
Universidad Autónoma de Querétaro

Facultad de Ingenieŕıa

Maestŕıa en Ciencias en Control en Sistemas Embebidos

Desarrollo de sistema en FPGA para control de dispositivo mediante señales EMG e
inteligencia artificial

TESIS

Que como parte de los requisitos para obtener el grado de

Maestro en Ciencias en Control en Sistemas Embebidos

Presenta:

José Félix Castruita López

Dirigido por:

Dr. Marcos Romo Avilés

SINODALES

Dr. Marcos Romo Avilés
Presidente

Dr. Juvenal Rodŕıguez Reséndiz
Codirector

Dr. José Manuel Álvarez Alvarado
Vocal

Dr. Edson Eduardo Cruz Miguel
Suplente

Dr. Suresh Thenozhi
Suplente

Centro Universitario
Querétaro, QRO

México.
Julio 2025



 

La presente obra está bajo la licencia:
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

CC BY-NC-ND 4.0 DEED

Usted es libre de:

Compartir — copiar y redistribuir el material en cualquier medio o formato

La licenciante no puede revocar estas libertades en tanto usted siga los términos de la licencia

Bajo los siguientes términos:

—

—

—

No hay restricciones adicionales — No puede aplicar términos legales ni medidas tecnológicas que 
restrinjan legalmente a otras a hacer cualquier uso permitido por la licencia.

Avisos:

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-appropriate-credit
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-indicate-changes
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-commercial-purposes
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-some-kinds-of-mods
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-technological-measures
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-exception-or-limitation
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es#ref-publicity-privacy-or-moral-rights


Universidad Autónoma de Querétaro

Facultad de Ingenieŕıa
Maestŕıa en Ciencias en Control en Sistemas Embebidos

Desarrollo de sistema en FPGA para control de dispositivo
mediante señales EMG e inteligencia artificial

Tesis

Que como parte de los requisitos para obtener el grado de

Maestro en Ciencias en Control en Sistemas Embebidos

Presenta:
José Félix Castruita López

Dirigido por:
Dr. Marcos Romo Avilés

Co-Director:
Dr. Juvenal Rodŕıguez Reséndiz

Vocal:
Dr. José Manuel Álvarez Alvarado

Suplente 1
Dr. Edson Eduardo Cruz Miguel

Suplente 2
Dr. Suresh Thenozhi

Querétaro, Qro. a Julio de 2025



A mi familia.

ii



Agradecimientos

Agradezco a mi familia, amigos y a todas las personas que me apoyaron de alguna forma para
completar esta meta. A todos por escucharme, acompañarme, aconsejarme y compartir su tiempo en
esta etapa de mi vida. A la Universidad Autónoma de Querétaro por la formación y a los profesores
por sus enseñanzas. Finalmente, al CONAHCYT ahora SECIHTI por el apoyo económico que me
permitió estar en el posgrado.

iii



Resumen

Las señales de electromiograf́ıa (EMG) son bipotenciales que registran la actividad muscular,
como contracción, relajación, fuerza, movimiento y fatiga. Estas señales, al proporcionar informa-
ción sobre el comportamiento muscular son muy utilizadas en campos de investigación, como la
biomédica, la medicina, la robótica, y la rehabilitación. Sin embargo, las señales de EMG al ser
muy complejas requieren un considerable nivel computacional para su clasificación. Tradicional-
mente, este procesamiento se realiza en dispositivos de cómputo secuencial, lo que genera tiempos
de respuesta elevados y un alto consumo de enerǵıa, limitando su uso en aplicaciones embebidas o
portátiles. En este trabajo se diseñó e implementó un sistema de control basado en la clasificación
de señales EMG mediante una red neuronal tipo perceptrón multicapa (MLP), implementada en un
dispositivo lógico programable tipo FPGA. El objetivo fue realizar la inferencia del modelo MLP
directamente en hardware para clasificar señales EMG procesadas y controlar en lazo cerrado un
actuador que simula los movimientos de la mano predichos por la red. El sistema implementado en
FPGA alcanzó una latencia de 843 ciclos de reloj para tener una predicción, equivalente a 33.72 µs
por muestra a una frecuencia de 25 MHz, en contraste con los 52.03 ms requeridos por el modelo
ejecutado en Python en una computadora con procesador Intel® CoreTM i7-1255U. La eficiencia de
clasificación fue del 97.42%, y el consumo de potencia del diseño en el FPGA fue de 0.153 W. Estos
resultados demuestran una mejora significativa en el tiempo de respuesta y el consumo energético
respecto a los sistemas secuenciales tradicionales, validando la viabilidad del uso de FPGA para la
implementación de modelos de inteligencia artificial embebidos en aplicaciones de control basadas
en señales EMG.

Abstract

Electromyography (EMG) signals are biopotentials that record muscle activity such as contrac-
tion, relaxation, strength, movement, and fatigue. By providing information about muscle behavior,
these signals are widely used in research fields such as biomedical engineering, medicine, robotics,
and rehabilitation. However, due to their complexity, EMG signals require a considerable compu-
tational load for accurate classification. Traditionally, this processing is carried out on sequential
computing devices, which leads to high response times and increased power consumption, limiting
their use in embedded or portable applications. In this work, a control system based on the classifi-
cation of EMG signals was designed and implemented using a multilayer perceptron (MLP) neural
network deployed on a Field Programmable Gate Array (FPGA). The objective was to perform the
inference of the MLP model directly in hardware to classify processed EMG signals and to control,
in a closed loop, an actuator that simulates the hand movements predicted by the network. The
FPGA-based system achieved a latency of 843 clock cycles per prediction, equivalent to 33.72 µs
per sample at a frequency of 25 MHz, in contrast to the 52.03 ms required by the Python-based mo-
del running on an Intel® CoreTM i7-1255U processor. The classification accuracy reached 97.42%,
and the FPGA design consumed only 0.153 W of power. These results demonstrate a significant
improvement in response time and energy efficiency compared to traditional sequential systems,
validating the feasibility of using FPGAs for the implementation of embedded artificial intelligence
models in control applications based on EMG signals.

iv



Índice general

1. Introducción 1

1.1. Descripción del problema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2. Justificación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3. Hipótesis y Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.1. Hipótesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2. Objetivo general . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3. Objetivos particulares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4. Antecedentes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5. Estructura de la tesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2. Fundamentación teórica 13

2.1. Señales EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1. Adquisición de señal EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2. Filtrado y tasa de muestreo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3. Segmentación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.4. Extracción de caracteŕısticas . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Redes neuronales artificiales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1. Perceptrón multicapa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.2. Etapa de avance en el entrenamiento del MLP . . . . . . . . . . . . . . . . . 20

2.2.3. Etapa de retropropagación en el entrenamiento del MLP . . . . . . . . . . . . 21

2.2.4. Funciones de Activación . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.5. Validación del modelo MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3. Algoritmo genético . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4. FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.1. Diseño en FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3. Metodoloǵıa 28

3.1. Base de datos de señales EMG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1.1. Preprocesamiento de los datos . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.1.2. Exportación de base de datos limpiada y preprocesada . . . . . . . . . . . . . 34

3.2. Elección de entradas en el modelo de red MLP . . . . . . . . . . . . . . . . . . . . . 35

3.2.1. Reducción del número de caracteŕısticas mediante algoritmo genético . . . . . 35

3.2.2. Reducción del número de caracteŕısticas según la participación de sensores . 38

3.3. Modelo red neuronal en software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

v



3.4. Exportación de parámetros del modelo MLP para implementación en hardware . . . 41
3.4.1. Extracción de pesos y sesgos desde el modelo entrenado . . . . . . . . . . . . 42
3.4.2. Análisis de rangos y decisión del formato de punto fijo . . . . . . . . . . . . . 42
3.4.3. Conversión a binario y generación de archivos .COE . . . . . . . . . . . . . . 42

3.5. Modelo red neuronal en hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.1. Módulo principal de la red MLP . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.5.2. Módulo máquina de estados finitos para controlar el flujo de datos en la red

MLP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5.3. Módulos de memoria ROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.4. Módulo contador con banderas . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.5.5. Módulo Codificador de dirección de memoria para pesos . . . . . . . . . . . . 50
3.5.6. Módulo multiplexor para selección de entradas a las neuronas . . . . . . . . . 51
3.5.7. Módulos aritméticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.5.8. Módulos de bloques de registros . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.9. Módulo número mayor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6. Diseño para evaluar la precisión de la red MLP en hardware . . . . . . . . . . . . . . 58
3.7. Diseño para control de servomotores con red neuronal en hardware . . . . . . . . . . 60
3.8. Desarrollo de actuador que simule movimientos de mano . . . . . . . . . . . . . . . . 62

4. Resultados 67
4.1. Recursos utilizados en FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2. Tiempo de procesamiento . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3. Consumo de potencia en FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4. Evaluación del modelo en FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.5. Control del actuador por medio de red neuronal implementada en FPGA . . . . . . 73

5. Conclusiones 75

Referencias 82

vi



Índice de figuras

1.1. Transición del modelo en PC hacia una aplicación embebida de control. . . . . . . . 3

1.2. Distribución porcentual de las causas de amputación en México, según INEGI 2015. 4

2.1. Técnicas de segmentación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2. Esquema analoǵıa entre neuronas biológicas y RNA. . . . . . . . . . . . . . . . . . . 18

2.3. Modelo de neurona artificial. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4. Red Neuronal Perceptrón Multicapa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5. Diagrama de flujo genérico algoritmo genético. . . . . . . . . . . . . . . . . . . . . . 25

2.6. Vista superior simple de arquitectura general de FPGA. . . . . . . . . . . . . . . . . 26

2.7. Celda lógica simplificada en FPGA Xilinx®. . . . . . . . . . . . . . . . . . . . . . . 26

3.1. Graphical abstract del sistema. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2. Diagrama de flujo para metodoloǵıa general aplicada. . . . . . . . . . . . . . . . . . 29

3.3. Movimientos registrados en la base de datos. . . . . . . . . . . . . . . . . . . . . . . 31

3.4. Movimientos utilizados en el trabajo con su etiqueta numérica asignada. . . . . . . . 31

3.5. Muestra de señal EMG correspondiente al gesto de mano abierta. . . . . . . . . . . . 32

3.6. Gráfica convergencia de algoritmo genético. . . . . . . . . . . . . . . . . . . . . . . . 37

3.7. Caracteŕısticas seleccionadas por el algoritmo genético. . . . . . . . . . . . . . . . . . 38

3.8. Selección final de caracteŕısticas, considerando los sensores con mayor participación. 39

3.9. Modelo red neuronal perceptrón multicapa. . . . . . . . . . . . . . . . . . . . . . . . 40

3.10. Gráficas de error en la clasificación. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.11. Diagrama de bloques de red neuronal en hardware. . . . . . . . . . . . . . . . . . . . 43

3.12. Diagrama de caja negra del módulo principal de la red neuronal MLP. . . . . . . . . 44

3.13. Diagrama de caja negra del módulo de máquina de estados finitos. . . . . . . . . . . 45

3.14. Grafo de estados de la FSM para el control del flujo de datos del modelo MLP. . . . 46

3.15. Diagrama de cajas negras de las memorias ROM. (a) ROM de entradas. (b) ROM
de pesos. (c) ROM de sesgos. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.16. Diagrama de caja negra del módulo contador con banderas. . . . . . . . . . . . . . . 49

3.17. Diagrama de caja negra del codificador de dirección de memoria de pesos. . . . . . . 51

3.18. Diagrama de caja negra del codificador de dirección de memoria de pesos. . . . . . . 52

3.19. Diagrama de caja negra del módulo multiplicador. . . . . . . . . . . . . . . . . . . . 53

3.20. Diagrama de caja negra del módulo sumador. . . . . . . . . . . . . . . . . . . . . . . 53

3.21. Diagrama de caja negra del módulo ReLU. . . . . . . . . . . . . . . . . . . . . . . . 54

3.22. Diagrama de caja negra del bloque de registros actuales. . . . . . . . . . . . . . . . . 54

vii



3.23. Diagrama de caja negra del bloque de registros pasados. . . . . . . . . . . . . . . . . 55
3.24. Diagrama de caja negra del bloque de registros de salida. . . . . . . . . . . . . . . . 56
3.25. Diagrama de caja negra del módulo número mayor. . . . . . . . . . . . . . . . . . . . 57
3.26. Diagrama de bloques del diseño de prueba de precisión para la red neuronal MLP

en hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.27. Grafo de los estados de la FSM para prueba de precisión de red neuronal. . . . . . . 59
3.28. Diagrama de bloques del diseño de control de servomotores con red neuronal en

hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.29. Proceso de impresión 3D del dispositivo. . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.30. Impresión 3D de partes del dispositivo. . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.31. Soporte para servomotores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.32. Tapa de soporte para servomotores. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.33. Dedo pulgar acoplado a servomotor. . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.34. Dedo con tres articulaciones acoplado a servomotor. . . . . . . . . . . . . . . . . . . 65
3.35. Dispositivo ensamblado con posición “mano extendida”. . . . . . . . . . . . . . . . . 65
3.36. Dispositivo ensamblado con posición “mano cerrada”. . . . . . . . . . . . . . . . . . 66

4.1. Simulación de la red para clasificar una muestra, con medición de tiempo de proce-
samiento. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.2. Reporte de potencia del modelo en el FPGA. . . . . . . . . . . . . . . . . . . . . . . 70
4.3. Matriz de confusión del modelo MLP implementado en FPGA. . . . . . . . . . . . . 72
4.4. Pruebas de control de movimientos. 1) Oposición del pulgar. 2) Oposición de los

dedos pulgar e ı́ndice. 3) Extensión de los dedos pulgar e ı́ndice. 4) Extensión de los
dedos pulgar y meñique. 5) Extensión de los dedos ı́ndice y medio. 6) Extensión de
meñique. 7) Extensión de ı́ndice. 8) Extensión de pulgar. 9) Mano cerrada. 10) Mano
en reposo o mano abierta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

viii



Índice de tablas

1.1. Referencias de las investigaciones y publicaciones más importantes. . . . . . . . . . . 8
1.2. Art́ıculos e investigaciones utilizados para los antecedentes a nivel local. . . . . . . . 10
1.3. Patentes relacionadas con sistemas de control basados en EMG. . . . . . . . . . . . . 10

