

Universidad Autónoma De Querétaro Facultad de Química

Caracterización del perfil químico del extracto metanólico-acuoso de *Millepora complanata*

Tesis

Que como parte de los requisitos para obtener el Grado de

Maestro en Ciencias Químico Biológicas

Presenta

Dalia María Guerrero Salinas

Dirigido por:

Dra. Alejandra Rojas Molina

Querétaro, Qro. A septiembre de 2023

Dirección General de Bibliotecas y Servicios Digitales de Información

Caracterización del perfíl químico del extracto metanólico acuoso de Millepora complanata

por

Dalia María Guerrero Salinas

se distribuye bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivadas 4.0 Internacional.

Clave RI: FQMAC-245700

Universidad Autónoma De Querétaro Facultad de Química

Maestría en Ciencias Químico Biológicas

Caracterización del perfil químico del extracto metanólico-acuoso de *Millepora complanata*

Tesis

Que como parte de los requisitos para obtener el Grado de

Maestro en Ciencias Químico Biológicas

Presenta Dalia María Guerrero Salinas

Dirigido por: Dra. Alejandra Rojas Molina

Dra. Alejandra Rojas Molina Presidente

Dr. Francisco Luna Vázquez Secretario

<u>M. en C. Esteban de Jesús Alcantar Orozco</u> Vocal

Dra. Juana Isela Rojas Molina Suplente

Dr. César Ibarra Alvarado Suplente

> Centro Universitario, Querétaro, Qro. Septiembre 2023 México

DEDICATORIA

A MI FAMILIA

"LA FAMILIA ES LA BRÚJULA QUE GUÍA NUESTRO CAMINO, LA INSPIRACIÓN PARA CAMINAR HASTA LO ALTO DE LA MONTAÑA Y EL MAYOR CONSUELO CUANDO ALGO SALE MAL"

¡GRACIAS POR SU APOYO Y AMOR INCONDICIONAL!

AGRADECIMIENTO

Al Consejo Nacional de Ciencia y Tecnología (CONAHCYT) por el apoyo de beca de maestría (CVU: 1144225).

A mi alma máter, la Universidad Autónoma de Querétaro por permitirme seguir formándome profesionalmente en la Maestría en Ciencias Químico Biológicas del Posgrado de la Facultad de Química.

A mis sinodales la Dra. Juana Isela Rojas Molina, el Dr. César Ibarra Alvarado, el Dr. Francisco Luna Vázquez y el M. en C. Esteban de Jesús Alcantar Orozco por apoyarme y guiarme en el camino.

A mi directora de tesis, la Dra. Alejandra Rojas Molinas por sus enseñanzas, su apoyo y por ser un modelo a seguir.

A mis compañeros y amigos de la maestría, gracias por la compañía en esta travesía.

A Diana y a Fer por apoyarme incondicionalmente, siempre, incluso a la distancia. Las amo.

A Roberto por su apoyo total, por su empatía, sus consejos, su compañía y su amor inconmensurable. Te amo.

A mi hermana, Daniela, por su apoyo, su cariño, su paciencia y por ser un ejemplo para mí. Eres la mejor. Te amo.

A mis padres, que son mi motor de cada día. Gracias por guiarme y apoyarme incondicionalmente en cada escalón. Todo esto no sería posible sin su esfuerzo y sacrificio, los amo infinitamente.

ÍNDICE

Página

RE	SUMEN	. 10
AB	STRACT	. 12
1.	INTRODUCCIÓN	. 13
2.	ANTECEDENTES	. 16
2	2.1 <i>Phylum</i> Cnidaria	. 16
	2.1.1 Taxonomía	. 17
	2.1.2 Simbiosis Cnidario-Symbiodiniacea	. 20
	2.1.2.1 Familia Symbiodiniaceae	. 20
	2.1.3 Cnidarios constructores de arrecifes como organismos holobiontes	. 21
	2.1.4 Importancia ecológica de los arrecifes coralinos	. 22
	2.1.4.1 Calentamiento global	. 23
	2.1.4.2 Blanqueamiento de arrecifes coralinos	. 25
	2.1.5 Importancia toxinológica de los cnidarios	. 26
	2.1.6 Estudios químicos realizados sobre cnidarios	. 27
	2.1.6.1 Metabolitos secundarios identificados en organismos del Phylum Cnidaria	a29
2	2.2 Clase Hydrozoa	. 32
	2.2.1 Características	. 34
	2.2.2 Estudios químicos realizados sobre especies de la clase Hydrozoa	. 35
	2.2.2.1 Metabolitos secundarios	. 36
2	2.3 Cnidarios del género <i>Millepora</i>	. 37
	2.3.1 Millepora complanata	. 38
	2.3.2 Importancia ecológica de las especies del género Millepora	. 40
	2.3.3 Importancia toxinológica de los organismos del género Millepora	. 40
	2.3.4 Estudios químicos realizados sobre especies del género Millepora	. 41
	2.3.4.2 Importancia del estudio de los productos naturales de origen marino	. 41
3. 、	JUSTIFICACIÓN	. 42
4. I	PREGUNTA DE INVESTIGACIÓN	. 43
5. I	HIPÓTESIS	. 43

6.	OBJETIVOS	44
6	S.1 Objetivo General	44
6	6.2 Objetivos específicos	44
7.	MATERIALES Y MÉTODOS	45
7	7.1 Recolección de los especímenes	45
7 e	7.2 Preparación de los extractos de metanol al 70% en agua a partir de los especímenes de los hidrocorales	45
7	7.3 Construcción de la base de datos	46
7 (!	7.4 Análisis espectroscópico mediante cromatografía de líquidos de ultra rendimien CLUR-EM) del extracto metanólico-acuoso (70:30) obtenido a partir de <i>M. complar</i>	to 1 <i>ata</i> 46
8.	RESULTADOS Y DISCUSIÓN	48
8	3.1 Construcción de la base de datos	48
8 (`	3.2 Análisis espectroscópico mediante UHPLC-MS ² ESI del extracto metanólico acu 70:30) de <i>M. complanata</i>	ioso 49
8 C	3.2.1 Compuestos identificados en el extracto metanólico acuoso (70:30) de <i>M.</i> complanata	50
	8.2.1.1 Terpenos	51
	8.2.1.1.1 Sesquiterpenos	52
	8.2.1.1.2 Diterpenos	59
	8.2.1.1.3 Triterpenos	68
	8.2.1.1.3.1 Esteroides	68
	8.2.1.2 Alcoholes	76
	8.2.1.3 Aminoácidos	77
	8.2.1.3.1 Aminoácidos tipo micosporina (MAA)	78
	8.2.1.4 Macrólidos	78
	8.2.1.5 Péptidos	80
	8.2.1.6 Alcaloides	80
	8.2.1.7 Otros compuestos	81
9.	CONCLUSIONES	88
10.	REFERENCIAS	88
11.	ANEXOS	121

ÍNDICE DE TABLAS

Tabla 1. Especies reconocidas del género Millepora y su distribución (Dubé et al, 2020). 39
Tabla 2. Gradiente de elución para el análisis mediante UPLC-MS ² 47
Tabla 3. Ajustes del instrumento utilizados para cada polaridad 47
Tabla 4. Sesquiterpenos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (+) 53
Tabla 5. Sesquiterpenos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (-) 54
Tabla 6. Diterpenos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (+) 59
Tabla 7. Diterpenos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (-) 60
Tabla 8. Triterpenos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ²
Tabla 9. Esteroides identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (+) 69
Tabla 10. Esteroides identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (-)
Tabla 11. Alcohol identificado en el extracto metanólico acuoso (70:30) de M. complanata
mediante UHPLC-MS ²
Tabla 12. Aminoácidos esenciales y no esenciales identificados en el extracto metanólico
acuoso (70:30) de <i>M. complanata</i> mediante UHPLC-MS ² 77
Tabla 13. Macrólidos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ² ESI (+)
Tabla 14. Péptidos identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ²
Tabla 15. Alcaloides identificados en el extracto metanólico acuoso (70:30) de M.
complanata mediante UHPLC-MS ²
Tabla 16. Otros compuestos identificados en el extracto metanólico acuoso (70:30) de <i>M</i> .
complanata mediante UHPLC-MS ² ESI (+)
Tabla 17. Otros compuestos identificados en el extracto metanólico acuoso (70:30) de <i>M</i> .
complanata mediante UHPLC-MS ² ESI (-) 82

ÍNDICE DE FIGURAS

	Página	
Figura 1: Anatomía de un cnidocito	17	
Figura 2: Árbol filogenético del <i>Phylum</i> Cnidaria	18	
Figura 3. Roles y relaciones entre corales y sus simbiontes	24	
Figura 4. Comparación entre un arrecife coralino en condiciones óptimas	26	
(izquierda) y un arrecife coralino blanqueado (derecha)	20	
Figura 5. Estructuras de dos terpenoides aislados de cnidarios	30	
Figura 6. Esteroides aislados de Dendronephthya sp	30	
Figura 7. Estructuras de dos alcaloides aislados de cnidarios	31	
Figura 8. Aminoácidos tipo micosporina aislados de Anthopleura elegantissima	32	
Figura 9. Ejemplos de especies pertenecientes a cada Orden de la Clase	24	
Hydrozoa	34	
Figura 10. Ciclo de vida típico de los hidroides	36	
Figura 11. Imagen submarina de Millepora complanata	38	
Figura 12. Construcción de base de datos. 5,767 moléculas que incluyen PNM aislados de organismos del <i>Phylum</i> Cnidaria, Aminoácidos esenciales (AAs), Aminoácidos tipo micosporina (MAAs) y moléculas reportadas de la clase Hydrozoa y de <i>Millepora complanata</i>	48	
Figura 13. Cromatograma de la muestra MCN en modo ESI (+)	49	
Figura 14. Cromatograma de la muestra MCN en modo ESI (-) Figura 15. Análisis de la naturaleza guímica del extracto metanólico acuoso de	49	
M. complanata		
Figura 16. Compuestos de naturaleza terpenoide identificados en el extracto metanólico acuoso (70:30) <i>de M. complanata</i>	52	

ACRÓNIMOS

AA	Aminoácido
CLUB-EM	Cromatografía Líquida de Ultra Rendimiendo acoplada a
	Espectrometría de Masas
DMSP	Dimetilsulfoniopropionato
EC50	Median Effective Concentration: concentración media efectiva
ED50	Median Effective Dose: dosis media efectiva
EIMS	Electron Ionization Mass Spectrometry: espectrometría de masas con
EIWIS	ionización por impacto electrónico
ESIME	Electron Ionization Mass Spectrometry: espectrometría de masas con
ESINIS	ionización por impacto electrónico
	Fast Atom Bombardment Mass Spectrometry: espectrometría de masas
FADIVIS	de bombardeo por átomos rápidos
	High Resolution Chemical Ionization Mass Spectrometry:
	espectrometría de masas de alta resolución con ionización química
	High-resolution Electron Ionization Mass Spectrometry: espectrometría
	de masas de alta resolución con ionización por impacto electrónico
	High-resolution Electrospray Ionisation Mass Spectrometry:
HRESIMS	espectrometría de masas de alta resolución con ionización por
	electrospray
	High Resolution Fast Atom Bombardment Mass Spectrometry:
HRFABMS	espectrometría de masas de alta resolución con ionización por
	bombardeo por átomos rápidos
HRMS	High-resolution Mass Spectrometry: espectrometría de masas de alta
	resolución
HTS	High Throughput Screening: Cribado de Alto Rendimiento
LC50	Median Lethal Concentration: concentración letal media
MAAs	Mycosporine-like amino acids: Aminoácidos tipo micosporina
MEP/DOXP	Ruta del Metileritrol Fosfato
MIC	Concentración mínima inhibitoria
MNP	Productos Naturales Marinos
MVA	Ruta del ácido mevalónico o mevalonato
RMN	Resonancia Magnética Nuclear
SN	Sistema Nervioso
	Ultra-high Performance Liquid Chromatography-MS/MS: Cromatografía
UPLC-MS ²	Líquida de Ultra Rendimiendo acoplada a Espectrometría de
	Masas/Masas

DECLARACIÓN DE RESPONSABILIDAD DE ESTUDIANTE: Declaro que los datos propios obtenidos en esta investigación fueron generados durante el desarrollo de mi trabajo de tesis de forma ética y que reporto detalles necesarios para que los resultados de esta tesis sean reproducibles en eventuales investigaciones futuras. Finalmente, este manuscrito de tesis es un trabajo original en el cual se declaró y dio reconocimiento a cualquier colaboración o cita textual presentadas en el documento.

ATENTAMENTE

IBT. Dalia María Guerrero Salinas

RESUMEN

Los hidrocorales del género Millepora (Phylum Cnidaria; Clase Hydrozoa) poseen una gran importancia ecológica, ya que representan los segundos organismos formadores de arrecifes coralinos a nivel mundial, después de los corales (Phylum Cnidaria; Clase Anthozoa). Estos cnidarios sintetizan toxinas que inducen severas lesiones en la piel de los humanos y también pueden ocasionar efectos sistémicos, tales como daño renal y pulmonar. Nuestro grupo de investigación analizó el efecto del estrés térmico, derivado del calentamiento global, sobre el proteoma de *M. alcicornis* y sobre el transcriptoma, el proteoma y el metaboloma de *M. complanata*. A la fecha, se desconoce cuáles son los principales metabolitos secundarios y especializados que sintetizan los cnidarios del género Millepora, y el papel que éstos desempeñan en sus mecanismos de toxicidad. Tampoco, se ha explorado si estos organismos sintetizan aminoácidos tipo micosporina, los cuales desempeñan una importante función de protección ante la radiación UV en otros cnidarios. Por otra parte, está bien documentado que los cnidarios sintetizan una amplia gama de metabolitos secundarios, a los cuales se les han demostrado diversos efectos biológicos, de manera que estos podrían representar prototipos estructurales para el desarrollo de nuevos fármacos y/o herramientas de investigación. En este contexto, el presente estudio tuvo por objetivo caracterizar el perfil químico del extracto metanólico-acuoso de M. complanata. Para ello, se preparó un extracto metanólico-acuoso (70:30) de especímenes del hidrocoral recolectados en Puerto Morelos, Quintana Roo, México. El análisis del perfil químico del extracto se llevó a cabo mediante Cromatografía Líquida de Ultra Rendimiento acoplada a Espectrometría de Masas (CLUR-EM). Se preidentificaron un total de 1370 entidades químicas. En el modo de ionización positiva se detectaron 1083 iones moleculares de los cuales 562 se preidentificarón y de éstos 90 se aceptaron. Mientras que, en el modo de ionización negativa se detectaron 287 iones moleculares de los cuales 147 se preidentificaron y 14 se aceptaron. De manera general, se identificaron 104 compuestos, incluvendo terpenos (72 %), aminoácidos (4 %), tanto esenciales como tipo micosporina, macrólidos (3 %), purinas (2 %), derivados de acetileno (2 %), péptidos (2%), alcaloides (2%) y otros (13%), en esta última clasificación se encuentran compuestos como ácidos carboxílicos, lactonas, pirazinas, derivados de naftaleno, amidas grasas, linderazulenos, entre otros.

Palabras clave: hidrocoral, *Millepora complanata*, metabolitos secundarios, arrecifes de corales, Hydrozoa, cnidario.

ABSTRACT

Hydrocorals of the genus *Millepora* (Plylum Cnidaria: Class Hydrozoa) have great ecological importance, since they represent the second-largest reef-forming organisms worldwide, after corals (Phylum Cnidaria; Class Anthozoa). These cnidarians are commonly known as "fire corals" since they synthesize toxins capable of inducing severe lesions when they come into contact with human skin. Hydrocoral toxins can also cause systemic damage including kidney and lung damage. Several studies have provided evidence that protein toxins synthesized by *Millepora* species include neurotoxins, toxins with phospholipase A2 and protease enzymatic activity, and pore-forming toxins. Additionally, our research group detected in an aqueous extract obtained from *M. complanata*, the presence of non-protein toxins that induce lethality in mice. Our research group has also addressed the study of the effect of thermal stress, derived from global warming, on the *M. alcicornis* proteome and on the transcriptome, proteome, and metabolome of *M. complanata*. To date, the secondary and specialized metabolites synthesized by cnidarians of the genus *Millepora* is unknown, nor its role in the toxicity mechanisms of hydrocorals. Neither has it been explored whether these organisms synthesize mycosporin-type amino acids, which play an important protecting role against UV radiation in other cnidarians. On the other hand, it has been widely documented that cnidarians synthesize several secondary metabolites, which display various biological effects. Therefore, the secondary and specialized metabolites synthesized by species of the genus Millepora could represent structural prototypes for the development of new drugs and/or research tools. In this context, the present research project aimed to characterize the chemical profile of the methanolic-aqueous extract obtained from the hydrocoral Millepora complanata. To fulfill this objective, a methanol-aqueous (70:30) extract was prepared from *M. complanata* specimens collected in September 2016 in the Puerto Morelos reef located in Quintana Roo, Mexico. Analysis of the chemical profile of the extract was carried out by ultra-resolution liquid chromatography coupled to mass spectrometry. A pre-identification of 1370 chemical entities was made. 1083 molecular ions were detected with positive ionization, of wich 562 were pre-identified and 90 were accepted. With negative ionization 287 molecular ions were detected, of wich 147 were pre-identified and 14 were accepted. In summary, 104 compounds were identified including terpenes (72 %), essential and mycosporine-like amino acids (4 %), macrolides (3 %), purines (2 %), acetilenic derivates (2%), peptides (2%), alkaloids (2%) and others (13%). **Keywords:** hydrocoral, *Millepora complanata*, secondary metabolites, coral reefs, Hydrozoa, cnidarian.

1. INTRODUCCIÓN

Los arrecifes de coral son uno de los ecosistemas marinos con mayor biodiversidad en el planeta, a pesar de que ocupan sólo el 0.1% de la superficie total de los océanos. Representan el hábitat de un cuarto de todas las especies marinas, incluyendo peces, moluscos, gusanos, crustáceos, equinodermos, esponjas, tunicados y otros cnidarios (Spalding *et al.*, 2001). También proveen protección costera y brindan soporte económico a más de 10 millones de personas que viven en las costas tropicales. Los bienes económicos y los servicios del ecosistema de arrecifes de corales están valuados en más de 20 billones de dólares anuales. Se estima que más del 90 % de las especies que habitan los arrecifes de coral aún no han sido descritas, por ello, no resulta sorprendente que los organismos que constituyen estos ecosistemas sean productores de una gran variedad de moléculas bioactivas estructuralmente únicas y que ocupan un amplio espacio químico, razón por la cual pueden considerarse muy valiosas como prototipos estructurales para el descubrimiento y desarrollo de nuevos fármacos y productos biotecnológicos (Olguín-López *et al.*, 2018).

La viabilidad de los arrecifes de coral depende, en gran medida, de la capacidad constructora de estructuras arrecifales que tienen los corales hermatípicos y los hidrocorales. Estos cnidarios viven en simbiosis con algas unicelulares de la familia Symbiodinaceae. Esta relación simbiótica le permite al hospedante almacenar la energía de la radiación solar fotosintetizada por las algas como carbono orgánico fijado, mientras que el huésped recibe a cambio, nutrientes inorgánicos reciclados por el metabolismo del hospedante (e.g. amonio y dióxido de carbono). Este intercambio es crítico para la biomineralización, proceso que consiste en la formación del esqueleto del coral a través de la precipitación de carbonato de calcio alrededor de la matriz extracelular (Putnam *et al.*, 2017). Los ecosistemas arrecifales han existido por más de 240 millones de años en nuestro planeta. Desafortunadamente, en la actualidad enfrentan un declive acelerado

13

debido a diversos factores antropogénicos, tales como el calentamiento global, el cual, además de la elevada radiación ultravioleta y la acidificación de los océanos provoca la disrupción de la simbiosis Cnidario-Symbiodiniaceae originando el fenómeno conocido como "blanqueamiento de arrecifes de coral". Recientes eventos de blanqueamiento de corales afectaron al 74 % de los arrecifes a nivel mundial, datos indican que se perdió al menos la mitad de la población de corales en la Gran Barrera de Coral de Australia, el sistema de arrecifes más grande del mundo. Algunas predicciones establecen que con un aumento de 1.5 °C, en el escenario actual del calentamiento global, podría disminuir del 70 % al 90 % de los arrecifes de corales, mientras que con un aumento de 2 °C se perdería hasta un 99 % (IPCC, 2018). Este panorama refleja la crítica importancia del estudio y comprensión de las interacciones simbióticas que se establecen en el organismo holobionte de los corales e hidrocorales. Indudablemente, este conocimiento conducirá al diseño de nuevas estrategias para la protección y la conservación de los arrecifes de coral (Boilard *et al.*, 2020).

De un total de 10,000 especies de cnidarios que se conocen hasta el momento, solamente 70 inducen efectos tóxicos en el humano. Entre estas especies destacan los hidrocorales del género *Millepora* (Hashimoto, 1979), conocidas comúnmente como "corales de fuego", las cuales, al entrar en contacto con la piel de los humanos, causan lesiones dolorosas similares a quemaduras (Sagi *et al.*, 1987; Bianchini *et al.*, 1988; Kropp *et al.*, 2018). Varios estudios han demostrado que las toxinas sintetizadas por las especies del género *Millepora* son principalmente proteínas termolábiles (Morabito *et al.*, 2017; Remigante *et al.*, 2018). Sin embargo, nuestro grupo de trabajo ha encontrado evidencia que apoya la presencia de toxinas termoestables, probablemente metabolitos secundarios, en los venenos de estos hidrocorales (García-Arredondo, 2015). Por otra parte, un gran número de metabolitos secundarios bioactivos se han encontrado en cnidarios, principalmente en especies de la clase Anthozoa. En contraste, los metabolitos secundarios que se han encontrado en especies de la clase Hydrozoa

14

son muy pocos y a la fecha no se ha realizado ningún estudio químico con el fin de caracterizar los metabolitos secundarios y especializados que sintetizan las especies del género *Millepora*, ni tampoco se ha determinado el papel que éstos desempeñan en los mecanismos de toxicidad inducidos por estos hidrocorales.

En este contexto, se planteó el presente proyecto de tesis que tuvo como objetivo general caracterizar el perfil químico del extracto metanólico-acuoso del hidrocoral *Millepora complanata,* a fin de identificar el mayor número de metabolitos secundarios y especializados que sintetiza este cnidario.

2. ANTECEDENTES

2.1 *Phylum* Cnidaria

El *Phylum* Cnidaria, perteneciente al Reino Animalia, comprende más de 13,000 especies de organismos acuáticos distribuidos, tanto en agua dulce como salada, la mayoría de ellos marinos. La característica más distintiva de los cnidarios es la presencia de cnidocitos, un tipo de células sensoriales que poseen organelos citoplasmáticos en forma de cápsulas, como se muestra en la Figura 1, que contienen un túbulo o filamento eversible y, al ser estimulados, tienen funciones de defensa (nematocistos) al secretar sustancias urticantes, de adhesión a superficies y captura de presas (espirocistos) y de formación de tubos (pticocistos), entre otras (Kass-Simon y Scappaticci, 2002; Daly *et al.*, 2007; Babonis y Martindale, 2014).

El cuerpo de los cnidarios se caracteriza por tener una simetría radial y una estructura simple, que consta de una cavidad central rodeada por dos capas celulares (endodermis y ectodermis) separadas por una capa gelatinosa llamada mesoglea. Los cnidarios tienen ciclos reproductivos complicados que comprenden una etapa sexual y una asexual que incluyen etapas de desarrollo como plánula, pólipo y medusa. Algunos cnidarios son completamente móviles, mientras otros son completamente sésiles, sin embargo, la mayoría tienen ambos estadíos (Jankowski y Anokhin, 2019). Otra característica del *Phylum* Cnidaria es la presencia de proteínas fluorescentes endógenas. Desde el año 1999 hasta 2016, Martini y Haddock estudiaron la bioluminiscencia en el océano Pacífico oriental cuantificando la distribución de organismos bioluminiscentes (76 %) y no bioluminiscentes (24 %) en 553 grupos filogenéticos (especies, géneros, familias). Se encontró que el 32.7 % de los organismos que emiten luminiscencia de proteínas

fluorescentes imparte protección ante los depredadores y funciones de atracción de presas, simbiontes y parejas potenciales (Lewis, 2012).

Figura 1. Anatomía de un cnidocito. (A) Inactivo. La estimulación del cnidocilio activa la exocitosis del contenido del cnidocito. (B) Activo (disparado). El filamento es evertido de la cápsula del cnidocito. Modificado de Babonis y Martindale (2014).

2.1.1 Taxonomía

Al día de hoy, los organismos del *Phylum* Cnidaria se encuentran distribuidos en 7 clases, como se muestra en la Figura 2 (NCBI, 2020):

 Anthozoa: comprende pólipos solitarios y coloniales que pueden, o no, tener un esqueleto formado por minerales y/o proteínas. Se dividen, de acuerdo con la simetría por el número de tentáculos: aquellos que pertenecen a la subclase Hexacorallia tienen una simetría hexamérica, mientras que las especies de la subclase Octocorallia, poseen una simetría octamérica. La clase Anthozoa incluye casi 8,000 especies, entre las cuales se encuentran anémonas de mar, anémonas tubo, corales negros, corales pétreos, corales falsos, zoántidos, corales blandos y plumas de mar (Daly, 2007; NCBI, 2020).

- Cubozoa: se conforma de 93 especies de cubomedusas, nombradas así por la forma cúbica de su cuerpo (NCBI, 2020). Son pólipos solitarios que se transforman en medusas, se caracterizan por tener tentáculos concentrados en 4 vertientes y un velo transparente, que alberga un ojo complejo que les permite seguir objetos en movimiento y responder rápidamente a cambios de intensidad de luz. (Daly, 2007). Comúnmente se conocen como "avispas de mar" debido a su poderoso veneno, cuyas toxinas pueden ser fatales (Gasca y Loman-Ramos, 2014).
- Hydrozoa: conforma un grupo heterogéneo de casi 3,000 especies que se diferencian de acuerdo con su ciclo de vida, por lo que se pueden encontrar hidras, medusas e hidrocorales, distribuidos tanto en solitario como en colonias. (Gasca, 2014; NCBI, 2020).
- Myxozoa: está conformada por cnidarios endoparásitos y se conocen aproximadamente 2,180 especies, sin embargo, se cree que hay más de 30,000 especies no descubiertas. Tienen asociada una cápsula polar, una estructura compleja compuesta por un tubo o filamento eversible que facilita su fijación al huésped. Esta estructura es la característica que posibilitó su clasificación dentro del *Phylum* Cnidaria (Chang, 2015; Atkinson, 2018; NCBI, 2020).
- Polypodiozoa: es una clase monoespecífica contenida por *P. hydriforme*, se conforma por animales con múltiples tentáculos que, al igual que la clase Myxozoa, son endoparásitos (NCBI, 2020).
- Scyphozoa: esta clase está compuesta por organismos comúnmente llamados medusas verdaderas, existen 545 especies registradas divididas en 3 órdenes: Coronatae, Rhizostomeae y Semaeostomeae. Se

caracterizan por tener un ciclo de vida de pólipo y medusa. Son organismos marinos invertebrados con un cuerpo suave, largo y gelatinoso con forma de campana (Santhanam, 2020; NCBI, 2020).

Staurozoa: esta clase está actualmente representada por cerca de 50 especies. Los estaurozoos, comúnmente llamados medusas pedunculadas, junto con las clases Cubozoa, Scyphozoa e Hydrozoa, pertenecen al sub*Phylum* Medusozoa. El ciclo de vida de las especies de la clase Staurozoa comprende una forma larvaria libre (plánula) que se modifica para dar origen a una medusa. Se caracterizan por su forma de cáliz con un pedúnculo aboral, mediante el cual se fijan a un sustrato, comúnmente a algas o rocas (Souza, 2019; NCBI, 2020).

Figura 2: Árbol filogenético del *Phylum* Cnidaria. Modificado de Leclère y Röttinger (2017).

2.1.2 Simbiosis Cnidario-Symbiodiniacea

Los eucariontes han adquirido beneficios metabólicos de la fotosíntesis a lo largo de la evolución por medio de la obtención de simbiontes. La estrecha relación entre organismos taxonómicamente lejanos, como los cnidarios y las algas dinoflageladas de la familia Symbiodiniaceae, es una interacción mutualista que se centra en el intercambio nutricional, en el que el simbionte convierte, a través de la fotosíntesis, la energía lumínica de la radiación solar en carbón orgánico, el cual transloca al hospedante, el simbionte recibe a cambio nutrientes inorgánicos disueltos, compuestos derivados del hospedante y hábitats con una gran cantidad de luz (Kirk y Weis, 2016; Matthews *et al.*, 2017).

La interacción entre cnidarios y algas dinoflageladas de la familia Symbiodiniaceae representa una de las más abundantes y ecológicamente exitosas de las simbiosis encontradas en la naturaleza. Los cnidarios, junto con las esponjas y los moluscos, son los organismos marinos más beneficiados con esta asociación. Para los corales suaves y los corales formadores de arrecifes esta relación puede ser facultativa o estrictamente obligada, por lo que su ruptura puede resultar letal para ecosistemas completos, dicho efecto se observa claramente en el blanqueamiento de corales. Por lo que la prevalencia de esta sociedad es vital para el crecimiento continuo y sobrevivencia de los ecosistemas marinos (Herrera *et al.*, 2020).

2.1.2.1 Familia Symbiodiniaceae

Symbiodiniaceae es una familia de algas unicelulares del orden de los Suessiales, clase Dinophyceae, compuesta por 7 géneros: *Symbiodinium*, clado A; *Breviolum*, clado B; *Cladocopium*, clado C; *Durusdinium*, clado D; *Effrenium*, clado E; *Fugacium*, clado F y *Gerakladium*, clado G. Estudios de morfología, fisiología y bioquímica muestran características ecológicas distintivas entre cada género. Estas diferencias se traducen en diferentes propiedades asociadas al coral hospedante, como el incremento de los ritmos de crecimiento, dependiendo del

tipo de simbionte. Por lo que la capacidad de asociación entre los corales y las algas dinoflageladas es un factor importante en la distribución de las especies, su desempeño metabólico y la tolerancia al estrés. Los corales escleractinios (Clase Anthozoa, Subclase Hexacorallia) se asocian comúnmente con Symbiodiniaceae del género Symbiodinium, Breviolum, Cladocopium, Durusdinium (clado A-D), y ocasionalmente con organismos del género Fugacium y Gerakladium (clado F, linaje Fr5, y G). Las células de las algas simbiontes están localizadas en el tejido endodérmico de los corales hospedantes, albergadas en lisosomas de origen membranal denominados simbiosomas (Ziegler et al., 2019). La proximidad espacial de esta asociación endosimbiótica facilita un sistema de reciclado de nutrientes y productos metabólicos. Las algas reciben protección contra el daño por la radiación ultravioleta y reciben de su hospedante dióxido de carbono, que utilizan eficientemente en la fotosíntesis. Mientras que, el coral hospedante recibe a cambio compuestos de bajo peso molecular derivados de la fotosíntesis, tales como glucosa, glicerol y aminoácidos. Este intercambio puede cubrir casi toda la demanda energética del coral, que secreta carbonato de calcio para formar la gran estructura tridimensional típica de los arrecifes de corales, siendo así proveedores de un hábitat complejo que soporta una gran diversidad de especies (Kirk y Weis, 2016).

2.1.3 Cnidarios constructores de arrecifes como organismos holobiontes

Los arrecifes coralinos tropicales cubren únicamente el 0.1 % del suelo marino, pero proveen hábitat a ~32 % de todas las especies multicelulares marinas y contribuyen al sustento de más de 600 millones de personas. Este ecosistema completo está soportado por sus especies fundadoras: los corales e hidrocorales constructores de arrecifes. Estos organismos sostienen la inmensa productividad de los arrecifes coralinos, colaboran en la cadena alimenticia marina y constituyen la estructura base de los arrecifes con sus esqueletos calcáreos. Además de su relación simbiótica con las algas de la familia Symbiodiniaceae, los corales e hidrocorales e hidrocorales también albergan una diversa población de microorganismos que

comprende: protistas, hongos, bacterias, arqueas y virus. Dicha asociación de múltiples organismos es llamada holobionte (Figura 3). Este consorcio de organismos forma una red compleja de interacciones simbióticas que amplían el repertorio de metabolitos, la inmunidad y la capacidad de adaptación ambiental del cnidario hospedante. Por ello, los microorganismos pueden ser considerados como una parte fundamental del éxito ecológico de los corales y los arrecifes que éstos construyen (Pogoreutz et al., 2020). La estabilidad del holobionte es frágil y el equilibrio entre un estado saludable del holobionte (eubiosis) y un estado "enfermo" (disbiosis) depende en gran medida de las condiciones ambientales. Entre los factores bióticos que tienen una influencia crucial en la salud del holobionte se encuentran: la presencia de patógenos, la disponibilidad de las presas, las poblaciones de algas y microbios fotosintéticos, la fisiología del huésped cnidario y los antecedentes genéticos, entre otros. Por otra parte, existen factores abióticos que impactan directa o indirectamente la homeostasis del holobionte, entre los que destacan: la temperatura, la radiación solar, el pH, el movimiento del agua, la cantidad de nutrientes, entre otros (Boilard et al., 2020). Es importante mencionar que el cambio climático, junto con otros estresores antropogénicos, amenaza seriamente a los ecosistemas de los arrecifes de corales y ha sido vinculado con numerosos casos de disbiosis, causando una mayor susceptibilidad a patógenos oportunistas y, finalmente, la muerte del coral (MacKnight et al., 2021).

