UNIVERSIDAD AUTONOMA DE QUERETARO

NOR

Universidad Auténoma de Querétaro

&
Y EL Ho

Facultad de Ingenieria

Maestria en Ciencias en Control en Sistemas Embebidos

Desarrollo de sistema en FPGA para control de dispositivo mediante senales EMG e
inteligencia artificial

TESIS

Que como parte de los requisitos para obtener el grado de
Maestro en Ciencias en Control en Sistemas Embebidos
Presenta:

José Félix Castruita Lépez
Dirigido por:

Dr. Marcos Romo Avilés

SINODALES

Dr. Marcos Romo Avilés
Presidente

Dr. Juvenal Rodriguez Reséndiz
Codirector

Dr. José Manuel Alvarez Alvarado

Vocal
Dr. Edson Eduardo Cruz Miguel
Suplente
Dr. Suresh Thenozhi
Suplente

Centro Universitario
Querétaro, QRO
México.

Julio 2025



REPOSITORIO
R I INSTITUCIONAL
DGBSDI-UAQ

La presente obra esta bajo la licencia:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

OO

CC BY-NC-ND 4.0 DEED

Atribucion-NoComercial-SinDerivadas 4.0 Internacional

Usted es libre de:

Compartir — copiar y redistribuir el material en cualquier medio o formato

La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia

Bajo los siguientes términos:

Atribucién — Usted debe dar crédito de manera adecuada , brindar un enlace a la licencia,
e indicar si se han realizado cambios . Puede hacerlo en cualquier forma razonable, pero no de
forma tal que sugiera que usted o su uso tienen el apoyo de la licenciante.

@ NoComercial — Usted no puede hacer uso del material con propdsitos comerciales .

SinDerivadas — Si remezcla, transforma o crea a partir del material, no podra distribuir el
material modificado.

No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnoldgicas que
restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.

Avisos:

No tiene que cumplir con la licencia para elementos del material en el dominio publico o cuando su uso
esté permitido por una excepcion o limitacion aplicable.

No se dan garantias. La licencia podria no darle todos los permisos que necesita para el uso que tenga
previsto. Por ejemplo, otros derechos como publicidad, privacidad, o derechos morales pueden limitar la
forma en que utilice el material.



https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-appropriate-credit
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-indicate-changes
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-commercial-purposes
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-some-kinds-of-mods
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-technological-measures
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-exception-or-limitation
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-publicity-privacy-or-moral-rights

UNIVERSIDAD AUTONOMA DE QUERETARO

UNIVERSIDAD AUTONOMA DE QUERETARO

EL HONOR

N3 OodNna3

FACULTAD DE INGENIERIA
MAESTRIA EN CIENCIAS EN CONTROL EN SISTEMAS EMBEBIDOS

Desarrollo de sistema en FPGA para control de dispositivo
mediante senales EMG e inteligencia artificial

TESIS

Que como parte de los requisitos para obtener el grado de

Maestro en Ciencias en Control en Sistemas Embebidos

Presenta:
Jost FELIX CASTRUITA LOPEZ
Dirigido por:
DR. MARCOS ROMO AVILES
Co-Director:
DR. JUVENAL RODRIGUEZ RESENDIZ

Vocal:
DR. JOSE MANUEL ALVAREZ ALVARADO
Suplente 1
Dr. EDSON EDUARDO CRUZ MIGUEL
Suplente 2

DR. SURESH THENOZHI

Querétaro, Qro. a Julio de 2025



11

A mi familia.



Agradecimientos

Agradezco a mi familia, amigos y a todas las personas que me apoyaron de alguna forma para
completar esta meta. A todos por escucharme, acompanarme, aconsejarme y compartir su tiempo en
esta etapa de mi vida. A la Universidad Auténoma de Querétaro por la formacién y a los profesores
por sus ensenanzas. Finalmente, al CONAHCYT ahora SECIHTI por el apoyo econémico que me
permitié estar en el posgrado.

II1



Resumen

Las senales de electromiografia (EMG) son bipotenciales que registran la actividad muscular,
como contraccion, relajacién, fuerza, movimiento y fatiga. Estas senales, al proporcionar informa-
cién sobre el comportamiento muscular son muy utilizadas en campos de investigacién, como la
biomédica, la medicina, la robdtica, y la rehabilitacién. Sin embargo, las senales de EMG al ser
muy complejas requieren un considerable nivel computacional para su clasificacién. Tradicional-
mente, este procesamiento se realiza en dispositivos de computo secuencial, lo que genera tiempos
de respuesta elevados y un alto consumo de energia, limitando su uso en aplicaciones embebidas o
portatiles. En este trabajo se disefié e implementé un sistema de control basado en la clasificacién
de seniales EMG mediante una red neuronal tipo perceptrén multicapa (MLP), implementada en un
dispositivo l6gico programable tipo FPGA. El objetivo fue realizar la inferencia del modelo MLP
directamente en hardware para clasificar senales EMG procesadas y controlar en lazo cerrado un
actuador que simula los movimientos de la mano predichos por la red. El sistema implementado en
FPGA alcanzé una latencia de 843 ciclos de reloj para tener una prediccién, equivalente a 33.72 us
por muestra a una frecuencia de 25 MHz, en contraste con los 52.03 ms requeridos por el modelo
ejecutado en Python en una computadora con procesador Intel® Core™ i7-1255U. La eficiencia de
clasificacién fue del 97.42 %, y el consumo de potencia del disefio en el FPGA fue de 0.153 W. Estos
resultados demuestran una mejora significativa en el tiempo de respuesta y el consumo energético
respecto a los sistemas secuenciales tradicionales, validando la viabilidad del uso de FPGA para la
implementacién de modelos de inteligencia artificial embebidos en aplicaciones de control basadas
en senales EMG.

Abstract

Electromyography (EMG) signals are biopotentials that record muscle activity such as contrac-
tion, relaxation, strength, movement, and fatigue. By providing information about muscle behavior,
these signals are widely used in research fields such as biomedical engineering, medicine, robotics,
and rehabilitation. However, due to their complexity, EMG signals require a considerable compu-
tational load for accurate classification. Traditionally, this processing is carried out on sequential
computing devices, which leads to high response times and increased power consumption, limiting
their use in embedded or portable applications. In this work, a control system based on the classifi-
cation of EMG signals was designed and implemented using a multilayer perceptron (MLP) neural
network deployed on a Field Programmable Gate Array (FPGA). The objective was to perform the
inference of the MLLP model directly in hardware to classify processed EMG signals and to control,
in a closed loop, an actuator that simulates the hand movements predicted by the network. The
FPGA-based system achieved a latency of 843 clock cycles per prediction, equivalent to 33.72 us
per sample at a frequency of 25 MHz, in contrast to the 52.03 ms required by the Python-based mo-
del running on an Intel® Core™ i7-1255U processor. The classification accuracy reached 97.42 %,
and the FPGA design consumed only 0.153 W of power. These results demonstrate a significant
improvement in response time and energy efficiency compared to traditional sequential systems,
validating the feasibility of using FPGAs for the implementation of embedded artificial intelligence
models in control applications based on EMG signals.

v
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CAPITULO 1

Introduccion

En la actualidad, existen una gran cantidad de estudios con el uso de senales EMG, las cuales
son senales bioeléctricas que se generan al contraer y relajar los misculos [1]. Estas sefiales propor-
cionan informacién valiosa sobre la actividad muscular y son utilizadas para desarrollar o mejorar
tecnologias enfocadas en su andlisis e interpretacion, aplicadas a procesos o modelos que pueden
predecir o clasificar movimientos [2].

Las senales EMG son muy complejas al provenir del sistema nervioso, por lo que su clasificacién
suele utilizan algoritmos de inteligencia artificial, como algoritmos de aprendizaje supervisado.
Diversos autores han empleado distintos clasificadores, entre ellos redes neuronales [3], maquinas
de soporte vectorial (SVM, por las siglas en inglés)[4] y algoritmos de K vecinos més cercanos
(KNN, por las siglas en inglés) [5].

Sin embargo, al utilizar algoritmos de inteligencia artificial complejos, se dificulta la portabili-
dad de los modelos, ya que al aumentar la complejidad también aumenta la capacidad necesaria de
procesamiento del equipo de cémputo donde se implementa [6]. Por lo que esto genera un desafio
al integrar clasificadores de senales EMG a sistemas portatiles, ya que no es posible utilizar equi-
pos de escritorio (PC) que son dificiles de transportar y requieren de una gran fuente de energia
constantemente.

Ante esta problemdtica han surgido soluciones donde se implementan los clasificadores EMG
en dispositivos y procesadores embebidos, como en [7, 8], donde se utilizan microcontroladores
que destacan por su bajo consumo energético en comparacién con otros dispositivos empleados en
el estado del arte, pero tienen el inconveniente de estar limitados en su capacidad para ejecutar
algoritmos complejos. Otros trabajos reportados, como [9, 10], emplean sistemas en chip (SoCs)
como Raspberry® o Jetson Nano®, que permiten la ejecucién de algoritmos mas complejos que
los microcontroladores, pero consumen una mayor cantidad de energia.

Por otro lado, en los trabajos [11, 12] se utilizan FPGAs, los cuales se presentan como una buena
opcién para embeber clasificadores EMG por sus caracteristicas de procesamiento en paralelo y su
eficiencia energética adecuada para aplicaciones portatiles, aunque su implementacién resulta mas
desafiante que en otros dispositivos.

Estos trabajos presentan alternativas viables para integrar clasificadores EMG en sistemas
portatiles; sin embargo, existen dreas de oportunidad, ya que la mayoria no utiliza clasificadores
complejos, lo que limita la precision de los modelos. Por otro lado, aquellos que ejecutan algoritmos
ma&s complejos, como redes neuronales, en su mayoria utilizan SoCs, lo que conlleva un consumo
de energia considerable. Por ejemplo, en [13] se reporta que se requiere hasta 10 W de potencia, en



comparacién con [11], uno de los pocos trabajos reportados de una red neuronal implementada en
FPGA, donde el consumo fue de 91.81 mW.

Por lo que se propone este trabajo en el cual se disenia e implementa un sistema basado en
un dispositivo FPGA para la clasificacién de seniales EMG utilizando una red neuronal tipo MLP,
con arquitectura 67-100-100-10 (entradas - neuronas en capas ocultas - salidas), donde las entradas
corresponden a caracteristicas extraidas de las senales EMG y las salidas corresponden a los gestos
que se predicen. Este sistema permite identificar 10 gestos de la mano, a partir de las senales EMG
y posteriormente se controla un actuador que simula el movimiento.



1.1. Descripcion del problema

Los algoritmos de inteligencia artificial, como las redes neuronales artificiales (RNA), se han
vuelto extremadamente populares para la clasificacién de senales EMG, con la posibilidad de apli-
carlas en protesis inteligentes, rehabilitacién o seguimiento de la actividad muscular [14]. Por lo
tanto, es necesario implementar estas RNA en campo para integrarlas en la vida diaria [15].

La mayoria de los clasificadores EMG reportados en la literatura se han implementado en
software, ya que esta metodologia resulta méas sencilla y rapida de desarrollar. Sin embargo, su
rendimiento suele ser limitado para aplicaciones en tiempo real o portatiles. Esto se debe a que los
procesadores utilizados en dichas implementaciones como las computadoras de propdsito general
o los microprocesadores secuenciales ejecutan las operaciones de manera serial, aunque intenten
paralelizar los calculos mediante hilos. En consecuencia, el procesamiento de las neuronas se realiza
de forma seudoparalela, lo que provoca tiempos de respuesta elevados y una menor eficiencia en
tareas que requieren alta simultaneidad de operaciones [16]. Ademds, no resulta préctico para
aplicaciones en campo utilizar procesadores de gran tamano o incluso unidades de procesamiento
grafico, debido al espacio requerido y al alto consumo energético [17].

Por otro lado, las implementaciones en hardware ofrecen un mejor rendimiento en tiempo real,
menor latencia y bajo consumo de energia, aunque su disefio es méas complejo y requiere una
optimizacion cuidadosa de recursos como memoria, bloques légicos y arquitectura del modelo. Esta
complejidad técnica ha limitado la cantidad de desarrollos reportados, convirtiéndose en un area
de oportunidad, ya que las implementaciones en hardware ofrecen ventajas como alta flexibilidad,
mayor precisién, mejor replicabilidad, alta capacidad de prueba y menor consumo energético [18].

El tipo de implementacién en hardware que se plantea en este trabajo es mediante el uso de un
dispositivo légico programable tipo FPGA, el cual permite crear varios médulos logicos simples que
pueden interconectarse para formar sistemas mas complejos. Esto resulta adecuado para disenar el
modelo en hardware de una neurona bésica, con el fin de modularla y construir una red completa
[16]. De esta forma, los FPGA se presentan como una mejor opcién para implementar RNA, debido a
su verdadero procesamiento en paralelo, bajo consumo energético y flexibilidad en su programacién.

En la figura 1.1 se muestra un esquema simplificado que representa el uso de algoritmos de
inteligencia artificial en aplicaciones ttiles.

Sz
%
E —

Figura 1.1: Transicién del modelo en PC hacia una aplicacion embebida de control.



1.2. Justificacion

La Organizacién Mundial de la Salud estima que aproximadamente el 15% de la poblacién
mundial vive con alguna forma de discapacidad. En este contexto, la discapacidad motriz a nivel
global representa el 52 %, lo que indica un alto nimero de personas que experimentan problemas
en los musculos y el sistema esquelético [19]. En México, segin datos del Instituto Nacional de
Estadistica y Geografia de 2015, el nimero de personas con discapacidad debido a un miembro
amputado se acercaba a las 780 mil. De estos casos, el 82% se debia a enfermedades vasculares
derivadas de la Diabetes Mellitus Tipo 2, el 16 % era el resultado de amputaciones traumadticas
y el 2% restante correspondia a amputaciones causadas por tumores malignos o enfermedades
congénitas [20]. En la figura 1.2 se presenta una grafica con estos datos. Asi, esta informacién
destaca la necesidad en México de desarrollar tecnologia y soluciones para personas que han perdido
alguna de sus extremidades. Ademads, es importante senalar que los individuos en esta situacién
pueden enfrentar dificultades econémicas al no poder cumplir con las demandas de diversos entornos
laborales, por lo que es de importancia presentar alternativas mas accesibles para todos.

Poblacion sin una extremidad (2015)
780000

® Amputaciones por enfermedades vasculares
® Amputaciones traumaticas

Amputaciones por tumores malignos o
enfermedades congénitas

Figura 1.2: Distribucion porcentual de las causas de amputacion en México, segun INEGI 2015.

De manera local, en el estado de Querétaro se tienen algunas instituciones que ofrecen soluciones
a personas con alguna amputacién, tal como el CRIMAL IAP Querétaro, como institucién privada,
fabrica prétesis para aproximadamente 130 pacientes al ano, registro al ano 2016. Los Centros de
Rehabilitacion Infantil Teleton también colaboran con el sector privado para proporcionar prote-
sis a alrededor de 775 pacientes al ano [21]. Estas instituciones realizan una gran contribucién al
atender personas amputadas, pero segun los registro en instituciones hospitalarias del sector salud
en México, tan solo en 2014, se registraron 2179 amputaciones traumaticas por causa accidental
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o intencional [21]. Lo que indica que aun hay un gran sector de la poblacién que sufre de este
problema. De manera significativa, se tiene un registro que el 70.9 % de las afectaciones fue en las
extremidades torédcicas (principalmente mano y dedos de la mano) con base en la clasificacién de
las amputaciones trauméticas [20]. Y considerando que la mano es uno de los érganos principales
en la extremidad superior del ser humano, ya que desempena un papel fundamental al permitir
una manipulacién fisica delicada y precisa. La amputacién de la mano genera graves repercusiones
fisicas y psicoldgicas [22]. Debido a estas necesidades el estudio de la electromiografia ha cobrado
gran importancia en diversas areas de investigacién, como la biomédica, la medicina, la robdtica, la
rehabilitacién y la inteligencia artificial [14]. Esto ha llevado al desarrollo de dispositivos que pueden
simular eficazmente el movimiento de una extremidad. En este contexto, es de suma importancia
el estudio y aplicacién de las senales EMG ya que son una fuente valiosa, ya que proporcionan
datos precisos sobre el funcionamiento de los musculos y nervios, registrando las senales eléctricas
generadas por los musculos durante el movimiento[23].



1.3. Hipdtesis y Objetivos

En esta seccién se presenta la hipdtesis, objetivo general y los objetivos especificos del proyecto.

1.3.1. Hipdétesis

La implementacién de una red neuronal perceptrén multicapa en un dispositivo FPGA para la
clasificacién de senales EMG asociadas a 10 movimientos de mano logrard una eficiencia igual o
mayor al 93 %, disminuyendo el consumo energético y el tiempo de procesamiento en contraste con
implementaciones en software.

1.3.2. Objetivo general

Desarrollar un sistema de control en FPGA de un dispositivo que simule el comportamiento de
la mano, basado en un perceptrén multicapa para la deteccién de movimientos mediante senales
EMG.

1.3.3. Objetivos particulares

= Elaborar un dispositivo actuador para simular los movimientos de mano.

= Extraer caracteristicas de las senales EMG y seleccionar las que presenten mejor rendimiento
por medio de algoritmo genético al evaluar modelo perceptrén multicapa de prueba.

= Disenar e implementar la fase de entrenamiento del modelo perceptrén multicapa en software.

= Disenar e implementar la fase de ejecucién del perceptréon en FPGA con lenguaje descriptor
de hardware VHDL.

= Diseniar e implementar el control del actuador que simule movimientos de la mano en FPGA
con lenguaje descriptor de hardware VHDL.

= Validar la implementaciéon mediante el andlisis de resultados al compararlos con la implemen-
tacion en software.



1.4. Antecedentes

Actualmente, la evolucién de los algoritmos de Deep Learning (DL) ha marcado un hito en las
técnicas de inteligencia artificial. Destacando porque la informacién se procesa en capas jerarquicas
que permiten realizar representaciones de los datos y comprender sus caracteristicas en niveles cada
vez mas complejos [24]. En la préctica, la mayoria de algoritmos de DL se basan en redes neuro-
nales artificiales, que comparten propiedades béasicas comunes. Estas redes consisten en neuronas
interconectadas dispuestas en capas, diferenciandose principalmente en la arquitectura de la red y,
ocasionalmente, en su proceso de entrenamiento [14, 25].