2.1. Cuadro de las caracteŕısticas temporales comúnmente utilizadas. . . . . . . . . . . . 16
2.2. Caracteŕısticas en frecuencia comúnmente utilizadas en señales EMG. . . . . . . . . 16

3.1. Caracteŕısticas base de datos EMG GRABMyo. . . . . . . . . . . . . . . . . . . . . . 30
3.2. Caracteŕısticas de señales EMG extráıdas en este trabajo . . . . . . . . . . . . . . . 34
3.3. Configuración de la red neuronal utilizada. . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4. Rangos de valores mı́nimos y máximos de pesos y sesgos por capa. . . . . . . . . . . 42
3.5. Entradas y salidas del módulo principal de la red neuronal MLP. . . . . . . . . . . . 44
3.6. Entradas y salidas del módulo de la máquina de estados finitos. . . . . . . . . . . . . 47
3.7. Entradas y salidas del módulo contador con banderas. . . . . . . . . . . . . . . . . . 49
3.8. Entradas y salidas del módulo codificador de dirección de pesos. . . . . . . . . . . . 51
3.9. Entradas y salidas del módulo multiplexor. . . . . . . . . . . . . . . . . . . . . . . . 52
3.10. Entradas y salidas del bloque de registros actuales. . . . . . . . . . . . . . . . . . . . 55
3.11. Entradas y salidas del bloque de registros pasados. . . . . . . . . . . . . . . . . . . . 55
3.12. Entradas y salidas del bloque de registros de salida. . . . . . . . . . . . . . . . . . . 56
3.13. Entradas y salidas del módulo número mayor. . . . . . . . . . . . . . . . . . . . . . . 57
3.14. Entradas y salidas del módulo FSM PRECISION. . . . . . . . . . . . . . . . . . . . . . 59
3.15. Configuraciones del ciclo en alto del PWM por dedo y posición. . . . . . . . . . . . . 62

4.1. Utilización de recursos por la red neuronal MLP en FPGA Artix 7®. . . . . . . . . . 67
4.2. Comparación de uso de recursos en FPGA entre diferentes trabajos. . . . . . . . . . 68
4.3. Comparación del tiempo de procesamiento entre la implementación en software y

hardware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.4. Métricas de evaluación del modelo MLP por clase. . . . . . . . . . . . . . . . . . . . 73

ix



x



CAPÍTULO 1

Introducción

En la actualidad, existen una gran cantidad de estudios con el uso de señales EMG, las cuales
son señales bioeléctricas que se generan al contraer y relajar los músculos [1]. Estas señales propor-
cionan información valiosa sobre la actividad muscular y son utilizadas para desarrollar o mejorar
tecnoloǵıas enfocadas en su análisis e interpretación, aplicadas a procesos o modelos que pueden
predecir o clasificar movimientos [2].

Las señales EMG son muy complejas al provenir del sistema nervioso, por lo que su clasificación
suele utilizan algoritmos de inteligencia artificial, como algoritmos de aprendizaje supervisado.
Diversos autores han empleado distintos clasificadores, entre ellos redes neuronales [3], máquinas
de soporte vectorial (SVM, por las siglas en inglés)[4] y algoritmos de K vecinos más cercanos
(KNN, por las siglas en inglés) [5].

Sin embargo, al utilizar algoritmos de inteligencia artificial complejos, se dificulta la portabili-
dad de los modelos, ya que al aumentar la complejidad también aumenta la capacidad necesaria de
procesamiento del equipo de cómputo donde se implementa [6]. Por lo que esto genera un desaf́ıo
al integrar clasificadores de señales EMG a sistemas portátiles, ya que no es posible utilizar equi-
pos de escritorio (PC) que son dif́ıciles de transportar y requieren de una gran fuente de enerǵıa
constantemente.

Ante esta problemática han surgido soluciones donde se implementan los clasificadores EMG
en dispositivos y procesadores embebidos, como en [7, 8], donde se utilizan microcontroladores
que destacan por su bajo consumo energético en comparación con otros dispositivos empleados en
el estado del arte, pero tienen el inconveniente de estar limitados en su capacidad para ejecutar
algoritmos complejos. Otros trabajos reportados, como [9, 10], emplean sistemas en chip (SoCs)
como Raspberry® o Jetson Nano®, que permiten la ejecución de algoritmos más complejos que
los microcontroladores, pero consumen una mayor cantidad de enerǵıa.

Por otro lado, en los trabajos [11, 12] se utilizan FPGAs, los cuales se presentan como una buena
opción para embeber clasificadores EMG por sus caracteŕısticas de procesamiento en paralelo y su
eficiencia energética adecuada para aplicaciones portátiles, aunque su implementación resulta más
desafiante que en otros dispositivos.

Estos trabajos presentan alternativas viables para integrar clasificadores EMG en sistemas
portátiles; sin embargo, existen áreas de oportunidad, ya que la mayoŕıa no utiliza clasificadores
complejos, lo que limita la precisión de los modelos. Por otro lado, aquellos que ejecutan algoritmos
más complejos, como redes neuronales, en su mayoŕıa utilizan SoCs, lo que conlleva un consumo
de enerǵıa considerable. Por ejemplo, en [13] se reporta que se requiere hasta 10 W de potencia, en

1



comparación con [11], uno de los pocos trabajos reportados de una red neuronal implementada en
FPGA, donde el consumo fue de 91.81 mW.

Por lo que se propone este trabajo en el cual se diseña e implementa un sistema basado en
un dispositivo FPGA para la clasificación de señales EMG utilizando una red neuronal tipo MLP,
con arquitectura 67-100-100-10 (entradas - neuronas en capas ocultas - salidas), donde las entradas
corresponden a caracteŕısticas extráıdas de las señales EMG y las salidas corresponden a los gestos
que se predicen. Este sistema permite identificar 10 gestos de la mano, a partir de las señales EMG
y posteriormente se controla un actuador que simula el movimiento.

2



1.1. Descripción del problema

Los algoritmos de inteligencia artificial, como las redes neuronales artificiales (RNA), se han
vuelto extremadamente populares para la clasificación de señales EMG, con la posibilidad de apli-
carlas en prótesis inteligentes, rehabilitación o seguimiento de la actividad muscular [14]. Por lo
tanto, es necesario implementar estas RNA en campo para integrarlas en la vida diaria [15].

La mayoŕıa de los clasificadores EMG reportados en la literatura se han implementado en
software, ya que esta metodoloǵıa resulta más sencilla y rápida de desarrollar. Sin embargo, su
rendimiento suele ser limitado para aplicaciones en tiempo real o portátiles. Esto se debe a que los
procesadores utilizados en dichas implementaciones como las computadoras de propósito general
o los microprocesadores secuenciales ejecutan las operaciones de manera serial, aunque intenten
paralelizar los cálculos mediante hilos. En consecuencia, el procesamiento de las neuronas se realiza
de forma seudoparalela, lo que provoca tiempos de respuesta elevados y una menor eficiencia en
tareas que requieren alta simultaneidad de operaciones [16]. Además, no resulta práctico para
aplicaciones en campo utilizar procesadores de gran tamaño o incluso unidades de procesamiento
gráfico, debido al espacio requerido y al alto consumo energético [17].

Por otro lado, las implementaciones en hardware ofrecen un mejor rendimiento en tiempo real,
menor latencia y bajo consumo de enerǵıa, aunque su diseño es más complejo y requiere una
optimización cuidadosa de recursos como memoria, bloques lógicos y arquitectura del modelo. Esta
complejidad técnica ha limitado la cantidad de desarrollos reportados, convirtiéndose en un área
de oportunidad, ya que las implementaciones en hardware ofrecen ventajas como alta flexibilidad,
mayor precisión, mejor replicabilidad, alta capacidad de prueba y menor consumo energético [18].

El tipo de implementación en hardware que se plantea en este trabajo es mediante el uso de un
dispositivo lógico programable tipo FPGA, el cual permite crear varios módulos lógicos simples que
pueden interconectarse para formar sistemas más complejos. Esto resulta adecuado para diseñar el
modelo en hardware de una neurona básica, con el fin de modularla y construir una red completa
[16]. De esta forma, los FPGA se presentan como una mejor opción para implementar RNA, debido a
su verdadero procesamiento en paralelo, bajo consumo energético y flexibilidad en su programación.

En la figura 1.1 se muestra un esquema simplificado que representa el uso de algoritmos de
inteligencia artificial en aplicaciones útiles.

Figura 1.1: Transición del modelo en PC hacia una aplicación embebida de control.

3



1.2. Justificación

La Organización Mundial de la Salud estima que aproximadamente el 15% de la población
mundial vive con alguna forma de discapacidad. En este contexto, la discapacidad motriz a nivel
global representa el 52%, lo que indica un alto número de personas que experimentan problemas
en los músculos y el sistema esquelético [19]. En México, según datos del Instituto Nacional de
Estad́ıstica y Geograf́ıa de 2015, el número de personas con discapacidad debido a un miembro
amputado se acercaba a las 780 mil. De estos casos, el 82% se deb́ıa a enfermedades vasculares
derivadas de la Diabetes Mellitus Tipo 2, el 16% era el resultado de amputaciones traumáticas
y el 2% restante correspond́ıa a amputaciones causadas por tumores malignos o enfermedades
congénitas [20]. En la figura 1.2 se presenta una gráfica con estos datos. Aśı, esta información
destaca la necesidad en México de desarrollar tecnoloǵıa y soluciones para personas que han perdido
alguna de sus extremidades. Además, es importante señalar que los individuos en esta situación
pueden enfrentar dificultades económicas al no poder cumplir con las demandas de diversos entornos
laborales, por lo que es de importancia presentar alternativas más accesibles para todos.

82%

16%
2%

Población sin una extremidad (2015) 
780000

Amputaciones por enfermedades vasculares

Amputaciones traumáticas

Amputaciones por tumores malignos o
enfermedades congénitas

Figura 1.2: Distribución porcentual de las causas de amputación en México, según INEGI 2015.

De manera local, en el estado de Querétaro se tienen algunas instituciones que ofrecen soluciones
a personas con alguna amputación, tal como el CRIMAL IAP Querétaro, como institución privada,
fabrica prótesis para aproximadamente 130 pacientes al año, registro al año 2016. Los Centros de
Rehabilitación Infantil Teleton también colaboran con el sector privado para proporcionar próte-
sis a alrededor de 775 pacientes al año [21]. Estas instituciones realizan una gran contribución al
atender personas amputadas, pero según los registro en instituciones hospitalarias del sector salud
en México, tan solo en 2014, se registraron 2179 amputaciones traumáticas por causa accidental

4



o intencional [21]. Lo que indica que aún hay un gran sector de la población que sufre de este
problema. De manera significativa, se tiene un registro que el 70.9% de las afectaciones fue en las
extremidades torácicas (principalmente mano y dedos de la mano) con base en la clasificación de
las amputaciones traumáticas [20]. Y considerando que la mano es uno de los órganos principales
en la extremidad superior del ser humano, ya que desempeña un papel fundamental al permitir
una manipulación f́ısica delicada y precisa. La amputación de la mano genera graves repercusiones
f́ısicas y psicológicas [22]. Debido a estas necesidades el estudio de la electromiograf́ıa ha cobrado
gran importancia en diversas áreas de investigación, como la biomédica, la medicina, la robótica, la
rehabilitación y la inteligencia artificial [14]. Esto ha llevado al desarrollo de dispositivos que pueden
simular eficazmente el movimiento de una extremidad. En este contexto, es de suma importancia
el estudio y aplicación de las señales EMG ya que son una fuente valiosa, ya que proporcionan
datos precisos sobre el funcionamiento de los músculos y nervios, registrando las señales eléctricas
generadas por los músculos durante el movimiento[23].

5



1.3. Hipótesis y Objetivos

En esta sección se presenta la hipótesis, objetivo general y los objetivos espećıficos del proyecto.

1.3.1. Hipótesis

La implementación de una red neuronal perceptrón multicapa en un dispositivo FPGA para la
clasificación de señales EMG asociadas a 10 movimientos de mano logrará una eficiencia igual o
mayor al 93%, disminuyendo el consumo energético y el tiempo de procesamiento en contraste con
implementaciones en software.

1.3.2. Objetivo general

Desarrollar un sistema de control en FPGA de un dispositivo que simule el comportamiento de
la mano, basado en un perceptrón multicapa para la detección de movimientos mediante señales
EMG.

1.3.3. Objetivos particulares

Elaborar un dispositivo actuador para simular los movimientos de mano.

Extraer caracteŕısticas de las señales EMG y seleccionar las que presenten mejor rendimiento
por medio de algoritmo genético al evaluar modelo perceptrón multicapa de prueba.

Diseñar e implementar la fase de entrenamiento del modelo perceptrón multicapa en software.

Diseñar e implementar la fase de ejecución del perceptrón en FPGA con lenguaje descriptor
de hardware VHDL.

Diseñar e implementar el control del actuador que simule movimientos de la mano en FPGA
con lenguaje descriptor de hardware VHDL.

Validar la implementación mediante el análisis de resultados al compararlos con la implemen-
tación en software.

6



1.4. Antecedentes

Actualmente, la evolución de los algoritmos de Deep Learning (DL) ha marcado un hito en las
técnicas de inteligencia artificial. Destacando porque la información se procesa en capas jerárquicas
que permiten realizar representaciones de los datos y comprender sus caracteŕısticas en niveles cada
vez más complejos [24]. En la práctica, la mayoria de algoritmos de DL se basan en redes neuro-
nales artificiales, que comparten propiedades básicas comunes. Estas redes consisten en neuronas
interconectadas dispuestas en capas, diferenciándose principalmente en la arquitectura de la red y,
ocasionalmente, en su proceso de entrenamiento [14, 25].