2.1.4 Importancia ecológica de los arrecifes coralinos

Los arrecifes de corales representan el ecosistema más productivo del planeta, proveen importantes servicios al hábitat marino y son plataformas económicas muy importantes, ya que funcionan como ricos reservorios de biodiversidad, como áreas de pesca, forman barreras contra las tormentas y las zonas costeras que los contienen constituyen destinos ecoturísticos de gran demanda. Ya que los corales son la base trófica y estructural de estos ecosistemas, la salud y bienestar de estos organismos, junto con un buen equilibrio con sus hospedantes y su par

22

simbiótico, son críticos para la sanidad del ecosistema global (Kirk y Weis, 2016). Los corales poseen un rol destacado para el equilibrio de los ecosistemas donde se encuentran, estos cnidarios sirven de resguardo y protección para otras especies de animales, contribuyendo a su supervivencia, y suministran alimento a otras especies, de esta manera contribuyen a mantener el flujo de energía y el equilibrio de las redes tróficas. También funcionan como fijadores e incorporadores de sedimentos, producen carbonato de calcio, son sustratos para la colonización de otras especies y sitios ideales para la puesta de huevos (Brandl *et al.*, 2018).

2.1.4.1 Calentamiento global

El calentamiento global se refiere al efecto climático de la actividad humana, particularmente, la quema de combustibles fósiles y la deforestación masiva. El principio básico del calentamiento global considera el balance de la energía de radiación emitida por el Sol, que calienta la superficie terrestre, y la radiación térmica de la Tierra y la atmósfera, que es irradiada hacia el espacio exterior. El incremento de gases de efecto invernadero, que absorben la radiación infrarroja emitida por la superficie terrestre, resulta en la formación de una manta encima de la superficie, esta alteración del balance se restaura al incrementar la temperatura superficial de la Tierra, manteniéndola más caliente de lo que debería. En consecuencia, se pueden identificar cambios climáticos como olas de calor más frecuentes, más lluvias y el incremento en frecuencia e intensidad de eventos climáticos extremos (Houghton, 2005).

Figura 3. Roles y relaciones entre corales y sus simbiontes: (1) Transferencia de fotosintatos. (2) Ciclo del nitrógeno. (3) Principal fuente de carbono y DMSP. Protección contra la radiación UV. (4) Refugio y ciclo de nutrientes. (5) Transferencia genética. Bacteriófagos y control de algas. (6) Ciclo de nutrientes (azúfre, carbono y nitrógeno). Control biológico de patógenos. (7) Refugio y ciclo de nutrientes. (8) Actividad antimicrobiana. Protección de células esqueletogénicas y contra la radiación UV. Posibles relaciones entre los simbiontes: (A) Disponibilidad de carbono y azúfre mediante el catabolismo de DMSP. (B) Disponibilidad de fuentes de nitrógeno. (C) Transferencia de genes benéficos. (D) Disponibilidad de fuentes de nitrógeno. (E) Provisión de fuentes de carbono y azúfre a través de la producción de DMSP. (F) Intercambio de nutrientes. Modificado de Peixoto et al. (2017).

2.1.4.2 Blanqueamiento de arrecifes coralinos

Como consecuencia del cambio climático, la temperatura de la superficie del mar ha incrementado provocando eventos masivos de blangueamiento alrededor del mundo, disminuyendo notablemente la cantidad de arrecifes coralinos. Predicciones revelan que la tendencia actual del calentamiento global culminará con la pérdida del 90 % de dichas estructuras (Hoegh-Guldberg et al., 2018). En el evento de blangueamiento global de 2014-2017, el tercero en 20 años, mató miles de kilómetros cuadrados de corales y organismos del holobionte (Sully et al., 2019). El blanqueamiento de corales es el resultado del rompimiento de la simbiosis con las algas endosimbiontes de la familia Symbiodiniaceae, lo cual deja expuesto su esqueleto de carbonato de calcio, característicamente blanco, a través del tejido transparente del hospedante (Figura 4). El estado de disbiosis puede ocurrir cuando el sistema inmune del hospedante activa procesos de apoptosis, autofagia, exocitosis, desprendimiento o necrosis celular y rechazo del alga fotosintética. El blanqueamiento también puede suceder cuando el alga pierde sus pigmentos debido a que las membranas tilacoidales son expuestas a los radicales libres de oxígeno (Boilard et al., 2020). Existe evidencia que indica que la microbiota del holobionte de los cnidarios constructores de arrecifes coralinos desempeña un papel crucial en la respuesta adaptativa de los corales e hidrocorales ante las condiciones de su medio ambiente. De hecho, está plenamente demostrado que la composición de las comunidades Symbiodiniaceae puede variar antes, durante y después de la exposición al estrés. Algunas especies simbiontes han demostrado incrementar la tolerancia al calor de los corales hasta 1.5° C (Herrera et al., 2020).

Figura 4. Comparación entre un arrecife coralino en condiciones óptimas (izquierda) y un arrecife coralino blanqueado (derecha). Alexander (2019).

2.1.5 Importancia toxinológica de los cnidarios

En la búsqueda y descubrimiento de nuevos fármacos, se ha demostrado que los cnidarios pueden ser una prometedora fuente de compuestos bioactivos y moléculas prototipo para el descubrimiento y desarrollo de nuevos fármacos. Algunas de estas moléculas bioactivas se encuentran presentes en los venenos de los cnidarios. Entre los efectos biológicos que se les han encontrado a los compuestos sintetizados por estos organismos destacan actividades inmunosupresora y antiinflamatoria 2020). anticancerígena, (Santhanam, Actualmente, no se conoce a detalle la composición general de los venenos de los cnidarios, aunque sí se ha encontrado que estos venenos están compuestos por una variedad de compuestos proteicos (péptidos, proteínas, enzimas e inhibidores enzimáticos) y no proteicos (purinas, aminas cuaternarias, aminas biógenas y betainas). De manera particular, los cnidarios de la clase Anthozoa sintetizan toxinas que interactúan con canales voltaje dependientes de sodio y de potasio.

Los Hidrozoos y Scyphozoos sintetizan compuestos con actividad citolítica, hemolítica y citotóxica. En tanto que en los Cubozoos predominan los compuestos con actividad hemolítica, catalítica y cardiotóxica. Las toxinas más ampliamente encontradas en todas las especies del *Phylum* Cnidaria son las que tienen actividad de Fosfolipasa A2, la cual provoca la hidrólisis de glicerofosfolípidos, produciendo lisofosfolípidos y ácidos grasos. Se ha propuesto que la función toxicológica de la Fosfolipasa A2 en los venenos de los cnidarios incluye defensa, inmovilización y digestión de la presa (Nevalainen *et al.*, 2004).

Otro grupo de toxinas con actividad enzimática que se encuentran en los venenos de los cnidarios son las metaloproteinasas, las cuales contienen un átomo metálico para realizar su actividad catalítica. Sus funciones están asociadas al daño dérmico, formación de edemas y ampollas, mionecrosis e inflamación (Fox *et al.*, 2005).

Por otra parte, las toxinas que actúan sobre los canales de sodio y de potasio dependientes de voltaje también poseen gran importancia debido a los efectos neurotóxicos que ejercen en sus presas, en sus depredadores y en los humanos que entran en contacto con ellas, ya que estos canales iónicos desempeñan un papel crucial en la excitabilidad de las células y en la transmisión neuromuscular de señales (D'Ambra y Lauritano, 2020).

2.1.6 Estudios químicos realizados sobre cnidarios

Las duras condiciones ambientales, físicas y químicas a las que han tenido que adaptarse los cnidarios para sobrevivir han sido importantes para la producción de una gran variedad de moléculas con características estructurales únicas. Un ejemplo de este fenómeno evolutivo es la presencia de compuestos tóxicos en la mayoría de estos organismos, los cuales son utilizados para desalentar a sus depredadores. Dichos compuestos químicos representan un gran potencial para el descubrimiento de nuevas entidades químicas útiles para el desarrollo de novedosos fármacos y/o herramientas de investigación (Mariottini y Grice, 2019).

Con el nacimiento de nuevos métodos analíticos de separación y purificación, técnicas espectroscópicas y plataformas de cribado de alto rendimiento (HTS por sus siglas en inglés) el interés por encontrar nuevos productos naturales de origen marino (MNP por sus siglas en inglés) ha crecido continuamente (Molinski *et al.*, 2008).

Desde el año 1990 hasta el año 2011, un total de 3244 MNP proveniente de especies del *Phylum* cnidaria habían sido descritos. Varios de estos compuestos mostraron importantes actividades biológicas y aplicaciones biotecnológicas muy prometedoras. El 99 % de los compuestos purificados a partir de cnidarios se han obtenido de especies de la clase Anthozoa, principalmente del orden Alcyonacea, mientras que solamente el 1 % está asociado a especies de la clase Hydrozoa. Las más de 3,000 moléculas provenientes de cnidarios que se han descrito a la fecha, poseen una gran variedad estructural originada evidentemente en la gran diversidad taxonómica que existe dentro del *Phylum* Cnidaria. A pesar de que actualmente se conocen 11,000 especies de cnidarios, solamente se han estudiado desde un punto de vista químico aproximadamente 337 especies. Esto significa que sólo el 3.1 % de la biodiversidad del *Phylum* ha sido investigada. Una de las razones de esto es el hecho de que resulta complicada la recolección de este tipo de organismos (Rocha *et al.*, 2015).

Los compuestos descubiertos en las especies de cnidarios pertenecen a varios grupos químicos, siendo, la mayoría de ellos, terpenoides (66 %), alcaloides (10 %), esteroides (9 %), compuestos alifáticos (8 %) y carbohidratos (6 %). A varias de estas moléculas de origen marino se les han comprobado efectos biológicos que incluyen actividades anticancerígena, antiinflamatoria, antitumoral, antimalárica, entre otras. Es importante mencionar que varios de los compuestos provenientes de cnidarios se encuentran actualmente en estudios pre-clínicos y clínicos para el desarrollo de fármacos antitumorales (Patra *et al.*, 2020). En la Tabla A1, incluida en los Anexos, se muestran los PNM aislados de organismos

28

del *Phylum* cnidaria hasta diciembre de 2019 (Rocha *et al.*, 2011; Blunt *et al.*, 2012, 2013, 2014, 2015, 2016, 2017, 2018; Carroll *et al.*, 2019, 2020, 2021).

Los cnidarios, particularmente los corales, son conocidos como parte importante de la medicina tradicional asiática. En India, se han utilizado para el tratamiento de enfermedades respiratorias, como tuberculosis, asma y bronquitis aguda, y genitourinarias, como la espermatorrea y la gonorrea, así como dolores de cabeza, vértigo y anemia. Las medusas han sido utilizadas tradicionalmente en China para el tratamiento de la hipertensión y se han descrito un gran número de propiedades terapéuticas en publicaciones no científicas. El polvo seco de medusas se usaba por chamanes aborígenes de Australia como remedio de quemaduras y, en Corea del Sur, las medusas son usadas para mejorar la belleza de la piel y la pérdida de peso (Mariottini, 2016).

2.1.6.1 Metabolitos secundarios identificados en organismos del *Phylum* Cnidaria

a) Terpenoides

Los terpenos, terpenoides o isoprenoides representan una gran familia de compuestos naturales que incluyen metabolitos primarios y secundarios sintetizados a partir de unidades de isopreno, un hidrocarburo que consta de 5 carbonos. La mayoría de estas moléculas poseen una estructura policíclica y diferentes modificaciones estructurales, lo que da lugar a una amplia variedad de derivados con diferentes actividades biológicas. Los terpenoides se clasifican de acuerdo con número de unidades de isopreno en: hemiterpenos monoterpenos (C10), sesquiterpenos diterpenos (C5), (C15), (C20), sesterterpenos (C25), triterpenos (C30), y tetraterpenos (C40). Este tipo de metabolitos se sintetizan a partir de dos vías metabólicas: la ruta del ácido mevalónico o mevalonato (MVA) y la ruta del metileritritol fosfato (MEP/DOXP) (Dewick, 2009; Núñez-Pons et al., 2020;). En la Figura 5 se encuentran dos ejemplos de terpenoides purificados a partir de los corales blandos Sinularia capillosa y Nephthea chabroli (Cheng et al., 2009).

Figura 5. Estructuras de dos terpenoides aislados de cnidarios. NCBI (2021).

b) Esteroides

Los esteroides son triterpenoides modificados que conforman un gran grupo de productos naturales biológicamente importantes (Dewick, 2009). Algunos de los esteroides encontrados en los cnidarios han mostrado efectos antitumorales, antiinflamatorios, antibacterianos y antiincrustantes. Tal es el caso de los secoesteroides, denominados Isogosteronas A–D (Figura 6; Tomono, 1999, Rocha *et al.*, 2011).

Figura 6. Esteroides aislados de Dendronephthya sp. NCBI (2021).

c) Alcaloides

Los alcaloides son metabolitos secundarios nitrogenados de bajo peso molecular derivados de aminoácidos. Contienen uno o más átomos de nitrógeno, típicamente como aminas primarias, secundarias o terciarias, esto le confiere al alcaloide basicidad. Estos metabolitos se clasifican de acuerdo al núcleo heterocíclico que contiene el nitrógeno (e.g. pirrolidina, piperidina, quinolina, isoquinolina, indol). La biosíntesis de estos compuestos involucra pocos precursores de aminoácidos, también se incorporan moléculas pertenecientes a las rutas del acetato, el shikimato y el metileritritol fosfato, sin embargo, algunos alcaloides adquieren sus átomos de nitrógeno por medio de reacciones de transaminación (Dewick, 2009). Algunos ejemplos de los alcaloides encontrados en cnidarios son la Cicloaplisinopsina A aislada del coral heterótrofo *Tubastraea sp.* (Figura 7; Meyer *et al.*, 2009) y la Homarina aislada de la anémona *Anemonia sulcata*. Estos compuestos presentan actividad antimicrobiana y antiinflamatoria, respectivamente (Figura 7; Silva *et al.*, 2017; Souza, 2020).

d) Aminoácidos tipo Micosporina (MAAs)

Los MAAs son un grupo de pequeñas moléculas que tienen capacidad para absorber radiación ultravioleta gracias a los arreglos conjugados de la ciclohexenona o la ciclohexenimina. Estos compuestos tienen propiedades antioxidantes y participan en el equilibrio osmótico de diversos organismos marinos que los producen, especialmente en relaciones fotosimbióticas (Banaszak *et al.*, 2006). Se han detectado diferentes MAAs en cnidarios, por ejemplo, de la anémona *Anthopleura elegantissima* se aislaron cuatro compuestos capaces de absorber la radiación UV (Figura 8). Además, se analizó la relación entre la presencia de dichos compuestos con los mecanismos de defensa de los corales ante la radiación UV (Stochaj *et al.*, 1994).

Figura 8. Aminoácidos tipo micosporina aislados de *Anthopleura elegantissima*. Stochaj *et al.* (1994).

2.2 Clase Hydrozoa

Los Hidrozoos son un grupo grande y heterogéneo de organismos, el cual comprende aproximadamente 3,700 especies divididas en 8 órdenes, en la Figura 9 se muestran algunos ejemplos de especies pertenecientes a cada una de las órdenes (NCBI, 2020; Myers *et al.*, 2021; Bouillon y Boero, 2000):

- Actinulida: son hidrozoos solitarios y minúsculos que semejan larvas actínulas. No tienen forma medusoide.
- Anthoathecata: se organizan en colonias de hidrozoos que segregan una estructura ramificada común sobre la que se implantan. En un estadío medusoide se caracterizan por poseer una umbrela no lobulada en forma de campana. Dentro de este órden se encuentran los organismos de la familia Milleporidae.
- Laingiomedusae: son hidrozoos sin fase polipoide. Tentáculos sólidos, márgenes umbralares lobulados, con un centro sólido de células endodermales. Su umbrela es hemisférica/circular.
- Leptothecata: son hidrozoos con ciclo polipoide y medusoide. Tienen tentáculos huecos y umbrela aplanada.
- Limnomedusae: son hidrozoos con ciclo polipoide y medusoide. Este orden comprende organismos de agua dulce.
- Narcomedusae: estos cnidarios no presentan fase polipoide. Carecen de canales radiales, con márgenes umbralares lobulados, estómagos anchos y en bolsas, sus tentáculos son sólidos.
- Siphonophorae: forman colonias de hidrozoos con individuos polipoides y medusoides. Son flotadores pelágicos.
- Trachylinae: son hidrozoos medusoides con ausencia del estado pólipo.
 Poseen tentáculos sólidos y huecos, y una umbrela hemisférica alargada.

Figura 9. Ejemplos de especies pertenecientes a cada Orden de la Clase Hydrozoa. Myers *et al* (2021).

2.2.1 Características

Los Hidrozoos se distribuyen, tanto en hábitats marinos, como de agua dulce. La temperatura y la salinidad son los principales determinantes de su distribución, son más abundantes en aguas cálidas y poco profundas (Schierwater y DeSalle, 2021). Los Hidrozoos forman colonias que muestran una gran diversidad de formas y se clasifican en dos categorías. Las colonias de pólipos pequeños, con una altura menor a 1 cm, son reptantes y tienden a crecer sobre otros organismos o a formar "prados" (e.g. *Clytia hummelincki*), creciendo directamente en sustratos primarios, donde juegan un papel ecológico importante formando hábitats para

otras especies. Por otro lado, las colonias de pólipos grandes, con una altura de 10 cm a 1 m, crecen principalmente en sustratos primarios y se convierten en sustratos para otros organismos formando enormes "bosques", dando lugar a hábitats para miles de especies, similares a las comunidades formadas por los organismos de la clase Anthozoa. El ciclo de vida típico de los hydrozoarios comienza como plánula, la cual es una larva móvil que nada activamente hasta asentarse en una superficie. La plánula fijada se desarrolla como un pólipo solitario hasta que se convierte en una colonia por reproducción asexual. Una vez suficientemente grande, la colonia produce y libera medusas. Ya adultas, estas medusas liberan sus huevos o espermas en la columna de agua, dando lugar a la fertilización externa para producir más plánulas (Figura 10). Los Hidroides representan uno de los principales componentes de las comunidades zoobentónicas. Éstos cambian las características geológicas formando hábitats, ya que afectan el movimiento del agua y la penetración de la luz, y proveen refugio y alimento a sus cohabitantes, promoviendo la biodiversidad local. La organización modular de los hidroides les otorga una alta plasticidad y un crecimiento potencialmente ilimitado, por ello, pueden adaptar su forma, sus estrategias de crecimiento, su comportamiento trófico y sus estrategias reproductivas a un gran número de condiciones ambientales (Di Camillo et al., 2017).

2.2.2 Estudios químicos realizados sobre especies de la clase Hydrozoa

La mayoría de las investigaciones, cuyo tema principal son los corales constructores de arrecifes, se han enfocado en los corales escleractinios y muy escasos estudios se han llevado a cabo en especies de la clase Hydrozoa. En la compilación de MNP mostrada en la Tabla 1, se muestran 11 organismos de la clase Hydrozoa a partir de los cuales se aislaron productos naturales marinos.

Figura 10. Ciclo de vida típico de los hidroides. Matsumoto (2019).

2.2.2.1 Metabolitos secundarios

Los metabolitos secundarios que se han encontrado en especies de la clase Hydrozoa son pocos. De acuerdo con la literatura se aislaron tres β-carbolinas bromadas de un extracto lipofílico del hidrozoo *Aglaophenia pluma* (Aiello *et al.*, 1987a). El mismo grupo de investigación, también aisló dos nuevos esteroles polihidroxilados del hidroide *Eudendriurn glomeraturn* (Aiello *et al.*, 1987b). En otro estudio, del hidrozoo *Hydrallmania falcata* se aisló el hidralmanol A, un compuesto derivado de un núcleo mentano (Pathirana *et al.*, 1989). También se aislaron las abietinarinas A y B del hidroide *Abietinaria sp.*, la abietinarina A mostró actividad citotóxica significativa (Pathirana *et al.*, 1990) y las coridendraminas A y B, metabolitos piperidinoles, del hidroide marino *Corydendrium parasiticum* (Lindquist *et al.*, 2000). Por otra parte, del hidroide marino *Tridentata marginata* fueron aislados tres alcaloides aromáticos, los tridentatoles A, B y C (Lindquist *et al.*, 1996) y, posteriormente, los tridentatoles D-H (Lindquist, 2002). También se aisló el esteroide, acetato de β-sitosterol, del hidroide *Aglaophenia cupressina* (Mandey *et al.*, 2019). En el mismo año, se aislaron las macrophilonas B-G del hidroide marino *Macrorhynchia philippina,* las cuales mostraron ser capaces de inhibir la cascada de señalización ERK (Yan *et al.*, 2018).

2.3 Cnidarios del género Millepora

Los cnidarios del género *Millepora* son hidrozoos polípodos pertenecientes al orden Anthoathecata, que se caracterizan por secretar un exo-esqueleto calcáreo de forma erguida. Estos hidrocorales son los segundos constructores de arrecifes más abundantes alrededor del mundo (Rojas-Molina *et al.*, 2012). Contienen pólipos defensivos que sobresalen de su esqueleto. Los nematocistos de los hidrocorales contienen diversas toxinas que utilizan como mecanismo de defensa, para cazar a sus presas y, al entrar en contacto con la piel de los humanos, pueden ocasionar heridas semejantes a quemaduras, razón por la cual estos organismos son conocidos comúnmente como "corales de fuego" (García-Arredondo, *et al.*, 2012; Kropp *et al.*, 2018; Santhanam, 2020).

Las colonias de milleporas forman la estructura base de los arrecifes de corales en los mares tropicales poco profundos. Se han reconocido 14 especies del género *Millepora* (Tabla 1). Sus diferencias se centran en sus características físicas (forma y la estructura de sus colonias). Se alimentan de zooplancton y obtienen parte de su nutrición de fuentes autótrofas debido a la relación simbiótica que establecen con algas fotosintéticas de la familia Symbiodiniaceae. La reproducción en las milleporas se caracteriza por generaciones alternadas de pólipos desarrollados, de los cuales brotan medusas en la fase planctónica. La reproducción sexual es por temporadas para algunas especies y la reproducción asexual se logra mediante la ramificación simpodial, la producción de nuevo esqueleto y tejido blando a lo largo de un borde creciente o punta, y mediante la

reincorporación, regeneración y reparación de fragmentos dañados o rotos de la colonia (Lewis, 2006).

2.3.1 Millepora complanata

Millepora complanata común residente del Sistema Arrecifal es un Mesoamericano, el arrecife transfronterizo más grande del mundo que contiene el segundo arrecife de barrera más largo a nivel mundial. A este hidrocoral se le conoce comúnmente como "coral de fuego aplanado o de hoja". Se caracteriza por sus colonias con bases incrustantes y proyecciones en forma de lóbulos aplanados, tipo hojas o platos de diferentes grosores. Tienen una altura de hasta 50 cm. La superficie de la colonia es de apariencia tersa y regular, tonalidad café a amarillo cremoso claro, con bordes de crecimiento blancos. En ella se pueden observar poros donde se localizan los pólipos, cuando éstos sobresalen parecen pequeños y finos pelos. Este organismo vive en aguas poco profundas, en la cresta del arrecife (Figura 11). M. complanata, así como muchos corales escleractinios y otros cnidarios, comparte una simbiosis mutualista con algas dinoflageladas de la familia Symbiodiniaceae (De Kluijver et al., 2021; Hernández-Elizárraga et al., 2021).

Figura 11. Imagen submarina de Millepora complanata. De Kluijver et al. (2021).

Especie/ Sinónimo	Distribución	Imagen	Especie/ Sinónimo	Distribución	Imagen
Millepora alcicornis/ Millepora nitida	Mar Caribe		Millepora intricata/ Millepora murrayi y Millepora xishaensis	Océano Pacífico	
Millepora boschmai	Golfo de Chiriquí (Océano Pacífico- Panamá)		Millepora Iaboreli	Mar Caribe	
Millepora braziliensis	Mares Brasileños		Millepora latifolia	Océano Indo- Pacífico Occidental	No disponible
Millepora complanata	Mar Caribe		Millepora platyphylla	Mar Rojo y Océano Indo-Pacífico	
Millepora dichotoma	Mar Rojo		Millepora squarrosa	Mar Caribe	
Millepora exaesa/ Millepora tuberose	Mar Rojo		Millepora striata	Mar Caribe	
Millepora foveolata	Filipinas, Taiwán, Gran Barrera de Coral (Australia) y Samoa Americana	No disponible	Millepora tenera/ Millepora cruzi y Millepora tenella	Océano Indo- Pacífico, Mar Rojo, del este de África a las Islas Mariana, Samoa Americana, Australia y Japón	

Tabla 1. Especies reconocidas del género Millepora y su distribución (Dubé *et al*, 2020).

2.3.2 Importancia ecológica de las especies del género Millepora

Al ser los segundos constructores de arrecifes coralinos más importantes, todas las especies de *Millepora* cumplen con una función ecológica dentro del holobionte. La habilidad de resiliencia de los corales ha sido el objeto de estudio de un gran número de proyectos de investigación pues se ha documentado ampliamente que muchos corales que se recuperan de un evento de blanqueamiento tienen un decremento de su ritmo de crecimiento y de calcificación, y son más susceptibles a enfermedades. A pesar de que no se ha visto por completo el impacto de la reducción de la biodiversidad de los corales se ha predicho que, si los cnidarios formadores de arrecifes no evolucionan rápidamente hacia la tolerancia térmica, pronto dejarán de dominar en los arrecifes, llevándolos a una degradación irreversible (Olguín-López *et al.*, 2018).

2.3.3 Importancia toxinológica de los organismos del género Millepora

La mayoría de los estudios realizados en las especies del género *Millepora* se han enfocado en determinar los efectos tóxicos de los venenos que producen. Los "corales de fuego" poseen nematocistos que secretan toxinas después de un estímulo apropiado. Las toxinas de las especies de *Millepora* son capaces de inducir efectos locales y sistémicos en los humanos, tales como, dolor severo, erupciones, ampollas, síndrome nefrótico, falla renal aguda y edema pulmonar (Rojas-Molina *et al.*, 2012; Hernández-Matehuala *et al.*, 2015; Schmidt *et al.*, 2019). Estudios en *M. tenera* y *M. alcicornis* demostraron que el extracto crudo de estos hidrocorales es altamente tóxico en ratones y tiene actividad hemolítica (Middlebrook *et al.*, 1971; Wittle *et al.*, 1971; Wittle *et al.*, 1974). Por otra parte, estudios sobre los venenos de *M. dichotoma* y *M. platyphylla* mostraron que éstos inducen hemólisis, dermonecrosis y tienen propiedades antigénicas, así como efectos letales en ratones (Radwan, 2002). Posteriormente, nuestro grupo de trabajo encontró que el extracto acuoso de *M. complanata* posee actividad Fosfolipasa A2 y contiene proteínas que inducen contracciones, dependientes de

calcio, en íleon aislado de cobayo (Rojas-Molina *et al.*, 2002) y en aorta aislada de rata (Ibarra-Alvarado *et al.*, 2007).

2.3.4 Estudios químicos realizados sobre especies del género Millepora

Los estudios realizados sobre especies del género *Millepora* se han centrado, hasta la fecha, en el estudio de sus sustancias tóxicas o venenos. Nuestro grupo de trabajo también ha reportado el efecto del estrés térmico sobre el proteoma de dos especies de *Millepora, M. complanata* y *M. alcicornis* (Hernández-Elizárraga *et al.*, 2019; Olguín-López *et al.*, 2019).

2.3.4.2 Importancia del estudio de los productos naturales de origen marino

Los productos naturales de origen marino representan una fuente potencial muy valiosa de compuestos prototipo para el descubrimiento y desarrollo de nuevos fármacos y herramientas de investigación y biotecnológicas. Este tipo de metabolitos han demostrado poseer diversas actividades biológicas, entre las que se pueden mencionar propiedades antivirales, antiinflamatorias, antibacterianas y citotóxicas, entre otras. Los productos naturales han sido el resultado de la evolución de los organismos que los producen como una respuesta a la presión selectiva (Becerro et al., 1997). Debido a que el ambiente marino por sí mismo crea condiciones de vida desafiantes para sus habitantes, los organismos marinos producen numerosos metabolitos secundarios para evitar la depredación y la invasión de patógenos. Por ello, la caracterización de los metabolitos secundarios y especializados que sintetizan las especies del género *Millepora* es imprescindible para comprender los mecanismos de respuesta de los hidrocorales dentro del ecosistema marino y como respuesta a los factores ambientales que ponen en riesgo su supervivencia. De tal manera, que se puedan proponer estrategias para su protección y conservación.

3. JUSTIFICACIÓN

Los cnidarios del género *Millepora* han sido analizados principalmente desde un punto de vista toxinológico y, recientemente, nuestro grupo de trabajo ha llevado a cabo algunos estudios, empleando enfoques ómicos, para determinar el efecto del estrés térmico derivado del calentamiento global sobre estos cnidarios constructores de arrecifes de coral. Sin embargo, a la fecha no se ha realizado ningún estudio químico sobre alguna especie del género *Millepora* con el objeto de conocer los metabolitos secundarios y especializados que estos cnidarios sintetizan. Este tipo de compuestos podría representar prototipos estructurales para el descubrimiento y desarrollo de nuevos fármacos y moléculas con aplicación biotecnológica. En este sentido, un ejemplo representativo de un fármaco obtenido a partir de un producto natural de origen marino es el Ziconotide (Prialt), el cual fue aprobado por la USFDA en 2004 para tratar el dolor. Este compuesto se extrajo originalmente del caracol marino *Conus magus* y su mecanismo de acción involucra un bloqueo de canales de calcio tipo N en los nervios primarios nociceptivos de la médula espinal (Malve, 2016).

4. PREGUNTA DE INVESTIGACIÓN

¿Cuál es el perfil químico del extracto metanólico-acuoso de Millepora complanata?

5. HIPÓTESIS

El extracto metanólico-acuoso de *Millepora complanata* contiene compuestos hidrocarbonados polihidroxilados, monoterpenos, diterpenos, beta-carbolinas y aminoácidos tipo micosporina.

6. OBJETIVOS

6.1 Objetivo General

6.1.1 Caracterizar el perfil químico del extracto metanólico-acuoso de *Millepora complanata*

6.2 Objetivos específicos

6.2.1 Construir una base de datos espectrométricos especializada para el análisis, mediante Cromatografía Líquida de Ultra Rendimiento acoplada a Espectrometría de Masas (CLUR-EM), de metabolitos provenientes de especies del *Phylum* Cnidaria

6.2.2 Analizar un extracto metanólico-acuoso (70:30) obtenido a partir de *M. complanata* mediante CLUR-EM a fin de detectar el mayor número posible de metabolitos primarios y secundarios

7. MATERIALES Y MÉTODOS

7.1 Recolección de los especímenes

Mediante inmersiones de buceo (4-10 m de profundidad) se realizó la recolección de fragmentos de *M. complanata* (permiso de recolecta PFP/DGOPA-139/15) en el Parque Nacional Arrecife de Puerto Morelos, Quintana Roo, México (21°00'00" y 20°48'33" latitud Norte y 86°53'14.40" y 86°46'38.94" longitud Oeste). Los especímenes se recolectaron cortando las puntas de las ramas de colonias con forma laminar, con una distancia mínima de 10 m entre las colonias, con el objetivo de asegurar la diversidad genética entre las muestras. Las muestras se congelaron inmediatamente con nitrógeno líquido y fueron transportadas al Laboratorio de Investigación Química y Farmacológica de Productos Naturales de la Universidad Autónoma de Querétaro.

7.2 Preparación de los extractos de metanol al 70% en agua a partir de los especímenes de los hidrocorales

Los extractos metanólicos acuosos (70:30) se obtuvieron a partir de cinco fragmentos de material orgánico con un área de 1 cm² de los hidrocorales mediante el método de raspado. Se sonicaron durante 15 min, posteriormente se mezclaron con vórtex por 1 min. Las muestras se agitaron por 24 h con un agitador MR-12 de Biosan a 10,000 rpm a 4 °C. Transcurridas 24 h, las muestras se centrifugaron durante 10 min a 5,000 rpm. El sobrenadante se resuspendió en metanol y se repetió el proceso de agitación (24 h) para obtener la mayor cantidad de muestra posible. Después de la segunda extracción, las muestras se volvieron a centrifugar para recolectar el sobrenadante. Los sobrenadantes obtenidos fueron filtrados utilizando filtros Amicon de 0.5 micras. El metanol fue eliminado por arrastre usando nitrógeno líquido. Una vez que las muestras quedaron libres de metanol, se colocaron en el ultracongelador y se liofilizaron. Las cinco muestras de extracto se mezclaron para realizar el análisis mediante CLUR-EM.

7.3 Construcción de la base de datos

La base de datos se diseñó por medio de la compilación de los compuestos previamente caracterizados pertenecientes al *Phylum* Cnidaria, obtenidos de la Base de Datos Exhaustiva de Productos Naturales Marinos, CMNPD por sus siglas en inglés (https://cmnpd.org/), así como aquellos productos naturales aislados de organismos marinos de la clase Hydrozoa, obtenidos de la base de datos PubChem (https://pubchem.ncbi.nlm.nih.gov/). También se añadieron metabolitos encontrados en *Millepora complanata* por medio de un análisis de Resonancia Magnética Nuclear realizado por nuestro grupo de estudio y metabolitos de interés como Aminoácidos esenciales y Aminoácidos tipo micosporina, obtenidos igualmente de la base de datos PubChem, las moléculas se obtuvieron en un formato SDF y se compilaron por medio del programa Progenesis QI (Waters, USA) obteniendo un total de 5,767 moléculas.

