivos y aumentar la 

tasa de recuperación mediante el empleo de este enfoque en cascada. Es un marco 

poderoso para tareas que requieren una localización y clasificación precisas de 

objetos, como en escenarios con alta densidad de objetos u objetos pequeños. 

3.2.5. El problema del desbalance 

Como se observó en la sección de exploración de datos, se descubrió un gran 

problema de desequilibrio en el conjunto de datos. En el trabajo de Oksuz et al. 

[129], se realizó una investigación exhaustiva relacionada con el problema de 

desequilibrio en la detección de objetos. Identificaron ocho problemas principales 

subdivididos en cuatro tipos: desbalance de clases, desbalance de escala, 

desbalance espacial y desbalance con la función objetivo. Los desequilibrios son: 

• De clase de primer plano-fondo. 

• De clase de primer plano-primer plano. 

• De escala a nivel de objeto/cuadro. 

• A nivel de características. 

• En la pérdida de regresión. 

• En la distribución de IoU. 

• En la ubicación del objeto. 

• De penalizaciones. 

Abordar los problemas incluye manejar diferentes escenarios, que se discutirán a 

continuación. 

3.2.5.1. Desbalance de clases 

Este problema se divide en foreground-background, donde la mayoría de los 

cuadros delimitadores se etiquetan como background y desequilibrio de foreground-

foreground. Centramos la solución en el primer enfoque, a través del muestreo 

duro, lo que significa eliminar algunos cuadros delimitadores para que no afecten 

el proceso de entrenamiento. El fundamento subyacente de este enfoque se basa 

en la noción de entrenar detectores de objetos utilizando instancias desafiantes, 
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que a su vez provocan valores elevados de la función de pérdida [129]. 

En el contexto de la detección de objetos, el muestreo duro se puede utilizar para 

seleccionar un subconjunto de cuadros delimitadores que representan ejemplos de 

baja confianza o de difícil detección. Estos ejemplos son más probables de 

contribuir al error de entrenamiento, por lo que enfocarse en ellos puede mejorar 

significativamente el rendimiento del detector de objetos. 

Este trabajo aplicó OHEM [130], una técnica utilizada en el entrenamiento de 

redes neuronales profundas, particularmente en la detección de objetos y otras 

tareas similares, para enfocarse en ejemplos desafiantes o difíciles durante el 

proceso de entrenamiento. Aborda el problema de conjuntos de datos 

desequilibrados donde el número de ejemplos positivos (por ejemplo, objetos de 

interés) es significativamente menor que el número de ejemplos negativos (por 

ejemplo, regiones de background o no objeto). 

OHEM funciona mediante la extracción selectiva de ejemplos difíciles durante 

cada iteración de entrenamiento. En lugar de muestrear ejemplos aleatoriamente, 

OHEM identifica los ejemplos más desafiantes o mal clasificados según un criterio 

específico, como la función de pérdida o la confianza de clasificación. Estos 

ejemplos difíciles, generalmente falsos negativos o ejemplos positivos difíciles, se 

utilizan luego para actualizar los parámetros del modelo y mejorar el rendimiento 

en casos desafiantes. La secuencia de pasos es la siguiente: 

1. En cada iteración del conjunto de anotaciones de imagen, se obtienen 

puntuaciones de confianza. 

2. Se seleccionan las regiones de detección con las puntuaciones más bajas. 

3. Se crea un conjunto representativo más pequeño (conjunto de 

entrenamiento OHEM) a partir de los ejemplos difíciles. 

4. El subconjunto seleccionado realiza un paso de entrenamiento adicional en 

el detector de objetos. 
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La extracción de ejemplos difíciles es una técnica eficaz para mejorar el 

rendimiento de los detectores de objetos, especialmente cuando se enfrentan a 

conjuntos de datos desequilibrados o ejemplos difíciles de detectar. Al enfocarse 

en los ejemplos más desafiantes, OHEM puede ayudar a que el detector de objetos 

aprenda a distinguir mejor entre objetos y background, y a mejorar su precisión 

general. 

3.2.5.2. Desbalance en la escala 

Surgen dos tipos de problemas aquí: el desequilibrio de escala a nivel de cuadro, 

cuando un grupo de tamaños de objeto está sobrerrepresentado, moviendo el 

modelo entrenado hacia esta región de interés sobrerrepresentada. Para resolver 

este problema, se introdujo FPN (descripción en la sección 3.2.4.3), utilizando su 

estructura de conexión ascendente, descendente y lateral. 

El otro problema presenta un desequilibrio de escala a nivel de característica, y 

se realizaron algunas experimentaciones a través de Path Aggregation Network 

(PANet) [131], detalle y discusión en secciones futuras. 

3.2.5.3. Desequilibrio en la distribución de IoU 

El desequilibrio en la distribución de IoU se produce típicamente cuando hay un 

número desproporcionado de cajas delimitadoras predichas con valores de IoU 

bajos (lo que indica una mala localización o predicciones inexactas) en 

comparación con los valores de IoU altos (lo que indica predicciones precisas). Este 

desequilibrio puede provocar una evaluación sesgada y puede afectar el 

rendimiento general de los modelos de detección de objetos [129]. 

La intuición para resolver el problema es Cascade R-CNN, que se describe en 

las secciones 3.1.1.1 y 3.2.4.3. Normalmente, se utiliza un umbral de IoU igual a 

0.5 en la detección de objetos, lo que produce positivos de baja calidad. Los 

umbrales altos pueden mejorar la calidad, pero el sobreajuste del entrenamiento 

será un problema debido a la desaparición del muestreo positivo. Aquí es donde 

Cascade R-CNN entra en acción debido a su capacidad, a través de una serie de 

etapas, para reducir el sobreajuste del entrenamiento y mejorar la calidad de las 
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propuestas de forma secuencial [129]. 

3.2.5.4. Desequilibrio en la pérdida de regresión 

Un desequilibrio en la pérdida de regresión se refiere a un desequilibrio o 

desproporción en la distribución de los objetivos de regresión de los rectángulos 

delimitadores. En la detección de objetos, junto con la tarea de clasificación, el 

modelo también se entrena para regredir las coordenadas de los rectángulos 

delimitadores que encierran con mayor precisión los objetos de interés [129]. 

Un desequilibrio en la pérdida de regresión puede surgir cuando existe una 

diferencia significativa en el número o el nivel de dificultad de los objetos con 

tamaños, proporciones de aspecto o posiciones variables en el conjunto de datos. 

Por ejemplo, si el conjunto de datos contiene muchos objetos pequeños, pero 

relativamente menos objetos grandes, o si ciertas clases tienen una frecuencia 

mayor que otras, los objetivos de regresión asociados a estos objetos pueden estar 

desequilibrados, y esta es exactamente la situación con las lesiones en el conjunto 

de datos, una discrepancia entre las características relacionadas con el RD y las 

características relacionadas con el glaucoma. 

Este desequilibrio en los objetivos de regresión puede conducir a un aprendizaje 

sesgado durante el entrenamiento, ya que el modelo puede priorizar la optimización 

de la pérdida de regresión para la clase mayoritaria o los objetos más fáciles de 

predecir, mientras que potencialmente descuida los objetos minoritarios o más 

desafiantes. 

Las funciones de pérdida basadas en IoU que se han empleado son 

fundamentalmente IoU Loss [132], Bounded IoU Loss [133], GIoU Loss [134], DIoU 

Loss y CIoU Loss  [135], pero los principales inconvenientes de estas funciones de 

pérdida están relacionados con la estrategia de umbral de IoU, lo que significa un 

mayor número de muestreadores de entrenamiento negativos, desequilibrio de 

escala porque a los objetos con escalas más grandes se les asignan más muestras 

positivas que a los objetos de escalas pequeñas y falla en la compensación de 

muestras. 
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Para resolver estos problemas expuestos, se adoptó la solución de Xu et al. 

[136]. Proponen una distancia de Wasserstein normalizada (NWD) con una 

asignación de etiquetas basada en RanKing (RKA) para gestionar la detección de 

objetos diminutos en el dominio de las imágenes aéreas. Aquí, se tradujo ese 

enfoque a la detección de lesiones retinianas, que también incluye objetos 

diminutos. 

La intuición de los autores ha modelado el cuadro delimitador como una 

distribución gaussiana bidimensional, donde el píxel central 𝑐𝑥, 𝑐𝑦 tiene el mayor 

peso y disminuye hacia el ancho y alto de los límites (𝑤, ℎ). Por lo tanto, el cuadro 

delimitador horizontal se representa como 𝑅 = (𝑐𝑥, 𝑐𝑦, 𝑤, ℎ), y su distribución 

gaussiana bidimensional es: 

𝒩(𝜇, Σ), (1) 

donde 𝜇 representa la coordenada central, y Σ representa las longitudes del semi-

eje a lo largo de los ejes 𝑥 y  𝑦. 

𝜇 = [𝑐𝑥
𝑐𝑦

] , Σ = [

𝑤2

4
0

0
ℎ2

4

], (2) 

El segundo paso fue usar la distancia de Wasserstein para medir la similitud 

entre dos distribuciones gaussianas bidimensionales, una para cajas de ancla (ab) 

𝒩𝑎𝑏, y la segunda para cajas de ground truth (gtb) 𝒩𝑔𝑡𝑏. 

𝑊2
2(𝒩𝑎𝑏, 𝒩𝑔𝑡𝑏) = ‖([𝑐𝑥𝑎𝑏 , 𝑐𝑦𝑎𝑏 ,

𝑤𝑎𝑏

2
,

ℎ𝑎𝑏

2
]

𝑇
, [𝑐𝑥𝑔𝑡𝑏 , 𝑐𝑦𝑔𝑡𝑏 ,

𝑤𝑔𝑡𝑏

2
,

ℎ𝑔𝑡𝑏

2
]

𝑇

)‖
2

2

, (3) 

donde 𝒩𝑎𝑏 , 𝒩𝑔𝑡𝑏, la distribución gaussiana, se modela a partir del cuadro delimitador 

horizontal, y ||.|| es la norma de Frobenius. 

