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Abreviaturas y siglas

ACRPPC Control de rendimiento prescrito con tasa de convergencia ajustable (Ad-
justable Convergence Rate Prescribed Performance Control)

ADC Convertidor analógico digital (Analog Digital Converter)
AIA Algoritmo de Inteligencia Artificial
ANN Red neuronal artificial (Artificial Neural Network)
D-H Denavit-Hartenberg
DOF Grados de libertad (Degrees Of Freedom)
FFC Compensación anticipada (FeedForward Compensation)
FPGA Matriz de compuertas programables en campo (Field Programmable Ga-

te Array)
LQR Regulador cuadrático lineal (Linear Quadratic Regulator)
MAE Error absoluto medio (Mean Absolute Error)
MPC Controlador de modelo predictivo (Model Predictive Controller)
NCD-PID Diseño de comtrolador no lineal proporcional integral derivativo (Non-

linear Controller Design Proportional Integral Derivative)
NN Red neuronal (Neural Network)
PD Proporcional Derivativo
PI Proporcional Integral
PIB Producto Interno Bruto
PID Proporcional Integral Derivativo
PIDOF Proporcional Integral Derivativo de Orden Fraccional
PMA Musculo neumático artificial (Pneumatic Artificial Muscle)
PSO Optimización de intercambio de part́ıculas (Particle Swap Optimization)
SCARA Brazo robótico articulado de cumplimiento selectivo (Selective Com-

pliance Articulated Robot Arm)
UNESCO Organización de las Naciones Unidas para la Educación, la Ciencia y la

Cultura (United Nations Educational, Scientific and Cultural Organiza-
tion)
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Resumen

Los sistemas con actuadores neumáticos suelen ser complejos al aplicar el control clásico, ya que
su comportamiento no lineal impide el uso directo de estos controladores. Por lo tanto, es necesario
aplicar técnicas de linealización o técnicas de control diferentes donde estas no linealidades no
representen un problema. Los AIA, como el control difuso y un controlador basado en NN, no
requieren el uso de un modelo matemático, lo que los convierte en herramientas adecuadas para
un sistema no lineal. Por ello, esta investigación compara el error de posicionamiento entre un
controlador PID y controladores AIA, PID difuso y NN, en un robot SCARA de cuatro grados
de libertad. También se realiza una comparación entre los resultados obtenidos e investigaciones
similares utilizando un controlador clásico. El objetivo de la investigación es determinar si un
controlador AIA tiene un mejor rendimiento en comparación con los controladores clásicos, como
lo es el PID. Los resultados experimentales muestran que, en comparación con un controlador PID,
la respuesta, al utilizar un AIA, tiene un mejor rendimiento con un MAE de 5.44, -0.85 y -0.88
grados para el controlador PID, PID Difuso y NN respectivamente, para el primer grado de libertad,
2.53, 0.46 y -0.06 para el segundo grado de libertad y -4.08, 0.46 y -0.86 para el tercer grado de
libertad, un máximo de 0.45% de error de estado estacionario para el PID Difuso, 0.46% para NN
en comparación con un 2.73% del PID y reduciendo el error de posición en al menos el 75%. En
comparación con otras investigaciones, los resultados obtenidos muestran que, comparado con un
controlador PID tradicional, un controlador AIA reduce el error de posicionamiento en al menos
un 30.52%.

Abstract

Systems with pneumatic actuators are usually complicated when applying classical control,
since their non-linear behavior does not allow the use of these controllers directly. Therefore, it is
necessary to apply techniques to linearize or different control techniques in which these nonlinearities
are not a problem. AIA such as Fuzzy control and a controller based on a NN do not require
the use of a mathematical model, making them appropriate tools for a nonlinear system. This is
why this research makes a comparison of the positioning error between a PID controller and AIA
controllers, Fuzzy-PID and NN, in a SCARA robot with 4 DOF. Also, a comparison between the
results obtained and similar researches using the PID controller. The goal of the research is to
determine if an AIA controller has a better performance compared to classical controllers such as
PID. The experimental results show that, compared to a PID controller, the response, when using
an AIA, has a better performance with a MAE of 5.44, -0.85 and -0.88 degrees for PID, Fuzzy-PID
and NN controller respectively, for the first DOF, 2.53, 0.46 and -0.06 for the second DOF and
-4.08, 0.46 and -0.86 for the third DOF, a maximum of 0.45% of steady-state error for Fuzzy-PID,
0.46% for NN compared with a 2.73% of PID and reducing the position error in more than 75%.
Compared with other researches, the results obtained show that compared with a traditional PID
controller, an AIA controller reduces the positioning error in at least 30.52%.
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3.2. Componentes eléctricos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Valores numéricos de funciones de pertenencia por grado de libertad. . . . . . . . . . 25
3.4. Pesos iniciales y factor de aprendizaje de neurona por grado de libertad. . . . . . . . 26

4.1. Porcentaje de error de cada controlador por cada grado de libertad. . . . . . . . . . 36
4.2. Error en estado estacionario, tiempo de asentamiento y sobrepaso máximo. . . . . . 36
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CAPÍTULO 1

Introducción

Los actuadores neumáticos son usados ampliamente en la industria, ya que estos tienen meno-
res costos, un mayor rendimiento potencia-peso, son más limpios, requieren una menor cantidad de
mantenimientos programados, sus diseños son más simples y no son afectados por la interferencia
electromagnética en comparación con los actuadores eléctricos. El problema con este tipo de ac-
tuadores es que, al trabajar con aire, presentan no linealidades como la alta fuerza de fricción, la
compresibilidad del aire y las zonas muertas de las válvulas [2][3].

Los algoritmos de inteligencia artificial, como lo es el control difuso, han sido de gran ayuda
para resolver problemas de sistemas no lineales en los que un control clásico no puede dar una
solución al no tener un modelo matemático. Estos algoritmos han tenido varias aplicaciones en las
que ha sido de gran utilidad, y apoyados con un sistema embebido, son una herramienta ideal para
un control neumático de un robot SCARA de cuatro grados de libertad [4].

En los siguientes caṕıtulos se abarcará a mayor detalle algunas investigaciones que se han
desarrollado sobre este tema analizando los antecedentes, más espećıficamente robots con actuadores
neumáticos, y se analizarán sus contribuciones en este ámbito. Esto permitirá tener una visión más
amplia de lo que se ha realizado referente a estos sistemas. Se hablará de los problemas que se
pueden llegar a encontrar con el uso de actuadores neumáticos y se resaltarán los beneficios que
podŕıan llegar a tenerse. Se definirá de una manera clara el problema que esta investigación pretende
resolver y se incluirán las limitaciones y obstáculos que se podŕıan llegar a presentar por el uso de
este tipo de actuadores. También se realizará un análisis del estado del arte para comprender el
panorama actual de la investigación relacionada con actuadores neumáticos y su control.

1.1. Descripción del problema

La demanda de robots industriales va en crecimiento cada año, teniendo una pequeña cáıda en
2019 por cuestiones de la pandemia por COVID-19. Las cifras de instalaciones de robots industriales
a nivel mundial aumentaron un 31% de 2016 a 2022, siendo las industrias de metales, automotriz,
de plásticos y eléctricas/electrónicas las de mayor crecimiento con un 45%, 42%, 29% y 24%
respectivamente, en el año 2022 (Figura 1.1). Este crecimiento fue dado principalmente por China,
el cual tuvo un crecimiento de 51%, y México siendo uno de los 10 mejores a nivel mundial con
un crecimiento de 61%, pero quedando muy debajo de China, el cual obtuvo 268 mil unidades
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instaladas mientras que México quedó dentro de las 5 mil unidades (Figura 1.2)[?].

Figura 1.1: Instalación anual de robots industriales [1].