7.4 Análisis espectroscópico mediante cromatografía de líquidos de ultra rendimiento (CLUR-EM) del extracto metanólico-acuoso (70:30) obtenido a partir de *M. complanata*

El análisis del extracto metanólico-acuoso (70:30) obtenido a partir de *M. complanata* se llevó a cabo mediante cromatografía de líquidos de ultra rendimiento (UPLC, por sus siglas en inglés) acoplada a un espectrómetro de masas de tiempo de vuelo cuádruple (MSE-QTOF) con una interfase de ionización por electropulverización (ESI) (Vion; Waters Co, Milford, EE.UU) Se inyectó 3.0 μ L de muestra de extracto en una columna Acquity UPLC BEH C18 (2.1 x 150 mm, 1.7 μ m). Las condiciones cromatográficas y de ionización se llevaron a cabo según lo descrito por Farag *et al.* (Farag *et al.*, 2016). Se aplicó un gradiente binario de elución descrito en la Tabla 2, con una fase móvil A: H₂O + 0.1 % ácido fórmico y una fase móvil B: ACN + 0.1 % de ácido fórmico. El volumen de inyección fue de 10 μ L. Los compuestos eluidos se detectaron de 50 a 1500 m/z utilizando un espectrómetro de masas de tiempo de vuelo cuádruple (QTOF) con polaridad

negativa y positiva. Se utilizaron los ajustes del instrumento presentados en la Tabla 3.

Tiempo (min)	Flujo (mL/min)	% A	% B
Inicial	0.30	95.0	5.0
3.00	0.30	95.0	5.0
15.00	0.30	75.0	25.0
17.00	0.30	75.0	25.0
25.00	0.30	0.0	100.0
27.00	0.30	0.0	100.0
34.00	0.30	95.0	5.0
35.00	0.30	95.0	5.0

Tabla 3. Ajustes del instrumento utilizados para cada polaridad

Polaridad	ES -	ES +
Modo del analizador	Modo W	Modo V
Voltaje del capilar (kV)	2.2	3.0
Cono de muestreo (V)	40	35
Cono de extracción (V)	4.0	3.5
Temperatura de la fuente (°C)	120	120
Temperatura de desolvatación (° C)	300	300
Flujo en cono muestreo (L/h)	0.0	0.0
Flujo de gas de desolvatación (L/h)	600.0	600.0
Resolución low-mass	4.7	4.7
Resolución high-mass	15.0	15.0
Energía de colisión de trampa	6.0	6.0
Energía de colisión de transferencia	4.0	4.0
Flujo en la fuente (mL/min)	0.0	0.0
Flujo en la trampa (mL/min)	1.5	1.5
Detector	1850	2200

8. RESULTADOS Y DISCUSIÓN

8.1 Construcción de la base de datos

Debido a la gran deficiencia de bases de datos libres especializadas en organismos marinos, la construcción de una base de datos específica para este estudio fue de gran importancia para la obtención de resultados confiables y precisos. Se compilaron compuestos previamente identificados en *M. complanata* por nuestro grupo de trabajo, así como, aminoácidos esenciales y especializados, como es el caso de los aminoácidos tipo micosporina (MAAs). También se añadieron todos los compuestos identificados y reportados de organismos del *Phylum* Cnidaria, disponibles en la base de datos CMNPD (https://cmnpd.org/). A partir de la recopilación de compuestos se generó una base de datos que incluyó un total de 5,767 moléculas (Figura 12).

Figura 12. Construcción de base de datos. 5,767 moléculas que incluyen PNM aislados de organismos del *Phylum* Cnidaria, Aminoácidos esenciales (AAs), Aminoácidos tipo micosporina (MAAs) y moléculas reportadas de la clase Hydrozoa y de *Millepora complanata*.

8.2 Análisis espectroscópico mediante UHPLC-MS² ESI del extracto metanólico acuoso (70:30) de *M. complanata*

Mediante el análisis por UHPLC-MS² ESI del extracto metanólico acuoso de *M. complanata* se pre-identificaron un total de 1370 entidades químicas. En el modo de ionización positiva se detectaron 1083 iones moleculares de los cuales 562 se pre-identificaron y de estos 90 se aceptaron. Mientras que, en el modo de ionización negativa se detectaron 287 iones moleculares de los cuales 147 se pre-identificaron y, únicamente, 14 se aceptaron. Los gráficos de las Figuras 13 y 14 muestran los iones moleculares más abundantes de las muestras analizadas tanto en modo de ionización positivo como negativo.

Figura 13. Cromatograma de la muestra MCN en modo ESI (+).

El criterio de aceptación de los iones identificados corresponde a un puntaje otorgado por los parámetros medibles a través del análisis espectroscópico: precisión de masa 20%, patrón isotópico 20%, patrón de fragmentación 20%, tiempo de retención 20% y colisión cross section 20%. Mediante las bases de datos añadidas al sistema propio del Laboratorio Nacional de Genómica para la Biodiversidad (LANGEBIO) se realizó el análisis comparativo de los parámetros: precisión de masa 20%, patrón isotópico 20% y patrón de fragmentación 20%, otorgando un puntaje máximo del 60%, cuando el ion obtenido fue 100% equivalente al registrado en la base de datos. El puntaje mínimo para la aceptación de un compuesto se estableció como 45. Mientras que para la base de datos construida únicamente se contó con los parámetros: precisión de masa 20%, dando un puntaje máximo de 40%. El puntaje mínimo se estableció como 35 en el caso de los compuestos que presentaron concordancia con esta base de datos.

8.2.1 Compuestos identificados en el extracto metanólico acuoso (70:30) de *M. complanata*

Con base en los criterios presentados, se identificaron 104 compuestos en el extracto metanólico acuoso (70:30) del hidrocoral *M. complanata* por medio del análisis mediante UHPLC-MS² ESI (+) y (-). Los compuestos identificados incluyeron terpenos (72 %), aminoácidos (4 %), tanto esenciales como tipo micosporina, macrólidos (3 %), purinas (2 %), derivados de acetileno (2 %), péptidos (2 %), alcaloides (2 %) y otros (13 %), en esta última clasificación se encuentran compuestos como ácidos carboxílicos, lactonas, pirazinas, derivados de naftaleno, amidas grasas, linderazulenos, entre otros (Figura 15).

Figura 15. Análisis de la naturaleza química del extracto metanólico acuoso de *M. complanata.*

8.2.1.1 Terpenos

Se han encontrado numerosos terpenos y terpenoides en organismos marinos, particularmente, en cnidarios, moluscos y esponjas (Leal *et al.*, 2012). Este grupo de compuestos químicos es el más estudiado entre los Productos Naturales Marinos (Rocha *et al.*, 2011). Un gran número de terpenos han mostrado actividad biológica y farmacólogica y algunos de ellos han sido desarrollados como fármacos para el tratamiento de algunas enfermedades. Tal es el caso del paclitaxel (Taxol) purificado originalmente a partir de la corteza del árbol del tejo (*Taxus brevifolia*), un agente antimicrotubular que se utiliza en el tratamiento de diversos tipos de cáncer (Perveen y Al-Taweel, 2018; Alqahtani *et al.*, 2019).

Los terpenos y sus derivados constituyen el mayor grupo de compuestos encontrados en el extracto metanólico acuoso de *M. complanata*, representando un 72 % del total de los compuestos identificados. Este numeroso grupo está compuesto principalmente por esteroides, sesquiterpenos, diterpenos, y triterpenos (Figura 16).

8.2.1.1.1 Sesquiterpenos

Los sesquiterpenos y sus derivados son una importante clase de productos naturales con un amplio rango de actividades biológicas, como agentes defensivos o feromonas. Estos compuestos son comúnmente encontrados en organismos terrestres (p.e. plantas, hongos e insectos) (Perveen y Al-Taweel, 2018). Su ocurrencia en el ambiente marino es muy notable debido las actividades ecológicas y farmacológicas que se ha descrito que poseen. De hecho, los sesquiterpenos marinos y sus derivados representan importantes candidatos de productos naturales en el descubrimiento y desarrollo de nuevos fármacos (Elissawy *et al.*, 2015; Le Bideau*et al.*, 2017; Choudhary *et al.*, 2017). A partir del

análisis realizados en el presente trabajo, se logró identificar la posible presencia de 23 productos naturales pertenecientes a este grupo. En las Tablas 4 y 5 se presentan los sesquiterpenos que se identificaron en el extracto metanólico acuoso (70:30) de *M. complanata,* mediante UHPLC-MS² en modalidad ESI (+) y ESI (-), respectivamente.

Tabla 4. Sesquiterpenos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (+)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
1	(1aS,4S,4aR,7R,7aR,7bS)-4- metoxi-1,1,4,7-tetrametil- 1a,2,3,4a,5,6,7a,7b- octahidrociclopropa[h]azulen-7- ol	$C_{16}H_{28}O_2$	M+Na	275.1935	Sesquiterpeno	Aromadendrano
2	(1S)-7-metoxi-1,6-dimetil-4- propan-2-il-1,2-dihidronaftaleno	$C_{16}H_{22}O$	M+H-2H ₂ O	195.1553	Sesquiterpeno	
3	(3aS,3bS,5S,6aR,7aS)-3,3- dimetil-4-metilideno- 2,3a,3b,5,6,6a,7,7a-octahidro- 1H-ciclopenta[a]pentalen-5-ol	C14H22O	M+K	245.1306	Sesquiterpeno	Triquinano
4	acetato de 2-[4-(acetiloximetil)- 2,2,6-trimetil-1,3-dihidroinden- 5-il]etil	$C_{19}H_{26}O_4$	M+2Na-H	363.1560 8	Sesquiterpeno	
5	2-hidroxi-5-metoxi-6-metil-3- [(2R)-6-metilhept-5-en-2- il]ciclohexa-2,5-dien-1,4-diona	$C_{16}H_{22}O_{4}$	M+Na	301.1393 73	Sesquiterpeno	
6	7-epi-lemnalactona	$C_{15}H_{22}O_2$	M+FA-H	279.1623	Sesquiterpeno	Lactónico
7	ainigmaptilona A	C ₁₆ H ₂₄ O ₂	M+H-H2O, M+H, M+H- 2H2O	249.1789	Sesquiterpeno	
8	armatina C	$C_{16}H_{26}O_{3}$	M+H-H ₂ O	249.1786	Sesquiterpeno	
9	capillobenzofuranol	$C_{23}H_{30}O_4$	M+H-2H ₂ O	335.2011	Sesquiterpeno	
10	flavalina C	$C_{16}H_{24}O_{3}$	M+K	303.1367	Sesquiterpeno	Nardosinano
11	guaiacofina	C15H22O	M+Na	241.1595	Sesquiterpeno	
12	kelsoenetiol	$C_{15}H_{24}S$	M+H-H ₂ O	219.1536	Sesquiterpeno	Kelsoano
13	metoxiamericanólido G	C ₁₆ H ₂₀ O ₃	M+H-2H ₂ O	225.1276	Sesquiterpeno	Guaiano
14	nardosinanol G	C ₁₆ H ₂₄ O ₄	M+H-2H ₂ O, M+K, M+2Na- H	319.1297	Sesquiterpeno	
15	nardosinanol I	$C_{16}H_{24}O_5$	M+H-H ₂ O	279.1641	Sesquiterpeno	
16	paralemnolina G	C ₁₇ H ₂₄ O ₄	M+K	331.1299	Sesquiterpeno	

17	paralemnolina V	C ₁₈ H ₂₈ O ₄	M+H-H ₂ O	291.2000	Sesquiterpeno
18	paratirsoidina F	$C_{16}H_{26}O_5$	M+CH₃OH+H	331.2138	Sesquiterpeno
19	shageno A	C ₁₈ H ₂₆ O ₃	2M+K	619.3321	Sesquiterpeno
20	taenialactama B	$C_{15}H_{21}NO_2$	2M+ACN+Na	558.3341	Sesquiterpeno

Tabla 5. Sesquiterpenos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (-)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
21	1-monoacetato de curcuhidroquinona	$C_{17}H_{24}O_3$	M+Na-2H	297.1523	Sesquiterpeno	
22	laevinol E	$C_{14}H_{20}O_3$	M+FA-H	281.1418	Sesquiterpeno	
23	metoxicolorenona	$C_{16}H_{26}O_2$	M+FA-H	295.1902	Sesquiterpeno	
18	paratirsoidina F	C ₁₆ H ₂₆ O ₅	M-H ₂ O-H	279.1623	Sesquiterpeno	

El sesquiterpeno (1aS,4S,4aR,7R,7aR,7bS)-4-metoxi-1,1,4,7-tetrametil-1a,2,3,4a,5,6,7a,7b-octahidrociclopropa[h]azulen-7-ol (**1**), también denominado aloaromadendranodiol fue aislado del coral blando *Sinularia maxima*, recolectado en la Isla Havelock en el Océano Índico (Anjaneyulu *et al.*, 1995).

De la especie *Lemnalia cervicornis*, un coral blando australiano, Bowden y colaboradores aislaron y determinaron la estructura de 11 sesquiterpenos, entre ellos el (1S)-7-metoxi-1,6-dimetil-4-propan-2-il-1,2-dihidronaftaleno (**2**) ó (1S)-7-metoxi-1,2-dihidrocadaleno, el cual tiene una estructura base similar a la del calameneno. Hasta la fecha no hay registro de su actividad biológica. (Bowden *et al.*, 1986; Wu *et al.*, 2018).

Los corales blandos del género *Capnella* son ricas fuentes de sesquiterpenos con esqueleto capnelano, como es el caso del compuesto (3aS,3bS,5S,6aR,7aS)-3,3dimetil-4-metilideno-2,3a,3b,5,6,6a,7,7a-octahidro-1H-ciclopenta[a]pentalen-5-ol (**3**) también conocido como $\Delta^{9(12)}$ -capnellen-8β-ol, aislado del extracto de acetona y cloruro de metileno de *Capnella imbricata* (Chang *et al.*, 2008; Lai *et al.*, 2023). El compuesto acetato de 2-[4-(acetiloximetil)-2,2,6-trimetil-1,3-dihidroinden-5-il]etil (4) o 4,12-Bis(acetil)alciopterosina O, pertenece al grupo de las alcyopterosinas, las cuales tienen un núcleo de iludalano. Dicho PNM fue aislado a partir del extracto de acetona del coral blando de la Antártica, *Alcyonium grandis*. Se determino su fórmula molecular como C₁₉H₂₆O₄ mediante HRESIMS con un ion molecular a m/z 341.1718 calculado para el aducto [M + Na]⁺ (Carbone *et al.*, 2009).

El sesquiterpeno bisabolano 2-hidroxi-5-metoxi-6-metil-3-[(2R)-6-metilhept-5-en-2il]ciclohexa-2,5-dien-1,4-diona (5) se encontró por primera vez en un extracto de cloruro de metileno:metano del coral gorgonaceo *Pseudopterogogia rígida*. Anteriormente, ya se había descrito dicho sesquiterpeno como un compuesto semisintético (Joseph-Nathan *et al.*, 1993; Georgantea *et al.*, 2016).

Del coral australiano, *Paralemnalia digitifomis*, se aisló el PNM 7-epi-lemnalactona
(6). Se determinó su fórmula molecular como C₁₅H₂₂O₂ (Ahond *et al.*, 1979).

A partir del extracto de acetona del coral antárctico *Ainigmaptilon antarcticus*, se aisló el sesquiterpeno de tipo eudesmano, ainigmaptilona A (7). Su fórmula molecular, $C_{15}H_{22}O_2$, y su ion molecular a m/z 234.1621 fueron corroboradas por espectrometría de masas de alta resolución con ionización por impacto electrónico (Iken y Baker, 2003).

El-Gamal y colaboradores aislaron 5 nuevos sesquiterpenos de tipo nardosinano del extracto de cloruro de metileno del coral blando *Nephthea armata*, recolectado en Taiwán, entre ellos la armatina C (**8**). Mediante el análisis espectroscópico se dedujo la fórmula molecular $C_{16}H_{26}O_3$ que coincide con los resultados obtenidos en el presente trabajo (El-Gamal *et al.*, 2004).

A partir del extracto de acetona del coral blando *Sinularia capillosa,* se aisló el sesquiterpeno capillobenzofuranol (**9**), se obtuvo la fórmula general C₂₃H₃₀O₄ con un ion molecular a m/z 393.2038 obtenido a partir del aducto [M + Na]⁺, mediante

espectrometría de masas de alta resolución con ionización por electrospray (HRESIMS). También se analizó su posible actividad antiinflamatoria y antiviral, sin mostrar resultados significativos (Chen *et al.*, 2010).

Por otra parte, de una especie del género *Lemnalia*, *Lemnalia flava*, se aisló el sesquiterpeno de tipo nardosinano, flavalina C (**10**), a partir del extracto de acetato de etilo del coral blando. Los análisis mediante HRESIMS mostraron un ion molecular a m/z 287.1622 a partir del aducto [M + Na]⁺, lo que indica una formula molecular C₁₆H₂₄O₃ para el producto natural marino (Lu *et al.*, 2011).

A partir del extracto de acetato de etilo del coral blando *Sarcophyton glaucum*, residente de la región Indo-Pacífica, se aisló el sesquiterpeno guaiacofina (**11**), cuya fórmula molecular es $C_{15}H_{22}O$ (Feller *et al.*, 2004). Este compuesto mostró efecto citotóxico contra las líneas celulares de leucemia (P-338), cáncer de pulmón(A-549), adenocarcinoma colorectal (HT-29) y melanoma (MEL28). La guaiacofina también ha sido encontrada como un metabolito del coral blando *Sarcophyton* sp., recolectado en la costa del Mar Rojo, Jeddah, Arabia Saudita. El análisis mediante espectrometría de masas corroboró la fórmula molecular $C_{15}H_{22}O$ (Alorfi, H., 2014).

El kelsoenetiol (**12**) se obtuvo a partir de coral blando *Nephthea erecta* recolectado en Isla Verde, Taiwan. Cheng y colaboradores determinaron su fórmula molecular como C₁₅H₂₄S, la cual concuerda con los datos obtenidos en el presente estudio. Los mismos autores evaluaron la actividad antitumoral del kelsoenetiol contra las líneas celulares de cáncer de pulmón (A-549), leucemia (P-388) y adenocarcinoma de colon (HT-29), el sesquiterpeno mostró citotoxidad moderada contra P-388 y HT-29 con valores EC₅₀ de 1.3 y 1.8 µg/mL respectivamente (Cheng *et al.*, 2014).

El sesquiterpeno metoxiamericanólido G (13) fue aislado por Rodríguez y Boulanger en 1997 a partir del extracto de hexano del coral gorgonaceo *Pseudopterogorgia americana* recolectado en Puerto Rico. Se estableció su fórmula molecular mediante espectrometría de masas de alta resolución con

ionización por impacto electrónico (HREIMS) como C₁₆H₂₂O₃ con el ion molecular a m/z 262.1572 (Rodríguez y Boulanger, 1997).

A partir del coral *Lemnalia africana* recolectado en Fundu, Tanzania, se aislaron los nardosinanoles G (**14**) e I (**15**). Mediante el análisis con espectrometría de masas de alta resolución con ionización química (HRCIMS) se obtuvo la fórmula molecular C₁₆H₂₃O₃ y una m/z de 263.1639 con el aducto [M + H - H2O]⁺ para el nardosinasol G y la fórmula molecular C₁₆H₂₄O₅ y una m/z de 279 con el aducto [M + H - H2O]⁺ para el nardosinasol I (Bishara *et al.* 2008; Abdelhafez *et al.*, 2021).

En 2007, Huang y colaboradores aislaron seis nuevos sesquiterpenoides de tipo neolemnano, las paralemnolinas D-I, a partir del extracto de acetato de etilo del coral blando Paralemnalia thyrsoides, recolectado en Taiwán. La paralemnolina G (16) presentó un pico molecular a m/z 315.1573 con un aducto [M + Na]⁺ y la fórmula molecular, C17H24O4, consistente con los resultados obtenidos en el presente trabajo (Huang et al., 2007). Posteriormente, en 2018, Phan y colaboradores aislaron 2 nuevos sesquiterpenoides tipo nardosinanos, la paralemnolina V (17) y la paralemnolina W, a partir del extracto metanólico de un espécimen de Lemnalia sp. La fórmula molecular de la paralemnolina V se determinó como C₁₈H₂₈O₄ por HR-ESI-MS con un ión molecular a m/z 331.1884 con el aducto [M + Na]⁺. Dicho metabolito se examinó contra 8 cepas de bacterias patogénicas Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 11775), Bacillus cereus (ATCC 11778), Yersinia enterocolitica (ATCC 23715), Listeria monocytogenes (ATCC 12932), Salmonella typhimurium (ATCC 13311), Salmonella enteritidis (ATCC 13076) y Pseudomonas aeruginosa (ATCC 10145), pero mostró una inhibición muy pequeña (MIC > 250 µg/MI). También se examinó a la paralemnolina V contra 7 cepas marinas de hongos y mostró actividad contra L. thermophilum (MIC 25 µg/mL) (Phan et al., 2018).

El serquiterpeno paratirsoidina F (**18**) fue aislado a partir del extracto de acetona del coral blando *Paralemnalia thyrsoides*. Mediante espectrometría de masas de

alta resolución (HRESIMS) se estableció su fórmula molecular como C₁₆H₂₆O₅ con un ion molecular a m/z 303.1573 para el aducto [M + Na]⁺. De manera adicional, se evaluó su actividad citotóxica contra la proliferación de un panel limitado de líneas celulares de cáncer, que incluían leucemia linfocítica de ratón (P-388), adenocarcinoma humano de colon (HT-29) y carcinoma epitelial humano de pulmón (A-549), obteniendo como resultado un valor EC₅₀ de 3.31 µg/mL contra la línea célula P-388 (Huang *et al.*, 2007).

El sesquiterpeno shageno A (**19**) fue aislado del extracto de diclorometano de un coral blando no descrito previamente, el cual fue recolectado en el Arco de las Antillas Australes en el océano Antártico. El análisis mediante HREIMS atribuyó la fórmula molecular, C₁₈H₂₆O₃, con un ion molecular a m/z 290.1878. Este compuesto resultó ser activo contra el parásito causante de la leishmaniasis visceral, *Leishmania donovani*, con un valor IC₅₀ de 5 µM, sin mostrar citotoxicidad contra el mamífero hospedante a una concentración de 100 µg/mL (Von Salm *et al.*, 2014).

El producto natural marino taenialactama B (**20**) fue aislado por Cheng y colaboradores a partir del extracto etanólico de *Cespitularia taeniata*. Se dedujo su fórmula molecular mediante HRESIMS como $C_{15}H_{21}NO_2$ con un ion molecular a m/z 248.1648 con el aducto [M + H]⁺ (Cheng *et al.*, 2009).

El sesquiterpeno 1-monoacetato de curcuhidroquinona (**21**) fue aislado del coral tipo pluma *Pseudopterogorgia americana*. Mediante espectrometría de masas con ionización por impacto electrónico (EIMS) se obtuvo su fórmula molecular, $C_{17}H_{24}O_3$, con un ion molecular a m/z 276.1723 (Miller *et al.*, 1995).

El laevinol E (**22**) es un sesquiterpeno aislado del coral blando *Lemnalia laevis*, a partir del estudio químico de su extracto de diclorometano. A partir de la interpretación de los datos de HREIMS y RMN se le atribuyó la fórmula molecular $C_{14}H_{20}O_3$ (El-Gamal *et al.*, 2005).

El sesquiterpeno metoxicolorenona (**23**) fue asilado del coral blando *Nephthea chabrolii*, a partir de un extracto de acetona y metanol (1:1). Mediante técnicas espectrométricas se obtuvo su fórmula molecular, C₁₆H₂₆O₂, con el ion molecular a una m/z 251 correspondiente a un aducto [M + H]⁺. Los autores del artículo mencionan que es probable que estos compuestos sean sintetizados por algas marinas simbiontes asociadas al coral (Handayani *et al.*, 1997).

8.2.1.1.2 Diterpenos

De manera particular, los diterpenos aislados del *Phylum* Cnidaria son compuestos farmacológicamente interesantes ya que a algunos de ellos se le ha demostrado actividades antimicrobiana, antiviral, antiparasitaria, anticáncerosa y antiinflamatoria (Mariottini, 2016; Laguionie-Marchais, *et al.*, 2021; Mostafa *et al.*, 2022). En el presente trabajo se logró identificar la posible presencia de 29 productos naturales pertenecientes a este grupo. En Tablas 6 y 7 se presentan los diterpenos que se identificaron en el extracto metanólico-acuoso de *M. complanata* mediante UHPLC-MS² en modalidad ESI (+) y ESI (-), respectivamente.

Tabla 6. Diterpenos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (+)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
24	(1S,2S,5R,6S,9S)-2-[(6,8- dihidroxipurin-9-il)metil]-9,11,11- trimetilltriciclo[4.3.2.01,5]undecan- 3-ona	$C_{20}H_{26}N_4O_3$	M+CH₃OH+H	403.2348	Diterpeno	
25	(2S,3S,4R,5S,6S)-2-[[(5R,8S)-1- hidroxi-3,8-dimetil-5-[(2S)-6- metilhept-5-en-2-il]-5,6,7,8- tetrahidronaftalen-2-il]oxi]-6- metiloxano-3,4,5-triol	C ₂₆ H ₄₀ O ₆	M+H, M+Na	449.2856	Diterpeno	Serrulatano
26	(Z)-sarcodictyina A	$C_{28}H_{36}N_2O_6$	M+ACN+H	538.2955	Diterpeno	
27	acetato de [(1R,3S,5S,6S,12S,15S)-6-cloro-5- hidroxi-15-(2-hidroxipropan-2-il)- 12-metil-9-metilideno-2- oxatriciclo[10.3.0.01,3]pentadecan- 5-il]metil	C ₂₂ H ₃₅ CIO ₅	M+Na, M+K	437.2025	Diterpeno	Dolabellane

28	acetato de [(1R,4E,7S,8Z,10E,14R)-1,5,11- trimetil-8-propan-2-il-15- oxabiciclo[12.1.0] pentadeca- 4,8,10-trien-7-il]	$C_{22}H_{34}O_3$	M+H-2H2O, M+H	347.2520	Diterpeno	Cembrano
29	1-epi-leptocladólido A	$C_{21}H_{28}O_6$	M+CH₃OH+H	409.225373	Diterpeno	(nor) Cembrano
30	asbestinina 4	C ₂₆ H ₃₈ O ₇	M+ACN+H	504.2926	Diterpeno	
31	brassicoleno	$C_{22}H_{32}O_2$	M+Na	351.2299	Diterpeno	Cembrano
32	briaranólido I	C ₂₆ H ₃₂ O ₉	M+K	527.1614	Diterpeno	Lactona
33	corabocina	C ₂₂ H ₃₄ O ₂	2M+NH ₄	678.5447	Dterpeno	
34	chabrolonaftoquinona A	C ₂₇ H ₃₂ O ₄	M+NH₄, M+ACN+Na	484.2904	Diterpeno	
35	diacetato de sarcofitol H	C ₂₄ H ₃₆ O ₄	M+H-H₂O, M+H	371.2485	Diterpeno	Cembrano
36	elisabetina C	$C_{18}H_{28}O_2$	M+H-H ₂ O	259.2043	Diterpeno	Elisabetano
37	éster de briareolato N	$C_{33}H_{50}O_9$	M+NH₄, M+Na	613.353632	Diterpeno	Briarano
38	frajunólido F	C ₂₈ H ₃₅ ClO ₁₂	M+ACN+H	640.2294	Diterpeno	Briarano
39	grandilobatina A	$C_{21}H_{36}O_4$	M+H, M+CH₃OH+H	385.2314	Diterpeno	Cembrano
40	hirsutalina F	$C_{28}H_{44}O_8$	M+ACN+Na	572.3263	Diterpeno	
41	lobofilina A	$C_{20}H_{32}O_3$	M+H-H₂O, M+H	321.2314	Diterpeno	Cembrano
42	manaarenólido A	$C_{20}H_{32}O_6$	M+K	407.1881	Diterpeno	Cembrano
43	pseudopterano B	C ₃₉ H ₅₆ O ₈	M+2Na-H	697.3598	Diterpeno	
44	sarcodictiina E	C ₂₈ H ₃₆ N ₂ O ₇	M+NH ₄	530.2862	Diterpeno	Alcohol
45	sarcofitonólido E	$C_{20}H_{32}O_3$	M+2Na-H	365.2069	Diterpeno	
46	simplexina H	$C_{28}H_{46}O_9$	M+H-H ₂ O	509.3075	Diterpeno	Eunicelano
47	sinularólido B	$C_{20}H_{28}O_5$	M+H-H ₂ O	331.1951	Diterpeno	Cembrano
48	sinulerectol A	$C_{21}H_{26}O_8$	M+NH ₄	424.1888	Diterpeno	Cembrano
49	xenimanadina A	$C_{23}H_{36}O_5$	M+H-H₂O, M+CH₃OH+H	375.2562	Diterpeno	

Tabla 7. Diterpenos identificados en el extracto metanólico acuoso (70:30) de M. *complanata* mediante UHPLC-MS² ESI (-)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
50	briareina K	$C_{38}H_{64}O_{6}$	M+Na-2H	637.4369	Diterpeno	Lactónico
51	excavatólido Q	$C_{24}H_{30}O_9$	M+CI	497.1569	Diterpeno	Briarano

39	grandilobatina A	$C_{21}H_{36}O_4$	M+FA-H	397.2626	Diterpeno	Cembranoide
52	grandilobatina B	$C_{20}H_{32}O_3$	M+Na-2H	341.2092	Diterpeno	Cembranoide

El diterpeno de tipo cembranoide (1S,2S,5R,6S,9S)-2-[(6,8-dihidroxipurin-9il)metil]-9,11,11-trimetilltriciclo[4.3.2.01,5]undecan-3-ona (**24**) fue aislado de un espécimen de *Nephthea brassica* proveniente de Taiwán y se distingue por presentar un fragmento de metilenciclopropano (Duh *et al.*, 2000; Faulkner, J., 2001).

El análisis químico del extracto de metanol:dicloro metano de especímenes del coral *Pseudopterogorgia elisabethae,* recolectado en el Caribe Colombiano, dió como resultado la purificación del diterpeno (2S,3S,4R,5S,6S)-2-[[(5R,8S)-1-hidroxi-3,8-dimetil-5-[(2S)-6-metilhept-5-en-2-il]-5,6,7,8-tetrahidronaftalen-2-il]oxi]-6-metiloxano-3,4,5-triol (**25**), el cual posee una fórmula molecular C₂₅H₃₈O₆ y un pico molecular a m/z 434.

El diterpeno (Z)-sarcodictyina A (**26**) fue aislado del coral blando japonés *Bellonella albiflora* a partir de un extracto etanólico. Se estableció la fórmula molecular de la (Z)-sarcodictyina A como C₂₈H₃₆N₂O₆ y una m/z de 497 mediante el aducto [M + H]⁺ empleando espectrometría de masas de alta resolución con ionización por bombardeo por átomos rápidos (HRFABMS). El extracto etanólico del coral *Bellonella albiflora* mostró una potente citotoxicidad contra la línea celular de cáncer cervical HeLa y, mediante un estudio químico biodirigido se demostró que el diterpeno (Z)-sarcodictyina A es el principal responsable de la actividad citotóxica con un IC₅₀ de 90 ng/mL (Nakao *et al.*, 2003).

El compuesto acetato de [(1R,3S,5S,6S,12S,15S)-6-cloro-5-hidroxi-15-(2-hidroxipropan-2-il)-12-metil-9-metilideno-2-oxatriciclo[10.3.0.01,3]pentadecan-5-il]metil (**27**) es un derivado acetilado del clavinflol B, un diterpeno de tipo dolabeno aislado del coral blando tailandés *Clavularia inflata*. Mediante HREIMS se estableció la fórmula molecular C₂₂H₃₅O₅Cl con un ion molecular a m/z 362.2375 de dicho derivado (Shen *et al.*, 2003).

En 1994, Greenland y Bowden aislaron e identificaron el diterpeno de tipo cembranoide acetato de [(1R,4E,7S,8Z,10E,14R)-1,5,11-trimetil-8-propan-2-il-15-oxabiciclo[12.1.0] pentadeca-4,8,10-trien-7-il] (**28**), también nombrado por los autores (7R,8R,14S,1E,3E,11E)-14-acetoxi-7,8-epoxicembra-I,3,11-trieno a partir del extracto de cloruro de metileno del coral *Sarcophyton trocheliophorum* recolectado en la Gran Barrera de Coral, Australia. Por medio de HR-MS se estableció C₂₂H₃₄O₃ como su fórmula molecular con un ion molecular a m/z 346.2508. También se estudió su actividad citotóxica sobre líneas celulares de cáncer y se encontraron los siguientes valores de IC₅₀, de 2.5 μg/mL para leucemia murina (P388), 5 μg/mL para carcinoma humano de pulmón (A549), 10 μg/mL para carcinoma humano de colon (HT29) y 10 μg/mL para melanoma humano (MEL28) (Greenland y Bowden, 1994). Este producto natural había sido reportado previamente como un derivado semisintético del sarcofitol A (Kobayashi *et al.*, 1988).