Una de las aplicaciones mas empleadas del DL es el procesamiento de senales, para la clasifica-
cion, andlisis e interpretacién de las mismas, con el fin de desarrollar u optimizar procesos o modelos
[24]. De manera relevante, la clasificacién de senales de electromiografia ha sido estudiada en los
recientes anos en ambitos de ingenieria biomédica. Pero el problema con estas sefiales recae en que
son muy complejas, ya que provienen de la actividad muscular, que a su vez es controlada por el
sistema nervioso. Ademads, dependen de las propiedades anatomicas y fisioldgicas de los musculos.
Asi que, las seniales EMG son consideradas un bipotencial que registra corrientes eléctricas genera-
das en los miusculos durante su contraccién/relajacién [26]. Por lo que se suelen emplear métodos
de DL como el perceptrén multicapa o multilayer perceptron (MLP) para la clasificacién de este
tipo de senales. El MLP consiste en una arquitectura de RNA donde se interconectan neuronas,
activadas por una funcién no lineal [14]. En comparacién con otras arquitecturas més complejas,
como las redes neuronales convolucionales (CNN), el MLP presenta una estructura més simple y
regular que puede representarse mediante operaciones basicas de multiplicacion y suma, lo que
facilita su implementacién directa en hardware reconfigurable como FPGA. El desafio con el uso de
este método es conseguir un desempeno adecuado por medio de los hiperparametros en su proceso
de aprendizaje, lo que puede resultar en la necesidad de altos recursos computacionales.

Debido a la alta complejidad de algunas tareas de procesamiento, como la clasificacién de senales
EMG, los algoritmos de DL también se han vuelto mas complejos desde el punto de vista compu-
tacional. Ademads, el consumo energético y tiempo de ejecucién en dichos algoritmos también se
ha elevado considerablemente. Por ello, encontrar la tecnologia que permita una implementacién
eficiente en tiempos y consumo energético es fundamental en la clasificacién. Recientemente, se
han utilizado unidades de procesamiento central o central process units (CPUs) y unidades de pro-
cesamiento grafico o graphics processing unit (GPUs) para implementar estos algoritmos [27]. A
pesar de ello, las CPUs suelen requerir mucho espacio y funcionan con procesamiento secuencial.
Y en el caso de las GPUs utilizan un consumo eléctrico elevado. Como alternativa para eliminar
estas desventajas, los dispositivos de procesamiento FPGA han demostrado ser prometedores en
términos de consumo de energia y rendimiento. Ademads, son adecuadas para la implementacién
de algoritmos de DL por su ejecucion en paralelo [16]. Las FPGA ofrecen un diseno especifico de
hardware que garantiza un mayor rendimiento, menor consumo de energia y costos reducidos en
comparacién con una implementacién en CPUs y GPUs [28].

En este contexto, esta tesis se enfoca en la investigaciéon e implementacién de una RNA tipo
MLP utilizando un dispositivo FPGA con el fin de clasificar sefiales de EMG provenientes de
movimientos de mano. Ya que, se desarrollara un prototipo de dispositivo, que simule movimientos
de una mano. Con el fin de realizar funciones como agarre, posicionamiento de dedos, entre otras.
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se busca abandonar la implementacion en software de la red, que suele ser una implementacion de
algoritmos y librerias ya definidas en forma de instrucciones que se ejecutan en un procesador. Para
pasar a una implementacion a nivel de hardware con el objetivo de reducir los costos y aumentar la
velocidad de procesamiento con menor consumo de energia. Gracias a las caracteristicas propias de
las FPGA que resultan mas adecuadas para aplicaciones portatiles y que requieran procesamiento
en paralelo como el problema que se abordara.

Principales referencias en la literatura

En esta subseccién, se encontraran las investigaciones, proyectos y publicaciones maés relevantes
a nivel global acerca la implementacion de algoritmos para clasificar senales de EMG en dispositivos
portatiles.

Tabla 1.1: Referencias de las investigaciones y publicaciones mas importantes.

Ref. Ano Descripcion Precision % Movs. Tecnologia

[11] 2023 Reconocimiento de gestos basado en un 95.4 9 FPGA
sensor EMG de tipo seco y redes neurona-
les binarizadas implementadas en FPGA.

[29] 2024 Diseno e implementacién de un modelo 99.0 12 FPGA
para autenticar usuarios mediante senales
EMG, arquitectura optimizada para im-
plementarse en FPGA.

[17] 2020 Comparacién de MLP y CNN en FPGA 96.0 5 FPGA
en términos de retardo y consumo.
[30] 2024 Se implementa una red neuronal de pi- 83.1 12 FPGA

cos para reconocer movimientos median-
te seniales EMG, se hace la inferencia del
modelo en FPGA.
[31] 2022 Combina datos de sensores EMG y visua- 63.9 (solo EMG) 5 FPGA
les para clasificar gestos, mediante una red
neuronal recurrente de picos, se hace infe-
rencia en FPGA.

[32] 2023 Clasificacién de senales EMG utilizando 95.0 6 FPGA
una red neuronal ligera implementada en
FPGA.

[12] 2023 Autenticacién de wusuarios basado en 90.0 1 FPGA

senales EMG utilizando redes neuronales
Siamese y transformada MODWT. Imple-
mentado en FPGA.

Contintia en la siguiente pagina



Tabla 1.1 — continuacién de la pagina anterior

Ref. Ano Descripcién Precisién (%) Movs. Tecnologia
[33] 2023 Reconocimiento de gestos de la mano 94.0 4 Raspberry
utilizando seniales EMG. Incluye extrac- Pi®)
cién de caracteristicas en el dominio tiem-
po y aprendizaje supervisado (DT, KNN,
SVM) para controlar una protesis.
[34] 2024 Clasificacién de movimientos de la mano 92.5 5 Jetson Nano®)
usando seniales EMG, disenado especifica-
mente para pruebas en proétesis de mano
subactuadas.
[35] 2024 Describe el diseno de una proétesis de rodi- 80.0 20 Raspberry
lla controlada en tiempo real por senales Pi®)
EMG, utiliza varios algoritmos implemen-
tados en SOC.
[36] 2024 Algoritmos kNN implementados en el 94.7 6 ARM Cortex-
microcontrolador para clasificar senales M4®)
EMG.
[37] 2024 Disefio de un sistema en tiempo real para 95.3 5 ARM Cortex-
el andlisis y clasificacion de senales EMG M4®)
en una plataforma embebida, se utiliza
una red neuronal MLP.
[38] 2024 Sistema portatil basado en EMG y algorit- 90.0 6 Arduino Nano
mo de inteligencia artificial para reconocer IoT®)
seis expresiones faciales.
[39] 2023 Sistema de reconocimiento de gestos en 97.7 6 FPGA

plataforma Zynq (XC7Z020).

De acuerdo con la Tabla 1.1, se observa que la mayoria de los trabajos recientes (2023-2024)
donde se embeben modelos de clasificacién EMG en FPGA priorizan el uso de redes neuronales
ligeras, como MLP optimizados o variantes binarizadas, con resultados superiores al 90 % de pre-
cision. Esto evidencia el potencial de esta arquitectura para ejecutar inferencias en tiempo real de
modelos de redes neuronales.

Trabajos previos en la UAQ

En esta subseccion se encontraran los trabajos realizadas en la universidad auténoma de Queréta-
ro relacionados a el proyecto, lo cual se puede observar en el Cuadro.



Tabla 1.2: Articulos e investigaciones utilizados para los antecedentes a nivel local.

Ref. Ano Descripcién Precisién % Movs. Tecnologia
[40] 2023 El trabajo se centra en utilizar algo- 90.0 7 (pierna pPC
ritmos genéticos para la seleccién de derecha)
caracteristicas de senales EMG.
[41] 2013 Disenio en FPGA de una red neuro- 99.9 - FPGA
nal artificial (RNA) para la identifi- (identificacién de
cacion en linea de un sistema. sistema, no
clasificacion
EMG)
[42] 2019 Anélisis de senales EMG mediante - - pPC
TA; abarca recoleccién, tratamiento
y clasificacién.
[43] 2021 Clasificacién de seniales EMG con 92-98 10 (mano) pPC

magquinas de soporte vectorial y tres
kernels.

Segun la Tabla 1.2 los trabajos de la UAQ han explorado mas la clasificacién en PC, sin llegar
aun a implementaciones practicas en FPGA, lo que justifica el presente trabajo que se alinea con la
tendencia internacional, proponiendo una implementacién practica en FPGA que busca equilibrar
precision, velocidad y consumo de recursos, aportando un paso més hacia la traslacién del modelo
en PC a una aplicacién embebida funcional.

Tabla de patentes

En esta subseccién se encontraran patentes relevantes con el uso de senales EMG.

Tabla 1.3: Patentes relacionadas con sistemas de control basados en EMG.

Ano Referencia Titulo Descripcion
2020 [44] EMG control systems and Se describen sistemas y métodos, tan-
methods for instructing to en hardware como en software, para
extracorporeal  prosthesis la obtencién y anélisis de seniales EMG,
users con el fin de realizar la calibracién, fun-
cionamiento y control de protesis de
brazo.
2016 [45] Electromyography Se describen sistemas, métodos y dis-
prosthetic ~ or  orthotic positivos para el funcionamiento y con-
devices trol de protesis mediante senales EMG.

Pueden ser para extremidades superio-
res o inferiores, y usar sensores exter-
nos, subcutaneos, entre otros.
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Tabla 1.3 — continuacién de la pagina anterior

Ano Referencia Titulo

Descripcion

2013 [46] Method, system and appa-
ratus for real-time classi-
fication of muscle signals
from self-selected intentio-
nal movements

Se propone un nuevo método para asig-
nar senales EMG a contracciones mus-
culares que corresponden a funciones
especificas de una prétesis. Las senales
son clasificadas en tiempo real a partir
de movimientos intencionales.

En la Tabla 1.3 se presentan algunas patentes relevantes en el area de control de prétesis
mediante senales EMG. Estas patentes, registradas principalmente entre 2013 y 2020, describen
sistemas y métodos orientados al control de extremidades protésicas. Sin embargo, a diferencia
de estos desarrollos patentados, la presente tesis no busca disenar una protesis comercial, sino
optimizar la etapa de clasificacién mediante una red neuronal MLP implementada en FPGA. Por
tanto, el analisis de estas patentes sirve tinicamente para contextualizar la evolucién tecnoldgica

del uso de EMG en aplicaciones biomédicas.
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1.5. Estructura de la tesis

Esta tesis esta estructurada de la siguiente manera: en el capitulo 1 se presenta la introduccién
donde se explica como surge este proyecto, sobre el uso de senales EMG para controlar dispositivos
como prétesis, el uso reciente de algoritmos de inteligencia artificial y la importancia de imple-
mentar los modelos en dispositivos portatiles como FPGA. También, en este capitulo se presenta
la problematica, justificacién, hipotesis, objetivos y los antecedentes encontrados en la revisiéon de
literatura, relacionadas con la implementacién de clasificadores EMG en dispositivos FPGA. En el
capitulo 2 se muestra el marco teérico donde se describen las sefiales EM@G, asi como las técnicas
de procesamiento de ellas. Después se describe el algoritmo genético. Posteriormente, se describe la
red neuronal tipo perceptrén multicapa y sus hiperparametros y, por iltimo, se describe que es un
FPGA y su arquitectura general. En el capitulo 3 se encuentra la metodologia para el desarrollo
del proyecto. En el capitulo 4 se muestran los resultados obtenidos del trabajo y su discusién. Por
dltimo, en el capitulo 5 se presentan las conclusiones que se obtuvieron en el proyecto.
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CAPITULO 2

Fundamentacion teorica

En este capitulo se describe el marco tedrico correspondiente a los temas mas importantes para
comprender las bases de esta tesis. Describe las senales EMG, sus caracteristicas y algunas técnicas
de procesamiento. También, se describe la arquitectura de la red neuronal MLP, se describe el
algoritmo genético como herramienta de optimizacion y, finalmente, se presentan los fundamentos
de los dispositivos FPGA.

2.1. Senales EMG

Las sefiales EMG son senales eléctricas musculares o bioeléctricas que registran la actividad
muscular, revelando informacion sobre la fuerza, el movimiento y la fatiga. Esta actividad muscular
se registra mediante electrodos, ya sean invasivos (como agujas en el misculo) o no invasivos (co-
locados en la piel). Por lo que, la senal EMG es una representacion de los potenciales de accién de
las fibras musculares, que ocurren a intervalos aleatorios [47]. Aunque, la deteccién de estas senales
presenta dos problemas clave. El primero es la relacion senal-ruido, que se refiere a la proporcién
entre la energia de las senales de EMG y la energia del ruido no deseado. El segundo problema
en la deteccién es la distorsion de la senal, la cual implica que la contribucién relativa de las fre-
cuencias en la senial no debe alterarse [47]. Por ello, estas senales requieren preprocesamiento para
eliminar el ruido y mejorar su amplitud, ya que, tipicamente, su amplitud esta entre 0.1 mV y
10 mV [14, 48, 47]. Ademads, hay que tener en cuenta la colocacién precisa de los electrodos en la
superficie muscular para obtener mediciones exactas. Asi como, evitar movimientos no deseados de
los electrodos e interferencias electromagnéticas que puedan comprometer la precision de la senal
[14, 48, 49].

2.1.1. Adquisicion de senal EMG

La adquisicién de la senal es una etapa que requiere mucha atencién, ya que los procesos
subsiguientes y la precisién de la estimacién dependen de la calidad de la senal [49]. Segin [50] esta
etapa de adquisicién consiste principalmente en :

» El método utilizado para registrar la senal.

= El dispositivo de adquisicién.
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= El nimero de canales y la posiciéon de los musculos.
= Kl diseno del amplificador y del filtro.

s La frecuencia de muestreo.

2.1.2. Filtrado y tasa de muestreo

Las seniales EMG se preprocesan antes de realizar la extraccién de sus caracteristicas. El cual
consiste en amplificar y filtrar la senal [50, 48]. Tipicamente, se utiliza un filtro pasa-banda, ya que
la informacion importante de las sefiales EMG se encuentra en la banda de frecuencia de 0 Hz a 500
Hz, y principalmente la energia se concentra en 20 Hz a 150 Hz [49, 50]. Por lo que, cominmente, la
frecuencia de corte inferior en el filtro es entre 5 y 20 Hz, con el fin de eliminar variaciones causadas
por el movimiento de electrodos o cables, las cuales suelen estar en el rango de 0 a 20 Hz [48, 49].
Mientras que la frecuencia de corte superior cominmente es de 500 Hz, ya que por encima de esta
frecuencia se considera ruido en la senal [50, 48]. De manera adicional, se suele utilizar un filtro
tipo Notch a 50 o 60 Hz para eliminar el ruido que pueda interferir de la frecuencia de alimentacién
[48, 49]. Ademds, como se registra una gran cantidad de informacidn, se realiza un muestro de la
senal. Que comunmente, con un filtro pasa bajas a 500 Hz, la tasa de muestreo es de 1 KHz. Ya
que, segun la regla de Nyquist, la tasa de muestreo debe ser igual al doble de la frecuencia mas alta
de interés. Esto con el fin de evitar que la senal sea indistinguible al momento de digitalizarla [50].
De manera adicional, otro punto importante es la amplificacién de la senal, la cual suele ser entre
100 y 5 mil veces. Esto ya que la senal tienen una amplitud maxima por debajo de 10 mV, lo que
la hace propensa a interferencias. Sin embargo, la mayoria de sistemas de adquisicién ya realizan
la amplificacién de la senal automaticamente [50].

2.1.3. Segmentacién

El andlisis de las seniales EMG se suele hacer en segmentos de tiempo o también llamados, épo-
cas o ventanas. ya que la propiedad no estacionaria de la sefial complica que los datos se analizan
en tiempo real [50, 51]. En la segmentacién, es importante elegir la técnica que se utilizara, el ta-
mano del segmento y el estado de la senal, para conseguir una buena precisién en la clasificacién de
estas [49]. Existen dos técnicas de segmentacién, la adyacente y la superpuesta. En la segmentacién
adyacente se segmenta de manera consecutiva con una longitud personalizada. El problema con
este tipo de segmentacién es que no se aprovecha el tiempo de procesamiento, ya que el tiempo
de procesamiento suele ser menor al tiempo de segmentacién. En cambio, en la segmentacién su-
perpuesta se aprovecha mejor el tiempo de procesamiento, ya que se utiliza el tiempo inactivo del
procesador para adquirir mas datos [50]. En la figura 2.1 se muestra un ejemplo de las técnicas de
segmentacion.

El tamano de los segmentos tiene relacién en el tiempo de procesamiento de este. Un segmento
muy grande puede aumentar la presién de la clasificacion, pero el tiempo de procesamiento serd
mayor [50]. Asi que se busca un equilibrio entre precisién y tiempo de procesamiento.

Para obtener el nimero de ventanas o segmentos en que se divide la senal se emplea la ecuacién
2.1. Donde N es el nimero de ventanas resultantes, L es la longitud de la senal, w es el tamafio del
segmento propuesto y t es el empalme entre los segmentos propuestos, toso representado en numero
de puntos o muestras de la senal.
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Figura 2.1: Técnicas de segmentacién.

N = {L_“’J +1 (2.1)

2.1.4. Extraccion de caracteristicas

Después de que la senal EMG fue adquirida y pre-procesada, se realiza la extraccién de carac-
teristicas [48]. Se asignan vectores de caracteristicas de menor dimensién que la senal cruda, ya
que las caracteristicas describen mejor la informacién de la senal [50]. Las caracteristicas se pueden
agrupar dependiendo el dominio donde se calculan [14, 49, 48, 50, 51].

= Caracteristicas en el dominio de tiempo.
» Caracteristicas en el dominio de frecuencia.
= Caracteristicas en el dominio tiempo-frecuencia.

= Caracteristicas en el dominio espacial.

Los vectores de caracteristicas, al estar formados de diferentes parametros de la senal, son de
suma importancia. Ya que la elecciéon de los parametros adecuados determina el éxito de la clasifi-
cacién de la senal [48].

Caracteristicas en el dominio de tiempo: Las caracteristicas en el dominé del tiempo son uti-
lizadas con mayor frecuencia debido a su menor complejidad computacional comparada con las
caracteristicas de otro tipo [14, 51, 49, 52]. Ademds, estas son extraidas directamente de la senal
cruda, por lo que no es necesario aplicar algin tipo de transformada. El resultado es una funcién
en el tiempo que gracias a su alta velocidad computacional son ampliamente utilizadas en modelos
de clasificacién y regresion [49, 14]. Estas caracteristicas se utilizan principalmente para analizar
el esfuerzo en el misculo o el nivel activo [52]. En el Cuadro 2.1 se muestran las caracteristicas
temporales comunmente utilizadas.
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Tabla 2.1: Cuadro de las caracteristicas temporales comtunmente utilizadas.