Se puede observar que la robótica en México ha crecido de una manera importante a nivel
mundial. Estas cifras dan a entender la necesidad que hay a nivel mundial y a nivel nacional del
desarrollo de nuevas tecnoloǵıas en cuestión de robótica.

Algunos páıses, como Dinamarca, ven a México como un lugar atractivo para sus productos,
algunos de ellos buscando expandirse y buscando la apertura de sedes en nuestro páıs. México es
uno de los páıses que más robots importa a nivel mundial, de acuerdo a la empresa ABB, pero hay
que tener en cuenta que el avance que se logre en nuestro páıs va a estar reflejado en la cantidad
de inversión que se tenga en este rubro, el cual es menos del 1% del PIB de acuerdo a cifras de la
UNESCO [5].

Los robots neumáticos, por otra parte, no tienen un crecimiento tan notorio como el caso de
los robots con actuadores eléctricos. Esto se debe a que la alta compresibilidad de un fluido para
transferir potencia y la presencia de fricción dificultan en gran manera la obtención de un modelo
y un control preciso. Usualmente, los actuadores neumáticos son utilizados para la manipulación
de cargas entre dos posiciones mediante el uso de válvulas on-off, ya que las no linealidades hacen
muy dif́ıcil su control entre posiciones intermedias [6][7].
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Figura 1.2: Robots instalados en 2022 [1].

1.2. Justificación

El mundo actual se está enfocando en enerǵıas limpias y mejorar el rendimiento de robots ya
creados. Una opción es el uso de actuadores neumáticos, ya que estos dan un mayor rendimiento en
cuestiones económicas, por la reducción de mantenimientos programados, y un mayor desempeño
en cuestión potencia-peso. El problema es que, para aplicar un control en un sistema neumático,
este se complica al ser un sistema no lineal en comparación con un sistema lineal como lo es el
control de un sistema eléctrico [8].

Los sistemas neumáticos tienen la ventaja de ser durables, fáciles de mantener y seguros. Por
otra parte, se tiene que, debido a sus no linealidades, como lo son la compresibilidad del aire, la
fricción entre los componentes de los actuadores y el flujo discontinuo de las válvulas, provocan
que su modelado dinámico sea complicado y que usualmente se base en suposiciones emṕıricas. Los
llamados algoritmos ı̈nteligentesçomo lo son las redes neuronales y el control difuso, son atractivos,
ya que no se requiere un modelo del sistema [9].

Los robots neumáticos tienen grandes ventajas, como la simplicidad en mecanismos y altas
velocidades, ventajas sobre los actuadores hidráulicos, como la limpieza y el costo-efectividad, y
mayor fuerza por un peŕıodo prolongado de tiempo comparado con los eléctricos, los cuales están
expuestos a riesgos de sobrecalentamiento. El uso de robots en la industria es cada vez mayor, por
lo que, al ver el crecimiento de instalaciones de robots en el páıs, se busca aportar con un algoritmo
de inteligencia artificial para el control de un robot, aśı como con un robot más amigable con el
medio ambiente al usar actuadores neumáticos [10].
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1.3. Hipótesis y Objetivos

En esta sección se presenta la hipótesis, objetivo generar y los objetivos espećıficos del proyecto.

1.3.1. Hipótesis

Una metodoloǵıa con base en algoritmos de inteligencia artificial implementados en la regulación
del flujo de aire hacia los actuadores neumáticos controla y reduce el error de posición del actuador
final en un robot neumático tipo SCARA hasta un 10% comparado con técnicas convencionales
reportadas a la fecha en el estado del arte.

1.3.2. Objetivo general

Diseñar e implementar un control inteligente de posición para un robot SCARA neumático de
4 grados de libertad.

1.3.3. Objetivos particulares

Calcular la cinemática del robot neumático para obtener el modelo matemático mediante el
método de Denavit-Hartenberg.

Comprobar el hardware del robot para su correcto funcionamiento mediante experimentación
e inspecciones visuales.

Implementar las adecuaciones al robot neumático para mejorar su rendimiento.

Seleccionar e implementar algoritmo de IA a utilizar para el posicionamiento de los actuadores
mediante pruebas en simulación.
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1.4. Antecedentes

Existen varios trabajos relacionados con el control de posición de actuadores neumáticos. En
uno de ellos se realiza la comparativa entre el controlador Proporcional Integral Derivativo y un
controlador Regulador Cuadrático Lineal aplicado a un músculo neumático artificial, encontrando
que el RCL tiene un error en estado estacionario menor [11].

Existen comparativas entre controladores PID difusos y PIDOF, en las que se determinó que
el PIDOF tiene una respuesta más rápida y con poco error en estado estacionario, esto usando un
Ball and Beam como sistema [9].

Por otra parte, se presenta un robot en el que a un robot con garra se le adapta un Control
de Rendimiento Prescrito de Tasa de Convergencia Ajustable a un control PIDOF, obteniendo una
respuesta aún más rápida y con menor sobrepaso que solo con el control PIDOF [2].

Otra investigación en Ball and Beam con control PIDOF, a esta se suma un modelo paramétrico
para determinar la función de transferencia. Se utilizó un sensor para monitorear la presión de la
recámara del actuador. Esta investigación también cuenta con un modelo de control en cascada,
colocando un controlador para el actuador y otro para la posición de la esfera del Ball and Beam
[3].

Algunos trabajos se centran en optimizar el control difuso. Uno de ellos usa una función de
activación anaĺıtica para seleccionar las reglas que rigen el control difuso; esta función determina el
grado de pertenencia de las variables de entrada y la defuzzificación se realiza mediante el promedio
de cada salida [12].

Por último, se tiene un estudio en el que se utilizan 2 controladores difusos, uno para el control
de posición y otro para el control de la fuerza del actuador. Se hace una comparativa usando solo
los dos controladores y estos mismos agregando un controlador de superficie deslizante [10].

Por otra parte, se tienen los estudios que indican numéricamente el error obtenido. En 2014 se
realizó una simulación del movimiento de un brazo robótico de tipo SCARA de un grado de libertad.
Este se controlaba mediante una red neuronal artificial de perceptrón multicapa, mejorando la
respuesta en comparación a un control PID en 2.95 s y minimizando el error angular por 1.3° [13].

En 2016 se realizó un modelado de una plataforma de dos grados de libertad controlada por
tres actuadores neumáticos. Para esto se utilizó un controlador PID en donde se observó un error
de 0.2° en los puntos pico de la trayectoria senoidal [14].

En 2017 se realizó el control de posición de un manipulador serial de seis ejes usando un
controlador PID difuso. Con esto se logró un error en estado estacionario de 0.4 mm [15].

Tabla 1.1: Estado del Arte

Año Art́ıculo Descripción

2018 Pneumatic Rotary Actuator Position
Servo System Based on ADE-PD Con-
trol [16].

Se compara el control con DE con
NCD-PID y se prueba aumentando la
carga inercial.
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Continuación: Estado del Arte

Año Art́ıculo Descripción

2019 Development and control of a
pneumatic-actuator 3-DOF trans-
lational parallel manipulator with
robot vision [17].

Desarrollo y control de un manipulador
paralelo de 3 grados de libertad accio-
nado neumáticamente.

2019 Intelligent position control for pneuma-
tic servo system based on predictive
fuzzy control [18].

Control inteligente de posición para un
servo neumático basado en control pre-
dictivo difuso.

2020 Positioning Control of an Antagonis-
tic Pneumatic Muscle Actuated System
using Feedforward Compensation with
Cascaded Control Scheme [19].

Se presenta un control FFC para el con-
trol de posición de un PMA vertical.

2021 Self-tuning hybrid fuzzy sliding surfa-
ce control for pneumatic servo system
positioning [10].

Desarrollar una estrategia de control
para un servo sistema neumático unien-
do dos controladores lógicos difusos.

2021 A pneumatic random-access memory
for controlling soft robots [20].

Control de ”soft robot”mediante circui-
tos lógicos neumáticos.