El diterpenoide de tipo norcembrano 1-epi-leptocladólido A (**29**), isómero del leptocladolido A, fue aislado a partir del extracto de acetato de etilo del coral *Sinularia parva*. Mediante HRFABMS se obtuvo una m/z a 377.1996 con el aducto [M + H]+ lo cual permitió establecer la fórmula molecular del diterpeno como C₂₁H₂₈O₆. Adicionalmente, se realizó un ensayo para conocer su actividad citotóxica contra líneas celulares de carcinoma epitelial humano (KB) y carcinoma hepatocelular (Hepa59T/VGH), dando como resultado una actividad citotóxica débil en ambas líneas, con valores EC₅₀ de 15.1 y 14.5 µg/mL, respectivamente (Ahmed *et al.*, 2003).

A partir del extracto metanólico del coral gorgonaceo, *Briareum asbestinum*, se aisló el diterpeno asbestinina 4 (**30**). Mediante espectrometría de masas de alta resolución (HRMS) se obtuvo la fórmula molecular $C_{26}H_{38}O_7$ con una m/z observada de 402.2426 (Stierle *et al.*, 1980).

Un estudio químico biodirigido del extracto de cloruro de metileno del coral blando *Nephthea brassica*, para el cual se había demostrado actividad citotóxica, dio como resultado el aislamiento del diterpenoide brassicoleno (**31**). Mediante un análisis HREIMS se determinó su fórmula molecular $C_{22}H_{32}O_2$ con un ion molecular a m/z 328.2390. Dicho compuesto exhibió actividad citotóxica contra la líneas celulares de cáncer pulmonar (A-549) y leucemia linfocítica (P-388) con valores de EC₅₀ de 3.62 y 0.86 µg/mL, respectivamente (Duh *et al.*, 2000). En 2021, se identificó al brassicoleno como componente principal del extracto etanólico de la microalga roja *Gelidium latifolium*, después de haber sido comprobada la actividad citotóxica de dicho extracto contra la línea celular de melanoma murino B16-F10, la presencia de dicho diterpenoide se asocia potencialmente a la actividad citotóxica del extracto de *G. latifolium* (Prasedya *et al.*, 2021).

El diterpenoide briaranólido I (**32**) se aisló del coral gorgonaceo *Briareum* sp. Se determinó su fórmula molecular como C₂₆H₃₂O₉ y su ion molecular 505.2063 con el aducto [M + H]⁺ (Hoshino *et al.*, 2005).

El diterpeno corabocina (**33**) fue aislado en 1982 por Schwartz y Scheuer a partir de una especie de coral gorgonaceo *Corallium* sp., también conocido como "coral rosa". En dicho trabajo de investigación únicamente se elucidó la estructura de la corabocina mediante RMN (Schwartz y Scheuer, 1982).

Sheu y colaboradores aislaron del extracto etanólico del coral blando *Nephthea chabrolii* al novedoso derivado de naftoquinina, la chabrolonaftoquinona A (**34**). El análisis mediante espectrometría de masas permitió establecer una fórmula molecular C₂₇H₃₂O₄ que coincide con el análisis realizado en el presente trabajo (Sheu *et al.*, 2004).

El cembranoide diacetato de sarcofitol H (**35**) fue aislado del coral blando Sarcophyton glaucum por Kobayashi y Osabe en 1989. El diacetato de sarcofitol H fue reportado con la fórmula molecular $C_{24}H_{36}O_4$ y una m/z 388.26 (Kobayashi y

Osabe, 1989). Su análogo, el sarcofitol A, ha mostrado actividad antitumoral y potente actividad inhibitoria contra varias clases de promotores tumorales, incluso se demostró que dicho compuesto adicionado a la dieta inhibió el desarrollo espontaneo del tumor en órganos como el hígado, las mamas y el timo (Yang *et al.*, 2014).

A partir del extracto de metanol/cloroformo del coral gorgonaceo *Pseudopterogorgia elisabethae* recolectado en la Isla de San Andrés, Colombia, se aisló el bisnor-diterpenoide elisabetina C (**36**). Mediante HREIMS se obtuvo su fórmula molecular, C₁₈H₂₈O₂ y una m/z 276.2078. Adicionalmente se realizó un ensayo *in vitro* para determinar su actividad biológica contra *Mycobacterium tuberculosis* H37Rv, en el cual elisabetina C mostró una inhibición del 42 % a una concentración de 12.5 µg/mL (Rodríguez *et al.*, 1998).

El éster de briareolato N (**37**), un diterpeno de tipo briarano, fue aislado del coral gorgonaceo *Briareum asbestinum*. Mediante técnicas espectoscópicas el éster de briareolato N mostró un ion molecular $[M + Na]^+$ a m/z 613.3350, correspondiente a la fórmula molecular C₃₃H₅₀O₉ (Gupta *et al.*, 2011).

La investigación química del extracto de acetona del octocoral *Junceella fragilis*, dio como resultado el aislamiento del diterpeno tipo briarano, el frajunólido F (**38**). Mediante HRESIMS se detectó un ion molecular a m/z 621.1717 con el aducto [M + Na]⁺, consistente con la fórmula molecular C₂₈H₃₅ClO₁₂ (Liaw *et al.*, 2008).

En 2008, Ahmed y colaboradores aislaron 5 nuevos cembranoides, las grandilobatinas A-E, del extracto etanólico del coral blando *Sinularia grandilobata*. Las grandilobatinas A (**39**) y B (**52**), El grupo de Ahmed y colaboradores mostró, mediante HRESIMS, que la gandilobatina A tenía una fórmula molecular C₂₁H₃₆O₄ con un ion molecular a m/z 375.2514 y la grandilobatina B tenía una fórmula C₂₀H₃₂O₃ con un ion molecular a m/z 343.2250, ambas con un aducto [M + Na]⁺. Se elucidó su estructura mediante Infrarrojo (IR) y RMN. También se evaluó su citotoxicidad contra el crecimiento de las líneas celulares de carcinoma hepático

(Hep G2), mama (MCF-7 y MDA-MB-23) y pulmón (A549), mostrándose inactivas ante las células cancerígenas (Ahmed *et al.*, 2008).

Chen y colaboradores aislaron del extracto de acetona del coral blando *Cladiella hirsuta* 8 diterpenoides con estructura base eunicelina, entre ellos la hirsutalina F (**40**). Sus estructuras fueron elucidadas por métodos espectroscópicos y se determinó su fórmula molecular mediante espectrometría de masas, C₂₈H₄₄O₈. También se evaluó la toxicidad de los metabolitos contra un panel de 6 líneas celulares de cáncer, hirsutalina F mostro citotoxicidad débil contra cáncer hepático (Hep G2 y Hep 3B) y cáncer de mama (MCF-7) con valores de IC₅₀ de 29, 29 y 32 µM, respectivamente (Chen *et al.*, 2010).

A partir del extracto de acetato de etilo del coral blando *Lobophytum* sp., Hegazy y colaboradores aislaron el diterpeno de tipo cembranoide lobofilina A (**41**). Este metabolito exhibió un pico molecular protonado por medio de HRESIMS a m/z 343.2251 con un aducto [M + Na]⁺, estableciéndose una fórmula molecular C₂₀H₃₂O₃. También se evaluó el efecto de este diterpeno sobre la proliferación de líneas celulares de cáncer, pero no mostró ningún efecto citotóxico (IC₅₀ > $20\mu g/mL$) (Hegazy *et al.*, 2011).

El manaarenólido A (**42**), un diterpeno de tipo cembrano, fue aislado a partir del extracto de acetato de etilo del coral blando *Sinularia manaarensis*. El espectro de HRFABMS mostró un ion molecular a m/z 369.2274 con el aducto [M + H]⁺, consistente con la fórmula molecular C₂₀H₃₂O₆. También se elucidó su estructura y se estudió su actividad citotóxica frente a las líneas celulares Hepa59T/VGH, KB, Hela y Med, sin mostrar resultados de importancia (Su *et al.*, 2006).

El pseudopterano B (**43**) fue aisado a partir del extracto de acetato de etilo y diclorometano del coral blando *Pseudopterogorgia acerosa*. Mediante HRMS se obtuvo la fórmula molecular C₃₉H₅₆O₈ con una m/z de 675.3854 calculada para [M + Na]⁺. Este compuesto fue sometido a una prueba de inhibición con un panel de proteínas tirosina fosfatasa, en la cual resultó ser activa contra PTP1B, la

inhibición de esta proteína ha demostrado, mediante estudios genéticos y farmacológicos, tener efectos beneficiosos en modelos animales de diabetes, obesidad y cáncer (Kate *et al.*, 2008).

El alcohol diterpénico sarcodictiina E (**44**) fue aislado del extracto etanólico al 95 % del coral *Sarcodictyon roseum* por D'Ambrosio y colaboradores en 1988, como parte de su trabajo anterior de 1987. En el artículo se muestran únicamente datos refrentes a la elucidación de su estructura (D'Ambrosio *et al.*, 1987; D'Ambrosio *et al.*, 1988).

Jia y colaboradores aislaron del coral blando *Sarcophyton latum* al cembranólido sarcofitonólido E (**45**), a partir de un extracto de acetona. Mediante técnicas espectrométricas se obtuvo su fórmula molecular $C_{20}H_{32}O_3$ y un ion molecular a m/z 320. Adicionalmente se probó la citotoxicidad de este diterpeno contra las líneas celulares tumorales A-549 y HL-60, resultando ser inactivo a una concentración de 20 µg/mL (Jia *et al.*, 2006). Posteriormente en 2018, se realizó un nuevo ensayo de citotoxicidad en el cual se evaluó la inhibición del crecimiento de células humanas de leucemia (HL-60) y el sarcofitonólido E mostró actividad con un valor de IC₅₀ de 33.0 µM (Takamura *et al.*, 2018).

La simplexina H (**46**) es un diterpenoide de tipo eunicelano aislado por Wu y colaboradores a partir del extracto de acetato de etilo del coral *Klyxum simplex*. Se determinó la fórmula molecular de este compuesto como $C_{28}H_{46}O_9$ y un ion molecular a m/z 549.30 por medio de HRESIMS (Wu *et al.*, 2009).

El diterpeno sinularólido B (47) fue aislado por primera vez en 2005 por Li y colaboradores a partir del extracto metanólico del coral blando *Sinularia gibberosa* recolectado a partir del arrecife de corales situado en la isla Hainan, China. El sinularólido B es un diterpeno cembranoide que se caracteriza por contener en su estructura química un α -metileno- γ -lactona. Su fórmula molecular se determinó como C₂₀H₂₈O₅ con un ion molecular a m/z 371.18. Pruebas *in vitro* se realizaron para conocer su actividad citotóxica ante las líneas celulares HL-60, Bel-7402 y

Hela, en dichas pruebas el sinularólido B mostró moderada citotoxicidad con valores de IC_{50} de 5.2, 6.3 y 8.0 µg/mL para cada línea celular (Li *et al.*, 2005). Este diterpeno cembranoide también se ha aislado del extracto de acetona de un espécimen del coral *Lobophytum* sp (Chen *et al.*, 2008).

El diterpeno norcembranoide, sinulerectol A (**48**), fue aislado del extracto de acetato de etilo del coral blando *Sinularia erecta*, recolectado en la isla de corales Dongsha Atoll, Taiwán. Se estableció su fórmula molecular, C₂₁H₂₆O₈, mediante HRESIMS con el ion molecular a m/z 429.1528 y el aducto [M + Na]⁺. Adicionalmente, se probó su actividad antiinflamatoria midiendo su habilidad de suprimir la generación del anión super óxido (O₂⁻⁻) inducido por fMLP/CB y la liberación de elastasa en neutrófilos humanos. Como resultado se obtuvo un efecto inhibitorio significativo (100%, IC₅₀ = 2.3 µM) en la generación del anión superóxido a una concentración de 10 µM, una actividad de inhibición potente (113 %; IC₅₀ = 0.9 µM) contra la liberación de elastasa (Huang *et al.*, 2016).

El Producto Natural Marino xenimanadina A (**49**) fue aislado del extracto metanólico de un espécimen del coral blando *Xenia* sp. Se estableció su fórmula molecular como C₂₃H₃₆O₆ mediante HREIMS con un ion molecular a m/z 390.2418 con el aducto [M - H2O]. En ensayos de citotoxicidad, no mostró actividad significativa (Fattorusso *et al.*, 2008).

El diterpeno briareina K (**50**) fue aislado del octocoral gorgonáceo *Briareum asbestinum* recolectado en la Isla Mona, Puerto Rico. Con datos de HRFABMS se estableció la fórmula general C₃₈H₅₆O₁₄ con un ion molecular a m/z 759.3563 con el aducto [M + Na]⁺ (Rodríguez *et al.*, 1996).

El diterpeno de tipo briarano, excavatólido Q (**51**), fue aislado a partir del extracto de diclorometano del coral gorgonáceo australiano *Briareum excavatum*. Mediante HRMS se obtuvo la fórmula molecular C₂₄H₃₆O₉, con un ion molecular a m/z 462.1880. Se estudió su actividad citotóxica contra un panel de líneas celulares de cáncer que incluyó leucemia murina (P388), carcinoma de pulmón humano (A549),

carcinoma de colon humano (HT29) y melanoma humano (MEL28), mostrando valores de IC₅₀ de 5, 10, 10 y 10 μ g/ml, respectivamente (Neve *et al.*, 1999).

8.2.1.1.3 Triterpenos

Los triterpenos son un grupo importante de metabolitos secundarios debido a su gran diversidad. Su estructura primaria tiene una gran cantidad de grupos metilo que pueden ser oxidados a alcoholes, aldehídos y ácidos carboxílicos, dando lugar a moléculas diferentes y complejas biológicamente (Perveen y Al-Taweel, 2018). El análisis del extracto metanólico acuoso de *M. complanata* indicó la posible presencia de un derivado triterpenoide y 16 compuestos de naturaleza esteroidal. En la Tabla 8 se presentan los triterpenos que se identificaron en el extracto metanólico acuoso de *M. complanata*.

Tabla 8. Triterpenos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS²

No.	Compuesto	Fórmula	Aductos	m/z	Clase
53	polimaxenólido B	C ₃₆ H ₄₈ O ₆	M+H	577.3518	Triterpeno

El polimaxenólido B (**53**) es un metabolito secundario obtenido a partir del coral híbrido *Sinularia maxima* × *S. polydactyla* que se caracteriza por su esqueleto cembrano-africanano. Se determinó su fórmula molecular, $C_{36}H_{48}O_6$, mediante HRESIMS, con un ion molecular a m/z 577.3346 a partir de un aducto [M + H]⁺ (Kamel *et al.*, 2009).

8.2.1.1.3.1 Esteroides

Los esteroides son un grupo de metabolitos secundarios derivados de los triterpenos, tienen una gran diversidad estructural y función biológica. Estos productos naturales tienen gran aplicación en el área de la medicina y su búsqueda continua para encontrar potenciales compuestos líder para el descubrimiento y desarrollo de nuevos fármacos (Sultán, 2015). Los esteroides

tienen dos funciones biológicas principales: a) son componentes importantes de la membrana celular y b) constituyen moléculas de señalización (Perveen y Al-Taweel, 2018). A los esteroides también se les ha demostrado actividad antibacteriana, citotóxica, antiparasitaria, antiinflamatoria, entre otras (Jiang *et al.*, 2019; Ermolenko *et al.*, 2020; Xu *et al.*, 2023). En las Tablas 9 y 10 se presentan los esteroides que se identificaron en el extracto metanólico-acuoso de *M. complanata* mediante UHPLC-MS² en modalidad ESI (+) y ESI (-), respectivamente.

Tabla 9. Esteroides identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (+)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
54	(22R,23R,24R)-22,23-metilen- 23,24-dimetil-9,11-secocolest-5- en-9-ona-3β,11-diol	$C_{30}H_{50}O_3$	M+Na, M+ACN+H	481.3623	Esteroide	
55	3-O-acetilhirtioesterol	$C_{31}H_{50}O_5$	M+H-2H ₂ O	467.3548	Esteroide	Éster
56	5α-pregna-1,20-dien-3-ona	C ₂₁ H ₃₀ O	M+K	337.1962	Esteroide	Pregnano
57	acetato de [(1R,3S,3'S,4S,5S,7R,8S,10S,13S ,14S,16S,18S,19R,21R,22R)-7- acetiloxi-3,21-dihidroxi- 2',2',3',5,19- pentametilespiro[17,20- dioxahexaciclo[14.5.1.01,14.04, - 13.05,10.019,22]docosano-18,5'- oxolan]-8-il]	$C_{32}H_{48}O_9$	M+H-2H ₂ O	541.3166	Esteroide	
58	acetato de [(2S,3S)-2- [(1R,2S,5S,6R,9S,10S,12R,13R,1 5R)-13,15-dihidroxi-5-metil-19- oxapentaciclo[10.5.2.01,13.02,10. 05,9]nonadecan-6-il]-6- metilheptan-3-il]	C29H48O5	M+H-2H ₂ O	441.3390	Esteroide	Colestano
59	acetato de [(3S,5R,6R,8S,9S,10R,11S,12R,1 3R,14S,17R)-3,5,6,11-tetrahidroxi- 10,13-dimetil-17-[(1R)-1-[(1R,2R)- 2-metil-2-[(2R)-3-metilbutan-2- ii]ciclopropil]etil]- 1,2,3,4,6,7,8,9,11,12,14,15,16,17- tetradecahidrociclopenta[a]fenantr en-12-il]	C ₃₂ H ₅₄ O ₆	M+ACN+Na	598.4030	Esteroide	Gorgostano

60	acetato de [(3S,7S,8S,10R,11S,12S,13R,15S ,17R)-11-acetiloxi-3,7,12-trihidroxi- 10,13-dimetil-17-[(1R)-1-[(1R,2R)- 2-metil-2-[(2R)-3-metilbutan-2- il]ciclopropil]etil]- 2,3,4,7,8,9,11,12,14,15,16,17- dodecahidro-1H- ciclopenta[a]fenantren-15-il]	C34H54O7	M+ACN+H	616.4082	Esteroide	Gorgostano
61	astrogorgol A	C ₂₆ H ₃₈ O ₂	M+2Na-H	427.2533	Esteroide	Secoesteroide
62	chabroloesteroide G	C ₂₈ H ₄₂ O ₄	M+H, M+2Na- H	443.3255	Esteroide	
63	escleroesteroide I	$C_{29}H_{46}O_{6}$	M+ACN+H	532.3591	Esteroide	Glicosilado
64	gorgostan-5,25-dien-3b-ol	C ₃₀ H ₄₈ O	M+CH ₃ OH+H	457.4012	Esteroide	Pregnano
65	hirsutoesterol G	$C_{29}H_{46}O_5$	M+ACN+H	516.3686	Esteroide	Colestano
66	isogosterona B	C ₂₉ H ₄₂ O ₇	M+H, M+NH4, M+Na	525.2898	Esteroide	Secoesteroide
67	metil-23-hidroxi-3-oxocola-4,6- dien-24-o	$C_{25}H_{36}O_4$	M+H, M+2Na-H	445.3037	Esteroide	
68	metil (E,4S)-4- [(8S,9S,10R,13R,14S,17R)-10,13- dimetil-3-oxo- 6,7,8,9,11,12,14,15,16,17- decahidrociclopenta[a]fenantren- 17-il]pent-2-enoato	C25H34O3	M+H-H ₂ O	365.2492	Esteroide	Pregnano
69	nanjiol A	$C_{31}H_{46}O_{6}$	M+Na	537.3177	Esteroide	Colestano
70	palitoalona A	C ₂₈ H ₄₆ O ₈	M+NH ₄	528.3500	Esteroide	
71	petasitoesterona A	C ₂₅ H ₃₄ O ₄	M+Na	421.2342	Esteroide	Pregnano

Tabla 10. Esteroides identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (-)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
72	(22E)-24,26-ciclo-19-norcolesta- 1,3,5(10),22-tetraen-3-ol	C ₂₆ H ₃₆ O	M+FA-H	409.2764	Esteroide	Colasteno
73	(4aS,8S)-4a,8-dimetil-5,6,7,8- tetrahidronafthalen-2-ona	C ₁₂ H ₁₆ O	M+FA-H, 2M+FA-H	397.2627	Esteroide	
74	17α-pregna4,20-dien-3-ona	C ₂₁ H ₃₀ O	M+FA-H	343.2286	Esteroide	Pregnano
75	krempeno C	$C_{21}H_{32}O_2$	M-H ₂ O-H	297.2213	Esteroide	Pregnano

El esteroide (22R,23R,24R)-22,23-metilen-23,24-dimetil-9,11-secocolest-5-en-9ona-3β,11-diol (**54**) o, también encontrado en la literatura como 9,11-secorgost-5en-9-ona-3β,11-diol, fue aislado del coral gorgonaceo del Caribe, *Pseudopterogorgia hummelinkii* por Schultz y colaborabores en 1995. Tanto en el estudio previo, como en el presente trabajo de investigación, se determinó una formula molecular del esteroide como C₃₀H₅₀O₃ (Schultz *et al.*, 1995).

En 2018, Wu y colaboradores aislaron un nuevo esteroide denominado 3-Oacetilhirtioesterol (**55**) a partir del extracto etanólico (95 %) del coral blando *Dendronephthya gigantea* recolectado en el arrecife de corales de Meishan en la provincia de Hainan, China. Por medio de técnicas espectrométricas se obtuvo su fórmula molecular, C₃₁H₅₀O₅, y un ion molecular a m/z 525.35 con el aducto [M + Na]⁺ (Wu *et al.*, 2018).

El esteroide 5 α -pregna-1,20-dien-3-ona (**56**) fue aislado y reportado por primera vez en1977 por Higgs y Faulkner a partir del extracto metanólico de un coral blando no identificado recolectado en la Isla Canton, Kiribati. Mediante HRMS se obtuvo su fórmula molecular C₂₁H₃₀O. En 1999, Kittakoop y colaboradores reportaron su aislamiento a partir del coral blando *Scleronephthya pallida* (Kittakoop *et al.*, 1999). Posteriormente, en 2014, Kuo y colaboradores también aislaron e identificaron al esteroide 5 α -pregna-1,20-dien-3-ona en el extracto de acetato de etilo del coral *Scleronephthya flexilis* y evaluaron su actividad citotóxica contra células humanas de leucemia, incluyendo leucemia linfoblástica aguda (MOLT-4), leucemia promielítica aguda (HL-60) y leucemia miolegénica crónica (K-562), dando como resultado valores de IC₅₀ de 2.15, 3.14 y 8.32 µg/mL, respectivamente. Se determinó que la inhibición del crecimiento por parte del esteroide está mediada por la inducción de apoptosis (Kuo *et al.*, 2014).

El compuesto con nombre IUPAC acetato de [(1R,3S,3'S,4S,5S,7R,8S,10S,13S,14S,16S,18S,19R,21R,22R)-7-acetiloxi-3,21dihidroxi-2',2',3',5,19-pentametilespiro[17,20-dioxahexaciclo[14.5.1.01,14.04, -13.05,10.019,22]docosano-18,5'-oxolan]-8-il] (**57**) se aisló a partir del extracto con n-hexano y cloruro de metileno del coral gorgonaceo *Isis hippuris*. Este compuesto forma parte del grupo de esteroides altamente oxigenados denominados hippuristanoles. Por medio de HREIMS se estableció la fórmula molecular
$C_{32}H_{48}O_9$ y un ion molecular a m/z 576.33. En pruebas de citotoxicidad el esteroide mostró una leve actividad inhibitoria contra la línea celular de carcinoma de mama (MCF-7) con un valor de IC₅₀ de 11.39 µg/mL (Chao *et al.*, 2005).

El oxiesteroide, acetato de [(2S,3S)-2-[(1R,2S,5S,6R,9S,10S,12R,13R,15R)-13,15dihidroxi-5-metil-19-oxapentaciclo[10.5.2.01,13.02,10.05,9]nonadecan-6-il]-6metilheptan-3-il] (**58**) fue aislado por Cardoso-Martínez y colaboradores a partir del extracto de acetona de un espécimen de *Gorgonia* sp. recolectado en la Isla Aleta, Panamá. Mediante técnicas espectroscópicas se determinó su fórmula molecular, $C_{29}H_{48}O_5$, y el ion molecular a m/z 499.3386 con el aducto [M + Na]⁺. A dicho esteroide se le comprobó actividad leishmanicida contra promastigotes de *Leishmania infantum*, la cual se produjo al reducir la multiplicación de los promastigotes en un 56.4 % a una concentración de 100 µM (Cardoso-Martínez *et al.*, 2016).

Wang y colaboradores aislaron del coral blando del Mar del Sur de China, *Sarcophyton* sp., 7 esteroides polioxigenados, entre ellos el acetato de [(3S,5R,6R,8S,9S,10R,11S,12R,13R,14S,17R)-3,5,6,11-tetrahidroxi-10,13-dimetil-17-[(1R)-1-[(1R,2R)-2-metil-2-[(2R)-3-metilbutan-2-il]ciclopropil]etil]-1,2,3,4,6,7,8,9, 11,12,14,15,16,17-tetradecahidrociclopenta[a]fenantren-12-il] (**59**), a partir de un extracto de acetona. Dicho esteroide se caracteriza por tener un anillo de ciclopropano como cadena lateral. Mediante HRESIMS se obtuvo la fórmula molecular C₃₂H₅₄O₆. También fueron probadas sus propiedades antibacteriana, antifúngica y alguicida mediate un ensayo de difusión en agar dando como resultado la inhibición de crecimiento de la bacteria Gram-negativa, *Escherichia coli*, la bacteria Gram-positiva, *Bacillus megaterium*, y los hongos, *Microbotryum violaceum* y *Septoria tritici*, pero no mostró actividad contra el alga verde *Chlorella fusca* (Wang *et al.*, 2013).

Otro esteroide polioxigenado fue aislado a partir del extracto de acetona del coral gorgonáceo *Isis hippuris* y después de elucidar su estructura química fue

denominado acetato de [(3S,7S,8S,10R,11S,12S,13R,15S,17R)-11-acetiloxi-3,7,12-trihidroxi-10,13-dimetil-17-[(1R)-1-[(1R,2R)-2-metil-2-[(2R)-3-metilbutan-2il]ciclopropil]etil]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahidro-1H-

ciclopenta[a]fenantren-15-il] (**60**) o gorgost-5-eno-3b,7a,11a,12b,15a-pentol-11,15diacetato. Este esteroide presentó una fórmula molecular C₃₄H₅₀O₅ y un ion molecular a m/z 538.36 mediante HREIMS. Dicho compuesto fue puesto a prueba en un ensayo de actividad anti-MDR (resistencia a múltiples fármacos) de líneas celulares de cáncer resistentes a fármacos (KB 3-1, KB C2 y KB CV60), en la cual mostró actividad potente contra KB C2 (Tanaka *et al.*, 2002).

El 9,10-secoesteroide, astrogorgol A (**61**), se aisló de un espécimen del coral *Astrogorgia* sp. a partir de un extracto de acetato de etilo. Mediante HRESIMS se le asignó la fórmula molecular $C_{26}H_{38}O_2$, con una m/z a 405.2762 a partir del aducto [M+Na]⁺ (Lai *et al.*, 2011).

El esteroide chabroloesteroide G (**62**) fue aislado e identificado a partir del extracto etanólico del coral blando *Nephthea chabrolii*. Se determinó su fórmula molecular, $C_{28}H_{42}O_4$, y ion molecular a m/z 465.29 con el aducto [M + Na]⁺ por medio de HRESIMS. En el estudio de su actividad citotóxica contra líneas celulares de cáncer de hígado (Hep G2 y Hep 3B), de mama (MCF-7 y MDA-MB-231) y pulmón (A-549) no mostró resultados relevantes (Su *et al.*, 2007).

El escleroesteroide I (**63**), un esteroide tipo pregnano, fue aislado del extracto etanólico del coral blando *Scleronephthya gracillimum*. Mediante HRESIMS se determinó su fórmula molecular $C_{29}H_{46}O_6$ con una m/z 513.3192 a partir del aducto [M + Na]⁺. Adicionalmente, la toxicidad el esclerosteroide I se evaluó contra seis líneas celulares de cáncer, incluyendo hepatoma (Hep G2 y Hep 3B), cáncer de mama (MDA-MB-231 y MCF-37), cáncer de pulmón (A-549) y cáncer gingival (Ca9-22). El esteroide mostró valores IC₅₀ de 37.4, 31.5, 30.8, 28.9, 0 y 30.1 μ M, respectivamente, el valor 0 indica inactividad (Fang *et al.*, 2012).

El esteroide gorgostan-5,25-dien-3b-ol (**64**) fue aislado del extracto de cloruro de metileno/metanol (1:1) del coral blando del Mar Rojo, *Lobophytum lobophytum*, en 2015 por Hegazy y colaboradores. El análisis en modo de ion positivo por HR-ESI-FT-MS mostró una fórmula molecular C₃₀H₄₈O (Hegazy *et al.*, 2015).

A partir del extracto de acetona del coral blando *Cladiella hirsuta*, se aisló el esteroide polioxigenado hirsutoesterol G (**65**). A través de un estudio espectroscópico extensivo se elucidó su estructura y, mediante HREIMS se estableció su fórmula molecular, $C_{29}H_{46}O_5$, exhibiendo un ion molecular a m/z 497.32 con el aducto [M + Na]⁺ (Chen *et al.*, 2011).

El secoesteroide, isogosterona B (**66**), fue aislado a partir del extracto metanólico de un espécimen de octocoral *Dendronephthya sp.* Tiene una fórmula molecular de C₂₉H₄₂O₇ que se obtuvo mediante HRFABMS con un ion molecular a 569.3127 calculado para el aducto (M + Na)⁺. Adicionalmente se realizó un ensayo para evaluar su actividad antiincrustante contra el asentamiento de *B. amphitrite*, el cual dio como resultado una actividad no letal para los cípridos del percebe, los cuales continuaron nadando sin adherirse al sustrato (Tomono *et al.*, 1999a).

En 1996, Guerriero y colaboradores aislaron a partir del extracto metanólico (95%) de coral *Deltocyathus magnificus*, 8 esteroides tipo 3-keto ácido cólico, entre ellos el metil-23-hidroxi-3-oxocola-4,6-dien-24-o (**67**) ó metil(4R)-4-[(10R,13R,17R)-10,13-dimetil-3-oxo-1,2,8,9,11,12,14,15,16,17-

decahidrociclopenta[a]fenantren-17-il]-2-hidroxipentanoato. Se obtuvo la fórmula molecular C₂₅H₃₆O₄ con una m/z a 400.26 mediante HR-MS (Guerriero *et al.*, 1996).

A partir del extracto metanólico del octocoral *Dendronephthya* sp., se logró aislar un esteroide con un anillo A tipo enona, el metil (E,4S)-4-[(8S,9S,10R,13R,14S,17R)-10,13-dimetil-3-oxo-6,7,8,9,11,12,14,15,16,17decahidrociclopenta [a] fenantren-17-il]pent-2-enoato (**68**), o también conocido como metil 3-oxocola-1,4,22-trien-24-oato. Mediante HREIMS se determinó la fórmula molecular C₂₅H₃₄O₃ a una m/z 382.25. Al nuevo esteroide se le evaluó su actividad antiincrustante contra larvas y cípridos del percebe *Balanus amphitrite*, mostrando una considerable actividad antiincrustane contra los cípridos de *B. amphitre* (EC₅₀ 2.2 μg/mL), dicha actividad puede estar relacionada con el grupo funcional hemiacetal o acetal en el esqueleto del esteroide (Tomono *et al.*, 1999b).

El esteroide nanjiol A (**69**) fue aislado en 2002 por Shao y colaboradores a partir del extracto de acetona del coral blando chino *Nephthea bayeri*. La fórmula de dicho metabolito secundario se dedujo mediante HRESIMS como $C_{31}H_{46}O_6$ con un ion molecular a m/z 537.3196 a partir de aducto [M + Na]⁺. La actividad citotóxica del nanjiol A fue probada contra las líneas celulares de leucemia promielocítica humana (HL-60) y de carcinoma hepático (BEL 7404), sin resultar relevante (Shao *et al.*, 2022).

El ecdiesteroide palitoalona A (**70**) fue aislado del zoántido *Palythoa australiae*, a partir de un extracto metanólico. Su fórmula molecular se estableció mediante HRFABMS como C₂₈H₄₆O₈ con un ion molecular a m/z 511.3263 con el aducto [M + H]⁺. (Shigemori *et al.*, 1999). Los ecdiesteroides se han identificado como moléculas con un posible rol defensivo en los organismos que los sintetizan (Guillen *et al.*, 2019).

El esteroide petasitoesterona A (71) fue aislado y caracterizado a partir del extracto de acetato de etilo del coral blando Umbellulifera petasites por Huang y colaboradores en 2016. Mediante HRESIMS se encontró que el petasitoesterona A posee la fórmula molecular C₂₅H₃₄O₄ con un ion molecular registrado a m/z 421.2350 con el aducto [M + Na]⁺. La actividad citotóxica de dicho compuesto fue evaluada frente a un panel de líneas celulares de cáncer que incluyó células eritroleucemia humana (K-562), leucemia de Т (MOLT-4) y adenocarcinoma colorectal (DLD-1), dando como resultado la inhibición de crecimiento en la línea celular DLD-1 con un valor IC50 de 6.4 µg/mL (Huang et al., 2016).

El esteroide (22E)-24,26-ciclo-19-norcolesta-1,3,5(10),22-tetraen-3-ol (**72**) fue aislado del extracto de éter etílico del coral blando *Dendronephthya studeri* Ridley recolectado en Hainan, China. Su fórmula molecular fue deducida por HREIMS como $C_{26}H_{36}O$ con el ion molecular a m/z 364.2763 (Yan *et al.*, 2011).