Una de las aplicaciones más empleadas del DL es el procesamiento de señales, para la clasifica-
ción, análisis e interpretación de las mismas, con el fin de desarrollar u optimizar procesos o modelos
[24]. De manera relevante, la clasificación de señales de electromiograf́ıa ha sido estudiada en los
recientes años en ámbitos de ingenieŕıa biomédica. Pero el problema con estas señales recae en que
son muy complejas, ya que provienen de la actividad muscular, que a su vez es controlada por el
sistema nervioso. Además, dependen de las propiedades anatómicas y fisiológicas de los músculos.
Aśı que, las señales EMG son consideradas un bipotencial que registra corrientes eléctricas genera-
das en los músculos durante su contracción/relajación [26]. Por lo que se suelen emplear métodos
de DL como el perceptrón multicapa o multilayer perceptron (MLP) para la clasificación de este
tipo de señales. El MLP consiste en una arquitectura de RNA donde se interconectan neuronas,
activadas por una función no lineal [14]. En comparación con otras arquitecturas más complejas,
como las redes neuronales convolucionales (CNN), el MLP presenta una estructura más simple y
regular que puede representarse mediante operaciones basicas de multiplicacion y suma, lo que
facilita su implementación directa en hardware reconfigurable como FPGA. El desaf́ıo con el uso de
este método es conseguir un desempeño adecuado por medio de los hiperparámetros en su proceso
de aprendizaje, lo que puede resultar en la necesidad de altos recursos computacionales.

Debido a la alta complejidad de algunas tareas de procesamiento, como la clasificación de señales
EMG, los algoritmos de DL también se han vuelto más complejos desde el punto de vista compu-
tacional. Además, el consumo energético y tiempo de ejecución en dichos algoritmos también se
ha elevado considerablemente. Por ello, encontrar la tecnoloǵıa que permita una implementación
eficiente en tiempos y consumo energético es fundamental en la clasificación. Recientemente, se
han utilizado unidades de procesamiento central o central process units (CPUs) y unidades de pro-
cesamiento gráfico o graphics processing unit (GPUs) para implementar estos algoritmos [27]. A
pesar de ello, las CPUs suelen requerir mucho espacio y funcionan con procesamiento secuencial.
Y en el caso de las GPUs utilizan un consumo eléctrico elevado. Como alternativa para eliminar
estas desventajas, los dispositivos de procesamiento FPGA han demostrado ser prometedores en
términos de consumo de enerǵıa y rendimiento. Además, son adecuadas para la implementación
de algoritmos de DL por su ejecución en paralelo [16]. Las FPGA ofrecen un diseño espećıfico de
hardware que garantiza un mayor rendimiento, menor consumo de enerǵıa y costos reducidos en
comparación con una implementación en CPUs y GPUs [28].

En este contexto, esta tesis se enfoca en la investigación e implementación de una RNA tipo
MLP utilizando un dispositivo FPGA con el fin de clasificar señales de EMG provenientes de
movimientos de mano. Ya que, se desarrollará un prototipo de dispositivo, que simule movimientos
de una mano. Con el fin de realizar funciones como agarre, posicionamiento de dedos, entre otras.

7



se busca abandonar la implementación en software de la red, que suele ser una implementación de
algoritmos y libreŕıas ya definidas en forma de instrucciones que se ejecutan en un procesador. Para
pasar a una implementación a nivel de hardware con el objetivo de reducir los costos y aumentar la
velocidad de procesamiento con menor consumo de enerǵıa. Gracias a las caracteŕısticas propias de
las FPGA que resultan más adecuadas para aplicaciones portátiles y que requieran procesamiento
en paralelo como el problema que se abordará.

Principales referencias en la literatura

En esta subsección, se encontrarán las investigaciones, proyectos y publicaciones más relevantes
a nivel global acerca la implementación de algoritmos para clasificar señales de EMG en dispositivos
portátiles.

Tabla 1.1: Referencias de las investigaciones y publicaciones más importantes.

Ref. Año Descripción Precisión% Movs. Tecnoloǵıa

[11] 2023 Reconocimiento de gestos basado en un
sensor EMG de tipo seco y redes neurona-
les binarizadas implementadas en FPGA.

95.4 9 FPGA

[29] 2024 Diseño e implementación de un modelo
para autenticar usuarios mediante señales
EMG, arquitectura optimizada para im-
plementarse en FPGA.

99.0 12 FPGA

[17] 2020 Comparación de MLP y CNN en FPGA
en términos de retardo y consumo.

96.0 5 FPGA

[30] 2024 Se implementa una red neuronal de pi-
cos para reconocer movimientos median-
te señales EMG, se hace la inferencia del
modelo en FPGA.

83.1 12 FPGA

[31] 2022 Combina datos de sensores EMG y visua-
les para clasificar gestos, mediante una red
neuronal recurrente de picos, se hace infe-
rencia en FPGA.

63.9 (solo EMG) 5 FPGA

[32] 2023 Clasificación de señales EMG utilizando
una red neuronal ligera implementada en
FPGA.

95.0 6 FPGA

[12] 2023 Autenticación de usuarios basado en
señales EMG utilizando redes neuronales
Siamese y transformada MODWT. Imple-
mentado en FPGA.

90.0 1 FPGA

Continúa en la siguiente página

8



Tabla 1.1 – continuación de la página anterior

Ref. Año Descripción Precisión (%) Movs. Tecnoloǵıa

[33] 2023 Reconocimiento de gestos de la mano
utilizando señales EMG. Incluye extrac-
ción de caracteŕısticas en el dominio tiem-
po y aprendizaje supervisado (DT, KNN,
SVM) para controlar una prótesis.

94.0 4 Raspberry
Pi®

[34] 2024 Clasificación de movimientos de la mano
usando señales EMG, diseñado espećıfica-
mente para pruebas en prótesis de mano
subactuadas.

92.5 5 Jetson Nano®

[35] 2024 Describe el diseño de una prótesis de rodi-
lla controlada en tiempo real por señales
EMG, utiliza varios algoritmos implemen-
tados en SOC.

80.0 20 Raspberry
Pi®

[36] 2024 Algoritmos kNN implementados en el
microcontrolador para clasificar señales
EMG.

94.7 6 ARM Cortex-
M4®

[37] 2024 Diseño de un sistema en tiempo real para
el análisis y clasificación de señales EMG
en una plataforma embebida, se utiliza
una red neuronal MLP.

95.3 5 ARM Cortex-
M4®

[38] 2024 Sistema portátil basado en EMG y algorit-
mo de inteligencia artificial para reconocer
seis expresiones faciales.

90.0 6 Arduino Nano
IoT®

[39] 2023 Sistema de reconocimiento de gestos en
plataforma Zynq (XC7Z020).

97.7 6 FPGA

De acuerdo con la Tabla 1.1, se observa que la mayoŕıa de los trabajos recientes (2023–2024)
donde se embeben modelos de clasificación EMG en FPGA priorizan el uso de redes neuronales
ligeras, como MLP optimizados o variantes binarizadas, con resultados superiores al 90% de pre-
cisión. Esto evidencia el potencial de esta arquitectura para ejecutar inferencias en tiempo real de
modelos de redes neuronales.

Trabajos previos en la UAQ

En esta subsección se encontrarán los trabajos realizadas en la universidad autónoma de Queréta-
ro relacionados a el proyecto, lo cual se puede observar en el Cuadro.

9



Tabla 1.2: Art́ıculos e investigaciones utilizados para los antecedentes a nivel local.

Ref. Año Descripción Precisión% Movs. Tecnoloǵıa

[40] 2023 El trabajo se centra en utilizar algo-
ritmos genéticos para la selección de
caracteŕısticas de señales EMG.

90.0 7 (pierna
derecha)

PC

[41] 2013 Diseño en FPGA de una red neuro-
nal artificial (RNA) para la identifi-
cación en ĺınea de un sistema.

99.9
(identificación de

sistema, no
clasificación

EMG)

- FPGA

[42] 2019 Análisis de señales EMG mediante
IA; abarca recolección, tratamiento
y clasificación.

- - PC

[43] 2021 Clasificación de señales EMG con
máquinas de soporte vectorial y tres
kernels.

92–98 10 (mano) PC

Según la Tabla 1.2 los trabajos de la UAQ han explorado más la clasificación en PC, sin llegar
aún a implementaciones prácticas en FPGA, lo que justifica el presente trabajo que se alinea con la
tendencia internacional, proponiendo una implementación práctica en FPGA que busca equilibrar
precisión, velocidad y consumo de recursos, aportando un paso más hacia la traslación del modelo
en PC a una aplicación embebida funcional.

Tabla de patentes

En esta subsección se encontrarán patentes relevantes con el uso de señales EMG.

Tabla 1.3: Patentes relacionadas con sistemas de control basados en EMG.

Año Referencia T́ıtulo Descripción

2020 [44] EMG control systems and
methods for instructing
extracorporeal prosthesis
users

Se describen sistemas y métodos, tan-
to en hardware como en software, para
la obtención y análisis de señales EMG,
con el fin de realizar la calibración, fun-
cionamiento y control de prótesis de
brazo.

2016 [45] Electromyography with
prosthetic or orthotic
devices

Se describen sistemas, métodos y dis-
positivos para el funcionamiento y con-
trol de prótesis mediante señales EMG.
Pueden ser para extremidades superio-
res o inferiores, y usar sensores exter-
nos, subcutáneos, entre otros.

Continúa en la siguiente página

10



Tabla 1.3 – continuación de la página anterior

Año Referencia T́ıtulo Descripción

2013 [46] Method, system and appa-
ratus for real-time classi-
fication of muscle signals
from self-selected intentio-
nal movements

Se propone un nuevo método para asig-
nar señales EMG a contracciones mus-
culares que corresponden a funciones
espećıficas de una prótesis. Las señales
son clasificadas en tiempo real a partir
de movimientos intencionales.

En la Tabla 1.3 se presentan algunas patentes relevantes en el área de control de prótesis
mediante señales EMG. Estas patentes, registradas principalmente entre 2013 y 2020, describen
sistemas y métodos orientados al control de extremidades protésicas. Sin embargo, a diferencia
de estos desarrollos patentados, la presente tesis no busca diseñar una prótesis comercial, sino
optimizar la etapa de clasificación mediante una red neuronal MLP implementada en FPGA. Por
tanto, el análisis de estas patentes sirve únicamente para contextualizar la evolución tecnológica
del uso de EMG en aplicaciones biomédicas.

11



1.5. Estructura de la tesis

Esta tesis está estructurada de la siguiente manera: en el caṕıtulo 1 se presenta la introducción
donde se explica cómo surge este proyecto, sobre el uso de señales EMG para controlar dispositivos
como prótesis, el uso reciente de algoritmos de inteligencia artificial y la importancia de imple-
mentar los modelos en dispositivos portátiles como FPGA. También, en este caṕıtulo se presenta
la problemática, justificación, hipótesis, objetivos y los antecedentes encontrados en la revisión de
literatura, relacionadas con la implementación de clasificadores EMG en dispositivos FPGA. En el
caṕıtulo 2 se muestra el marco teórico donde se describen las señales EMG, aśı como las técnicas
de procesamiento de ellas. Después se describe el algoritmo genético. Posteriormente, se describe la
red neuronal tipo perceptrón multicapa y sus hiperparámetros y, por último, se describe que es un
FPGA y su arquitectura general. En el caṕıtulo 3 se encuentra la metodoloǵıa para el desarrollo
del proyecto. En el caṕıtulo 4 se muestran los resultados obtenidos del trabajo y su discusión. Por
último, en el caṕıtulo 5 se presentan las conclusiones que se obtuvieron en el proyecto.

12



CAPÍTULO 2

Fundamentación teórica

En este caṕıtulo se describe el marco teórico correspondiente a los temas más importantes para
comprender las bases de esta tesis. Describe las señales EMG, sus caracteŕısticas y algunas técnicas
de procesamiento. También, se describe la arquitectura de la red neuronal MLP, se describe el
algoritmo genético como herramienta de optimización y, finalmente, se presentan los fundamentos
de los dispositivos FPGA.

2.1. Señales EMG

Las señales EMG son señales eléctricas musculares o bioeléctricas que registran la actividad
muscular, revelando información sobre la fuerza, el movimiento y la fatiga. Esta actividad muscular
se registra mediante electrodos, ya sean invasivos (como agujas en el músculo) o no invasivos (co-
locados en la piel). Por lo que, la señal EMG es una representación de los potenciales de acción de
las fibras musculares, que ocurren a intervalos aleatorios [47]. Aunque, la detección de estas señales
presenta dos problemas clave. El primero es la relación señal-ruido, que se refiere a la proporción
entre la enerǵıa de las señales de EMG y la enerǵıa del ruido no deseado. El segundo problema
en la detección es la distorsión de la señal, la cual implica que la contribución relativa de las fre-
cuencias en la señal no debe alterarse [47]. Por ello, estas señales requieren preprocesamiento para
eliminar el ruido y mejorar su amplitud, ya que, t́ıpicamente, su amplitud está entre 0.1 mV y
10 mV [14, 48, 47]. Además, hay que tener en cuenta la colocación precisa de los electrodos en la
superficie muscular para obtener mediciones exactas. Aśı como, evitar movimientos no deseados de
los electrodos e interferencias electromagnéticas que puedan comprometer la precisión de la señal
[14, 48, 49].

2.1.1. Adquisición de señal EMG

La adquisición de la señal es una etapa que requiere mucha atención, ya que los procesos
subsiguientes y la precisión de la estimación dependen de la calidad de la señal [49]. Según [50] esta
etapa de adquisición consiste principalmente en :

El método utilizado para registrar la señal.

El dispositivo de adquisición.

13



El número de canales y la posición de los músculos.

El diseño del amplificador y del filtro.

La frecuencia de muestreo.

