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I. RESUMEN 
 

El cáncer de mama es una de las causas más comunes de muerte en mujeres 
a nivel mundial, con más de 2.3 millones de casos al año y se espera un aumento 
a 3.2 millones en 2040. Existen diferentes técnicas de diagnóstico incluyendo la 
mastografía, el ultrasonido, muestras de biopsia y termografía. 

La termografía registra la variación de temperatura en la superficie del cuerpo, 
es rápida, no invasiva, sin radiación y de bajo costo. Esta técnica se divide en 
estática y dinámica, siendo esta última menos explorada. Varios trabajos han 
utilizado termografía estática con éxito, pero surge la necesidad de llevar a cabo 
más investigación en la versión dinámica, al igual de métodos efectivos para la 
detección temprana del cáncer de mama, por lo que este trabajo propone un sistema 
basado en inteligencia artificial para la clasificación de imágenes termográficas 
buscando mejorar la precisión y sensibilidad de efectividad del diagnóstico, siendo 
una respuesta innovadora a la demanda social y médica, por lo tanto, el escaso uso 
de la termografía dinámica resalta un área de enfoque  de futuras investigaciones. 

II. INTRODUCCION  
 

El cáncer de mama es la segunda causa más común de mortalidad por cáncer 
en mujeres. Según la Organización Mundial de la Salud (OMS), hay más de 2.3 
millones de casos al año y se espera que esta cifra supere los 3.2 millones para 
2024. Las técnicas más comunes para obtener imágenes son la mamografía, el 
ultrasonido y la resonancia magnética. 

En mamografía, la imagen se produce utilizando radiación, lo que permite 
detectar calcificaciones y masas en el tejido con una sensibilidad del 85%. Según 
Jochelson et al. (2012), el uso de agentes de contraste aumenta la calidad de las 
imágenes para el diagnóstico. Sait (2024) utilizó un modelo de red neuronal 
convolucional (CNN) con los pesos de EfficientNet B7 para extraer características 
de las imágenes y un modelo LightGBM para la clasificación de imágenes, logrando 
una precisión promedio del 98.7% y un índice kappa promedio del 95.8%. Hassan 
(2024) introdujo un marco CAD completamente automatizado que aprovecha la red 
YOLOv4 y los Vision Transformers (ViT) para detectar y clasificar masas en 
imágenes de mamografía espectral mejorada por contraste (CESM). La CESM es 
un tipo avanzado de mamografía digital de campo completo (FFDM) que ofrece una 
mejor visualización del tejido mamario. El modelo logró puntuaciones promedio de 
precisión (mAP) del 98.69%, 81.52% y 71.65% en detección de masas, y 
precisiones de clasificación de masas del 95.65%, 97.61% y 80% en los conjuntos 
de datos INbreast, CE-CESM y DM-CESM, respectivamente. 

Aguerchi (2024) presentó un nuevo enfoque de aprendizaje profundo que utiliza 
redes neuronales convolucionales (CNNs) para la detección de cáncer de mama 
mediante imágenes de mamografía. Aunque las CNNs son efectivas para la 
clasificación de imágenes, la selección de hiperparámetros y arquitecturas óptimas 
sigue siendo un desafío. Para abordar esto, los autores emplearon el algoritmo de 
optimización por enjambre de partículas (Particle Swarm Optimization, PSO) para 
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determinar automáticamente los hiperparámetros y la arquitectura adecuada del 
modelo CNN. La CNN optimizada alcanzó altas tasas de precisión del 98.23% en el 
conjunto de datos DDSM y del 97.98% en el conjunto MIAS. 

Otro trabajo es el de Cai et al. (2021), quienes trabajaron con imágenes de 
mamografía e implementaron segmentación mediante una matriz de simultaneidad 
de combinación de niveles de gris, la transformada de onda discreta y clasificación 
usando una red convolucional optimizada con un intercambio térmico avanzado, 
logrando una precisión del 93.79%. Abdelrahman et al. (2021) aplicaron técnicas 
para clasificar la densidad y simetría de las imágenes, explorando la predicción de 
tipos de masas, como las precancerosas y cancerosas, y mejoraron la clasificación 
en tejido mamario denso. 

Aunque se han realizado varios estudios en imágenes de mamografía, es 
importante mencionar que una de las desventajas de esta técnica es que está 
contraindicada para personas menores de 40 años y para mujeres con tejido 
mamario muy denso. Además, el uso de radiación para obtener imágenes es una 
técnica dolorosa y desagradable, lo que resalta la necesidad de buscar otras 
alternativas para combatir esta enfermedad. 

III. ANTECEDENTES 
 

El cáncer de mama es una de las causas de muerte más comunes en mujeres 
alrededor del mundo, de acuerdo con la Organización Mundial de la Salud (OMS, 
2023) existen más de 2.3 millones de casos al año, a lo cual se espera que tenga 
un aumento a 3.2 millones en 2040. Además, de acuerdo con el Instituto Nacional 
de Estadística y Geografía (INEGI, 2022) se tiene una tasa de 0.88 muertes por 
cada 10 mil mujeres con rango de 30 a 59 años siendo la principal causa de 
defunción y 4.81 casos por cada 10 mil mujeres mayores a 60 años. A continuación, 
se hará un análisis de los diferentes trabajos que se encargan del diagnóstico del 
cáncer de mama, utilizando diferentes técnicas como mastografía, ultrasonido, 
muestras de biopsia y termografía. 

Mastografía 
 

Las técnicas más comunes para la obtención de imágenes son la 
mastografía, ultrasonido y resonancia magnética. En la mastografía se utiliza 
radiación para la formación de la imagen, esta detecta calcificaciones y masas en 
el tejido, con una sensibilidad del 85%, de acuerdo con Jochelson et al. (2012) al 
hacer uso del medio de contraste este incrementa la calidad de la imagen para su 
diagnóstico. Otro trabajo es el Cai et al. (2021) quien trabajó con imágenes de 
mastografía e implementó una segmentación utilizando una matriz de concurrencia 
de combinación de niveles de grises, la discreta de Wavelet y una clasificación 
haciendo uso de una red convolucionada optimizada con un Advanced Thermal 
Exchange, obteniendo una exactitud del 93.79%. También, se encuentra el trabajo 
de Abdelrahman et al. (2021) quien aplicó técnicas para clasificar la densidad y 
simetría de las imágenes, también explorar la predicción de tipos de masas como 
precancerígenas y cancerígenas, así como mejorar la clasificación en tejido 
mamario denso. A pesar de que se han hecho diversos trabajos de imágenes de 
mastografía es importante mencionar que una de las desventajas es que esta 



 

 

9 

 

contraindicada para personas menores de 40 años, así como en mujeres de tejido 
mamario muy denso, además del uso de radiación para la obtención de imágenes 
y es una técnica dolorosa e incómoda, por lo tanto, es necesario buscar otras 
alternativas para la detención de esta enfermedad. 

Ultrasonido 
 

De acuerdo con Ayana et al. (2021) el ultrasonido es una técnica no invasiva 
y sin uso de radiación, la cual no produce efectos negativos en la salud de los 
pacientes, es un estudio más económico a comparación de la mastografía y es un 
aparato portable. El trabajo de Zhang et al. (2021) propuso el modelo de Multi-task 
learning (SHA-ML), el cual es una red convolucional densa codificadora basada en 
un modelo de atención suave y fuerte para imágenes de ultrasonido mamario, 
haciendo uso de una segmentación y una clasificación binaria. Otro trabajo Jia et 
al. (2023) comparó diferentes modelos de aprendizaje profundo y encontró que 
DenseNet121 presento una precisión de 79.5%, sensibilidad de 90.7% y 
especificidad de 65.9%. El trabajo de Du et al. (2022) utilizó el modelo de Efficient-
Det para identificar el área de los tumores comparando la precisión de forma manual 
95.3%, el método tradicional de ingeniería 90% y Efficent-Det 92.6%. Sin embargo, 
el ultrasonido necesita de una validación de los resultados mediante una 
mastografía o un estudio patológico complementario. 

Muestras de biopsia 
 

El análisis de imágenes de biopsia del tejido mamario es una técnica de 
diagnóstico la cual brinda un resultado más certero de la enfermedad dando las 
características del tumor y estructura de las células cancerígenas (Gurcan et al., 
2009). En este mismo sentido, se encuentra el trabajo de Hamilton et al. (1994), uno 
de los pioneros de la técnica de análisis de imágenes patológicas, quien propuso un 
modelo de sistema experto para el diagnóstico de citología, el cual consistió en una 
red Bayesiana para la clasificación de imágenes. Otro trabajo de Fu y Dong (2022) 
propuso un método de red neuronal de picos (Spiking neural network) para la 
detección de objetos en imágenes de ultrasonido y utilizó el convertir una red 
neuronal profunda en una red neuronal de picos, la cual obtuvo precisión de 90.6% 
en ubicación y 92.8% en clasificación del tumor. También se encuentra el trabajo de 
Alanazi et al. (2021) en donde se realizó una comparación de modelos de CNN en 
el cual el que presentó mejor resultado fue de 5 capas con una precisión del 87%. 
Sin embargo, esta técnica tiene como desventaja el uso de equipo patológico 
costoso, mayor incluso que el ultrasonido y mastografía. 

Termografía 
 

La termografía es una técnica de imágenes médicas que registran la 
variación de la temperatura de la superficie del cuerpo humano en función de la 
radiación infrarroja emitida por la superficie del cuerpo. En aplicaciones médicas, se 
aplica a los cambios de temperatura en el cuerpo humano las cuales se observan 
en las imágenes y pueden ser interpretadas por especialistas. Las células 
cancerígenas generan calor debido a la liberación de óxido nítrico en la sangre, la 
cual causa alteración en la circulación, vasodilatación al aumentar la circulación 
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sanguínea, neoangiogénesis, la creación de nuevos vasos sanguíneos para 
suministrar nutrientes al tumor y aumento de actividad metabólica de las células 
cancerígenas (Kakileti et al., 2017). 

El uso de la termografía para toma de imágenes funciona como una 
alternativa a cualquier otro método de toma de imágenes ya que es una técnica 
rápida, no invasiva, sin uso de radiación, sin contacto y de bajo costo, la cual consta 
de una toma de mapeo de la zona mamaria haciendo uso de una cámara 
termográfica y construye la imagen en la que se puede observar el cambio de 
temperatura entre los tejidos, en donde se identifican las zonas con tumor 
cancerígeno con una temperatura mayor al resto del tejido (Ekici y Jawzal 2020a).  