2022 Soft pneumatic actuators: A review of
design, fabrication, modeling, sensing,
control and applications [21].

Revisión de actuadores neumáticos,
abarcando diseño, fabricación, modela-
do y aplicaciones.

2022 Pneumatic soft robots: Challenges and
benefits [22].

Exploración de desaf́ıos y beneficios de
”soft robots”neumáticos.

2022 Implementation of ANN-Based Auto-
Adjustable for a Pneumatic Servo Sys-
tem Embedded on FPGA [23].

Implementación de redes neuronales
para sistemas servo neumáticos.

2022 Position Control of a Pneumatic Dri-
ve Using a Fuzzy Controller with an
Analytic Activation Function [12].

Controlar el posicionamiento de un sis-
tema neumático mediante un controla-
dor difuso usando una función de acti-
vación anaĺıtica.

2023 Soft Robots: Implementation, Mode-
ling, and Methods of control [24].

Implementación, modelado y métodos
de control de ”soft robots”.

2023 Recent Developments of Actuation Me-
chanisms for Continuum Robots: A Re-
view [25].

Resumen de los desarrollos recientes en
mecanismos de actuación para robots.

2023 Research on a Variable Pressure Dri-
ving Method for Soft Robots Based on
the Electromagnetic Effect [26].

Investigación sobre un método de con-
ducción de presión variable para ”soft
robots”.

2023 Design, Topology Optimization, and
Additive Manufacturing of a Pneu-
matically Actuated Lightweight Robot
[27].

Diseño y optimización de robots ligeros
accionados neumáticamente.

2023 Position Control of a Cost-Effective
Bellow Pneumatic Actuator Using an
LQR Approach [11].

Analizar la precisión de posicionamien-
to de un PMA utilizando un controla-
dor PID y un LQR.
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Continuación: Estado del Arte

Año Art́ıculo Descripción

2023 Adjustable Convergence Rate Pres-
cribed Performance with Fractional-
Order PID Controller for Servo Pneu-
matic Actuated Robot Positioning [2].

Método para rastreo óptimo de error
de control de posición para un actuador
servo neumático.

2023 Fuzzy Fractional Order PID Tuned via
PSO for a Pneumatic Actuator with
Ball Beam (PABB) System [9].

Mejorar el rendimiento del posiciona-
miento de un sistema neumático me-
diante un controlador FOPID.

2024 Design, Manufacturing, and Open-
Loop Control of a Soft Pneumatic Arm
[28].

Diseño, fabricación y control de un ro-
bot neumático.

1.5. Estructura de la tesis

La estructura de esta tesis es la siguiente: en el caṕıtulo 1 se presenta la introducción donde
se habla a grandes rasgos de los actuadores neumáticos y como se han utilizado los algoritmos de
inteligencia artificial para atacar los problemas relacionados con las no linealidades que se presenta
al usar este tipo de actuadores. También se presenta la problemática a atacar, la justificación, la
hipótesis, objetivos y algunos antecedentes de proyectos similares. En el caṕıtulo 2 se muestra el
marco teórico utilizado, como lo es la cinemática del robot, qué es un sistema lineal y no lineal y,
finalmente, que es un controlador PID, PID difuso y una red neuronal de retropropagación. En el
caṕıtulo 3 se menciona la metodoloǵıa utilizada en esta investigación. En el caṕıtulo 4 los resultados
obtenidos para cada tipo de controlador utilizados, la comparativa entre estos y una discusión de
los resultados obtenidos y, finalmente, en el caṕıtulo 5 se presentan las conclusiones obtenidas de
este proyecto.
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CAPÍTULO 2

Marco Teórico

En este caṕıtulo se mencionará la teoŕıa relevante para esta investigación. Se hace una mención
sobre la cinemática directa e indirecta para un robot tipo SCARA y como se calcula. También
se tiene una breve descripción de lo que son los sistemas lineales y no lineales y, por último, una
descripción de los controladores utilizados en este proyecto.

2.1. Cinemática del robot

La cinemática es la ciencia del movimiento que estudia el movimiento sin las fuerzas externas
que lo causan. Un problema básico en el estudio de manipulación mecánica es llamado cinemática
directa. Esto es el problema geométrico estático de calcular la posición y orientación del efector
final de un manipulador, espećıficamente dados los ángulos en las uniones. En cambio, la cinemática
inversa, dada la posición y orientación del efector final, calcula todas las posibles combinaciones de
ángulos que se necesitan para llegar a esa posición y orientación [29].

El método de Denavit-Hartenberg (D-H) para la obtención de la cinemática directa de posi-
ción propone el movimiento articulado de un robot con n articulaciones que puede ser expresado
mediante los siguientes parámetros [30]:

θi es el ángulo formado entre el eje xi y el eje xi+1 a lo largo del eje zi.

di es la distancia entre el eje xi y el eje xi+1 a lo largo del eje zi.

αi es el ángulo formado entre el eje zi y el eje zi+1 a lo largo del eje xi+1.

ai es la distancia entre el eje zi y el eje zi+1 a lo largo del eje xi+1.

La matriz de transformación homogénea definida por Ti, representa el movimiento articulado de i

a la articulación de i+ 1 en la ecuación.

Ti =









cos(θi) −sen(θi)cos(αi) sen(θi)sen(αi) aicos(θi)
sen(θi) cos(θi)cos(αi) −cos(θi)sen(αi) aisen(θi

0 sen(αi) cos(αi) di
0 0 0 1









(2.1)
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La matriz de posición de D-H está definida por T en la ecuación

TR = Ti ∗ Ti+1 ∗ ... ∗ Tn−1 ∗ Tn (2.2)

La Figura 2.1, presenta la representación asociada de la convención D-H. La matriz de posición
obtenida mediante la convención D-H está dada por la ecuación:

Ti =









ax bx cx px
ay by cy py
az bz cz pz
0 0 0 1









(2.3)

Donde
ax = −cos(q1 + q2 + q3)

ay = −sen(q1 + q2 + q3)

az = 0

bx = sen(q1 + q2 + q3)

by = −cos(q1 + q2 + q3)

bz = 0

cx = 0

cy = 0

cz = −1

En las ecuaciones (4) a (6) se expresa la posición del robot.

px = l2cos(q1) + l3cos(q1 + q2) + l4cos(q1 + q2 + q3) (2.4)

py = l2sen(q1) + l3sen(q1 + q2) + l4sen(q1 + q2 + q3) (2.5)

pz = l1 − q4 (2.6)

Las coordenadas cartesianas px, py y pz representan la posición del efector final. Donde el primer
grado de libertad q1 expresa el movimiento rotacional del plano generado por las variables articulares
q1, q2 y q3. Del plano generado por la Figura 2.2 consiste en proponer un ángulo qP para la
orientación del último eslabón. En las ecuaciones (7) a (17), aśı como en la Tabla 2.1, se presentan
las variables necesarias para la solución de la cinemática inversa mediante el método geométrico.

x2 = Px − l3cos(ϕ) (2.7)

y2 = Py − l3sen(ϕ) (2.8)

cos(q2) =
x22 + y22 − l22 − l23

2l2l3
(2.9)

x2 = l2cos(q1) + l3cos(q1 + q2) (2.10)
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Figura 2.1: Robot neumático.

y2 = l2sen(q1) + l3sen(q1 + q2) (2.11)

x2 = cos(q1)(l2 + l3cos(q2))− sen(q1)(l2sen(q2)) (2.12)

y2 = cos(q1)(l2sen(q2)) + sen(q1)(l2 + l3cos(q2)) (2.13)

cos(q1) =
(l2 + l3cos(q2))x2 + l2sen(q2)y2

x22 + y22
(2.14)

sen(q1) =
(l2 + l3cos(q2))y2 + l2sen(q2)x2

x22 + y22
(2.15)

q1 = tan−1

(

sen(q1)

cos(q1)

)

(2.16)

q3 = ϕ− (q1 + q2) (2.17)

Tabla 2.1: Variables usadas en Figura 2.1 y 2.2.