2.1.2. Filtrado y tasa de muestreo

Las señales EMG se preprocesan antes de realizar la extracción de sus caracteŕısticas. El cual
consiste en amplificar y filtrar la señal [50, 48]. T́ıpicamente, se utiliza un filtro pasa-banda, ya que
la información importante de las señales EMG se encuentra en la banda de frecuencia de 0 Hz a 500
Hz, y principalmente la enerǵıa se concentra en 20 Hz a 150 Hz [49, 50]. Por lo que, comúnmente, la
frecuencia de corte inferior en el filtro es entre 5 y 20 Hz, con el fin de eliminar variaciones causadas
por el movimiento de electrodos o cables, las cuales suelen estar en el rango de 0 a 20 Hz [48, 49].
Mientras que la frecuencia de corte superior comúnmente es de 500 Hz, ya que por encima de esta
frecuencia se considera ruido en la señal [50, 48]. De manera adicional, se suele utilizar un filtro
tipo Notch a 50 o 60 Hz para eliminar el ruido que pueda interferir de la frecuencia de alimentación
[48, 49]. Además, como se registra una gran cantidad de información, se realiza un muestro de la
señal. Que comúnmente, con un filtro pasa bajas a 500 Hz, la tasa de muestreo es de 1 KHz. Ya
que, según la regla de Nyquist, la tasa de muestreo debe ser igual al doble de la frecuencia más alta
de interés. Esto con el fin de evitar que la señal sea indistinguible al momento de digitalizarla [50].
De manera adicional, otro punto importante es la amplificación de la señal, la cual suele ser entre
100 y 5 mil veces. Esto ya que la señal tienen una amplitud máxima por debajo de 10 mV, lo que
la hace propensa a interferencias. Sin embargo, la mayoŕıa de sistemas de adquisición ya realizan
la amplificación de la señal automáticamente [50].

2.1.3. Segmentación

El análisis de las señales EMG se suele hacer en segmentos de tiempo o también llamados, épo-
cas o ventanas. ya que la propiedad no estacionaria de la señal complica que los datos se analizan
en tiempo real [50, 51]. En la segmentación, es importante elegir la técnica que se utilizara, el ta-
maño del segmento y el estado de la señal, para conseguir una buena precisión en la clasificación de
estas [49]. Existen dos técnicas de segmentación, la adyacente y la superpuesta. En la segmentación
adyacente se segmenta de manera consecutiva con una longitud personalizada. El problema con
este tipo de segmentación es que no se aprovecha el tiempo de procesamiento, ya que el tiempo
de procesamiento suele ser menor al tiempo de segmentación. En cambio, en la segmentación su-
perpuesta se aprovecha mejor el tiempo de procesamiento, ya que se utiliza el tiempo inactivo del
procesador para adquirir más datos [50]. En la figura 2.1 se muestra un ejemplo de las técnicas de
segmentación.

El tamaño de los segmentos tiene relación en el tiempo de procesamiento de este. Un segmento
muy grande puede aumentar la presión de la clasificación, pero el tiempo de procesamiento será
mayor [50]. Aśı que se busca un equilibrio entre precisión y tiempo de procesamiento.

Para obtener el número de ventanas o segmentos en que se divide la señal se emplea la ecuación
2.1. Donde N es el número de ventanas resultantes, L es la longitud de la señal, w es el tamaño del
segmento propuesto y t es el empalme entre los segmentos propuestos, toso representado en numero
de puntos o muestras de la señal.

14



Tiempo

Segmentación Adyacente Segmentación Superpuesta

Tiempo de
procesamiento

Segmento 1 Segmento 1

Segmento 2 Segmento 2

Segmento 3 Segmento 3

t t

Tiempo

T T2T 3T T/4 T/2

Figura 2.1: Técnicas de segmentación.

N =

⌊
L− w

w − t

⌋
+ 1 (2.1)

2.1.4. Extracción de caracteŕısticas

Después de que la señal EMG fue adquirida y pre-procesada, se realiza la extracción de carac-
teŕısticas [48]. Se asignan vectores de caracteŕısticas de menor dimensión que la señal cruda, ya
que las caracteŕısticas describen mejor la información de la señal [50]. Las caracteŕısticas se pueden
agrupar dependiendo el dominio donde se calculan [14, 49, 48, 50, 51].

Caracteŕısticas en el dominio de tiempo.

Caracteŕısticas en el dominio de frecuencia.

Caracteŕısticas en el dominio tiempo-frecuencia.

Caracteŕısticas en el dominio espacial.

Los vectores de caracteŕısticas, al estar formados de diferentes parámetros de la señal, son de
suma importancia. Ya que la elección de los parámetros adecuados determina el éxito de la clasifi-
cación de la señal [48].

Caracteŕısticas en el dominio de tiempo: Las caracteŕısticas en el dominó del tiempo son uti-
lizadas con mayor frecuencia debido a su menor complejidad computacional comparada con las
caracteŕısticas de otro tipo [14, 51, 49, 52]. Además, estas son extráıdas directamente de la señal
cruda, por lo que no es necesario aplicar algún tipo de transformada. El resultado es una función
en el tiempo que gracias a su alta velocidad computacional son ampliamente utilizadas en modelos
de clasificación y regresión [49, 14]. Estas caracteŕısticas se utilizan principalmente para analizar
el esfuerzo en el músculo o el nivel activo [52]. En el Cuadro 2.1 se muestran las caracteŕısticas
temporales comúnmente utilizadas.

15



Tabla 2.1: Cuadro de las caracteŕısticas temporales comúnmente utilizadas.

Nombre Fórmula Función Descripción

Valor absoluto medio 1
N

∑N
k=1 |xk| Amplitud promedio

sin polaridad
Promedio de los valores absolutos de la
señal EMG [48, 14].

Electromiograma
integrado

∑N
k=1 |xk| Suma de magnitudes

absolutas
Tasa de detección inicial; indica activa-
ción muscular [48, 51].

Ráız cuadrada media
√

1
N

∑N
k=1 x

2
k Amplitud efectiva Ráız cuadrada del promedio de los va-

lores al cuadrado [48, 51].

Cruce por cero
∑N−1

k=1 f(x) Cambios de
polaridad

Número de veces que la señal cruza por
cero. f(x) = 1 si xkxk+1 < 0 y |xk −
xk+1| ≥ L; de otro modo es cero [48,
14].

Cambios de signo de
pendiente

∑N−1
k=2 f(x) Número de cambios

de pendiente
f(x) = 1 si xk es un punto de inflexión.
Representa cambios en la dirección de
la señal [14].

Longitud de onda
∑N

k=2 |xk − xk−1| Actividad total de la
señal

Mide la variación acumulada de la señal
[14].

Varianza 1
N−1

∑N
k=1(xk − x̄)2 Dispersión de la

señal
Mide cuán dispersos están los valores
de la señal respecto a la media [48].

Desviación estándar
√

1
N

∑N
k=1(xk − x̄)2 Medida de

variabilidad
Ráız cuadrada de la varianza; útil para
conocer la amplitud promedio de varia-
ción [48].

Amplitud Willison
∑N−1

k=1 f(|xk+1 − xk|) Cantidad de cambios
mayores a un umbral

Cuenta el número de veces que la dife-
rencia entre muestras consecutivas su-
pera un umbral dado [48].

Caracteŕısticas en el dominio de frecuencia: las caracteŕısticas en dominio de la frecuencia se
utilizan principalmente para calcular la fatiga muscular [48, 52]. También se utilizan para comple-
mentar las caracteŕısticas en el dominio del tiempo. Se extraen de la densidad espectral de potencia
y se calculan mediante métodos paramétricos. En comparación Con las caracteŕısticas en el dominio
del tiempo, estas requieren un mayor costo computacional [49]. En el Cuadro 2.2 se muestran las
caracteŕısticas en el dominio de la frecuencia comúnmente utilizadas.

Tabla 2.2: Caracteŕısticas en frecuencia comúnmente utilizadas en señales EMG.

Nombre Fórmula matemática Descripción

Frecuencia media MNF =
∑M

l=1 flPl/
∑M

l=1 Pl Se conoce como frecuencia espectral pro-
medio o frecuencia promedio de potencia.
Donde fl y Pl son la frecuencia y el espec-
tro de potencia en el l-ésimo segmento en
el dominio de la frecuencia o (bin). Y M
es la longitud del bin [48, 51].

Continúa en la siguiente página

16



Tabla 2.2 – continuación de la página anterior

Nombre Fórmula matemática Descripción

Frecuencia media-
na

∑MDF
l=1 Pl =

∑M
MDF Pl MDF es la mitad de la potencia total de

la señal en el bin actual. Donde Pl es el
espectro de potencia en el l-ésimo bin, y
M es la longitud del bin [48, 51].

Relación de fre-
cuencias

FR =
∑ULC

i=LLC Pl/
∑UHC

i=LHC Pl Se utiliza para distinguir entre contrac-
ción y relajación del músculo. Donde
ULC y LLC representan el ĺımite supe-
rior e inferior de corte de baja frecuencia
de la señal EMG. Y UHC y LHC re-
presentan el ĺımite superior e inferior de
corte de alta frecuencia del de la señal
EMG [48].

Frecuencia pico PKF = máx(Pl) Indica la ubicación de la frecuencia don-
de está la máxima potencia [51].

Caracteŕısticas en el dominio tiempo-frecuencia: Las caracteŕısticas en el dominio tiempo-
frecuencia pueden localizar la enerǵıa de la señal en los dos dominios. Pero, tienen una mayor
complejidad computacional debido a la transformación que requieren[52, 49, 48]. Por lo que hay
pocos estudios que se basan en estas caracteŕısticas, adicional, que es más compleja su interpretación
[52]. Algunos algoritmos rápidos que incluyen las caracteŕısticas en el dominio tiempo-frecuencia
son la transformada de Fourier de tiempo corto, y la transformada wavelet. Estos logran cumplir
los requisitos de tiempo real necesarios para la clasificación de la señal [48].

Caracteŕısticas en el dominio espacial : Las caracteŕısticas en el dominio espacial, han tenido
relevancia al emplear la técnica de electromiograf́ıa de alta densidad [50]. Esta técnica consiste en
colocar una rejilla densa de electrodos de superficie. Lo cual permite variar el uso de estos sobre un
área de piel restringida. Lo que llevó a demostrar que regiones distintas del músculo se activan de
manera variante dependiendo de la posición de la articulación [53]. Por lo que estas mediciones han
permitido extraer caracteŕısticas espaciales de las señales EMG registradas. Las cuales permiten
diferenciar entre las posiciones y el nivel de fuerza, dependiendo la distribución de unidades motoras
de acción potencial en los músculos. Lo cual, permite visualizar cómo se realiza la distribución de
carga en los músculos [48, 50]. Aunque estas caracteŕısticas tiene muy poca investigación y diseño,
ya que la electromiograf́ıa de alta densidad se ha adaptado recientemente [54].

2.2. Redes neuronales artificiales

Las RNAs, son algoritmos que se inspiran en el funcionamiento de las redes neuronales biológicas
del sistema nervioso. El desempeño de las neuronas en el cerebro se explica mediante el paradig-
ma conexionista, cuyo principio fundamental es que los fenómenos mentales pueden ser explicados
mediante redes de unidades simples interconectadas [55]. La neurona constituye la unidad funda-
mental del sistema nervioso, especialmente en el cerebro. Su función principal radica en procesar y
combinar señales para luego transmitirlas a otras neuronas interconectadas. Las RNAs siguen un

17



esquema similar, donde la unidad principal es la neurona o perceptrón simple. En la figura 2.2,
cada nodo corresponde a una neurona artificial, y las flechas simbolizan las conexiones que existen
entre ellas, desde la salida de una hasta la entrada de la siguiente [56].

Entradas

Salida

Función de activación

Dendritas

Soma

Axón

Figura 2.2: Esquema analoǵıa entre neuronas biológicas y RNA.

En un principio, las redes neuronales tomaron su inspiración del cerebro. Sin embargo, con el
tiempo, se dejó de intentar replicar cómo funciona el cerebro y en su lugar se busca encontrar las
configuraciones adecuadas para tareas espećıficas [57].

Una red neuronal no es un programa fijo, sino más bien un modelo, un sistema que procesa
información o entradas. Las caracteŕısticas de una red neuronal de acuerdo a [24] son las siguientes
:

El procesamiento de la información ocurre en su forma más simple, a través de elementos
simples llamados neuronas.

Las neuronas están conectadas y se intercambian señales entre ellas a través de enlaces de
conexión.

Los enlaces de conexión entre las neuronas pueden ser más fuertes o más débiles, y esto
determina cómo se procesa la información.

Cada neurona tiene un estado interno que es determinado por todas las conexiones entrantes
de otras neuronas.

Cada neurona tiene una función de activación diferente que se calcula en función de su estado
y determina su señal de salida.

Podemos identificar dos caracteŕısticas principales para una red neuronal:

La arquitectura de la red neuronal: Esto describe el conjunto de conexiones, es decir, feedfor-
ward, recurrente, de capa única o múltiple, y el número de neuronas en cada capa.

El aprendizaje: Esto describe lo que comúnmente se define como el entrenamiento. La for-
ma más común pero no exclusiva de entrenar una red neuronal es mediante el descenso de
gradiente y la retropropagación (backpropagation).

18



Una neurona es una función matemática que toma uno o más valores de entrada y produce un
único valor numérico como salida:

Neurona Artificial

Salida

Función de 
ActivaciónActivación

SesgoEntrada

Pesos

∑ F(∑)

1 b

x1 w1

w2

w3

wn

x2

x3

xn

Figura 2.3: Modelo de neurona artificial.

Por lo que el modelo general seŕıa el expuesto en la ecuación 2.2:

y = f

(
n∑

i=1

xiwi + b

)
(2.2)

1. Primero, se tiene la suma ponderada de las entradas xi y los pesos wi también conocida como
valor de activación. En este caso, xi puede ser valores numéricos que representan los datos
de entrada o las salidas de otras neuronas es decir, si la neurona forma parte de una red
neuronal. Los pesos wi son valores numéricos que representan tanto la fuerza de las entradas
como, alternativamente, la fuerza de las conexiones entre las neuronas. El peso b es un valor
especial llamado sesgo cuya entrada siempre es 1 [58].

2. Luego, se utiliza el resultado de la suma ponderada como entrada para la función de activación
f , que también se conoce como función de transferencia. Existen muchos tipos de funciones
de activación, pero todas deben cumplir con el requisito de ser no lineales [58].

2.2.1. Perceptrón multicapa

La arquitectura del MPL es una de las redes neuronales artificiales más utilizadas [59]. En la
figura 2.4 se presenta un MPL genérico que consta de las siguientes capas:

Capa de entrada: Esta capa posee una o más entradas, cuya cantidad depende de la aplicación.
Cada entrada se conecta y multiplica por el peso de cada neurona en la primera capa oculta.
Se consideran como capas pasivas ya que solo transfieren el valor x a la siguiente capa.