Existe dos versiones de la termografía: estática y dinámica, en donde la 
estática es la imagen con un mapa corporal de la temperatura, la cual no considera 
su variación en el tiempo, al igual que se requiere de condiciones ambientales 
rígidas y más tiempo en que el paciente se aclimate a la sala de exploración, por el 
contrario la dinámica utiliza un estrés térmico frío en el área de interés (De Weerd 
et al., 2011; Shada et al., 2013), en el cual se monitorea la respuesta de la 
temperatura de la piel después del estrés dinámico donde el flujo de aire frío se 
dirige al seno y se puede observar que en los vasos sanguíneos producidos por el 
tumor no suelen tener terminaciones nerviosa por lo tanto, no responden al estímulo 
por cambio de temperatura y el tumor permanece prácticamente sin cambios cuanto 
este se enfría (Resmini et al., 2021). 

Entre los trabajos de termografía estática se encuentra el de Etehadtavakol 
et al. (2013) en donde la base de datos consistió en 9 de tumor maligno, 12 benignas 
y 11 normales, las cuales registró utilizando sus límites inferiores por detección de 
bordes, segmentó usando fuzzy c-means clustering para la extracción de 
características y un clasificador Adaboost, obteniendo una precisión del 95% en 
tumores malignos. Otro trabajo es el de Sathish et al. (2017) en donde realizó una 
segmentación automática de las mamas utilizando las características de forma de 
la mama y la textura basada en matrices de coocurrencia de niveles de gris y el 
ajuste de curva polinomial, obteniendo 90% de precisión, 87.5% de sensibilidad y 
92.5% de especificidad. El trabajo de Singh et al. (2023) utilizó un modelo Non-
Dominanted Sorting Genetic Algorithm NSGA-II y una optimización Bayesiana 
obteniendo una precisión de 96.16%, mencionó que el estudio consideró los pesos 
de los clasificadores de forma individual, a lo que se puede mejorar al tratar los 
pesos de los clasificadores individualmente como hiper parámetros ajustables. 
Mammoottil et al. (2022) realizó un modelo de aprendizaje automático basado en 
redes neuronales convolucionales que utilizan múltiples vistas térmicas de la mama, 
utilizando un conjunto de datos visuales y verificándolos con los datos clínicos, 
obteniendo una precisión de 93.8%. Otro trabajo es el de Yadav y Jadhav (2022) 
donde se utilizaron el modelo InceptionV3 en el cual aumentaron los datos de 
entrenamiento y prueba obteniendo 92.3% de precisión, mencionaron que se podría 
aplicar una técnica de agregación de características como la ultra agregación de 
multicontexto para mejorar las semejanzas y aumentar la base de datos. En el 
trabajo de Krishna y George (2021) se mencionó que uno de los principales 
problemas de clasificación en imágenes de termografía es la mala relación señal a 
ruido y la segmentación ineficiente en la región mamaria, para lo cual propuso una 
técnica de preservación de bordes basado en filtros de coexistencia para el 
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preprocesamiento del módulo, utilizando operaciones morfológicas y evolución del 
conjunto de niveles de regularizador de distancia, utilizó un módulo de extracción 
de características basado en transformadas de wavelet para la segmentación de la 
región mamaria. El trabajo de Sánchez-Cauce et al. (2021) realizó una red neuronal 
convolucionada (CNN) en la cual incluyó tres imágenes por cada paciente, plano 
frontal, 90° lateral derecho y 90° lateral izquierdo, donde menciona que al incluir a 
la CNN la información personal y clínica de cada paciente la precisión aumenta a 
97%.  

A continuación, se muestra en la tabla 1 trabajos de imágenes de termografía 
estática para detección de cáncer de mama. 

Tabla 1 Antecedentes de imágenes de termografía estática en cáncer de mama 

Autor Aportación 
Base de 

datos 
Segmentación 

Clasificación 

de Algoritmo 

Métricas 

 

Alfayez et al 

2019 
Diseño de 

Pública 

DMR-IR 

1345 

Geometrical 

and textural 

features 

Extreme 

Learning 

Machine (ELM) 

and Multilayer 

Perceptron 

(MLP) 

Accuracy- 

82.2% 

(Ekici & 

Jawzal, 2020) 

Uso del 

algoritmo de 

Bayer en CNN 

para 

optimización. 

140 

pacientes 

(48 sanos 

y 32 

cáncer) 

 

Translation 

Centering, 

eliminación de 

ruido  Salt and 

noise, 

Estructura de 

objetos y firma 

espectral. 

Convolution 

neural 

network(CNN) 

optimized by 

Bayes 

Algorithm 

Accuracy- 

98.95% 

(Rastghalam 

& 

Pourghassem, 

2016) 

Los patrones 

normales y 

anormales se 

separaron 

entre sí 

usando 

características 

de textura. 

65 

imágenes 

Textura de 

imágenes: 

Hidden Markov 

Model (HMM) 

Local Binary 

Pattern (LBP) 

Markov 

Random Field 

(MRF-based) 

Random Field 

(MRF-based) 

Falsos 

negativos 

8.3% 

Falsos 

positivos 5% 

(Singh et al., 

2023) 

Uso del 

modelo 

NSGA2-v2-

CXL en la 

CNN 

Base de 

datos 

BreaKHis 

7909 

imágenes 

 

Convolutional 

neural network 

(CNN) 

Ensemble of 

gradient-

boosting 

Algorithm 

Inception-

ResNet-v2, 

modelo 

Acurracy 

94.40% 

Precision 

95.77% 

Recall 

99.29% 
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NSGA2-IRv2-

CXL 

(Recinella et 

al., 2020) 

Detección de 

cáncer de 

mama al 

generar 

modelo 3D de 

las mamas 

- - - - 

(Krishna & 

George, 2021) 

Forma 

accesible y 

portátil del 

control remoto 

de la salud 

mamaria. 

71 

pacientes 

de los 

cuales 34 

son sanos 

y  37 

cáncer de 

mama. 

Transformada 

de Wavelet, 

Operaciones 

morfológicas y 

Distance 

Regularized 

Level Set 

Evolution 

(DRLSE) 

K-Nearest 

Neighbor 

(KNN), Support 

Vector 

Machine (SVN) 

and Naives 

Bayes 

Classifiers 

Accuracy 

96.46% 

(Yadav & 

Jadhav, 2022) 

Uso de 

Machine 

Learning como 

técnica 

estadística 

para 

programas de 

software sin 

ser codificador 

directamente. 

Base de 

datos 

PROENG 

67 

pacientes 

de los 

cuales 43 

son sanos 

y 24 

presentan 

cáncer de 

mama. 

Contrasts-

enhancement, 

se le cambio el 

tamaño y una 

normailización 

Convolutional 

neural network 

(CNN) usando 

el modelo 

VGG16 y 

InceptionV3- 

93.1% 

GG16 

Accuracy 

87.3% 

 

InceptionV3 

(Fernandez-

Ovies et al., 

2019) 

Compararon 

Resnet como 

Resnet18, 

Resnet34, 

Resnet34 y 

Resnet50 para 

obtener la 

mejor exactitud 

216 

pacientes 

de los 

cuales 175 

sanos y 41 

presentan 

cáncer de 

mama. 

- 

Convolutional 

neural network 

(CNN, 

Resnet152 

 

 

Por otro lado, entre los trabajos de termografía dinámica se encuentra el de Cary 
et al. (1975) el cual utilizó enfriamiento local para diferenciar entre tumor maligno y 
benigno, si la diferencia de temperatura entre ambas regiones bajo enfriamiento era 
superior a 0.9°C se clasificó como maligno y benigno si la diferencia era inferior a 
0.9°C, obtuvo como resultados de clasificación 74% de precisión en tumor maligno 
y 88% entre pacientes sanos y tumores benignos. Francis et al. (2014) utilizó 
imágenes de 24 pacientes sin cáncer de mama y 12 con cáncer, extrajo 17 
diferentes características como estadísticas de primer y segundo orden,  
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así como de textura, posteriormente utilizó una máquina de vectores para clasificar, 
obteniendo una especificidad del 83.35% y sensibilidad de 83.3%. Gerasimova et 
al. (2014) clasificó 33 pacientes con cáncer de mama y 14 pacientes sin cáncer, en 
donde encontró que la fluctuación temporal cerca del tumor cancerígeno es mayor 
en una mama sana, hizo uso de análisis multifractal Wavelet para clasificar entre 
pacientes con cáncer de mama y pacientes sanos. Otro trabajo es el de Ali et al. 
(2015) en donde hizo uso del método estático y dinámico, posteriormente aisló las 
mamas y sacó su histograma para mejorar las imágenes, extrajo sus características 
de las cuales 6 eran estadísticas de primer orden y 15 de segundo orden, finalmente 
utilizó el método de Support Vector Machine (SVM) como clasificador obteniendo 
una precisión del 100%. Como puede apreciarse son pocos los trabajos que han 
utilizado termografía dinámica por lo tanto es necesario desarrollar nuevas 
metodologías que utilicen esta versión dinámica para la detección de anormalidades 
que puedan estar asociadas al cáncer de mama. 

A continuación, se muestra en la tabla 2 trabajos de imágenes de termografía 
dinámica para detección de cáncer de mama. 

Tabla 2 Antecedentes de imágenes de termografía dinámica en cáncer de mama 

Autor Aportación Base de datos Segmentación 
Clasificación 

de Algoritmo 

Métricas 

 

Mammoot

til et al. 

(2022) 
 

Modelo de 

aprendizaje 

supervisado en 

redes neuronales 

convolucionales 

utilizando múltiples 

vistas térmicas de 

la mama 

293 pacientes 

con imágenes 

frontales y 

laterales 

- 

CNN con 

optimizador 

Adam 

Especificidad 

96.7%, 

sensibilidad 

88.9% 

Sarigoz 

& Ertan 

(2020) 
 

El uso de 

termografía 

dinámica fue 

superior al 

ultrasonido, 

mamografía y 

resonancia 

magnética en 

detección de 

ganglios linfáticos 

metastásicos 

26 pacientes (2 

imágenes 

estáticas y 

dinámicas cada 

5 segundos por 

4 minutos) 

- - 
Sensibilidad- 

83% 

da Silva 

et al. 