Nombre Férmula Funcién Descripcion
Valor absoluto medio = SN k] Amplitud promedio Promedio de los valores absolutos de la
sin polaridad sefial EMG [48, 14].
Electromiograma SN k] Suma de magnitudes  Tasa de deteccidn inicial; indica activa-
integrado absolutas cién muscular [48, 51].
Raiz cuadrada media \/ % Zi\;l x? Amplitud efectiva Raiz cuadrada del promedio de los va-
lores al cuadrado [48, 51].
Cruce por cero ng:ll (z) Cambios de Numero de veces que la sefial cruza por
polaridad cero. f(z) =1 si xpzrs1 < 0y |z —
Zr+1| > L; de otro modo es cero [48,
14].
Cambios de signo de ZkN:_Ql f(z) Nimero de cambios f(x) =1 iz es un punto de inflexién.

pendiente
Longitud de onda

Varianza

Desviacion estandar

Amplitud Willison

S ok — x|
ﬁ Zg:1(xk - 5)2

N _
% Zk:1(wk - x)z

Say Flmrra — @)

de pendiente

Actividad total de la
senal

Dispersién de la
senal

Medida de
variabilidad

Cantidad de cambios
mayores a un umbral

Representa cambios en la direccién de
la senal [14].

Mide la variacién acumulada de la senal
[14].

Mide cuédn dispersos estan los valores
de la senal respecto a la media [48].

Raiz cuadrada de la varianza; ttil para
conocer la amplitud promedio de varia-
cién [48].

Cuenta el nimero de veces que la dife-
rencia entre muestras consecutivas su-
pera un umbral dado [48].

Caracteristicas en el dominio de frecuencia: las caracteristicas en dominio de la frecuencia se
utilizan principalmente para calcular la fatiga muscular [48, 52]. También se utilizan para comple-
mentar las caracteristicas en el dominio del tiempo. Se extraen de la densidad espectral de potencia
y se calculan mediante métodos paramétricos. En comparaciéon Con las caracteristicas en el dominio
del tiempo, estas requieren un mayor costo computacional [49]. En el Cuadro 2.2 se muestran las
caracteristicas en el dominio de la frecuencia cominmente utilizadas.

Tabla 2.2: Caracteristicas en frecuencia cominmente utilizadas en senales EMG.

Nombre Férmula matematica Descripcion

Se conoce como frecuencia espectral pro-
medio o frecuencia promedio de potencia.
Donde f; y P, son la frecuencia y el espec-
tro de potencia en el 1-ésimo segmento en
el dominio de la frecuencia o (bin). Y M
es la longitud del bin [48, 51].

Frecuencia media

MNF =Y AP/ P

Continda en la siguiente pdgina
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Tabla 2.2 — continuacién de la pagina anterior

Nombre Férmula matematica Descripciéon
Frecuencia media- l]\i jljF P = Z% pr P MDF es la mitad de la potencia total de
na la senal en el bin actual. Donde P, es el

espectro de potencia en el 1-ésimo bin, y
M es la longitud del bin [48, 51].

Relacion de fre- FR= ZiU:LLCLC P/ ZlU:i%C P, Se utiliza para distinguir entre contrac-

cuencias cién y relajaciéon del miusculo. Donde
ULC y LLC representan el limite supe-
rior e inferior de corte de baja frecuencia
de la senal EMG. Y UHC y LHC re-
presentan el limite superior e inferior de
corte de alta frecuencia del de la senal
EMG [48].

Frecuencia pico PKF = max(F)) Indica la ubicaciéon de la frecuencia don-
de estd la maxima potencia [51].

Caracteristicas en el dominio tiempo-frecuencia: Las caracteristicas en el dominio tiempo-
frecuencia pueden localizar la energia de la sefial en los dos dominios. Pero, tienen una mayor
complejidad computacional debido a la transformacién que requieren[52, 49, 48]. Por lo que hay
pocos estudios que se basan en estas caracteristicas, adicional, que es mas compleja su interpretacion
[52]. Algunos algoritmos répidos que incluyen las caracteristicas en el dominio tiempo-frecuencia
son la transformada de Fourier de tiempo corto, y la transformada wavelet. Estos logran cumplir
los requisitos de tiempo real necesarios para la clasificacién de la senal [48].

Caracteristicas en el dominio espacial: Las caracteristicas en el dominio espacial, han tenido
relevancia al emplear la técnica de electromiografia de alta densidad [50]. Esta técnica consiste en
colocar una rejilla densa de electrodos de superficie. Lo cual permite variar el uso de estos sobre un
area de piel restringida. Lo que llevé a demostrar que regiones distintas del misculo se activan de
manera variante dependiendo de la posicién de la articulacion [53]. Por lo que estas mediciones han
permitido extraer caracteristicas espaciales de las sefiales EMG registradas. Las cuales permiten
diferenciar entre las posiciones y el nivel de fuerza, dependiendo la distribucién de unidades motoras
de accién potencial en los musculos. Lo cual, permite visualizar cémo se realiza la distribucién de
carga en los musculos [48, 50]. Aunque estas caracteristicas tiene muy poca investigacién y disetio,
ya que la electromiografia de alta densidad se ha adaptado recientemente [54].

2.2. Redes neuronales artificiales

Las RN As, son algoritmos que se inspiran en el funcionamiento de las redes neuronales bioldgicas
del sistema nervioso. El desempeno de las neuronas en el cerebro se explica mediante el paradig-
ma conexionista, cuyo principio fundamental es que los fenémenos mentales pueden ser explicados
mediante redes de unidades simples interconectadas [55]. La neurona constituye la unidad funda-
mental del sistema nervioso, especialmente en el cerebro. Su funcién principal radica en procesar y
combinar senales para luego transmitirlas a otras neuronas interconectadas. Las RNAs siguen un

17



esquema similar, donde la unidad principal es la neurona o perceptrén simple. En la figura 2.2,
cada nodo corresponde a una neurona artificial, y las flechas simbolizan las conexiones que existen
entre ellas, desde la salida de una hasta la entrada de la siguiente [56].

Dendritas Entradas
—~ Axon I Salida
—
/ /
oma Funcion de activacion

\
7~ 7~

Figura 2.2: Esquema analogfa entre neuronas biolégicas y RNA.

En un principio, las redes neuronales tomaron su inspiracién del cerebro. Sin embargo, con el
tiempo, se dejé de intentar replicar cémo funciona el cerebro y en su lugar se busca encontrar las
configuraciones adecuadas para tareas especificas [57].

Una red neuronal no es un programa fijo, sino mas bien un modelo, un sistema que procesa
informacion o entradas. Las caracteristicas de una red neuronal de acuerdo a [24] son las siguientes

= El procesamiento de la informacién ocurre en su forma mas simple, a través de elementos
simples llamados neuronas.

= Las neuronas estan conectadas y se intercambian seniales entre ellas a través de enlaces de
conexion.

= Los enlaces de conexién entre las neuronas pueden ser mas fuertes o mds débiles, y esto
determina cémo se procesa la informacién.

= Cada neurona tiene un estado interno que es determinado por todas las conexiones entrantes
de otras neuronas.

= Cada neurona tiene una funcién de activacién diferente que se calcula en funcién de su estado
y determina su senal de salida.

Podemos identificar dos caracteristicas principales para una red neuronal:

» La arquitectura de la red neuronal: Esto describe el conjunto de conexiones, es decir, feedfor-
ward, recurrente, de capa tnica o multiple, y el niimero de neuronas en cada capa.

= Kl aprendizaje: Esto describe lo que comuinmente se define como el entrenamiento. La for-
ma mas comuin pero no exclusiva de entrenar una red neuronal es mediante el descenso de
gradiente y la retropropagacién (backpropagation).
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Una neurona es una funcién matematica que toma uno o mas valores de entrada y produce un

Unico valor numérico como salida:

Entrada Sesgo

Neurona Artificial

Funcion de
Activacion

Activacion

Figura 2.3: Modelo de neurona artificial.

Por lo que el modelo general seria el expuesto en la ecuacién 2.2:

n
y=17f inwi—l—b
=1

(2.2)

1. Primero, se tiene la suma ponderada de las entradas x; y los pesos w; también conocida como
valor de activacién. En este caso, x; puede ser valores numéricos que representan los datos
de entrada o las salidas de otras neuronas es decir, si la neurona forma parte de una red
neuronal. Los pesos w; son valores numéricos que representan tanto la fuerza de las entradas
como, alternativamente, la fuerza de las conexiones entre las neuronas. El peso b es un valor

especial llamado sesgo cuya entrada siempre es 1 [58].

2. Luego, se utiliza el resultado de la suma ponderada como entrada para la funcién de activacién
f, que también se conoce como funcién de transferencia. Existen muchos tipos de funciones

de activacién, pero todas deben cumplir con el requisito de ser no lineales [58].

2.2.1. Perceptrén multicapa

La arquitectura del MPL es una de las redes neuronales artificiales més utilizadas [59]. En la

figura 2.4 se presenta un MPL genérico que consta de las siguientes capas:

= Capa de entrada: Esta capa posee una o méds entradas, cuya cantidad depende de la aplicacién.
Cada entrada se conecta y multiplica por el peso de cada neurona en la primera capa oculta.

Se consideran como capas pasivas ya que solo transfieren el valor x a la siguiente capa.
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= Capas ocultas: Estas capas comprenden una o més capas de neuronas, donde cada neurona
estd conectada a todas las neuronas en la capa siguiente mediante un peso. Se consideran
capas activas ya que operan sobre los datos de entrada de las capas anteriores.

= Capa de salida: En esta capa se encuentran las neuronas que coinciden con el nimero de
salidas de la red.

Capa de entradas Capas ocultas Capa de salidas

X1

X2

X3

Xn

Figura 2.4: Red Neuronal Perceptron Multicapa.

El empleo del modelo de red neuronal perceptréon multicapa tiene dos fases:
= Fase de entrenamiento, donde la red aprende a llevar a cabo una tarea especifica.
= Fase de operacidn, en la cual la red ejecuta la tarea para la cual fue entrenada.

En la fase de entrenamiento, se destacan dos pasos fundamentales: la etapa de avance ( Forward
stage) y la etapa de retropropagacién (Back-Propagation).

En la etapa de avance, se calcula la salida de la red a partir de los valores de entrada. Es decir,
los valores de entrada pasan a través de las capas ocultas hasta obtener un valor de salida.

En la etapa de retropropagacién, se calcula un error entre el valor que se espera y la salida
obtenida en la etapa de avance. Este error se propaga a las neuronas dentro de la red mediante los
pesos. Se calcula un error correspondiente a cada neurona, y se actualizan los pesos y el sesgo de
la red [59].

2.2.2. Etapa de avance en el entrenamiento del MLP

Durante la etapa de avance, se realiza el calculo de la salida de la red. Suponiendo que zi =
[1,x2...xy,] representa las entradas de la red, wj; es el peso de la neurona j asociado con la entrada
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i, Yn; s la salida de la neurona j (j = 1,2...q) en la capa h (h = 1,2...m); bp; es el sesgo. La entrada
total de una neurona de la primera capa oculta (h = 1) se expresa mediante la siguiente ecuacién:

n

815 = Z (wij * X; + blj) (2.3)
=1

El procesamiento de la acumulacién en la entrada de una neurona se realiza a través de su

funcién de activacion no lineal. La expresion para la salida de una neurona en la primera capa
oculta se describe mediante la ecuacion:

yij = f(s1;) = f <Z (wij * yi + blj)) (2.4)

i=1
Los célculos efectuados por las neuronas en las capas ocultas siguientes y la capa de salida estan
representados por las ecuaciones:

Shj = Z (Wkj * Yk + bnj) (2.5)
k=1

Ynj = f(snj) = f <Z (Wi * Yy + bhj)) (2.6)

k=1

Donde k = (h — 1)j, representando a la neurona j en la capa anterior y wy; es el peso entre las
neuronas k y j.
2.2.3. Etapa de retropropagacién en el entrenamiento del MLP

Durante esta etapa, el error en la salida se propaga hacia atrds dentro de la red y se utiliza
el algoritmo de gradiente descendente para actualizar los pesos y el sesgo [59]. La actualizacién se
lleva a cabo en tres pasos principales:

1. El error para las neuronas en la capa de salida, y el gradiente del error, se calculan por las
siguientes ecuaciones.

Esalida,j = (ydeseada - ysalida,j> (27)

5salida,j = Esalida,j * f,(ysalida,j) (28)

Donde €441ida,; €s €l error entre el valor deseado y la salida real de la neurona j en la capa
de salida; 0sq1ida,; €s el gradiente del error que se propaga a las neuronas en la capa oculta a
través de los pesos.

Entonces el error propagado y el gradiente local estdn expresados por:
Ehj = O(ht1)j * Wi, (ht1)j (2.9)
Onj = enj * ' (Yn,j) (2.10)

Donde wj (541); es el peso entre la neurona j y la neurona siguiente.
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2. La variacion en los pesos y sesgo en la primera capa:
Aw;j = ac* dy5 * a0t (2.11)
Ab1j = a x 015 (2.12)
Y la variacién de los pesos y sesgo en las capas ocultas:
Awyj = a* Opj * Yn;j (2.13)
Abp; = a* opj (2.14)

Donde a es la tasa de aprendizaje, que determina cuanto se ajusta los pesos durante el
entrenamiento. Si es muy alto, el entrenamiento es rapido, pero el modelo puede no ser muy
preciso.

3. Actualizacién de los pesos y sesgo:
wy; (siguiente) = wy;(actual) + Awy;(actual) (2.15)

by (siguiente) = byj(actual) + Aby;(actual) (2.16)

2.2.4. Funciones de Activacién

Si las neuronas carecen de funciones de activacién, su salida seria la suma ponderada de las
entradas, lo que constituye una funcién lineal. En consecuencia, la red neuronal en su totalidad,
que es una composicién de estas neuronas, se convierte en una composicion de funciones lineales,
manteniendo asi su naturaleza lineal. Esto implica que incluso al agregar capas ocultas, la red seguird
siendo equivalente a un modelo simple de regresion lineal, con todas sus limitaciones. Para introducir
la no linealidad en la red, se utilizan funciones de activacién no lineales en las neuronas. Por lo
general, todas las neuronas en una misma capa comparten la misma funcién de activacion, pero
distintas capas pueden emplear funciones de activacién diferentes [60]. Las funciones de activacién
mas comunes son las siguientes:

= Funcién identidad. Esta funcién permite que el valor de activacién pase a través de ella:
fla)=a (2.17)

» Funcién de actividad de umbral. Esta funciéon activa la neurona; si la activacion estd por

encima de cierto valor:
1,sta>0
= ’ - 2.18
f(a) {0,3ia<0 (2.18)

= Funcién logistica o la sigmoidal logistica. Esta funcién es una de las mas cominmente utili-
zadas, ya que su salida estd acotada entre 0 y 1, y puede interpretarse de manera estocastica
como la probabilidad de activacion de la neurona:

1

f(a) = 11ea (2.19)
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= Funcién sigmoidal bipolar. Es simplemente una sigmoidal logistica redimensionada y despla-
zada para tener un rango en (—1,1):

2 1—e ¢
— 1= 2.20
f(a) 14+e @ 14+e @ ( )
= Funcién Tangente hiperbdlica:
1— 6—2(1
)= (2.21)

= Funcién ReLU o Unidad Lineal Rectificada. Esta funcién de activacion es probablemente la
que mas se asemeja a su contraparte biolégica. Es una mezcla de la funcién identidad y la

funcién de umbral:
fla) = a,sta>0 (2.22)
~10,sia<0 '

Las funciones de activacién més utilizadas son la sigmoidal logistica, la tangente hiperbdlica y
la ReLLU. Las tres funciones de activacién difieren en los siguientes aspectos:

= Su rango es diferente.

= Sus derivadas se comportan de manera diferente durante el entrenamiento.

2.2.5. Validacién del modelo MLP

Para validar el desempeno de una red MLP se hace una evaluacion por medio de métricas que
permitan cuantificar la capacidad de clasificacién ante datos nuevos [40]. El anédlisis de métricas a
partir de la matriz de confusion resultan ttiles en casos de modelos de clasificacién multiclase.

Por ello, la eficiencia del modelo proporciona una métrica que valida el desempeno de la red.
La cual, se calcula a partir del promedio de distintos factores resultantes de k numero de pruebas.
En cada prueba, se registran el numero de verdaderos positivos (VP), verdaderos negativos (VN),
falsos positivos (FP) y falsos negativos (FN). A partir de estos se determinan tres métricas para
calcular la eficiencia: exactitud, sensibilidad y especificidad. Las formulas de estas métricas segin
[61] son las siguientes:

. VP+ VN
Exactitud = VPI VN FPLFN (2.23)
o VP
S@nSlb’llldad = m (224)
e VN
Especificidad = VNI FP (2.25)
E ficiencia — xactitud + Sensibilidad + Especi ficidad (2.26)

3
Donde:

= VP: casos correctamente clasificados como positivos.
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= VN: casos correctamente clasificados como negativos.
= FP: casos incorrectamente clasificados como positivos.

= FN: casos incorrectamente clasificados como negativos.

La exactitud nos proporciona un porcentaje toral de predicciones correctas con respecto al total
de las pruebas. La sensibilidad solo nos proporciona un promedio de la capacidad del modelo para
detectar correctamente casos positivos. Por otro lado, la especificidad muestra la capacidad del
modelo para detectar correctamente casos negativos. Finalmente, la eficiencia se define como el
promedio de estas tres métricas, lo que proporciona una valoracién balanceada del desempeno del
modelo.

2.3. Algoritmo genético

El algoritmo genético (GA, por sus siglas en inglés) es una técnica o algoritmo de optimizacién
que esta inspirada en el principio de la evolucién natural. Se basa en los mecanismos de seleccion,
reproduccién y mutacién [62]. Se empled por primera vez en 1970 por John Holland al buscar
resolver problemas complejos por medio de una estrategia adaptativa de la poblacién [63]. Los GA
trabajan sobre un grupo de soluciones potenciales, el cual se conoce como poblacién. La cual se
evalia y evoluciona durante varias generaciones o iteraciones hasta encontrar la solucion deseada
o satisfactoria [62, 63].

Operadores genéticos El mecanismo evolutivo del GA se basa en los siguientes principios:

= Evaluacién en funcién objetivo: a cada individuo del grupo de soluciones se le asigna un
valor de aptitud que muestra qué tan buena es con respecto al problema planteado o funcién
objetivo. La evaluacion le indica al algoritmo qué soluciones ir seleccionando al ser las méds
aptas en las siguientes generaciones [62].

= Seleccion: se eligen qué individuos se van a reproducir. Las soluciones con mejor aptitud en la
evaluacion son las seleccionadas, lo que hace referencia a la ”supervivencia del mds apto” [62].

= Cruzamiento: combina los genes de dos individuos padres para formar nuevos individuos hijos
que exploraran el espacio de bisqueda al ser nuevas combinaciones [62].