El PNM (4aS,8S)-4a,8-dimetil-5,6,7,8-tetrahidronafthalen-2-ona (**73**), fue aislado por Cheng y colaboradores en 2009 a partir del extracto de acetona y metanol del coral blando *Nephthea erecta*. Se estableció su fórmula molecular como C₁₂H₁₆O con un ion molecular a m/z 176.1202 (Cheng *et al.*, 2009).

A partir del extracto de acetato de etilo del coral gorgonaceo *Subergorgia mollis* fue aislado el esteroide 17α -pregna4,20-dien-3-ona (**74**). Dicho compuesto había sido obtenido en otros estudios mediante transformaciones químicas (Julian *et al.*, 1948). Mediante técnicas espectrométricas y espectroscópicas se obtuvo la fórmula general del esteroide como C₂₁H₃₀O con un ion molecular a m/z 298.2306 (Wu *et al.*, 2004).

El esteroide de tipo pregnano krempeno C (**75**) se aisló del coral blando *Cladiella krempfi,* a partir de un extracto metanólico. La fórmula molecular de este compuesto se definió como $C_{21}H_{32}O_2$ con ion molecular a m/z 317.2475 de acuerdo con los datos del análisis HRFABMS (Huang *et al.*, 2006).

8.2.1.2 Alcoholes

Tabla 11. Alcohol identificado en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS²

No.	Compuesto	Fórmula	Aductos	m/z	Clase
76	alcohol p-vinilbencílico	C ₉ H ₁₀ O	M+H-H ₂ O	117.069	Alcohol

El alcohol p-vinilbencílico (**76**) fue aislado del extracto de acetato de etilo del coral blando *Caldiella australis*. Mediante EIMS se encontró que este producto natural posee la fórmula molecular C₉H₁₀O a m/z 134. Adicionalmente, se realizó la evaluación *in vitro* de su actividad citotóxica, mostrando actividad moderada contra la línea celular de carcinoma hepatocelular humano (Hep G2) con un valor de ED₅₀ de 9.2 µg/mL y citotoxicidad débil contra las líneas de cáncer de mama (MCF-7 y MDA-MB-231) con valores de ED₅₀ de 13.3 y 29.0 µg/mL, para cada línea celular (Ahmed *et al.*, 2006).

8.2.1.3 Aminoácidos

Tabla 12. Aminoácidos esenciales y no esenciales identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS²

No.	Compuesto	Fórmula	Aductos	m/z	Clase
77	ácido 5-hidroxi-4-[[5-hidroxi-5- (hidroximetil)-2-metoxi-3- oxociclohexen-1-il]amino] pentanoico (micosporina-glicina)	C ₁₃ H ₂₁ NO7	M+ACN+Na	367.1465	Aminoácido
78	ácido glutámico	C ₅ H ₉ NO ₄	M+H	148.0600	Aminoácido
79	treonina	C ₄ H ₉ NO ₃	M+H-H ₂ O	102.0548	Aminoácido
80	valina	$C_5H_{11}NO_2$	M+H-H ₂ O	100.0752	Aminoácido

En un estudio de etiquetado isotópico con ¹⁴C de D-glucosa y los aminoácidos, ácido glutámico, lisina y valina, en cinco corales escleractinios se logró identificar la presencia de 16 aminoácidos esenciales, a excepción de triptófano y cisteína, y tampoco se realizó la distinción entre ácido glutámico y glutamina, y ácido aspártico y asparagina (Fitzgerald y Szmant, 1997). Este resultado concuerda con el encontrado en el estudio del extracto metanólico acuoso de *M. complanata* ya que se identificaron los aminoácidos ácido glutámico (**78**), treonina (**79**) y valina (**80**).

8.2.1.3.1 Aminoácidos tipo micosporina (MAA)

Aminoácidos tipo micosporina han sido aislados e identificados en especies de cnidarios que mantienen una simbiosis con algas *Symbiodinium*, incluyendo corales hidrozoos, anémonas y corales gorgonaceos y esceractinios. Estos compuestos han sido obtenidos tanto en el hospedante, como en la fracción del simbionte. Los hospedantes contienen perfiles de MAA más simples, albergando de uno a tres MAA, principalmente micosporina-glicina, seguido de shinorina y porphyra-334 en cantidades más pequeñas (Banaszak *et al.*, 2006). De manera similar, en el análisis del extracto metanólico-acuoso de *M. complanata* se ha hecho la posible identificación del MAA micosporina-glicina.

La micosporina-glicina o ácido 5-hidroxi-4-[[5-hidroxi-5-(hidroximetil)-2-metoxi-3oxociclohexen-1-il]amino]pentanoico (**77**), fue aislado de un organismo del *Phylum* Cnidaria por primera vez, en un estudio sobre el coral escleractinio *Acropora Formosa* en 1986. Se identificó mediante espectrometría de masas y UV, a una m/z de 227 con el aducto [M - H₂O] y a una longitud de onda máxima de 310 nm (Dunlap y Chalker, 1986). Sin embargo, este compuesto también se ha encontrado en extractos del simbionte fotosintético *Symbiodinium* obtenido directamente de su cnidario hospedante (Banaszak *et al*, 2006). Lo que requeriría de diferentes técnicas de extracción para analizar si este aminoácido tipo micosporina es sintetizado por el coral hospedante, el alga fotosintética o el holobionte en conjunto.

8.2.1.4 Macrólidos

Los macrólidos son una familia de productos naturales con diversas estructuras, conteniendo un anillo macrolactama de 14, 15 o 16 miembros, y actividades biológicas, entre ellas citotóxica, antibacteriana, antifúngica, antimitótica, antiviral, entre otras, siendo la actividad citotóxica la más significativa (Zhang *et al.*, 2021). En la Tabla 13 se presentan los macrólidos que se identificaron en el extracto metanólico acuoso de *M. complanata* mediante UHPLC-MS².

Tabla 13. Macrólidos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (+)

No.	Compuesto	Fórmula	Aductos	m/z	Clase
81	fijianólido B	$C_{30}H_{42}O7$	M+ACN+H	556.3235	Macrólido
82	pateamina	C31H45N3O4S	M+H-2H ₂ O	520.2898	Macrólido
83	pelorúsido A	C ₂₇ H ₄₈ O ₁₁	M+H-2H ₂ O	513.3137	Macrólido

El fijianólido B (**81**) es un macrólido policétido aislado de la esponja marina *Spongia mycofijiensis*. Junto con el fijianolide A, son las primeras lactonas con un anillo de 20 miembros observadas de una esponja marina. La fórmula molecular del macrólido, C₃₀H₄₂O, fue deducida a partir de (FABMS) mediante el ion molecular m/z 513 con el aducto [M + H]⁺ (Quinoa *et al.*, 1988). En el mismo año, el fijianólido B, también llamado laulimálido, fue aislado nuevamente y evaluado para determinar su actividad citotóxica, el macrólido mostró una potente actividad citotóxica contra la línea celular de carcinoma epitelial (KB) con un valor de IC₅₀ de 15 ng/mL (Corley *et al.*, 1988). Un año más tarde, se dio a conocer que este compuesto tiene actividad estabilizante de microtúbulos tipo taxol, siendo menos potente que el paclitaxel pero más efectivo (Mooberry *et al.*, 1999).

La pateamina (**82**) es un PNM aislado del extracto de metanol y cloruro de metilo de la esponja marina *Mycale sp.* Se identificó el ion molecular a m/z 556.3199 en el espectro de masas HRFAB y se determinó su fórmula molecular como C₃₁H₄₅N₃O₄. También se determinó su actividad citotóxica frente a la línea celular de leucemia murina (P388), siendo este macrólido extremadamente potente, con un valor de IC₅₀ de 0.027 nmol/L, clasificada como una citotoxina (Northcote *et al.*, 1991). Posteriormente, se demostró que la pateamina induce apoptosis en varias líneas celulares de cáncer (Hood *et al.*, 2001a).

De manera similar al fijianólido B, el macrólido pelorúsido A (**83**) se aisló de una esponja marina de Nueva Zelanda, *Mycale* sp. Se estableció su fórmula molecular como C₂₇H₄₈O₁₁ a partir del ion molecular 571.308 26 con el aducto [M + Na]⁺

(West *et al.*, 2000). Después de diversos estudios se le atribuyó actividad estabilizante de microtúbulos tipo taxol y actividad citotóxica a concentraciones nanomolares (Hood *et al.*, 2001b; Hood *et al.*, 2002).

8.2.1.5 Péptidos

Tabla 14. Péptidos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS²

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
84	asparaginil-prolina	$C_9H_{15}N_3O_4$	M+CH₃OH+H	262.1397	Péptido	Dipéptido
85	gamma-L-glutamil-gamma-L- glutamil-L-metionina	C15H25N3O8S	M+Na	430.1312	Péptido	Oligopéptido

Algunos dipéptidos son conocidos por tener efectos en fisiológicos o en la señalización celular. El dipéptido asparaginil-prolina (84) fue detectado y reportado en el extracto metanólico acuoso de *M. complanata* por primera vez.

Los ácidos poli (gamma-ácido glutámico)s, como el péptido detectado en el extracto metanólico acuoso de *M. complanata*, gamma-L-glutamil-gamma-L-glutamil-L-metionina (**85**), se han estudiado por estar presentes como componentes principales en los nematocistos. Aparentemente, estos polianiones juegan un papel crucial en la generación y regulación de la presión osmótica de la cápsula de los nematocistos, dicha presión contribuye decisivamente a la explosiva descarga de las cápsulas (Weber, 1990).

8.2.1.6 Alcaloides

Los alcaloides son compuestos nitrogenados derivados de aminoácidos que tienen un amplio rango de actividades biológicas, en compuestos marinos como hongos, bacterias, esponjas, ascidios y cnidarios. Se ha reportado su actividad antiinflamatoria, antiparasitaria, citotóxica y antiretroviral (Wittine *et al.*, 2019; Souza *et al.*, 2020). En el análisis por UPLC-EM² se identificaron dos posibles compuestos perteneciente a este grupo, los cuales se muestran en la Tabla 15.

Tabla 15. Alcaloides identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS²

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
86	(+)-muriceidina C	$C_{23}H_{27}NO_3$	$M+NH_4$	383.2316	Alcaloide	Guaiazuleno
87	montipiridina	C17H25NO3	2M+NH ₄	600.4060	Alcaloide	Pirinico

El alcaloide guaiazuleno (+)-muriceidina C (**86**) fue aislado por Li y colaboradores a partir del extracto metanólico del coral gorgonaceo *Muriceides collaris,* recolectado en el Mar del Sur de China. Este alcaloide se caracteriza por el acoplamiento del guaiazuleno con una sal interna y se aisló como una mezcla racémica (±). Esta mezcla mostró fuerte citotoxicidad contra las líneas celulares de leucemia promielocítica (HL-60) y leucemia mieloide crónica (K562) con valores de IC₅₀ de 2.2 y 3.7 µM, respectivamente (Li *et al.*, 2017).

El alcaloide piridínico montipiridina (**87**) fue aislado del extracto metanólico de un espécimen del coral *Montipora* sp. Se obtuvo la fórmula molecular C₁₇H₂₅NO₃ y un ion molecular a m/z 292.1913 para el aducto [M + H]⁺, mediante HRFABMS. Este alcaloide mostró valores de ED₅₀ mayores a 30 µg/mL contra un panel de células de tumores sólidos humanos que incluyó: cáncer de pulmón (A549), cáncer de ovario (SK-OV-3), cáncer de cerebro y espina dorsal (XF498) y cáncer de colon (HCT15) (Alam *et al.*, 2001).

8.2.1.7 Otros compuestos

Tabla 16. Otros compuestos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (+)

No.	Compuesto	Fórmula	Aductos	m/z	Clase	Subclase
88	4-hidroxihexadec-15-en- 5,7-diin-2-ona	$C_{16}H_{22}O_2$	2M+K	531.2887	Acetileno	Diacetileno
89	montiporina E	C ₁₇ H ₂₃ NO	2M+ACN+Na	578.3705	Acetileno	
90	ácido montipórico D	C ₁₈ H ₂₄ O ₃	M+H-H ₂ O, M+2Na-H, M+H	289.1826	Ácido carboxílico	

91	ácido (E,6R)-6,7- dimetilhexadec-7-enoico	$C_{18}H_{34}O_2$	M+2Na-H	327.2266	Ácido graso	
92	metil 2-[(2- oxotetradecanoilamino) metil]prop-2-enoato	C ₁₉ H ₃₃ NO ₄	M+H, M+Na, M+H-H₂O	340.2520	Amida grasa	
93	caissarona +	C ₈ H ₁₂ N ₅ O+	M+H-2H ₂ O	159.0908	Aminopurina	
94	sinulólido F	$C_{15}H_{24}O_5$	M+H	285.1690	Ciclopentanona	Derivado
95	sinulólido G	$C_{13}H_{20}O_5$	M+CH₃OH+H	289.1704	Ciclopentanona	Derivado
96	(5R)-5-(hidroximetil)-5- metilfuran-2-ona	$C_6H_8O_3$	M+H-H ₂ O	111.0444	Lactona	Furanona
97	metil 1,5- dimetilazuleno[6,7-b]furan- 8-carboxilato	C ₁₆ H ₁₄ O ₃	M+Na	277.0844	Linderazuleno	
98	kanaftaleno A	$C_{20}H_{32}N_2O_4$	M+ACN+Na	428.2530	Naftaleno	Derivado
99	clavulazol B	$C_8H_{10}N_2O_2$	M+ACN+Na	230.0925	Pirazina	
100	3-metil-L-eritrobiopterina	$C_{10}H_{13}N_5O_3$	M+H	252.1058	Pterina	
101	3-metil-6-metilamino-2- metilimino-9h-purina	$C_8H_{12}N_6$	M+H	193.12357	Purina	
102	3-(2-aminoetil)-1H-indol-5- ol	C10H12N2O	M+NH4, M+ACN+Na, M+H-H2O	194.12669	Triptamina	Serotonina

Tabla 17. Otros compuestos identificados en el extracto metanólico acuoso (70:30) de *M. complanata* mediante UHPLC-MS² ESI (-)

No.	Compuesto	Fórmula	Aductos	m/z	Clase
103	ácido paraminábico C	C ₂₇ H ₃₈ O ₄	M-H ₂ O-H	407.2603	Ácido carboxílico
104	metil(7Z,10R,11E,13E,16Z,19Z) -10-hidroxidocosa- 7,11,13,16,19-pentaenoato	C ₂₃ H ₃₆ O ₃	M+Na-2H	381.2353	Ácido hidroxipolienoico

El diacetileno, 4-hidroxihexadec-15-en-5,7-diin-2-ona (**88**), fue aislado del extracto metanólico del coral escleractinio *Montipora* sp. Es un derivado de β-hidroxi acetona, similar a la montiporina J. El espectro obtenido por espectrometría de masas de bombardeo por átomos rápidos (FABMS) mostró un ion molecular a m/z 269 con el aducto [M + Na]⁺, correspondiente a la fórmula molecular C₁₆H₂₂O₂Na. El producto natural fue probado ante un pequeño panel de líneas celulares de cáncer humano que incluyó las líneas celulares de carcinoma humano de pulmón (A549), adenocarcinoma de ovario (SK-OV-3), melanoma humano (SK-MEL-2), glioblastoma humano (XF498) y cáncer colorrectal (HCT15) con los siguientes

valores de ED₅₀ de 6.20, 4.78, 3.85, 7.24 y 6.94 µg/m, respectivamente (Alam *et al.*, 2002).

El producto natural montiporina E (**89**) fue aislado del extracto metanólico de un espécimen de coral duro *Montipora* sp. Su fórmula molecular se estableció como C₁₇H₂₃NO mediante los datos obtenidos con HREIMS y RMN. El ion molecular fue observado a una m/z de 257.1783. Este compuesto acetilénico posee una lactama de siete miembros y una entidad ciclohexenona. En una prueba de actividad citotóxica mostró actividad moderada contra un panel de líneas celulares de tumores sólidos humanos que incluye cáncer de pulmón (A549), de ovario (SK-OV-3), de piel (SK-MEL-2), de cerebro y espina dorsal (XF498) y de colon (HCT15) con valores de ED₅₀ mayores a 50 µg/mL en cada línea (Bae *et al.*, 2000).

También, de una especie del género *Montipora, M. digitata*, fue aislado el ácido montipórico D (**90**), un ácido carboxílico poliacetilénico. Mediante HRESIMS se estableció su fórmula molecular como C₁₈H₂₄O₃, con un ion molecular a m/z 311.1596 para C₁₈H₂₄O₃Na. Adicionalmente, se analizó su actividad antibacteriana contra *Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Serratia marcescens, Micrococcus luteus, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus niger y Mucor hiemalis, mostrando actividad débil únicamente contra <i>B.subtilis* y *S. aureus.* También se probó su actividad antioxidante mediante el método del radical libre 2,2-difenil-1-picrilhidracilo (DPPH), dando como resultado una actividad inhibitoria débil del 35 % a una concentración de 1 mg/mL (Kodani *et al.*, 2013).

El ácido graso insaturado ácido (E,6R)-6,7-dimetilhexadec-7-enoico (**91**) fue aislado del extracto metanólico de un espécimen del coral de género *Sinularia*, recolectado en el arrecife de corales de la Isla Ishigaki, Okinawa, Japón. La fórmula molecular, $C_{18}H_{34}O_2$, se determinó mediante HRESIMS con el ion molecular a m/z 283.2633 y el aducto [M + H]⁺ (Watanabe *et al.*, 2008).

A partir del extracto de diclorometano:metanol (1:1) del coral blando Sinularia amida IUPAC dissecta se aisló la grasa con nombre metil 2-[(2oxotetradecanoilamino)metil]prop-2-enoato (92). La elucidación estructural de este compuesto se llevó a cabo mediante un análisis de RMN. Adicionalmente, el compuesto fue sometido a un ensayo de letalidad contra Artemia salina, en el cual mostro actividad leve con un valor de LC₅₀ de 175.14 ppm (Ramesh et al., 1999).

La purina caissarona (93), fue aislada del extracto de acetona de la anémona de mar *Bunodosoma caissarum*. Este producto marino tiene una alta actividad antagónica contra los receptores de adenosina del íleon de cobayo, dichos receptores estimulan la función intestinal (Cooper *et al.*, 1995).

Los compuestos derivados de ciclopentanona, los sinulólidos F (94) y G (95), fueron aislados de un extracto etanólico al 95 % del coral blando *Sinularia* sp recolectado en la Isla Dongluo, China (Yang el at, 2014). Mediante espectrometría de masas con ionización por impacto electrónico (ESIMS), para el sinulólido F se observó el ion molecular con m/z igual a 283 con un aducto [M - H]⁻, mientras que en el presente estudio se observó el ion molecular con m/z igual a 285 con un aducto [M + H] y fórmula molecular C₁₅H₂₄O₅. Por otra parte, para el sinulólido G se observó el ion molecular con m/z igual a 279 con un aducto [M + Na]⁺ y de manera similar, en la presente investigación, se observó el ion molecular a una m/z de 289 con el aducto [M+CH₃OH+H], obteniéndose la fórmula molecular C₁₃H₂₀O₅.

La furanona, (5R)-5-(hidroximetil)-5-metilfuran-2-ona (**96**), se aisló del coral blando *Sinularia nanolobata*, Se determinó su fórmula molecular como C₆H₈O₃ a partir del ion molecular a m/z 128 por medio de EIMS. Adicionalmente, se evaluó su actividad citotóxica frente a 6 líneas celulares de cáncer, incluyendo carcinoma epidermal oral humano (KB), carcinoma de hígado humano (Hepa59T/VGH), carcinoma pulmonar de células grandes (NCI-H661), carcinoma epitelial cervical (Hela), adenocarcinoma de colon humano (DLD-1) y meduloblastoma (Med). La

furanona sólo mostró actividad débil ante la línea celular NCI-H661, con un valor de ED₅₀ de 15.7 µg/mL (Ahmed *et al.*, 2004).

El metil 1,5-dimetilazuleno[6,7-b]furan-8-carboxilato (**97**) o 11carbometoxilinderazuleno es un compuesto linderazuleno aislado a partir de un extracto etanólico de un espécimen de coral gorgonáceo *Paramuricea* sp. El análisis mediante HRFABMS sugirió la fórmula molecular C₁₆H₁₄O₃ con un ion molecular a m/z 255.1033 y el aducto [M + H]⁺. Adicionalmente, se probó su actividad citotóxica *in vitro* contra las línea celulares de leucemia murina (P388) y cáncer pancreático (PANC-1), el linderazuleno mostró una actividad citotóxica moderada con un valor de IC₅₀ de 2.7 y 18.7 µg/mL, respectivamente (Reddy *et al.*, 2005).

El derivado de nafthaleno, kanaftaleno A (**98**), fue aislado a partir del extracto etanólico (95 %) del coral *Menella kanisa*. Mediante HRESIMS se estableció su fórmula molecular, C₂₀H₃₂N₂O₄, y su ion molecular a m/z 365.1956 para el aducto $[M + H]^+$. Adicionalmente, el kanaftaleno A mostró una significante actividad antiincrustante contra el asentamiento de la larva del percebe *Balanus amphitrite*, con valores de EC₅₀ y de LC₅₀ de 5.21 y 55.32 µg/mL, respectivamente (Yang *et al.*, 2018).

El derivado de pirazina, clavulazol B (**99**), fue aislado del coral blando *Calvularia viridis*, a partir de un extracto de diclorometano y metanol (1:1). Mediante EIMS, el compuesto mostró un pico molecular a m/z 166, en concordancia con la fórmula molecular C₈H₁₀N₂O₂ (Shen *et al.*, 2004).

La pteridina, 3-metil-L-eritrobiopterina (**100**), identificada en el extracto de *M. complanata*, fue aislada previamente a partir del extracto metanólico del antozoo *Astroides calycularis*. Dicho compuesto exhibió una actividad inhibidora de crecimiento de las células fibroblásticas de ratón (3T3) y de pollo (CEF) (Aiello *et al.*, 1987c).

La purina, 3-metil-6-metilamino-2-metilimino-9h-purina (**101**), fue aislada a partir del extracto de acetona de la anémona de mar *Sagartia troglodytes*. Con base en los datos de HRMS se determinó la fórmula molecular, C₈H₁₂N₆, con un ion molecular a m/z 192.1114. El PNM resultó ser inactivo en el ensayo de letalidad contra *Artemia salina* (De Rosa *et al.*, 1987).

La amina biogénica 3-(2-aminoetil)-1H-indol-5-ol (**102**) o serotonina es un neurotransmisor presente en casi todos los filos del reino animalia, incluyendo a los cnidarios. La serotonina está involucrada en una gran variedad de procesos celulares, tales como la regeneración tisular, la reproducción y el desarrollo embrionario y larvario (Turlejski, 1996). Una de sus principales funciones en los invertebrados es la regulación de la contracción muscular y la descarga del cnidocito (Westfall, 2004). En un estudio realizado por Mayorova y Kosevich en 2013, se detectó una red de procesos modulados por la serotonina en todo el cuerpo del hidroide *Cladonema radiatum* mediante el uso de anticuerpos antiserotonina (Mayorova y Kosevicg, 2013).

El ácido carboxílico esteroidal, ácido paraminábico C (**103**), es un PNM aislado del extracto etanólico del coral *Paraminabea acronocephala*. Los análisis mediante HRESIMS y RMN ¹³C sugirieron la fórmula molecular C₂₇H₃₈O₄, con un ion molecular a m/z 449.2666 para el aducto [M + Na]⁺. Se estudio la actividad citotóxica del ácido paraminábico C contra líneas celulares de carcinoma de hígado (HepG2 y HepG3), carcinoma de mama (MCF-7 y MDA-MB-231) y carcinoma de pulmón (A-549), mostrando una potente toxicidad contra cada una de estas líneas con valores de IC₅₀ de 2.83 µg/mL para HepG2, 2.25 µg/mL para MDA-MB-231, 2.23 µg/mL para MCF-7 y 2.05 µg/mL para A549. Adicionalmente, se investigó la actividad antiinflamatoria de este PNM, mediante la inhibición de las proteínas iNOS y COX-2 en macrófagos RAW264.7, dando como resultado una actividad antiinflamatoria moderada al reducir un 53.5 % los niveles de iNOS sin inducir citotoxicidad en los macrófagos, determinada con la expresión de β-actina como control interno (Chao *et al.*, 2013).

Mancini y colaboradores aislaron el ácido graso metil (7Z,10R,11E,13E,16Z,19Z)-10-hidroxidocosa-7,11,13,16,19-pentaenoato (**104**) a partir del extracto etanólico del coral escleractinio *Madrepora oculata* recolectado en aguas profundas del Océano Índico. Se estableció su fórmula molecular como C₂₃H₃₆O₃ mediante RMN (Mancini *et al.*, 1999).

El estudio de el extracto metanólico acuoso (70:30) de M. complanata dio como resultado la detección de metabolitos primarios y secundarios mediante UHPLC-MS². Entre estos, se describieron 75 derivados terpenoides, incluyendo diterpenos, sesquiterpenos, esteroides y triterpenos. Entre las actividades farmacológicas que se les ha asociado a estos compuestos se encuentran: citotóxica, antifúngica, leishmanicida, antituberculosa y antiinflamatoria. También se detectaron e identificaron 4 aminoácidos, 3 esenciales y uno de tipo Micosporina. Por otra parte, se identificaron 3 macrólidos previamente descritos en especies de invertebrados marinos. Estos compuestos han mostrado una potente actividad citotóxica. De manera similar, se detectaron 2 alcaloides, aislados previamente en dos especies de corales, dichos alcaloides exhibieron fuerte actividad citotóxica contra líneas celulares de cáncer humano. También fue posible la detección de dos péptidos, uno de ellos descrito como un importante componente de los nematocistos y, el otro, reportado por primera vez en el metaboloma de un cnidario. Diversos compuestos con estructuras químicas particulares como ptiridinas, derivados de pirazinas, linderazulenos y ácidos grasos también fueron detectados en el extracto de *M. complanata*.

Los resultados derivados de este trabajo permitieron conocer, por primera vez, las moléculas (metabolitos secundarios) que el hidrocoral *Millepora complanata* sintetiza para poder enfrentar los retos que le representan las condiciones cambiantes de su medio ambiente, incluyendo los disturbios de origen antropogénico como el calentamiento global. Se espera que este conocimiento permitirá comprender mejor los mecanismos de supervivencia que los hidrocorales

han desarrollado, lo que contribuirá a generar estrategias de protección y preservación de estos importantes cnidarios constructores de arrecifes de coral.

9. CONCLUSIONES

En el presente trabajo se realizó la construcción de una base de datos especializada para el análisis del extracto metanólico acuoso de *M. complanata*, en la que se incluyeron compuestos previamente identificados en organismos del *Phylum* Cnidaria, aminoácidos esenciales y aminoácidos tipo Micosporina, compuestos previamente identificados en organismos de la clase Hydrozoa y compuestos identificados por nuestro grupo de estudio mediante RMN.

El análisis del extracto metanólico acuoso de *M. complanata* dio como resultado la identificación de 104 compuestos previamente estudiados tanto en organismos del *Phylum* Cnidaria como en otros animales marinos, que incluyen tres aminoácidos esenciales y uno de tipo Micosporina, 75 compuestos terpénicos, que incluyen 23 sesquiterpenos, 29 diterpenos, un triterpeno y 22 esteorides, así como dos alcaloides, dos derivados acetilénicos, tres macrólidos, dos péptidos, dos derivados de ciclopentanona, dos ácidos carboxílicos, una lactona, una purina, una pterina, un derivado de pirazina, un linderazuleno, una amida grasa, un ácido graso, así como la amina biogénica, serotonina.

Los resultados derivados de este estudio constituyen el primer reporte de los principales metabolitos secundarios presentes en un organismo del género *Millepora*.

10.REFERENCIAS

Abdelhafez, O. H., Fahim, J. R., El Masri, R. R., Salem, M. A., Desoukey, S. Y., Ahmed, S., Abdelmohsen, U. R. (2021). Chemical and biological studies on the

soft coral *Nephthea* sp. RSC Advances, 11(38), 23654–23663. DOI:10.1039/d1ra03045k

Ahmed, A. F., Shiue, R.-T., Wang, G.-H., Dai, C.-F., Kuo, Y.-H., & Sheu, J.-H. (**2003**). Five novel norcembranoids from *Sinularia leptoclados* and *S. parva*. Tetrahedron, 59(37), 7337–7344. DOI:10.1016/s0040-4020(03)01138-4

Ahmed, A. F., Su, J.-H., Shiue, R.-T., Pan, X.-J., Dai, C.-F., Kuo, Y.-H., & Sheu, J.-H. (**2004**). New β-Caryophyllene-Derived Terpenoids from the Soft Coral *Sinularia nanolobata*. Journal of Natural Products, 67(4), 592–597. DOI:10.1021/np030286w

Ahmed, A. F., Tai, S.-H., Wen, Z.-H., Su, J.-H., Wu, Y.-C., Hu, W.-P., & Sheu, J.-H. (**2008**). A C-3 Metilated Isocembranoid and 10-Oxocembranoids from a Formosan Soft Coral *Sinularia grandilobata*. Journal of Natural Products, 71(6), 946–951. DOI:10.1021/np7007335

Ahmed, A. F., Wu, M.-H., Wu, Y.-C., Dai, C.-F., & Sheu, J.-H. (**2006**). Metabolites with Cytotoxic Activity from the Formosan Soft Coral *Cladiella Australis*. Journal of the Chinese Chemical Society, 53(2), 489–494. DOI:10.1002/jccs.200600064

Ahond, A., Chiaroni, A., Coll, J. C., Fourneron, J. D., Riche, C., Braekman, J. C., Dunstan, P. J. (**1979**). Studies of Australian Soft Corals. XVII. The Isolation and Properties of Lemnalactone, 7-EPI-Lemnalactone and their Derivatives. A Correction of Several Literature Assignments, Supported by X-Ray Diffraction. Bulletin Des Sociétés Chimiques Belges, 88(5), 313–324. DOI:10.1002/bscb.19790880507

Aiello, A., Fattorusso, E., Magno, S. (**1987b**). Isolation and Structure Elucidation of Two New Polyhidroxilated Stero Is from the Mediterranean Hydroid *Eudendrium glomeratum*. Journal of Natural Products, 50(2), 191–194. DOI:10.1021/np50050a011

Aiello, A., Fattorusso, E., Magno, S., Mayol, L. (**1987a**). Brominaed β-carbolines from the marine hydroid *Aglaophenia pluma linnaeus*. Tetrahedron, 43(24), 5929–5932. DOI: 10.1016/s0040-4020(01)87798-x

Aiello, A., Fattorusso, E., Magno, S., Misuraca, G., & Novellino, E. (**1987c**). 2-Amino-6-[(1'R,2'S)-1',2'-dihidroxipropyl]-3-metil-pterin-4-one, a biologically active metabolite from the anthozoan *Astroides calycularis* Pallas. Experientia, 43(8), 950–952. DOI:10.1007/bf01951683

Alam, N., Hong, J., Lee, C. O., Im, K. S., Son, B. W., Choi, J. S., Jung, J. H. (**2001**). Montipyridine, a New Pyridinium Alkaloid from the Stony Coral *Montipora* Species. Journal of Natural Products, 64(7), 956–957. DOI:10.1021/np0100892

Alam, N., Hong, J., Lee, C.-O., Choi, J. S., Im, K. S., & Jung, J. H. (**2002**). Additional Cytotoxic Diacetylenes from the Stony Coral *Montipora* sp. Chemical & Pharmaceutical Bulletin, 50(5), 661–662. DOI:10.1248/cpb.50.661

Alexander, E. (2019). A Shocking Comparison: 5 Photos of The Great Barrier Reef 10 Years Ago & 5 Of It Today. The travel. Recuperado el 23 de Noviembre, 2021 de: https://www.thetravel.com/great-barrier-reef-10-years-ago-vs-now/

Alorfi, H. (**2014**). Terpenoidal Metabolites Obtained from Saudi Red Sea Soft Coral *Sarcophyton* Sp. Journal of King Abdulaziz University 26(2), 37-48. DOI:10.4197/Sci.26-2.3

Alqahtani, F. Y., Aleanizy, F. S., El Tahir, E., Alkahtani, H. M., & AlQuadeib, B. T. (**2019**). Paclitaxel. Profiles of Drug Substances, Excipients and Related Methodology, 205–238. DOI: 10.1016/bs.podrm.2018.11.001

Anjaneyulu, A. S. R., Sagar, K. S., & Venugopal, M. J. R. V. (**1995)**. Terpenoid and steroid constituents of the Indian ocean soft coral *Sinularia maxima*. Tetrahedron, 51(40), 10997–11010. DOI:10.1016/0040-4020(95)00655-r

Babonis, L. S., Martindale, M. Q. (**2014**). Old Cell, New Trick? Cnidocytes as a Model for the Evolution of Novelty. Integrative and Comparative Biology, 54(4), 714–722. DOI:10.1093/icb/icu027.

Bae, B. H., Im, K. S., Choi, W. C., Hong, J., Lee, C.-O., Choi, J. S., ... Jung, J. H. (**2000**). New Acetylenic Compounds from the Stony Coral *Montipora* sp. Journal of Natural Products, 63(11), 1511–1514. DOI:10.1021/np0002076

Banaszak, A. T., Barba Santos, M. G., LaJeunesse, T. C., & Lesser, M. P. (**2006**). The distribution of mycosporine-like amino acids (MAAs) and the phylogenetic identity of symbiotic dinoflagellates in cnidarian hosts from the Mexican Caribbean. Journal of Experimental Marine Biology and Ecology, 337(2), 131–146. DOI: 10.1016/j.jembe.2006.06.014

Becerro, M. A., Turon, X., Uriz, M. J. (**1997**). Multiple Functions for Secondary Metabolites in Encrusting Marine Invertebrates. Journal of Chemical Ecology, 23(6), 1527–1547. DOI:10.1023/b:joec.0000006420.04002.2e.