19



Capas ocultas: Estas capas comprenden una o más capas de neuronas, donde cada neurona
está conectada a todas las neuronas en la capa siguiente mediante un peso. Se consideran
capas activas ya que operan sobre los datos de entrada de las capas anteriores.

Capa de salida: En esta capa se encuentran las neuronas que coinciden con el número de
salidas de la red.

x1

x2

x3

xn

. . . 

. . . 

. . . 

Capa de entradas Capas ocultas

.

.

.

. . . 

y1

y2

y3

yn

x1

x2

x3

xn

Capa de entradas Capa de salidasCapas ocultas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figura 2.4: Red Neuronal Perceptrón Multicapa.

El empleo del modelo de red neuronal perceptrón multicapa tiene dos fases:

Fase de entrenamiento, donde la red aprende a llevar a cabo una tarea espećıfica.

Fase de operación, en la cual la red ejecuta la tarea para la cual fue entrenada.

En la fase de entrenamiento, se destacan dos pasos fundamentales: la etapa de avance ( Forward
stage) y la etapa de retropropagación (Back-Propagation).

En la etapa de avance, se calcula la salida de la red a partir de los valores de entrada. Es decir,
los valores de entrada pasan a través de las capas ocultas hasta obtener un valor de salida.

En la etapa de retropropagación, se calcula un error entre el valor que se espera y la salida
obtenida en la etapa de avance. Este error se propaga a las neuronas dentro de la red mediante los
pesos. Se calcula un error correspondiente a cada neurona, y se actualizan los pesos y el sesgo de
la red [59].

2.2.2. Etapa de avance en el entrenamiento del MLP

Durante la etapa de avance, se realiza el cálculo de la salida de la red. Suponiendo que xi =
[x1, x2...xn] representa las entradas de la red, wij es el peso de la neurona j asociado con la entrada

20



i, yhj es la salida de la neurona j (j = 1, 2...q) en la capa h (h = 1, 2...m); bhj es el sesgo. La entrada
total de una neurona de la primera capa oculta (h = 1) se expresa mediante la siguiente ecuación:

s1j =
n∑

i=1

(wij ∗ xi + b1j) (2.3)

El procesamiento de la acumulación en la entrada de una neurona se realiza a través de su
función de activación no lineal. La expresión para la salida de una neurona en la primera capa
oculta se describe mediante la ecuación:

y1j = f(s1j) = f

(
n∑

i=1

(wij ∗ yi + b1j)

)
(2.4)

Los cálculos efectuados por las neuronas en las capas ocultas siguientes y la capa de salida están
representados por las ecuaciones:

shj =
m∑
k=1

(wkj ∗ yk + bhj) (2.5)

yhj = f(shj) = f

(
m∑
k=1

(wkj ∗ yk + bhj)

)
(2.6)

Donde k = (h− 1)j, representando a la neurona j en la capa anterior y wkj es el peso entre las
neuronas k y j.

2.2.3. Etapa de retropropagación en el entrenamiento del MLP

Durante esta etapa, el error en la salida se propaga hacia atrás dentro de la red y se utiliza
el algoritmo de gradiente descendente para actualizar los pesos y el sesgo [59]. La actualización se
lleva a cabo en tres pasos principales:

1. El error para las neuronas en la capa de salida, y el gradiente del error, se calculan por las
siguientes ecuaciones.

εsalida,j = (ydeseada − ysalida,j) (2.7)

δsalida,j = εsalida,j ∗ f ′(ysalida,j) (2.8)

Donde εsalida,j es el error entre el valor deseado y la salida real de la neurona j en la capa
de salida; δsalida,j es el gradiente del error que se propaga a las neuronas en la capa oculta a
través de los pesos.

Entonces el error propagado y el gradiente local están expresados por:

εhj = δ(h+1)j ∗ wj,(h+1)j (2.9)

δhj = εhj ∗ f ′(yh,j) (2.10)

Donde wj,(h+1)j es el peso entre la neurona j y la neurona siguiente.

21



2. La variación en los pesos y sesgo en la primera capa:

∆wij = α ∗ δ1j ∗ xi (2.11)

∆b1j = α ∗ δ1j (2.12)

Y la variación de los pesos y sesgo en las capas ocultas:

∆wkj = α ∗ δhj ∗ yhj (2.13)

∆bhj = α ∗ δhj (2.14)

Donde α es la tasa de aprendizaje, que determina cuanto se ajusta los pesos durante el
entrenamiento. Si es muy alto, el entrenamiento es rápido, pero el modelo puede no ser muy
preciso.

3. Actualización de los pesos y sesgo:

wkj(siguiente) = wkj(actual) + ∆wkj(actual) (2.15)

bhj(siguiente) = bhj(actual) + ∆bhj(actual) (2.16)

2.2.4. Funciones de Activación

Si las neuronas carecen de funciones de activación, su salida seŕıa la suma ponderada de las
entradas, lo que constituye una función lineal. En consecuencia, la red neuronal en su totalidad,
que es una composición de estas neuronas, se convierte en una composición de funciones lineales,
manteniendo aśı su naturaleza lineal. Esto implica que incluso al agregar capas ocultas, la red seguirá
siendo equivalente a un modelo simple de regresión lineal, con todas sus limitaciones. Para introducir
la no linealidad en la red, se utilizan funciones de activación no lineales en las neuronas. Por lo
general, todas las neuronas en una misma capa comparten la misma función de activación, pero
distintas capas pueden emplear funciones de activación diferentes [60]. Las funciones de activación
más comunes son las siguientes:

Función identidad. Esta función permite que el valor de activación pase a través de ella:

f(a) = a (2.17)

Función de actividad de umbral. Esta función activa la neurona; si la activación está por
encima de cierto valor:

f(a) =

{
1, si a ≥ 0

0, si a < 0
(2.18)

Función loǵıstica o la sigmoidal loǵıstica. Esta función es una de las más comúnmente utili-
zadas, ya que su salida está acotada entre 0 y 1, y puede interpretarse de manera estocástica
como la probabilidad de activación de la neurona:

f(a) =
1

1 + e−a
(2.19)

22



Función sigmoidal bipolar. Es simplemente una sigmoidal loǵıstica redimensionada y despla-
zada para tener un rango en (−1, 1):

f(a) =
2

1 + e−a
− 1 =

1− e−a

1 + e−a
(2.20)

Función Tangente hiperbólica:

f(a) =
1− e−2a

1 + e−2a
(2.21)

Función ReLU o Unidad Lineal Rectificada. Esta función de activación es probablemente la
que más se asemeja a su contraparte biológica. Es una mezcla de la función identidad y la
función de umbral:

f(a) =

{
a, si a ≥ 0

0, si a < 0
(2.22)

Las funciones de activación más utilizadas son la sigmoidal loǵıstica, la tangente hiperbólica y
la ReLU. Las tres funciones de activación difieren en los siguientes aspectos:

Su rango es diferente.

Sus derivadas se comportan de manera diferente durante el entrenamiento.

2.2.5. Validación del modelo MLP

Para validar el desempeño de una red MLP se hace una evaluación por medio de métricas que
permitan cuantificar la capacidad de clasificación ante datos nuevos [40]. El análisis de métricas a
partir de la matriz de confusion resultan útiles en casos de modelos de clasificación multiclase.

Por ello, la eficiencia del modelo proporciona una métrica que valida el desempeño de la red.
La cual, se calcula a partir del promedio de distintos factores resultantes de k numero de pruebas.
En cada prueba, se registran el numero de verdaderos positivos (VP), verdaderos negativos (VN),
falsos positivos (FP) y falsos negativos (FN). A partir de estos se determinan tres métricas para
calcular la eficiencia: exactitud, sensibilidad y especificidad. Las formulas de estas métricas según
[61] son las siguientes:

Exactitud =
V P + V N

V P + V N + FP + FN
(2.23)

Sensibilidad =
V P

V P + FN
(2.24)

Especificidad =
V N

V N + FP
(2.25)

Eficiencia =
Exactitud+ Sensibilidad+ Especificidad

3
(2.26)

Donde:

VP: casos correctamente clasificados como positivos.

23



VN: casos correctamente clasificados como negativos.

FP: casos incorrectamente clasificados como positivos.

FN: casos incorrectamente clasificados como negativos.

La exactitud nos proporciona un porcentaje toral de predicciones correctas con respecto al total
de las pruebas. La sensibilidad solo nos proporciona un promedio de la capacidad del modelo para
detectar correctamente casos positivos. Por otro lado, la especificidad muestra la capacidad del
modelo para detectar correctamente casos negativos. Finalmente, la eficiencia se define como el
promedio de estas tres métricas, lo que proporciona una valoración balanceada del desempeño del
modelo.

2.3. Algoritmo genético

El algoritmo genético (GA, por sus siglas en inglés) es una técnica o algoritmo de optimización
que está inspirada en el principio de la evolución natural. Se basa en los mecanismos de selección,
reproducción y mutación [62]. Se empleó por primera vez en 1970 por John Holland al buscar
resolver problemas complejos por medio de una estrategia adaptativa de la población [63]. Los GA
trabajan sobre un grupo de soluciones potenciales, el cual se conoce como población. La cual se
evalúa y evoluciona durante varias generaciones o iteraciones hasta encontrar la solución deseada
o satisfactoria [62, 63].

Operadores genéticos El mecanismo evolutivo del GA se basa en los siguientes principios:

Evaluación en función objetivo: a cada individuo del grupo de soluciones se le asigna un
valor de aptitud que muestra qué tan buena es con respecto al problema planteado o función
objetivo. La evaluación le indica al algoritmo qué soluciones ir seleccionando al ser las más
aptas en las siguientes generaciones [62].

Selección: se eligen qué individuos se van a reproducir. Las soluciones con mejor aptitud en la
evaluación son las seleccionadas, lo que hace referencia a la ”supervivencia del más apto”[62].

Cruzamiento: combina los genes de dos individuos padres para formar nuevos individuos hijos
que explorarán el espacio de búsqueda al ser nuevas combinaciones [62].

Mutación: modifica aleatoriamente genes de un individuo, con respecto a una probabilidad.
Esto introduce nuevas caracteŕısticas genéticas en la población, que ayudan a abarcar mayor
espacio de búsqueda y evita los óptimos locales [62].

Ciclo evolutivo El algoritmo genético funciona con este ciclo básico:

Aleatoriamente, se genera una población inicial.

Se evalúa la aptitud de cada individuo.

Se seleccionan los individuos más aptos para el cruzamiento.

Se aplican operadores de mutación para formar una nueva generación a partir del cruzamiento.

24



Se repite el proceso hasta alcanzar un criterio de parada o hasta un número máximo de
generaciones propuesto.

En la figura 2.5 se muestra un diagrama generar del ciclo evolutivo en el GA, donde i es la
población inicial aleatoria, f(x) es la evaluación en la función objetivo, Se es la selección de los
individuos más aptos, Cr es el cruzamiento o reproducción de los individuos seleccionados, Mu es
la mutación de los individuos hijos, y X∗ es la solución más apta al final del ciclo.

i f(x)

?

𝐱∗ Se Cr

Mu

f(x)

Figura 2.5: Diagrama de flujo genérico algoritmo genético.

2.4. FPGA

Las matrices de puertas lógicas programables en campo o Field Programmable Gate Arrays
(FPGA) son circuitos integrados basados en bloques lógicos programables o bloques lógicos configu-
rables (CLB, por sus siglas en inglés). Los cuales están conectados entre śı mediante interconexiones
programables. En la figura 2.6 se muestra una vista general de la arquitectura de una FPGA [64].

Los CLB se componen de múltiples celdas que pueden emular cualquier compuerta lógica o
combinación de estas. Estas celdas están conectadas mediante buses de interconexión configurables
[64]. En la figura 2.7 se muestra una celda lógica general simplificada según el fabricante Xilinx®.

Donde la LUT o tabla de busqueda, se pueden considerarse una colección de celdas de SRAM
las que forman tablas de verdad de n entradas. Esta arquitectura se utiliza para implementar cual-
quier función lógica combinacional que tenga un número n de variables. Las n entradas dependen
del fabricante, pero comúnmente suelen ser 3, 4, 5 o 6, y estas proporcionan la dirección a la que
se reflejara la salida de la LUT [65].

25



Conexiones 
programables

Bloques lógicos 
programables

Figura 2.6: Vista superior simple de arquitectura general de FPGA.

n-LUT

RAM Registro de
corrimiento

MUX

flip-flop

. 
. 
.

x1
x2

xn

s

clock

set/reset

y

q

Figura 2.7: Celda lógica simplificada en FPGA Xilinx®.

La arquitectura de la FPGA también incluye bloques lógicos de entrada/salida que facilitan
la comunicación con el entorno externo. Cuentan con pin de reloj y gestores de reloj, que propor-
cionan la sincronización en circuitos secuenciales. Además de bloques DSP para realizar funciones
aritméticas con mayor facilidad y bloques de memoria RAM para almacenar miles de bits [64].

2.4.1. Diseño en FPGA

Los FPGA son una tecnoloǵıa de cómputo reconfigurable, lo cual se refiere a un procesador que
puede ser programado con un diseño y luego poder cambiarlo por otro de acuerdo a las necesidades
del diseñador. Los FPGA permiten hacer diseños en paralelo dentro del mismo circuito y a nivel
compuertas, por lo que estos pueden ser exportados a Circuitos Integrados de Aplicación Espećıfica
(ASIC, por sus siglas en inglés) convirtiéndose en diseños de hardware destinados a una aplicación
espećıfica [64].

Los ingenieros comúnmente utilizan lenguajes de descripción de hardware (HDL, por sus siglas
en inglés) como VHDL o Verilog para hacer los diseños en FPGA, lo que permite la implementación

26



de algoritmos utilizando una metodoloǵıa similar al de un diseño en software [66].

Circuitos Integrados de muy Alta Velocidad HDL

El lenguaje descriptivo de hardware Circuitos integrados de muy alta velocidad (VHSIC-HDL
o VHDL, por sus siglas en inglés) es un lenguaje desarrollado por el Departamento de Defensa de
los Estados Unidos en la década de los 80 [64]. Con el propósito de describir, simular y sintetizar
circuitos digitales complejos mediante una representación textual [64, 66].