Variable Descripción

l1, l2, l3 y l4 Distancia entre articulaciones

q1, q2 y q3 Ángulos variables entre articulaciones

q4 Distancia variable entre articulaciones
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Figura 2.2: Proyección geométrica.

2.2. Sistemas lineales

El comportamiento dinámico de los sistemas se puede estudiar a partir de su descripción ma-
temática. Las ecuaciones matemáticas se usan para describir el comportamiento de procesos y para
predecir la respuesta de estos ante ciertas entradas; de esta manera es posible analizar el comporta-
miento de sistemas complejos y diseñar procesos para tener un comportamiento deseado. El estudio
de un fenómeno usualmente inicia con el proceso de modelado, el cual requiere el uso de leyes o
principios para generar las ecuaciones que describen al modelo [31].

Un sistema L es lineal cuando una entrada u1 lleva a una salida L(u1) y una entrada u2 a una
salida L(u2) y se tiene también

L(c1u1 + c2u2) = c1L(u1) + c2L(u2) (2.18)

donde c1 y c2 son números reales arbitrarios. Esto significa impĺıcitamente que el espacio de
las posibles entradas es cerrado bajo combinación lineal; es decir, c1u1 + c2u2 debe pertenecer al
espacio si u1 y u2 lo hacen. O en otras palabras, un sistema se dice que es lineal cuando satisface
el principio de superposición [32][33].

Un sistema lineal entonces, es aquel que cumple con dos propiedades; la primera es la propiedad
de superposición y la segunda es la propiedad de homogeneidad. El principio de superposición nos
dice que la respuesta producida por la aplicación simultánea de dos funciones de entrada diferentes
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es la suma de las dos respuestas individuales. El principio de homogeneidad establece que si la
entrada de un sistema lineal se escala por un factor a, entonces la salida también se escala por el
mismo factor a [34][35].

2.3. Sistemas no lineales

Los sistemas lineales generalmente son resultado de la linealización de sistemas no lineales, o el
resultado de modelar el proceso del sistema f́ısico en el que se eliminan o se ignoran los efectos no
lineales [31].

En el sentido matemático, un sistema no lineal se refiere a un grupo de ecuaciones no lineales,
ya sea algebraicas, diferenciales, integrales, funcionales, y operadores, o una combinación de estos.
Un sistema no lineal es usado para describir un proceso o dispositivo f́ısico que de otra manera no
podŕıa ser bien definido con el uso de ecuaciones lineales, aunque un sistema lineal es considerado
un caso especial de sistema no lineal. Es decir, un sistema no lineal no cumple las propiedades de
superposición y de homogeneidad; la relación entre la entrada y la salida no sigue una forma lineal.
Los sistemas no lineales pueden presentar comportamiento más complejo como caos o bifurcaciones,
y son mucho más dif́ıciles de analizar que los sistemas lineales. Un sistema se considera no lineal si
las ecuaciones que lo describen son no lineales, por ejemplo, ecuaciones que involucran productos
de variables o potencias, o si la salida no es proporcional a la entrada [36][37].

2.4. Controlador PID

Un controlador PID es un tipo de sistema de control automático que utiliza tres componentes
fundamentales para ajustar la salida de un sistema y minimizar el error entre el valor deseado y
el valor real de la variable controlada. Estas componentes son la proporcional, la cual ajusta la
salida en función del error actual. La magnitud del ajuste es directamente proporcional al error y
su objetivo es reducir el error de manera rápida.

P = Kp · e(t) (2.19)

Donde Kp es la ganancia proporcional y e(t) es el error en el tiempo t.

El término integral, el cual ajusta la salida en función de la acumulación del error a lo largo del
tiempo, asegura que el sistema llegue al valor deseado a largo plazo.

I = Ki

∫

e(t)dt (2.20)

Donde Ki es la ganancia integral y
∫

e(t)dt es la integral del error.

Finalmente, la componente derivativa que ajusta la salida en función de la tasa de cambio del
error. Su objetivo es anticipar el comportamiento del error y disminuir la oscilación o el sobrepaso
del sistema.

D = Kd

de(t)

dt
(2.21)
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Donde Kd es la ganancia derivativa y de(t)
dt

es la derivada del error.

La salida total del controlador PID es la suma de estos tres términos.

u(t) = Kp · e(t) +Ki

∫

e(t)dt+Kd

de(t)

dt
(2.22)

Donde u(t) es la señal de control que se env́ıa a la planta [34][35].

Considérese que el controlador PID consiste en una parte PI conectada en cascada con una
parte PD. La función de transferencia del controlador PID se escribe como:

Gc(s) = KP +KDs+
KI

s
= (1 +KD1s)

(

KP2 +
KI2

s

)

(2.23)

La constante proporcional de la parte PD se hace unitaria, ya que sólo se necesitan tres paráme-
tros en el controlador PID. Al igualar ambos miembros de la ecuación 2.23, se tiene:

KP = KP2 +KD1KI2

KD = KD1KP2

KI = KI2

Considere que sólo la parte PD está operando. Seleccione el valor de KD1 para lograr una parte
de estabilidad relativa deseada. En el dominio del tiempo, esta estabilidad relativa se puede medir
mediante el sobrepaso máximo, y en el dominio de la frecuencia con el margen de fase.

Seleccione los parámetros KI2 y KP2 para que el requisito de la estabilidad relativa sea satisfe-
cho.

Como una opción, la porción PI del controlador se puede diseñar primero para una parte del
requisito sobre la estabilidad relativa y, finalmente, se diseña la parte PD [38].

2.5. Control PID Difuso

De acuerdo con [39] el control difuso usa sentencias en forma de reglas para controlar un proceso.
El controlador puede tomar muchas entradas, y la ventaja del control difuso es la habilidad de in-
cluir conocimiento experto. La interfaz con el controlador es más o menos lenguaje natural, y eso es
lo que distingue al control difuso de otros métodos de control. Generalmente, es un control no lineal.

Convencionalmente, los programas de computadora toman decisiones ŕıgidas de śı o no por
medio de reglas de decisión basadas en dos valores lógicos: verdadero/falso, śı/no, o uno/cero. Un
ejemplo es un aire acondicionado con un controlador termostático que reconoce solo dos estados:
encima de la temperatura deseada o por debajo de la temperatura deseada. La lógica difusa, por
otra parte, permite valores de verdad intermedios entre verdadero y falso [39].

Si el control PID es inadecuado, el control difuso es una opción. Hay varias razones posibles:
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Ya que la estrategia de control consiste en reglas si-entonces, es fácil de leer para un operador
de procesos. Las reglas pueden construirse con un vocabulario que contenga palabras del d́ıa
a d́ıa tales como ‘alto’, ‘bajo’, y ‘aumentando’. Los operadores pueden incluir su experiencia
directamente.

El controlador difuso puede contar con varias entradas y varias salidas. Las variables pueden
ser combinadas en una regla si-entonces con los conectores and y or. Las reglas son ejecutadas
en paralelo, implicando una acción recomendada para cada una. Las recomendaciones pueden
entrar en conflicto, pero el controlador resuelve conflictos.

Establecer métodos de diseño tales como colocación de polos, control óptimo, y respuesta de
frecuencia solo aplica para sistemas lineales, mientras que el control difuso generalmente es no lineal.
Ya que nuestro conocimiento del comportamiento de sistemas no lineales es limitado, comparado
con una situación en el dominio lineal, el siguiente procedimiento está basado en control lineal [39].