Bianchini, G., Lotti, T., Campolmi, P., Casigliani, R., Panconesi, E., (**1988**). Coral ulcer as a vasculitis. International Journal of Dermatology. 27, 506–507

Bishara, A., Yeffet, D., Sisso, M., Shmul, G., Schleyer, M., Benayahu, Y., Kashman, Y. (**2008**). Nardosinanols A–I and Lemnafricanol, Sesquiterpenes from Several Soft Corals *Lemnalia* sp., *Paralemnalia clavata*, *Lemnalia africana*, and *Rhytisma fulvum fulvum*[†]. Journal of Natural Products, 71(3), 375–380. DOI:10.1021/np070550b

Blunt, J. W., Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., Prinsep, M. R. (**2018**). Marine natural products. Natural Product Reports, 35(1), 8–53. DOI:10.1039/c7np00052a

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2012**). Marine natural products. Natural Product Reports, 29(2), 144–222. DOI:10.1039/c2np00090c

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2013**). Marine natural products. Natural Product Reports, 30(2), 237–323. DOI:10.1039/c2np20112g

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2014**). Marine natural products. Natural Product Reports, 31(2), 160. DOI:10.1039/c3np70117d

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2015**). Marine natural products. Natural Product Reports, 32(2), 116–211. DOI:10.1039/c4np00144c

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2016**). Marine natural products. Natural Product Reports, 33(3), 382–431. DOI:10.1039/c5np00156k

Blunt, J. W., Copp, B. R., Keyzers, R. A., Munro, M. H. G., Prinsep, M. R. (**2017**). Marine natural products. Natural Product Reports, 34(3), 235–294. DOI:10.1039/c6np00124f

Boilard, A., Dubé, C. E., Gruet, C., Mercière, A., Hernandez-Agreda, A., Derome, N. (**2020**). Defining Coral Bleaching as a Microbial Dysbiosis within the Coral Holobiont. Microorganisms, 8(11), 1682. DOI:10.3390/microorganisms8111682

Bouillon, J. & Boero, G., (2000). The Hydrozoa: a new classification in the light of old knowledge. Thalassia Salentina, 24, 3–296.DOI: 10.1285/i15910725v24p3

Bowden B.F., Coll J.C., Engelhardt L.M., Tapiolas D.M., White A.H. (**1986**). Studies of Australian soft corals. XXXVI* The isolation and structure determination

of 11 calmenene-based sesquiterpenes from *Lemnalia cervicornis* (Coelenterata, Octocorallia, Alcyonacea) Australian Journal of Chemistry. 39. 103–121. DOI: 10.1071/CH9860103

Brandl, S. J., Goatley, C. H. R., Bellwood, D. R., Tornabene, L. (**2018**). The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biological Reviews. Biological reviews of the Cambridge Philosophical Society, 93 (4), 1846-1873. DOI:10.1111/brv.12423

Carbone, M., Núñez-Pons, L., Castelluccio, F., Avila, C., & Gavagnin, M. (**2009**). Illudalane Sesquiterpenoids of the Alcyopterosin Series from the Antarctic Marine Soft Coral *Alcyonium grandis*. Journal of Natural Products, 72(7), 1357–1360. DOI:10.1021/np900162t

Cardoso-Martínez, F., de la Rosa, J. M., Díaz-Marrero, A. R., Darias, J., D'Croz, L., Jiménez-Antón, M. D., Cueto, M. (**2016**). Oxysterols from an octocoral of the genus Gorgonia from the eastern Pacific of Panama. RSC Advances, 6(45), 38579–38591. DOI:10.1039/c6ra04521a

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., Prinsep, M. R. (**2019**). Marine natural products. Natural Product Reports, 36, 122-173. DOI:10.1039/c8np00092a

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., Prinsep, M. R. (**2020**). Marine natural products. Natural Product Reports, 37, 175-223. DOI:10.1039/c9np00069k.

Carroll, A. R., Copp, B. R., Davis, R. A., Keyzers, R. A., Prinsep, M. R. (**2021**). Marine natural products. Natural Product Reports, 38(2), 362-413. DOI:10.1039/d0np00089b **Chang**, C.-H., Wen, Z.-H., Wang, S.-K., & Duh, C.-Y. (**2008**). Capnellenes from the Formosan Soft Coral *Capnella imbricata*. Journal of Natural Products, 71(4), 619–621. DOI:10.1021/np0706116

Chang, E. S., Neuhof, M., Rubinstein, N. D., Diamant, A., Philippe, H., Huchon, D., Cartwright, P. (**2015**). Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proceedings of the National Academy of Sciences, 112(48), 14912–14917. DOI:10.1073/pnas.1511468112

Chao, C.-H., Huang, L.-F., Yang, Y.-L., Su, J.-H., Wang, G.-H., Chiang, M. Y., ... Sheu, J.-H. (**2005**). Polyoxygenated Steroids from the Gorgonian *Isis hippuris*. Journal of Natural Products, 68(6), 880–885. DOI:10.1021/np050033y

Chao, C.-H., Wu, Y.-C., Wen, Z.-H., & Sheu, J.-H. (**2013**). Steroidal Carboxylic Acids from Soft Coral *Paraminabea acronocephala*. Marine Drugs, 11(12), 136–145. https://DOI.org/10.3390/md11010136

Chen, B.-W., Chang, S.-M., Huang, C.-Y., Chao, C.-H., Su, J.-H., Wen, Z.-H., ... Sheu, J.-H. (**2010**). Hirsutalinas A–H, Eunicellin-Based Diterpenoids from the Soft Coral *Cladiella hirsuta.* Jornal of Natural Products, 73(11), 1785–1791. DOI:10.1021/np100401f

Chen, B.-W., Chang, S.-M., Huang, C.-Y., Su, J.-H., Wen, Z.-H., Wu, Y.-C., & Sheu, J.-H. (**2011**). Hirsutosterols A–G, polyoxygenated steroids from a Formosan soft coral *Cladiella hirsuta*. Organic & Biomolecular Chemistry, 9(9), 3272. DOI:10.1039/c1ob05106g

Chen, S.-H., Guo, Y.-W., Huang, H., & Cimino, G. (**2008**). Six New Cembranolides from the Hainan Soft Coral *Lobophytum* sp. Helvetica Chimica Acta, 91(5), 873–880. DOI:10.1002/hlca.200890091

Cheng, S. Y., Huang, K. J., Wang, S. K., Wen, Z. H., Hsu, C. H., Dai, C. F., Duh, C. Y. (**2009**). New Terpenoids from the Soft Corals *Sinularia capillosa* and *Nephthea chabroli.* Organic Letters, 11(21), 4830–4833. DOI:10.1021/ol901864d

Cheng, S.-Y., Huang, K.-J., Wang, S.-K., Wen, Z.-H., Chen, P.-W., & Duh, C.-Y. (**2010**). Antiviral and Anti-inflammatory Metabolites from the Soft Coral *Sinularia capillosa*. Journal of Natural Products, 73(4), 771–775. DOI:10.1021/np9008078

Cheng, S.-Y., Shih, N.-L., Hou, K.-Y., Ger, M.-J., Yang, C.-N., Wang, S.-K., & Duh, C.-Y. (**2014**). Kelsoenethiol and dikelsoenyl ether, two unique kelsoane-type sesquiterpenes, from the Formosan soft coral *Nephthea erecta*. Bioorganic & Medicinal Chemistry Letters, 24(2), 473–475. DOI:10.1016/j.bmcl.2013.12.037

Cheng, S.-Y., Wen, Z.-H., Wang, S.-K., Chiang, M. Y., El-Gamal, A. A. H., Dai, C.-F., & Duh, C.-Y. (**2009**). Revision of the Absolute Configuration at C(23) of Lanostanoids and Isolation of Secondary Metabolites from Formosan Soft Coral *Nephthea erecta*. Chemistry & Biodiversity, 6(1), 86–95. DOI:10.1002/cbdv.200800015

Cheng, Y.-B., Chen, C.-Y., Kuo, Y.-H., & Shen, Y.-C. (**2009**). New Nitrogen-Containing Sesquiterpenoids from the Taiwanese Soft Coral *Cespitularia taeniata* May. Chemistry & Biodiversity, 6(8), 1266–1272. DOI:10.1002/cbdv.200800195

Choudhary, A., Naughton, L., Montánchez, I., Dobson, A., & Rai, D. (**2017**). Current Status and Future Prospects of Marine Natural Products (MNPs) as Antimicrobials. Marine Drugs, 15(9), 272 DOI:0.3390/md15090272

Cooper, R.A.; de Freitas, J.; Porreca, F.; Eisenhour, C.M.; Lukas, R.; Huxtable, R.J. (**1995**). The sea anemone purine, caissarone: Adenosine receptor antagonism. Toxicon, 33, 1025–1031

Corley, D. G., Herb, R., Moore, R. E., Scheuer, P. J., & Paul, V. J. (**1988**). Laulimalides. New potent cytotoxic macrolides from a marine sponge and a

nudibranch predator. The Journal of Organic Chemistry, 53(15), 3644–3646. DOI:10.1021/jo00250a053

D'Ambra, I. & Lauritano, C. (2020). A Review of Toxins from Cnidaria. Marine Drugs, 18(10), 507. DOI:10.3390/md18100507

D'Ambrosio, M., Guerriero, A., & Pietra, F. (**1987**). Sarcodictyin A and Sarcodictyin B, Novel Diterpenoidic Alcohols Esterified by (E)-N(1)-Metilurocanic Acid. Isolation from the Mediterranean Stolonifer *Sarcodictyon roseum*. Helvetica Chimica Acta, 70(8), 2019–2027. DOI:10.1002/hlca.19870700807

D'Ambrosio, M., Guerriero, A., & Pietra, F. (**1988**). Isolation from the Mediterranean Stolonifern Coral *Sarcodictyon roseum* of Sarcodictyin C, D, E, and F, novel diterpenodic alcohols esterified by (E)- or (Z)-N(1)-metilurocanic acid. Failure of the carbon-skeleton type as a classification criterion. Helvetica Chimica Acta, 71(5), 964–976. DOI:10.1002/hlca.19880710504

Daly, M., Brugler, M. R., Cartwright, P., Collins, A. G., Dawson, M. N., Fautin, D. G., Stake, J. L. (**2007**). The *Phylum* Cnidaria: A review of phylogenetic patterns and diversity 300 years after Linnaeus. Zootaxa, 1668(1), 127–182. DOI:10.11646/zootaxa.1668.1.11

De Rosa, S., de Stefano, S., Puliti, R., Mattia, C. A., & Mazzarella, L. (**1987**). Isolation and X-ray Crystal Structure of a Derivative of 2,6-Diaminopurine from a Sea Anemone. Journal of Natural Products, 50(5), 876–880. DOI:10.1021/np50053a017

Dewick, P. M. (**2009**). Medicinal Natural Products: A Biosynthetic Approach. Inglaterra: John Wiley & Sons, 167-282

Di Camillo, C. G., Bavestrello, G., Cerrano, C., Gravili, C., Piraino, S., Puce, S., Boero, F. (**2017**). Hydroids (Cnidaria, Hydrozoa): A Neglected Component of

Animal Forests. Marine Animal Forests, 397–427. DOI:10.1007/978-3-319-21012-4_11

Dubé, C.E., Bourmaud, C.A.F., Mercière, A., Planes, S., Boissin, E. (**2020**). Ecology, Biology and Genetics of *Millepora* Hydrocorals on Coral Reefs. Invertebrates - Ecophysiology and Management, 1-36. DOI:10.5772/intechopen.89103

Duh, C.-Y., Wang, S.-K., & Weng, Y.-L. (**2000**). Brassicoleno, a novel cytotoxic diterpenoid from the Formosan soft coral *Nephthea brassica*. Tetrahedron Letters, 41(9), 1401–1403. DOI:10.1016/s0040-4039(99)02302-3

Dunlap, W. C., & Chalker, B. E. (**1986**). Identification and quantitation of near-UV absorbing compounds (S-320) in a hermatypic scleractinian. Coral Reefs, 5(3), 155–159. DOI:10.1007/bf00298182

Duque, C., Puyana, M., Castellanos, L., Arias, A., Correa, H., Osorno, O., Fujimoto, Y. (**2006**). Further studies on the constituents of the gorgonian octocoral Pseudopterogorgia elisabethae collected in San Andrés and Providencia islands, Colombian Caribbean: isolation of a putative biosynthetic intermediate leading to erogorgiaene. Tetrahedron, 62(17), 4205–4213. DOI:10.1016/j.tet.2006.02.032

El-Gamal, A. A. H., Chiu, E.-P., Li, C.-H., Cheng, S.-Y., Dai, C.-F., & Duh, C.-Y. (**2005**). Sesquiterpenoids and Norsesquiterpenoids from the Formosan Soft Coral *Lemnalia laevis*. Journal of Natural Products, 68(12), 1749–1753. DOI:10.1021/np050326r

El-Gamal, A. A. H., Wang, S.-K., Dai, C.-F., & Duh, C.-Y. (**2004**). New Nardosinanes and 19-Oxygenated Ergosterols from the Soft Coral *Nephthea armata* Collected in Taiwan. Journal of Natural Products, 67(9), 1455–1458. DOI:10.1021/np0400858

Elissawy, A., El-Shazly, M., Ebada, S., Singab, A., & Proksch, P. (**2015**). Bioactive Terpenes from Marine-Derived Fungi. Marine Drugs, 13(4), 1966–1992. DOI: 10.3390/md13041966

Ermolenko, E. V., Imbs, A. B., Gloriozova, T. A., Poroikov, V. V., Sikorskaya, T. V., & Dembitsky, V. M. (**2020**). Chemical Diversity of Soft Coral Steroids and Their Pharmacological Activities. Marine Drugs, 18(12), 613. DOI: 10.3390/md18120613

Fang, H.-Y., Liaw, C.-C., Chao, C.-H., Wen, Z.-H., Wu, Y.-C., Hsu, C.-H., ... Sheu, J.-H. (2012). Bioactive pregnane-type steroids from the soft coral *Scleronephthya gracillimum*. Tetrahedron, 68(47), 9694–9700. DOI:10.1016/j.tet.2012.09.060

Fattorusso, E., Romano, A., Taglialatela-Scafati, O., Achmad, M. J., Bavestrello, G., & Cerrano, C. (**2008**). Xenimanadins A–D, a family of xenicane diterpenoids from the Indonesian soft coral *Xenia* sp. Tetrahedron, 64(14), 3141–3146. DOI:10.1016/j.tet.2008.01.120

Faulkner, J. (**2001**). Marine natural products. Natural Product Reports, 19(1), 1– 48. DOI:10.1039/b009029h

Feller, M., Rudi, A., Berer, N., Goldberg, I., Stein, Z., Benayahu, Y., Kashman, Y. (**2004**). Isoprenoids of the Soft Coral *Sarcophyton glaucum*: Nyalolide, a New Biscembranoid, and Other Terpenoids[†]. Journal of Natural Products, 67(8), 1303–1308. DOI:10.1021/np040002n

Fitzgerald, L. M., & Szmant, A. M. (**1997**). Biosynthesis of "essential" amino acids by scleractinian corals. Biochemical Journal, 322(1), 213–221. DOI:10.1042/bj3220213

Fox, J.W. **& Serrano**, S.M.T. (**2005**). Structural considerations of the snake venom metalloproteinases, key members of the M12 reprolysin family of metalloproteinases. Toxicon, 45, 969–985. DOI: 10.1016/j.toxicon.2005.02.012

García-Arredondo, A., Rojas, A., Iglesias-Prieto, R., Zepeda-Rodriguez, A., Palma-Tirado, L. (**2012**). Structure of nematocysts isolated from the fire corals *Millepora alcicornis* and *Millepora complanata* (Cnidaria: Hydrozoa). Journal of Venomous Animals and Toxins Including Tropical Diseases, 18(1), 109–115. DOI:10.1590/s1678-91992012000100014

García-Arredondo, A., Rojas-Molina, A., Bah, M., Ibarra-Alvarado, C., Gallegos-Corona, M. A., García-Servín, M. (**2015**). Systemic toxic effects induced by the aqueous extract of the fire coral *Millepora complanata* and partial purification of thermostable neurotoxins with lethal effects in mice. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 169, 55–64. DOI:10.1016/j.cbpc.2014.12.004

Gasca, R. & Loman-Ramos, L. (**2014**). Biodiversidad de Medusozoa (Cubozoa, Scyphozoa e Hydrozoa) en México. Revista Mexicana de Biodiversidad, 85 (Supl. ene), S154-S163. DOI: 10.7550/rmb.32513

Georgantea, P., Ioannou, E., Evain-Bana, E., Bagrel, D., Martinet, N., Vagias, C., & Roussis, V. (**2016**). Sesquiterpenes with inhibitory activity against CDC25 phosphatases from the soft coral *Pseudopterogorgia rigida*. Tetrahedron, 72(23), 3262–3269. DOI:10.1016/j.tet.2016.04.059

Greenland, G., **& Bowden**, B. (**1994**). Cembranoid Diterpenes Related to Sarcophytol A From the Soft Coral *Sarcophyton trocheliophorum* (Alcyonacea). Australian Journal of Chemistry, 47(11), 2013. DOI:10.1071/ch9942013

Guerriero, A., D'Ambrosio, M., Zibrowius, H., & Pietra, F. (**1996**). Novel Cholic-Acid-Type Sterones of *Deltocyathus magnificus*, a deep-water scleractinian coral from the Loyalty Islands, SW Pacific. Helvetica Chimica Acta, 79(4), 982–988. DOI:10.1002/hlca.19960790406

Guillen, P. O., Jaramillo, K. B., Genta-Jouve, G., & Thomas, O. P. (**2019**). Marine natural products from zoantharians: bioactivity, biosynthesis, systematics, and ecological roles. Natural Product Reports. DOI:10.1039/c9np00043g

Gupta, P., Sharma, U., Schulz, T. C., Sherrer, E. S., McLean, A. B., Robins, A. J., & West, L. M. (**2011**). Bioactive Diterpenoid Containing a Reversible "Spring-Loaded" (E,Z)-Dieneone Michael Acceptor. Organic Letters, 13(15), 3920–3923. DOI:10.1021/ol201443k

Handayani, D., Edrada, R. A., Proksch, P., Wray, V., Witte, L., van Ofwegen, L., & Kunzmann, A. (**1997**). New Oxygenated Sesquiterpenes from the Indonesian Soft Coral *Nephthea chabrolii*. Journal of Natural Products, 60(7), 716–718. DOI:10.1021/np960699f

Hashimoto, Y. (**1979**). Marine toxins and other bioactive marine metabolites. Japan Scientific Societies Press, 1-115

Hegazy, M. E. F., Su, J.-H., Sung, P.-J., & Sheu, J.-H. (**2011**). Cembranoids with 3,14-Ether Linkage and a Secocembrane with Bistetrahydrofuran from the Dongsha Atoll Soft Coral *Lobophytum* sp. Marine Drugs, 9(7), 1243–1253. DOI: 10.3390/md9071243

Hegazy, M.-E. F., Mohamed, T. A., Elshamy, A. I., Hassanien, A. A., Abdel-Azim, N. S., Shreadah, M. A., Paré, P. W. (**2015**). A new steroid from the Red Sea soft coral *Lobophytum lobophytum*. Natural Product Research, 30(3), 340–344. DOI:10.1080/14786419.2015.1046871

Hernández-Elizárraga, V. H., Olguín-López, N., Hernández-Matehuala, R., Ocharán-Mercado, A., Cruz-Hernández, A., Guevara-González, R. G., Rojas-Molina, A. (**2019**). Comparative Analysis of the Soluble Proteome and the Cytolytic Activity of Unbleached and Bleached *Millepora complanata* ("Fire Coral") from the Mexican Caribbean. Marine Drugs, 17(7), 393. DOI:10.3390/md17070393

Hernández-Elizárraga, V. H., Olguín-López, N., Hernández-Matehuala, R., Caballero-Pérez, J., Ibarra-Alvarado, C., Rojas-Molina, A. (**2021**). Comprehensive Metatranscriptome Analysis of the Reef-Building Holobiont *Millepora complanata*. Frontiers in Marine Science, 8. DOI:10.3389/fmars.2021.566913

Hernández-Matehuala, R., Rojas-Molina, A., Vuelvas-Solórzano, A. A., Garcia-Arredondo, A., Alvarado, C. I., Olguín-López, N., Aguilar, M. (**2015**). Cytolytic and systemic toxic effects induced by the aqueous extract of the fire coral *Millepora alcicornis* collected in the Mexican Caribbean and detection of two types of cytolisins. Journal of Venomous Animals and Toxins Including Tropical Diseases, 21(1). DOI:10.1186/s40409-015-0035-6

Herrera, M., Klein, S.G., Schmidt-Roach, S. (**2020**). Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Global Change Biology, 26: 5539-5553. DOI: 10.1111/gcb.15263

Higgs, M. D., & Faulkner, D. J. (**1977**). 5α-pregna-1, 20-dien-3-one and related compounds from a soft coral. Steroids, 30(3), 379–388. DOI:10.1016/0039-128x(77)90028-9

Hoegh-Guldberg, O., Kennedy, E. V., Beyer, H. L., McClennen, C., Possingham, H. P. (**2018**). Securing a Long-term Future for Coral Reefs. Trends in ecology & evolution, 33(12), 936–944. DOI: 10.1016/j.tree.2018.09.006

Hood, K. A., Bäckström, B. T., West, L. M., Northcote, P. T., Berridge, M. V., & Miller, J. H. (**2001b**). The novel cytotoxic sponge metabolite pelorúsido A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anti-cancer drug design, 16(2-3), 155–166

Hood, K. A., West, L. M., Northcote, P. T., Berridge, M. V., & Miller, J. H. (**2001a**). Apoptosis, 6(3), 207–219. DOI:10.1023/a:1011340827558 **Hood**, K. A., West, L. M., Rouwé, B., Northcote, P. T., Berridge, M. V., Wakefield, S. J., & Miller, J. H. (**2002**). Peloruside A, a novel antimitotic agent with paclitaxellike microtubule- stabilizing activity. Cancer research, 62(12), 3356–3360

Hoshino, A., Mitome, H., Tamai, S., Takiyama, H., & Miyaoka, H. (**2005**). 8,17-Epoxybriarane Diterpenoids, Briaranolides A–J, from an Okinawan Gorgonian *Briareum* sp. Journal of Natural Products, 68(9), 1328–1335. DOI:10.1021/np058037q

Houghton, J. (2005). Global warming. Reports on Progress in Physics, 68(6), 1343–1403. DOI:10.1088/0034-4885/68/6/r02

Huang, C.-Y., Chang, C.-W., Tseng, Y.-J., Lee, J., Sung, P.-J., Su, J.-H., Hwang, T.-L., Dai, C.-F., Wang, H.-C., & Sheu, J.-H. (**2016**). Bioactive Steroids from the Formosan Soft Coral *Umbellulifera petasites*. Marine Drugs, 14(10), 180. DOI: 10.3390/md14100180

Huang, C.-Y., Tseng, Y.-J., Chokkalingam, U., Hwang, T.-L., Hsu, C.-H., Dai, C.-F., Sheu, J.-H. (**2016**). Bioactive Isoprenoid-Derived Natural Products from a Dongsha Atoll Soft Coral *Sinularia erecta*. Journal of Natural Products, 79(5), 1339–1346. DOI: 10.1021/acs.jnatprod.5b01142

Huang, H.-C., Chao, C.-H., Su, J.-H., Hsu, C.-H., Chen, S.-P., Kuo, Y.-H., & Sheu, J.-H. (2007). Neolemnane-Type Sesquiterpenoids from a Formosan Soft Coral *Paralemnalia thyrsoides*. Chemical & Pharmaceutical Bulletin, 55(6), 876–880. DOI:10.1248/cpb.55.876

Huang, X., Deng, Z., Zhu, X., van Ofwegen, L., Proksch, P., & Lin, W. (**2006**). Krempenes A–D: A Series of Unprecedented Pregnane-Type Steroids from the Marine Soft Coral *Cladiella krempfi*. Helvetica Chimica Acta, 89(9), 2020–2026. DOI:10.1002/hlca.200690192 **Ibarra-Alvarado**, C., García, J.A., Aguilar, M.B., Rojas, A., Falcón, A., Heimer de la Cotera, E.P., (**2007**). Biochemical and pharmacological characterizations obtained from the fire coral *Millepora complanata*. Comparative Biochemistry and Physiology, C 146, 511–518. DOI:10.1016/j.cbpc.2007.06.002

Iken, K. B., & Baker, B. J. (**2003**). Ainigmaptilones, Sesquiterpenes from the Antarctic Gorgonian Coral *Ainigmaptilon antarcticus*. Journal of Natural Products, 66(6), 888–890. DOI:10.1021/np030051k

IPCC, **2018**: Resumen para responsables de políticas. En: Calentamiento global de 1,5 °C, Informe especial del IPCC sobre los impactos del calentamiento global de 1,5 °C con respecto a los niveles preindustriales y las trayectorias correspondientes que deberían seguir las emisiones mundiales de gases de efecto invernadero, en el contexto del reforzamiento de la respuesta mundial a la amenaza del cambio climático, el desarrollosostenible y los esfuerzos por erradicar la pobreza [Masson-Delmotte V., P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P.R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J.B.R. Matthews, Y. Chen, X. Zhou, M.I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, T. Waterfield (eds.)]

Jankowski, T., Anokhin, B. (2019). *Phylum* Cnidaria. Thorp and Covich's Freshwater Invertebrates, 93–111. DOI:10.1016/b978-0-12-385024-9.00004-6

Jia, R., Guo, Y.-W., Mollo, E., Gavagnin, M., & Cimino, G. (**2006**). Sarcophytonolides E–H, Cembranolides from the Hainan Soft Coral *Sarcophyton latum*. Journal of Natural Products, 69(5), 819–822. DOI:10.1021/np050477u

Jiang, C. S., Ru, T., Huan, X. J., Miao, Z. H., & Guo, Y. W. (**2019**). New cytotoxic ergostane-type sterols from the Chinese soft coral *Sinularia* sp. Steroids, 149, 108425. DOI: 10.1016/j.steroids.2019.108425

Joseph-Nathan, P., Burgueño-Tapia, E., & Santillan, R. L. (**1993**). Further BF3-Et2O-catalyzed Cycloadditions of Sesquiterpenic p-Benzoquinones. Journal of Natural Products, 56(10), 1758–1765. DOI:10.1021/np50100a015

Julian, P. L., Meyer, E. W., & Printy, H. C. (**1948**). Sterols. IV. Δ20-Pregnenes from bisnor-Steroid Acids. Journal of the American Chemical Society, 70(3), 887–892. DOI:10.1021/ja01183a001

Kamel, H. N., Ding, Y., Li, X.-C., Ferreira, D., Fronczek, F. R., & Slattery, M. (**2009**). Beyond Polymaxenolide: Cembrane-Africanane Terpenoids from the Hybrid Soft Coral *Sinularia máxima × S. polydactyla*. Journal of Natural Products, 72(5), 900–905. DOI:10.1021/np900040w

Kass-Simon, G., Scappaticci, Jr., A. A. (**2002**). The behavioral and developmental physiology of nematocysts. Canadian Journal of Zoology, 80(10), 1772–1794. DOI:10.1139/z02-135

Kate, A. S., Aubry, I., Tremblay, M. L., & Kerr, R. G. (**2008**). Lipidyl Pseudopteranes A–F: Isolation, Biomimetic Synthesis, and PTP1B Inhibitory Activity of a New Class of Pseudopteranoids from the Gorgonian *Pseudopterogorgia acerosa*. Journal of Natural Products, 71(12), 1977–1982. DOI:10.1021/np800544b

Kirk, N. L., Weis, V. M. (**2016**). C.J. Hurst (ed.), Animal–Symbiodinium Symbioses: Foundations of Coral Reef Ecosystems. The Mechanistic Benefits of Microbial Symbionts, Advances in Environmental Microbiology 2. Springer International Publishing, 10, 269–294. DOI:10.1007/978-3-319-28068-4_10

Kittakoop, P., Suttisri, R., Chaichantipyuth, C., Vethchagarun, S., & Suwanborirux, K. (**1999**). Norpregnane Glycosides from a Thai Soft Coral, *Scleronephthya pallida.* Journal of Natural Products, 62(2), 318–320. DOI:10.1021/np980273w

Kobayashi, M., & Osabe, K. (1989). Marine terpenes and terpenoids. VII. Minor cembranoid derivatives, structurally related to the potent anti-tumor-promoter sarcofitol A, from the soft coral *Sarcophyton glaucum*. Chemical & Pharmaceutical Bulletin, 37(3), 631–636. DOI:10.1248/cpb.37.631

Kobayashi, M., Kondo, K., Osabe, K., & Mitsuhashi, H. (**1988**). Marine terpenes and terpenoids. V. Oxidation of sarcofitol A, a potent anti-tumor-promoter from the soft coral *Sarcophyton glaucum*. Chemical & Pharmaceutical Bulletin, 36(7), 2331–2341. DOI:10.1248/cpb.36.2331

Kodani, S., Sato, K., Higuchi, T., Casareto, B. E., & Suzuki, Y. (**2013**). Montiporic acid D, a new polyacetylene carboxylic acid from scleractinian coral *Montipora digitata*. Natural Product Research, 27(20), 1859–1862. DOI:10.1080/14786419.2013.768992

Kropp, L. M., Parsley, C. B., Burnett, O. L. (**2018**). *Millepora* species (Fire Coral) Sting: A Case Report and Review of Recommended Management. Wilderness & Environmental Medicine. 29(4), 521–526. DOI:10.1016/j.wem.2018.06.012

Kuo, C.-Y., Juan, Y.-S., Lu, M.-C., Chiang, M., Dai, C.-F., Wu, Y.-C., & Sung, P.-J. (**2014**). Pregnane-Type Steroids from the Formosan Soft Coral *Scleronephthya flexilis*. International Journal of Molecular Sciences, 15(6), 10136–10149. DOI: 10.3390/ijms150610136

Laguionie-Marchais, C., Allcock, A. L., Baker, B. J., Conneely, E.-A., Dietrick, S. G., Kearns, F., McKeever, K., Young, R. M., Sierra, C. A., Soldatou, S., Woodcock, H. L., & Johnson, M. P. (**2021**). Not Drug-like, but Like Drugs: Cnidaria Natural Products. Marine Drugs, 20(1), 42. DOI: 10.3390/md20010042

Lai, D., Yu, S., van Ofwegen, L., Totzke, F., Proksch, P., & Lin, W. (**2011**). 9,10-Secosteroids, protein kinase inhibitors from the Chinese gorgonian *Astrogorgia* sp. Bioorganic & Medicinal Chemistry, 19(22), 6873–6880. DOI:10.1016/j.bmc.2011.09.028

Lai, K.-H., Fan, Y.-C., Peng, B.-R., Wen, Z.-H., & Chung, H.-M. (2023). Capnellenes from *Capnella imbricata*: Deciphering Their Anti-Inflammatory-Associated Chemical Features. Pharmaceuticals, 16(7), 916. MDPI AG. Retrieved from DOI: 10.3390/ph16070916

Le Bideau, F., Kousara, M., Chen, L., Wei, L., & Dumas, F. (2017). Tricyclic Sesquiterpenes from Marine Origin. Chemical Reviews, 117(9), 6110–6159. DOI:10.1021/acs.chemrev.6b00502

Leal, M. C., Madeira, C., Brandão, C. A., Puga, J., & Calado, R. (2012). Bioprospecting of Marine Invertebrates for New Natural Products — A Chemical and Zoogeographical Perspective. Molecules, 17(8), 9842–9854. https://DOI.org/10.3390/molecules17089842

Leclère, L. & Röttinger, E. (2017). Diversity of Cnidarian Muscles: Function, Anatomy, Development and Regeneration. Frontiers in Cell and Developmental Biology, 4. DOI:10.3389/fcell.2016.00157.