Finalmente, se aplicó una función de transformación exponencial no lineal a 

𝑊2
2(𝒩𝑝, 𝒩𝑔𝑡), para utilizar esta distancia como una métrica necesaria para 

normalizar los valores entre (0, 1]. Entonces, la ecuación final es: 
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𝑁𝑊𝐷 = 𝑒 [−
√𝑊2

2(𝒩𝑎𝑏,𝒩𝑔𝑡𝑏)

𝐶
], (4) 

C es un hiperparámetro constante. Los autores afirman que esta métrica refleja 

mejor la similitud entre dos distribuciones, incluso sin superponerse. 

Se aplicó RKA de anclas en combinación con NWD para aumentar el rendimiento 

de la nueva métrica. La estrategia fue: 

• Convertir los cuadros de anclaje y los cuadros de ground truth en una 

distribución gaussiana bidimensional y calcular el NWD entre sí. 

• Obtener la matriz de puntuación de NWD y ordenar cada anclaje con 

respecto a un ground truth particular. 

• Asignar etiquetas positivas a las anclas con la puntuación Top k sobre un 

ground truth particular. 

Este mecanismo evita el uso de asignación basada en umbrales, el cual crea un 

desequilibrio para objetos de diferentes tamaños. Para un análisis más profundo, 

consulte el documento original [136]. 

3.2.6. Posprocesamiento 

El posprocesamiento es un paso esencial en la detección de objetos, ya que 

permite el refinamiento, la interpretación y el filtrado de los resultados de detección 

en bruto obtenidos del algoritmo. Las razones claves por las que son importantes 

son el refinamiento del cuadro delimitador, la asignación de etiquetas de clase, el 

umbral de confianza para filtrar la detección de baja confianza, la interpretación y 

visualización de los resultados, y la evaluación del rendimiento. 

Las técnicas de supresión no máxima son cruciales en las tareas de 

posprocesamiento. Ayudan a eliminar detecciones redundantes, manejan múltiples 

objetos, permiten un equilibrio flexible en los intercambios de Precision-Recall y 

proporcionan un cálculo eficiente [137]. 
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Weighted Cluster-DIoU-NMS (WDIoUNMS) es una variante del algoritmo de 

supresión no máxima (NMS) comúnmente utilizado en tareas de detección de 

objetos en visión por computadora. El trabajo de Zheng et al. inspiró esta variante 

[138] e incorpora dos conceptos clave: IoU de distancia y agrupamiento ponderado. 

IoU de distancia (DIoU) [135] es una métrica de evaluación que combina la 

superposición de IoU de dos cuadros delimitadores con una medida de distancia 

entre sus centros. A diferencia del IoU tradicional, DIoU considera la información 

de ubicación y forma de los cuadros delimitadores, lo que lo hace más efectivo para 

medir su similitud. 

El agrupamiento ponderado es una técnica que asigna pesos a los cuadros 

delimitadores antes de realizar la supresión no máxima. Estos pesos otorgan más 

importancia a ciertos cuadros que a otros, mejorando la precisión y la calidad de 

las detecciones finales. 

El algoritmo WDIoUNMS sigue estos pasos: 

1. Ordenar los cuadros delimitadores según sus puntuaciones en orden 

descendente. 

2. Calcular la métrica DIoU entre todos los cuadros delimitadores para obtener 

una matriz de distancia DIoU. 

3. Aplicar una operación triu (matriz triangular superior) a la matriz de distancia 

DIoU para obtener una matriz IoU. 

4. Iterar un número máximo de veces y actualizar la matriz IoU en función de 

un umbral predefinido. 

5. Calcular pesos para cada cuadro delimitador utilizando una función de peso 

que considera la matriz IoU, las puntuaciones y una operación exponencial. 

6. Pesar los cuadros delimitadores por los pesos calculados y normalizar los 

resultados. 
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7. Realizar la supresión no máxima final, conservando solo los cuadros con las 

puntuaciones más altas, considerando las puntuaciones ponderadas y el 

umbral IoU. 

WDIoUNMS tiene como objetivo mejorar la calidad de las detecciones finales al 

considerar tanto la similitud espacial de los cuadros delimitadores como sus 

puntuaciones relativas, lo que puede conducir a una supresión más precisa de 

cuadros redundantes y la selección de las detecciones más relevantes. 

4. Resultados y evaluación 

En este capítulo se busca evaluar el desempeño de las metodologías antes 

propuestas, mostrando los resultados experimentales en la segmentación de 

instancias del DO y la CO; así como la detección de lesiones en la retina asociadas 

a la RD y el glaucoma. 

4.1. Elementos de configuración 

4.1.1. Parámetros e hiperparámetros 

El entrenamiento de modelos de detección de objetos y arquitecturas de redes 

neuronales generalmente requiere la optimización de muchos parámetros 

interdependientes. El proceso de selección de hiperparámetros puede ser realizado 

por diseñadores humanos o métodos de optimización de hiperparámetros [139]. 

Ejemplos de métodos anteriores son Random Search [140], Grid Search [141] y 

Gradient-based [142]. En este caso se utilizó un ajuste manual de hiperparámetros, 

siguiendo enfoques bien establecidos en la literatura. 

El muestreador (Sampler) por GPU o tamaño de lote para el resultado reportado 

fue de ocho, con dos trabajadores (Workers) por GPU y el número final de épocas 

fue cincuenta para la detección de lesiones, mientras que para la tarea de 

segmentación el número total de épocas fue de doce. 

El optimizador AdamW [143] se empleó para la optimización, con una tasa de 

aprendizaje inicial establecida en 0.0025, y se utilizó el recocido de coseno (Cosine 
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annealing), incorporando técnicas de reinicio en caliente (Warm restart) [144]. 

Originalmente diseñado para el optimizador de descenso de gradiente estocástico 

(SGD), investigaciones recientes indican un mejor rendimiento cuando se aplica el 

recocido de coseno con AdamW [145]. 

Otra característica que se ha ajustado son las cajas de anclaje (anchor boxes), 

un parámetro esencial para la detección de objetos de calidad. Los ajustes de 

anclaje se especifican con escalas y relaciones de anclaje, mientras que los pasos 

de anclaje corresponden a los pasos del mapa de características. Para obtener más 

escalas en cada ubicación, de ahí la alta posibilidad de fijar el objeto correctamente. 

Se agregaron más escalas y relaciones en esta investigación. La Tabla 4-1 muestra 

los parámetros e hiperparámetros seleccionados. 

Tabla 4-1: Parámetros e hiperparámetros ajustados durante el entrenamiento. 

Hiperparámetros 
Valores 

Muestras por GPU 
8 

Trabajadores por GPU 
2 

Épocas 
12/50 

Optimizador 
AdamW 

Tasa de aprendizaje 
0.0025 

Horario de tasa de aprendizaje 
Cosine Annealing 

Redimensiones multi-scale 
1333 x 640 to 1333 x 960 

 

4.1.2. Funciones de pérdida 

Las funciones de pérdida son una métrica que mide la distancia entre las 

predicciones de una red neuronal y los valores reales a través del cálculo de un 

error para cada ejemplo del conjunto de datos. Luego, estos errores se suman y se 

promedian para obtener un único número representativo de la distancia entre las 

predicciones de la red neuronal y los valores reales. Se utilizan para evaluar el 

rendimiento de una red neuronal durante su entrenamiento. 



 

 
61 

El objetivo del entrenamiento de una red neuronal es encontrar los parámetros 

de la red (pesos y sesgos) que minimicen la función de pérdida. Esto significa 

encontrar los parámetros que generen las predicciones más cercanas a los valores 

reales, convirtiéndose en un problema de optimización que busca minimizar la 

función de pérdida. En muchos casos, la función de pérdida no se puede resolver 

de forma analítica. Esto significa que no existe una fórmula matemática que permita 

encontrar los parámetros que la minimicen, pero si se pueden aproximar a través 

de estos algoritmos de optimización de forma iterativa [146]. 

La pérdida total en los modelos de detección de objetos es la suma de la pérdida 

de la clasificación, la localización y en caso de que se aplique de la segmentación. 

En esta investigación se realizaron tanto tareas de detección como de detección y 

segmentación, aplicándose así la variante correspondiente en cada caso. 

Para la tarea de segmentar el disco y la copa ópticas, la ecuación de la pérdida 

total es la siguiente: 

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝐶𝑙𝑠 + 𝐿𝑅𝑒𝑔 + 𝐿𝑀𝑎𝑠𝑘 (5) 

𝐿𝐶𝑙𝑠 es la pérdida de clasificación, la cual utiliza una función de pérdida 

logarítmica sobre dos clases, 𝑝𝑖, la probabilidad predicha, y 𝑞𝑖, la etiqueta del 

ground truth, ver Ecuación 6: 

𝐿𝐶𝐿𝑠(𝑝𝑖, 𝑞𝑖) = −𝑞𝑖𝑙𝑜𝑔𝑝𝑖 − (1 − 𝑞𝑖)log (1 − 𝑝𝑖)  (6) 

𝐿𝑅𝑒𝑔 es la pérdida de regresión de caja delimitadora. Es el error cuadrático medio 

que se aplica típicamente entre los puntos originales 𝑢𝑖  y los puntos predichos 𝑣𝑖 

sobre el vector de coordenadas central, ancho y alto, 𝑖 ∈ [𝑥, 𝑦, 𝑤, ℎ], ver Ecuación 

7: 

𝐿𝑅𝑒𝑔 = 𝑀𝑆𝐸(𝑢𝑖 , 𝑣𝑖) (7) 

Finalmente, 𝐿𝑀𝑎𝑠𝑘, emplea una función de entropía cruzada binaria promedio 

sobre una máscara de dimensión m x m asociada con la clase k del ground truth. 

Consulte la Ecuación 8 para obtener más detalles, donde 𝑥𝑖,𝑗 es la etiqueta de la 
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celda (i, j) en el ground truth y 𝑦𝑖,𝑗
𝑘  es el valor generado por el modelo de la misma 

celda y clase k [42]. 

𝐿𝑀𝑎𝑠𝑘 = −
1

𝑚2
∑ 𝑥𝑖,𝑗𝑙𝑜𝑔𝑦𝑖,𝑗

𝑘
1≤𝑖,𝑗≤𝑚 + (1 − 𝑥𝑖,𝑗)log (1 − 𝑦𝑖,𝑗

𝑘 ) (8) 

Para la tarea de detección de lesiones en la retina, la función de pérdida final 

combina la pérdida de clasificación con la pérdida de regresión de cajas 

delimitadoras. Se utilizó SmoothL1Loss [40] para la última porque reduce el efecto 

de los valores atípicos y es más robusta, y es más estable para pequeños errores. 