(2020) 
 

 

Evalúo un método 

de análisis de 

imágenes para 

detección 

automática de 

tumores benignos y 

malignos 

64 pacientes y 

1280 imágenes 

totales 

Clustering, 

histograma y 

geometría fractal 

Clasificador 

Support Vector 

Machine (SVM) 

Precisión -

100% 



 

 

14 

 

Abdel-

Nasser et 

al. (2019) 
 

Utilizó una técnica 

de aprendizaje de 

clasificación y 

análisis de textura 

37 pacientes 

con cáncer de 

mama y 19 

sanos 

histograma 

Perceptrón 

multicapa con 

método de 

análisis de 

textura 

AUC-98.9% 

Silva et 

al. (2016) 

Segmentación 

manual de la región 

de las mamas 

40 pacientes 

con cáncer de 

mama y 40 

pacientes 

sanos 

Algoritmo k-

means 
Red bayesiana 

Especificidad 

del 100%. 

Saniei et 

al. (2015) 
 

Detección mediante 

el cálculo de 

matching score y 

extracción de 

patrones 

vasculares 

25 pacientes 

con cáncer de 

mama y 25 

pacientes 

sanos 

Filtro de difusión 

anisotropic y el 

método black top-

hat 

- 

Sensibilidad-

86% y 

especificidad 

61% 

 

Adicionalmente hay otros trabajos adicionales en termografía; los cuales son:  
Gomathi (2023) presentó un enfoque llamado DBC-4D U-Net-DITI, que utiliza 

segmentación 4D U-Net con sistemas de imágenes térmicas digitales infrarrojas (IR) 
para el diagnóstico de cáncer de mama. Este método demostró mejoras en el 
rendimiento, alcanzando tasas de precisión del 39.01%, 28.34% y 37.45%, y tasas 
de precisión mejoradas del 17.12%, 24.12% y 32.07%. 

Chebbah (2023) utilizó el modelo U-Net, logrando una intersección sobre unión 
(Intersection over Union, IoU) del 89.03%. Después de la segmentación, se 
realizaron evaluaciones texturales y análisis de la red vascular en los termogramas 
para extraer características relevantes. Estas características se utilizaron en 
clasificadores basados en algoritmos de aprendizaje supervisado para distinguir 
entre termogramas normales y anormales. Al aplicar el enfoque desarrollado con 
una máquina de soporte vectorial (Support Vector Machine, SVM), se alcanzaron 
una precisión del 94.4%, una exactitud del 96.2%, un recall del 86.7%, una 
puntuación F1 del 91.2% y una tasa de verdaderos negativos del 98.3%. 

Otro trabajo es el de Mishra et al. (2020), que utilizó termogramas mamarios de 
56 sujetos. Las características de textura se extrajeron de estas imágenes utilizando 
métodos como la matriz de longitud de carrera de nivel de gris (Gray Level Run 
Length Matrix, GLRLM) y la matriz de concurrencia de nivel de gris (Gray Level Co-
occurrence Matrix, GLCM). Al analizar la correlación de estas características, el 
estudio estableció relaciones lineales entre variables, lo que ayudó a evaluar 
cuantitativamente los datos. Se aplicaron técnicas de reducción de características 
no supervisadas, como el análisis de componentes principales (Principal 
Component Analysis, PCA) y Autoencoder (AE), para seleccionar las características 
más relevantes en la detección de anormalidades entre tejido mamario sano y no 
sano. Entre los clasificadores probados, el bosque aleatorio (Random Forest) 
combinado con PCA alcanzó la mayor precisión, logrando un 95.45% en la distinción 
entre tumores benignos y malignos. 
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IV. JUSTIFICACIÓN 
 

La necesidad de desarrollar métodos efectivos y tempranos para la detección 
del cáncer de mama se deriva de su alta mortalidad a nivel global. Este proyecto, 
centrado en la clasificación de imágenes termográficas de cáncer de mama 
mediante el uso de Inteligencia Artificial (IA), emerge como una respuesta 
innovadora ante esta demanda social. La implementación de técnicas avanzadas 
de procesamiento de imágenes y aprendizaje automático no sólo será una 
herramienta para un diagnóstico más acertado y rápido, sino que también promete 
aligerar la carga operacional en los profesionales de la salud, lo cual podría ayudar 
en una mejora en la calidad de la atención médica, lo cual es una forma para 
avanzar en la lucha contra el cáncer de mama.  

Como se vio en la revisión en el estado del arte, existen diferentes técnicas para 
la detección del cáncer de mama, sin embrago como se mencionó la mastografía 
es una técnica dolorosa, requiere contacto, uso de radiación, costosa y sólo se 
puede realizar en personas mayores de 40 años, el ultrasonido necesita de una 
validación complementaria del estudio mediante una mastografía o biopsia y el uso 
de esta última es un estudio invasivo y costoso. 

El presente trabajo pretende promover el bienestar en todas las edades ya que 
para este estudio no es necesario que el paciente tenga una edad a partir de los 40 
para poder realizarse como lo es en la mastografía, al igual que proporcionar una 
estrategia de diagnóstico anticipado y más accesible para el cáncer de mama, este 
proyecto pretende detectar anormalidades que puedan relacionarse al cáncer de 
mama. 

V. DESCRIPCIÓN DEL PROBLEMA 
 

De acuerdo con el INEGI (2023) en México se registraron 23790 nuevos casos 
de cáncer de mama en 2022 en población mayor a 20 años, de los cuales se registró 
27.64 casos por cada 100 mil personas, donde la cantidad en mujeres es de 51.92 
y 1.25 en hombres, catalogándolo como uno de los tipos de cáncer más frecuentes 
y causa de muerte en mujeres alrededor del mundo. 

Los métodos convencionales de detección enfrentan desafíos como los altos 
costos de un estudio de mastografía, una biopsia que necesita de equipo 
especializado de alto costo, al igual que la incapacidad para identificar tumores en 
etapas tempranas de manera eficaz y los riesgos o incomodidades asociadas con 
procedimientos invasivos o la exposición a la radiación. Lo cual es una problemática 
para la detección temprana del cáncer de mama por lo que es un elemento crucial 
para mejorar las tasas de supervivencia y asegurar un tratamiento efectivo y menos 
costoso. 

La termografía es una opción prometedora debido a su carácter no invasivo, 
sin radiación, sin contacto, sin dolor y con la posibilidad de identificar cambios 
fisiológicos asociados con la presencia de células cancerígenas. No obstante, la 
interpretación precisa de estas imágenes puede ser una tarea desafiante que 
requiere un alto grado de especialización y experiencia.  

Al revisar los trabajos en el estado del arte, se puede determinar la falta de 
aplicación de una red convolucional con una base de datos utilizando diferentes 
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ángulos por paciente, el uso de termografía dinámica ayudaría a mejorar el 
contraste de las imágenes para una clasificación con mayor precisión, proponer el 
desarrollo de un algoritmo para la detección del área donde se encuentra la 
anomalía de forma automática, al igual que proponer una caracterización basada 
en texturas y la geometría de las imágenes para reducir el tiempo de ejecución 
computacional y aumentar la precisión de clasificación de las imágenes.  

El propósito es superar las limitaciones actuales en la detección del cáncer de 
mama mediante la creación de un sistema robusto que pueda identificar indicativos 
tempranos de cáncer de manera más eficaz y precisa, proporcionando así una 
herramienta valiosa para los profesionales médicos y mejorando la accesibilidad y 
efectividad de la detección del cáncer de mama. Esta problemática se encuentra 
como una necesidad social y médica apremiante, y aborda una oportunidad 
tecnológica emergente para mejorar significativamente la atención sanitaria en el 
ámbito de la oncología mamaria 

VI. FUNDAMENTACIÓN TEÓRICA 
 

Termografía 
 

El calor es una forma de energía que es emitida por el movimiento molecular 
dentro de un sistema, la termografía es una técnica la cual permite visualizar la 
distribución de la temperatura en superficies, objetos y cuerpos. La intensidad de 
radiación emitida en función de la temperatura se determina de la siguiente manera: 
 

𝐼(𝜆, 𝑇) =
2𝜋ℎ𝑐2

𝜆4
(

1

𝑒
ℎ𝑐

𝜆𝜅𝑇 − 1

) 
(1) 

 
Dónde: 
𝜆 es la longitud de onda. 

ℎ es la constante de Planck. 
𝑐 es la velocidad de la luz en el vacío. 
𝜅 es la constante de Boltzman. 
La potencia de radiación emitida de acuerdo con la ecuación de Stefan-Boltzman 
es la siguiente: 
  

𝛦 = 𝜖𝜎𝑇4 (2) 

 
Dónde: 
𝛦 es la energía total emitida. 
𝜎 es la constante de Boltzman. 

𝑇 es la temperatura absoluta. 
𝜖 es la emisividad de las superficies de radiación. 

La ecuación nos afirma que la potencia de la onda emitida se relaciona 
directamente con la temperatura de la piel. 



 

 

17 

 

La termografía es una técnica de imágenes médicas que registran la 
variación de la temperatura de la superficie del cuerpo humano en función de la 
radiación infrarroja emitida por la superficie del cuerpo.  

En aplicaciones médicas, se aplica a los cambios de temperatura en el 
cuerpo humano las cuales se observan en las imágenes y pueden ser interpretadas 
por especialistas. 

Las células cancerígenas generan calor debido a la liberación de óxido nítrico 
en la sangre, la cual causa alteración en la circulación, vasodilatación al aumentar 
la circulación sanguínea, neoangiogénesis, la creación de nuevos vasos 
sanguíneos para suministrar nutrientes al tumor y aumento de actividad metabólica 
de las células cancerígenas (Kakileti et al., 2017). 

Como se mencionó anteriormente, la termografía estática se refiere a la 
captura de imágenes es un momento específico y sin cambios, por otro lado, la 
dinámica se refiere a imágenes en movimiento para observar el cambio en la 
temperatura a lo largo del tiempo (De Weerd et al., 2011). Para poder hacer uso de 
la termografía estática es necesario estabilizar la temperatura corporal en un lapso 
de 10 a 15 min para poder hacer la toma de las imágenes. Al contrario de la 
termografía dinámica, esta es necesario realizar un enfriamiento del tejido mamario 
hasta determinada temperatura y realizar la toma de imágenes (Gonzalez-
Hernandez et al., 2019). 

Segmentación de imágenes 
 

Es el proceso de dividir una imagen en regiones para cambiar la 
representación de esta en algo que sea más fácil de analizar para obtener la 
información en la región de interés, esto es necesario para identificar el contenido 
de la imagen, para ello se usan diferentes métodos para clasificar dentro de una 
imagen recorriendo píxel por píxel (Liu et al., 2021; Saroha et al., 2013). 