Lee, Y.-S., Duh, T.-H., Siao, S.-S., Chang, R.-C., Wang, S.-K., & Duh, C.-Y. (2017). New Cytotoxic Terpenoids from Soft Corals *Nephthea chabroli* and *Paralemnalia thyrsoides*. Marine Drugs, 15(12), 392. DOI: 10.3390/md15120392

Lewis, J. B. (**2006**). Biology and Ecology of the Hydrocoral *Millepora* on Coral Reefs. Advances in Marine Biology, 1–55. DOI:10.1016/s0065-2881(05)50001-4

Lewis, M. (**2012**). Fluorescent proteins and chromoproteins in *Phylum*: Cnidaria. The Plymouth Student Scientist, 5(2), 544-557

Li, G., Zhang, Y., Deng, Z., van Ofwegen, L., Proksch, P., & Lin, W. (2005). Cytotoxic Cembranoid Diterpenes from a Soft Coral *Sinularia gibberosa*. Journal of Natural Products, 68(5), 649–652. DOI:10.1021/np040197z

Li, P., Liu, X., Zhu, H., Tang, X., Shi, X., Liu, Y., & Li, G. (**2017**). Unusual Inner-Salt Guaiazulene Alkaloids and bis-Sesquiterpene from the South China Sea Gorgonian *Muriceides collaris*. Scientific Reports, 7(1). DOI:10.1038/s41598-017-08100-z

Liaw, C.C., Shen, Y.C., Lin, Y.S., Hwang, T.L., Kuo, Y.H., & Khalil, A.T. (**2008**). Frajunolides E–K, Briarane Diterpenes from *Junceella fragilis*. Journal of Natural Products, 71(9), 1551–1556. DOI:10.1021/np800126f

Lindquist, N. (2002). Tridentatols D-H, nematocyst metabolites and precursors of the activated chemical defense in the marine hydroid *Tridentata marginata* (Kirchenpauer 1864). Journal of Natural Products, 65(5), 681–684. DOI:10.1021/np010339e

Lindquist, N., Lobkovsky, E., & Clardy, J. (**1996**). Tridentatols A-C, novel natural products of the marine hydroid Tridentata marginata. Tetrahedron Letters, 37(51), 9131–9134. **DOI**:10.1016/s0040-4039(96)02157-0

Lindquist, N., Shigematsu, N., Pannell, L. (**2000**). Corydendramines A and B, Defensive Natural Products of the Marine Hydroid *Corydendrium parasiticum*. Journal of Natural Products, 63(9), 1290–1291. DOI:10.1021/np000050h

Lu, Y., Li, P.-J., Hung, W.-Y., Su, J.-H., Wen, Z.-H., Hsu, C.-H., Sheu, J.-H. (2011). Nardosinane Sesquiterpenoids from the Formosan Soft Coral *Lemnalia flava*. Journal of Natural Products, 74(2), 169–174. DOI:10.1021/np100541a

MacKnight, N. J., Cobleigh, K., Lasseigne, D., Chaves-Fonnegra, A., Gutting, A., Dimos, B., Brandt, M. (**2021**). Microbial dysbiosis reflects disease resistance in
diverse coral species. Communications Biology, 4(1). DOI:10.1038/s42003-021-02163-5

Malve, H. (**2016**). Exploring the ocean for new drug developments: Marine pharmacology. Journal of Pharmacy & Bioallied Sciences, 8(2), 83–91. DOI:10.4103/0975-7406.171700

Mancini, I., Guerriero, A., Guella, G., Bakken, T., Zibrowius, H., & Pietra, F. (1999). Novel 10-Hidroxidocosapolyenoic Acids from Deep-Water Scleractinian Corals. Helvetica Chimica Acta, 82(5), 677–684. DOI:10.1002/(sici)1522-2675(19990505)82:5<677::aid-hlca677>3.0.co;2-0

Mandey, F., Tahar, M., Mardiyanti, R., Dali, S. (**2019**). Unprecedented isolation of β -sitosterol acetate from dichloromethane fraction of hydroid, *Aglaophenia Cupressina* Lamouroux, and its antibacterial activities. International Research Journal of Pharmacy, 9(12), 31–34. DOI:10.7897/2230-8407.0912287

Mariottini, G. L. (**2016**). The Role of Cnidaria in Drug Discovery. The Cnidaria, Past, Present and Future, 653–668. DOI:10.1007/978-3-319-31305-4_40

Mariottini, G. L., Grice, I. D. (**2019**). Natural Compounds and Drug Discovery: Can Cnidarian Venom Play a Role?. Central Nervous System Agents in Medicinal Chemistry, 19(2), 114–118. DOI:10.2174/1871524919666190227234834.

Martini, S. Haddock, S. (**2017**). Quantification of bioluminescence from the surface to the deep sea demonstrates its predominance as an ecological trait. Science Reports, 7, 45750. DOI:10.1038/srep45750

Matsumoto, Y., Piraino, S., Miglietta, M. P. (**2019**). Transcriptome Characterization of Reverse Development in *Turritopsis dohrnii* (Hydrozoa, Cnidaria). G3 (Bethesda, Md.), 9(12), 4127–4138. DOI: 10.1534/g3.119.400487 **Matthews**, J. L., Crowder, C. M., Oakley, C. A., Lutz, A., Roessner, U., Meyer, E., Davy, S. K. (**2017**). Optimal nutrient exchange and immune responses operate in partner specificity in the cnidarian-dinoflagellate symbiosis. Proceedings of the National Academy of Sciences, 114(50), 13194–13199. DOI:10.1073/pnas.1710733114

Mayorova, T. D., **& Kosevich**, I. A. (**2013**). Serotonin-immunoreactive neural system and contractile system in the hydroid *Cladonema* (Cnidaria, Hydrozoa). Invertebrate Neuroscience, 13(2), 99–106. DOI:10.1007/s10158-013-0152-2

Meyer, M., Delberghe, F., Liron, F., Guillaume, M., Valentin, A., Guyot, M. (**2009**). An antiplasmodial new (bis) indole alkaloid from the hard coral *Tubastraea* sp. Natural Product Research, 23(2), 178–182. DOI:10.1080/14786410801925134

Middlebrook, R., Wittle, L., Scura, E., Lane, C., (**1971**). Isolation and partial purification of a toxin from *Millepora dichotoma*. Toxicon, 9, 333–336.

Miller, S. L., Tinto, W. F., McLean, S., Reynolds, W. F., & Yu, M. (**1995**). Bisabolane Sesquiterpenes from Barbadian *Pseudopterogorgia* spp. Journal of Natural Products, 58(7), 1116–1119. DOI:10.1021/np50121a024

Molinski, T. F., Dalisay, D. S., Lievens, S. L., Saludes, J. P. (**2008**). Drug development from marine natural products. Nature Reviews Drug Discovery, 8(1), 69–85. DOI:10.1038/nrd2487

Mooberry, S. L., Tiene, G., Hernandez, A. H., Plubrukarn, A., Davidson, B.S. (**1999**). Laulimalide and Isolaulimalide, New Paclitaxel-Like Microtubule-Stabilizing Agents1. Cancer Res 1, 59 (3): 653–660

Morabito, R., Costa, R., Rizzo, V., Remigante, A., Nofziger, C., La Spada, G., Dossena, S. (**2017**). Crude venom from nematocysts of *Pelagia noctiluca* (Cnidaria: Scyphozoa) elicits a sodium conductance in the plasma membrane of mammalian cells. Scientific Reports, 7(1). DOI:10.1038/srep41065

Mostafa, O., Al-Shehri, M., Moustafa, M., & Al-Emam, A. (**2022**). Cnidarians as a potential source of antiparasitic drugs. Parasitology research, 121(1), 35–48. DOI: 10.1007/s00436-021-07387-2

Myers, P., R., Espinosa, C. S., Parr, T., Jones, G. S., Hammond, T. A. Dewey. (**2021**). The Animal Diversity Web. Recuperado el 23 de Noviembre, 2021 de: https://animaldiversity.org/accounts/Hydrozoa/classification/

Nakao, Y., Yoshida, S., Matsunaga, S., & Fusetani, N. (**2003**). (Z)-sarcodictyina A, a New Highly Cytotoxic Diterpenoid from the Soft Coral *Bellonella albiflora*. Journal of Natural Products, 66(4), 524–527. DOI:10.1021/np0205452

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 21589550, isogosterone A. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/isogosterone-A

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 10505638. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/10505638

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 11800730. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/11800730

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 10673725. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/10673725

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 44519961, Capillosanol. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/Capillosanol National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 44519962, Chabranol. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/Chabranol

National Center for Biotechnology Information (2021). PubChem Compound Summary for CID 3620, Homarine. Recuperado el 23 de Noviembre, 2021 de: https://pubchem.ncbi.nlm.nih.gov/compound/Homarine

National Center for Biotechnology Information (2021). PubChem CompoundSummary for CID 101262082, Cycloaplysinopsin A. Recuperado el 23 deNoviembre,2021https://pubchem.ncbi.nlm.nih.gov/compound/Cycloaplysinopsin-A

Nevalainen, T. J., Peuravuori, H. J., Quinn, R. J., Llewellyn, L. E., Benzie, J. A. H., Fenner, P. J., Winkel, K. D. (**2004**). Phospholipase A2 in Cnidaria. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 139(4), 731–735. DOI:10.1016/j.cbpc.2004.09.006

Neve, J. E., McCool, B. J., & Bowden, B. F. (**1999**). Excavatolides N–T, New Briaran Diterpenes from the Western Australian Gorgonian *Briareum excavatum*. Australian Journal of Chemistry, 52(5), 359. DOI:10.1071/ch98180

Northcote, P. T., Blunt, J. W., & Munro, M. H. G. (**1991**). Pateamine: a potent cytotoxin from the New Zealand Marine sponge, *Mycale* sp. Tetrahedron Letters, 32(44), 6411–6414. DOI:10.1016/0040-4039(91)80182-6

Núñez-Pons, L., Shilling, A., Verde, C., Baker, B. J., Giordano, D. (**2020**). Marine Terpenoids from Polar Latitudes and Their Potential Applications in Biotechnology. Marine Drugs, 18(8), 401. DOI:10.3390/md18080401

Olguín-López, N., Gutiérrez-Chávez, C., Hérnández-Elizárraga, V. H., Ibarra-Alvarado, C., Rojas-Molina, A. (**2017**). Coral Reef Bleaching: An Ecological and Biological Overview. En C. D. Beltran, & E. T. Camacho (Eds.), Corals in a Changing World. IntechOpen. DOI:10.5772/intechopen.69685

Olguín-López, N., Hérnandez-Elizárraga, V.H., Hernández-Matehuala, R., Cruz-Hernández, A., Guevara-González, R., Caballero-Pérez, J., Ibarra-Alvarado, C., Rojas-Molina, A. (**2019**). Impact of El Niño-Southern Oscillation 2015-2016 on the soluble proteomic profile and cytolytic activity of *Millepora alcicornis* ("fire coral") from the Mexican Caribbean. PeerJ, 7:e6593. DOI:10.7717/peerj.6593

Pathirana, C., Andersen, R. J., Wright, J. C. L. (**1989**). Hydrallmanol A, an interesting diphenyl-p-menthane derivative of mixed biogenetic origin from the hydroid *Hydrallmania falcata*. Tetrahedron Letters, 30(12), 1487–1490. DOI:10.1016/s0040-4039(00)99498-x

Pathirana, C., Andersen, R. J., Wright, J. L. C. (**1990**). Abietinarins A and B, cytotoxic metabolites of the marine hydroid *Abietinaria* sp. Canadian Journal of Chemistry, 68(3), 394–396. DOI:10.1139/v90-060

Patra, S., Praharaj, P. P., Panigrahi, D. P., Panda, B., Bhol, C. S., Mahapatra, K. K., Bhutia, S. K. (**2020**). Bioactive compounds from marine invertebrates as potent anticancer drugs: the possible pharmacophores modulating cell death pathways. Molecular Biology Reports, 47, 7209-28. DOI:10.1007/s11033-020-05709-8.

Peixoto, R. S., Rosado, P. M., Leite, D. C. de A., Rosado, A. S., & Bourne, D. G. (**2017**). Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Frontiers in Microbiology, 8. doi:10.3389/fmicb.2017.00341

Perveen, S., **& AI-TaweeI**, A. (Eds.). (**2018**). Terpenes and Terpenoids. IntechOpen. DOI: 10.5772/intechopen.71175

Phan, C.S., Kamada, T., Hatai, K., & Vairappan, C. S. (**2018**). Paralemnolins V and W, New Nardosinane-Type Sesquiterpenoids from a Bornean Soft Coral, *Lemnalia* sp. Chemistry of Natural Compounds. DOI:10.1007/s10600-018-2508-7

Pogoreutz, C., Voolstra, C.R., Rädecker, N., Weis, V., Cardenas, A., Raina, J-B. (**2020**). The coral holobiont highlights the dependence of cnidarian animal hosts on their associated microbes. Cellular Dialogues in the Holobiont. CRC Press, 91-118.

Prasedya, E. S., Ardiana, N., Padmi, H., Ilhami, B. T. K., Martyasari, N. W. R., Sunarwidhi, A. L., Nikmatullah, A., Widyastuti, S., Sunarpi, H., & Frediansyah, A. (**2021**). The Antiproliferative and Apoptosis-Inducing Effects of the Red Macroalgae *Gelidium latifolium* Extract against Melanoma Cells. Molecules, 26(21), 6568. **DOI:** 10.3390/molecules26216568

Putnam, H. M., Barott, K. L., Ainsworth, T. D., Gates, R. D. (**2017**). The Vulnerability and Resilience of Reef-Building Corals. Current Biology, 27(11), R528–R540. DOI: 10.1016/j.cub.2017.04.047.

Quinoa, E., Kakou, Y., & Crews, P. (**1988**). Fijianolides, polyketide heterocycles from a marine sponge. The Journal of Organic Chemistry, 53(15), 3642–3644. DOI:10.1021/jo00250a052

Radwan, F. F. (**2002**). Comparative toxinological and immunological studies on the nematocyst venoms of the Red Sea fire corals *Millepora dichotoma* and *M. platyphylla*. Comparative biochemistry and physiology. Toxicology & Pharmacology: CBP, 131(3), 323–334. DOI: 10.1016/S1532-0456(02)00017-0

Rames, P., Reddy, N. S., Rao, T. P., Rao, J. V., and Venkateswarlu, Y. (**1999**), Biochemical Systematics and Ecology, 27, 661-662 **Reddy**, N. S., Reed, J. K., Longley, R. E., & Wright, A. E. (**2005**). Two New Cytotoxic Linderazulenes from a Deep-Sea Gorgonian of the Genus *Paramuricea*. Journal of Natural Products, 68(2), 248–250. DOI:10.1021/np040147u

Remigante, A., Costa, R., Morabito, R., La Spada, G., Marino, A., Dossena, S. (**2018**). Impact of Scyphozoan Venoms on Human Health and Current First Aid Options for Stings. Toxins, 10(4), 133. DOI:10.3390/toxins10040133

Rocha, J., Peixe, L., Gomes, N. C. M., & Calado, R. (**2011**). Cnidarians as a Source of New Marine Bioactive Compounds - An Overview of the Last Decade and Future Steps for Bioprospecting. Marine Drugs, 9(10), 1860–1886. DOI:10.3390/md9101860

Rocha, J.; Calado, R.; Leal, M. (**2015**). Marine bioactive compounds from cnidarians. Kim, S.-K. Springer Handbook of Marine Biotechnology, 823-849

Rodríguez, A. D., & **Boulanger**, A. (**1997**). New Guaiane Metabolites from the Caribbean Gorgonian Coral *Pseudopterogorgia americana*. Journal of Natural Products, 60(3), 207–211. DOI:10.1021/np9605201

Rodríguez, A. D., González, E., & Huang, S. D. (**1998**). Unusual Terpenes with Novel Carbon Skeletons from the West Indian Sea Whip *Pseudopterogorgia elisabethae* (Octocorallia). The Journal of Organic Chemistry, 63(20), 7083–7091. DOI:10.1021/jo981385v

Rodríguez, A. D., Ramírez, C., & Cóbar, O. M. (**1996**). Briareins C–L, 10 New Briarane Diterpenoids from the Common Caribbean Gorgonian *Briareum asbestinum*. Journal of Natural Products, 59(1), 15–22. DOI:10.1021/np960001y

Rojas, A., Torres, M., Rojas, J.I., Feregrino, A., Heimer de la Cotera, E., (**2002**). Calcium dependent smooth muscle excitatory effect elicited by the venom of the hydrocoral *Millepora complanata*. Toxicon, 40, 777–785. DOI:10.1016/S0041-0101(01)00281-1

Rojas-Molina, A., García-Arredondo, A., Ibarra-Alvarado, C. Bah, M (**2012**). *Millepora* ("fire corals") species: Toxinological studies until 2011. Coral Reefs: Biodiversity, 26, 133-148

Sagi, A., Rosenberg, L., Ben-Meir, P., & Hauben, D. J. (1987). "The fire coral" (Millepora dichotoma) as a cause of burns: A case report. Burns, 13(4), 325–326. DOI:10.1016/0305-4179(87)90056-8

Santhanam, R. (2020). Biology and Ecology of Venomous Marine Cnidarians. Springer. 1-318. DOI:10.1007/978-981-15-1603-0

Schierwater, B. & DeSalle, R. (2021). Invertebrate Zoology. Amsterdam University Press, (12) 193-204

Schmidt, C. A., Daly, N. L., Wilson, D. T. (2019). Coral Venom Toxins. Frontiers in Ecology and Evolution, 7. DOI:10.3389/fevo.2019.00320

Schultz, L. W., Clardy, J., & Lessinger, L. (**1995**). 9,11-Secogorgost-5-en-9-one-3β,11-diol, a Marine Steroid from the Sea Whip *Pseudopterogorgia hummelinkii*. Acta Crystallographica Section C Crystal Structure Communications, 51(3), 415– 419. DOI:10.1107/s010827019400452x

Shao, Z.Y., Zhu, D.Y., & Guo, Y.W. (**2002**). Nanjiols A–C, New Steroids from the Chinese Soft *Coral Nephthea bayeri*. Journal of Natural Products, 65(11), 1675–1677. DOI:10.1021/np020087x

Shen, Y.C., Pan, Y.L., Ko, C.L., Kuo, Y.H., & Chen, C.Y. (**2003**). New Dolabellanes from the Taiwanese Soft Coral *Clavularia Inflata*. Journal of the Chinese Chemical Society, 50(3A), 471–476. DOI:10.1002/jccs.200300074

Shen, Y.-C., Wang, L.-T., Cheng, Y.-B., Khalil, A. T., Chen, M.-H., & Lin, Y.-C. (2004). Clavulazols A and B, Two New Pyrazine Derivatives from *Clavularia*

Viridis. Journal of the Chinese Chemical Society, 51(6), 1421–1424. DOI:10.1002/jccs.200400209

Sheu, J.-H., Su, J.-H., Sung, P.-J., Wang, G.-H., & Dai, C.-F. (2004). Novel Meroditerpenoid-Related Metabolites from the Formosan Soft Coral *Nephthea chabrolii*. Journal of Natural Products, 67(12), 2048–2052. DOI:10.1021/np0401314

Shigemori, H., Sato, Y., Kagata, T., & Kobayashi, J. (**1999**). Palythoalones A and B, New Ecdysteroids from the Marine Zoanthid *Palythoa australiae*. Journal of Natural Products, 62(2), 372–374. DOI:10.1021/np9803880

Silva, T., de Andrade, P., Paiva-Martins, F., Valentão, P., Pereira, D. (**2017**). *In Vitro* Anti-Inflammatory and Cytotoxic Effects of Aqueous Extracts from the Edible Sea Anemones *Anemonia sulcata* and *Actinia equina*. International Journal of Molecular Sciences, 18(3), 653. DOI:10.3390/ijms18030653

Souza, C. R. M., Bezerra, W. P., Souto, J. T. (**2020**). Marine Alkaloids with Anti-Inflammatory Activity: Current Knowledge and Future Perspectives. Marine Drugs, 18(3), 147. DOI:10.3390/md18030147

Spalding, M., Ravilious, C., Green, E. (**2001**). World Atlas of Coral Reefs. Berkeley, CA: University of California Press and UNEP/WCMC

Stierle, D. B., Carte, B., Faulkner, D. J., Tagle, B., & Clardy, J. (**1980**). The asbestinins, a novel class of diterpenes from the gorgonian *Briareum asbestinum*. Journal of the American Chemical Society, 102(15), 5088–5092. DOI:10.1021/ja00535a047

Stochaj, W. R., Dunlap, W. C., Shick, J. M. (**1994**). Two new UV-absorbing mycosporine-like amino acids from the sea anemone *Anthopleura elegantissima* and the effects of zooxanthellae and spectral irradiance on chemical composition and content. Marine Biology, 118(1), 149–156. DOI:10.1007/bf00699229

Su, J.-H., Ahmed, A. F., Sung, P.-J., Chao, C.-H., Kuo, Y.-H., & Sheu, J.-H. (2006). Manaarenolides A–I, Diterpenoids from the Soft CoralSinulariamanaarensis. Journal of Natural Products, 69(8), 1134–1139. DOI:10.1021/np050483q

Su, J.-H., Lin, F.-Y., Dai, C.-F., Wu, Y.-C., Hsu, C.-H., & Sheu, J.-H. (**2007**). New Steroids from the Soft CoralNephthea chabrolii. Bulletin of the Chemical Society of Japan, 80(11), 2208–2212. DOI:10.1246/bcsj.80.2208

Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G., van Woesik, R. (**2019**). A global analysis of coral bleaching over the past two decades. Nature Communications, 10(1), 1264. DOI:10.1038/s41467-019-09238-2

Sultan, A. (2015). Steroids: A Diverse Class of Secondary Metabolites. Medicinal Chemistry, 5(7). DOI:10.4172/2161-0444.1000279

Schwartz, R.E., Scheuer, P. J., Zabel, V., Watson, W. H. The coraxeniolides, constituents of pink coral, *Corallium* sp. (**1982**) Tetrahedron Supplements. 477-485. DOI: 10.1016/B978-0-08-029238-0.50056-7.

Takamura, H., Kikuchi, T., Iwamoto, K., Nakao, E., Harada, N., Otsu, T., Kadota, I. (**2018**). Unified Total Synthesis, Stereostructural Elucidation, and Biological Evaluation of Sarcophytonolides. The Journal of Organic Chemistry. DOI:10.1021/acs.joc.8b01634

Tanaka, J., Trianto, A., Musman, M., Issa, H. H., Ohtani, I. I., Ichiba, T., Scheuer, P. J. (**2002**). New polyoxygenated steroids exhibiting reversal of multidrug resistance from the gorgonian *Isis hippuris*. Tetrahedron, 58(32), 6259–6266. DOI:10.1016/s0040-4020(02)00625-7

Tomono, Y., Hirota, H., Fusetani, N. (**1999a**). Isogosterones A–D, Antifouling 13,17-Secosteroids from an Octocoral *Dendronephthya* sp. The Journal of Organic Chemistry, 64(7), 2272–2275. DOI:10.1021/jo981828v

Tomono, Y., Hirota, H., Imahara, Y., & Fusetani, N. (**1999b**). Four New Steroids from Two Octocorals[†]. Journal of Natural Products, 62(11), 1538–1541. DOI:10.1021/np990246I

Turlejski, K. (**1996**). Evolutionary ancient roles of serotonin: long-lasting regulation of activity and development. Acta neurobiologiae experimentalis, 56(2), 619–636

Von Salm, J. L., Wilson, N. G., Vesely, B. A., Kyle, D. E., Cuce, J., & Baker, B. J. (**2014**). Shagenes A and B, New Tricyclic Sesquiterpenes Produced by an Undescribed Antarctic Octocoral. Organic Letters, 16(10), 2630–2633. DOI:10.1021/ol500792x

Wang, Z., Tang, H., Wang, P., Gong, W., Xue, M., Zhang, H., Liu, T., Liu, B., Yi, Y., & Zhang, W. (**2013**). Bioactive Polyoxygenated Steroids from the South China Sea Soft Coral, *Sarcophyton* sp. Marine Drugs, 11(12), 775–787. DOI:10.3390/md11030775

Watanabe, K., Makino, R., Takahashi, H., Iguchi, K., Ohrui, H., & Akasaka, K. (2008). Structure of an Unsaturated Fatty Acid with Unique Vicinal Dimetil Branches Isolated from the Okinawan Soft Coral of the Genus *Sinularia*. Chemical & Pharmaceutical Bulletin, 56(6), 861–863. DOI:10.1248/cpb.56.861

Weber, J. (1990). Poly(gamma-glutamic acid)s are the major constituents of nematocysts in *Hydra* (Hydrozoa, Cnidaria). Journal of Biological Chemistry, 265(17), 9664–9669. DOI: 10.1016/s0021-9258(19)38721-6

West, L. M., Northcote, P. T., & Battershill, C. N. (**2000**). Peloruside A: A Potent Cytotoxic Macrolide Isolated from the New Zealand Marine Sponge *Mycale* sp. The Journal of Organic Chemistry, 65(2), 445–449. DOI:10.1021/jo991296y

Westfall, J. A. (**2004**). Neural pathways and innervation of cnidocytes in tentacles of sea anemones. Hydrobiologia, 530-531(1-3), 117–121. DOI:10.1007/s10750-004-2678-0

Wittine, K., Saftić, L., Peršurić, Ž., & Kraljević Pavelić, S. (**2019**). Novel Antiretroviral Structures from Marine Organisms. Molecules, 24(19), 3486. DOI:10.3390/molecules24193486

Wittle, L.W., Middlebrook, R., Lane, C. (**1971**). Isolation and partial purification of a toxin from *Millepora alcicornis*. Toxicon, 9, 327-331

Wittle, L.W., Scura, E.D., Middilebrook, R.E. (**1974**). Singing coral (*Millepora tenera*) toxin: a comparison of crude extracts with isolated nematocyst extracts. Toxicon, 12, 481-486

Wu, J., Xi, Y., Huang, L., Li, G., Mao, Q., Fang, C., Yan, P. (**2018**). A Steroid-Type Antioxidant Targeting the Keap1/Nrf2/ARE Signaling Pathway from the Soft Coral *Dendronephthya gigantea*. Journal of Natural Products. DOI:10.1021/acs.jnatprod.8b00728

Wu, Q., Sun, J., Chen, J., Zhang, H., Guo, Y. W., & Wang, H. (**2018**). Terpenoids from Marine Soft Coral of the Genus *Lemnalia:* Chemistry and Biological Activities. Marine drugs, 16(9), 320. DOI:10.3390/md16090320

Wu, S.-L., Su, J.-H., Wen, Z.-H., Hsu, C.-H., Chen, B.-W., Dai, C.-F., Sheu, J.-H. (**2009**). Simplexins A–I, Eunicellin-Based Diterpenoids from the Soft Coral *Klyxum simplex*. Journal of Natural Products, 72(6), 994–1000. DOI:10.1021/np900064a

Wu, S.-L., Wang, G.-H., Dai, C.-F., & Sheu, J.-H. (**2004**). Pregnane-Based Steroids from a Formosan Gorgonian *Subergorgia Mollis*. Journal of the Chinese Chemical Society, 51(1), 205–208. DOI:10.1002/jccs.200400031

Xu, T., Zhao, Q. M., Yao, L. G., Lan, L. F., Li, S. W., & Guo, Y. W. (2023). Sinulasterols D-G, four new antibacterial steroids from the South China sea soft coral *Sinularia depressa*. Steroids, 192, 109182. https://DOI.org/10.1016/j.steroids.2023.109182

Yan, P., Ritt, D. A., Zlotkowski, K., Bokesch, H. R., Reinhold, W. C., Schneekloth, J. S., Gustafson, K. R. (**2018**). Macrophilones from the Marine Hydroid *Macrorhynchia philippina* Can Inhibit ERK Cascade Signaling. Journal of Natural Products, 81(7), 1666-1672. DOI: 10.1021/acs.jnatprod.8b00343

Yan, X.-H., Liu, H.-L., Huang, H., Li, X.-B., & Guo, Y.-W. (**2011**). Steroids with Aromatic A-Rings from the Hainan Soft Coral *Dendronephthya studeri* Ridley. Journal of Natural Products, 74(2), 175–180. DOI:10.1021/np100562n

Yang, B., Liu, J., Wang, J., Liao, S., & Liu, Y. (**2014**). Cytotoxic Cembrane Diterpenoids. Handbook of Anticancer Drugs from Marine Origin, 649–672. DOI:10.1007/978-3-319-07145-9_30

Yang, B., Wei, X., Huang, J., Lin, X., Liu, J., Liao, S., Liu, Y. (**2014**). Sinulolides A–H, New Cyclopentenone and Butenolide Derivatives from Soft Coral *Sinularia* sp. Marine Drugs, 12(10), 5316–5327. DOI:10.3390/md12105316

Yang, H., Yu, L., Li, F., Yi, X., Li, J., & Gao, C. (**2018**). A New Antifouling Naphthalene Derivative from Gorgonian Coral *Menella kanisa*. Chemistry of Natural Compounds, 54(2), 368–369. DOI:10.1007/s10600-018-2349-4

Zhang, H., Zou, J., Yan, X., Chen, J., Cao, X., Wu, J., Wang, T. (**2021**). Marine-Derived Macrolides 1990–2020: An Overview of Chemical and Biological Diversity. Marine Drugs, 19(4), 180. DOI:10.3390/md19040180

Ziegler, M., Arif, C., y Voolstra, C. R. (**2019**). Symbiodiniaceae Diversity in Red Sea Coral Reefs & Coral Bleaching. Coral Reefs of the World, 69–89. DOI:10.1007/978-3-030-05802-9_5

11.ANEXOS

Tabla A1. Productos Naturales Marinos aislados de cnidarios

Clase , <u>Orden</u> , Familia, <i>Género y Especie</i>	Compuesto	Naturaleza química	Actividad biológica
Anthozoa			
Alcyoniidae			
Alcyonium paessleri	Alcyopterosinas C, L y M	Sesquiterpenoide	Inhibitoria
Cladiella sp.	Cladielloides A y B	Diterpenoide	Antiinflamatoria
Cladiella sp.	Cladielloides A y B	Diterpenoide	Citotóxica
Cladiella sp.	Cladieunicellinas A-C y E	Diterpenoide	Citotóxica
Cladiella sp.	Cladieunicellina C	Diterpenoide	Antiinflamatoria
Cladiella sp.	Cladieunicellinas D y F	Diterpenoide	Inhibidora
Cladiella sp.	Cladieunicellinas I-S	Diterpenoide	Citotóxica
Cladiella sp.	Litophynin I diacetato	Diterpenoide	Antiinflamatoria
Cladiella australis	Austrasulfona	Sulfona	Antiinflamatoria
Cladiella hirsuta	Hirsutalinaas A-M	Diterpenoide	Antiinflamatoria
Cladiella hirsuta	Hirsutoesteroles A–G	Esteroide	Citotóxica
Cladiella hirsuta	Hirsutosterosidos A and B	Esteroide	Citotóxica
Cladiella hirsuta	Hirsutocospiro A	Lípidos prenoles	Antiinflamatoria
Cladiella hirsuta	Cladophenol glicósidos A y B	Glicósidos	Citotóxica
Cladiella krempfi	(-)-6α-Hidroxipollantellina A	Terpenoide	Antiincrustante
Cladiella krempfi	Krempfielinas E–M	Diterpenoide	Desconocida
Cladiella pachyclados	Pachycladinas A–E	Diterpenoide	Inhibidora
Dichotella gemmacea	Dichotellidos A–E	Diterpenoide	Citotóxica
Dichotella gemmacea	Gemmacolidos T–Y	Diterpenoide	Antitumoral
Klyxum simplex	Simplexinas E y J-0	Diterpenoide	Antiinflamatoria
Klyxum simplex	Klysimplexinas B y H	Diterpenoide	Antitumoral
Klyxum simplex	Klysimplexinas sulfoxido A–C	Diterpenoide	Antiinflamatoria
Klyxum simplex	Klysimplexinas J–N, R y S	Diterpenoide	Antiinflamatoria
Klyxum molle	Klymollinas A-Z	Diterpenoide	Inhibidora
Klyxum molle	Klymollinas F y G	Diterpenoide	Antiinflamatoria
Klyxum molle	klyxumollinas A–D	Diterpenoide	Antiinflamatoria y citotóxica

Lobophytum sp.	Lobofilinas A–E	Cembranoide	Antiinflamatoria
Lobophytum sp.	Lobofiteno	Diterpenoide	Antitumoral
Lobophytum sp.	Lobohedleolido	Diterpenoide	Anti-VIH
Lobophytum sp.	(7Z)-lobohedleolido	Diterpenoide	Anti-VIH
Lobophytum sp.	17-dimetilamino lobohedleolido	Diterpenoide	Anti-VIH
Lobophytum crassum	Crassumolidos A v C	Terpenoide	Antiinflamatoria
Lobophytum crassum	Crassumolidos G-I	Terpenoide	Antiinflamatoria
		Cembranoide	Antiinflamatoria
	Crassumtocoferol A v B	Poliprenoide	Antiproliferativa
	13-acetoxisarcofitoxido	Cembranoide	Antitumoral
	Lobocrassinas A-E	Cembranoide	Antiinflamatoria
Lobophytum crassum		Cembranoide	Antiinflamatoria
Lobophytum crassum		Cembranoide	Inhibidora
Lobophytum crassum		Cembranoide	Inhibidora
Lobophytum crassum		Combranoido	Inhibidora
		Cempranolue	Innibioora
Lobophylum crassum	dihydroxideepoxisarcophytoxido	Cembranoide	Inhibidora
Lobophytum crassum	Culoboflinas A-C	Cembranoide	Antitumoral
Lobophytum cristatum	Lobophytuminas A-F	Diterpenoide	Citotóxica
Lobophytum	Lobocompactol A y B	Diterpenoide	Citotóxica
	Durumólidos A–C	Terpenoide	Antiinflamatoria
	Durumberniquetalólidos A_C	Cembranoide	Antiinflamatoria
	Durumólido P	Cembranoide	Antitumoral
Lobophytum durum	Durumólido O	Cembranoide	Antiviral
Lobophytum laevigatum		Cembranoide	Antiprotozoaria
Lobophytum loovigatum		Estoroido	Antiprotozoaria
		Combranaida	Citotóvico
	(+)-Salcollia Emblido	Cembranoide	Citotóxica
	Zimpolido E	Cembranoide	Antitumorol
Lobophytum laevigatum	Almaoliuo F Matil tartuaata P	Cembranoide	Antitumoral
Lobophytum laevigatum	Nielii loiluoalo B	Cembranoide	Antitumoral
Lobophytum aevigatum	Nyaloliuo	Cempranolue	Antitumoral
michaelae	Michaolidos L–Q	Cembranoide	Citotóxica
Lobophytum pauciflorum	Lobofitonas A-Z	Cembranoide	Antiinflamatoria
Lobophytum	0		
pauciflorum	Ciclolobatrieno	Diterpenoide	Antitumoral
Lobophytum	Lobatrieno	Diterpenoide	Antitumoral
Lobophytum			
sarconhytoides	Sarcophytolinas A–D	Cembranoide	Antiinflamatoria
Rhytisma fulvum	Bisdioxicalamaneno	Sesquiterpenoide	Desconocida
Sarcophyton sp	Sarcophytoninas E y G	Cembranoide	Citotóxica
Sarcophyton sp	Sarcophytol W	Cembranoide	Inhibidora
Sarcophyton auritum	Desconocido	Ceramida	Ansiolítica
Sarcophyton		Ocidinida	71151011104
crassocaule	Crassocolidos H–P	Cembranoide	Antitumoral
Sarcophyton			
crassocaule	Sarcocrassocolidos A–L	Cembranoide	Antiinflamatoria
Sarcophyton			<i>.</i> .
crassocaule	Sarcocrassocolidos M–O	Hidroperóxidos	Citotóxica
Sarcophyton			
crassocaule	13-Acetoxisarcocrassolido	Cembranoide	Antitumoral
Sarcophyton ehrenbergi	Ehrenbergol A-C	Cembranoide	Citotóxica y antiviral
Sarcophyton ehrenbergi	Acetilehrenberoxido B	Diterpenoide	Antiviral