En la clasificación de pérdidas, se experimentó con la conocida Cross Entropy Loss 

en combinación con OHEM y Asymmetric Focal Loss [147]. La función de pérdida 

total es la siguiente: 

𝐿𝑜𝑠𝑠 = 𝐿𝑜𝑠𝑠𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 + 𝐿𝑜𝑠𝑠𝐵𝐵 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 (9) 

La pérdida de entropía cruzada (CE) [148] pertenece a la familia de funciones 

exponenciales, por lo que siempre es convexa, lo que la hace adecuada para tareas 

de clasificación; en esta parte de la investigación, clasificación multiclase, donde 

cada muestra puede pertenecer a una de las C clases. La CNN estará formada por 

C neuronas de salida, formando el vector s (Scores). El vector objetivo (ground 

truth) t será un vector one-hot, con una clase positiva y C-1 clases negativas. 

Descripción en Ecuación 10. 

𝐶𝐸𝐿𝑜𝑠𝑠 = − ∑ 𝑡𝑖 log(𝑠𝑖)
𝐶
𝑖   (10) 

La pérdida asimétrica (ASL) se diseñó para manejar el desequilibrio de etiquetas 

positivas y negativas. La función de pérdida permite la ponderación dinámica 

descendente y el umbral duro de muestras negativas fáciles, mientras se descartan 

muestras potencialmente mal etiquetadas. En el artículo base se combina 

mecanismos de enfoque asimétrico para reducir el impacto de las muestras 

negativas fáciles en la función de pérdida, lo que se logra mediante un umbral suave 

utilizando los parámetros de enfoque γ- y γ+, y el cambio de probabilidad, que 

implica un umbral duro de muestras negativas directas, lo que significa que las 

muestras negativas se descartan por completo cuando su probabilidad es 
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excesivamente baja [147]. Consulte la definición en la Ecuación 11. 

𝐴𝑆𝐿 = {
𝐿+ = (1 − 𝑝)𝛾+ log 𝑝

𝐿− = (𝑝𝑚)𝛾− log(1 − 𝑝𝑚)
 (11) 

donde la probabilidad desplazada se define por 𝑝𝑚 = max (𝑝 − 𝑚, 0), 𝑝 la 

probabilidad de salida de la red y 𝑚 un factor de desplazamiento. 

4.2. Métricas de evaluación 

Evaluar modelos de DL es crucial por varias razones. El rendimiento de los 

modelos de evaluación nos permite analizar su desempeño y determinar qué tan 

bien resuelven el problema. Ayudan en la selección de modelos al comparar su 

comportamiento y seleccionar el mejor rendimiento en nuestro problema específico. 

En esta investigación se trabajó con modelos de detección de objetos, por lo que 

sus métricas principales fueron empleadas en su evaluación. Estas son: 

• Verdadero positivo (TP), la etiqueta de la muestra es positiva y se clasifica 

como tal. Verdadero negativo (TN), la etiqueta de la muestra es negativa 

y se clasifica como tal. Falso positivo (FP): la etiqueta de la muestra es 

negativa, pero se clasifica como positiva. Falso negativo (FN): la etiqueta 

de la muestra es positiva, pero se clasifica como negativa. Estos 

recuentos a menudo se informan como números sin procesar y se pueden 

usar para calcular varias otras métricas cómo las que se mencionan a 

continuación. 

• Precisión y Recuperación (Precision/Recall): La precisión mide la fracción 

de objetos predichos correctamente de todos los objetos predichos, 

mientras que el recuerdo mide la fracción de objetos predichos 

correctamente de todos los objetos del ground truth. Estas métricas 

proporcionan información sobre la capacidad del modelo para detectar 

objetos con precisión y evitar falsos positivos (precisión) y falsos negativos 

(recuerdo) [149]. 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (12) 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (13) 

• F1-Score: es la media harmónica entre la recuperación y la precisión. 

𝐹1𝑆𝑐𝑜𝑟𝑒 =
2∗𝑇𝑃

2∗𝑇𝑃+𝐹𝑃+𝐹𝑁
 (14) 

• Intersección sobre Unión (IoU): IoU mide la superposición entre el cuadro 

delimitador predicho y el cuadro delimitador del ground truth de un objeto. 

Se calcula como la relación entre el área de intersección y el área de unión 

de los dos cuadros. IoU se usa ampliamente como una métrica de 

evaluación principal en la detección de objetos porque cuantifica la 

precisión de la localización. 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
 (15) 

• Precisión Promedio: AP es una métrica comúnmente utilizada para 

evaluar el compromiso entre precisión y recuerdo en la detección de 

objetos. Considera un rango de umbrales de IoU (p. ej., de 0.5 a 0.95) y 

calcula la precisión y el recuerdo en cada umbral. El AP es la precisión 

promedio en todos los umbrales, proporcionando una medida general de 

la calidad de detección [115]. 

𝐴𝑃 = ∑ (𝑟𝑖+1 − 𝑟𝑖)𝑝𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟𝑖+1)𝑖=𝑛−1
𝑖=0  (16) 

 Donde r es el número total de muestras relevantes, n es el número de 

umbrales y 𝑝𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 es la precisión en cada nivel de recuerdo r, 

definida por la ecuación 17, y donde p(r)̃ es la precisión medida en el 

recuerdo r,̃ que es el recuerdo que excede r. 

𝑝𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛(𝑟𝑖+1) = 𝑚𝑎𝑥𝑝(𝑟̃), 𝑟̃ ≥ 𝑟𝑖+1 (17) 

Según [149], estas métricas son adecuadas para la segmentación de 

imágenes médicas, junto con la puntuación F1, que es ligeramente 

diferente de IoU porque este penaliza la subsegmentación y la 

sobresegmentación más que F1-Score. La métrica F1-Score se usa a 

menudo para cuantificar el rendimiento de los métodos de segmentación 

de imágenes. Esta métrica es un orden de cuán similares son dos objetos. 



 

 
65 

• Precisión Promedio Media: mAP es el promedio de los valores de AP 

calculados para diferentes categorías de objetos en tareas de detección 

de objetos de múltiples clases. Proporciona una evaluación integral del 

rendimiento del modelo en múltiples clases. A menudo se informa el mAP 

en un umbral de IoU específico (por ejemplo, 0.5 o 0.75). 

Dado que la presente investigación se basa en el formato COCO, se adoptó su 

métrica de evaluación, que incluye el análisis previo [114]. Además, hemos utilizado 

un kit de herramientas completo conocido como Toolbox for Identifying Object 

Detection Errors (TIDE), que clasifica los errores en seis tipos distintos: Error de 

clasificación, Error de localización, Errores en la clasificación y localización, Error 

de detección duplicada, Error de fondo y Error de ground truth omitido [150]. 

Además, introducen un enfoque para medir la contribución de cada error, aislando 

su efecto en el rendimiento general. 

4.3. Experimentación y resultados en la segmentación 

de instancias. 

La experimentación comienza con una fracción del conjunto de datos REFUGE, 

específicamente 100 imágenes para entrenamiento, 30 para validación y 30 para la 

prueba. Este subconjunto se tomó, debido a la engorrosa naturaleza del proceso 

de etiquetado, para observar una primera aproximación del comportamiento de los 

modelos a evaluar. También nos da una idea de cómo se comporta el modelo con 

un número limitado de imágenes. La tarea se desarrolló sin escala múltiple (WM) y 

escala múltiple (MS). 

Se reportan tres criterios: AP[IoU=0.50:0.95], donde el AP se promedia sobre 

múltiples valores de IoU, lo que recompensa a los detectores con mejor 

localización. Esta se tomará como la métrica principal; también se reportan (AP) 

[IoU=0.50] y (AP) [IoU=0.75] ya que son más comunes en la literatura y los 

resultados son más ajustados. Tres modelos mejoran su rendimiento con escala 

múltiple: GCNet, MS-RCNN y Point_Rend. El mejor resultado general fue Mask-

RCNN con AP[IoU=0.50:0.95] con 0.671. Los resultados se pueden ver en la Tabla 
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4-2. 

Tabla 4-2: Resultados de precisión media en el conjunto de datos reducido REFUGE. 

Modelo  (AP)[IoU=0.50:0.95] (AP)[IoU=0.5] (AP)[IoU=0.75] 

 WM MS WM MS WM MS 

CARAFE 0.657 0.607 0.979 0.965 0.771 0.621 

Cascade Mask-

RCNN 

0.618 0.608 1.000 0.980 0.661 0.646 

SOLO 0.555 0.530 0.886 0.886 0.613 0.586 

GCNET 0.584 0.595 0.980 0.960 0.608 0.638 

MASK-RCNN 0.671 0.616 1.000 0.962 0.743 0.635 

MS-RCNN 0.604 0.627 0.980 0.978 0.649 0.676 

POINT_REND 0.582 0.607 1.000 0.965 0.564 0.621 

Posteriormente, el experimento se repitió bajo las mismas condiciones con el 

conjunto de datos REFUGE completo, utilizando 400 imágenes para entrenamiento, 

200 para validación y 200 para pruebas. Los resultados se pueden observar en la 

Tabla 4-3. 

Tabla 4-3: Resultados de precisión media en el conjunto de datos completo de REFUGE. 

Modelos (AP)[IoU=0.50:0.95] (AP)[IoU=0.50] (AP)[IoU=0.75] F1-Score 

 WM MS WM MS WM MS  

CARAFE 0.650 0.636 0.990 0.995 0.710 0.685 1.0 

Cascade Mask-

RCNN 

0.644 0.661 0.985 0.990 0.716 0.739 0.997 

SOLO 0.610 0.647 0.989 0.984 0.676 0.703 1.0 

GCNET 0.631 0.656 0.990 0.995 0.712 0.729 1.0 

MASK-RCNN 0.595 0.629 0.948 0.988 0.662 0.701 1.0 

MS-RCNN 0.654 0.658 0.995 1.000 0.766 0.738 1.0 

POINT_REND 0.632 0.661 0.990 0.994 0.670 0.735 1.0 

A excepción de CARAFE, todos los modelos mejoraron su rendimiento con el 

enfoque de escala múltiple. Los experimentos se realizaron en el conjunto de datos 

G1020, con escala múltiple, ya que este enfoque muestra mejores resultados. Los 

resultados se muestran en la Tabla 4-4. 