= Mutacién: modifica aleatoriamente genes de un individuo, con respecto a una probabilidad.
Esto introduce nuevas caracteristicas genéticas en la poblacién, que ayudan a abarcar mayor
espacio de bisqueda y evita los éptimos locales [62].

Ciclo evolutivo El algoritmo genético funciona con este ciclo basico:
= Aleatoriamente, se genera una poblacién inicial.
= Se evalta la aptitud de cada individuo.

= Se seleccionan los individuos més aptos para el cruzamiento.

= Se aplican operadores de mutacién para formar una nueva generacion a partir del cruzamiento.
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= Se repite el proceso hasta alcanzar un criterio de parada o hasta un nimero maximo de
generaciones propuesto.

En la figura 2.5 se muestra un diagrama generar del ciclo evolutivo en el GA, donde i es la
poblacién inicial aleatoria, f(z) es la evaluacién en la funcién objetivo, Se es la seleccién de los
individuos més aptos, Cr es el cruzamiento o reproduccion de los individuos seleccionados, Mu es
la mutacién de los individuos hijos, y X™* es la solucién maés apta al final del ciclo.

g o
&

*~J

b I —

L'y

Figura 2.5: Diagrama de flujo genérico algoritmo genético.

2.4. FPGA

Las matrices de puertas logicas programables en campo o Field Programmable Gate Arrays
(FPGA) son circuitos integrados basados en bloques 16gicos programables o bloques 16gicos configu-
rables (CLB, por sus siglas en inglés). Los cuales estan conectados entre si mediante interconexiones
programables. En la figura 2.6 se muestra una vista general de la arquitectura de una FPGA [64].

Los CLB se componen de miltiples celdas que pueden emular cualquier compuerta légica o
combinacién de estas. Estas celdas estan conectadas mediante buses de interconexién configurables
[64]. En la figura 2.7 se muestra una celda 16gica general simplificada segun el fabricante Xilinx(®).

Donde la LUT o tabla de busqueda, se pueden considerarse una coleccién de celdas de SRAM
las que forman tablas de verdad de n entradas. Esta arquitectura se utiliza para implementar cual-
quier funcién légica combinacional que tenga un numero n de variables. Las n entradas dependen
del fabricante, pero comtinmente suelen ser 3, 4, 5 o 6, y estas proporcionan la direcciéon a la que
se reflejara la salida de la LUT [65].
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Bloques logicos
programables

Conexiones
programables

Figura 2.6: Vista superior simple de arquitectura general de FPGA.
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Figura 2.7: Celda légica simplificada en FPGA Xilinx®).

La arquitectura de la FPGA también incluye bloques légicos de entrada/salida que facilitan
la comunicacién con el entorno externo. Cuentan con pin de reloj y gestores de reloj, que propor-
cionan la sincronizacién en circuitos secuenciales. Ademés de bloques DSP para realizar funciones
aritméticas con mayor facilidad y bloques de memoria RAM para almacenar miles de bits [64].

2.4.1. Diseno en FPGA

Los FPGA son una tecnologia de computo reconfigurable, lo cual se refiere a un procesador que
puede ser programado con un disefio y luego poder cambiarlo por otro de acuerdo a las necesidades
del disenador. Los FPGA permiten hacer disefios en paralelo dentro del mismo circuito y a nivel
compuertas, por lo que estos pueden ser exportados a Circuitos Integrados de Aplicacion Especifica
(ASIC, por sus siglas en inglés) convirtiéndose en disefios de hardware destinados a una aplicacién
especifica [64].

Los ingenieros comtinmente utilizan lenguajes de descripcién de hardware (HDL, por sus siglas
en inglés) como VHDL o Verilog para hacer los disefios en FPGA, lo que permite la implementacién
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de algoritmos utilizando una metodologia similar al de un disefio en software [66].

Circuitos Integrados de muy Alta Velocidad HDL

El lenguaje descriptivo de hardware Circuitos integrados de muy alta velocidad (VHSIC-HDL
o VHDL, por sus siglas en inglés) es un lenguaje desarrollado por el Departamento de Defensa de
los Estados Unidos en la década de los 80 [64]. Con el propésito de describir, simular y sintetizar
circuitos digitales complejos mediante una representacién textual [64, 66].

VHDL esta disenado para el modelado de sistemas concurrentes, como ocurre en circuitos
digitales reales, a diferencia de lenguajes de programacién tradicionales donde se modela un com-
portamiento secuencial de algoritmos [66]. Ademé&s, VHDL es un estdndar abierto definido por el
IEEE, lo cual le otorga compatibilidad con una amplia gama de herramientas de diseno[64]. Esto
permite que los proyectos desarrollados en VHDL sean portables entre distintos entornos y fabri-
cantes, siempre que se respete el cumplimiento del estdndar.

En el contexto de esta tesis, la descripcién del funcionamiento interno FPGA y el uso de VHDL
sirven como base tedrica para comprender como pueden implementarse algoritmos como un per-
ceptron multicapa en hardware reconfigurable. La traduccién del modelo MLP a componentes de
hardware tales como bloques logicos configurables para los médulos de decisién en la red neuronal,
memorias internas (BRAM) para almacenar los pesos y sesgos de la red, y unidades aritméticas
(DSP) para realizar las operaciones de suma y multiplicacién en las neuronas se detalla en el capitu-
lo 3 correspondiente a la metodologia, donde se aborda la implementacion especifica del clasificador
en la FPGA.
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CAPITULO 3

Metodologia

En este capitulo se presentan los métodos y las etapas que se realizaron para el desarrollo del
sistema de control de un actuador disenado para simular movimientos de la mano, mediante la
implementacién de una red neuronal tipo MLP en un dispositivo FPGA.

El procesamiento de la base de datos de senales EMG se llevé a cabo por medio del software
MATLAB®) R2020a . La red neuronal inicialmente se construyé y entrené en una laptop de 16
GB de memoria RAM, disco duro de 500 GB y procesador Intel@®) Core™ i7 de 12? generacién. Se
utilizé Jupyter Notebook 6.5.4 como entorno; empleando el lenguaje Python 3.12.6, para identificar
las caracteristicas e hiperparametros requeridos para la clasificacién.

El modelo entrenado fue posteriormente implementado en una tarjeta de desarrollo Basys 3@®),
que incorpora un FPGA Artix 7®) de la marca Xilinx®). La laptop, programas y el FPGA seleccio-
nado fueron utilizados para el logro de todos los objetivos. En la figura 3.1 se muestra el graphical
abstract que representa el sistema que se desarrolld.

Red neuronal MLP
IS
r R
Laptop FPGA
. Ftapa de entrenamiento | E Etapa de ejecucion
Base de datos de sefiales | b
ase de aEl?/ISG ¢ senaies Implementacion MLP H i Red modulada por
neuronas en hardware

en software

Sefial de control &

Dispositivo para simular el
movimiento de mano controlado
por servomotores

Senales EMG >

Hiperparametreos adecuados
para la clasificacion

Seniales EMG para pruebas

Figura 3.1: Graphical abstract del sistema.
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La Figura 3.2 muestra el diagrama de flujo general de la metodologia para llevar a cabo el

trabajo.

Inicio.

Y A ] *
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igual al 93% en la clasificacion
de las sefales
EMG?
Fin

Figura 3.2: Diagrama de flujo para metodologia general aplicada.

A continuacidn, se presentan a detalle las etapas del desarrollo del proyecto.

3.1. Base de datos de senales EMG

Inicialmente, se buscé una base de datos de registros de senales EMG con el propdsito de uti-
lizar dicha informacién para el entrenamiento y pruebas de la red MLP para clasificar. Se priorizé
la seleccién de una base de datos de acceso publico que incluyera gestos especificos de la mano,
particularmente aquellos con movimiento de los dedos. Esto con la finalidad de que, una vez im-
plementado el sistema de control, dichos gestos pudieran ser simulados posteriormente mediante el
actuador desarrollado.

La base de datos que fue escogida contiene registros electromiograficos recopilados de los muscu-
los de la mufieca y el antebrazo mientras se realizan gestos con la mano. La recopilacién de datos
se llevé a cabo con la participacién de 43 individuos sanos (edad: 24-35 anos) durante tres dias dis-
tintos, mientras ejecutaban 16 gestos manuales y de los dedos en sesiones experimentales idénticas
cada dia. Para fines de este estudio solo se emplearon las muestras del primer dia, descartando las
muestras recopiladas en la sesiones dos y tres. En el experimento original, se colocaron 28 electrodos
de superficie distribuidos sobre los principales musculos del antebrazo, utilizando una configura-
cién monopolar con un electrodo de referencia en el codo. Las senales fueron adquiridas mediante
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un sistema de registro multicanal EMG-USB2+(®) con una frecuencia de muestreo de 2048 Hz y
ganancia de 500, ademas se aplicaron filtros analégicos pasa altas y pasa bajas a frecuencias de 10
Hz y 500 Hz para eliminar el ruido de movimiento y la interferencia eléctrica.

El protocolo de adquisicién consistio en la ejecucion de gestos de prension y movimientos indi-
viduales de los dedos, realizados con la mano dominante en una posicién anatémica neutral. Los
participantes recibieron instrucciones visuales sobre el gesto a realizar y contaron con periodos de
descanso entre repeticiones para evitar la fatiga muscular. La adquisicion se realizé en condicio-
nes controladas de temperatura y sin esfuerzo excesivo. Este protocolo garantiza la calidad de las
senales y la repetibilidad de los gestos, permitiendo el uso de la base de datos para el entrenamiento
de clasificadores de EMG.

La base de datos lleva por nombre: Gesture Recognition and Biometrics ElectroMyogram (GRABM-
yo) (version 1.0.2), Con identificacion RRID: SCR_007345. Se encuentra disponible en [67]. Las
caracteristicas principales de esta se presentan en la tabla 3.1:

Tabla 3.1: Caracteristicas base de datos EMG GRABMyo.

Tipo de movimientos Manuales y de los dedos
Ubicacion de electrodos Muneca y antebrazo
Numero de electrodos 28 electrodos de superficie
Numero de participantes 43 individuos sanos (24-35 anos)
Numero de gestos 16 gestos manuales y de los dedos, mas reposo
Numero de repeticiones 7 repeticiones por movimiento
Total de registros 429,828 senales
Frecuencia de muestreo 2048 Hz
Tiempo de captura 4s

Los 16 gestos o movimientos que representan las sefiales EMG de la base de datos. Estos se
muestran en la figura 3.3. Donde se observan diversas configuraciones de dedos y algunos gestos
con desplazamientos de mufieca.
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indice

Figura 3.3: Movimientos registrados en la base de datos.

Cabe senalar que, originalmente, la base de datos contenia 16 clases de movimientos y registros
del estado en reposo que se consideraron como una clase adicional. Sin embargo, se eliminaron 6 de
estas clases por no cumplir con los criterios definidos en este trabajo: algunas requerian movimientos
de muneca, y otras eran gestos repetitivos que no aportaban valor adicional al modelo. Por tanto,

se conservaron unicamente los gestos correspondientes a movimientos de los dedos.

En la Figura 3.4 se presentan los 10 gestos seleccionados, junto con la etiqueta asignada a cada

uno.

Gesto Descripcion Gesto Descripcion Gesto Descripcion
Aduccion del Extension de los
0 pulgar 4 dedos indicey | 8 Mano cerrada

Oposicién de
1 los dedos
pulgar e indice

Extension de los
dedos pulgar e

2 indice
Extension del
3 pulgar y el

menique

medio

Extension del
dedo menique

Extension del
dedo indice

Extension del
dedo pulgar

Mano en reposo

Figura 3.4: Movimientos utilizados en el trabajo con su etiqueta numérica asignada.

Al conservar solo 10 movimientos y solo emplear los registros del primer dia de las tres sesiones,
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da un total de 84,280 senales crudas utilizadas en este trabajo, de las 429,828 disponibles en la base
de datos original.

En la Figura 3.5 se muestra una representacién grafica de una de las senales EMG contenidas
en la base de datos. Cada senal estd compuesta por dos variables: amplitud y tiempo. Como
puede observarse, las senales presentan un comportamiento complejo y de dificil interpretacion de
forma directa. Por ello, en etapas posteriores, se realiza un preprocesamiento para acondicionar la
informacién antes de utilizarla en el entrenamiento y validacién del clasificador.

0.05 T T T T T T T

0.04 1

0.03 |-

0.02 |

0.01 "

Amplitud (V)

-0.01 I

-0.02 -

-0.03

-0.04 ! !

Tiempo (s)

Figura 3.5: Muestra de senal EMG correspondiente al gesto de mano abierta.

3.1.1. Preprocesamiento de los datos

Las senales EMG crudas de la base de datos al ser complejas con dificil interperetacion, se le
aplicaron varios etapas para acondicionar la informacién para ser exportada como una base de datos
estructurada y etiquetada en un archivo Excel®) con formato CSV. el procesamiento de las sefiales
se realizo en MATLAB(®) por medio de funciones incorporadas en este software. a continuacién se
presentan las fases de procesamiento.

Cambio de tasa de muestreo

Inicialmente, las senales EMG contenidas en la base de datos estaban registradas a una tasa de
muestreo de 2048 H z. Sin embargo, para facilitar el procesamiento y reducir la carga computacional
en el equipo de cémputo sin afectar la informacion relevante de las senales, se aplicé un resampleo o
cambio de muestreo a 1000 H z. Se opto6 por utilizar esta tasa de muestreo, ya que en la literatura de
trabajos procesando este tipo de sefiales, como en [68] se emplea una tasa de 1 KHz, la cual resulta
adecuada para representar la informacién 1til de las senales electromiografias. Esto favorece la
compatibilidad con otros trabajos de referencia y estandares de experimentos con buenos resultados
al aplicar algoritmos de clasificacion. Para realizar el cambio de muestreo se utilizé la funcién
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resample(z,p,q) de MATLAB®, donde cambia la frecuencia de muestreo de la sefial de entrada

x, multiplicindola por la razén %. En este caso, la razon % se aproximé racionalmente con
la funcién rat(), resultando en p = 125 y ¢ = 256, es decir, g = %. La funcién implementa

internamente un filtro antialiasing FIR con ventana Kaiser para prevenir aliasing (contaminacién
de la senal) durante el proceso de cambio de muestreo. Dicho filtro presenta fase lineal, lo que
garantiza que no se introduzca distorsién de fase en la sefial remuestreada. Ademads, la funcién
compensa automaticamente el retardo introducido por el filtro, manteniendo la alineacién temporal
entre la senal original y la senal resultante.

Filtrado de las senales

Después de realizar el cambio en la frecuencia de muestreo, se aplicé un filtro pasa bandas
Butterworth de segundo orden, con frecuencias de corte de 10 Hz y 500 Hz, implementado mediante
las funciones butter y filtfilt de MATLAB®). Esta ultima se emple6 para lograr una respuesta de
fase cero y evitar el desplazamiento temporal de la senal.

El propésito de este filtrado fue mantener la coherencia metodolégica con trabajos previos y
eliminar posibles componentes residuales fuera del rango de interés. No obstante, cabe senalar
que las senales EMG originales ya habian sido prefiltradas durante la adquisicién con un sistema
EMG-USB2+, el cual incorpora un filtro pasa banda analégico entre 10 Hz y 500 Hz. Por ello, la
aplicacién del filtro digital no produjo cambios significativos en las senales.

De acuerdo con estudios previos [69, 70, 71], la mayor parte de la informacién 1til en las senales
electromiografias de superficie se encuentra dentro de este rango de frecuencias. Por lo que al realizar
este filtrado dentro de esta banda, se asegura un mejor desempeno en el andlisis de las sefiales en
etapas posteriores. No se aplicé un filtro notch, dado que el filtrado analdgico del dispositivo ya
atenta la interferencia de la red eléctrica (50/60 Hz).

Segmentacion de las senales

Se aplica una segmentacién o ventaneo superpuesto a cada muestra para aumentar el nimero
de datos disponibles y para capturar con mejor precision las transiciones entre contracciones mus-
culares. Este enfoque de ventaneo superpuesto permite que cada nuevo segmento comience solo
pocos milisegundos después del anterior y comparte un mayor nimero de puntos de la senal con
los segmentos vecinos.

Previamente a este proceso de ventaneo, las muestras fueron divididas en los conjuntos de
entrenamiento, validacion y prueba, con el fin de evitar cualquier traslape de informacién entre
ellos y asegurar una evaluacién independiente del modelo.

Para este trabajo, se utilizaron ventanas de 250 ms con un empalme de 200 ms, por lo que
implica, que cada 50 ms empieza un nuevo segmento. Esta técnica produce multiples subconjuntos
de datos a partir de cada muestra original, mejorando la robustez del modelo clasificador durante
la etapa de entrenamiento al tener mayor nimero de datos.

No se aplicé un umbral de energia o deteccion de EMG onset, debido a que la base de datos
utilizada ya se encuentra segmentada en periodos donde ocurren las contracciones musculares,
presentando pocos intervalos de reposo.

Utilizando la férmula 2.1 se obtuvieron que cada muestra fue dividida en 76 ventas nuevas,
como se describe en 3.1. Donde cada ventana comparte la misma etiqueta de movimiento de la
senal que se extrajo.
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N 4000 — 250 13750
| 250 — 200 | 50

J+1:L75J+1:76 (3.1)

Al dividir cada senal en 76 segmentos, en esta etapa se tienen 6,405,280 registros EMG (84,280
registros x 76 ventanas).

Extracciéon de caracteristicas a cada segmento

Después de la segmentacion de las senales EMG, se procedié a cada nuevo segmento a la
extraccion de caracteristicas. A cada segmento se le calcularon nueve caracteristicas en el dominio
del tiempo, las cuales representan una métrica que permite cuantificar varios aspectos de la senal.
Estas métricas permiten identificar patrones como la forma, la amplitud, y variabilidad de cada
segmento, lo que facilita la identificacién de patrones discriminativos entre movimientos al aplicar
un modelo de clasificacién. En resumen, la extraccién de caracteristicas transforma cada senal
en un conjunto reducido de valores numéricos representativos. En este trabajo, a cada segmento
de senal EMG se le extrajeron nueve caracteristicas. Dado que cada movimiento fue registrado
simultaneamente por 28 sensores, se calcularon las mismas nueve caracteristicas para cada sensor
de forma individual. Como resultado, cada segmento quedd representado por un vector de 252
caracteristicas (9 carateristicas x 28 sensores = 252) que describen un movimiento de la mano,
teniendo en esta etapa, 228760 vectores que corresponden cada uno a una muestra EMG.

Este proceso de extraccion de caracteristicas se implementé mediante un algoritmo desarrollado
en MATLAB®), que permitié automatizar el célculo y organizacién de los vectores de caracteristi-
cas. La lista completa de las caracteristicas extraidas se presenta en la Tabla 3.2.