Este proceso se puede alcanzar combinando las diversas técnicas, por tal 
motivo, hay varias metodologías que ayudan a lograr la segmentación, ya que no 
todos los métodos son adecuados para un tipo particular de imagen. La 
segmentación se clasifica de acuerdo con la región, bordes, umbral y agrupación 
por ciertas características (Kuruvilla et al., 2016). 

Filtrado 
En 1980 Grossman y Morlet desarrollaron una función cuadrada integrable y 

Mallat encontró una relación entre los filtros de cuadratura, los algoritmos 
piramidales y las bases ortonormales, así es como Daubichies realiza una base 
ortogonal la más utilizada hoy en día, lo que facilita la transformada directa e inversa 
para una señal o imagen (Palomares et al., 2016). 

 
El ruido presente en las imágenes, que puede alterar y distorsionar su 

contenido, suele originarse por los diferentes medios de transmisión o 
almacenamiento. El ruido gaussiano se utiliza como un modelo para representar la 
aleatoriedad de los valores de los píxeles. Su función de densidad de probabilidad 
𝑝𝑞(𝑥) se describe a partir del promedio (µ) y la varianza (σ²) de una variable 

aleatoria, tal como se expresa en la ecuación 3. 
 (3) 
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𝑝𝑞(𝑥) = (2𝜋𝜎2)−1/2𝑒−(𝑥−𝜇)2/2𝜎2
 

Existen diversos tipos de filtros. Entre ellos, los filtros espaciales, que pueden 
ser lineales, como los de promedio y gaussiano, o no lineales, como los de mediana 
y sigma. 

 
Por otro lado, los filtros frecuenciales se emplean principalmente para 

minimizar el error cuadrático medio y mejorar la calidad de la imagen. Su aplicación 
requiere calcular el espectro de energía de la imagen, tal como se muestra en la 
ecuación 4. 

 

𝐻(𝑢, 𝑣) =
𝐷 ∗ (𝑢, 𝑣)

𝐷 ∗ (𝑢, 𝑣)𝐷(𝑢, 𝑣) +
𝑆𝑤(𝑢, 𝑣)
𝑆𝑓(𝑢, 𝑣)

 
(4) 

 
Donde: 
𝑆𝑤(𝑢, 𝑣) es el espectro de energía de la imagen ideal. 
𝑆𝑓(𝑢, 𝑣) es el ruido. 

𝐷(𝑢, 𝑣) es la estimación de una función de degradación y su conjugado 𝐷 ∗ (𝑢, 𝑣). 
El filtro sigma es muy efectivo para la eliminación del ruido gaussiano, como 

su principal característica, esta conserva los bordes por técnicas difusas. 
 
Se puede resolver el problema del ruido mediante el uso de redes neuronales, 

brindando eficientes resultados en la segmentación, clasificación, identificación de 
imágenes, etc. (Ortiz Rangel et al., 2016). 

 

Ruido 
 

Conocido como “datos sin significado o que no se utilizan y se producen como 
un subproducto no deseado”. Las características del ruido dependen de su fuente, 
así como del operador que mejor reduce sus efectos. “El ruido de impulso 
representa picos aleatorios de energía que ocurren durante la transferencia de datos 
de una imagen” (Kumar & Kumar, 2015). Para generar ruido, se daña un porcentaje 
de la imagen cambiando un punto de canal seleccionado aleatoriamente a un valor 
de píxel entre 0-255.  

 
El modelo de ruido 𝐼𝑛 es representado como se observa en la ecuación 5. 
 

𝐼𝑛(𝑖, 𝑗) = {𝐼(𝑖, 𝑗)  −  𝑥 ≥ 𝑝 (𝐼𝑟(𝑖, 𝑗), 𝐼𝑔(𝑖, 𝑗), 𝑧) 𝑦 <
1

3
 𝑥

< 𝑝 (𝐼𝑟(𝑖, 𝑗), 𝑧, 𝐼𝑏(𝑖, 𝑗)) (𝑧, 𝐼𝑔(𝑖, 𝑗), 𝐼𝑏(𝑖, 𝑗))  
1

3
≤ 𝑦 ≤

2

3
 
2

3

≤ 𝑦  𝑥 < 𝑝 𝑥 < 𝑝  } 

(5) 

 
Donde: 
𝐼 es la imagen original. 
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𝐼𝑟 Componentes del color rojo en la imagen original. 
𝐼𝑔 Componentes del color verde en la imagen original. 

𝐼𝑏 Componentes del color azul en la imagen original. 

𝑥, 𝑦 = [0,1] son valores aleatorios entre 𝑧 = [0,255]. 
𝑝 = [0,1] son parámetros que representan la probabilidad de ruido en la imagen. 
 

Métodos de umbralización 
 

La umbralización tiene como propósito transformar una imagen en escala de 
grises en una imagen binaria, es decir, de dos niveles, con el fin de distinguir el 
objeto del fondo. Este proceso permite segmentar los píxeles de acuerdo con su 
intensidad en escala de grises, y puede realizarse mediante diferentes enfoques: 
umbral global, local o adaptativo. En particular, el umbral global genera una imagen 
cuyos niveles de gris se encuentran entre 0 y 1, produciendo finalmente una imagen 
binaria. La imagen se debe fragmentar en subregiones para poder alcanzar un 
umbral, la asignación del umbral local no considera el tamaño o forma del algoritmo 
y se le da un umbral a cada subregión. (Ochoa González et al., 2019) 

 
A continuación, se describirá el método de Otsu el cual trabaja con un umbral 

óptimo como se mostrará a continuación. 
 

Método Otsu 
El método de Otsu se basa en determinar un umbral óptimo que permite 

dividir la imagen en dos clases: una compuesta por los píxeles con valores de 
intensidad menores al umbral, y otra con aquellos mayores o iguales al mismo. 
Cuando la varianza entre los niveles de gris de ambas clases es máxima, se 
considera que se ha encontrado el umbral más adecuado. La probabilidad de 
ocurrencia del nivel de gris i en una imagen se expresa según la ecuación 6. 

𝑝𝑖 =
𝑓𝑖

𝑁
 

 
(6) 

Donde: 
 𝑓𝑖 es el número de píxeles 

N denota el nivel de gris en una imagen entre 1 y 𝐿. 
𝑝𝑖 probabilidad de ocurrencia. 

Cuando se da una umbralización de dos niveles en una sola imagen, los 
píxeles se dividen en 𝐶1 con niveles de gris de [1, … , 𝑡] y 𝐶2 con [𝑡 + 1, … , 𝐿] . 

Completando la distribución de probabilidad de los niveles de gris para 𝐶1 y 𝐶2 como 
se muestra en las Ecuaciones 6- 17. 

 
 

𝐶1:
𝑝1

𝜔1(𝑡)
, … ,

𝑝𝑡

𝜔1(𝑡)
 (7) 

 

𝐶2:
𝑝𝑡+1

𝜔2(𝑡)
,

𝑝𝑡+2

𝜔2(𝑡)
, … . ,

𝑝𝐿

𝜔2(𝑡)
 (8) 
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Donde: 
 𝑓𝑖 es el número de píxeles 

N denota el nivel de gris en una imagen entre 1 y 𝐿. 
𝑝𝑖 probabilidad de ocurrencia. 

 

𝜔1(𝑡) = ∑

𝑡

𝑖=1

𝑝1 (9) 

 
 
 

𝜔2(𝑡) = ∑

𝐿

𝑖=𝑡+1

𝑝1 (10) 

 
La media para la clase 𝐶1 y 𝐶2 está dada por: 
 

µ1 = ∑

𝑡

𝑖=1

𝑖𝑝1

𝜔1(𝑡)
 (11) 

  

µ2 = ∑

𝐿

𝑖=𝑡+1

𝑖𝑝1

𝜔2(𝑡)
 (12) 

 
Donde µ𝑇 es la intensidad media de toda la imagen, la cual se calcula de la 

siguiente manera: 
 

µ𝑇 = 𝜔1µ1 + 𝜔2µ2 (13) 

  

𝜔1 + 𝜔2 = 1 (14) 

 

Se define la varianza entre clases de la imagen umbralizada como: 
 

𝜎𝐵
2 = 𝜔1(µ1 − µ𝑇)2 + 𝜔2(µ2 − µ𝑇)2 (15) 

 
Para una umbralización de dos niveles, Otsu verificó que el umbral óptimo  
𝑡∗ se elige de manera que  

𝜎𝐵
2 sea máxima; esto es: 

 

𝑡∗ = 𝑀𝑎𝑥{𝜎𝐵
2(𝑡)} (16) 
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1 ≤ 𝑡 ≤ 𝐿 (17) 

 

Operaciones morfológicas 
Toda operación morfológica se obtiene a partir de una o más operaciones 

entre conjuntos, como la unión, intersección o complemento, involucrando dos 
conjuntos —generalmente denotados como A y B— que son subconjuntos de un 
mismo espacio. 

 
El propósito de las transformaciones morfológicas es extraer estructuras 

geométricas de los conjuntos sobre los que se trabaja, mediante la aplicación de 

otro conjunto denominado elemento estructurante. El tamaño y la forma de dicho 

elemento se seleccionan en función de la morfología del objeto que se desea 

analizar y de las características que se buscan resaltar o aislar. En la figura 2.3 se 

presentan los elementos estructurantes básicos más utilizados. 

 

 

 

Erosión 
En la teoría de retículos se describe a la erosión como una “operación que 

conmuta con el infinito” (Ortiz Zamora, 2002).  
 

La erosión consiste en verificar si el elemento estructurante B se encuentra 
contenido dentro del conjunto A. Cuando esta condición no se cumple, el resultado 
es un conjunto vacío. En términos formales, la erosión de un conjunto A se define 
como el conjunto de puntos x que pertenecen a A, de manera que al trasladar el 
elemento estructurante B a esa posición, este queda completamente incluido en A. 
Este proceso se expresa matemáticamente en la ecuación 18. 

 

𝜀𝑌(𝑋) = {𝑥|𝑌𝑥 ⊆ 𝑋} 
 

(18) 

En la ecuación 19 se puede observar la erosión en una imagen binaria de un 
elemento estructurante 𝑌  de tipo cuadrado. 
 

{0 0 0 0 0   0 1 1 1 0   0 0 0   1 1 0   1 1 0   1 0  1 0  0 0     }
→ {0 0 0 0 0   0 0 0 0 0   0 0 0   0 0 0   1 0 0   0 0  0 0  0 0     } 

(19) 

  
En la figura 2.4 se muestra el resultado de aplicar la erosión utilizando un elemento 

estructurante con forma de disco circular. Este tipo de elemento provoca que 

Figura 2.3 Formas básicas de elementos 

estructurantes 
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desaparezcan las estructuras o detalles de la imagen que son más pequeños que 

el propio elemento estructurante, conservando únicamente las formas de mayor 

tamaño. 