Se proporcionan curvas de precision-recall (PR) para una mejor comprensión. El 

primer gráfico, consulte la Figura 4-1, muestra que todos los modelos funcionan de 

manera excelente, lo que significa que la recuperación aumenta en cierta cantidad 

y la precisión no cambia; por lo tanto, todos los recuperados son verdaderos 
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positivos. 

Tabla 4-4: Resultados de precisión media en el conjunto de datos G1020. 

Model 

Architecture 

(AP)[IoU=0.50:0.95] (AP)[IoU=0.50] (AP)[IoU=0.75] F1-score 

 MS MS MS  

CARAFE 0.624 0.948 0.632 0.963 

Cascade Mask-

RCNN 

0.631 0.947 0.662 0.963 

SOLO 0.568 0.909 0.583 0.916 

GCNET 0.628 0.943 0.646 0.957 

MASK-RCNN 0.613 0.941 0.621 0.963 

MS-RCNN 0.638 0.944 0.664 0.963 

POINT_REND 0.617 0.956 0.648 0.969 

 

Figura 4-1: Curva de PR de cada modelo en el conjunto de datos reducido REFUGE. Se proporciona la 
puntuación F1-Score de cada modelo. 

En la Figura 4-2, al igual que en la anterior, todos los rendimientos de los modelos 

son perfectos excepto Cascade Mask-RCNN. Este modelo no puede recuperar 

todos los verdaderos positivos. 
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Figura 4-2: Curva de PR de cada modelo en el conjunto de datos REFUGE. Se proporciona la puntuación F1-
Score de cada modelo. 

La Figura 4-3 también muestra resultados prometedores. Sin embargo, este 

gráfico muestra implícitamente la presencia de falsos positivos asociados con 

errores de localización, confusión de clases y falsos negativos. Estos errores se 

deben a que el conjunto de datos G1020 presenta una alta diversidad en sus 

imágenes en comparación con el conjunto de datos REFUGE. 

 

Figura 4-3: Curvas de PR de cada modelo en el conjunto de datos G1020. Se proporciona la puntuación F1-
Score de cada modelo. 

Se proporciona una serie de curvas de PR para cada clase con fines de 



 

 
69 

interpretación en la Figura 4-4. Se garantiza que cada curva de PR sea más alta 

que la anterior a medida que el entorno de evaluación se vuelve más permisivo con 

respecto al umbral de IoU. La leyenda se describe a continuación, con el significado 

de cada curva [151]. 

1. C75: el área bajo la curva corresponde a la métrica AP[IoU=0.75]. 

2. C50: el área bajo la curva corresponde a la métrica AP[IoU=0.50]. 

3. Loc: se ignoran los errores de localización, pero no las detecciones 

duplicadas. 

4. Sim: PR después de eliminar los falsos positivos (fp) de supercategoría. 

5. Oth: PR después de eliminar todas las confusiones de clase. 

6. BG: PR después de eliminar todos los fps de fondo (y confusión de clase). 

7. FN: PR después de eliminar todos los errores restantes (trivialmente 

AP=1). 

Se presenta una explicación de la Figura 4-2, donde la curva de PR no fue 

perfecta para el modelo Cascade Mask-RCNN en el conjunto de datos REFUGE, 

mediante un análisis por clase. La Figura 4-4 muestra una línea delgada al final del 

gráfico que exhibe la presencia del falso negativo. 

  

Figura 4-4: Curvas de PR por clases en Cascade Mask-RCNN sobre el conjunto de datos REFUGE. La imagen 
de la izquierda representa el área de la copa y la de la derecha el área del disco. Ambas muestran la presencia 
de falsos positivos. 

Una inspección visual siempre es recomendable. En las Figuras 4-5 y 4-6 se 

pueden ver los resultados de la segmentación con el modelo MS-RCNN. 
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Figura 4-5: Resultado de MS-RCNN en algunas imágenes del conjunto de datos de prueba REFUGE. 
Primera fila de imágenes originales, segunda fila de imágenes segmentadas. 

   

   

Figura 4-6: Resultado de MS-RCNN en algunas imágenes del conjunto de datos de prueba G1020. Primera 
fila de imágenes originales, segunda fila de imágenes segmentadas. 

Los modelos entrenados con el conjunto de datos G1020 de múltiples experimentos 

arrojaron mejores resultados que el conjunto de datos REFUGE cuando los 

modelos entrenados se aplicaron a nuevos conjuntos de datos, debido a una mayor 
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diversidad en sus imágenes. La prueba se realizó en múltiples imágenes; con fines 

ilustrativos, se mostraron una imagen de DRIONS-DB [152] y ORIGA DB [52] en 

las Figuras 4-7 y 4-8 respectivamente, con el modelo Cascade Mask R-CNN. 

(a) (b) (c) 

Figura 4-7: Segmentación en un conjunto de datos externo con el modelo Cascade Mask-RCNN. Imagen 
original de DRIONS-DB a). Resultado de la segmentación del modelo entrenado con el conjunto de datos 
Refuge b). Resultado de la segmentación del modelo entrenado con el conjunto de datos G1020 c). 

Como se observa en la figura anterior, la segmentación obtenida para el DO no 

cubre toda el área esperada con los modelos entrenados en el conjunto de datos 

REFUGE, vea la Figura 4-7 b). Este resultado se puede ver cuando la predicción 

se realiza con el modelo entrenado en el conjunto de datos G1020, vea la Figura 4-

7 c). En la siguiente Figura 4-8, también se puede observar la degradación de la 

segmentación del DO, comparando los modelos entrenados en los conjuntos de 

datos REFUGE y G1020. 

 

a) 

 

b) 

 

c) 

Figura 4-8: Segmentación en un conjunto de datos externo con el modelo Cascade Mask-RCNN. Imagen 
original de ORIGA-DB a). Resultado de la segmentación del modelo entrenado con el conjunto de datos Refuge 

b). Resultado de la segmentación del modelo entrenado con el conjunto de datos G1020. 
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4.4. Experimentación y resultados en la detección de 

lesiones. 

Antes de presentar los resultados, se desarrollaron múltiples experimentos, 

desde el cambio de tamaño de imagen fijo (1333 x 800) hasta el cambio de tamaño 

de imagen a través de escala múltiple, un esquema de aumento simple basado en 

el entrenamiento con tamaños entre 1333 x 640 y 1333 x 960. Para resolver el 

desequilibrio de clases, dos enfoques son el muestreo duro (OHEM) y el muestreo 

suave con ASL. La experimentación se realizó a través de FPN y Path Aggregation 

Network (PAFPN) [131] para el desequilibrio de escala, y el posprocesamiento se 

realizó con y sin WDIoUNMS. Todos los experimentos se realizaron con NWD y 

RKA. 

La distribución de imágenes para entrenamiento, validación y pruebas fue de 

383, 149 y 225 respectivamente, con un total de 757 imágenes. Inicialmente, el 

tamaño del lote se estableció en dos y el número de épocas se estableció en doce. 

La evaluación de la investigación empleó principalmente mAP, ya que la tarea 

implicaba la detección de objetos. La mAP es una métrica predominante para 

evaluar la precisión de algoritmos de DL en el contexto de la detección de objetos. 

Siguiendo las métricas de evaluación de COCO, se informaron AP@[IoU = 0.50], 

ampliamente utilizado en la literatura, así como AP@[IoU = 0.50:0.95], donde AP 

se promedia sobre varios valores de IoU, lo que recompensa a los detectores con 

una mejor localización. 

Además, se utilizó la curva de PR para un análisis en detalle, con una 

interpretación mejor adaptada sobre Receiver Operating Characteristics (ROC) 

para problemas de clases desequilibradas, y el kit de herramientas TIDE para aislar 

la contribución del error en lugar de solo mirar mAP. Los primeros resultados se 

pueden ver en la Tabla 4-5. Todas las métricas informadas se basan en conjuntos 

de prueba, ya que los datos no se ven en el proceso de entrenamiento como los 

conjuntos de entrenamiento y validación, lo que evita un posible sobreajuste en las 

métricas informadas. 
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Tabla 4-5: Resultados de la experimentación para doce épocas y dos de tamaño de lote. 

Experimentos AP@ [IoU = 0.50] 
CE+(1333-800) 0.4295 
CE+OHEM+(1333-800) 0.4331 
CE+OHEM+MS 0.4358 
CE+OHEM+MS+PAFPN 0.432 
CE+OHEM+MS+WDIoUNMS 0.446 
  
ASL+MS 0.432 
ASL+MS+ PAFPN 0.435 
ASL+MS+PAFPN+WDIoUNMS 0.432 
ASL+MS+WDIoUNMS 0.436 

Se pueden identificar dos enfoques principales a partir de los resultados de la 

Tabla 4-5, uno basado en CE con muestreo duro (OHEM) y otro con ASL como 

mecanismo de muestreo suave. El uso de multiescala demostró una ligera mejora, 

por lo que se adoptó para el resto de los experimentos. Cuando no se especificó 

PAFPN, se utilizó FPN, y este mecanismo en el cuello del modelo de detección de 

objetos proporciona los mejores resultados en combinación con WDIoUNMS como 

enfoque de posprocesamiento. Los mejores resultados se destacaron en negrita. 

Tras el desarrollo de estos nuevos experimentos, se produjo un aumento en el 

número de épocas de doce a cincuenta, junto con una escalada en el tamaño del 

lote de dos a ocho. Este ajuste ha facilitado que el algoritmo ejecute actualizaciones 

de gradiente consistentes, al tiempo que fomenta la anticipación de mejoras en los 

resultados predictivos. En esta ocasión, los mejores resultados anteriores se 

compararon con el estado del arte, véase la Tabla 4-6. 

En base a los resultados presentados en la Tabla 4-6, el presente estudio 

demuestra un rendimiento superior en comparación con investigaciones previas, 

logrando una mejora mínima del doble. Esto subraya la eficacia de aumentar el 

modelo de detección de objetos Cascade RCNN con la integración de las técnicas 

de NWD y RKA como marco fundamental. El experimento con PAFPN muestra 

efectividad para objetos pequeños pero peor comportamiento para todas las clases. 