VHDL está diseñado para el modelado de sistemas concurrentes, como ocurre en circuitos
digitales reales, a diferencia de lenguajes de programación tradicionales donde se modela un com-
portamiento secuencial de algoritmos [66]. Además, VHDL es un estándar abierto definido por el
IEEE, lo cual le otorga compatibilidad con una amplia gama de herramientas de diseño[64]. Esto
permite que los proyectos desarrollados en VHDL sean portables entre distintos entornos y fabri-
cantes, siempre que se respete el cumplimiento del estándar.

En el contexto de esta tesis, la descripción del funcionamiento interno FPGA y el uso de VHDL
sirven como base teórica para comprender cómo pueden implementarse algoritmos como un per-
ceptrón multicapa en hardware reconfigurable. La traducción del modelo MLP a componentes de
hardware tales como bloques lógicos configurables para los módulos de decisión en la red neuronal,
memorias internas (BRAM) para almacenar los pesos y sesgos de la red, y unidades aritméticas
(DSP) para realizar las operaciones de suma y multiplicación en las neuronas se detalla en el capitu-
lo 3 correspondiente a la metodoloǵıa, donde se aborda la implementación espećıfica del clasificador
en la FPGA.

27



CAPÍTULO 3

Metodoloǵıa

En este caṕıtulo se presentan los métodos y las etapas que se realizaron para el desarrollo del
sistema de control de un actuador diseñado para simular movimientos de la mano, mediante la
implementación de una red neuronal tipo MLP en un dispositivo FPGA.

El procesamiento de la base de datos de señales EMG se llevó a cabo por medio del software
MATLAB® R2020a . La red neuronal inicialmente se construyó y entrenó en una laptop de 16
GB de memoria RAM, disco duro de 500 GB y procesador Intel® Core™ i7 de 12ª generación. Se
utilizó Jupyter Notebook 6.5.4 como entorno; empleando el lenguaje Python 3.12.6, para identificar
las caracteŕısticas e hiperparámetros requeridos para la clasificación.

El modelo entrenado fue posteriormente implementado en una tarjeta de desarrollo Basys 3®,
que incorpora un FPGA Artix 7® de la marca Xilinx®. La laptop, programas y el FPGA seleccio-
nado fueron utilizados para el logro de todos los objetivos. En la figura 3.1 se muestra el graphical
abstract que representa el sistema que se desarrolló.

Red neuronal MLP

FPGALaptop

Base de datos de señales
EMG

Etapa de entrenamiento Etapa de ejecución

Implementación MLP
en software

Red modulada por 
neuronas en hardware

Señal de control

Dispositivo para simular el
movimiento de mano controlado 

por servomotoresHiperparámetreos adecuados 
para la clasificación

Señales EMG para pruebas

Señales EMG

Figura 3.1: Graphical abstract del sistema.

28



La Figura 3.2 muestra el diagrama de flujo general de la metodoloǵıa para llevar a cabo el
trabajo.

Inicio.

Limpieza y dar 
formato a base de 

datos.

Seleccionar 
dispositivo 

FPGA adecuado 
para la 

implementación.

Desarrollar 
prototipo de 

dispositivo para 
pruebas de 

movimentos.

Selección de 
características y 

canales.

Implementación de la 
red en software 

(Python).

¿Se logró 
eficiencia mayor o 

igual al 93% en la clasificación 
de las señales 

EMG?

No

Diseño, desarrollo e implementación 
de etapa de procesamiento del MLP 

en FPGA.

Si

¿El grado de 
aproximación del modelo a la 
implementación en Python es 

adecuado?

No

Adquirir base de 
datos de las señales 
EMG de movimientos 

de mano.

Identificar 
funcionamiento, 
carateristicas y 
perifericos del 

dispositivo.

Pruebas de 
control del 
dispositivo.

Ajustes del 
dispositivo.

Diseño, desarrollo e implementación del 
control del dispositivo de pruebas  en 

FPGA en base en la clasificacion de las 
señales EMG.

Sí

Análisis de resultados.

Fin.

Figura 3.2: Diagrama de flujo para metodoloǵıa general aplicada.

A continuación, se presentan a detalle las etapas del desarrollo del proyecto.

3.1. Base de datos de señales EMG

Inicialmente, se buscó una base de datos de registros de señales EMG con el propósito de uti-
lizar dicha información para el entrenamiento y pruebas de la red MLP para clasificar. Se priorizó
la selección de una base de datos de acceso público que incluyera gestos espećıficos de la mano,
particularmente aquellos con movimiento de los dedos. Esto con la finalidad de que, una vez im-
plementado el sistema de control, dichos gestos pudieran ser simulados posteriormente mediante el
actuador desarrollado.

La base de datos que fue escogida contiene registros electromiográficos recopilados de los múscu-
los de la muñeca y el antebrazo mientras se realizan gestos con la mano. La recopilación de datos
se llevó a cabo con la participación de 43 individuos sanos (edad: 24-35 años) durante tres d́ıas dis-
tintos, mientras ejecutaban 16 gestos manuales y de los dedos en sesiones experimentales idénticas
cada d́ıa. Para fines de este estudio solo se emplearon las muestras del primer d́ıa, descartando las
muestras recopiladas en la sesiones dos y tres. En el experimento original, se colocaron 28 electrodos
de superficie distribuidos sobre los principales músculos del antebrazo, utilizando una configura-
ción monopolar con un electrodo de referencia en el codo. Las señales fueron adquiridas mediante

29



un sistema de registro multicanal EMG-USB2+® con una frecuencia de muestreo de 2048 Hz y
ganancia de 500, además se aplicaron filtros analógicos pasa altas y pasa bajas a frecuencias de 10
Hz y 500 Hz para eliminar el ruido de movimiento y la interferencia eléctrica.

El protocolo de adquisición consistió en la ejecución de gestos de prensión y movimientos indi-
viduales de los dedos, realizados con la mano dominante en una posición anatómica neutral. Los
participantes recibieron instrucciones visuales sobre el gesto a realizar y contaron con periodos de
descanso entre repeticiones para evitar la fatiga muscular. La adquisición se realizó en condicio-
nes controladas de temperatura y sin esfuerzo excesivo. Este protocolo garantiza la calidad de las
señales y la repetibilidad de los gestos, permitiendo el uso de la base de datos para el entrenamiento
de clasificadores de EMG.

La base de datos lleva por nombre:Gesture Recognition and Biometrics ElectroMyogram (GRABM-
yo) (version 1.0.2), Con identificación RRID: SCR 007345. Se encuentra disponible en [67]. Las
caracteŕısticas principales de esta se presentan en la tabla 3.1:

Tabla 3.1: Caracteŕısticas base de datos EMG GRABMyo.

Tipo de movimientos Manuales y de los dedos

Ubicación de electrodos Muñeca y antebrazo

Número de electrodos 28 electrodos de superficie

Número de participantes 43 individuos sanos (24–35 años)

Número de gestos 16 gestos manuales y de los dedos, más reposo

Número de repeticiones 7 repeticiones por movimiento

Total de registros 429,828 señales

Frecuencia de muestreo 2048 Hz

Tiempo de captura 4 s

Los 16 gestos o movimientos que representan las señales EMG de la base de datos. Estos se
muestran en la figura 3.3. Donde se observan diversas configuraciones de dedos y algunos gestos
con desplazamientos de muñeca.

30



Gesto Descripción Gesto Descripción Gesto Descripción Gesto Descripción

Prehensión 
lateral

Extensión 
de los 
dedos 

pulgar e 
índice

Extensión 
del dedo 

índice

Rotación 
interna del 
antebrazo

Aducción 
del pulgar

Extensión 
del pulgar y 
el meñique

Extensión 
del dedo 
pulgar

Rotación 
externa del 
antebrazo

Oposición 
del pulgar y 
el meñique

Extensión 
de los 
dedos 

índice y 
medio

Extensión 
de muñeca

Mano 
abierta

Oposición 
de los 
dedos 

pulgar e 
índice

Extensión 
del dedo 
meñique

Flexión de 
muñeca

Mano 
cerrada

Figura 3.3: Movimientos registrados en la base de datos.

Cabe señalar que, originalmente, la base de datos conteńıa 16 clases de movimientos y registros
del estado en reposo que se consideraron como una clase adicional. Sin embargo, se eliminaron 6 de
estas clases por no cumplir con los criterios definidos en este trabajo: algunas requeŕıan movimientos
de muñeca, y otras eran gestos repetitivos que no aportaban valor adicional al modelo. Por tanto,
se conservaron únicamente los gestos correspondientes a movimientos de los dedos.

En la Figura 3.4 se presentan los 10 gestos seleccionados, junto con la etiqueta asignada a cada
uno.

Gesto Descripción Gesto Descripción Gesto Descripción

Aducción del 
pulgar

Extensión de los 
dedos índice y 

medio
Mano cerrada

Oposición de 
los dedos 

pulgar e índice

Extensión del 
dedo meñique

Mano en reposo

Extensión de los 
dedos pulgar e 

índice

Extensión del 
dedo índice

Extensión del 
pulgar y el 
meñique

Extensión del 
dedo pulgar

0

1

2

3

4

5

6

7

8

9

Figura 3.4: Movimientos utilizados en el trabajo con su etiqueta numérica asignada.

Al conservar solo 10 movimientos y solo emplear los registros del primer d́ıa de las tres sesiones,

31



da un total de 84,280 señales crudas utilizadas en este trabajo, de las 429,828 disponibles en la base
de datos original.

En la Figura 3.5 se muestra una representación gráfica de una de las señales EMG contenidas
en la base de datos. Cada señal está compuesta por dos variables: amplitud y tiempo. Como
puede observarse, las señales presentan un comportamiento complejo y de dif́ıcil interpretación de
forma directa. Por ello, en etapas posteriores, se realiza un preprocesamiento para acondicionar la
información antes de utilizarla en el entrenamiento y validación del clasificador.

0 0.5 1 1.5 2 2.5 3 3.5 4

Tiempo (s)

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

A
m

pl
itu

d 
(V

)

Figura 3.5: Muestra de señal EMG correspondiente al gesto de mano abierta.

3.1.1. Preprocesamiento de los datos

Las señales EMG crudas de la base de datos al ser complejas con dif́ıcil interperetacion, se le
aplicaron varios etapas para acondicionar la información para ser exportada como una base de datos
estructurada y etiquetada en un archivo Excel® con formato CSV. el procesamiento de las señales
se realizo en MATLAB® por medio de funciones incorporadas en este software. a continuación se
presentan las fases de procesamiento.

Cambio de tasa de muestreo

Inicialmente, las señales EMG contenidas en la base de datos estaban registradas a una tasa de
muestreo de 2048Hz. Sin embargo, para facilitar el procesamiento y reducir la carga computacional
en el equipo de cómputo sin afectar la información relevante de las señales, se aplicó un resampleo o
cambio de muestreo a 1000 Hz. Se optó por utilizar esta tasa de muestreo, ya que en la literatura de
trabajos procesando este tipo de señales, como en [68] se emplea una tasa de 1 KHz, la cual resulta
adecuada para representar la información útil de las señales electromiograf́ıas. Esto favorece la
compatibilidad con otros trabajos de referencia y estándares de experimentos con buenos resultados
al aplicar algoritmos de clasificación. Para realizar el cambio de muestreo se utilizó la función

32



resample(x,p,q) de MATLAB®, donde cambia la frecuencia de muestreo de la señal de entrada
x, multiplicándola por la razón p

q . En este caso, la razón 1000
2048 se aproximó racionalmente con

la función rat(), resultando en p = 125 y q = 256, es decir, p
q = 125

256 . La función implementa
internamente un filtro antialiasing FIR con ventana Kaiser para prevenir aliasing (contaminación
de la señal) durante el proceso de cambio de muestreo. Dicho filtro presenta fase lineal, lo que
garantiza que no se introduzca distorsión de fase en la señal remuestreada. Además, la función
compensa automáticamente el retardo introducido por el filtro, manteniendo la alineación temporal
entre la señal original y la señal resultante.

Filtrado de las señales

Después de realizar el cambio en la frecuencia de muestreo, se aplicó un filtro pasa bandas
Butterworth de segundo orden, con frecuencias de corte de 10 Hz y 500 Hz, implementado mediante
las funciones butter y filtfilt de MATLAB®. Esta última se empleó para lograr una respuesta de
fase cero y evitar el desplazamiento temporal de la señal.

El propósito de este filtrado fue mantener la coherencia metodológica con trabajos previos y
eliminar posibles componentes residuales fuera del rango de interés. No obstante, cabe señalar
que las señales EMG originales ya hab́ıan sido prefiltradas durante la adquisición con un sistema
EMG-USB2+, el cual incorpora un filtro pasa banda analógico entre 10 Hz y 500 Hz. Por ello, la
aplicación del filtro digital no produjo cambios significativos en las señales.

De acuerdo con estudios previos [69, 70, 71], la mayor parte de la información útil en las señales
electromiograf́ıas de superficie se encuentra dentro de este rango de frecuencias. Por lo que al realizar
este filtrado dentro de esta banda, se asegura un mejor desempeño en el análisis de las señales en
etapas posteriores. No se aplicó un filtro notch, dado que el filtrado analógico del dispositivo ya
atenúa la interferencia de la red eléctrica (50/60 Hz).

Segmentación de las señales

Se aplica una segmentación o ventaneo superpuesto a cada muestra para aumentar el número
de datos disponibles y para capturar con mejor precisión las transiciones entre contracciones mus-
culares. Este enfoque de ventaneo superpuesto permite que cada nuevo segmento comience solo
pocos milisegundos después del anterior y comparte un mayor número de puntos de la señal con
los segmentos vecinos.

Previamente a este proceso de ventaneo, las muestras fueron divididas en los conjuntos de
entrenamiento, validación y prueba, con el fin de evitar cualquier traslape de información entre
ellos y asegurar una evaluación independiente del modelo.