 

Figura 2.4 Erosión de X por el elemento estructurante Y 

 

Se puede concluir que la erosión aplicada a señales bidimensionales en 
escala de grises produce una imagen con valores de intensidad menores, es decir, 
una imagen más oscura, ya que este proceso reduce los valores de la señal. 

 
De este modo, en una imagen en niveles de gris, la erosión se interpreta 

como una contracción o reducción del objeto original, empleada comúnmente para 
disminuir su tamaño o eliminar detalles pequeños. En contraste, la dilatación actúa 
de manera opuesta, provocando una expansión o crecimiento de las regiones de la 
imagen. 

Dilatación 
Operación dual de la erosión, en la teoría de los retículos, donde el resultado 

de la dilatación es el conjunto de los puntos de origen del elemento estructurante 𝑌 
tal que el elemento estructurante contiene algún elemento del conjunto 𝑋, cuando 
el elemento se desplaza por el espacio que contienen a ambos conjuntos. 

 
𝛿(∨ 𝑥𝑖) =∨ 𝛿(𝑥𝑖) 

𝑖 ∈ 𝐼 
(20) 

Donde: 
𝐼 es cualquier conjunto de índices. 
𝑦{𝑥𝑖} es una colección arbitraria de valores, de tal manera que 𝑥𝑖𝜖𝑋. 

 
En la ecuación 21 se puede observar la dilatación en una imagen binaria, tomando 
en cuenta un elemento estructural de 𝑌. 
 

{0 0 0 0 0   0 0 0 0 0   0 0 0   0 0 0   1 0 0   0 0  0 0  0 0     }
→ {0 0 0 0 0   0 1 1 1 0   0 0 0   1 1 0   1 1 0   1 0  1 0  0 0     } 

(21) 

 



 

 

23 

 

El efecto de la operación de dilatación se aprecia en la figura 2.5, donde se emplea 
un elemento estructurante con forma de disco circular. Este elemento provoca un 
aumento en el tamaño y la definición del objeto, permitiendo que sus bordes se 
expandan y que las formas se vuelvan más prominentes dentro de la imagen. 
 

 

Figura 2.5 Dilatación de X por el elemento estructurante Y. 

 

Como resultado de aplicar una dilatación sobre una imagen bidimensional en 
escala de grises, se obtiene una imagen más clara, ya que el proceso incrementa 
los valores de intensidad de los píxeles. Esto genera un efecto visual en el que los 
objetos más brillantes adquieren mayor definición y contraste en comparación con 
las zonas más oscuras. 

 
En esencia, la dilatación actúa de forma opuesta a la erosión: mientras la 

erosión reduce o adelgaza las estructuras de la imagen, la dilatación expande y 
realza los objetos, aumentando su tamaño y presencia visual. 

Transformaciones morfológicas 
En las transformaciones morfológicas se debe conformar y definir la imagen 

de partida para el proceso de segmentación y así poder tomar una correcta elección 
del elemento estructurante y la variable de gradiente. La elección de un gradiente 
ya sea por erosión o dilatación va a depender de la geometría y la luminosidad de 
los elementos a destacar en la imagen. (Ortiz Zamora, 2002) 

Apertura 
 La apertura de una señal f mediante un elemento estructurante B se 

representa como f ○ Y y se define como la erosión de f por Y, seguida de una 
dilatación con el mismo elemento estructurante. Este proceso combina ambas 
operaciones para suavizar los contornos, eliminar pequeñas irregularidades y 
preservar la forma general del objeto, tal como se expresa en la ecuación 22. 

 

𝛾𝑌(𝑓 ) = 𝛿𝑌(𝜀𝑌(𝑓 )) (22) 

 

La apertura de una imagen es independiente del origen del elemento 
estructurante utilizado. Esto se debe a que, mientras la erosión puede interpretarse 
como una intersección de traslaciones del elemento estructurante, la dilatación 
posterior equivale a una unión de traslaciones en la dirección opuesta. 
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Por tanto, la apertura puede definirse como la unión de todos los elementos 

estructurantes Y que se encuentran totalmente contenidos dentro del conjunto X, tal 
como se describe en la ecuación 23. 

 

𝛾𝑌(𝑋 ) = 𝑈{𝑌|𝑌 ⊆ 𝑋} 
 

(23) 

 

En la figura 2.6 se muestra el resultado de una operación de apertura, en la 
cual se utiliza un elemento estructurante con forma de disco. Durante la fase de 
erosión, este elemento provoca la eliminación de una estructura pequeña que, 
posteriormente, en la etapa de dilatación, no logra recuperarse completamente a su 
forma original. Este comportamiento refleja la naturaleza suavizadora de la apertura, 
que tiende a eliminar detalles finos o ruidos, preservando únicamente las formas 
más grandes y estables de la imagen. 

 

 

Figura 2.6 Apertura morfológica del conjunto X por el elemento estructurante Y. 

Se puede apreciar que, durante la apertura, se eliminan los objetos cuyo 
tamaño es menor al del elemento estructurante utilizado. Como consecuencia, este 
proceso suaviza los contornos y redondea las convexidades más relevantes del 
objeto, contribuyendo a una representación más limpia y uniforme de las estructuras 
principales de la imagen. 

Cerradura 
La cerradura de una señal f mediante un elemento estructurante Y se 

representa como f ● Y y se define como la dilatación de f por Y, seguida de una 
erosión con el mismo elemento estructurante. Este procedimiento permite rellenar 
huecos, suavizar bordes y conectar regiones cercanas, tal como se expresa en la 
ecuación 24. 

 

𝜑𝑌(𝑋) =∩ { 𝑌𝑐|𝑋 ⊆  𝑌𝑐} (24) 

 

Al realizar el cierre morfológico, se observa que, al igual que en la apertura, 
este proceso es independiente del origen del elemento estructurante. En el caso de 
un conjunto A y un elemento estructurante con forma de disco, como se muestra en 
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la figura 2.7, el cierre puede interpretarse como el espacio generado por el recorrido 
del elemento estructurante cuando este es forzado a mantenerse fuera de los límites 
del conjunto. Este procedimiento tiende a rellenar huecos pequeños y suavizar las 
concavidades, preservando la forma general del objeto. 

 

 

Figura 2.7 Cerradura morfológica del conjunto X por el elemento estructurante Y. 

Como se puede observar, en una imagen en niveles de grises, el cierre 
morfológico resulta útil para rellenar detalles finos, conectar objetos cercanos entre 
sí, suavizar los contornos, y cerrar pequeños vacíos o discontinuidades presentes 
en las formas. En conjunto, esta operación contribuye a obtener una imagen más 
continua y compacta, eliminando imperfecciones menores sin alterar 
significativamente la estructura principal del objeto. 

  

 Operaciones morfológicas por reconstrucción  
Las operaciones morfológicas constituyen un conjunto de técnicas 

empleadas para procesar imágenes a partir de sus formas geométricas. En este tipo 
de operaciones, cada píxel se modifica según los valores de sus vecinos, dentro de 
un entorno definido por un elemento estructurante. Al seleccionar apropiadamente 
la forma y el tamaño de dicho entorno, es posible diseñar operaciones morfológicas 
sensibles a patrones o estructuras específicas presentes en la imagen original. 

 
La reconstrucción morfológica es una operación más avanzada que involucra 

dos imágenes y un elemento estructurante. En ella, se utiliza una imagen 
marcadora, que indica el punto de partida de la transformación, y una imagen 
máscara, que limita la extensión de la reconstrucción. El elemento estructurante 
define la conectividad entre píxeles. Una de sus principales aplicaciones es filtrar o 
eliminar regiones de la imagen que no estén contenidas en el elemento 
estructurante. En particular, la apertura por reconstrucción consiste en aplicar una 
apertura a la imagen marcadora y luego reconstruirla mediante dilataciones 
geodésicas iterativas, hasta que no se produzcan más cambios en la imagen. 

 
Las operaciones por reconstrucción permiten preservar mejor las formas 

originales. Así, la apertura por reconstrucción tiende a suavizar los bordes y eliminar 
pequeñas protuberancias, mientras que la cerradura por reconstrucción actúa de 
forma opuesta, rellenando huecos y uniendo componentes cercanas. 
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En contraste, las operaciones morfológicas básicas, como la dilatación y la 

erosión, únicamente expanden o reducen las formas, sin conservar necesariamente 
la geometría original de los objetos en la imagen. 

 

Detección de bordes 
Se puede definir como el cambio de líneas que marcan el límite y la división 

entre la apariencia de la imagen, esta utiliza un enfoque en la variación de la 

intensidad, con el propósito de extraer información necesaria como la nitidez para 

la ubicación de un objeto en la imagen (Vyas et al., 2018). 

 

Características de una imagen 
Para llevar a cabo una clasificación de imágenes en una red neuronal, se 

necesita encontrar características en común de las diferentes imágenes, a 
continuación, se presentan algunas de las características más comunes: 

 

Contraste 
Se refiere a aumentar el rango dinámico en los niveles de gris en las 

imágenes, es decir a la variación de intensidades lo que da como resultado una 
imagen con mayor iluminación, lo que puede ayudar a resaltar objetos o detalles en 
la nueva imagen (Lacombe et al., 2020). Como se muestra en la ecuación 25. 

ℎ2 = ∑

𝑛=0

𝑛2 {∑

𝑁𝑔

𝑖=1

∑

𝑁𝑔

𝑖=1

𝑝(𝑖, 𝑗)} , |𝑖 − 𝑗| = 𝑛 (25) 

 
Donde: 
𝑝(𝑖, 𝑗)es la probabilidad en la que un píxel con valor i se encuentre adyacente a un 
píxel de valor 𝑗. 

Homogeneidad 
Una imagen se considera homogénea cuando los valores de la diagonal 

principal de su matriz de coocurrencia son altos. Esto se debe a que, según lo 
expresado en la ecuación 26, los valores de probabilidad en dicha matriz tienden a 
ser mayores en la diagonal principal, reflejando una alta similitud entre los niveles 
de gris de los píxeles vecinos, mientras que su influencia disminuye 
exponencialmente conforme se alejan de la diagonal. 

∑

𝑁−1

𝑖,𝑗=0

𝑝𝑖,𝑗

1 + (𝑖 − 𝑗)2
 (26) 

 
Donde: 
 𝑝(𝑖, 𝑗) es la probabilidad en la que un píxel con valor i se encuentre adyacente a un 

píxel de valor 𝑗. 