El mejor resultado se obtuvo a través de la pérdida asimétrica con un mAP de 0.460. 

Es importante tener en cuenta que, en las métricas de evaluación de COCO, mAP 

y AP se utilizan indistintamente como la misma métrica; por lo tanto, ambas tienen 

el mismo significado. 
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Tabla 4-6: Resultados de la experimentación para cincuenta épocas y ocho de tamaño de lote. Comparación 

con el estado del arte. 

Experimentos AP@[IoU= 0.50] AP@[IoU=0.50:0.95] 

area=all 

Tao Li et. al. [54] 

SSD 

YOLO 

Faster RCNN 

 - 

0.0015 

0.0030 

0.0009 

Santos et. al. [103] 0.1540 - 

Wejdan et. al. [106] 0.216 - 

CE+OHEM+MS+WDIoUNMS 0.451 0.287 

ASL+MS+WDIoUNMS 0.460 0.293 

Para facilitar una mejor interpretación, se ha presentado una serie de curvas de 

PR. En estas curvas se superpone el impacto acumulativo de los errores 

individuales, estableciendo una relación. La Figura 4-9 muestra las curvas de PR 

para CE+OHEM+MS+WDIoUNMS y ASL+MS+WDIoUNMS. 

 

En la curva de PR, el eje x corresponde a la Recall, mientras que el eje y 

corresponde a la Precision. Esta curva es significativa cuando se manejan clases 

desequilibradas, ya que evalúa principalmente el rendimiento de las clases 

positivas. En consecuencia, el objetivo en el espacio PR es ocupar la esquina 

 

a) CE+OHEM+MS+WDIoUNMS 

 

b) ASL+MS+WDIoUNMS 

Figura 4-9: Curvas de PR para CE+OHEM+MS+WDIoUNMS y ASL+MS+WDIoUNMS. 
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superior derecha (1, 1), lo que significa que el predictor identificó correctamente 

todas las instancias positivas (Recall = 1) y que cada clasificación positiva fue 

efectivamente precisa (Precision = 1). 

A partir de las figuras anteriores, los resultados están lejos del objetivo principal, 

la esquina superior derecha. Una primera interpretación se puede tomar de las 

áreas de error, identificando muchos falsos negativos. Sin embargo, en un análisis 

profundo, Bolya et al. [150], basándose en gráficos anteriores, fusionan Sim y Oth 

en un solo error de clasificación y crean un nuevo tipo de error que combina el error 

de localización y clasificación, como ambos mal localizados y clasificados. Luego, 

al intercambiar el orden de las etiquetas de background y clasificación, calculan el 

error. Al calcular inicialmente el error de background, hay una reducción notable en 

su impacto general, lo que sugiere que el significado real de los errores de 

background es mucho menor que el informado en las evaluaciones COCO. 

La Tabla 4-7 muestra la contribución de cada error, proporcionando un análisis 

intuitivo de la eficacia de la configuración de los modelos, los parámetros y los 

hiperparámetros elegidos en esta investigación. Es imposible extraer esta 

información y la interpretación posterior del mAP previamente informado. 

Tabla 4-7: Contribución de cada error. Exp_1= CE+OHEM+MS+WDIoUNMS, Exp_2= ASL+MS+WDIoUNMS, 
E=Error (clasificación, localización, ambos clasificación+localización, duplicado, background, GT perdido). 

# Exp ECls↓ ELoc↓ EBoth↓ EDupe↓ EBkg↓ EMiss↓ 

Exp_1 2.73 9.25 1.26 0.00 2.04 15.20 

Exp_2 1.81 7.92 1.28 0.00 2.34 15.95 

El impacto de la función de pérdida asimétrica para minimizar los errores 

relacionados con la clasificación y la localización se debe a que el mecanismo de 

enfoque asimétrico enfatiza la contribución de las muestras positivas y reduce la 

contribución de las muestras negativas a la pérdida. Además, el uso de un 

mecanismo de desplazamiento de probabilidad que aplica un umbral rígido ignora 

las muestras negativas si su probabilidad cae por debajo de un umbral bajo 

determinado. Este enfoque ayuda a mitigar los errores de falsos positivos. 

Por el contrario, la pérdida de CE con OHEM se desempeña mejor en la 
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reducción del impacto de los errores relacionados con el background (background 

detectado como primer plano), la omisión del ground truth (todo el ground truth no 

detectada que no se maneja mediante errores de clasificación y localización) y los 

errores del tipo Ambos (clasificación y localización simultáneamente). Una 

justificación supone que OHEM considera todas las ROI dentro de una imagen y 

elige ejemplos desafiantes para el entrenamiento. Mientras tanto, los ejemplos 

fáciles tendrían una pérdida baja y una contribución mínima al gradiente. En 

consecuencia, el proceso de entrenamiento priorizaría y enfatizaría naturalmente 

los ejemplos difíciles, reduciendo así los errores Ambos, la omisión del ground truth 

(objetos no detectados) y las instancias en las que el background se detecta 

erróneamente como primer plano. La Figura 4-10 provee interpretación visual de la 

distribución de los errores. 

  

Figura 4-10: Interpretación visual de los errores en el conjunto de datos DDR. Análisis de errores específicos 
del modelo aplicados a varios detectores de objetos, representados mediante un gráfico circular que ilustra la 
contribución relativa de cada error y gráficos de barras que muestran su contribución absoluta. 

Una matriz de confusión brinda más información sobre los errores y qué clase 

fue más difícil de detectar. Una matriz de confusión es una matriz numérica que 

revela las áreas de confusión de un modelo. Presenta un desglose del desempeño 

predictivo de un modelo de clasificación por clase, lo que nos permite comprender 

dónde comete errores el modelo. La matriz de confusión proporciona una 

representación organizada de cómo las predicciones del modelo se alinean con las 
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clases de datos reales. 

Podemos comparar sus fortalezas y debilidades calculando una matriz de 

confusión para el mismo conjunto de prueba utilizando diferentes clasificadores. Tal 

análisis ayuda a determinar el enfoque óptimo para aprovechar múltiples 

clasificadores de manera efectiva. La matriz de confusión obtenida al entrenar un 

clasificador y evaluar el modelo entrenado en este conjunto de prueba se muestra 

en las Figuras 4-11 y 4-12. 

 

Figura 4-11: Matrix de confusión para el experimento CE+OHEM+MS+WDIoUNMS. 

La diagonal principal se interpreta como la predicción correcta; mientras tanto, 

los errores de predicción se pueden ver fuera de ella. Los mejores resultados fueron 

para la CO y el DO, con un 92% y un 90%, respectivamente. Peores fueron las HE 

y los MA, con un 15% y un 13% de precisiones, respectivamente. Estos resultados 

se correlacionan con la cantidad de falso positivo de background (última columna), 

que son objetos que no pertenecen a ninguna de las clases, pero se detectan como 

una de ellas, y los valores fueron del 80% y 81%, respectivamente. 

La siguiente matriz de confusión corresponde al experimento con ASL en la 

Figura 4-12. En este caso, si bien la CO y el DO, las HE y los MA siguen siendo los 
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mejores y los peores, respectivamente, el número de aciertos fue mayor, mejorando 

todas las clases relacionadas con áreas pequeñas, específicamente con MA con 

un valor del 21%. El falso positivo de background mejoró ligeramente, pero, en 

consecuencia, el falso negativo de background (en la última fila), objetos que el 

detector no detectó, obtuvo peores resultados, fundamentalmente con EX, con un 

65% de clasificación errónea. 

 

Figura 4-12: Matrix de confusión para el experimento ASL+MS+WDIoUNMS. 

A partir de la matriz de confusión, es evidente que las áreas más pequeñas 

conducen a la peor clasificación. Los objetos pequeños tienen menos píxeles, lo 

que significa que hay menos información para que el modelo de detección de 

objetos trabaje. Los objetos diminutos se oscurecen más fácilmente por objetos 

más prominentes, quedando detrás de los más grandes, y estos objetos pequeños 

tienen más probabilidades de estar borrosos o tener un contraste bajo, lo que 

dificulta que el modelo distinga el objeto de su entorno. 

Para inspección visual, consulte las Figuras 4-13 y 4-14 del conjunto de prueba 

del dataset DDR, donde además de las clases originales, ahora se pueden 

identificar clases como el DO, la CO y las APP. Esta imagen pertenece a 
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experimentos con ASL. 

 

Figura 4-13: Predicción de lesiones en imágenes de retina con alta densidad de daños. Conjunto de pruebas 
DDR. 

La imagen anterior es "007-3567-200.jpg" en el conjunto de prueba del dataset 

DDR. Como se puede ver, se detectaron muchas lesiones. La imagen tiene una 

cantidad significativa de HE, la mayoría de las cuales se detectaron. Se detectó un 

cuadro probabilístico para atrofia beta, copa y disco. Recuerde que estas lesiones 

no pertenecen al dataset DDR; su ubicación es un paso importante. Sin embargo, 

algunos artefactos del fondo se clasificaron como lesiones cuando no lo eran. Estos 

falsos positivos se clasificaron erróneamente como EX y SE principalmente. Una 

causa podría ser el color, que es como la lesión original; algunos MA menores 

también se clasificaron erróneamente. 

Se puede extraer una interpretación similar de la imagen 

"20170505181200498.jpg" en la Figura 4-14. Se identificaron correctamente la 

presencia de atrofia beta, copa, disco y la multitud de EX. Se clasificaron 

erróneamente tres HE y dos MA. 
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Figura 4-14: Predicción de lesiones en imagen retiniana. Conjunto de pruebas DDR. 

Estos resultados sugieren que, en combinación con especialistas y médicos, las 

predicciones obtenidas pueden ser útiles y aliviar la carga de lectura e 

interpretación a la que están sometidos los médicos. También muestra la necesidad 

de seguir refinando el trabajo de las predicciones para disminuir el número de falsos 

positivos y falsos negativos. 