Tabla 3.2: Caracteristicas de senales EMG extraidas en este trabajo

Caracteristica Férmula matematica
Valor absoluto medio MAV = £ S0 Jay|
Cruce por cero (umbral = 0.01) 2C =SV fro(zk)
Cambio de signo de pendiente (umbral = 0.01) 85C =3, fss(xi)
Longitud de forma de onda WL=N | |zg — zp_1]
Raiz cuadrada media RMS = /4 S, 2}
Varianza VAR = A= S0 (2 — 7)?
Integral EMG IEMG = YN =]
Desviacién estandar STD = /% i, (v — 7)2
Amplitud Willison (umbral = 0.5 x STD) WAMP = Y N7 f(leggq — i)

3.1.2. Exportaciéon de base de datos limpiada y preprocesada

Una vez finalizado el preprocesamiento de las senales EMG, la informacién obtenida fue expor-
tada en formato .CSV (Comma Separated Values), con el objetivo de facilitar su andlisis posterior
en el entorno de programacién Jupyter Notebook(®) utilizando Python version 6.5.4. Este formato
permite organizar los datos de manera tabular, lo cual es compatible con multiples bibliotecas de
andlisis y facilita su manipulacién.
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La base de datos resultante quedd estructurada y etiquetada, lista para ser utilizada en las
siguientes etapas de clasificacion. Las principales propiedades de la base de datos son:

» Estructura tabular con datos organizados por filas (muestras) y columnas (caracteristicas).
= 252 caracteristicas extraidas por segmento de senal.

= Un total de 228,760 muestras, 22,876 por clase.

= 10 clases o etiquetas, correspondientes a diferentes tipos de movimiento muscular.

= Datos no normalizados, es decir, en su escala original.

= Datos no homogéneos, dado que pueden variar en distribucién y escala entre caracteristicas.

Esta representacién estructurada facilita el entrenamiento y evaluacién del modelo de clasifi-
cacién, al tiempo que permite aplicar técnicas estadisticas o de aprendizaje automatico de forma
eficiente. Cabe aclarar que el archivo .CSV se conserva sin normalizar con el fin de mantener la
amplitud original de las senales; sin embargo, durante la fase de entrenamiento del modelo, los
datos se normalizan mediante el uso de StandardScaler. El ajuste (fit) del normalizador se realiza
exclusivamente con el conjunto de entrenamiento, y posteriormente la misma transformacién se
aplica a los conjuntos de validacién y prueba.

3.2. Eleccidon de entradas en el modelo de red MLP

Al exportar la base de datos, cada movimiento queda representado por un vector de 252 ca-
racteristicas, lo cual constituye una cantidad considerable de informacién, especialmente al ser
utilizadas como entradas en el modelo de red neuronal MLP empleado en este trabajo. Debido
a esta alta dimensionalidad, se consideré necesario identificar qué caracteristicas aportan mayor
informacién relevante al modelo, tanto en funcién del tipo de métrica extraida como del sensor
de origen. Por lo que se opté por usar un algoritmo Genético de optimizacién, para determinar
qué combinacién de entradas en el modelo proporcionaba la mayor precision en el modelo sin
comprometer su rendimiento, y al mismo tiempo, mejorar la eficiencia computacional.

3.2.1. Reduccién del nimero de caracteristicas mediante algoritmo genético

Se optd a utilizar un algoritmo genético para reducir la dimension del vector de entrada. Este
algoritmo es una técnica de biisqueda y optimizacién que se inspira en el proceso de seleccién
natural. En este caso, se utilizé para maximizar la precision del modelo de clasificaciéon por medio
de identificar el subconjunto con menor nimero de caracteristicas.

La eleccién del GA se debe a que, a diferencia de métodos lineales como PCA o LDA, permite
explorar de manera mas flexible combinaciones no lineales de caracteristicas. Asimismo, frente a
métodos basados en relevancia individual de caracteristicas, como Mutual Information, ReliefF o
Boruta, el GA ofrece la ventaja de optimizar de forma directa el desempeno del modelo final,
considerando la interaccién entre multiples variables simultdneamente [63].

El objetivo del algoritmo fue maximizar la precisién (accuracy) del modelo MLP sobre el con-
junto de validacién con el menor ntimero posible de caracteristicas, buscando un equilibrio entre
rendimiento y simplicidad del modelo. se utilizd una particion fija de los datos entre entrenamiento
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y validacién durante todo el proceso evolutivo, con el fin de asegurar que la evaluacién de cada
individuo fuera directamente comparable entre generaciones. No se aplicé estratificacion en la divi-
sién de los datos, dado que la base de datos contiene méas de 200 mil muestras con una distribucién
de clases proporcional, lo que garantiza una representacion equilibrada de las clases sin necesidad
de aplicar este procedimiento adicional.

La busqueda de reduccién de caracteristicas contribuye a disminuir la latencia y el consumo de
recursos en la implementacién final del modelo dentro del FPGA, donde la complejidad compu-
tacional debe mantenerse baja.

El GA se implementé en Jupyter Notebook®) y utiliza una codificacién binaria, donde cada
individuo representa un conjunto especifico de caracteristicas seleccionadas (1 para seleccionada,
0 para descartada). La evaluacién de cada individuo se realizé entrenando un modelo MLP y
calculando su precisién sobre el conjunto de validacién. Las pruebas se hicieron en un modelo MLP
de prueba con dos capas ocultas con 100 neuronas cada una, funciones de activacion en las capas
ocultas Relu y softmax en la salida, y se utilizaron 5 épocas de entrenamiento.

A continuacion, se muestra el pseudocédigo general del algoritmo:

Pseudocddigo 1 Pseudocddigo del algoritmo genético para la seleccién de caracteristicas

1: Inicializar pardmetros: generaciones G' = 25, tamano de poblacién p = 10, desviacién estandar
de mutacién o = 0.5

2: Inicializar poblacién padre X, como una matriz de ceros de tamafio (p X 252)
3: Inicializar poblacién cruzada X. y poblacion mutada X; con el mismo tamano
4: Inicializar vectores de evaluacién Y, y Y}, como vectores de ceros de longitud p
5: Inicializar lista vacia para almacenar la mejor solucién

6: X, < POBLACION_INICIAL(X),)

7. for i =1 to G do

8 X, < OPERADOR CRUCE(X,)

9: X}, <+ OPERADOR MUTACION(X., o)

10: Y, ¢ OBJETIVO.V1(X))

11: Y}, + OBJETIVO.V1(X})

12: Xp < SELECCION.V1(X,, X, Y,, Y3)

13: Almacenar MAX(Y),) en la lista de mejores soluciones

14: end for

[
ot

: return mejor solucién encontrada

Se utiliz6 un cruce de tipo uniforme, donde cada gen se obtiene del promedio entre dos genes
padres de la poblacién que son seleccionados de forma aleatoria. En este caso, para garantizar que
todos los individuos participen en el cruce en cada generacién, se asumié una probabilidad de cruce
igual a 1.

El operador de mutacién consistié en la adicién de ruido gaussiano de media cero y desviacién
estandar ¢ = 0.05 a cada gen del individuo, seguido de una binarizacién donde los valores mayores
o iguales a 0.5 se asignan a 1 y los menores a 0. Dado que la mutacién se aplica sobre toda la
poblacién, la probabilidad de mutacién es alta, mientras que su intensidad esta determinada por el
valor de o.

Se implement6 un esquema de preservacion de élite, en el cual un hijo sustituye a su padre 1ni-
camente si alcanza una precision superior en la funcién objetivo. Esto evita la pérdida de soluciones
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prometedoras y acelera la convergencia del proceso.

El algoritmo se ejecutd con una poblacién inicial de g = 10 individuos y G = 25 generaciones.
El proceso es estocéstico debido al uso de operadores aleatorios.

La grafica de convergencia del algoritmo, mostrada en la Figura 3.6, muestra cémo la precisién
del mejor individuo va variando mientras pasan las generaciones. Se observa una tendencia general
de mejora en las primeras iteraciones, seguida de pequenas fluctuaciones en generaciones posteriores.
Estas variaciones se deben a que el proceso de evaluacién incluye el entrenamiento de un modelo
de red neuronal, cuyo desempeno puede presentar ligeras diferencias en cada ejecucion, debido a
factores como la aleatoriedad en la inicializacién de pesos.

0.837

0.836

0.835

0.834

Mejor solucion

0.833

0.832

T
0 5 10 15 20 25
Generacién

Figura 3.6: Grafica convergencia de algoritmo genético.

Tras completar la ejecucion del algoritmo genético, se obtuvo un subconjunto de caracteristicas
que presenté el mejor desempeno en términos de precision de clasificacién a lo largo de las 25 gene-
raciones. Estas caracteristicas fueron seleccionadas segin su desempeno a lo largo de la ejecucion
del algoritmo, el cual evalué distintas combinaciones de entradas.

La distribucién de las 252 caracteristicas originales se presenta en la Figura 3.7. En esta matriz
visual, las filas representan las métricas extraidas, y las columnas corresponden a los sensores EMG
numerados del 1 al 28. Las caracteristicas seleccionadas por el algoritmo genético se encuentran
marcadas, mientras que aquellas descartadas se muestran sin resaltar.
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Figura 3.7: Caracteristicas seleccionadas por el algoritmo genético.

El algoritmo seleccioné como mejor solucién al final de las iteraciones a un individuo con 137
caracteristicas de las 252 disponibles, alcanzando un valor de precisién de 93.51% en datos de
validacion. Este subconjunto reducido fue empleado como entrada en el modelo MLP, logrando
una precisién comparable a la obtenida utilizando el conjunto completo, pero con una reduccién
significativa en la dimensionalidad de entrada, lo cual favorece la eficiencia del sistema en términos
de procesamiento y complejidad.

Dado que atin se conservaba una cantidad considerable de caracteristicas y el modelo presenta
una presiéon muy por arriba de la planteada en la hipdtesis, se propuso una etapa adicional de
reduccién, la cual se detalla en la siguiente seccién.

3.2.2. Reduccion del niimero de caracteristicas segin la participacion de sen-
sores

Después de aplicar la primera etapa de seleccién utilizando el GA, se observé que aun era posible
reducir la cantidad de caracteristicas sin afectar significativamente la precisién del modelo. Para
ello, se implement6 una segunda estrategia de reduccion, basada en la participacién de los sensores
en el subconjunto seleccionado previamente.

Esta etapa consistié en identificar los sensores con mayor contribucién en el vector resultante
del GA. Como criterio de filtrado, se descartaron todos los sensores que presentaban menos de seis
métricas seleccionadas. De esta manera, se priorizé la informacién proveniente de los sensores con
mayor relevancia en el proceso de clasificacién.

La Figura 3.8 muestra la matriz de caracteristicas, donde se resaltan las métricas seleccionadas
de manera final para ser utilizadas como entradas en el modelo MLP.
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Figura 3.8: Seleccion final de caracteristicas, considerando los sensores con mayor participacién.

De acuerdo con este criterio, se conservaron unicamente las caracteristicas correspondientes a
los sensores 1, 3, 14, 15, 16, 22, 23, 26, 27 y 28, utilizando tnicamente las métricas previamente
seleccionadas por el algoritmo genético para cada uno de ellos.

Esta selecciéon final resulté en un conjunto de 67 caracteristicas de las 252 iniciales.

3.3. Modelo red neuronal en software

Una vez seleccionadas las caracteristicas con mayor impacto para distinguir los diferentes mo-
vimientos musculares, se implemento6 el modelo de red neuronal MLP, incrementando el nimero de
épocas de entrenamiento con el objetivo de obtener un modelo més robusto y preciso.

La implementacién se realiz6 en el entorno de desarrollo Jupyter Notebook®) con Python, em-
pleando como entradas el vector de caracteristicas reducido, obtenido mediante las técnicas de se-
leccién descritas en secciones previas. A las cuales, antes de ser usadas en el modelo, se les aplicé un
proceso de normalizacion mediante la libreria StandardScaler de la biblioteca sklearn.preprocessing
con el propdsito de normalizar la escala de los datos y mejorar los resultados en el proceso de apren-
dizaje. El ajuste (fit) del normalizador se realiza exclusivamente con el conjunto de entrenamiento,
y posteriormente la misma transformacién se aplica a los conjuntos de validacién y prueba.

El modelo fue construido y entrenado utilizando la biblioteca Keras integrada en TensorFlow(®),
lo que facilita el uso de redes neuronales en este entorno, ya que son arquitecturas previamente
disenadas, a las cuales solo se definen su configuracién.

La arquitectura final del modelo fue definida tras realizar multiples pruebas con distintas confi-
guraciones, tomando como referencia modelos del estado del arte en clasificacién de seniales EMG,
como los criterios propuestos en [14]. La configuracién elegida mostré un equilibrio adecuado entre
precision y complejidad computacional, siendo ademads viable para su posterior implementaciéon en
hardware embebido.
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Figura 3.9: Modelo red neuronal perceptrén multicapa.

Las caracteristicas del modelo se muestran en la tabla 3.3:

Tabla 3.3: Configuracién de la red neuronal utilizada.

Neuronas capa de entrada 67
Capas ocultas 2
Neuronas por capa 100
Funciones de activacién ReLU en capas ocultas y Softmax en capa de
salida
Neuronas capa de salida 10
Optimizador Adam
Tasa de aprendizaje (LR) 0.001
Funcién de pérdida sparse_categorical_crossentropy
Métrica de evaluacién Accuracy
Inicializacién de pesos Por defecto de Keras (Glorot Uniform)
Regularizacién Restriccién de norma maxima = 3
E‘pocas de entrenamiento 30
Tamano de lote 20
Datos de entrenamiento 80 %
Datos de validacién 10%
Datos de prueba 10%
Semilla aleatoria 42 (para reproducibilidad)
Estrategia de barajado Aleatoria sin estratificacién
Callback utilizado ModelCheckpoint (almacenamiento de pesos

durante el entrenamiento)

Se eligié la funcién de activacién ReLU para las capas ocultas por su simplicidad y bajo costo
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computacional, lo cual facilita su futura implementacién en hardware digital. Por su parte, la capa
de salida utiliza la funcién Softmax, que permite interpretar las salidas como una distribucién de
probabilidad sobre las 10 clases, indicando el grado de certeza del modelo respecto a cada clase
posible. Cabe senalar que la funcién Softmax no fue implementada en hardware, ya que en dicha
etapa no es necesario obtener la distribucion completa de probabilidades sobre las clases. Basta con
identificar la salida con el valor méas alto para determinar el gesto predicho por la red. Por ello, en
la implementacién en hardware se sustituyé Softmax por la operaciéon Argmax, la cual selecciona
directamente la neurona con el mayor valor de activacién en la capa de salida.

Durante el entrenamiento, el modelo alcanzé una precisién de clasificacién del 96.19 % con los
datos de validacion en el entrenamiento y 95.94 con los datos de pruebas. Teniendo un comporta-
miento estable del error de entrenamiento, como se observa en la Figura 3.10. Esta precision fue
considerada adecuada para ser tomada como base para la implementacién posterior en hardware.

0.225 A Datos entrenamiento
—— Datos validacién
0.200 A —— Datos de prueba

0.175 A

0.150 A

0.125 A

0.100 A

Error de Clasificacion

0.075 A

0.050 A

0.025 L T T T T T T T
0 5 10 15 20 25 30
Epocas

Figura 3.10: Gréficas de error en la clasificacion.

3.4. Exportacion de parametros del modelo MLP para implemen-
tacion en hardware

Para poder realizar la inferencia del modelo MLP en hardware utilizando un dispositivo FPGA,
fue necesario adaptar y exportar los pardmetros del modelo entrenado, especificamente, los pesos,
sesgos y datos de prueba que funcionen como entradas en el modelo. Estos elementos se convierten
en un formato compatible con la arquitectura del disenio digital. Este proceso involucré varias
etapas, como la extraccién de los pesos y sesgos del modelo entrenado en software, la conversién
binaria en representacion a dos con punto fijo y la codificacién final en archivos compatibles para
su almacenamiento y uso dentro de las memorias ROM del FPGA.
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3.4.1. Extraccién de pesos y sesgos desde el modelo entrenado

Después de completar el modelo en software con los resultados requeridos, se extrajeron los pesos
y sesgos de cada capa utilizando las funciones disponibles en la biblioteca Keras de TensorFlow®).
Estos valores se almacenaron inicialmente en archivos CSV utilizando la biblioteca pandas, lo que
facilité su andlisis y procesamiento posterior.

3.4.2. Analisis de rangos y decision del formato de punto fijo

Para determinar la representacién binaria més adecuada para el diseno en hardware, se realizé
un andlisis de los pesos y sesgos, al identificar los valores minimos y maximos presentes en cada
capa del modelo. La tabla 3.4 muestra estos rangos de valores de cada capa. Al analizar los valores,
es posible interpretar la parte entera con pocos bits al tratarse de valores relativamente pequenos;
aun asi, se opté por utilizar formatos méas amplios para conservar una precision adecuada en la
etapa de inferencia en hardware.

Tabla 3.4: Rangos de valores minimos y maximos de pesos y sesgos por capa.

Min capa Max capa Min capa Max capa Min capa Max capa
oculta 1 oculta 1 oculta 2 oculta 2 salida salida
-2.02119 1.81856 -1.67922 2.67355 -1.39727 0.76537

Adicionalmente, los valores de entrada correspondientes a las muestras de prueba también se
almacenaron en memoria ROM del FPGA, por lo que se optd por utilizar el mismo formato de
representacion que los pesos. Dado que estas entradas fueron previamente normalizadas, sus valores
se mantienen en un rango reducido, justificando el uso de una representacién con pocos bits enteros.

Con base en este andlisis se definieron los siguientes formatos de la representaciéon numérica en
complemento a dos con punto fijo:

» Pesos: representados en formato 8e.8f (8 bits para parte entera, 8 bits para parte fraccionaria),
con un total de 16 bits por valor.

= Sesgos: representados en formato 16e.16f, ocupando 32 bits por valor, ya que deben sumarse
al resultado de productos entre valores de 16 bits, lo que incrementa el rango y la precision
requeridos.

= Valores de entradas para pruebas: representados en formato 8e.8f, ocupando 16 bits por valor.

3.4.3. Conversién a binario y generacién de archivos .COE

Una vez los valores de pesos, sesgos y vectores de entradas fueron cuantizados a formato punto
fijo, se realizo la conversién binaria en complemento a dos. Este proceso fue automatizado mediante
algoritmos en Python que hacia la conversion de los valores desde los archivos CSV a vectores
binarios de longitud fija.