Cluster Shade 
Es una medida de asimetría de la matriz que mide los conceptos perceptivos 

de uniformidad, en donde primero se crea una nueva imagen 𝑖 + 𝑗 con un rango de 
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intensidades entre 0 a 2. El valor 𝜇(𝑖 + 𝑗) se calcula y almacena para la primera 
imagen y se actualiza a medida que se mueve un píxel. Cuando la sombra del 
cúmulo es alta, la imagen es asimétrica como se observa en la ecuación 27. 

∑

𝑖

∑

𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑌)3 𝑝(𝑖, 𝑗) (27) 

 

Cluster prominence 
Es una medida de asimetría cuando el valor de prominencia del grupo es alto 

y la imagen es menos simétrica, al igual que cuando el valor de prominencia es bajo, 
existe un pico en la matriz de coocurrencia de nivel de gris alrededor de los valores 
medios (Yang et al., 2012) como se observa en la ecuación 28. 
  

∑

𝑖

∑

𝑗

(𝑖 + 𝑗 − 𝜇𝑥 − 𝜇𝑌)4 𝑝(𝑖, 𝑗) (28) 

 
 

Clasificadores 
La clasificación digital de imágenes consiste en organizar los píxeles de una 

imagen dentro de un número determinado de categorías o clases, en función de los 
valores de sus variables asociadas. Cuando un píxel cumple con ciertos criterios o 
condiciones, se asigna a la clase correspondiente, lo que permite generar una nueva 
imagen clasificada, en la que cada píxel está representado por un nivel digital que 
identifica la categoría a la que pertenece. 

Para realizar este proceso, es necesario emplear un método cuantitativo que 
permita evaluar las semejanzas entre los píxeles. Uno de los enfoques más 
comunes es el uso de redes neuronales, las cuales pueden reconocer patrones 
complejos y realizar una clasificación automatizada. En la figura 2.8 se muestra la 
representación esquemática de un clasificador basado en este principio. 
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Figura 2.8 Clasificador 

Existen diversos tipos de clasificadores, los cuales se diferencian según el 
algoritmo o enfoque que emplean para realizar la clasificación. Estos pueden ser 
paramétricos o no paramétricos, estadísticos, basados en redes neuronales, 
supervisados o no supervisados, así como de tipo monoestructural, multiestructural 
o hiperestructural. 

A continuación, se presentan y explican los principales conceptos y 
características de cada uno de estos tipos de clasificadores, con el fin de 
comprender sus ventajas, limitaciones y aplicaciones dentro del procesamiento 
digital de imágenes. 

Redes Neuronales Artificiales (RNA) 
Es una herramienta de estadística de modelado en la información que no es 

lineal, donde esta se compone de nodos que están interconectados, los cuales 
pueden llegar a describir las relaciones complejas entre entradas (input) y salidas 
(Penm et al., 2013). 

Las redes neuronales artificiales se utilizan como modelos matemáticos y 
computacionales inspirados en la estructura del cerebro humano, caracterizándose 
por ser sistemas paralelos y distribuidos de procesamiento de información. Están 
formadas por un conjunto de unidades simples, denominadas neuronas artificiales, 
las cuales se interconectan mediante enlaces que poseen valores numéricos 
ajustables o pesos sinápticos, responsables de modificar la intensidad y dirección 
de la transmisión de información entre ellas. 

Entradas 

Capas 
ocultas 

Capas 
ocultas 

Salidas 
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El proceso de entrenamiento toma la información contenida en las variables 
de entrada y ajusta los valores de los pesos, los cuales conectan todas las capas 
para hacer coincidir la entrada con cada clase, de esta forma se detecta y almacena 
el patrón oculto que comparte todas las entradas y su correspondiente clase, de 
esta manera es necesario hacer uso de una base de datos suficiente para entrenar 
la red neuronal (Beura et al., 2015). 

Se representa cada unidad como la suma de todas las entradas mediante los 
pesos w donde está relacionado con la conexión entre neuronas como se muestra 
en la ecuación 29. 

𝑦𝑖 = ∑

𝑗

𝑤𝑖𝑗𝑦𝑗  (29) 

 
A continuación, en la figura 2.9 se puede observar la representación de una red 
neuronal.  

 
Figura 2.9 Representación de entradas (input) en red neuronal 

 

Las redes neuronales artificiales se distinguen por varias características 
fundamentales. En primer lugar, presentan una autoorganización, ya que utilizan 
algoritmos de aprendizaje adaptativos que les permiten ajustarse y optimizar su 
desempeño sin intervención externa directa. Esta capacidad les confiere un 
procesamiento robusto, capaz de adaptarse a diferentes tipos de datos. 

Además, realizan un procesamiento no lineal, lo que incrementa su habilidad 
para aproximar funciones complejas, reconocer patrones y resistir el ruido en los 
datos de entrada. También emplean un procesamiento paralelo, donde numerosos 
nodos trabajan simultáneamente, lo que permite una alta interconectividad y 
eficiencia en el manejo de información. 

Estructuralmente, una red neuronal artificial está compuesta por una capa de 
entrada (input), una o más capas ocultas (hidden layers), generalmente entre una y 
tres, y una capa de salida (output). La relación matemática que describe la conexión 
y transmisión de información entre neuronas se presenta en la ecuación 30. 

𝑤𝑖2 

𝑤𝑖1 

𝑤𝑖3 

𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) 

∑ 𝑓 
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ℎ𝑖 = 𝜎 (∑

𝑁

𝑗=1

𝑤𝑖𝑗𝑥𝑗 + 𝑇𝑖
ℎ𝑖𝑑) 

 

(30) 

Donde: 
𝜎 es la función de transferencia. 
𝑁 el número de entradas (input). 

𝑤𝑖𝑗 el peso. 

𝑥𝑗 entradas (input) a la neurona. 

𝑇𝑖
ℎ𝑖𝑑 límite de las neuronas ocultas. 

En la figura 2.10 se puede observar la representación de una red neuronal con sus 
diferentes componentes. 

 

 
Figura 2.10 Representación de red neuronal 

Cuando varias neuronas trabajan de manera paralela y coordinada, forman una 
capa neuronal. Por ello, una red neuronal está constituida por múltiples capas 
interconectadas, en las que la salida de una capa actúa como entrada para la 
siguiente. Esta disposición define la arquitectura o topología de la red, la cual 
determina su complejidad, capacidad de aprendizaje y el tipo de problemas que 
puede resolver. 

A continuación, se describen los principales tipos de arquitecturas de redes 
neuronales, destacando sus características estructurales y aplicaciones más 
comunes. 

• Red de capa única: El cual consiste en un vector de entrada que está 
conectado a una capa de N número de neuronas. 

• Red multicapa: Este se caracteriza por tener una o más capas intermedias, 
las cuales se conocen como capas ocultas. 

Salidas 

Pesos w 

Capas 
ocultas 

Neurona Entradas 
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• Red recursiva: Red con retroalimentación la cual en algunas de sus salidas 
se conectan con las entradas. 

Red Neuronal Convolucional (CNN) 
Es un tipo de red neuronal especializada, la cual procesa datos y está dividida 

en cuatro etapas (Ekici & Jawzal, 2020): 
1. Consiste en generar un conjunto lineal en paralelo con operaciones de 

convolución. 
2. Se calcula un conjunto de los mapas de características pertenecientes al 

filtro de la capa anterior. 
3. Se realiza el cálculo de la función lineal por activación lineal rectificado 

(RELU) o llamado también como etapa del detector. 
4. Se modifica la salida para la función de agrupación de capas y el tamaño de 

los mapas de características. 
Las redes convolucionales analizan una gran cantidad de imágenes aplicando 

patrones específicos, esta consta de un núcleo, una agrupación y capas 
conectadas, el propósito de la capa del núcleo es detectar y extraer características 
específicas de las imágenes, lo cual se realiza con el operador de convolución (Le 
et al., 2019). Las CNN se aplican para explorar patrones en una imagen, esto se 
hace convolucionando una imagen, una red puede detectar líneas en las capas 
frontales. En la figura 4 se puede observar la representación del funcionamiento de 
una red neuronal convolucionada. 

Figura 2.11 Red neuronal convolucionada 

 

Redes Neuronales Profundas 
Es un modelo computacional que consta de muchas unidades de 

procesamiento simples o neuronas (Arisoy et al., 2012), las cuales funcionan en 
paralelo y cuentan con capas interconectadas, estas redes cuentan con una capa 
de entrada y una de salida, conforme las capas se apilan, estas se llaman 
profundas (Hinton, 2007). La principal ventaja de este modelo es que es capas de 
manejar entradas inciertas que pueden eliminar la incertidumbre de los datos, 
haciéndolo útil para datos de la vida real (Gawlikowski et al., 2023). 

Red VGG16 
 

Es una red neuronal convolucional (CNN) profunda utilizada especialmente 
en clasificación de imágenes y extracción de características. Fue introducida por el 
grupo de investigación de Visual Geometry Group (VGG) de la Universidad de 
Oxford en su trabajo titulado "Very Deep Convolutional Networks for Large-Scale 
Image Recognition" en 2014. 
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Sus características principales son: 
1. Arquitectura: 

• 16 capas entrenables: De ahí data su nombre, VGG16 tiene 13 capas 
convolucionales y 3 capas completamente conectadas. 

• Las capas convolucionales usan filtros pequeños de tamaño 3x3, lo que 
permite capturar características más detalladas y locales. 

• Las capas de agrupamiento o pooling 2x2 se usan para reducir la 
dimensionalidad espacial mientras mantienen las características más 
importantes. 

 
2. Estructura: 

La arquitectura sigue un patrón simple y uniforme: múltiples capas 
convolucionales seguidas de una capa de max pooling para reducir las 
dimensiones. Al final, las características extraídas pasan por 3 capas 
completamente conectadas y una capa softmax para la clasificación. Por lo 
general, se utiliza como entrada una imagen de tamaño fijo, típicamente 224x224. 
 
3. Tamaño del modelo: 
   La red tiene aproximadamente 138 millones de parámetros, lo que la hace 
relativamente grande y costosa en términos de almacenamiento y tiempo de 
cómputo. 
 
4. Sus ventajas son: 

• La simplicidad en el diseño hace que sea fácil de entender y adaptar. 

• Ofrece un rendimiento robusto en tareas de clasificación de imágenes, 
como las del conjunto de datos ImageNet. 

• Es muy útil para transfer learning, ya que los pesos preentrenados pueden 
utilizarse en otros problemas de visión por computadora. 