1. Diseñar un controlador PID.

2. Reemplazarlo con un controlador difuso lineal.

3. Hacerlo no lineal.

4. Hacer ajustes.

2.6. Red Neuronal de retropropagación

Una red neuronal de retropropagación es un tipo de red neuronal artificial que se entrena
ajustando los pesos de la red para minimizar el error entre la salida deseada y la salida que la red
predice. Este ajuste se realiza mediante un algoritmo llamado retropropagación del error, el cual
distribuye el error hacia atrás a través de la red para actualizar los pesos y mejorar el rendimiento
del modelo.

El proceso comienza cuando las entradas xi son alimentadas a la capa de entrada de la red.
Cada neurona en las capas ocultas y de salida procesa la entrada de acuerdo a una función de
activación f y produce una salida.

z
(l)
j =

∑

i

w
(l)
ij x

(l−1)
i + b

(l)
j (2.24)

Donde:

w
(l)
ij es el peso entre la neurona i de la capa anterior y la neurona j de la capa actual.

x
(l−1)
i es la salida de la neurona i de la capa anterior.

b
(l)
j es el sesgo de la neurona j.

El cálculo de la salida de la neurona j está dado por

a
(l)
j = f(z

(l)
j ) (2.25)

Donde f(z
(l)
j ) es la función de activación que puede ser, por ejemplo, lineal, sigmoide o ReLU.
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Una vez que la red ha producido una salida, se calcula el error comparando la salida obtenida
con la salida esperada. Este error se utiliza para ajustar los pesos de la red.

δ
(L)
j = (a

(L)
j − yj)f

′(z
(L)
j ) (2.26)

Donde:

δ
(L)
j es el error de la neurona j en la capa de salida.

yj es el valor esperado.

f ′(z
(L)
j ) es la derivada de la función de activación.

El error en las capas ocultas se calcula utilizando la propagación del error desde la capa siguiente:

δ
(l)
j =

∑

k

δ
(l+1)
k w

(l+1)
kj f ′(z

(l)
j ) (2.27)

Donde:

δ
(l+1)
k es el error de la capa siguiente.

w
(l+1)
kj es el peso entre la neurona k de la capa siguiente y la neurona j de la capa actual.

f ′(z
(l)
j ) es la derivada de la función de activación en la capa l.

Una vez calculado el error, se ajustan los pesos utilizando el algoritmo de gradiente descendente.
Los pesos se actualizan en la dirección que minimiza el error de la red, es decir, en la dirección del
gradiente negativo.

w
(l)
ij ← w

(l)
ij − ηδ

(l)
j a

(l−1)
i (2.28)

Donde:

η es la tasa de aprendizaje.

δ
(l)
j es el error de la neurona j en la capa l.

a
(l−1)
i es la salida de la neurona i en la capa anterior.

La actualización del sesgo se realiza de manera similar.

b
(l)
j ← b

(l)
j − ηδ

(l)
j (2.29)

Este proceso se repite muchas veces hasta que el error sea lo suficientemente pequeño o el
entrenamiento se detenga [40][41].
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CAPÍTULO 3

Metodoloǵıa

En este caṕıtulo se mencionará la metodoloǵıa utilizada para la elaboración de este proyecto.
Se analizará como es que se obtuvo la cinemática directa del robot, los componentes utilizados
para la fabricación y las adecuaciones realizadas, el hardware eléctrico utilizado y el diseño de los
controladores utilizados.

En la Figura 3.1 se muestra el diagrama de bloques de la metodoloǵıa usada para el desarrollo
de este trabajo. A continuación se hará una explicación breve de cada bloque dentro del diagrama.

Figura 3.1: Diagrama de la metodoloǵıa.
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1. El primer paso consta de una búsqueda de art́ıculos referentes a la investigación. Se tomarán
los art́ıculos más recientes como el estado del arte mientras que los art́ıculos con más tiempo
serán tomados como antecedentes.

2. El siguiente paso es la revisión del hardware del robot neumático. En este paso se analizará el
rango de trabajo de los motores, es decir, el ángulo mı́nimo y máximo que los motores pueden
alcanzar.

3. Para el siguiente paso, que se realizará en paralelo junto con el paso anterior, se analizará la
cinemática del robot lo que implica la cinemática directa e inversa del robot neumático.

4. Para el cuarto paso se realizarán las adecuaciones necesarias al robot neumático, se añadirá
el sensor de posición para poder determinar la posición actual de los eslabones.

5. El quinto paso consistirá en la revisión del hardware eléctrico como lo es la etapa de potencia
que controlará las electroválvulas y el ADC que tomará los datos el sensor de posición.
También se decidirá el sistema en el que se realizará la etapa de control, es decir, se realizarán
pruebas para determinar el tipo de sistema embebido para la implementación del algoritmo a
desarrollar. Se tiene contemplado el uso de un microcontrolador, un DSP o algún otro sistema
embebido.

6. Para el paso 6 se analizarán distintos métodos de control para compararlos y elegir el de
mejor desempeño. Se analizará el controlador difuso y algunas técnicas con redes neuronales
para el controlador.

7. En el paso 7 se realizarán varias pruebas de los distintos controladores en el robot neumático
para obtener datos para su análisis.

8. En este paso se analizarán los datos obtenidos en el paso anterior para ver con cual controlador
el robot tiene un mejor desempeño, en caso de no tener datos satisfactorios se regresará al
paso uno para plantear otra estrategia para el controlador.

9. Finalmente, en caso de que los análisis sean satisfactorios, se procederá a escribir los resultados
obtenidos.

3.1. Estudio de técnicas del Estado del Arte

Revisando la literatura, se buscaron técnicas en las que no fuera necesario un modelo matemáti-
co. Se decidió tener un controlador PID para comparar los resultados de las técnicas con algoritmos
de inteligencia artificial. Se optó por utilizar un controlador PID difuso y un controlador con una
red neuronal de retropropagación; en ambos casos se puede realizar el control sin la necesidad de
contar con un modelo matemático y son controladores utilizados ampliamente para casos en los
que la dinámica del sistema es no lineal.
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3.2. Revisión del hardware del robot neumático

Los actuadores utilizados, aśı como los materiales, se encuentran en la Tabla 3.1.

Tabla 3.1: Componentes y materiales.

Cantidad Componente Modelo Parámetros

1 Motor Neumático CRB1BW100-270S Rango de movimiento 270°

2 Motor Neumático CRB2BW15-270S Rango de movimiento 270°

2 Tubo PVC 3/4” - 0.75m de longitud

2 Tubo PVC 3/4” - 0.50m de longitud

2 Tubo PVC 3/4” - 0.25m de longitud

1 Válvula de estrangulación GS04402 0 - 1 MPa

2 Rodamiento

En la Figura 3.2 se muestra una foto del robot neumático con sus 4 grados de libertad.

Figura 3.2: Robot neumático.

3.3. Cinemática directa del robot neumático

Dado que el microcontrolador está programado para enviar la posición de los actuadores en
grados, se utilizará la cinemática inversa para determinar la posición del actuador final en sus
coordenadas x, y y z, las cuales están dadas por las ecuaciones (2.4), (2.5) y (2.6). Sustituyendo los
valores de l1, l2, l3 y l4 por las dimensiones de los eslabones, de las cuales l2, l3 y l4 están dadas
por las dimensiones de los tubos de PVC de la Tabla 3.1. Teniendo un valor de l1 de 0.6m, tenemos
que la cinemática directa del robot está dada por las ecuaciones siguientes:
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px = 0.75cos(q1) + 0.5cos(q1 + q2) + 0.25cos(q1 + q2 + q3) (3.1)

py = 0.75sen(q1) + 0.5sen(q1 + q2) + 0.25sen(q1 + q2 + q3) (3.2)

pz = 0.6− q4 (3.3)

Los valores obtenidos del microcontrolador serán después sustituidos en los valores de q1, q2 y
q3. Para q4, el valor será constante, ya que el efector final solo tiene dos posibles posiciones en el
eje z, de las cuales en la posición final siempre será con el actuador final extendido.