Posteriormente, los vectores binarios que representaban los parametros del modelo fueron con-
vertidos a formato .COE (Coefficient File), el cual es compatible con el entorno Xilinz Vivado(®)
para su uso en memorias ROM dentro del FPGA.
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3.5. Modelo red neuronal en hardware

Una vez establecidos los hiperpardmetros (nimero de capas, nimero de neuronas, funciones de
activacién, pesos y sesgos) del modelo entrenado en software. Al igual, que la exportacién en una
representacion binaria de los pesos y sesgos, para su almacenamiento en memorias ROM. Se disend
la arquitectura digital para la ejecucion de la inferencia del modelo MLP directamente en hardware.
Se utiliz6 una tarjeta Basys 3®) con un FPGA de la familia Xiliniz Artiz-7(®).

El disefo fue desarrollado en el entorno Vivado 2021.1(®), empleando el lenguaje de descripcién
de hardware VHDL para desarrollar los médulos que componen la arquitectura. También, se empled
el IP Core prediseniado para configurar y utilizar memorias ROM del FPGA por medio de la
herramienta Generate Memory.

La arquitectura general estd basada en composicién modular para el funcionamiento del sistema,
donde cada bloque o médulo cumple una tarea especifica para lograr la inferencia del modelo.
Algunas de las tareas son lectura de datos, multiplicaciéon, acumulacion, control de flujo, activacion
y almacenamiento. Para coordinar el flujo de los datos entre los bloques se realiza mediante una
maquina de estados finitos (FSM, por sus siglas en inglés). El diagrama general del sistema de red
neuronal se muestra en la Figura 3.11.
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Figura 3.11: Diagrama de bloques de red neuronal en hardware.

A continuacién, se describen las principales unidades de hardware utilizadas.

3.5.1. Moédulo principal de la red MLP

El médulo principal integra todos los bloques de hardware, formando la unidad superior disefiada
para la inferencia del modelo de red neuronal ejecutada en el FPGA. Este médulo funciona como
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un Unico circuito que coordina el direccionamiento y lectura de datos, ejecuciéon de operaciones
aritméticas y de codificacion, y finalmente la entrega del resultado de clasificacién.

Con el fin de facilitar la integracién con otros sistemas digitales, el médulo estd disenado con
una interconexion simple de control, ya que estd compuesta de tinicamente dos senales de entrada
y dos senales de salida, ademés de la senal de reloj y la senal de reinicio. La Figura 3.12 muestra
el diagrama de caja negra de la arquitectura de la red neuronal en hardware, y la Tabla 3.5 detalla
las senales de entrada/salida del médulo.

Tabla 3.5: Entradas y salidas del médulo principal de la red neuronal MLP.

Nombre Tamano Tipo Descripciéon

clk 1 bit Entrada Senal de reloj del sistema, con frecuencia de 25
MHz, utilizada para sincronizar todas las opera-
ciones internas del médulo.

rst 1 bit Entrada Senal de reinicio. Al activarse, inicializa el siste-
ma, reiniciando registros, contador y la maquina
de estados finitos.

start 1 bit Entrada Senal de control que inicia el proceso de infe-
rencia. Se activa por un ciclo de reloj cuando se
desea clasificar una nueva muestra.

X 7 bits Entrada Direccién de acceso a la memoria ROM de en-
tradas EMG.
fin 1 bit Salida Senal que indica la finalizacién del proceso de

inferencia por parte del modelo MLP. Se activa
cuando la clasificacién estd completa.

y 10 bits Salida Vector donde un unico bit en alto (’1’) repre-
senta la clase predicha por la red neuronal. Ca-
da posicion del vector estd asociada a una clase
distinta.

—— > start fin——>

MLP

Figura 3.12: Diagrama de caja negra del médulo principal de la red neuronal MLP.

El disenio modular de la red permite que todas las operaciones funcionen internamente, de forma
secuencial y ordenada, sin requerir intervencién externa durante la clasificacién. El flujo de datos
es controlado por una méquina de estados finitos que se describe a continuacion.
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Figura 3.13: Diagrama de caja negra del médulo de maquina de estados finitos.

3.5.2. Moébdulo maquina de estados finitos para controlar el flujo de datos en la
red MLP

Este médulo FSM es responsable de la sincronizacién y coordinacién del funcionamiento de
todos los bloques de hardware de la arquitectura para la inferencia del modelo de red neuronal
MLP dentro del FPGA. Esta maquina de estados gestiona el flujo de datos de las memorias ROM,
unidades aritméticas, registros, contador y bloques de activacion, lo que asegura que cada operacién
se realice en el orden y ubicacion adecuados.

La FSM disenada es de tipo Moore, ya que sus salidas dependen tinicamente del estado actual,
no de las entradas. La eleccién de este tipo de maquina de estados permite un control estable de
las senales internas, ya que se tiene un ciclo de reloj adicional en la transicién de estados para
verse reflejadas las salidas, lo que facilita la implementacién y verificacién en el disefio de hardware
digital.

Durante la ejecucién de la inferencia del modelo, la FSM realiza:

s Inicia la lectura de las muestras EMG desde la memoria de entrada.

= Activa la lectura secuencial de pesos y sesgos desde sus respectivas ROMs, segin la capa
actual.

= Controla la carga de datos en los registros.
= Coordina la multiplicacién y acumulacién de productos en cada neurona.
= Determina el tipo de activacion en las neuronas y de almacenar sus salidas.

= Senaliza el cambio de capa y el fin del proceso de clasificacién.

La Figura 3.13 presenta el diagrama de caja negra del médulo FSM, mientras que la Figura 3.14
muestra el grafo de estados definidos en el proceso.
La Tabla 3.6 detalla las senales de entrada y salida utilizadas por el médulo FSM:
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Entradas
clk 1 bit
rst 1 bit
start 1 bit
n_10 1 bit
n_100 1 bit

Salidas

inc 1 bit
clr 1 bit
Id_reg 1 bit
s_ent 1 bit
s_pes 2 bit
capa_ok 1 bit
ok 1 bit
s_fin 1 bit

rst="1"

ESPERA

CAPA1 4

CAPA1_3
0,0,0,0,00,0,0,0 -

0,0,0,0,00,0,0,0
0,0,0,0,00,0,0,0

CAPA1_O

0,0,0,0,00,0,0,0
CAPA1_2 CAPA1_INC
0,0,0,0,00,0,0,1

0,0,1,0,00,0,0,0

CAPAL_1 1,0,0,0,00,0,0,0

CLR_CTA3 0,0,0,0,00,0,0,0

CAPA1_RG
0,1,0,0,00,0,0,1

0,0,0,0,00,1,0,0
CAPA3_RG

CLR_CTA1

0,0,0,1,10,0,0,1

CAPA3_4 CAPA3_3

0,1,0,1,01,0,0,0

0,0,0,1,10,0,0,0 0,0,0,1,10,0,0,0

CAPA3 2 CAPA3_INC

CAPA2_1

0,0,0,1,10,0,1,0 1,0,0,1,10,0,0,0

CAPA2_RG

0,0,0,1,01,0,0,0

CAPA3_1 0,0,0,1,01,1,0,0 / N-100="1'

CLR_CTA2
0,0,0,1,10,0,0,0 CAPA2_2
0,1,0,1,01,0,0,0
0,0,1,1,01,0,0,0
CAPA2_4 n_100 =0’

0,0,0,1,01,0,0,0

CAPA2_INC

CAPA2_3
1,0,0,1,01,0,0,0

0,0,0,1,01,0,0,0

Figura 3.14: Grafo de estados de la FSM para el control del flujo de datos del modelo MLP.
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Tabla 3.6: Entradas y salidas del médulo de la maquina de estados finitos.

Nombre

Tamano

Tipo

Descripcion

clk

rst

start

s_ent

s_pes

inc

clr

n_100

n_10

ld_reg

capa_ok

ok

fin

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

1 bit

Entrada

Entrada

Entrada

Salida

Salida

Salida

Salida

Entrada

Entrada

Salida

Salida

Salida

Salida

Senal de reloj del sistema (25 MHz), utilizada
para sincronizar las transiciones entre estados y
controlar las operaciones internas.

Senal de reinicio asincrono. Al activarse, reini-
cia la FSM al estado inicial y pone en cero las
senales de control.

Senal que indica el inicio del proceso de inferen-
cia. Se activa por un solo ciclo de reloj.
Selecciona si las entradas provienen de la me-
moria ROM de muestras EMG o del registro de
salidas de la capa anterior, dependiendo de la
capa en curso.

Senal que informa al codificador de direcciones
qué capa esta activa, para acceder a los pesos y
sesgos correspondientes.

Activa el incremento del contador de neuronas,
permitiendo pasar a la siguiente neurona en la
capa actual.

Limpia el valor del contador de neuronas al fi-
nalizar una capa.

Bandera proveniente del contador que indica que
se ha procesado la neurona nimero 100 (capas
ocultas).

Bandera proveniente del contador que indica que
se ha procesado la neurona nimero 10 (capa de
salida).

Senal que indica que el resultado de una neuro-
na ya fue calculado y puede almacenarse en los
registros de salida.

Senal que indica que todas las neuronas de la ca-
pa actual han sido procesadas. Activa la trans-
ferencia de resultados al siguiente bloque.
Indica que todas las salidas de la capa final han
sido almacenadas y estan listas para el bloque
de decisién.

Senal de finalizacién global. Se activa cuando el
proceso completo de inferencia ha concluido y la
clase ha sido determinada.
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3.5.3. Mobdulos de memoria ROM

Para el almacenamiento de los datos necesarios durante la inferencia del modelo MLP en el
FPGA, se utilizaron tres bloques de memoria ROM, cada uno configurado y generado mediante la
herramienta Generate Memory IP Core incluidada en el entorno de desarrollo Vivado 2021.1®). A
cada modulo se le cargaron archivos .coe generados a partir del modelo entrenado en software, asi
como de las muestras EMG utilizadas para pruebas.

La Figura 3.15 muestra el diagrama de caja negra de las tres memorias ROM utilizadas en el
sistema.

ﬁ? addr q m ﬁ? addr q m ﬁ? addr q ’ﬁ;}
ROM_ENTRADAS ROM_PESOS ROM_SESGOS
16x67x100 16x100x210 32x210
PF:8.8 PF:8.8 PF:16.16

(@) (b) (©
Figura 3.15: Diagrama de cajas negras de las memorias ROM. (a) ROM de entradas. (b) ROM de
pesos. (¢) ROM de sesgos.

A continuacién, se describen las caracteristicas de cada una:

Memoria ROM de entradas

Esta memoria contiene las muestras EMG utilizadas como entradas para el modelo MLP. Cada
muestra estd compuesta por 67 caracteristicas, cada una codificada en 16 bits con formato punto fijo
8 bits parte entera y 8 bits parte fraccionaria. La memoria permite almacenar hasta 128 muestras
pero se establecié en 100 muestras para pruebas.

s Entrada addr: 7 bits. Direcciona una de las 100 muestras almacenadas.

= Salida q: Vector de 16 x 67 bits. Contiene todas las caracteristicas de una muestra.

Memoria ROM de pesos

Esta memoria contiene los pesos sindpticos del modelo MLP. La red neuronal cuenta con 210
neuronas en total (100 en la primera capa oculta, 100 en la segunda y 10 en la salida), y cada
neurona utiliza 100 pesos. Cada peso se representa con 16 bits en formato punto fijo 8 bits parte
entera y 8 bits parte fraccionaria.

= Entrada addr: 8 bits. Permite direccionar una neurona especifica.

= Salida g: Vector de 16 x 100 bits. Contiene los 100 pesos asociados a la neurona seleccionada.

Memoria ROM de sesgos

Esta memoria almacena los 210 sesgos asociados a cada neurona de la red. Cada sesgo es
codificado con 32 bits utilizando formato punto fijo 16 bits parte entera y 16 bits parte fraccionaria,
para mantener una alta precisién en las operaciones de suma acumulativa.
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= Entrada addr: 8 bits. Direcciona uno de los 210 sesgos.

= Salida q: 32 bits. Valor del sesgo correspondiente a la neurona direccionada.

3.5.4. Mobdulo contador con banderas

Este mdédulo fue diseiado como un contador sincrono ascendente, su funcién es llevar el control
de la cantidad de neuronas procesadas en cada capa de la red durante la inferencia en hardware,
como el proceso se divide por neurona procesada y por capas, fue necesario tener un conteo de
la neurona presente. El contador se activa por medio de senales generadas por la FSM que con-
trolan el incremento de la cuenta y su restablecimiento en cero automaéaticamente al completar el
procesamiento de una capa.

Cuenta con una salida principal de 7 bits que representa el valor de la cuenta actual. Esta
cantidad de bits es suficiente para cubrir las 100 neuronas de las capas ocultas. Ademads, este
moédulo fue disenado para incorporar dos banderas como senales de salida que se activan al alcanzar
umbrales especificos en la cuenta, lo que permite sincronizar los eventos del flujo en la FSM. La
Figura 3.16 presenta el diagrama de caja negra del médulo contador con banderas.

inc l«——

cr l«——
CONTADOR_FLAGS

n10 —  »

D e n_100—mm—  »
I 7

Figura 3.16: Diagrama de caja negra del médulo contador con banderas.

La Tabla 3.7 detalla las senales de entrada y salida utilizadas por el médulo contador.

Tabla 3.7: Entradas y salidas del médulo contador con banderas.

Nombre Tamano Tipo Descripcién

clk 1 bit Entrada Senal de reloj del sistema, con una frecuencia de
25 MHz. Sincroniza el incremento y el restable-
cimiento del contador.

rst 1 bit Entrada Senal de reinicio asincrono que reinicia el conta-
dor a cero, sin depender del ciclo de reloj.

inc 1 bit Entrada Senal de habilitacién para incrementar el valor
del contador en uno, en el flanco positivo del
reloj.

Contintda en la siguiente pagina
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Tabla 3.7 — continuacién de la pagina anterior

Nombre Tamano Tipo Descripciéon
clr 1 bit Entrada Senal de limpieza sincrona. Al activarse, resta-
blece el contador a cero en el siguiente ciclo de
reloj.
cta 7 bits Salida Valor actual del contador, representado como un

numero binario de 7 bits.

n_10 1 bit Salida Bandera que se activa cuando el valor del con-
tador es igual a 10. Se utiliza para identificar el
final de la capa de salida.

n_100 1 bit Salida Bandera que se activa cuando el valor del con-
tador es igual a 100. Se utiliza para identificar
el final de una capa oculta.

3.5.5. Modbdulo Codificador de direccién de memoria para pesos

El médulo codificador de direccién de memoria de pesos, nombrado como selec_mempesos en
el disefio, tiene como objetivo generar la direccién correcta para acceder a la memoria ROM que
contiene los pesos de todas las neuronas del modelo MLP. Dado que los pesos de las 210 neuronas
estan almacenados de forma continua en una tnica memoria ROM, es necesario ajustar la cuenta
local de cada capa para que apunte al bloque correspondiente dentro de la memoria global.

Este modulo recibe como entrada la cuenta local de neuronas, generada por el contador, y una
senal de seleccion de capa de 2 bits proveniente de la FSM, que indica en qué capa del modelo se
encuentra actualmente el proceso de inferencia.

Con base en estos valores, el codificador realiza un desplazamiento del valor de cuenta del
contador segun la capa activa, sumando un desplazamiento predefinido para cada capa:

= Capa oculta 1: desplazamiento 0.

= Capa oculta 2: desplazamiento 100.

= Capa de salida: desplazamiento 200.

El resultado se entrega en la salida, una direccién de 8 bits que se utiliza para acceder a la
memoria ROM de pesos. Se optd por utilizar este codificador del direccionamiento de los pesos
para evitar el uso de un segundo contador, ya que la cuenta local también direcciona los registros
de almacenamiento de los resultados de las neuronas de la capa activa.

La Figura 3.18 muestra el diagrama de caja negra del médulo, mientras que la Tabla 3.8 describe
sus senales de entrada y salida.
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Figura 3.17: Diagrama de caja negra del codificador de direccién de memoria de pesos.

Tabla 3.8: Entradas y salidas del médulo codificador de direccién de pesos.

Nombre Tamano Tipo Descripcién

cta_in 7 bits Entrada Cuenta local que indica la neurona actual en la
capa activa. Proviene del médulo contador.

selec 2 bits Entrada Senal de seleccién de capa. Codifica la etapa del
modelo en la que se encuentra el proceso: 00
para la primera capa oculta, 01 para la segunda
capa oculta, y 10 para la capa de salida.

cta_out 8 bits Salida Direccién ajustada que se utiliza para acceder a
la memoria ROM de pesos. Esta direccién co-
rresponde al indice absoluto dentro del bloque
completo de pesos y permite el direccionamien-
to secuencial de neuronas a lo largo de todas las
capas.

3.5.6. Modbdulo multiplexor para seleccién de entradas a las neuronas

Este médulo cumple una funcién clave en la etapa de propagaciéon hacia adelante de la red
neuronal MLP implementada en hardware. Su proposito es seleccionar, en cada etapa del proceso,
cudl conjunto de datos se utilizard como entrada para las neuronas: ya sea el vector de caracteristicas
EMG provenientes de la memoria ROM de entrada, o los resultados intermedios de cada neurona
después de su funcién de activacién (en este caso la funcién ReLu) que fueron almacenados en los
registros correspondientes a la capa anterior.

La funcién de seleccion se realiza mediante una senal de control proveniente de la FSM, la cual
indica si el sistema se encuentra procesando la capa de entrada o una capa intermedia. Este modulo,
por su simplicidad, se implementa como un multiplexor dos a uno, donde las dos entradas son de
16 bits.

La Figura 3.18 muestra el diagrama de caja negra del médulo, y la Tabla 3.9 detalla sus senales
de entrada y salida.
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Figura 3.18: Diagrama de caja negra del codificador de direccién de memoria de pesos.

Tabla 3.9: Entradas y salidas del médulo multiplexor.

Nombre Tamano Tipo Descripciéon

a 16 bits Entrada Vector proveniente de la memoria ROM que con-
tiene las caracteristicas de entrada EMG. Es uti-
lizado tinicamente en la primera capa de la red
neuronal.

b 16 bits Entrada Valor proveniente del bloque de registros que
contiene las salidas de activacién de la capa an-
terior. Es utilizado en capas ocultas y de salida.

selec 1 bit Entrada Senal de control proveniente de la FSM. Si su
valor es ‘0, la salida toma el valor de a; si es ‘1,
toma el valor de b.

c 16 bits Salida Valor de salida del multiplexor. Corresponde al
valor seleccionado entre las dos entradas en fun-
cién de la senal selec.

3.5.7. Mobdulos aritméticos

En el disefio en hardware implementado para la red neuronal, se emplean tres médulos encar-
gados de realizar operaciones matematicas fundamentales: el sumador, multiplicador y el médulo
de activacién ReLu. Estos mddulos fueron disenados en VHDL empleando las bibliotecas estandar
de IEEE, especificamente la biblioteca IEEE.NUMERIC_STD que permite realizar operaciones
aritméticas con senales que representan ntmeros binarios con signo. El uso de las bibliotecas faci-
lité el diseio de estos mddulos, ya que no hay que realizar las arquitecturas de estas operaciones a
nivel de bit a bit.