Para este trabajo, se utilizaron ventanas de 250 ms con un empalme de 200 ms, por lo que
implica, que cada 50 ms empieza un nuevo segmento. Esta técnica produce múltiples subconjuntos
de datos a partir de cada muestra original, mejorando la robustez del modelo clasificador durante
la etapa de entrenamiento al tener mayor número de datos.

No se aplicó un umbral de enerǵıa o detección de EMG onset, debido a que la base de datos
utilizada ya se encuentra segmentada en periodos donde ocurren las contracciones musculares,
presentando pocos intervalos de reposo.

Utilizando la fórmula 2.1 se obtuvieron que cada muestra fue dividida en 76 ventas nuevas,
como se describe en 3.1. Donde cada ventana comparte la misma etiqueta de movimiento de la
señal que se extrajo.

33



N =

⌊
4000− 250

250− 200

⌋
+ 1 =

⌊
3750

50

⌋
+ 1 = ⌊75⌋+ 1 = 76 (3.1)

Al dividir cada señal en 76 segmentos, en esta etapa se tienen 6,405,280 registros EMG (84,280
registros x 76 ventanas).

Extracción de caracteŕısticas a cada segmento

Después de la segmentación de las señales EMG, se procedió a cada nuevo segmento a la
extracción de caracteŕısticas. A cada segmento se le calcularon nueve caracteŕısticas en el dominio
del tiempo, las cuales representan una métrica que permite cuantificar varios aspectos de la señal.
Estas métricas permiten identificar patrones como la forma, la amplitud, y variabilidad de cada
segmento, lo que facilita la identificación de patrones discriminativos entre movimientos al aplicar
un modelo de clasificación. En resumen, la extracción de caracteŕısticas transforma cada señal
en un conjunto reducido de valores numéricos representativos. En este trabajo, a cada segmento
de señal EMG se le extrajeron nueve caracteŕısticas. Dado que cada movimiento fue registrado
simultáneamente por 28 sensores, se calcularon las mismas nueve caracteŕısticas para cada sensor
de forma individual. Como resultado, cada segmento quedó representado por un vector de 252
caracteŕısticas (9 carateristicas x 28 sensores = 252) que describen un movimiento de la mano,
teniendo en esta etapa, 228760 vectores que corresponden cada uno a una muestra EMG.

Este proceso de extracción de caracteŕısticas se implementó mediante un algoritmo desarrollado
en MATLAB®, que permitió automatizar el cálculo y organización de los vectores de caracteŕısti-
cas. La lista completa de las caracteŕısticas extráıdas se presenta en la Tabla 3.2.

Tabla 3.2: Caracteŕısticas de señales EMG extráıdas en este trabajo

Caracteŕıstica Fórmula matemática

Valor absoluto medio MAV = 1
N

∑N
k=1 |xk|

Cruce por cero (umbral = 0.01) ZC =
∑N−1

k=1 fZC(xk)

Cambio de signo de pendiente (umbral = 0.01) SSC =
∑

i fSS(xi)

Longitud de forma de onda WL =
∑N

k=1 |xk − xk−1|

Ráız cuadrada media RMS =
√

1
N

∑N
k=1 x

2
k

Varianza V AR = 1
N−1

∑N
k=1(xk − x̄)2

Integral EMG IEMG =
∑N

k=1 |xk|

Desviación estándar STD =
√

1
N

∑N
k=1(xk − x̄)2

Amplitud Willison (umbral = 0.5 x STD) WAMP =
∑N−1

k=1 f(|xk+1 − xk|)

3.1.2. Exportación de base de datos limpiada y preprocesada

Una vez finalizado el preprocesamiento de las señales EMG, la información obtenida fue expor-
tada en formato .CSV (Comma Separated Values), con el objetivo de facilitar su análisis posterior
en el entorno de programación Jupyter Notebook® utilizando Python versión 6.5.4. Este formato
permite organizar los datos de manera tabular, lo cual es compatible con múltiples bibliotecas de
análisis y facilita su manipulación.

34



La base de datos resultante quedó estructurada y etiquetada, lista para ser utilizada en las
siguientes etapas de clasificación. Las principales propiedades de la base de datos son:

Estructura tabular con datos organizados por filas (muestras) y columnas (caracteŕısticas).

252 caracteŕısticas extráıdas por segmento de señal.

Un total de 228,760 muestras, 22,876 por clase.

10 clases o etiquetas, correspondientes a diferentes tipos de movimiento muscular.

Datos no normalizados, es decir, en su escala original.

Datos no homogéneos, dado que pueden variar en distribución y escala entre caracteŕısticas.

Esta representación estructurada facilita el entrenamiento y evaluación del modelo de clasifi-
cación, al tiempo que permite aplicar técnicas estad́ısticas o de aprendizaje automático de forma
eficiente. Cabe aclarar que el archivo .CSV se conserva sin normalizar con el fin de mantener la
amplitud original de las señales; sin embargo, durante la fase de entrenamiento del modelo, los
datos se normalizan mediante el uso de StandardScaler. El ajuste (fit) del normalizador se realiza
exclusivamente con el conjunto de entrenamiento, y posteriormente la misma transformación se
aplica a los conjuntos de validación y prueba.

3.2. Elección de entradas en el modelo de red MLP

Al exportar la base de datos, cada movimiento queda representado por un vector de 252 ca-
racteŕısticas, lo cual constituye una cantidad considerable de información, especialmente al ser
utilizadas como entradas en el modelo de red neuronal MLP empleado en este trabajo. Debido
a esta alta dimensionalidad, se consideró necesario identificar qué caracteŕısticas aportan mayor
información relevante al modelo, tanto en función del tipo de métrica extráıda como del sensor
de origen. Por lo que se optó por usar un algoritmo Genético de optimización, para determinar
qué combinación de entradas en el modelo proporcionaba la mayor precisión en el modelo sin
comprometer su rendimiento, y al mismo tiempo, mejorar la eficiencia computacional.

3.2.1. Reducción del número de caracteŕısticas mediante algoritmo genético

Se optó a utilizar un algoritmo genético para reducir la dimensión del vector de entrada. Este
algoritmo es una técnica de búsqueda y optimización que se inspira en el proceso de selección
natural. En este caso, se utilizó para maximizar la precisión del modelo de clasificación por medio
de identificar el subconjunto con menor número de caracteŕısticas.

La elección del GA se debe a que, a diferencia de métodos lineales como PCA o LDA, permite
explorar de manera más flexible combinaciones no lineales de caracteŕısticas. Asimismo, frente a
métodos basados en relevancia individual de caracteŕısticas, como Mutual Information, ReliefF o
Boruta, el GA ofrece la ventaja de optimizar de forma directa el desempeño del modelo final,
considerando la interacción entre múltiples variables simultáneamente [63].

El objetivo del algoritmo fue maximizar la precisión (accuracy) del modelo MLP sobre el con-
junto de validación con el menor número posible de caracteŕısticas, buscando un equilibrio entre
rendimiento y simplicidad del modelo. se utilizó una partición fija de los datos entre entrenamiento

35



y validación durante todo el proceso evolutivo, con el fin de asegurar que la evaluación de cada
individuo fuera directamente comparable entre generaciones. No se aplicó estratificación en la divi-
sión de los datos, dado que la base de datos contiene más de 200 mil muestras con una distribución
de clases proporcional, lo que garantiza una representación equilibrada de las clases sin necesidad
de aplicar este procedimiento adicional.

La búsqueda de reducción de caracteŕısticas contribuye a disminuir la latencia y el consumo de
recursos en la implementación final del modelo dentro del FPGA, donde la complejidad compu-
tacional debe mantenerse baja.

El GA se implementó en Jupyter Notebook® y utiliza una codificación binaria, donde cada
individuo representa un conjunto espećıfico de caracteŕısticas seleccionadas (1 para seleccionada,
0 para descartada). La evaluación de cada individuo se realizó entrenando un modelo MLP y
calculando su precisión sobre el conjunto de validación. Las pruebas se hicieron en un modelo MLP
de prueba con dos capas ocultas con 100 neuronas cada una, funciones de activación en las capas
ocultas Relu y softmax en la salida, y se utilizaron 5 épocas de entrenamiento.

A continuación, se muestra el pseudocódigo general del algoritmo:

Pseudocódigo 1 Pseudocódigo del algoritmo genético para la selección de caracteŕısticas

1: Inicializar parámetros: generaciones G = 25, tamaño de población µ = 10, desviación estándar
de mutación σ = 0.5

2: Inicializar población padre Xp como una matriz de ceros de tamaño (µ× 252)
3: Inicializar población cruzada Xc y población mutada Xh con el mismo tamaño
4: Inicializar vectores de evaluación Yp y Yh como vectores de ceros de longitud µ
5: Inicializar lista vaćıa para almacenar la mejor solución
6: Xp ← POBLACION INICIAL(Xp)

7: for i = 1 to G do
8: Xc ← OPERADOR CRUCE(Xp)

9: Xh ← OPERADOR MUTACION(Xc, σ)
10: Yp ← OBJETIVO V1(Xp)

11: Yh ← OBJETIVO V1(Xh)

12: Xp ← SELECCION V1(Xp, Xh, Yp, Yh)
13: Almacenar MAX(Yp) en la lista de mejores soluciones
14: end for
15: return mejor solución encontrada

Se utilizó un cruce de tipo uniforme, donde cada gen se obtiene del promedio entre dos genes
padres de la población que son seleccionados de forma aleatoria. En este caso, para garantizar que
todos los individuos participen en el cruce en cada generación, se asumió una probabilidad de cruce
igual a 1.

El operador de mutación consistió en la adición de ruido gaussiano de media cero y desviación
estándar σ = 0.05 a cada gen del individuo, seguido de una binarización donde los valores mayores
o iguales a 0.5 se asignan a 1 y los menores a 0. Dado que la mutación se aplica sobre toda la
población, la probabilidad de mutación es alta, mientras que su intensidad está determinada por el
valor de σ.

Se implementó un esquema de preservación de élite, en el cual un hijo sustituye a su padre úni-
camente si alcanza una precisión superior en la función objetivo. Esto evita la pérdida de soluciones

36



prometedoras y acelera la convergencia del proceso.

El algoritmo se ejecutó con una población inicial de µ = 10 individuos y G = 25 generaciones.
El proceso es estocástico debido al uso de operadores aleatorios.

La gráfica de convergencia del algoritmo, mostrada en la Figura 3.6, muestra cómo la precisión
del mejor individuo va variando mientras pasan las generaciones. Se observa una tendencia general
de mejora en las primeras iteraciones, seguida de pequeñas fluctuaciones en generaciones posteriores.
Estas variaciones se deben a que el proceso de evaluación incluye el entrenamiento de un modelo
de red neuronal, cuyo desempeño puede presentar ligeras diferencias en cada ejecución, debido a
factores como la aleatoriedad en la inicialización de pesos.

Generación

M
ej

o
r 

so
lu

ci
ó

n

Figura 3.6: Gráfica convergencia de algoritmo genético.

Tras completar la ejecución del algoritmo genético, se obtuvo un subconjunto de caracteŕısticas
que presentó el mejor desempeño en términos de precisión de clasificación a lo largo de las 25 gene-
raciones. Estas caracteŕısticas fueron seleccionadas según su desempeño a lo largo de la ejecución
del algoritmo, el cual evaluó distintas combinaciones de entradas.

La distribución de las 252 caracteŕısticas originales se presenta en la Figura 3.7. En esta matriz
visual, las filas representan las métricas extráıdas, y las columnas corresponden a los sensores EMG
numerados del 1 al 28. Las caracteŕısticas seleccionadas por el algoritmo genético se encuentran
marcadas, mientras que aquellas descartadas se muestran sin resaltar.

37



MAV1 MAV2 MAV3 MAV4 MAV5 MAV6 MAV7 MAV8 MAV9 MAV10MAV11MAV12MAV13MAV14MAV15MAV16MAV17MAV18MAV19MAV20MAV21MAV22MAV23MAV24MAV25MAV26MAV27MAV28

IEMG1 IEMG2 IEMG3 IEMG4 IEMG5 IEMG6 IEMG7 IEMG8 IEMG9 IEMG10 IEMG11 IEMG12 IEMG13 IEMG14 IEMG15 IEMG16 IEMG17 IEMG18 IEMG19 IEMG20 IEMG21 IEMG22 IEMG23 IEMG24 IEMG25 IEMG26 IEMG27 IEMG28

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12 WL13 WL14 WL15 WL16 WL17 WL18 WL19 WL20 WL21 WL22 WL23 WL24 WL25 WL26 WL27 WL28

RMS1 RMS2 RMS3 RMS4 RMS5 RMS6 RMS7 RMS8 RMS9 RMS10 RMS11 RMS12 RMS13 RMS14 RMS15 RMS16 RMS17 RMS18 RMS19 RMS20 RMS21 RMS22 RMS23 RMS24 RMS25 RMS26 RMS27 RMS28

SSC1 SSC2 SSC3 SSC4 SSC5 SSC6 SSC7 SSC8 SSC9 SSC10 SSC11 SSC12 SSC13 SSC14 SSC15 SSC16 SSC17 SSC18 SSC19 SSC20 SSC21 SSC22 SSC23 SSC24 SSC25 SSC26 SSC27 SSC28

STD1 STD2 STD3 STD4 STD5 STD6 STD7 STD8 STD9 STD10 STD11 STD12 STD13 STD14 STD15 STD16 STD17 STD18 STD19 STD20 STD21 STD22 STD23 STD24 STD25 STD26 STD27 STD28

VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 VAR9 VAR10 VAR11 VAR12 VAR13 VAR14 VAR15 VAR16 VAR17 VAR18 VAR19 VAR20 VAR21 VAR22 VAR23 VAR24 VAR25 VAR26 VAR27 VAR28

WAMP
1

WAMP
2

WAMP
3

WAMP
4

WAMP
5

WAMP
6

WAMP
7

WAMP
8

WAMP
9

WAMP
10

WAMP
11

WAMP
12

WAMP
13

WAMP
14

WAMP
15

WAMP
16

WAMP
17

WAMP
18

WAMP
19

WAMP
20

WAMP
21

WAMP
22

WAMP
23

WAMP
24

WAMP
25

WAMP
26

WAMP
27

WAMP
28

ZC1 ZC2 ZC3 ZC4 ZC5 ZC6 ZC7 ZC8 ZC9 ZC10 ZC11 ZC12 ZC13 ZC14 ZC15 ZC16 ZC17 ZC18 ZC19 ZC20 ZC21 ZC22 ZC23 ZC24 ZC25 ZC26 ZC27 ZC28

Figura 3.7: Caracteŕısticas seleccionadas por el algoritmo genético.