3.4. Adecuaciones al robot

Se sustituyeron los encoders por potenciómetros para determinar la posición del motor neumáti-
co. Para esto se diseñaron piezas para acoplar los potenciómetros a los actuadores como la mostrada
en la Figura 3.3.

Figura 3.3: Pieza impresa para acople de potenciómetros.

Se diseñaron piezas en impresión 3D para soportar tanto los actuadores como los tubos de PVC
que forman los eslabones, mostrados en la Figura 3.4. A estos últimos se les agregó un contrapeso
para disminuir el efecto de la fricción en los rodamientos. La posición de los eslabones se fue
modificando a lo largo de la experimentación para tratar de equilibrar el peso que generaban los
elementos unidos al eslabón con el contrapeso, para tener el menor efecto de fricción posible en los
rodamientos. En la experimentación se usaron dos microcontroladores distintos para determinar
cuál de ellos teńıa un mejor rendimiento.

Inicialmente se utilizó un microcontrolador PIC18F4550 a una velocidad de 8 MHz con un
ADC de 10 bits con un tiempo de muestreo de 100 ms al usar un grado de libertad y de 400 ms
al controlar dos grados de libertad. Después se realizaron pruebas con un STM32F303RE a una
velocidad de 72 MHz con un ADC de 12 bits y un tiempo de muestreo de 50 ms con los 3 grados
de libertad. La razón del cambio de 50 a 400 ms en el PIC18F4550 fue debido a que al disminuir la
velocidad de muestreo se comenzaron a tener problemas en el control del motor a pasos, haciendo
que su movimiento fuera más lento y con pasos irregulares.
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Figura 3.4: Pieza impresa para sujeción de actuadores y eslabones.

En la Figura 3.5 se pueden observar las gráficas comparativas entre el desempeño del micro-
controlador PIC18F4550 y el STM32F303RE. Se observa que las gráficas son más suaves en el
STM32F303RE por la diferencia en el tiempo de muestreo y también hay una disminución en el
error de posición y un menor tiempo de asentamiento. Las pruebas solo se realizaron para dos
grados de libertad y con esto se decidió usar el STM32F303RE como microcontrolador de este
proyecto.
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Figura 3.5: Comparativa entre microcontroladores.
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3.5. Hardware eléctrico

El hardware eléctrico utilizado para el robot se muestra en la Tabla 3.2.

Tabla 3.2: Componentes eléctricos.

Cantidad Componente Modelo Parámetros

1 Tarjeta NUCLEO NUCLEO-F303RE STM32F303RE

2 Potenciómetros 1V 15KOH 15 kΩ

1 Potenciómetro 6I87R10K 10 kΩ

8 Optoacopladores 4N32 60 mA

8 Transistores TIP31C 100 V 3 A

1 Puente H DBH-12V Doble canal 30 A

8 Electroválvula 4V230C-08 0.15 - 0.8 MPa

En la Figura ?? se pueden observar las electroválvulas utilizadas en este proyecto.

Figura 3.6: Electroválvulas utilizadas.

3.6. Algoritmo de Inteligencia Artificial (IA)

Después de los pasos anteriores, se llegó al diagrama electroneumático de la Figura 3.7. En esta
se observan los actuadores utilizados, los sensores, la etapa de potencia, el sistema de control de
flujo y el microcontrolador usado para todo el proceso, aśı como las conexiones eléctricas, mostradas
con una ĺınea punteada, y las conexiones neumáticas con una ĺınea sólida.

Es importante mencionar que el control de flujo de aire se está realizando mediante una señal
de control enviada por el microcontrolador. Esta señal de control consta de los pasos que tiene que
dar el motor a pasos para abrir o cerrar una válvula de estrangulamiento, la cual dará la apertura
de aire ideal para el movimiento de los actuadores.
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Figura 3.7: Diagrama electroneumático del robot.

3.6.1. Controlador PID

En la Figura 3.8 se muestra el diagrama de bloques del controlador PID. Este no es considerado
como un controlador con AIA ya que sus ganancias son fijas, por lo que no hay una adaptación al
comportamiento de la planta.

Controlador 

PID

Regulador de 

flujo
Planta

Referencia

+

-

Retroalimentación

Figura 3.8: Diagrama de bloques de controlador PID.

3.6.2. Controlador PID difuso

Para los controladores con algoritmos de inteligencia artificial se decidió utilizar un controlador
PID difuso para compensar las zonas en las que las no linealidades afectaban el desempeño del
controlador PID. Al tener un controlador difuso, la entrada puede determinar el valor de la ganancia
que se administrará al controlador PID, reduciendo aśı los efectos de algunas de las no linealidades.
En la Figura 3.9 se puede observar el diagrama de bloques del controlador PID difuso.

El controlador PID difuso requiere de unas funciones de pertenencia y reglas de inferencia para
su funcionamiento. Para las funciones de pertenencia de las entradas se tienen unas funciones de
pertenencia triangulares para cada grado de libertad, las cuales se muestran en la Figura 3.10. Se
usaron funciones triangulares debido a su simplicidad y bajo costo computacional.
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Figura 3.9: Diagrama de bloques de controlador PID difuso.

La Figura 3.10a muestra la pertenencia de la entrada error para el primer grado de libertad,
mientras que las Figuras 3.10b y 3.10c muestran el segundo y tercero, respectivamente. Estas
mismas pertenencias se usan para la entrada derivada del error.
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Figura 3.10: Función de pertenencia de las entradas.

Para la salida tenemos funciones de pertenencia singleton, de igual manera que para las entradas
se tiene una salida Kp por cada grado de libertad, como se muestra en la Figura 3.11. Las funciones
singleton se usaron debido a que el valor de la salida es uno solo que depende de la entrada y no
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de un rango de valores.
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Figura 3.11: Función de pertenencia de las salidas Kp.

Para el caso de la salida Ki se tiene una función de pertenencia de salida para el primer y
segundo grado de libertad y otra para el tercer grado, como se muestra en la Figura 3.12. De igual
manera que para la salida Kp, la función de pertenencia es de tipo singleton.
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Figura 3.12: Función de pertenencia de las salidas Ki.

Finalmente, para determinar qué salida se obtiene a partir de cierta entrada, se tienen las reglas
de inferencia, las cuales están listadas a continuación:
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Si error es ”Cero”, entonces Kp es ”Cero”

Si error es ”Medio”, entonces Kp es ”Medio”

Si error es ”Alto”, entonces Kp es ”Alto”

Si ierror es ”Cero”, entonces Ki es ”Cero”

Si ierror es ”Medio”, entonces Ki es ”Medio”

Si ierror es ”Alto”, entonces Ki es ”Alto”

Los valores numéricos para cada grado de libertad se encuentran listados en la Tabla 3.3.

Tabla 3.3: Valores numéricos de funciones de pertenencia por grado de libertad.

DOF Entrada (%) Salida Kp Salida Ki Salida Kd

0-30 0.5 0.015
1ero 30-70 0.48 0.010 0.13

70-100 0.54 0.005

0-20 0.001 0.015
2do 20-70 0.15 0.010 0.001

70-100 0.1 0.005

0-20 0.001 0.05
3ero 20-50 0.09 0.04 0.0005

50-100 0.08 0.03

3.6.3. Controlador con red neuronal

Finalmente, se optó por usar un controlador basado en una red neuronal de retropropagación.
Con esto, a partir de los datos obtenidos por la planta, la red aprenderá de los datos obtenidos mo-
dificando las ganancias. La red neuronal está programada de tal forma que sustituya al controlador
PID, pero modificando las ganancias de este cada vez que se obtiene un dato nuevo de la planta. El
diagrama de bloques del controlador con red neuronal de retropropagación se muestra en la Figura
3.13.
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Figura 3.13: Diagrama de bloques de controlador con red neuronal de retropropagación.
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Figura 3.14: Topoloǵıa de la red neuronal de retropropagación.