4.5. Plataforma de software 

Se han logrado resultados sorprendentemente prometedores con los sistemas 

de DL (DL) en los últimos años. Muchos de estos logros se han alcanzado en 

entornos académicos o por grandes empresas de tecnología con grupos de 

investigación altamente cualificados e infraestructuras de apoyo avanzadas. Para 

las empresas o centros académicos que no tienen grandes grupos de investigación 

o infraestructuras avanzadas, ha resultado difícil construir sistemas de producción 

de alta calidad con componentes de DL. Existe una clara falta de herramientas y 

prácticas recomendadas que funcionen bien para crear sistemas de DL [153]. 
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El ML, especialmente el DL, difiere en parte de la ingeniería de software 

tradicional (SE) en que su comportamiento depende en gran medida de los datos 

del mundo exterior. De hecho, es en estas situaciones en las que el ML se vuelve 

útil. Una diferencia clave entre los sistemas de ML y los sistemas que no son de ML 

es que los datos reemplazan en parte al código en un sistema de ML, y se utiliza 

un algoritmo de aprendizaje para identificar automáticamente patrones en los datos 

en lugar de escribir reglas codificadas en forma rígida. 

Para poner en producción un modelo de ML/DL, normalmente se requiere la 

colaboración de muchos equipos diferentes con diferentes ideas, prioridades y 

valores culturales. Esto no solo introduce desafíos organizativos desde un punto de 

vista cultural, sino también en poder estimar adecuadamente la cantidad de 

esfuerzo que necesitan los diferentes tipos de equipos [153]. 

En el trabajo de [154] se hace una descripción de las distinciones entre los 

procesos de Desarrollo de Software de DL y el Despliegue de Software de DL. 

• Desarrollo de Software de DL: los desarrolladores utilizan potentes 

marcos de trabajo como Pytorch o Tensorflow. En un modelo de DL se 

utilizan funciones de transformación de múltiples capas para convertir 

entradas en salidas, y cada capa aprende un nivel superior de abstracción 

en los datos. Por último, los datos de prueba, que son diferentes de los 

datos de entrenamiento, se utilizan para ajustar el modelo. 

• Despliegue de Software de DL: El proceso de despliegue se centra en la 

adaptación de la plataforma, es decir, en adaptar el software DL a la 

plataforma de despliegue. La forma más popular de despliegue es en el 

servidor o en plataformas en la nube. Esto permite a los desarrolladores 

invocar servicios basados en técnicas de DL mediante la simple llamada 

a un punto de acceso de la Application Programming Interfaces API. Los 

principales desafíos del despliegue de software de DL están relacionados 

con la adaptación a la plataforma, la optimización del rendimiento y la 

seguridad. 
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Luego de pruebas rigurosas y optimización de los modelos de DL, estos se 

preparan para su despliegue. Sin embargo, estos requieren de un entorno de 

implementación que contenga todos los recursos de hardware y los datos 

necesarios para que el modelo funcione de manera óptima. 

4.5.1. Microservicios 

Para darle solución al problema se ha trabajado con una arquitectura basada en 

Microservicios, la cual nace como una alternativa a la tradicional arquitectura 

monolítica en el desarrollo de software. La arquitectura de microservicios funciona 

con un conjunto de pequeños servicios que se ejecutan de manera autónoma e 

independiente, cada uno responsable de una funcionalidad específica y que se 

comunican entre sí a través de API. Entre las ventajas que tienen se encuentran la 

escalabilidad, una implementación sencilla, código reutilizable, agilidad en cambios, 

aplicación independiente y menor riesgo [155]. 

Los microservicios se encuentran desplegados en un servidor físico, al cual se 

accede desde internet, a través de los diferentes dispositivos de los usuarios y dicha 

comunicación pasa por un servidor proxy inverso, el cuál proporciona seguridad, 

equilibrio de carga y facilidad de mantenimiento. Ver figura 4-15 a continuación: 

 

Figura 4-15: Comunicación externa/interna a través de un servidor proxy inverso, el cuál añade una capa 
extra de seguridad. 

 Los microservicios propuestos son: 

• Servidor ReactJs (UI): Este servidor se encarga de la interfaz de usuario 
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y la presentación de los resultados del modelo de detección de objetos. 

• Servidor de Token Auth (NodeJS): Este servidor se encarga de la 

autenticación de los usuarios y la gestión de los tokens de acceso. 

• Servidor Web (NodeJS): Este servidor se encarga de la gestión de las 

peticiones HTTP y la comunicación con los microservicios. 

• API: Este microservicio se encarga de la comunicación entre los diferentes 

microservicios y el modelo de detección de objetos. 

• Web Sockets: Este microservicio se encarga de la comunicación en 

tiempo real entre el servidor y los dispositivos electrónicos. 

• Servidor Deep Learning (Python): Este microservicio se encarga de la 

ejecución del modelo de detección de objetos. 

4.5.2. Contenedor Docker 

En este contexto la herramienta Docker se utiliza para trabajar con los 

microservicios. Docker es una plataforma de contenedores que permite a los 

desarrolladores empaquetar aplicaciones y servicios en un contenedor portátil y 

ligero. Los contenedores son reproducibles, predecibles y fáciles de modificar y 

actualizar, lo que facilita la colaboración entre ingenieros. Los contenedores 

abarcan todo el hardware, las configuraciones y las dependencias necesarias para 

implementar el modelo, lo que mejora la coherencia entre los equipos de ML [156]. 

Existen cuatro formas de desplegar modelos en producción que son modo de 

predicción bajo demanda, predicción por lotes, implementación en dispositivos 

perimetrales como modelos integrados, y la implementación mediante un servicio 

web, que fue precisamente la opción tomada en esta investigación. 

Este método es el más simple e implementa el modelo como un servicio web, 

mediante la creación de una API REST y el uso de la API en aplicaciones móviles 

o web para los usuarios. La implementación como servicios web sirve 

principalmente a equipos de ML con múltiples interfaces como web, móvil y de 

escritorio. Las tecnologías estándar que impulsan los modelos de predicción de 

servicios web incluyen funciones de nube de AWS Lambda y Google, contenedores 
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Docker o portátiles como Databricks. 

 

Figura 4-16: Interacción del sistema. En el servidor físico se instala el sistema operativo de preferencia, luego 
se monta el contenedor Docker como base para los servicios que se utilizarán. Por último, se monta una 

imagen Docker por cada servicio, las cuales interactuarán entre ellas. 

Los microservicios se ejecutan dentro de un contenedor Docker mediante la 

creación de una imagen de Docker que contiene el código fuente del microservicio, 

sus dependencias y cualquier otro elemento necesario para su ejecución. La 

imagen de Docker se puede construir a partir de un archivo de configuración 

llamado Dockerfile, que especifica cómo se debe construir la imagen. Una vez que 

se ha creado la imagen, se puede utilizar para crear un contenedor Docker que 

ejecuta el microservicio. Ver Figura 4-16 para una descripción general. 

4.5.3. Inferencia del modelo DL como servicio 

Ofrecer inferencia de modelos como servicio es sencillo con una infraestructura 

moderna. Normalmente, los desarrolladores envuelven la función de inferencia del 

modelo detrás de una API que se puede llamar de forma remota, configuran ese 

servicio como un contenedor (por ejemplo, Docker, previamente analizado) e 

implementan el contenedor del servicio en máquinas virtuales o recursos de la 

nube. 

En este trabajo un programa Python simple carga el modelo e implementa la 

función de inferencia del modelo como se analizó anteriormente. Luego se hace 



 

 
85 

uso de la librería Flask para aceptar solicitudes Hypertext Transfer Protocol HTTP 

en un puerto determinado y, para cada solicitud, ejecutar la función de inferencia 

del modelo y devolver el resultado como respuesta HTTP. 

En esta configuración, el modelo se carga solo una vez cuando se inicia el 

proceso y luego puede atender solicitudes de inferencia con el mismo modelo. Se 

pueden iniciar múltiples procesos para compartir la carga. 

Por supuesto, una API de este tipo también se puede diseñar para realizar 

múltiples predicciones en una sola llamada para ahorrar la sobrecarga de la red de 

llamadas individuales. Por ejemplo, un cliente podría enviar varias imágenes en una 

sola solicitud y recibir los objetos detectados para todas las imágenes en el 

resultado. 

4.5.4. Interfaz web 

En esta fase se crea una interfaz gráfica, la cual será usada por los especialistas 

en glaucoma, los cuales serán los usuarios finales y tendrán acceso a los 

microservicios antes descritos. A continuación se muestran un conjunto de 

interfaces que utilizan las tecnologías de React y ViteJS que facilitan la 

comunicación entre cliente y servidor sobre HTTP [157]. Las predicciones echas 

por el sistema automatizado pueden ser observadas en las siguientes figuras. 
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Figura 4-17: Interfaz de bienvenida del sistema automatizado. 

 

Figura 4-18: Selección del estudio. 
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Figura 4-19: Selección del departamento para el cuál se realizará el estudio. 

 

Figura 4-20: Imagen original (Izquierda) y segmentación del disco y la copa ópticas (Derecha). 

Este es un proyecto en desarrollo, por lo que las imágenes previas son interfaces 

que pueden estar sugetas a cambios en el futuro. 

Un último elemento a tener en cuenta fue elegir el entorno de producción 

adecuado. Esto implica decidir entre el alojamiento de servidores (en las 

instalaciones) y el alojamiento en la nube. 

El alojamiento de servidores requiere una inversión inicial alta, pero ofrece más 

control, lo que lo convierte en la opción preferida para manejar datos confidenciales. 
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Por otro lado, el alojamiento en la nube puede ser más rentable y proporciona 

escalabilidad y flexibilidad. Como parte del acople del sistema automatizado al 

Instituto Mexicano de Oftalmología, se decidió integrar la producción a los 

servidores existentes en dicha institución. Otros factores fueron el tamaño y la 

naturaleza de los datos, la complejidad del modelo, consideraciones de costos y los 

requisitos de privacidad y seguridad de los datos. 

4.6. Discusión 

Se ha introducido un modelo de detección de objetos, con múltiples procesos de 

ajuste en el flujo de trabajo para detectar anomalías relacionadas con el glaucoma 

y la retinopatía diabética simultáneamente. La tarea se llevó a cabo en el conjunto 

de datos DDR, que aporta sus etiquetas y anotaciones para SE, EX, HE y MA. 

Además, puede añadir predicciones probabilísticas para las nuevas clases como la 

CO y el DO y la diferenciación entre las clases alfa y beta para la APP, 

características relacionadas con el glaucoma. 