A continuacién, se describe cada médulo.

Multiplicador

Este moédulo realiza la multiplicacién de dos niimeros de 16 bits representados en complemento
a dos. Una de las entradas corresponde al peso de la neurona actual, y la otra representa una carac-
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teristica de entrada EMG o un resultado intermedio proveniente de la capa anterior. El resultado
es un valor de 32 bits, que es el producto de las dos entradas. En el diseno completo del modelo
de la red, se instancian 100 de estos moédulos en paralelo para calcular simultdneamente todos los
productos requeridos por cada neurona. La Figura 3.19 muestra el diagrama de caja negra del
moédulo multiplicador.
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(Multiplicador) P [732
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Figura 3.19: Diagrama de caja negra del médulo multiplicador.

Sumador

El sumador es el bloque que suma los productos generados por los multiplicadores, junto con
el sesgo correspondiente a la neurona en proceso. El mddulo tiene 101 entradas de 32 bits (100
productos + 1 sesgo) y una unica salida también de 32 bits, que representa la salida de la neurona
antes de la funcién de activacion. La Figura 3.20 muestra su diagrama de caja negra.
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Figura 3.20: Diagrama de caja negra del médulo sumador.

Bloque ReLLU

Este médulo realiza la funcion de activacion ReLLU, que se aplica al resultado del sumador. Este
evalua si el valor de entrada en complemento a dos es menor o igual a cero. En ese caso, la salida es
cero. Si el valor es positivo, la salida reproduce el valor de la entrada. De esta manera, se aplica la
transformacion no lineal caracteristica de la funcién ReLU. La Figura 3.21 muestra su caja negra.
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Figura 3.21: Diagrama de caja negra del médulo ReLLU.

3.5.8. Moébdulos de bloques de registros

Para almacenar los resultados intermedios y de salida del modelo de la red implementada en
hardware, se disefiaron tres médulos que funcionan como bloques de registros especializados. Cada
uno de los bloques gestiona los datos generados durante el proceso de inferencia, facilitando la trans-
ferencia de los datos entre las capas del modelo o hacia el bloque de decisién final. Para sincronizar
los médulos en la arquitectura disenada, se opté por utilizar estos bloques con multiples registros
internos organizados por direccién, al igual para realizar las tareas de lectura y transferencia de los
datos en paralelo.

A continuacién, se describen el funcionamiento de cada uno de estos bloques.

Bloque de registros actuales

Este médulo contiene 100 registros de 16 bits y se encarga de guardar los resultados de las
neuronas en las capas intermedias, especificamente almacena los resultados en la capa que se estéa
evaluando en la etapa presente del proceso. Cada resultado es escrito en un registro determinado
por la senal proveniente del contador. La escritura es controlada por una senal de habilitacién
generada por la FSM. Los registros pueden ser leidos simultdaneamente por la sefial de salida que
concatena los datos; esto permite su transferencia simultdnea hacia el bloque de registros pasados.

En la Figura 3.22 se muestra el diagrama de caja negra de este médulo, y la Tabla 3.10 presenta
sus senales de entrada y salida.

ena
ﬁaddr

16x100
BLOQUE_REG_ACTUAL

g > d

Figura 3.22: Diagrama de caja negra del bloque de registros actuales.
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Tabla 3.10: Entradas y salidas del bloque de registros actuales.

Nombre Tamano Tipo Descripcion
clk 1 bit Entrada Senal de reloj del sistema (25 MHz).
rst 1 bit Entrada Senal de reinicio asincrono.
addr 7 bits Entrada Direccion de escritura del registro, proveniente
del contador.
ena 1 bit Entrada Habilita la escritura del dato en el registro se-
leccionado.
16 bits Entrada Dato de activacién a almacenar.
q 16x100 bits Salida Todos los registros disponibles para lectura si-

multanea.

Bloque de registros pasados

Este modulo también contiene 100 registros internos de 16 bits, al igual que el médulo de
registros actuales. Su funcién es leer y almacenar todos los valores del bloque de registros actuales
una vez que el proceso completo de activar las neuronas de una capa. La escritura se realiza en
paralelo de todos los registros y se produce al activarse la senal de habilitacién producida por la
FSM. Todos los valores de este bloque se leen simultdneamente desde la salida que concatena los
valores, para alimentar las siguientes neuronas en el proceso de la red.

La Figura 3.23 muestra su diagrama de caja negra y la Tabla 3.11 describe sus senales.

16X100

BLOQUE_REG_PASADO

ena

16x100

Figura 3.23: Diagrama de caja negra del bloque de registros pasados.

Tabla 3.11: Entradas y salidas del bloque de registros pasados.

Nombre Tamano Tipo Descripcién
clk 1 bit Entrada Senal de reloj del sistema.
rst 1 bit Entrada Senal de reinicio asincrono.

Contintia en la siguiente pagina
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Tabla 3.11 — continuacién de la pagina anterior

Nombre Tamano Tipo Descripciéon
ena 1 bit Entrada Habilita la escritura de todos los registros en
paralelo.
d 16x100 bits Entrada Conjunto de datos provenientes del bloque de
registros actuales.
q 16x100 bits Salida Registros disponibles para lectura paralela.

Bloque de registros de salida

Este bloque contiene 10 registros internos de 16 bits. Cada registro corresponde a cada clase del
modelo a clasificar. Su funcionalidad es replicada del bloque de registros actuales, con la diferencia
de que este bloque cuenta con menos registros, los cuales estan dedicados a almacenar los resultados
de las neuronas de la capa de salida. Los registros son leidos en paralelo para que el médulo de

numero mayor determine la clase con mayor activacion.

La Figura 3.24 presenta el diagrama de caja negra de este médulo y la Tabla 3.12 su especifi-

cacion funcional.

#»addr

5

ena

BLOQUE_REG_SALIDA

16x10

Figura 3.24: Diagrama de caja negra del bloque de registros de salida.

Tabla 3.12: Entradas y salidas del bloque de registros de salida.

Nombre Tamano Tipo Descripcién
clk 1 bit Entrada Senal de reloj del sistema.
rst 1 bit Entrada Senal de reinicio.
addr 7 bits Entrada Direccién de escritura del resultado de activa-
cién de cada neurona de salida.
ena 1 bit Entrada Habilita la escritura del resultado.
d 16 bits Entrada Dato proveniente de las neuronas en la capa de

salida.

Contintia en la siguiente pagina
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Tabla 3.12 — continuacién de la pagina anterior

Nombre Tamano Tipo Descripcién
q 16x10 bits Salida Resultados de salida disponibles para compara-
cion.

3.5.9. Moébdulo nimero mayor

El médulo niimero mayor, o nombrado MOV_MAX en el diseno, es el bloque final de la arquitec-
tura digital de la red neuronal MLP implementada en FPGA. Funciona para determinar cual de las
salidas generadas por las 10 neuronas de la capa final tiene el mayor valor numérico, considerando
la representacion binaria en punto fijo, 8 bits para parte entera y 8 bits para la parte fraccionaria.
Determinar la neurona de salida con mayor peso, equivale a identificar la clase predicha por el
modelo. Este médulo funciona como la operaciéon Argmax que sustituye a la funcién de activacién
Softmax empleada en el modelo en software, esto porque no es necesario obtener la distribucién
completa de probabilidades sobre las clases. Basta con identificar la salida con el valor méximo
para determinar el gesto que clasifico la red.

El médulo genera un vector de 10 bits en su salida, donde tinicamente uno de los bits es activado
(’1’), donde, la posicién de este bit indica la clase con mayor peso, es decir, la clase que clasificd
la red. Mientras el proceso no termina, determinado por la FSM, el vector de salida permanece en
ceros, esto para evitar una salida transitoria errénea.

En la Figura 3.25 se presenta el diagrama de caja negra del moédulo, y en la Tabla 3.13 se
describen sus senales de entrada y salida.

ena

716x10
MOV_MAX

Figura 3.25: Diagrama de caja negra del médulo niimero mayor.

Tabla 3.13: Entradas y salidas del médulo niimero mayor.

Nombre Tamano Tipo Descripcién

ena 1 bit Entrada Setial de habilitacién. Cuando esta activa (1),
permite que el médulo realice la comparacion y
active la salida correspondiente. Si estd en ‘0’,
la salida ‘y‘ se mantiene en ceros.

Contintda en la siguiente pagina
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Tabla 3.13 — continuacién de la pagina anterior

Nombre Tamano Tipo Descripcién

d 16x10 bits Entrada Vector que contiene las salidas de las 10 neuro-
nas finales de la red. Cada valor representa el
resultado asociado a una clase distinta.

y 10 bits Salida Vector codificado en un solo bit alto (‘1’) que
representa la clase con la mayor activacién. La
posicién activa indica la prediccién del modelo.

3.6. Diseno para evaluar la precision de la red MLP en hardware

Una vez completada la implementacién de la red neuronal MLP en hardware, se disefié una
arquitectura adicional con el objetivo de evaluar la precisién en la clasificacion de senales EMG
por la red. En este nuevo diseno, la red MLP se emplea como un moédulo funcional encapsulado
dentro de un sistema mayor, ya que el diseno modular en el FPGA permite reutilizar los disenos.
A Figura 3.26 presenta el diagrama de bloques del sistema completo disenado.

inicio

inicio

icta fin

FSM_PRECISION h_cto
Cca f_mip
imlp
> | addra douta [7—T>| bin
rom_entradas_etiquetas DECODIFICADOR_BCP
inc flag
mov
cta
CONTADOR FLAG | v T“
start
X - i
g L \
AND —>inc
MLP y a c—>»
1 COMPARADOR CONTADOR

Figura 3.26: Diagrama de bloques del diseno de prueba de precisién para la red neuronal MLP en
hardware.

Este sistema incluye una nueva FSM, memoria ROM, un decodificador, un multiplexor 2 a 1
y dos contadores, que interactian con el disefio de red neuronal. A continuacién se describen los
moédulos més relevantes que componen la arquitectura de pruebas de precision. El médulo MLP ya
no se describe, ya que su arquitectura fue desglosada en la seccion anterior. Se hace especial énfasis
en el modulo FSM_PRECISION, ya que es el mas relevante al coordinar el flujo de datos.

= FSM_PRECISION: La maquina de estados finitos es de tipo Moore y se encarga de la
sincronizacién secuencial de todos los médulos. Inicia el proceso de inferencia de la red, espera
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la finalizacion del resultado, véalida la prediccién y actualiza los contadores correspondientes.
En la Figura 3.27 se muestra el grafo de estados de esta FSM. Y en la Tabla 3.14 se muestra
la descripcién de entradas y salidas de este médulo FSM.

Entradas Salidas
rst="1' clk 1bit | i_mlp | 1bit
rst 1 bit i_cta 1 bit

ESPERA

inicio 1 bit h_cto 1 bit

0,0,0,0

f_cta 1 bit fin 1 bit

f_mlp 1 bit

inicio="1"

INICIO_MLP

1,0,0,0
PROCESO_MLP

0,0,0,0

PAUSA2
inicio="1" REG_CTA

0,0,0,0
0,0,1,0

PAUSA1 NUEVO_MLP

0,0,0,0

0,1,0,0

Figura 3.27: Grafo de los estados de la FSM para prueba de precisién de red neuronal.

Tabla 3.14: Entradas y salidas del médulo FSM_PRECISION.

Nombre Tamano Tipo Descripcion
clk 1 bit Entrada Senal de reloj del sistema.
rst 1 bit Entrada Senal de reinicio asincrono.
inicio 1 bit Entrada Senal para iniciar el proceso de evaluacion de
precision.
imlp 1 bit Salida Senal de inicio para el médulo MLP, activa la

propagacion hacia adelante.
fmlp 1 bit Entrada Indica que la red MLP ha terminado la inferen-
cia y su salida estd disponible.

h_cto 1 bit Salida Habilita el incremento del contador de aciertos
cuando la prediccién es correcta.

Contintia en la siguiente pagina
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Tabla 3.14 — continuacion

Nombre Tamano Tipo Descripciéon

i_cta 1 bit Salida Senal para incrementar el contador de muestras
una vez procesada cada muestra.

f_cta 1 bit Entrada Senal que indica que se han evaluado todas las

muestras almacenadas.
fin 1 bit Salida Senal de finalizaciéon del proceso completo de
evaluaciéon. Permite mostrar el total de aciertos.

3.7.

Contador con bandera: Este bloque, nombrado como CONBTADOR_FLAG en el diseno,
es un contador sincrono que lleva el control del nimero de muestras evaluadas. Su valor
se utiliza como direccién para acceder a la ROM de etiquetas. La bandera de salida indica
cuando se ha alcanzado el total de muestras almacenadas.

Memoria ROM para etiquetas: Este médulo, nombrado rom_entradas_etiquetas en el di-
sefio, contiene las etiquetas reales correspondientes a cada muestra de entrada almacenada en
el médulo MLP. Estas etiquetas fueron previamente extraidas de la base de datos EMG. El
contenido de esta ROM permite validar la prediccién realizada por la red neuronal, compa-
rando la salida del médulo MLP con la clase esperada.

Decodificador de etiquetas a vector de 10 bits

Este médulo nombrado como DECODIFICADOR_BCP convierte las etiquetas almacenadas
en la memoria ROM como numeros binarios de 0 a 9 a una representacion por posicién en
un vector de 10 bits, donde tnicamente el bit correspondiente a la clase estd en alto. Esta
representacion es compatible con la salida del médulo MLP, que también entrega un vector
de 10 bits donde el bit activo es la clase predicha seguin la ubicaciéon de este. Se hace esta
conversién para poder realizar la comparacion.

Comparador: El comparador verifica si la clase predicha por el médulo MLP es igual con la
clase real proveniente de la ROM de etiquetas. Si ambos vectores coinciden, genera una senal
en alto que indica un acierto en la prediccion.

Contador de aciertos

Este contador incrementa su valor cada vez que el comparador detecta una prediccién correcta,
a la par que el proceso de la FSM habilita el incremento de aciertos, permitiendo asi obtener el
total de aciertos al final del proceso. El valor final del proceso se usa para calcular la precisién
del modelo en hardware con respecto al total de las muestras probadas.

Diseno para control de servomotores con red neuronal en
hardware

Una vez validada la precisién de la inferencia del modelo red neuronal MLP en hardware, se
desarrollé el disenio de la arquitectura final para integrar el modelo a un sistema embebido de
control fisico. Este diseno utiliza las predicciones de la red neuronal para controlar directamente
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cinco servomotores SG90 que simulan los movimientos de los dedos de la mano en el actuador para
pruebas fisicas. La arquitectura general de este sistema se presenta en la Figura 3.28.

—>» ena pwm 3 pwm(0)
PWM_MODULE :
> |p
> ena pwm ————— pwm(1)
inicio : PWM_MODULE :
E start > p
L > fin
' pwm14 '
' pwm2—~ »ena pml— Ly owm(2)
MLP puma s PWM_MODULE |
Y Mo DECO_MLP_PWMs =
pwmé4, >» P
10
pwm5—7%-
@—>| ena pwm —.—» pwm(3)
PWM_MODULE :
> P
3 ena

pwm L5 pwm(4)
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Figura 3.28: Diagrama de bloques del diseno de control de servomotores con red neuronal en hard-
ware.

Esta arquitectura representa un sistema de control en lazo abierto, ya que no se emplea re-
troalimentacion de posicion. La salida generada por la red neuronal al procesar las caracteristicas
de las senales EMG produce las decisiones de control. El sistema estd formado por tres bloques
principales: el médulo MLP, el decodificador DECO_MLP_PWMs y los médulos generadores de
PWM.

El médulo MLP es el ntcleo de inferencia que recibe un vector de caracteristicas de 67 compo-
nentes de 100 muestras para pruebas que se integraron en la memoria ROM interna. Y entrega un
vector de 10 bits, donde un tnico bit en alto representa la clase predicha, correspondiente a una de
las diez posibles posiciones de la mano.

El decodificador, DECO_-MLP_PWMSY, interpreta la salida de 10 bits del MLP y genera cinco
senales de control, una por servomotor, asignando a cada uno un ciclo de trabajo especifico. Este
médulo determina si cada dedo debe estar extendido o contraido dependiendo la clase que asignd
la red en el proceso de clasificacién de las muestras EMG. Cada clase se interpreta como una
codificacién que configura la posicién de los cinco dedos; por lo tanto, la salida del decodificador se
traduce en senales PWM ajustadas.

Cada servomotor SG90 esta asociado a un médulo PWM_MODULE, el cual genera una senal de
modulacién por ancho de pulso de 20 ms de periodo y con una resolucion de 10 bits. En este caso,
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se definieron dos posiciones por dedo: extensién y contraccion, determinadas mediante el ancho de
los ciclos en alto. La Tabla 3.15 muestra la configuracién correspondiente para cada servomotor.

Tabla 3.15: Configuraciones del ciclo en alto del PWM por dedo y posicion.

Dedo (servomotor) Contraccién Extension
Pulgar 1.63 ms en alto de 20 ms 1.3 ms en alto de 20 ms
Indice 1.3 ms en alto de 20 ms 1.9 ms en alto de 20 ms
Medio 1.1 ms en alto de 20 ms 1.8 ms en alto de 20 ms
Anular 1.1 ms en alto de 20 ms 1.9 ms en alto de 20 ms
Menique 1.1 ms en alto de 20 ms 1.9 ms en alto de 20 ms

Estos ciclos de trabajo en cada servomotor se eligieron de forma empirica con los servomotores
acoplados a cada mecanismo que simula el movimiento de dedo hasta ajustar las posiciones deseadas.

El sistema resultante representa fisicamente las clases predichas por el modelo de red neuronal
MLP mediante los movimientos en paralelo de los dedos en el actuador de mano artificial.

3.8. Desarrollo de actuador que simule movimientos de mano

A la par que se desarrollaban las anteriores secciones de la metodologia y como parte del sistema
de validacion fisico para el modelo de red neuronal, se desarrollé un actuador impreso en 3D, el
cual simula los movimientos de los dedos en una mano humana. Con este dispositivo se permite
representar visualmente las clases predichas por la red MLP mediante el posicionamiento de los
dedos de forma paralela, por el accionamiento de los servomotores.

Para el diseno del mecanismo que conforma los dedos se tuvo la referencia de un modelo de
codigo abierto publicado en [72]. Este modelo base incluye un mecanismo con dos articulaciones
para el dedo pulgar y otro mecanismo de tres articulaciones para el resto de los dedos. Se realizé
un ajuste en el diseno para el ensamble de los servomotores SG90 empleados en este trabajo, ya
que el modelo original esta disenado para servomotores de distinto modelo.