El controlador de red neuronal de retropropagación utiliza una sola neurona, como la que se
muestra en la Figura 3.14, para cada grado de libertad.

Los pesos iniciales por grado de libertad, aśı como el factor de aprendizaje, se encuentran listados
en la Tabla 3.4. Para este caso, al no tener los datos de entrada normalizados y tener un ADC de 12
bits, aśı como cambiar de un valor cercano a 0 a un valor cercano a 4000 en un tiempo muy corto,
el factor de aprendizaje tiene que ser pequeño para no desbordar la variable del microcontrolador.

Tabla 3.4: Pesos iniciales y factor de aprendizaje de neurona por grado de libertad.

DOF W1 W2 W3 n

1ero 0.5 0.13 0.008 2x10−12

2do 0.2 0.001 0.008 1x10−12

3ero 0.001 0.0005 0.03 5x10−13

La red neuronal tiene una función de activación lineal ya que al tener alguna otra aumentaŕıa
mucho el costo computacional al tener que realizar operaciones más complejas. Las ecuaciones
utilizadas para la actualización de los pesos son las siguientes:

Y = w1 + w2 + w3 (3.4)

E = Yd − Y (3.5)

∆w1 = w1 ∗ E ∗ δ (3.6)

∆w2 = w2 ∗ E ∗ δ (3.7)

∆w3 = w3 ∗ E ∗ δ (3.8)
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w1 = w1 +∆w1 (3.9)

w2 = w2 +∆w2 (3.10)

w3 = w3 +∆w3 (3.11)

3.7. Pruebas

Las pruebas realizadas fueron llevadas a cabo de la siguiente manera.

1. Prueba con controlador PID en un grado de libertad en PIC18F4550.

2. Ajustes de ganancias de controlador PID.

3. Prueba con controlador PID difuso en un grado de libertad.

4. Ajustes de salidas de logica difusa.

5. Prueba con controlador con red neuronal de retropropagación en un grado de libertad.

6. Ajustes de pesos iniciales y factor de aprendizaje.

7. Repetir pruebas anteriores para 3 grados de libertad con los 3 controladores.

8. Ajustes en controladores de siguientes grados de libertad.

9. Repetir pruebas para un grado de libertad en STM32F303RE.

10. Ajustes de ganancias en STM32F303RE.

11. Repetir pruebas para 3 grados de libertad.

12. Comparación de resultados.
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CAPÍTULO 4

Resultados

En este caṕıtulo se describirán los resultados obtenidos para cada tipo de controlador utilizado,
una comparativa entre ellos y entre el estado del arte del proyecto, aśı como una discusión de los
resultados obtenidos.

Los resultados obtenidos para un grado de libertad se separan en:

Control PID.

Control PID-difuso.

Control con Red neuronal de retropropagación.

4.1. Control PID

Para las pruebas con control PID se tienen unas ganancias fijas para el primer grado de libertad
de 0.5, 0.13 y 0.008 para la ganancia proporcional, la derivativa y la integral, respectivamente.
Para el segundo grado de libertad se tienen unas ganancias de 0.2, 0.001 y 0.008 para la ganancia
proporcional, la derivativa y la integral, respectivamente. Por último, para el tercer grado de libertad
se tiene una ganancia proporcional de 0.1, una derivativa de 0.0005 y una integral de 0.03. El cuarto
grado de libertad, en esta etapa de la investigación, solo cuenta con dos posiciones deseadas que, al
ser un cilindro neumático o pistón, son con el vástago retráıdo y el vástago extendido, por lo que
no cuenta con un controlador y se dejó como on-off. El tiempo de muestreo es de 50 ms.

Se observa en la Figura 4.1 que, para los 3 experimentos realizados, la posición del actuador
es muy cercana al setpoint, teniendo un sobrepaso máximo cercano al 9.1% y un error en estado
estacionario menor a 8° con un tiempo de asentamiento cerca de los 14 s.

Por otra parte, en la Figura 4.2, se observa el comportamiento del actuador del segundo grado
de libertad; esta muestra que el error en estado estacionario mayor, para los 3 experimentos reali-
zados, es menor de 5° con un tiempo de asentamiento cerca de los 14.3 s y teniendo un sobrepaso
máximo cerca del 40%.
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Figura 4.1: Posición de primer grado de libertad con controlador PID.
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Figura 4.2: Posición de segundo grado de libertad con controlador PID.

Finalmente, para el tercer grado de libertad, la Figura 4.3 muestra que se tiene un sobrepaso
máximo cerca del 55% y un error en estado estacionario de aproximadamente 13° con un tiempo
de asentamiento menor a 80 s.
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Figura 4.3: Posición de tercer grado de libertad con controlador PID.
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En la Figura 4.4 se puede observar la gráfica de los errores de cada experimento para cada grado
de libertad.
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Figura 4.4: Errores por cada grado de libertad del controlador PID.

Al usar la cinemática directa con los resultados obtenidos, se obtuvieron las coordenadas en el
eje x y en el eje y para la posición del efector final del robot. Con estas coordenadas se obtuvieron los
valores del origen al efector final, los cuales se muestran en la Figura 4.5 para los tres experimentos
realizados.
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Figura 4.5: Posición del efector final con controlador PID.
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4.2. Control PID difuso

Para las pruebas con control PID difuso se tienen unas ganancias para el primer grado de libertad
fijas de 0.5, 0.13 y 0.008 para la ganancia proporcional, la ganancia derivativa y la ganancia integral,
respectivamente. Para el segundo grado de libertad se tienen unas ganancias de 0.2, 0.001 y 0.008
para la ganancia proporcional, la ganancia derivativa y la ganancia integral, respectivamente. Por
último, para el tercer grado de libertad se tiene una ganancia proporcional de 0.1, una derivativa
de 0.0005 y una integral de 0.03. El cuarto grado de libertad, el cual solo tiene la función de bajar
y subir el efector final, no cuenta con un controlador. El tiempo de muestreo es de 10 ms.

Se observa en la Figura 4.6 que, para los 3 experimentos realizados, la posición del actuador
es muy cercana al setpoint, teniendo un sobrepaso máximo cercano al 9.6% y un error en estado
estacionario menor a 2° con un tiempo de asentamiento cercano a los 4.3 s.
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Figura 4.6: Posición de primer grado de libertad con controlador PID difuso.

Por otra parte, en la Figura 4.7, se observa el comportamiento del actuador del segundo grado
de libertad; esta muestra un error en estado estacionario cerca de 3° con un tiempo de asentamiento
menor a 12 s y teniendo un sobrepaso máximo cerca del 39%.
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Figura 4.7: Posición de segundo grado de libertad con controlador PID difuso.
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Finalmente, para el tercer grado de libertad, la Figura 4.8 muestra que se tiene un sobrepaso
máximo cerca del 34% y un error en estado estacionario menor a 3.5° con un tiempo de asentamiento
menor a 42 s.
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Figura 4.8: Posición de tercer grado de libertad con controlador PID difuso.

En la Figura 4.9 se puede observar la gráfica de los errores de cada experimento para cada grado
de libertad.
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(a) 1er Grado de libertad.
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(b) 2do Grado de libertad.
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Figura 4.9: Errores por cada grado de libertad del controlador PID difuso.
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De igual manera que con el controlador PID, se obtuvieron las posiciones del efector final del
robot para los tres experimentos realizados, los cuales se muestran en la Figura 4.10.
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Figura 4.10: Posición del efector final con controlador PID Difuso.

4.3. Control con Red neuronal de retropropagación

Para las pruebas con control con red neuronal de retropropagación se tienen unas ganancias
variables, las cuales se modifican dependiendo de la posición actual del controlador, mediante una
neurona en la que entran los valores del error, la derivada del error y la integral del error. Estas
entradas se procesan en la neurona y dan como salida la señal de control para el control del flujo
de aire.