En el desarrollo de la metodología de esta investigación, compuesta por dos 

etapas, en la primera parte se estableció una comparación entre diferentes modelos 

de detección de objetos para la segmentación del DO y la CO en imágenes de fondo 

de ojo. Los modelos seleccionados fueron Mask R-CNN, Carafe, Cascade Mask R-

CNN, GCNet, MS R-CNN, SOLO, and Point_Rend. Sus rendimientos fueron 

evaluados con las métricas AP, F1-Score y AUCPR. 

La experimentación comenzó con un pequeño número de imágenes para 

observar el comportamiento del modelo con una cantidad reducida de imágenes, 

con el fin de obtener una buena segmentación tanto del DO como de la CO. Según 

[158], entre 150 y 500 imágenes existe un punto de inflexión en el que el 

rendimiento de los modelos comienza a aumentar significativamente. Inicialmente 

utilizamos 100 imágenes del conjunto de datos REFUGE para el entrenamiento, 30 

para la validación y 30 para la prueba. Con esta proporción, los mejores 

rendimientos se asociaron con los modelos Cascade, Mask R-CNN y Point_Rend 

con un valor de 1.000 en AP y un umbral IoU de 0.50. Sin embargo, el resto de los 
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modelos tuvo un buen rendimiento, alrededor de 0.98, excepto SOLO, que resultó 

en un valor de 0.886; esto se debe a un mayor número de falsos positivos que son 

detecciones incorrectas de un objeto no existente o una detección mal colocada de 

un objeto existente. Según [159], los falsos positivos pueden estar relacionados con 

errores de clasificación, localización, clasificación más localización, duplicación y 

background. La ligera disminución en SOLO puede estar asociada con errores de 

localización cuando se detecta un objeto con un cuadro delimitador desalineado, lo 

que significa una superposición entre 0.1 y 0.5 IoU. Este problema puede abordarse 

utilizando muestras negativas en el proceso de entrenamiento, [160], [161]. El 

cálculo del F1-Score arrojó un valor perfecto de 1. 

Con estos resultados previos, se procedió a anotar todo el conjunto de datos de 

REFUGE y se repitió la experimentación, donde MS R-CNN superó a los otros 

modelos, con una AP de 0.995 sin usar escala múltiple y 1.000 cuando se aplicó 

escala múltiple, siempre tomando el umbral IoU igual a 0.50. Esta técnica de 

aumento de datos mejoró ligeramente el rendimiento en todos los modelos excepto 

en el modelo SOLO, que disminuyó de 0.989 a 0.984, pero esto mejoró con el 

aumento de imágenes en comparación con la experimentación anterior. En cuanto 

al F1-Score, todos los modelos mantuvieron un valor perfecto de 1 excepto 

Cascade Mask R-CNN, que disminuyó a 0.997. 

Experimentamos con estos resultados en el conjunto de datos G1020, ya 

mencionado anteriormente, obteniendo el mejor rendimiento el modelo Point_Rend 

con un valor de precisión media de 0,956. Los modelos restantes mantuvieron 

valores alrededor de 0,94 excepto el modelo SOLO, que disminuyó a 0,909. La 

disminución en el conjunto de datos puede estar relacionada con una 

heterogeneidad más significativa en sus imágenes; sin embargo, esto resultó en 

una ventaja al momento de transferir las predicciones a imágenes de otras fuentes 

que no se utilizaron en el proceso de entrenamiento. Por lo tanto, el conjunto de 

datos G1020 fue mejor para segmentar tanto el disco como la copa ópticos que 

REFUGE. 

Un elemento clave utilizado en esta parte de la investigación fue la escala 
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múltiple, variando los valores entre 1333x640 a 1333x960. Este enfoque introdujo 

ligeras mejoras en las métricas cuando el número de imágenes aumentó, 

permitiendo la posibilidad de entrenar modelos con nuevas dimensiones. Sin 

embargo, este enfoque no trajo mejoras significativas con pocas imágenes, por lo 

que el investigador podría considerar su uso o no dependiendo de sus recursos. 

Otro elemento que se ajustó fue la escala de anclaje (anchor scale). La 

configuración de las anclas está dada por anchor_scales y anchor_ratios, y 

originalmente se generaron cuatro en la RPN. Después de configurar 

anchor_scales con los valores siguientes, [4, 6, 8, 10, 12, 12, 14, 16] y anchor_ratios 

[0.5, 1.0, 1.5, 2.0], se generaron 28 anclas para cada nivel de extracción de 

características dentro de la FPN. Esta modificación nos permitió capturar una mayor 

diversidad en las formas del disco y las copas ópticas. 

Una preocupación constante en el campo del ML es el desafío con el 

desequilibrio de datos. Si bien el desequilibrio de clases es una faceta de este 

problema que se discute con frecuencia, es simplemente una dimensión de un 

panorama de problemas más amplio. La segunda etapa de la metodología 

propuesta para esta investigación tiene como objetivo explorar diversas 

manifestaciones de este problema, incluidos los desequilibrios de foreground-

background, los desequilibrios de foreground-foreground, los desequilibrios en la 

escala del nivel de caja, las disparidades en las distribuciones de Intersección sobre 

Unión (IoU), así como las inconsistencias en las distribuciones de pérdida de 

regresión. 

En escenarios densos, como el enfoque de esta investigación, un número 

excesivo de muestras negativas puede resultar en una regresión inexacta de los 

cuadros delimitadores. Un desafío crucial es definir muestras positivas y negativas 

de alta calidad con precisión. El modo de cascada de umbrales múltiples de 

Cascade R-CNN proporciona una solución eficaz para mejorar la calidad de las 

regiones recomendadas y mitigar la influencia de ejemplos desafiantes en el 

resultado de detección final. Para abordar el desequilibrio en la distribución de IoU, 

se adoptó Cascade R-CNN como modelo primario, ya que, en lugar de 
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muestrearlos de nuevo, la utilización de cajas de la etapa anterior por parte de cada 

detector resalta la posibilidad de cambiar la distribución de IoU de sesgada a la 

izquierda a uniforme. Este modelo nos estregó resultados muy satisfactorios en la 

primera fase, que junto con sus características propias lo convierte en ideal para la 

segunda etapa. 

Según los autores, la aplicación de NWD-RKA en Cascade R-CNN mejoró el AP 

en 7,1 puntos en el conjunto de pruebas AI-TOD-v2 [136]; esa fue la razón principal 

para utilizar esta técnica en esta investigación como referencia. Estos mecanismos 

mejoran el rendimiento sobre el estado actual arte en la detección de objetos 

diminutos en imágenes de retina, relacionados con la RD, al asignar más muestras 

positivas, mitigando los problemas de desequilibrio de escala y regresión, mientras 

se mantiene un alto rendimiento sobre objetos medios y grandes. El AP obtenido 

fue de 0,4295 con entropía cruzada como pérdida de la función de clasificación y 

un tamaño de imagen fijo de 1333 x 800. 

El desequilibrio de foreground-foreground significa que algunos objetos están 

sobrerrepresentados o subrepresentados. Se utilizaron dos técnicas, OHEM y ASL, 

combinadas con aumento de MS, que van desde 1333 x 640 hasta 1333 x 960. 

Al seleccionar automáticamente ejemplos desafiantes, OHEM simplifica el 

entrenamiento al eliminar la necesidad de diversas heurísticas e hiperparámetros 

comúnmente utilizados y mejora el rendimiento de prueba relacionado con mAP. 

Este enfoque mejora en comparación con el experimento base, como se ve en la 

Tabla 4-5. 

Se observó la misma mejora con ASL y MS. ASL comprende dos mecanismos 

distintos y complementarios que funcionan de manera diferente cuando se aplican 

a muestras positivas y negativas. Al realizar un análisis de probabilidad de 

detección de la red, hemos demostrado la eficacia de ASL para lograr un equilibrio 

armonioso entre muestras negativas y positivas. 

WDIoUNMS demuestra una alta eficiencia. Además, la incorporación de factores 

geométricos mejora el AP y este enfoque mejora constantemente el rendimiento al 
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entrenar modelos profundos para la regresión de cuadros delimitadores. Al agregar 

esta técnica, con doce épocas y un tamaño de lote de dos, los resultados fueron 

0,446 de AP para CE+OHEM+MS+WDIoUNMS y 0,436 para 

ASL+MS+WDIoUNMS. 

Cuando se introdujeron más épocas (cincuenta) y un tamaño de lote más grande 

(ocho), el resultado informado en esta investigación fue para 

CE+OHEM+MS+WDIoUNMS y ASL+MS+WDIoUNMS 0.451 y 0.460, 

respectivamente. Además, FPN fue el esquema base en el componente de Neck; 

se realizaron algunas experimentaciones con PAFPN, pero no obtuvieron mejores 

resultados. FPN ayuda fundamentalmente con el problema de desequilibrio de 

escala a nivel de caja. 

Para el análisis de la evaluación, el marco TIDE resalta en detalle la principal 

contribución al error, mostrando experimentos basados en ASL que mejoran el 

manejo de los errores relacionados con la clasificación y la localización. 

Establecer una comparación justa con el estado del arte fue difícil. Los trabajos 

citados en esta investigación muestran principalmente resultados relacionados con 

el conjunto de datos de DDR con sus anotaciones originales. Aquí se agregaron 

características relacionadas con la enfermedad del glaucoma, como la copa y el 

disco ópticos, y la atrofia peripapilar (alfa/beta), por lo que se informó que el mAP 

tenía más clase que promediar. Sin embargo, se puede proporcionar cierta 

aproximación extrayendo información de la matriz de confusión. 

Santos et al. [103] muestran su matriz de confusión, para sus experimentos con 

el optimizador Adam, sobre el conjunto de datos de validación, información que la 

red neuronal utiliza para ajustar el modelo, y por eso, no es ideal. Según eso, 

reportan valores de precisión para SE, EX, HE y MA iguales a 0.35, 0.33, 0.32 y 

0.18, respectivamente. En este trabajo, la misma información se puede extraer de 

la matriz de confusión, pero el modelo no ve información sobre el conjunto de 

prueba. Los resultados para SE, EX, HE y MA fueron 0.35, 0.41, 0.18 y 0.21, 

respectivamente, para ASL+MS+WDIoUNMS, el mejor rendimiento en esta 
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investigación. Dado que los autores citados informan un mAP para el conjunto de 

validación de 0.2630 y para el conjunto de prueba de 0.1540, y las métricas 

reportadas en esta investigación son cercanas y, en algunos casos, superan los 

valores de su conjunto de validación, se puede concluir que este trabajo logra 

resultados comparables o incluso mejores. 