Se realizaron modificaciones, en los engranajes, actuadores y en los soportes de los servomotores,
para el correcto ensamblaje con estos. Ademads, se redisené completamente la base y el soporte que
alinean los cinco servomotores. Para el control de los dedos se opté un servomotor por dedo, ya
que los mecanismos del disenio base, el dedo indice y medio comparten servo, al igual que el dedo
anular y menique.

La edicién y creacién de las piezas se realizé empleando el software Solid Works 2020®). Las
piezas se imprimieron con una impresora 3D modelo Ender, como se muestra en las Figuras 3.29
y 3.30.
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Figura 3.29: Proceso de impresién 3D del dispositivo.

Figura 3.30: Impresién 3D de partes del dispositivo.
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Las Figuras 3.31, 3.34, 3.32 y 3.33 muestran algunos componentes principales del diseno impreso,
incluyendo la base y tapa para montaje de servos, asi como los mecanismos individuales de los dedos.

Figura 3.31: Soporte para servomotores.

Figura 3.32: Tapa de soporte para servomotores.
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Figura 3.33: Dedo pulgar acoplado a servomotor.

Figura 3.34: Dedo con tres articulaciones acoplado a servomotor.

Finalmente, en las Figuras 3.35 y 3.36 se muestra el dispositivo ensamblado en dos posiciones:

Figura 3.35: Dispositivo ensamblado con posicién “mano extendida”.
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Figura 3.36: Dispositivo ensamblado con posicién “mano cerrada”.
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CAPITULO 4

Resultados

En esta seccién se presenta el andlisis de los resultados obtenidos. Se hacen varios andlisis del
modelo MLP implementado en hardware, tales como: analisis de la utilizacién de recursos en el
FPGA, andlisis de tiempo de procesamiento en la inferencia del modelo, anélisis de potencia en el
chip, y se analiza la eficiencia obtenida del modelo. Estos resultados se describen con mas detalle
en las secciones siguientes.

4.1. Recursos utilizados en FPGA

En el FPGA los recursos son limitados, como la légica programable, los bloques de memoria,
lineas de entrada/salida (I0), y bloques DSP. Evaluar la cantidad de recursos que requiere el
diseno es de suma importancia, para considerar la capacidad del dispositivo para agregar nuevas
etapas en el sistema o para su posible migracién a otros dispositivos con diferentes capacidades.
Las herramientas de sintesis del diseno nos proporcionan estos resultados de recursos en el diseno
en este caso el software Vivado 2021.1[®), en la tabla 4.1 se muestran el reporte de la utilizacién
del disenio de red neuronal MLP en el FPGA Artiz 7(®) que se empled para la implementacion.

Tabla 4.1: Utilizacién de recursos por la red neuronal MLP en FPGA Artix 7®.

Recurso Utilizacién Disponibles Utilizado (%)
LUT 5735 20800 27.57
LUTRAM 3 9600 0.03
FF 3764 41600 9.05
BRAM 38 50 76.00
DSP 90 90 100.00
10 21 106 19.81

Se muestra que los recursos criticos en este diseno son los bloques DSP, con una utilizacién del
100 %, lo que es esperado por la cantidad de multiplicaciones que se realizan en paralelo durante
la inferencia de la red. Otro recurso de alta demanda son los bloques de RAM, ya que se utiliza
el 76 % de los disponibles, los cuales se emplean para almacenar los pesos y sesgos del modelo. La
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cantidad de légica programable en las LUTs y flip-flops presenta un uso moderado, lo que indica
que existe un margen para agregar logica adicional para otras funciones. En cambio, las lineas 10
emplean una baja utilizacién, lo cual es considerable para la posible adaptacion a médulos externos
0 sensores.

De acuerdo al andlisis de los recursos, si se requiere la implementacién de una red de mayor
tamano con esta arquitectura de diseno, es necesario considerar un dispositivo FPGA con mayores
recursos en DSPs y BRAM para no afectar el rendimiento de la inferencia. O también la posibilidad
de considerar el uso de estrategias de optimizacién para reducir el uso de recursos

Ademsds, con el fin de contextualizar la eficiencia de este disefio se hizo una comparacién con
trabajos reportados en el estado del arte en la Tabla 4.2, donde se puede apreciar resultados similares
e incluso por debajo en la cantidad de recursos reportados con otras implementaciones de modelos
de clasificacion de seniales EMG en FPGA.

Tabla 4.2: Comparacién de uso de recursos en FPGA entre diferentes trabajos.

Trabajo Dispositivo Modelo FF LuT BRAM DSP
73] Pyng-Z1® SVM 43624 38836 91 147
[74] Zynq KNN 9770 12783 33 16
XC77Z020

[75] Kintex 7®  SVM 186635 38087 94 108
(XCTK325T)

[11] Intel MAX  Red neuronal bi- - 3577 - 46
10® narizada (BNN)

31] Zedboard®  Red neuronal de 4256 7980 3 -

picos (R-SNN)
Este trabajo Basys 3®  MLP 3764 5735 38 90

(Artix 7®)

4.2. Tiempo de procesamiento

En esta seccién se presenta el andlisis del tiempo de inferencia del modelo MLP implementado
en el FPGA, considerando la ejecucién completamente en hardware. El tiempo de procesamiento
en sistemas embebidos es fundamental para la clasificaciéon de senales EMG en tiempo real.

El disefio de la red neuronal fue probado en la tarjeta Basys 3%, la cual cuenta con una
frecuencia de reloj de 100 MHz, pero en esta frecuencia resulto incapaz de funcionar el modelo,
debido al retraso necesario en los componentes fisicos, tales como el tiempo necesario para acceder
a los bloques de memoria RAM y para la propagacién de las senales a lo largo de todos los médulos.
Por lo que se opté por configurar la frecuencia del reloj a 25 MHz, lo cual equivale a un periodo
de 40 ns por ciclo de reloj. Esta configuracion del reloj del sistema se establecié al hacer pruebas
fisicas con el modelo implementado en la tarjeta de desarrollo.

Se evalué la simulacién del funcionamiento del disenio midiendo el niimero de ciclos de reloj
necesarios desde que se inicia la inferencia de la red al activar la senal (start), hasta que se tiene
una prediccién de clase, indicada por la senal de finalizacién del proceso (fin). Con esto se obtuvo
la latencia total de la red neuronal implementada, la cual fue de:
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= Latencia total: 843 ciclos de reloj
» Frecuencia del sistema: 25 MHz (7' = 40 ns)

= Tiempo de inferencia: 843 x 40 ns = 33.72 us

La Figura 4.1 muestra la simulacién obtenida en el entorno de desarrollo Vivado 2021.1(®),
donde se observa medicién del tiempo de procesamiento.

Figura 4.1: Simulacién de la red para clasificar una muestra, con medicién de tiempo de procesa-
miento.

Este resultado de latencia a la frecuencia de reloj configurado, indica que el modelo, en su
caso ideal simulado, puede clasificar una muestra de entrada en menos de 34 microsegundos, lo
que equivale a aproximadamente 29600 muestras por segundo. Logrando la inferencia del modelo
de clasificaciéon en tiempo real, adecuado para aplicaciones que requieran una respuesta lo mas
inmediata posible.

Esta medicién de tiempo solo corresponde al proceso de inferencia de la red neuronal. Por lo que
no se estan considerando etapas como adquisicién de las senales, procesamiento de estas, conversién
A/D, entre otras etapas que pueden ser agregadas para tener una solucién de sistema completo.

Para finalizar el andlisis del tiempo de procesamiento del modelo, se realizé6 una comparacién
entre la implementacién en hardware (FPGA) y la ejecucién en software utilizando el lenguaje
Python. El modelo en software fue ejecutado en una computadora portatil equipada con un proce-
sador Intel® Core™ i7-1255U de 122 generacion a 1.70 GHz. La medicién del tiempo en software
se realizé utilizando las herramientas disponibles en Python time y perf.-counter, con las que se
hizo el registro del tiempo necesario para que el modelo tenga una prediccién desde que se inicia la
clasificacién. Los resultados se muestran en la Tabla 4.3.
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Tabla 4.3: Comparacién del tiempo de procesamiento entre la implementacién en software y hard-
ware.

Implementacién Dispositivo Tiempo de procesamiento
Software (Python) Intel® Core™ i7-1255U @ 1.70 GHz 52.03730 ms
Hardware (VHDL — FPGA) Artix 7® (Basys 3®) 0.03372 ms

Con esta comparacion, se obtuvo que la inferencia del modelo en hardware logra una aceleracion
considerable con respecto a la ejecucién en software.

4.3. Consumo de potencia en FPGA

Es importante conocer el consumo de potencia del diseno, para determinar su capacidad de
usarse en aplicaciones embebidas donde la eficiencia energética es un factor clave. La estimacién de
potencia se obtuvo mediante la herramienta de anélisis de consumo incluida en Vivado 2021.1(®),
tras la implementacién del modelo MLP en el FPGA.

La Figura 4.2 muestra el reporte de potencia generado, donde se presenta tanto la potencia
total estimada como la distribucion entre componentes estaticos y dindmicos.

Dynamic: Q.O079W (52%)

Clocks: 0o0TW (1%
589, Signals: 0.046 W (58%)
Logic: 0.025W (22%)
B ERAM: 0.003W  (3%)
DSP: 0.004W  (5%)

48% ; /0 0.001TW (1%

Device Static 0.074W (48%)

52%

[=]

32%

[=]

[=]

Figura 4.2: Reporte de potencia del modelo en el FPGA.

La potencia total estimada del diseno es de 0.153 W, distribuida en dos componentes princi-
pales:

» Potencia dindmica: 0.079 W (52 % del total)
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» Potencia estatica: 0.074 W (48 % del total)

La potencia dindmica representa el consumo de la actividad de los relojes, senales internas,
l6gica programable, memoria BRAM, DSPS y periféricos durante el funcionamiento del modelo.
En el modelo, el mayor consumo de la potencia dindmica estd dada por:

» Senales de interconexién: 0.046 W (58 % de la potencia dindmica)
» Légica: 0.025 W (32 %)

= BRAM, DSPs, I/O y relojes: 0.008 W en conjunto (10 %)

De acuerdo con este analisis, se concluye que la mayoria del consumo dindmico se encuentra en
el ruteo de senales y en la légica combinacional de la red neuronal.

La potencia estatica corresponde al consumo sin actividad logica, mientras el modelo se encuen-
tra en espera. Representa el 48 % del consumo total, el cual estd relacionado con el consumo medio
en las hojas de datos del chip FPGA.

Con un consumo total en el chip de 153 mW, la implementacién del modelo MLP en FPGA,
muestra ser eficaz de forma energética y adecuada para aplicaciones portatiles. Aunque se debe
tener en cuenta que esta medicion solo estd enfocada en el consumo en el chip, no se consideran
los demés componentes en la tarjeta de desarrollo, la cual debe ser alimentada con 5 V para su
funcionamiento.

4.4. Evaluacion del modelo en FPGA

Para evaluar el rendimiento del modelo implementado en hardware, se realizaron pruebas de la
red neuronal con el disefio descrito en la seccion de la metodologia 3.6. Donde este sistema compara
las predicciones generadas por el modelo con las etiquetas reales provenientes de una memoria
ROM, contabilizando los aciertos y errores de clasificacién.

Para estas pruebas se evaluaron, 21490 muestras, correspondientes a una parte de los datos para
pruebas que se asignaron de la base de datos. Se descarté una porcion de los datos para no saturar la
capacidad de la memoria ROM vy, ya que el tiempo en simulacion se incrementa considerablemente,
entre mas muestras.

Se documentaron los resultados de clasificacién para cada muestra, con lo cual sé obtuvo la
precision de la red neuronal del 94.09 %. Donde el modelo presenté una disminucién en la precisién
con respecto a la implementacién en software, ya que se obtuvo una precisién de 96.19 % al ejecutar
el algoritmo del modelo en Python con los mismos datos para pruebas. Esta diferencia se atribuye
a la pérdida de valores debido a la representacién de los datos, ya que en la implementacién en
hardware se utilizé una representacién de 16 y 32 bits, en cambio, en el software se manejan datos
de 64 bits.

Adicionalmente, con el registro de los resultados de la clasificacion, se generd la matriz de
confusion del modelo. En la figura 4.3 se presenta la matriz.
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Figura 4.3: Matriz de confusién del modelo MLP implementado en FPGA.

En la matriz, se muestra la comparacién de las predicciones de clases del modelo, representadas
por las columnas, comparadas con las clases reales, representadas con las filas. De esta manera
se permitié analizar en detalle los errores y aciertos de la clasificacion. En la diagonal principal
se muestran los casos en que la red clasificé de forma correcta. Los valores fuera de la diagonal
equivalen a los casos en que la red calificé erréneamente.

De acuerdo con los resultados, la clase 10, que corresponde a la mano en posicién de reposo, fue
la que tiene la mayor cantidad de aciertos en la clasificacién, debido a que su diferenciacién es més
notable, al no contar con activacion significativa en los musculos. En cambio, la clase 5, que es la
extension de los dedos indice y medio es la que menos aciertos obtuvo, al confundirse con la clase 1
y clase 7, por la activaciéon de musculos similares en los movimientos, ya que la clase 7 corresponde
a la extension del dedo indice, y la clase 1 a la extensién de los dedos a excepcién del pulgar.

Con base en la matriz de confusién se obtuvieron las variables: verdaderos positivos, verdaderos
negativos, falsos positivos y falsos positivos. Estas variables son necesarias para calcular las métricas
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para evaluar el rendimiento del modelo. Cuyas ecuaciones son: ecuacion 2.23 para exactitud, 2.24
para sensibilidad y 2.25 para obtener la especificidad. En la tabla 4.4 se muestran las métricas para
cada clase.

Tabla 4.4: Métricas de evaluacién del modelo MLP por clase.

Clase Exactitud Sensibilidad Especificidad
Movimiento 1 98.288 % 96.231 % 98.516 %
Movimiento 2 98.571 % 93.951 % 99.085 %
Movimiento 3 99.172 % 96.789 % 99.436 %
Movimiento 4 98.846 % 93.532 % 99.436 %
Movimiento 5 98.227 % 86.738 % 99.504 %
Movimiento 6 98.497 % 90.368 % 99.400 %
Movimiento 7 98.944 % 94.416 % 99.447 %
Movimiento 8 99.004 % 97.255 % 99.199 %
Movimiento 9 98.967 % 92.880 % 99.643 %
Movimiento 10  99.684 % 98.837 % 99.778 %

Promedio 98.820 % 94.100 % 99.344 %

A partir de estos resultados, se calculd la eficiencia del modelo implementado, dando como
resultado un porcentaje de 97.42 %, cumpliendo con la hipdtesis planteada.

4.5. Control del actuador por medio de red neuronal implemen-
tada en FPGA

Para validar el modelo de red neuronal, se realizé un control de un actuador que simula los
movimientos de mano a partir de las predicciones del modelo. En las Figura 4.4 se muestra el
actuador de la mano artificial en cada posicion de las 10 clases que el modelo clasifica. De esta
forma se apreciaron fisicamente los resultados de la red neuronal. Y se muestra que el médulo de
red neuronal MLP desarrollado puede aplicarse en el disenio de sistemas embebidos para aplicaciones
utiles, en este caso el control de posiciéon por servomotores en un sistema en lazo abierto.
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Figura 4.4: Pruebas de control de movimientos. 1) Oposicién del pulgar. 2) Oposicién de los dedos
pulgar e indice. 3) Extensién de los dedos pulgar e indice. 4) Extensién de los dedos pulgar y
menique. 5) Extensién de los dedos indice y medio. 6) Extensién de menique. 7) Extension de

indice. 8) Extension de pulgar. 9) Mano cerrada. 10) Mano en reposo o mano abierta.
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CAPITULO 5

Conclusiones

En este trabajo se describe cémo implementar una red neuronal MLP funcional para clasificar
senales EMG en hardware con un dispositivo FPGA. La inferencia de la red se realizé de forma
modular por bloques que conforman una arquitectura completa. La arquitectura de este trabajo
permite clasificar 10 movimientos de la mano a partir de caracteristicas extraidas de las senales
EMG.

El FPGA se demostré como una plataforma adecuada para la inferencia de modelos de redes
neuronales, empleando hasta 100 neuronas por capa, con la posibilidad de aumentarse, siguiendo
la arquitectura propuesta. Ademads, la implementaciéon en este tipo de dispositivos permite tiempos
de procesamiento reducidos en la ejecucién de la red neuronal, al ejecutar tareas en paralelo por
su diseno a nivel hardware, asi como por la configuracion altamente personalizada de légica y
conexiones.

Segun los resultados obtenidos, en cuestién de recursos del FPGA, estos incrementan a medida
que incrementa la complejidad del modelo. Especialmente los requisitos en componentes como
bloques de memoria BRAM, ya que estos se emplean para almacenar los pesos y sesgos de la red.
También consideracién en los bloques DSPs, tiles para realizar las multiplicaciones en el diserio. Al
aumentar el tamarfo de la red neuronal, hay que considerar estos recursos en el FPGA, por lo que
resalta la necesidad de un diseno eficiente y balanceado. En este trabajo, los recursos de la tarjeta
de desarrollo empleados fueron suficientes para ejecutar el diseno, pero si se espera aumentar la
complejidad, es necesario optar por un dispositivo de mayores capacidades, o en su caso optar por
usar técnicas de optimizacién de recursos en el diseno.

El modelo propuesto da como resultado un bloque funcional pre-disenado que se puede integrar
en un sistema FPGA de mayor tamafio para realizar la tarea especifica de red neuronal MLP para
clasificacién. El disefio es modular y flexible, lo que facilita la migracién a otro dispositivo y es
posible aplicarlo en la calificacién de diferentes tipos de datos.

De manera relevante, el calsificador EMG en el FPGa logra resultados adecuados para poder
ser integrados en aplicaciones como prétesis inteligentes o aplicaciones de control por gesto. Con-
siderando la integracion de otras etapas y diseno de los componentes necesarios. Ya que en este
trabajo solo se realizé un prototipo, para visualizar los resultados de forma fisica.

Como posibles trabajos futuros, se propone integrar las etapas de adquisicién de senales EMG,
asi como la conversion AD, y el procesamiento de estas, especialmente su extraccién de caracteristi-
cas. Para desarrollar un sistema més auténomo y completo. Asi como mejorar el prototipo de mano
artificial para su posible uso como prétesis inteligente.
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Por otro lado, se propone utilizar el bloque predisenado de la red MLP para otras aplicaciones
utiles que puedan embeberse para posibles funciones portatiles que ayuden a mas sectores de la
poblacién y de la industria.
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