 
5. Las desventajas: 

• Su gran número de parámetros puede causar problemas de sobreajuste en 
conjuntos de datos pequeños. 

• Es computacionalmente costosa en comparación con arquitecturas más 
modernas como ResNet o EfficientNet. 

 

Autoencoders 
Son un tipo de red neuronal que consta de una fase de codificación, en la 

que los vectores de características se asignan a un espacio dimensional inferior o 

superior, por lo cual el vector de características original se puede reconstruir en 

una fase de decodificación posterior con un error de reconstrucción mínimo. El 

codificador automático consta de una capa de entrada de 𝑛 dimensiones, una 

capa oculta de ℎ dimensiones y una capa de salida de 𝑛 dimensiones (Sagha et 

al., 2017). A continuación, en la ecuación se muestra la función de autoencoder: 
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𝐿(𝑊) =  ∑

𝑖

𝐷(𝑥𝑖, 𝑥𝑖̂) = ℎ𝑖 = 𝑔(𝑊𝑥𝑖 + 𝑏), 𝑥𝑖̂

=  𝑓(𝑊′ℎ𝑖 + 𝑏′) 
 

(31) 

 

En la figura 10 se puede observar la representación de una red autoencoder. 
 

 

Figura 2.12 Autoencoder 

VII. HIPÓTESIS 
 

La detección de anormalidades asociadas al cáncer de mama se detectará de 
manera automática al utilizar imágenes termográficas infrarrojas, para obtener 
características de textura (homogeneidad, contraste, cluster shade y cluster 
prominence) como datos de entrada de un clasificador basado en redes neuronales 
que se implementará en una metodología de inteligencia artificial. 
 

VIII. OBJETIVOS 

a) Objetivo general 
Diseñar un sistema de clasificación automática para detección de anormalidades 

asociadas al cáncer de mama en imágenes termográficas utilizando técnicas de 
inteligencia artificial. 

. 

. 

. 

. 

. 

. 

. 

. 

. 

𝑥𝑖 

ℎ𝑖 

𝑥𝑖̂ 

𝐷(𝑥𝑖, 𝑥𝑖̂) 
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b) Objetivos específicos 
 

● Desarrollar una metodología para segmentar la región de las mamas de en 
imágenes termográficas infrarrojas. 

● Implementar algoritmos para obtener características de textura 
(homogeneidad, contraste, cluster shade y cluster prominence) de las 
termografías que servirán como datos de entrada del clasificador. 

● Programar diferentes clasificadores basados: en redes neuronales 
convolucionales, redes neuronales profundas y autoencoders. 

● Seleccionar el mejor clasificador mediante un análisis de desempeño basado 
en la especificidad y sensibilidad obtenidas para cada clasificador. 
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IX. METODOLOGÍA 
 

 
Figura 3.1 Metodología propuesta 

 
A continuación, en la figura 3.1 se presenta la metodología aplicada en el 

trabajo. 
 

Base de datos 
 

El conjunto de datos DMR-IR del Hospital Universitario A Antonio Pedro Silva 
(2014), que contiene un total de 6749 imágenes de 149 pacientes en tamaño de 
640x480 píxeles, con datos de pacientes sanos y de aquellos con cáncer de mama, 
incluye 37 secuencias de pacientes con cáncer de mama confirmado 
histopatológicamente y 19 secuencias de individuos sanos sin hallazgos benignos. 
El conjunto de datos contiene imágenes segmentadas que se centran 
exclusivamente en las temperaturas de las mamas y omiten las temperaturas de 
otras áreas del cuerpo. Además, los registros médicos de cada paciente contienen 
detalles como edad, etnia, antecedentes personales, antecedentes familiares, 
historial médico y recomendaciones de protocolo. 

Generación del ROI  
 

Para esta etapa se dejó únicamente el área de interés al emplear detección 
de curvas para delinear el contorno de la mama y eliminar todo el fondo. Esta 
limpieza y segmentación mejoraron la calidad de las imágenes para las etapas 
posteriores. 

Procesamiento de imágenes 
 

En la primera etapa, se limpiaron las imágenes utilizando filtros de 
eliminación de ruido gaussiano y técnicas avanzadas de procesamiento de 
imágenes para segmentar la región de las mamas. 

Aumento de datos 
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Para incrementar la precisión del modelo y equilibrar la cantidad de imágenes 
en la clase de pacientes con hallazgos, se llevó a cabo un proceso de aumento de 
datos en el conjunto de entrenamiento. Esto fue necesario debido a la gran 
diferencia entre el número de pacientes sanos y aquellos con la enfermedad. Para 
ello, se aplicaron las siguientes técnicas: rotación, modificación de alto y ancho de 
la imagen, recorte, zoom, relleno y rotación horizontal. 

Extracción de características  
 

En la segunda etapa, se extrajeron características de textura para las como 
variables de entrada para los algoritmos de clasificación y permitiendo una 
representación detallada y diferenciada de las imágenes. 

Clasificación 
 

Para la clasificación, se exploraron y programaron diversos algoritmos 
avanzados con el objetivo principal de categorizar los datos según sus 
características intrínsecas. Se utilizaron redes neuronales convolucionales (CNN), 
efectivas en la clasificación de imágenes al emplear capas convolucionales que 
extraen las características más relevantes y capas de pooling para reducir la 
dimensionalidad. 

Se compararon principalmente tres redes neuronales convolucionales, 
EfficientNet, ResNet50 y VGG16 debido a que cada una cuenta con características 
distintas como es la eficiencia computacional en la primera, la siguiente propuesta 
debido a su capacidad para evitar problemas del desvanecimiento de gradiente y la 
última red debido a su simplicidad en la estructura de la red y su alta efectividad en 
clasificación de imágenes.  

Métricas  
 

El análisis del desempeño de los clasificadores se llevó a cabo utilizando 
métricas clave como la especificidad, que mide la capacidad del clasificador para 
identificar correctamente los casos negativos; la sensibilidad, para evaluar la 
identificación de casos positivos; la exactitud (accuracy), para medir el rendimiento 
global del clasificador; y, por último, el área bajo la curva ROC (AUC), que evalúa la 
capacidad para distinguir entre clases positivas y negativas. Al obtener y analizar 
estas métricas, se permitió seleccionar el clasificador más adecuado basándose en 
su desempeño cuantitativo. 

Se implementó una validación cruzada para garantizar la fiabilidad y 
generalización de los resultados. Este enfoque proporcionó una evaluación integral 
de cada modelo, facilitando una comparación objetiva entre los diferentes 
algoritmos de clasificación empleados. Los resultados obtenidos informaron la 
elección del modelo óptimo para la tarea específica de clasificación en imágenes 
mamográficas. 
Los valores métricos tomados en cuenta están representados en la tabla 3, la cual 
brinda su definición y su fórmula. 

Tabla 3. Evaluación de métricas 

Métrica Definición Formula 
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Verdadero 
positivo (VP) 

Número de imágenes 
clasificadas como positiva 
y efectivamente es positiva 

 

Verdadero 
negativo (VN) 

Número de imágenes 
clasificadas como 

negativas y efectivamente 
es negativa 

 

Falso positivo 
(FP) 

Número de imágenes 
clasificadas como positivas 

y es negativa 

 

Falso negativo 
(FN) 

Número de imágenes 
clasificadas como 

negativas y es positiva 

 

Exactitud Proporción de 
clasificaciones correctas 

(𝑉𝑃 + 𝑉𝑁)/(𝑉𝑁 + 𝑉𝑃 + 𝐹𝑁 + 𝐹𝑃) 

Sensibilidad 
(Recall) 

Proporción de la clase 
positiva que fue 

clasificada correctamente 

(𝑉𝑃)/(𝑉𝑃 + 𝐹𝑁) 

Especificidad Proporción de la clase 
negativa que fue 

clasificada correctamente 

(𝑉𝑁)/(𝑉𝑁 + 𝐹𝑁) 

Precisión Que tan bueno es es 
modelo prediciendo los 

casos positivos 

(𝑉𝑃)/(𝑉𝑃 + 𝐹𝑃) 

F1- Score Evalua la exactitud del 
modelo entre ambas 

clases 

𝑉𝑃

𝑉𝑃 +
1
2 (𝐹𝑃 + 𝐹𝑁)

 

 

X. RESULTADOS 
 

Se llevo a cabo la experimentación en las fases siguientes, el procesamiento de 
imágenes, la división de la base de datos, aumento de datos y balanceo de clases, 
seguido de la extracción de patrones de detección para poder aplicar el modelo 
CNN de clasificación de imágenes para evaluación de sus métricas. A continuación, 
se explicará los detalles de cada una de las fases. 
 

Generación de ROI 
A continuación, se presentan los resultados obtenidos de hacer el recorte 

del área de interés. 
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a)                 b)  c)  d) 

Figura 3.2 Generación de ROI a) vista frontal mama derecha b) mama derecha 90°  
c) Vista frontal mama izquierda c) mama izquierda 90°. 

Como se puede observar, la región de las mamas se selecciona 
correctamente y se separa cada una de las mamas en imágenes independientes 
para su estudio individual, lo que facilita la segmentación para su extracción de 
características y clasificación. 

Procesamiento de imágenes 
 

A continuación, se presenta los pasos que se siguieron para detectar los 
cambios de temperatura en las imágenes de los pacientes que presentan un tumor 
de cáncer de mama. 

 
Figura 3.3 Procesamiento de imágenes 

 
Primeramente, un ajuste de tamaño de imagen de 350x230 para poder 

realizar la escala de grises de las imágenes, una reducción de ruido haciendo uso 
de un filtro Gaussiano, posteriormente un aumento de brillo y contraste, seguido de 
un aumento de nitidez y por último la aplicación de una operación morfológica de 
cerradura, con la cual la imagen se puede observar de manera más clara el cambio 
de temperatura en las áreas de la mama. 
 
División de la base de datos 

En esta sección se llevó a cabo la división de la base de datos en 
entrenamiento un 60%, validación 20% y prueba de 20%. 
Quedando de la siguiente manera como se muestra en la tabla 4. 

Tabla 4. División de la base de datos 

 Entrenamiento Validación Prueba 

Sin hallazgo 4174 1379 1373 

Con hallazgo 945 327 334 

Total 5119 1706 1707 
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Como se puede observar existe un gran desbalance entre las clases, 
existiendo un porcentaje mayor en imágenes sin hallazgo, lo que puede provocar 
en el clasificador una alta detección en imágenes de esta clase y mucho más baja 
en la clase de imágenes con hallazgo, para lo cual se necesita la aplicación de un 
aumento de clases en la sección de entrenamiento. 