Se observa en la Figura 4.11 que, para los 3 experimentos realizados, la posición del actuador
es muy cercana al setpoint, teniendo un sobrepaso máximo cercano al 1% y un error en estado
estacionario menor a 1.5° con un tiempo de asentamiento cerca de los 3.6 s.
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Figura 4.11: Posición de primer grado de libertad con controlador NN.
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Por otra parte, en la Figura 4.12, se observa el comportamiento del actuador del segundo grado
de libertad. El error en estado estacionario es cerca de 1° con un tiempo de asentamiento cerca de
los 22.5 s y teniendo un sobrepaso máximo cerca del 38%.
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Figura 4.12: Posición de segundo grado de libertad con controlador NN.

Finalmente, para el tercer grado de libertad, la Figura 4.13 muestra que se tiene un sobrepaso
máximo cerca del 61% y un error en estado estacionario de aproximadamente 2.5° con un tiempo
de asentamiento menor a 52.4 s.
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Figura 4.13: Posición de tercer grado de libertad con controlador NN.

En la Figura 4.14 se puede observar la gráfica de los errores de cada experimento para cada
grado de libertad.

Finalmente, al igual que con el controlador PID y PID Difuso, se obtuvieron las posiciones del
efector final del robot para los tres experimentos realizados, los cuales se muestran en la Figura
4.15.
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(b) 2do Grado de libertad.
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Figura 4.14: Errores por cada grado de libertad del controlador con red neuronal.
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Figura 4.15: Posición del efector final con controlador de red neuronal.

4.4. Comparativa

En la Tabla 4.1 se pueden observar los porcentajes de error de cada uno de los controladores
por grado de libertad. Esto se calculó obteniendo el promedio de error de cada experimento una vez
alcanzado el estado estacionario, el cual se definió como el 96% de la señal de entrada, y después
promediando el error de todos los experimentos y calculando el porcentaje respecto al valor de
referencia.
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Tabla 4.1: Porcentaje de error de cada controlador por cada grado de libertad.

DOF PID PID difuso NN

1er 2.7391 0.4539 0.4421

2do 1.2763 0.2456 0.0351

3er 2.0535 0.2042 0.4586

En la Tabla 4.2 se pueden observar los valores de error en estado estacionario (eee), sobrepaso
(OS) y tiempo de asentamiento (ts) máximos de las pruebas realizadas para cada controlador por
grado de libertad.

Tabla 4.2: Error en estado estacionario, tiempo de asentamiento y sobrepaso máximo.

DOF eee (°) ts (s) OS (%)

PID 7.4876 13.95 9.11
PID difuso 1er -1.8905 19.35 8.79

NN -1.3224 18.55 1.16

PID 5.2294 14.35 40.84
PID difuso 2do 0.9189 11.65 38.96

NN -0.4131 22.5 37.84

PID -13.2616 79.9 54.76
PID difuso 3er 1.4232 41.6 34.40

NN -1.3209 52.35 61.06

La Figura 4.16 muestra la comparativa del error promedio absoluto de cada controlador por
cada grado de libertad.
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Figura 4.16: Comparativa de MAE de controladores por cada grado de libertad.
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4.5. Discusión

En la Figura 4.16 se puede observar que el controlador con el peor desempeño es el controlador
PID, ya que su error en estado estacionario, para los 3 grados de libertad controlados, es mucho
mayor que el caso del controlador PID difuso y el de red neuronal.

De la Tabla 4.2 se puede observar que de los errores máximos obtenidos el controlador PID
difuso mejoró en un 74.75%, un 82.43% y un 89.27% para el primero, segundo y tercer grado de
libertad, respectivamente, mientras que para el controlador con red neuronal mejoró en un 82.34%,
un 92.10% y un 90.04%, esto en comparación con el controlador PID. De igual forma, se puede
determinar que el controlador con red neuronal mejoró en comparación con el PID difuso en un
30.05%, 55.04% y 7.19%.

En cuanto a la comparación con otras investigaciones, se compararon los resultados obtenidos
con un controlador PID y se compararon con los obtenidos con el controlador PID difuso y el de
red neuronal. Esto es algo complicado de comparar, ya que, ni los actuadores, ni los sensores, ni las
válvulas, ni la aplicación, ni las pruebas son iguales; se realizó una comparativa entre el porcentaje
de error alcanzado por estas investigaciones y el porcentaje de error obtenido en esta. Es importante
también mencionar que en las investigaciones realizadas no siempre se tiene un controlador PID
puro, ya que en algunas de ellas se utilizó algún método de optimización. En la Tabla 4.1 se tienen
los porcentajes obtenidos en esta investigación y en la Tabla 4.3 se tienen los obtenidos en otras
investigaciones donde podemos ver que el posicionamiento mejoró por lo menos en un 31.23% en
el caso del controlador PID difuso y un 30.52% en el controlador con red neuronal.

Tabla 4.3: Porcentaje de error obtenido en otras investigaciones.

Referencia Error (%) Tipo de con-
trolador

Mejora con
PID difuso
(%)

Mejora
con NN
(%)

[16] 1.50 NCD-PID 69.74 69.43

[19] 10 FFPID 95.46 95.41

[3] 0.66 MPC 31.23 30.52

[2] 16.60 ACRPPC-
FOPID

97.27 97.24

[9] 1.35 FOPID 66.38 66.03

[11] 3.05 PID 85.12 84.96
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CAPÍTULO 5

Conclusiones

Se puede concluir que el uso de un AIA mejora el posicionamiento de los actuadores de un
robot SCARA de 4 grados de libertad. Esto queda demostrado tanto con las pruebas realizadas en
la presente investigación en las que la comparación entre el controlador PID y los que usan algún
AIA mejora en por lo menos un 74% el posicionamiento de los actuadores. Por otra parte, también
se demostró que en comparación con investigaciones previas, que usan un controlador PID, por lo
menos se mejora en un 30.52% el porcentaje de error en el posicionamiento de los actuadores.

Es importante mencionar que varias de estas investigaciones usan válvulas proporcionales en
comparación con esta en la que se usan solenoides para la activación del flujo de aire, el cual
previamente se regula con el uso de una válvula de estrangulamiento en conjunto con un motor a
pasos. Esto reduce el costo de materiales en gran medida, pero en caso de necesitarse una mayor
precisión se puede optar por el uso de válvulas proporcionales para determinar si esto es un factor
importante en el control de flujo de aire. Por otra parte, en esta investigación se usaron solo sensores
de posición, por lo que el uso de sensores de presión aunados a los de posición podŕıa resultar en
un mejor posicionamiento de los actuadores.

La adquisición de datos también juega un papel importante para el posicionamiento; si bien, el
microcontrolador usado tiene un convertidor ADC de 12 bits, lo que nos da una buena resolución
de la posición de los actuadores, el tiempo de muestreo aún se puede mejorar con componentes
más especializados en altas velocidades. Esto podŕıa resultar en una respuesta más rápida, lo que
podŕıa reducir el tiempo de asentamiento y el sobrepaso.

En cuestiones mecánicas, se tuvieron varios problemas con las piezas que uńıan los actuadores
con los eslabones, ya que estas fueron construidas con impresión 3D lo que resultaba en un desgaste
muy rápido de estas piezas. Como mejora, se podŕıan sustituir estas piezas por unas construidas con
un material más duradero. Otro problema que se tuvo que enfrentar fue la fricción en los rodamientos
causada por el desbalanceo de los eslabones, esto se trató de solucionar colocando contrapesos en
los eslabones pero no se pudo eliminar por completo.Los resultados de la investigación resultaron
satisfactorios aunque aún se tengan algunos puntos a mejorar.
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