La metodología presentada introduce un nuevo enfoque en el que se emplea un 

modelo para la detección de anomalías. Dada su naturaleza como modelo de 

detección de objetos, se elimina la necesidad de un mapa saliente para acentuar 

las lesiones. Esto se debe al objetivo fundamental de esta categoría de modelos, 

que gira en torno a encapsular la lesión identificada dentro de un cuadro 

delimitador. 

Finalmente, la integración en un entorno de producción permitió que médicos y 

especialistas del área evaluaran los resultados obtenidos, demostrando la 

importancia de implementar modelos de DL. 

Si bien algunos modelos pueden interpretarse sin implementación, muchos 

requieren configuraciones específicas para funcionar de manera óptima, como ser 

parte de una aplicación o un pipeline integrado. A menudo, esto se puede lograr 

colocando el modelo a ser consumido por una API, lo que le permite interactuar con 

otros componentes de desarrollo de software. Este fue el enfoque implementado a 

través de una arquitectura de microservicios y el uso de Docker como 

contenedores, para la estandarización de los recursos. 

La implementación de modelos de DL permite a las empresas e instituciones 

aprovechar el poder de la IA para impulsar los resultados al: 

• Mejorar la eficiencia mediante la automatización de tareas repetitivas, lo que 

genera ahorros de costos significativos. 

• Mejorar la toma de decisiones utilizando las predicciones y los 

conocimientos precisos del modelo. 

• Descubrir patrones y tendencias ocultos en los datos y proporcionar 
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información valiosa que de otro modo podría permanecer sin descubrir. 

5. Conclusiones 

Arribando al final de esta investigación retomamos su inicio, donde nos 

planteamos la incógnita científica de si la detección de múltiples biomarcadores de 

daño en imágenes de retina, a través de técnicas de DL, generará patrones y 

predicciones de enfermedades crónicas en la retina que deriven en clasificaciones. 

Esta incógnita generó el objetivo general de desarrollar un marco integral que 

permitiera la detección de lesiones en la retina, en esta investigación asociadas al 

glaucoma y la retinopatía diabética. 

Para darle cumplimiento a los objetivos planteados, se inició con la segmentación 

del disco y copa ópticas, a través de la comparación de múltiples modelos de 

detección de objetos. Esto crea precedente en el estado del arte, ya que se sale 

del enfoque tradicional basado en la segmentación a partir de estructuras de tipo 

encoder-decoder. Las bases de datos elegidas fueron REFUGE y G1020, aplicando 

un efectivo mecanismo de anotación sobre la primera. Se contestó a la pregunta de 

cuantas imágenes iniciales son necesarias para obtener buenos resultados, 

empleando 100 y obteniendo resultados satisfactorios en la segmentación de las 

estructuras antes mencionadas; sin embargo, utilizar todo el conjunto de datos trajo 

una ligera mejoría. 

Otro problema común abordado en este trabajo fue la reducción de imágenes. 

La mayoría de los trabajos de vanguardia reducen significativamente las imágenes 

de entrada o introducen un nuevo flujo de trabajo en el proceso de segmentación 

al recortar el área de interés. Este trabajo, con aumento de datos basado en 

múltiples escalas, demuestra que mejora los resultados, manteniendo imágenes de 

entrada de alta resolución y evitando reducciones significativas. El ajuste de cajas 

de ancla para propuestas regionales también mejora la ubicación del objetivo. El 

optimizador AdamW y la estrategia de recocido sinusoidal en el programa de 

aprendizaje también mejoraron los resultados. De este proceso se fue capaz de 

identificar al modelo Cascade Mask R-CNN como candidato a crear un marco de 
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trabajo integral para la detección de lesiones en la retina. 

Precisamente el modelo Cascade R-CNN fue elegido base para darle 

cumplimiento al objetivo específico número dos. Este modelo fue elegido por su 

capacidad para aumentar el umbral de IoU, obteniendo muestras de mayor calidad 

en cada nivel. Además de eso, Cascade R-CNN permite la detección de múltiples 

clases simultáneamente, una ventaja sobre otros trabajos de vanguardia que 

aplican múltiples modelos, uno por lesión, lo que complica el marco de detección 

general. 

Junto al modelo en cascada; se aplicaron nuevos métodos para manejar los 

problemas de desequilibrio de datos. La normalización de la distancia de 

Wasserstein con su esquema de asignación basado en rangos demuestra una alta 

efectividad con objetos diminutos. El mejor resultado general proviene de la pérdida 

asimétrica para la selección de clases difíciles y un grupo ponderado con distancia 

IoU en la técnica de supresión no máxima de posprocesamiento. La precisión 

promedio media fue de 0.461. 

Otra contribución es la efectividad del etiquetado suave para ayudar con la 

necesidad de conjuntos de datos etiquetados, una tarea que consume mucho 

tiempo para la mayoría de los especialistas. Aquí se aplicó a la atrofia peripapilar y, 

según nuestro conocimiento, es la primera vez que se detecta y separa por sus 

clases, alfa, beta, estando la última relacionada con la progresión del glaucoma. 

Para darle cumplimiento a los objetivos específicos tres y cuatro, se desarrolló 

una plataforma de software que permite la correcta visualización de diferentes 

lesiones y la continua evaluación de los resultados por especialistas del área. 

Además, se estableció con comparación con el estado del arte en la medida de lo 

posible por la novedad de esta investigación en detectar múltiples lesiones en 

imágenes de retina, asociadas a diferentes enfermades. Por ejemplo, el trabajo de 

[50] mostró un mayor valor de F1-Score, pero ellos realizaron la tarea de segmentar 

el disco y la copa ópticas por separado, lo que es menos retador para los modelos, 

mientras que aquí se hizo de forma conjunta. Por otro lado, en la detección de las 
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lesiones, la comparación fue más compleja debido a la novedad de esta 

investigación; sin embargo, con el apoyo de matrices de confusión, fue posible 

separar las detecciones por clases y evidenciar las mejoras que introdujo la 

metodología propuesta en esta investigación. 

Por tanto, se logró validar la hipótesis planteada en el trabajo, al ser capaz de 

detectar lesiones en la retina, asociadas a múltiples enfermedades, a través de 

modelos de DL, mientras mantiene resultados equiparables o superiores a los de 

investigaciones previas. Se da respuesta a la incógnita científica además de que 

sienta bases para futuros trabajos donde colaboren equipos multidisciplinares. 

6. Recomendaciones y trabajos futuros 

Algunas limitaciones fueron identificadas a lo largo de la investigación. Debido a 

la complejidad de evaluar las segmentaciones, es difícil establecer comparaciones 

y seleccionar las mejores arquitecturas, ya que los investigadores utilizan diferentes 

métricas, además de diferentes fuentes de datos, que incluso bajo las mismas 

condiciones de entrenamiento y prueba, hacen que sea imposible comparar dos 

trabajos si no se utiliza el mismo conjunto de datos. Otra limitación fue la 

imposibilidad de entrenar todos los modelos, con las diferentes backbones que se 

pueden utilizar, debido a la capacidad computacional y la tarea que llevaría mucho 

tiempo probar todas las variantes. 

Otra limitación en este estudio viene con un desequilibrio de clases significativo. 

El número de instancias para exudados duros fue de 11136, y la clase con menor 

representación fue la atrofia alfa con 126 instancias. Las disparidades en las 

dimensiones de los objetos presentan un desafío adicional en escenarios donde 

existe una disparidad sustancial entre el recuento de píxeles atribuido a la clase de 

DO y el de la clase de MA. 

Al igual que los trabajos académicos a los que se alude en esta investigación, la 

identificación de HE y MA sigue siendo una preocupación importante. La razón es 

el tamaño, porque son características diminutas en la mayoría de los casos, y a 

menudo se confunden con el fondo debido a su color natural. 
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El proceso de anotación por parte de especialistas está lleno de variabilidad que 

puede estar relacionada tanto con factores humanos como con la calidad de la 

imagen. La disponibilidad de anotaciones para nuevas enfermedades es escasa en 

la mayoría de los conjuntos de datos. La mayoría de las veces, estos conjuntos de 

datos están especializados, por lo que es importante evitar no anotar objetos que 

ya están presentes en el conjunto de datos para no perjudicar el proceso de 

aprendizaje. 

En futuros trabajos, se pretende manejar el desequilibrio de clases. Dado que el 

submuestreo puede perjudicar el proceso de aprendizaje al introducir falsos 

negativos, el sobre muestreo de clases minoritarias podría ser un enfoque; las 

técnicas generativas como las GAN son un ejemplo. El uso de parches del conjunto 

de datos es otra opción para evitar que los objetos pequeños desaparezcan durante 

el proceso de reducción de escala, pero es necesario vigilar la anotación de cajas 

delimitadoras para los objetos más grandes. 

Los desequilibrios de datos aún deben resolverse con técnicas de DL. El estudio 

de nuevas arquitecturas será necesario. Además, esta investigación crea 

oportunidades para desarrollar sistemas para clínicas en comunidades con un bajo 

costo computacional, ya que un modelo puede detectar múltiples hallazgos a la vez, 

y esto podría hacer una contribución significativa a la reducción de costos para el 

cribado de fondo de ojo en regiones donde los oftalmólogos son escasos, lo que 

lleva a la detección temprana de numerosas enfermedades potencialmente 

amenazantes para la vista. 

Finalmente, se hace necesario crear sistemas inteligentes que cuenten con la 

capacidad de explicar sus decisiones, por lo que se explorarán los modelos 

causales como mecanismo de dicha explicación. Los modelos causales son 

modelos matemáticos que representan las relaciones causales dentro de un 

sistema; son herramientas diseñadas para simplificar el entendimiento de sistemas 

complejos, facilitando su comprensión. Pueden enseñarnos mucho sobre la 

epistemología de la causalidad, y sobre la relación entre causalidad y probabilidad 

[162], [163]. 
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