Aumento de datos 
 

El aumento de datos realizado permitió el balance de las clases y que la base 
de datos tuviera más imágenes para mejorar las métricas del modelo, 
 quedando de la siguiente manera como en la tabla 5. 

Tabla 5. División de la base de datos después del balanceo de clases 

 Entrenamiento Validación Prueba 

Sin hallazgo 4174 1379 1373 

Con hallazgo 3780 327 334 

Total 7954 1706 1707 

 

Tras realizar este balanceo, se observó un incremento del 25% en las 
imágenes con hallazgo, lo cual contribuye a mejorar el desempeño del clasificador. 
 

Extracción de características y clasificación 
 

Al aplicar los tres distintos modelos de CNN, se presentan los mejores 
resultados en la tabla 5 obtenidos en cada uno de ellos, observando un mejor 
desempeño en las métricas en el modelo VGG16. 

Tabla 6.  Comparativa de modelos 

Reporte de modelos 

 Exactitud Precisión Pérdida Recall 

ResNet50 0.92 0.84 0.16 0.83 

EfficientNet 0.84 0.76 0.23 0.75 

VGG16 0.95 0.89 0.13 0.87 

 
 
  Al elegir este modelo, se presentan detalles de la configuración 
computacional utilizada en el modelo final. A continuación, presentados en la tabla 
7. 

Tabla 7. Configuración computacional 

Parámetros Valores 

Tamaño de la imagen 350x230 

Tasa de aprendizaje 1𝑥10−4 

Tamaño de lote 64 

Número de épocas 40 

Optimizador Adam 
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A continuación, se presenta en la figura 14 la arquitectura de la red neuronal 
convolucional VGG16, en la cual se muestran el número de capas de 
convolucionales, maxPooling, de aplanamiento, capas densas y su salida, así 
mismo donde ocurre la extracción de características y el clasificador. 

 
Figura 3.4 Arquitectura del modelo  

 
La primera parte como se puede observar es donde ocurre la extracción de 

características de las imágenes y lo continuo donde aplicó para la clasificación, una 
capa de aplanamiento (Flatten), seguida de una capa densa de 512 neuronas con 
activación ReLU. Para evitar el sobreajuste, se incluye una capa de Dropout con 
una tasa del 50%. Se adapto la red VGG16 para realizar la clasificación, donde se 
le eliminan las capas de clasificación originales, y se le añaden nuevas capas: una 
capa de aplanamiento (Flatten), seguida de una capa densa de 512 neuronas con 
activación ReLU. Para evitar el sobreajuste, se incluye una capa de Dropout con 
una tasa del 50%. 

Al realizar la clasificación durante distintos números de épocas, se 
obtuvieron los siguientes valores de verdaderos positivos, verdaderos negativos, 
falsos positivos y falsos negativos, representados a continuación en la figura 15. 
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a)                                                           b) 

 
c)                                                         d)  

Figura 3.5 Matriz de confusión a) En siete épocas  
b) treinta épocas c) cuarenta épocas d) cincuenta épocas 

Como se puede observar, durante las primeras siete épocas existe un valor 
alto entre los falsos positivos y falsos negativos, indicando que el modelo se 
equivoca mayormente en clasificar a pacientes como sin hallazgo cuando su 
etiqueta verdadera es con hallazgo e igualmente de forma contraria al etiquetar 
como pacientes con hallazgo cuando su etiqueta verdadera es sin hallazgo. Al 
realizar el modelo en treinta épocas, esta muestra una mejora en la reducción 
errónea de clasificación de falsos positivos y falsos negativos y un aumento en 
clasificación de verdaderos negativos. Continuando con el modelo a cuarenta 
épocas, esta muestra el mejor desempeño en cuanto al número de mayor 
clasificación como verdaderos positivos y verdaderos negativos, al igual que al 
menor número en falsos negativos y una reducción en falsos positivos. Finalmente, 
al observar el modelo en cincuenta épocas, este demuestra un aumento en 
verdaderos positivos mayor a cualquiera de los anteriores y una disminución 
significativa en falsos positivos, sin embargo es el que peor se desempeña en 
clasificación de falsos negativos y reduciendo significativamente el número de 
verdaderos negativos comparándolo con los anteriores. 

Por lo cual se eligió el modelo en cuarenta épocas, debido a sus resultados 
de desempeño en clasificación demostrando que las tanto las imágenes de 
pacientes sin hallazgo como pacientes con hallazgo son bien clasificados y el 
número de falsos positivos y falsos negativos representan una minoría. 

Métricas 
 

La evaluación de la precisión y pérdida de los modelos durante las 
siguientes etapas fueron evaluadas de igual manera, las cuales se representan en 
las siguientes gráficas. 
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Figura 3.6 Desempeño en 7 épocas                       Figura 3.7 Desempeño en 30 épocas                                                

 
Figura 3.8 Desempeño en 40 épocas                                                

El sistema propuesto, basado en aprendizaje profundo, fue entrenado con 
7,954 imágenes de 149 pacientes, logrando una precisión del 94%, una 
sensibilidad del 95.76%, y una especificidad del 83.54%, demostrando su eficacia 
en la detección de tumores malignos en las mamas. A continuación, se presentan 
las métricas obtenidas. 

Al obtener las mejores métricas en la época cuarenta como se observo 
anteriormente, se presenta el desglose de su desempeño durante cada época en 
cuanto accuracy y pérdida, su reporte de clasificación y la sensibilidad y 
especificidad del modelo, en donde se demuestra su eficacia en la detección de 
hallazgo en cuanto a las imágenes evaluadas. 
 

Tabla 8. Exactitud del modelo a 30 épocas   

Reporte de métricas 

 Precisión Recall F1-score Soporte 

Sin hallazgo 0.97 0.97 0.97 1373 

Con hallazgo 0.88 0.87 0.87 334 

Exactitud                                  0.95                               1707 

Media de métricas 0.92 0.92 0.92 1707 
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Promedio ponderado 0.95 0.94 0.95 1707 

 
 

 Tabla 9. Reporte de modelo a 30 épocas   

Reporte de métricas de prueba 

Sensibilidad 0.95 

Especificidad 

 

0.83 

  

Tabla 8. Exactitud del modelo a 30 épocas   

Reporte de métricas 

 Precisión Recall F1-score Soporte 

Sin hallazgo 0.97 0.98 0.97 1373 

Con hallazgo 0.90 0.87 0.88 334 

Exactitud 0.96 1707 

Media de métricas 0.93 0.92 0.93 1707 

Promedio ponderado 0.96 0.96 0.96 1707 

 
 

  Tabla 9. Reporte de modelo a 30 épocas   

Reporte de métricas de prueba 

Sensibilidad 0.96 

Especificidad 

 

0.87 

 
 Tabla 10. Evaluación del conjunto de prueba a 30 épocas   

Evaluación del conjunto de prueba 
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Pérdida Exactitud Precisión Recall 

0.14 0.95 0.87 0.86 

 
 

  Tabla 11. Reporte de métricas de prueba a 30 épocas   

Reporte de métricas de prueba 

Sensibilidad 0.95 

Especificidad 

 

0.83 

 
 

Tabla. 12. Evaluación del conjunto de prueba a 40 épocas 
 

Evaluación del conjunto de prueba 

Pérdida Exactitud Precisión Recall 

0.13 0.95 0.89 0.87 

 
Tabla. 13. Reporte de métricas de prueba a 40 épocas 

 

Reporte de métricas de prueba 

Sensibilidad 0.96 

Especificidad 

 

0.87 
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Figura 15. Reporte de métricas 

En la cual se puede observar una alta sensibilidad en los casos de personas con 
algún hallazgo de cáncer de mama de un 96% y un 87% en casos de personas 
sanas sin hallazgo en la enfermedad, lo que representa buenos resultados en la 
clasificación de imágenes. 

XI. DISCUSIONES 
 

La implementación de una metodología automática representa un avance 
significativo en términos de precisión y eficiencia para el análisis de imágenes 
médicas. Se puede destacar cómo este enfoque facilita la detección y diagnóstico, 
eliminando la necesidad de segmentaciones manuales que son más propensas a 
errores y más lentas. 
Se compararon varias arquitecturas robustas de aprendizaje profundo (ResNet50, 
EfficientNet y VGG16), lo cual demuestra un enfoque meticuloso para seleccionar 
el modelo más adecuado según el contexto. 
Cada red tiene características específicas que las hacen útiles para distintas 
aplicaciones; por ejemplo, ResNet50 es conocida por su capacidad para prevenir el 
problema de gradientes desvanecientes, mientras que EfficientNet está optimizada 
para eficiencia computacional y VGG16 ofrece una estructura más simple pero 
efectiva para clasificación de imágenes. 
La elección del modelo VGG16 basado en las métricas obtenidas (exactitud 
promedio del 95%, especificidad del 87% y sensibilidad del 96%) resalta su 
capacidad para manejar imágenes médicas, donde la sensibilidad y especificidad 
son cruciales. La sensibilidad del 96% indica que el modelo tiene un excelente 
desempeño al identificar casos positivos, mientras que la especificidad del 87% 
sugiere una buena capacidad para evitar falsos positivos, aunque se podría mejorar 
este aspecto. 
 

Se pueden explorar estrategias para mejorar la especificidad del modelo, como 
el ajuste fino de hiperparámetros o el uso de técnicas de aumento de datos 
específicas para imágenes médicas. También es posible integrar este modelo en 
sistemas más amplios para asistir en el diagnóstico, con una validación clínica 
adicional. 
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XII. CONCLUSIONES 
 

Se desarrollo una metodología de segmentación automática para la región de 
las mamas., también se implementaron distintos clasificadores de redes neuronales 
convolucionales de aprendizaje profundo obteniendo buenos resultados en una red 
VGG-16. Los resultados obtenidos del clasificador reportan una precisión promedio 
del 96%. 

Se desarrollo una metodología de segmentación automática para la región de 
las mamas para lograr la clasificación en el modelo. 
Se implementaron distintos clasificadores de redes neuronales convolucionales de 
aprendizaje profundo como lo fue ResNet50, EfficientNet y VGG16 y al evaluar las 
diferentes métricas obtenidas, se seleccionó la última red implementada. 
Los resultados obtenidos del modelo VGG16 reportan una exactitud promedio del 
96%, especificidad del 87% y sensibilidad del 96%, por lo que se seleccionó debido 
a su alta clasificación en imágenes médicas y que en todos los parámetros obtuvo 
el mejor desempeño 
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