Sarcophyton ehrenbergi	Sarcoehrendinas A–J	Prostaglandinas	Inhibidora
Sarcophyton ehrenbergi	Sarcophytonoxidos A–E	Cembranoide	
Sarcophyton elegans	Sarcophelegans A–D	Cembranoide	Inhibidora
Sarcophyton glaucum	Sarcophyolido B	Cembranoide	Citotóxica
			Citotóxica y
Sarcophyton glaucum	Glaucumolidos A y B	Cembranoide	Antiinflamatoria
Sarcophyton	Carreelanteire A	Combrancida	
infundibuliforme	Sarcolactona A	Cempranoide	Aleloquímica
Sarcophytop tortuosum	Tortuosopos A y B	Norcombranoido	Citotóxica y
Sarcophyton tontuosum		Norcembranoide	Antiinflamatoria
Sarcophyton	Sarcophytolidos M v N	Cembranoide	Citotóxica
pauciplicatum		Combranelae	enerexied
Sarcophyton subviride	Bissubvilidos A y B	Cembranoide	Desconocida
Sarcophyton	16-oxosarcophytonina E	Cembranoide	Desconocida
trocheliophorum			20000
Sarcophyton	Metil sarcotroates A v B	Cembranoide	Inhibidora
trocnellophorum	· · · · · · · · · · · · · · · · · · ·		
Sarcophyton	Sarcophytonolidos M–R	Cembranoide	Inhibidora
trocnellophorum			
Sarcopnyton	Sarcotrocheldioles A y B	Cembranoide	Antimicrobiana
trochellophorum Sereenbyten	-		
trachalianharum	Hydrosarsolenona	Diterpenoide	Desconocida
Sprophyton			
trochelionhorum	Metildihidrosarsolenoneato	Diterpenoide	Desconocida
Sarcophyton			
trocheliophorum	Zahramycinas A y B	Esteroide	Antibacterial
Sarcophyton			
trocheliophorum	Trocheliano	Cembranoide	Antibacterial
Sarcophyton			
trocheliophorum	I rochelioides A y B	Cembranoide	Antibacterial
Sarcophyton	Valanganaa A.v.D	Combrancida	Citemate ative
trocheliophorum	raiongenos A y B	Cempranoide	Citoprotectiva
Sinularia sp.	5-episinuleptolido acetato	Cembranoide	Citotóxica
Sinularia sp.	Sinulido	Espermina	Antiulcerosa
Sinularia sp	Sinularonas A I	Ciclopentenonas y	Antiinerustanto
Sinulana sp.	Siluaronas A-i	butenolidos	Antimicrusiante
Sinularia sp.	Sinularianinas C y D	Espiro-butinólidos	Inhibidora
Sinularia sp.	Sinuflexibilinas A–E	Diterpenoide	Inhibidora
Sinularia sp.	Sinularcasbanos A–L	Diterpenoide	Inhibidora
Sinularia sp.	Chloroscabrolido A y B	Norcembranoide	Antiinflamatoria
Sinularia sp	Prescabrolido	Norcembranoide	Antiinflamatoria
Sinularia sp	Lobano	Diternenoide	Antiinflamatoria y
	Lobario	Diterpendide	Antibacterial
Sinularia sn	Gorgosterol	Esteroide	Antagonista de
			FXR
Sinularia arborea	Arbolidos A y B	Cembranoide	Antiinflamatoria
Sinularia arborea	Sinularboles A yB	Cembranoide	Inhibidora
Sinularia brassica	Sinubrasolidss A–G	Esteroide	Citotóxica
Sinularia capillosa	Capillosananos A–N	Sesquiterpenoide	Antiincrustante
Sinularia capillosa	Capilloquinol	Farnesil quinoide	Antitumoral
Sinularia capillosa	Capillobenzofuranol	Sesquiterpenoide	Antiviral
Sinularia crassa	Crassarinas A–H	Cembranoide	Antiinflamatoria
Sinularia crassa	Sicrassarina A	Cembranoide	Desconocida
Sinularia crassa	Crassalona A	Diterpenoide	Citotóxica
Sinularia crassa	Crassarosterol A	Glicósidos	Inhibidora
		esteroideos	
Sinularia crassa	Crassaroesterosidos A–D	Glicósidos	Antiinflamatoria

		esteroideos	
Sinularia depressa	Depressina	Diterpenoide	Antihipertensivo
Sinularia discrepans	Discrepanolido A	Cembranoide	Antiinflamatoria
Sinularia ehrenbergi	Sarcophytonoxidos A–E	Cembranoide	Desconocida
Siliparia araata	Sigularostala A. C	Combranaida	Antiinflamatoria e
Siinana erecta	Sinulerectors A–C	Cempranoloe	inhibitoria
Silinaria erecta	Sinulerectadiona	Cembranoide	Inhibitoria
Sinularia flexibilis	Flexilarina D	Cembranoide	Antitumoral
Sinularia flexibilis	11-episinulariolido	Diterpenoide	Antiincrustante
Sinularia flexibilis	Tioflexibilolide A	Cembranoide	Antiinflamatoria
Sinularia flexibilis	Flexibilina D	Cembranoide	Antiinflamatoria
Sinularia flexibilis	Flexibilisolidos C–G	Cembranoide	Citotóxica
Sinularia flexibilis	Flexibilisquinona	Quinona	Antiinflamatoria
Sinularia gaweli	Sinulanorcembranolido A	Cembranoide	Antiinflamatoria
Sinularia gibberosa	Cugibberoseno A	Cembranoide	Antibacterial
Sinularia gibberosa	Gibberoquetoesterol	Esteroide	Antiinflamatoria
Sinularia granosa	Granosolidos C y D	Diterpenoide	Antiviral
Sinularia gravis	Gravilina	Diterpenoide	Antiprotozoaria
Sinularia gravis	Monoalquilmonoacilglicerol	Diterpenoide	Desconocida
Sinularia gravis	Cetona dihomoditerpenoide	Diterpenoide	Desconocida
Sinularia gravis	Isodecaryiol	Diterpenoide	Desconocida
Sinularia gyrosa	Gyrosanol A–C	Diterpenoide	Antiviral
Sinularia gyrosa	Gyrosanolido A–F	Diterpenoide	Antiviral
Sinularia gyrosa	Gyrosanin A	Diterpenoide	Antiviral
Sinularia gyrosa	Sinugyrosanolido A	Norcembranoide	Citotóxica
Sinularia inelegans	Pambanolidos A–C	Diterpenoide	Citotóxica
Sinularia lochmodes	Lochmolinas A–H	Sesquiterpenoide	Antiinflamatoria
Sinularia leptoclados	Leptoesteroles A–C	Esteroide	Citotóxica
Sinularia leptoclados	Leptocladolina A y B	Sesquiterpenoide	Antiinflamatoria
Sinularia leptoclados	Leptocladol A y B	Sesquiterpenoide	Antiinflamatoria
Sinularia leptoclados	Leptoclalina A	Diterpenoide	Citotóxica
Sinularia leptoclados	1-epi-chabrolidiona A	Sesquiterpenoide	Antiinflamatoria
Sinularia maxima	Sinumaximol A–I	Diterpenoide	Inhibidora
Sinularia maxima	12-hidroxi-escabrolido A	Norditerpenoide	Antiinflamatoria
Sinularia maxima	13-epi-escabrolido C	Norditerpenoide	Inhibidora
Sinularia nanolobata	Nanoculonas A y B	Cembranoide	Desconocida
Sinularia nanolobata	Nanoloboles A–C	Cembranoide	Desconocida
Sinularia numerosa	Sinumerolidos A yB	Cembranoide	Antiinflamatoria
	Malliaglasterag Av B		Citotóxica y
Sinularia mollis	Monisolacionas A y B	Dinormonoterpenos	Antiviral
Sinularia povida	Bovidelides A. E	Ditornonoido	Citotóxica y
Sinulana paviua	Pavidolidos A-E	Diterpenoide	Antibacterial
Sinularia polydoatyla	Hurgodooino	Estoroido	Citotóxica y
Sinulana polydačtyla	Huigadacina	Esteroide	Antibacterial
Sinularia polydactyla	Sinularcasbanos M–O	Cembranoide	Inhibidora
Sinularia querciformis	Querciformolido C	Terpenoide	Antiinflamatoria
Sinularia rigida	Sinulariol A–Z	Cembranoide	Antiincrustante
Sinularia scabra	Scabralinas A y B	Sesquiterpenoide	Antitumoral
Sinularia triangula	Triangulenos A y B	Cembranoide	Antiinflamatoria
Sinularia vanderlandi	Vanderlandina	Sesquiterpenoide	Antiprotozoaria
Stragulum bicolor	Amphidinolido P	Macrólido	Citotóxica
Stragulum bicolor	Amphidinolidos C4 B8 y B9	Macrólidos	Citotóxica
Acanthogorgiidae			
Anthogorgia sp	Anthogorgienos A–O	Terpenoide	Antimicrobiana
Anthogorgia sp	Anthogorgieno P	Diterpenoide	Antiincrustante
Anthogorgia sp	Anthogorgieno Q	Triterpenoide	Antiincrustante
· ····································			

Anthogorgia caerulea	Caerulsteroide A	Esteroide	Inhibidora
Anthogorgia caerulea	Anthogonoide A	Diterpenoide	Antiincrustante
Anthogorgia caerulea	Antsimplexina A	Diterpenoide	Antiincrustante
	Avermectina B 2ª v 22.23-		
Anthogorgia caerulea	dihydroavermectin A 1 ^a	Macrólidos	Antiincrustante
Muricella flexuosa	Muricellaesteroides A–D	Esteroide	Desconocida
Muricella sibogae	Eunicellinas	Diterpenoide	Antiincrustante
Muricella sibogae	Sibogol A–F	Esteroide	Inhibidora y citotóxica
Muricella sibogae	Siboginas A y B	Diterpenoide	Antiincrustante
Muricella sibogae	Subergorgoles T–X	Esteroide	Antiviral
Briareidae			•
Briareum sp.	Brialalepolidoa A-C	Diterpenoide	Antitumoral
Briareum sp.	Briaroxalidos A–G	Diterpenoide	Citotóxica y Antiinflamatoria
Briareum sp.	Briarenolidos E–L y U-Y	Diterpenoide	Inhibidora
Briareum asbestinum	Briarellina D, K y L	Diterpenoide	Antimalárica
Briareum asbestinum	Briareolatos éster L–N	Diterpenoide	Inhibidora
Briareum asbestinum	Seco-briarellinona	Diterpenoide	Inhibidora
Briareum asbestinum	Briarellina S	Diterpenoide	Inhibidora
Briareum excavata	Briaexcavatina E	Diterpenoide	Antiinflamatoria
Briareum excavata	Briaexcavatolidos L v P	Diterpenoide	Antitumoral
Briareum excavata	Briacavatolidos A–F	Diterpenoide	Citotóxica
Briareum excavata	Excavatolido B	Diterpenoide	Aniinflamatoria y analgésica
Briareum polyanthes	Briarellinas A–P	Diterpenoide	Antimalárica
Briareum violacea	Briaviodiol A	Cembranoide	Antiinflamatoria
Briareum violacea	Briaviolidos A–J	Diterpenoide	Inhibidora
<u>Clavulariidae</u>			
Clavularia sp.	Stolonidiol	Diterpenoide	Actúa en el SN
Clavularia sp.	Haebaruol	Esteroide	Citotóxica
Clavularia koellikeri	Diterpeno tipo cembranoide	Diterpenoide	Antitumoral
Clavularia viridis	Ácido Claviridico	Prostanoide	Antitumoral
Clavularia viridis	Clavulones	Prostanoide	Antitumoral
Clavularia viridis	Claviridenona	Prostanoide	Antitumoral
Clavularia viridis	Prostanoides halogenados	Prostanoide	Antitumoral
Clavularia viridis	Bromovulona III	Prostanoide	Antitumoral
Clavularia viridis	Yonaraesteroles	Esteroide	Antitumoral
Clavularia viridis	Estoloniferona E	Esteroide	Antitumoral
Clavularia viridis	Claviridina A-D	Prostanoide	Antitumoral
Cariioa sp.	Carijoside A	Esteroide	Antiinflamatoria
Carijoa sp	Carijoides A v B	Esteroide	Antitumoral
Carijoa multiflora	Espiropregnano carijodienona	Esteroide	Antibacterial
Carijoa multiflora	Pregnano	Esteroide	Antibacterial
Telesto riisei	Punaglandinas	Prostaglandina	Antitumoral
Ellisellidae	- anagananao	Prootagianama	
Ellisella dollfusi	Dollfusilinas A v B		Inhibidora
Ellisella robusta	12-eni-fragilido G	Diterpenoide	Antiinflamatoria
Ellisella robusta	Robustolido I	Diterpenoide	Antiviral
lunceella fragilis		Diterpenoide	Antiinflamatoria
	Fraiunolidos B C y L-S	Ternenoide	Antiinflamatoria
lunceella fragilis	Fragilisininas A_I	Ditemenoide	Antiincrustante
lunceella juncee		Diterpenoide	Antiincrustante
		Diterpenolue	, antimor ustante

Junceella iuncea	Juncenolidos M–T	Diterpenoide	Antiinflamatoria
Junceella juncea	Junceellolidos M–P	Diterpenoide	Antiinflamatoria
Gorgoniidae			
Antillogorgia acerosa	Bis(pseudopterano) amina	Dialquilamina	Antitumoral
Antillogorgia bipinnata	Bipinnapterolido B	Terpenoide	Antituberculosis
Antillogorgia bipinnata	Caucano ido A v D	Diterpenoide	Antimalárica
Antillogorgia			
elisabethae	Pseudopterosina X	Diterpenoide	Antimicrobiana
Antillogorgia elisabethae	lleabetoxazola	Diterpenoide	Antituberculosis
Antillogorgia elisabethae	Homopseudopteroxazola	Diterpenoide	Antituberculosis
Antillogorgia elisabethae	Caribenoles A y B	Terpenoide	Antituberculosis
Antillogorgia elisabethae	Elisapterosina B	Diterpenoide	Antituberculosis
Antillogorgia elisabethae	Aberrarona	Diterpenoide	Antimalárica
Antillogorgia kallos	Bielschowskysina	Diterpenoide	Antimalárica
Antillogorgia kallos	Bielschowskysina	Diterpenoide	Antitumoral
Antillogorgia rigida	Curcufenol	Terpenoide	Antimicrobiana
Dichotella fragilis	Fragiliosidos A y B	Esteroide	Desconocida
Dichotella gemmacea	Dichotellidos F–V	Diterpenoide	Antiincrustante
Dichotella gemmacea	Gemmacolidos AA–AY	Diterpenoide	Citotóxica
Dichotella gemmacea	Junceellosidos E–G	Esteroide	Antiinflamatoria
Leptogorgia alba	Pukalido	Cembranólido	Emética
Leptogorgia punicea	Punicinoles A y B	Esteroide	Antitumoral
Leptogorgia setacea	Homarina	Piridina	Antiincrustante
Leptogorgia virgulata	Homarina	Piridina	Antiincrustante
Leptogorgia virgulata	Pukalido	Diterpenoide	Antiincrustante
Leptogorgia virgulata	Epoxipukalido	Diterpenoide	Antiincrustante
Pinnigorgia sp	Pinnigorgioles A-E	Esteroide	Inhibidora
Pinnigorgia sp	Pinnisteroles A–C	Esteroide	Inhibidora y Citotóxica
Pseudopterogorgia sp.	Secosteroles	Esteroide	Antitumoral
Pseudopterogorgia sp.	Secosteroles	Esteroide	Antiinflamatoria
Pseudopterogorgia elisabethae	Pseudopterosina	Diterpenoide	Antibacterial
Pseudopterogorgia elisabethae	Seco-pseudopterosina	Diterpenoide	Antibacterial
Pseudopterogorgia elisabethae	Pterosinas	Sesquiterpenoide	Antibacterial
Pseudopterogorgia elisabethae	Seco-pterosinas	Sesquiterpenoide	Antibacterial
Pseudopterogorgia rigida	Perezoperezona	Norsesquiterpenoide	Inhibidora
Pseudopterogorgia rigida	Curcuperezona	Norsesquiterpenoide	Inhibidora
Pseudopterogorgia rigida	Chamigrano	Sesquiterpenoide	Citotóxica
Pseudopterogorgia rigida	Rigidamida	Sesquiterpenoide	Inhibidora
Pseudopterogorgia rigida	Riboperezona	Sesquiterpenoide	Inhibidora
Pseudopterogorgia rigida	5,9-Epoxi-curcuquinona	Sesquiterpenoide	Inhibidora

Pseudonterogorgia			Inhibidora
rigida	Oxazocurcuphenol	Sesquiterpenoide	Initiologia
Pseudopterogorgia	Helioppuel N	Cooquitorpopoido	Inhibidora
rigida	Heliannuolin	Sesquiterpenoide	
Pseudopterogorgia	Recuderigidenes A D	Socquitorpopoido	Inhibidora
rigida	r seudoligidolias A-D	Sesquiterperiolde	
Pseudopterogorgia	Pseudorigidol A y B	Sesquiternenoide	Inhibidora
rigida		Desquiterperiolde	
Pseudopterogorgia	eFeutheradione	Sesquiterpenoide	Inhibidora
rigida		ecoquitorportoido	
Rumphella antipathies	Rumphellaona A	Sesquiterpenoide	Citotóxica
Rumphella antipathies	Rumphellclovano A	Sesquiterpenoide	Citotóxica
Rumphella antipathies	Rumphellclovano C-E	Sesquiterpenoide	Inhibidora
lfalukellidae			
Plumigorgia	Plumicolorina A	Ditorpopoido	Citotóxico
terminosclera	Fiumiscienna A	Diterpenoide	Ciloloxica
laididaa			
Isididae			
Isis hippuris	Gorgosterol (2-4) Polioxigenado	Esteroide	Antitumoral
Isis hippuris	Esteroide (3) Polioxigenado	Esteroide	Antitumoral
Isis hippuris	Suberosenol B	Terpenoide	Antitumoral
Isis hippuris	Esteroide Polioxigenado	Esteroide	Antitumoral
Isis hippuris	A-nor-hippuristanol	Esteroide	Antitumoral
Isis hippuris	Ácido Isishippúrico B	Esteroide	Antitumoral
Isis hippuris	Hipposteronas M–O	Esteroide	Antiviral
Isis hippuris	Hippoesterol G	Esteroide	Antiviral
Isis hippuris	Hippuriesterocetal A	Esteroide	Antiviral
Isis minorbrachyblasta	β-carbolina	Alcaloide	Antimicrobiana
Isis minorbrachyblasta Melithaeidae	β-carbolina	Alcaloide	Antimicrobiana
Isis minorbrachyblasta Melithaeidae Melitodes squamata	β-carbolina Obtucarbamatos C y D	Alcaloide	Antimicrobiana Antitusivo
Isis minorbrachyblasta Melithaeidae Melitodes squamata	β-carbolina Obtucarbamatos C y D	Alcaloide Carbamatos	Antimicrobiana Antitusivo
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae	β-carbolina Obtucarbamatos C y D	Alcaloide Carbamatos	Antimicrobiana
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp.	β-carbolina Obtucarbamatos C y D Capgermacreno C	Alcaloide Carbamatos Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> Dendronephthya sp.	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F	Alcaloide Carbamatos Sesquiterpenoide Cembranoide	Antimicrobiana Antitusivo Desconocida Antibacterial
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya sp.</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya gigantea</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya griffini</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya griffini</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida
Isis minorbrachyblasta <u>Melithaeidae</u> <u>Melitodes squamata</u> <u>Nephtheidae</u> <u>Capnella sp.</u> <u>Dendronephthya sp.</u> <u>Dendronephthya griffini</u> <u>Dendronephthya griffini</u>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida
Isis minorbrachyblastaMelithaeidaeMelitodes squamataNephtheidaeCapnella sp.Dendronephthya sp.Dendronephthya giganteaDendronephthya griffiniDendronephthya griffiniDendronephthya griffiniDendronephthya griffiniDendronephthya griffiniDendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antiincrustante Inhibidora Desconocida Antitumoral
Isis minorbrachyblastaMelithaeidaeMelitodes squamataNephtheidaeCapnella sp.Dendronephthya sp.Dendronephthya sp.Dendronephthya griffiniDendronephthya griffiniDendronephthya griffiniDendronephthya griffiniGendronephthya griffiniGendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antiincrustante Inhibidora Desconocida Antitumoral Antibacterial
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antitumoral Antibacterial Antitumoral Antibacterial
Isis minorbrachyblastaMelithaeidaeMelitodes squamataNephtheidaeCapnella sp.Dendronephthya sp.Dendronephthya sp.Dendronephthya griffiniDendronephthya griffini </td <td>β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B</td> <td>Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide</td> <td>Antimicrobiana Antiinicrobiana Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antitumoral Antibacterial Antitumoral Antiinflamatoria Cititóxica</td>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide	Antimicrobiana Antiinicrobiana Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antitumoral Antibacterial Antitumoral Antiinflamatoria Cititóxica
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini Lemnalia flava Lemnalia philippinensis Lemnalia tenuis	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol	Alcaloide Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide Sesquiterpenoide	Antimicrobiana Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Antitumoral Antibacterial Antibacterial Antibacterial Antibacterial Antiinflamatoria Cititóxica Antiinflamatoria
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini Dendronephthya griffini </td <td>β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D</td> <td>Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide</td> <td>Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antitumoral Antibacterial Antitumoral Antibacterial Antitumoral Antiinflamatoria Cititóxica Antiinflamatoria Antiviral</td>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D	Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Antitumoral Antibacterial Antitumoral Antibacterial Antitumoral Antiinflamatoria Cititóxica Antiinflamatoria Antiviral
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D Litophynina	Alcaloide Carbamatos Carbanoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Antitumoral Antibacterial Antibacterial Antitumoral Cititóxica Antiinflamatoria Cititóxica Antiviral Citotóxica
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini Dendronephthya griffini </td <td>β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D Litophynina Litophynol</td> <td>Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Terpenoide</td> <td>Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Antitumoral Antibacterial Antibacterial Antibacterial Antiinflamatoria Cititóxica Antiviral Citotóxica Citotóxica</td>	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D Litophynina Litophynol	Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Terpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Antitumoral Antibacterial Antibacterial Antibacterial Antiinflamatoria Cititóxica Antiviral Citotóxica Citotóxica
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7- pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D Litophynina Litophynol Cholestadienonas	Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Sesquiterpenoide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Desconocida Antibacterial Antibacterial Antibacterial Antibacterial Antiinflamatoria Cititóxica Antiinflamatoria Antiviral Citotóxica Citotóxica Citotóxica
Isis minorbrachyblasta Melithaeidae Melitodes squamata Nephtheidae Capnella sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya sp. Dendronephthya griffini	β-carbolina Obtucarbamatos C y D Capgermacreno C Dendronpholido F Isogosteronas A–D Esterol (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentacloropentadec-14-en-4-il hidrosulfato (2R,3S,4R,5S,6S,7R)-2,3,5,6,7-pentacloropentadec-14-en-4-ol Capnell-9(12)-ene-8β,10α-diol Eunicellano Flavalina A-J Philippinlinas A y B Lemnalol Parathyrsoidinas A–D Litophynina Litophynol Cholestadienonas 6-acetoxi-7,8-epoxinephthenol	Alcaloide Carbamatos Carbamatos Sesquiterpenoide Cembranoide Esteroide Esteroide Clorosulfolípido Clorosulfolípido Sesquiterpenoide Cembrancide Cambrancide	Antimicrobiana Antitusivo Desconocida Antibacterial Antiincrustante Inhibidora Desconocida Desconocida Desconocida Desconocida Desconocida Antitumoral Antibacterial Antiinflamatoria Cititóxica Antiviral Citotóxica Citotóxica Citotóxica

	En avrin andette anne la a	O such as a side	Description
Nephthea columnaris	Epoxinephthenoles	Cembranoide	Desconocida
Nephthea columnaris	Columnarioles A y B	Cembranoide	Antiinflamatoria
Nephthea chabroli	Chabranol	Terpenoide	Antitumoral
Nephthea chabroli	Nebrosteroides N–S	Esteroide	Antitumoral
Nephthea erecta	Ergostanoides 1 y 3	Ergostanoide	Antiinflamatoria
Paralemnalia thyrsoides	Paralemnolido A	Sesquiterpenoide	Antiviral
Paralemnalia thyrsoides	Paralemnolina J y S	Sesquiterpenoide	Antiinflamatoria
Paralemnalia thyrsoides	Paralemnolina Q-S	Sesquiterpenoide	Neuroprotectora
Scleronephthya gracillimum	Sclerosteroides A–I	Esteroide	Antiinflamatoria
Scleronephthya gracillimum	d- lactona	Esteroide	Inhibidora
Umbellulifera petasites	Petasitosteronas A–C	Esteroide	Antiinflamatoria
Paraminabea			
Paraminabea acronocephala	Paraminabeolidos A-F	Lactonas esteroideas	Antiinflamatoria
Primnoidae			
Acanthoprimnoa cristata	Cristaxenicina A	Diterpenoide	Antiprotozoaria
Convexella	Delebelance	Diterpopoido	Citotóvico
magelhaenica	Dolabelatios	Diterpenoide	Ciloloxica
<u>Plexauridae</u>			
Astrogorgia sp.	Astrogorgol F	Secoesteroide	Antitumoral
Astrogorgia sp	Astrogorginas B–M	Diterpenoide	Antiincrustante
Bebryce sp.	Bebryceoide A	Esteroide	Antitumoral
Echinogorgia	3β-metoxiguaian-10(14)en-2β-ol	Sesquiterpenoide	Antiincrustante
Echinogorgia	Malonganenonas L–Q	Alcaloide	Inhibidora
Echinomuricea sp	Echinobalimano A	Diternenoide	Inhibidora
Echinomuricea sp	Echinoclerodano A	Diterpenoide	Citotóxica
Echinomuricea sp.	Andlabdano	Diterpenoide	Antiviral
Echinomuricea sp.	Echinolabdano A	Diterpenoide	Antiinflamatoria
Eunicea sp.	SesquiTerpenoide	Sesquiternenoide	Antimalárica
Eunicea sp.	Dolabelano	Diterpenoide	Antimalárica
Eunicea sp.		Diterpenoide	Antimalárica
Eunicea sp.		Diterpenoide	Antiinflamatoria
Eunicea fusca		Diterpenoide	Antiinflomotorio
		Diterpenoide	Antiinflamatoria
Eunicea fusca	Eunicidiol	Diterpenoide	Antiinflamatoria
Eunicea knighti	Knightina	Cembranoide	Inhibitoria
Eunicea succinea	Uprolidos N–P	Cembranoide	Antiinflamatoria
Euplexaura flava	Butenólido	Lípido	Antiinflamatoria
Euplexaura robusta	Malonganenonas A, D y E	Alcaloide	Citotóxica
Menella sp.	Menellin A	Derivado de ciclopentano	Citotóxica
Menella sp	Menelloides A-G	Sesquiterpenoide	Antiinflamatoria
Menella sp	Menelloide E	Sesquiterpenoide	Antiinflamatoria
Menella sp.	Menellesteroide C	Esteroide	Citotóxica
Menella sp.	(+)-chloranthalactona B	Sesquiterpenoide	Antiinflamatoria
Menella sp.	(-)-hidroxilindestrenolido	Sesquiterpenoide	Inhibidora
Menella kanisa	Dicetopiperazina	Alcaloide	Antifúngico
Plexaura homomalla	(15R)-PGE2 y (15R)-OAc-PGA2	ProstagaIndinas	Inhibidora
Subergorgiidae		. 2	

Subergorgia rubra	Subergosteronas A-C	Esteroide	Antibacterial
Subergorgia suberosa	Subergorgol A–J	Esteroide	Citotóxica
Subergorgia suberosa	Suberosoide	Esteroide	Citotóxica
Xeniidae			
Anthelia edmondsoni	Waixenicina A	Terpenoide	Inhibidora
Asterospicularia laurae	Asterolaurinas A-L	Diterpenoide	Antitumoral
Cespitularia hypotentaculata	Cespitularina C	Diterpenoide	Antitumoral
Cespitularia hypotentaculata	Cespilactam A	Sesquiterpenoide	Antitumoral
Cespitularia taeniata	Cespitulina E	Diterpenoide	Inhibidora
Cespitularia taeniata	Secoverticillana cespitulina F	Diterpenoide	Inhibidora
Cespitularia taeniata	Cespitulina G	Diterpenoide	Inhibidora
Cespitularia taeniata	Cespitulonas A y B	Diterpenoide	Citotóxica
Heteroxenia ghardaqensis	2S,3R-4E,8E-2- (hexadecanoilamino)-docosa-4,8- diene-1,3-diol	Ceramida	Citotóxica
Heteroxenia ghardaqensis	Gorgostano	Triterpenoide	Inhibidora
Xenia sp.	Xenicanos	Diterpenoide	Antiinflamatoria
Xenia novaebritanniae	Xeniólido I	Diterpenoide	Antibacterial
Xenia plicata	Blumiólido C	Diterpenoide	Antitumoral
Zoantharia			
Zoanthus kuroshio	Zoanthenaminas	Alcaloide	Neuroinflamatoria
Zoanthus kuroshio	11b-cloro-11-deoxikuroshina A	Alcaloide	Antiinflamatoria
Zoanthus kuroshio	5α iodozoanthamina	Alcaloide	Antiinflamatoria
Zoanthus kuroshio	18-epi-kuroshina A	Alcaloide	Antiinflamatoria
<u>Actinaria</u>			
Actinia equina	Equistatina	Proteína	Inhibidor enzimático
Aiptasia diasphana	AdE-1	Toxina	Inactivadora
Anemonia viridis	Av3	Toxina	Inhibidora
Bunodosoma cangicum	Bunodosina 391	Bromoindoleacetami da	Analgésico
Heteractis crispa	Polipéptidos HCRG	Péptidos/Toxina	Inhibidora
Stichodactyla helianthus	Shk	Péptidos/Toxina	Bloqueadora de canales de K
Phymanthidae			
Phymanthus crucifer	PhcrTx1	Proteína	Inhibidora
<u>Scleractinia</u>			
Tubastraea sp.	Cicloaplisinopsina C	Alcaloide	Antibacterial
Cladocora caespitosa	Cladocorans A y B	Sesterterpenoide	Antiinflamatoria
Antipatharia		• • •	
Antipathes dichotoma	2S*,3S*,(4E,8E)-2N-[35- tetradecanoyl]-4(E),8(E)- icosadiene-1, 3-diol	Esfingolípido	Antibacterial

Antipathes dichotoma	(22E)-metilcolesta-5,22-diene- 1a,3b,7a-triol	Esteroide	Antibacterial
<u>Zoanthidea</u>			
Palythoa caribaeorum	Palyosulfonoceramida A y B	Ceramidas	Desconocida
Palythoa tuberculosa	(42S)hidroxi-(50S)-palytoxina	Terpenoide	Citotóxica
Hidrozoa			
Anthoathecata			
Eudendriurn glomeraturn	Esteroles polihidroxilados	Esteroide	Desconocida
Garveia annulata	Annulinas A, B, y C,	Policétido	Inhibidora
Solanderia secunda	Solandelactonas C, D, y G	Ciclopropiloxilipinas	Inhibidora
Leptothecata			
Abietarina sp.	Abietinarinas A y B	Alcaloide	Citotóxica
Abietinaria abietina	6-bromogramina y bis-6- bromogramina	Alcaloide	Activadora
Aglaophenia pluma	β-carbolinas	Alcaloide	Desconocida
Hydrallmania falcata	Hidralmanol A	Terpenoide	Citotóxica
Macrorhynchia philippina	Macrophilonas B-G	Pirroloiminoquinas	Inhibidora
Thuiaria breitfussi	Breitfussin A y B	Alcaloide	Inhibidora
Tridentata marginata	Tridentatoles A, B y C	Alcaloide	Repelente
Limnomedusae			
Olindias sambaquiensis	Citolisinas	Proteína/Toxina	Citotóxica
Scyphozoa			
<u>Semaeostomeae</u>			
Aurelia aurita	Aurelina	Péptido	Antibacterial