El algoritmo seleccionó como mejor solución al final de las iteraciones a un individuo con 137
caracteŕısticas de las 252 disponibles, alcanzando un valor de precisión de 93.51% en datos de
validación. Este subconjunto reducido fue empleado como entrada en el modelo MLP, logrando
una precisión comparable a la obtenida utilizando el conjunto completo, pero con una reducción
significativa en la dimensionalidad de entrada, lo cual favorece la eficiencia del sistema en términos
de procesamiento y complejidad.

Dado que aún se conservaba una cantidad considerable de caracteŕısticas y el modelo presenta
una presión muy por arriba de la planteada en la hipótesis, se propuso una etapa adicional de
reducción, la cual se detalla en la siguiente sección.

3.2.2. Reducción del número de caracteŕısticas según la participación de sen-
sores

Después de aplicar la primera etapa de selección utilizando el GA, se observó que aún era posible
reducir la cantidad de caracteŕısticas sin afectar significativamente la precisión del modelo. Para
ello, se implementó una segunda estrategia de reducción, basada en la participación de los sensores
en el subconjunto seleccionado previamente.

Esta etapa consistió en identificar los sensores con mayor contribución en el vector resultante
del GA. Como criterio de filtrado, se descartaron todos los sensores que presentaban menos de seis
métricas seleccionadas. De esta manera, se priorizó la información proveniente de los sensores con
mayor relevancia en el proceso de clasificación.

La Figura 3.8 muestra la matriz de caracteŕısticas, donde se resaltan las métricas seleccionadas
de manera final para ser utilizadas como entradas en el modelo MLP.

38



MAV1 MAV2 MAV3 MAV4 MAV5 MAV6 MAV7 MAV8 MAV9 MAV10MAV11MAV12MAV13MAV14MAV15MAV16MAV17MAV18MAV19MAV20MAV21MAV22MAV23MAV24MAV25MAV26MAV27MAV28

IEMG1 IEMG2 IEMG3 IEMG4 IEMG5 IEMG6 IEMG7 IEMG8 IEMG9 IEMG10 IEMG11 IEMG12 IEMG13 IEMG14 IEMG15 IEMG16 IEMG17 IEMG18 IEMG19 IEMG20 IEMG21 IEMG22 IEMG23 IEMG24 IEMG25 IEMG26 IEMG27 IEMG28

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 WL11 WL12 WL13 WL14 WL15 WL16 WL17 WL18 WL19 WL20 WL21 WL22 WL23 WL24 WL25 WL26 WL27 WL28

RMS1 RMS2 RMS3 RMS4 RMS5 RMS6 RMS7 RMS8 RMS9 RMS10 RMS11 RMS12 RMS13 RMS14 RMS15 RMS16 RMS17 RMS18 RMS19 RMS20 RMS21 RMS22 RMS23 RMS24 RMS25 RMS26 RMS27 RMS28

SSC1 SSC2 SSC3 SSC4 SSC5 SSC6 SSC7 SSC8 SSC9 SSC10 SSC11 SSC12 SSC13 SSC14 SSC15 SSC16 SSC17 SSC18 SSC19 SSC20 SSC21 SSC22 SSC23 SSC24 SSC25 SSC26 SSC27 SSC28

STD1 STD2 STD3 STD4 STD5 STD6 STD7 STD8 STD9 STD10 STD11 STD12 STD13 STD14 STD15 STD16 STD17 STD18 STD19 STD20 STD21 STD22 STD23 STD24 STD25 STD26 STD27 STD28

VAR1 VAR2 VAR3 VAR4 VAR5 VAR6 VAR7 VAR8 VAR9 VAR10 VAR11 VAR12 VAR13 VAR14 VAR15 VAR16 VAR17 VAR18 VAR19 VAR20 VAR21 VAR22 VAR23 VAR24 VAR25 VAR26 VAR27 VAR28

WAMP
1

WAMP
2

WAMP
3

WAMP
4

WAMP
5

WAMP
6

WAMP
7

WAMP
8

WAMP
9

WAMP
10

WAMP
11

WAMP
12

WAMP
13

WAMP
14

WAMP
15

WAMP
16

WAMP
17

WAMP
18

WAMP
19

WAMP
20

WAMP
21

WAMP
22

WAMP
23

WAMP
24

WAMP
25

WAMP
26

WAMP
27

WAMP
28

ZC1 ZC2 ZC3 ZC4 ZC5 ZC6 ZC7 ZC8 ZC9 ZC10 ZC11 ZC12 ZC13 ZC14 ZC15 ZC16 ZC17 ZC18 ZC19 ZC20 ZC21 ZC22 ZC23 ZC24 ZC25 ZC26 ZC27 ZC28

Figura 3.8: Selección final de caracteŕısticas, considerando los sensores con mayor participación.

De acuerdo con este criterio, se conservaron únicamente las caracteŕısticas correspondientes a
los sensores 1, 3, 14, 15, 16, 22, 23, 26, 27 y 28, utilizando únicamente las métricas previamente
seleccionadas por el algoritmo genético para cada uno de ellos.

Esta selección final resultó en un conjunto de 67 caracteŕısticas de las 252 iniciales.

3.3. Modelo red neuronal en software

Una vez seleccionadas las caracteŕısticas con mayor impacto para distinguir los diferentes mo-
vimientos musculares, se implementó el modelo de red neuronal MLP, incrementando el número de
épocas de entrenamiento con el objetivo de obtener un modelo más robusto y preciso.

La implementación se realizó en el entorno de desarrollo Jupyter Notebook® con Python, em-
pleando como entradas el vector de caracteŕısticas reducido, obtenido mediante las técnicas de se-
lección descritas en secciones previas. A las cuales, antes de ser usadas en el modelo, se les aplicó un
proceso de normalización mediante la libreŕıa StandardScaler de la biblioteca sklearn.preprocessing
con el propósito de normalizar la escala de los datos y mejorar los resultados en el proceso de apren-
dizaje. El ajuste (fit) del normalizador se realiza exclusivamente con el conjunto de entrenamiento,
y posteriormente la misma transformación se aplica a los conjuntos de validación y prueba.

El modelo fue construido y entrenado utilizando la biblioteca Keras integrada en TensorFlow®,
lo que facilita el uso de redes neuronales en este entorno, ya que son arquitecturas previamente
diseñadas, a las cuales solo se definen su configuración.

La arquitectura final del modelo fue definida tras realizar múltiples pruebas con distintas confi-
guraciones, tomando como referencia modelos del estado del arte en clasificación de señales EMG,
como los criterios propuestos en [14]. La configuración elegida mostró un equilibrio adecuado entre
precisión y complejidad computacional, siendo además viable para su posterior implementación en
hardware embebido.

39



x1 c11
c21

c22c12

c13

c1100

x2

x3

x67

. . . 

. . . 

. . . 

Capa de entradas Capas ocultas

.

.

.

. . . 

y1

y2

y3

y10

x1

x2

x3

xn

Capa de entradas Capa de salidasCapas ocultas

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

c23

c2100

Figura 3.9: Modelo red neuronal perceptrón multicapa.

Las caracteŕısticas del modelo se muestran en la tabla 3.3:

Tabla 3.3: Configuración de la red neuronal utilizada.

Neuronas capa de entrada 67

Capas ocultas 2

Neuronas por capa 100

Funciones de activación ReLU en capas ocultas y Softmax en capa de
salida

Neuronas capa de salida 10

Optimizador Adam

Tasa de aprendizaje (LR) 0.001

Función de pérdida sparse categorical crossentropy

Métrica de evaluación Accuracy

Inicialización de pesos Por defecto de Keras (Glorot Uniform)

Regularización Restricción de norma máxima = 3

Épocas de entrenamiento 30

Tamaño de lote 20

Datos de entrenamiento 80%

Datos de validación 10%

Datos de prueba 10%

Semilla aleatoria 42 (para reproducibilidad)

Estrategia de barajado Aleatoria sin estratificación

Callback utilizado ModelCheckpoint (almacenamiento de pesos
durante el entrenamiento)

Se eligió la función de activación ReLU para las capas ocultas por su simplicidad y bajo costo

40



computacional, lo cual facilita su futura implementación en hardware digital. Por su parte, la capa
de salida utiliza la función Softmax, que permite interpretar las salidas como una distribución de
probabilidad sobre las 10 clases, indicando el grado de certeza del modelo respecto a cada clase
posible. Cabe señalar que la función Softmax no fue implementada en hardware, ya que en dicha
etapa no es necesario obtener la distribución completa de probabilidades sobre las clases. Basta con
identificar la salida con el valor más alto para determinar el gesto predicho por la red. Por ello, en
la implementación en hardware se sustituyó Softmax por la operación Argmax, la cual selecciona
directamente la neurona con el mayor valor de activación en la capa de salida.

Durante el entrenamiento, el modelo alcanzó una precisión de clasificación del 96.19% con los
datos de validación en el entrenamiento y 95.94 con los datos de pruebas. Teniendo un comporta-
miento estable del error de entrenamiento, como se observa en la Figura 3.10. Esta precisión fue
considerada adecuada para ser tomada como base para la implementación posterior en hardware.

0 5 10 15 20 25 30
Épocas

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

0.225

Er
ro

r d
e 

Cl
as

ifi
ca

ció
n

Error de Clasificación vs Épocas
Datos entrenamiento
Datos validación
Datos de prueba

Figura 3.10: Gráficas de error en la clasificación.

3.4. Exportación de parámetros del modelo MLP para implemen-
tación en hardware

Para poder realizar la inferencia del modelo MLP en hardware utilizando un dispositivo FPGA,
fue necesario adaptar y exportar los parámetros del modelo entrenado, espećıficamente, los pesos,
sesgos y datos de prueba que funcionen como entradas en el modelo. Estos elementos se convierten
en un formato compatible con la arquitectura del diseño digital. Este proceso involucró varias
etapas, como la extracción de los pesos y sesgos del modelo entrenado en software, la conversión
binaria en representación a dos con punto fijo y la codificación final en archivos compatibles para
su almacenamiento y uso dentro de las memorias ROM del FPGA.

41



3.4.1. Extracción de pesos y sesgos desde el modelo entrenado

Después de completar el modelo en software con los resultados requeridos, se extrajeron los pesos
y sesgos de cada capa utilizando las funciones disponibles en la biblioteca Keras de TensorFlow®.
Estos valores se almacenaron inicialmente en archivos CSV utilizando la biblioteca pandas, lo que
facilitó su análisis y procesamiento posterior.

3.4.2. Análisis de rangos y decisión del formato de punto fijo

Para determinar la representación binaria más adecuada para el diseño en hardware, se realizó
un análisis de los pesos y sesgos, al identificar los valores mı́nimos y máximos presentes en cada
capa del modelo. La tabla 3.4 muestra estos rangos de valores de cada capa. Al analizar los valores,
es posible interpretar la parte entera con pocos bits al tratarse de valores relativamente pequeños;
aun aśı, se optó por utilizar formatos más amplios para conservar una precisión adecuada en la
etapa de inferencia en hardware.

Tabla 3.4: Rangos de valores mı́nimos y máximos de pesos y sesgos por capa.

Min capa
oculta 1

Max capa
oculta 1

Min capa
oculta 2

Max capa
oculta 2

Min capa
salida

Max capa
salida

-2.02119 1.81856 -1.67922 2.67355 -1.39727 0.76537

Adicionalmente, los valores de entrada correspondientes a las muestras de prueba también se
almacenaron en memoria ROM del FPGA, por lo que se optó por utilizar el mismo formato de
representación que los pesos. Dado que estas entradas fueron previamente normalizadas, sus valores
se mantienen en un rango reducido, justificando el uso de una representación con pocos bits enteros.

Con base en este análisis se definieron los siguientes formatos de la representación numérica en
complemento a dos con punto fijo:

Pesos: representados en formato 8e.8f (8 bits para parte entera, 8 bits para parte fraccionaria),
con un total de 16 bits por valor.

Sesgos: representados en formato 16e.16f, ocupando 32 bits por valor, ya que deben sumarse
al resultado de productos entre valores de 16 bits, lo que incrementa el rango y la precisión
requeridos.

Valores de entradas para pruebas: representados en formato 8e.8f, ocupando 16 bits por valor.

3.4.3. Conversión a binario y generación de archivos .COE

Una vez los valores de pesos, sesgos y vectores de entradas fueron cuantizados a formato punto
fijo, se realizo la conversión binaria en complemento a dos. Este proceso fue automatizado mediante
algoritmos en Python que hacia la conversion de los valores desde los archivos CSV a vectores
binarios de longitud fija.

Posteriormente, los vectores binarios que representaban los parámetros del modelo fueron con-
vertidos a formato .COE (Coefficient File), el cual es compatible con el entorno Xilinx Vivado®
para su uso en memorias ROM dentro del FPGA.

42



3.5. Modelo red neuronal en hardware

Una vez establecidos los hiperparámetros (número de capas, número de neuronas, funciones de
activación, pesos y sesgos) del modelo entrenado en software. Al igual, que la exportación en una
representación binaria de los pesos y sesgos, para su almacenamiento en memorias ROM. Se diseñó
la arquitectura digital para la ejecución de la inferencia del modelo MLP directamente en hardware.
Se utilizó una tarjeta Basys 3® con un FPGA de la familia Xilinix Artix-7®.

El diseño fue desarrollado en el entorno Vivado 2021.1®, empleando el lenguaje de descripción
de hardware VHDL para desarrollar los módulos que componen la arquitectura. También, se empleó
el IP Core prediseñado para configurar y utilizar memorias ROM del FPGA por medio de la
herramienta Generate Memory.

La arquitectura general está basada en composición modular para el funcionamiento del sistema,
donde cada bloque o módulo cumple una tarea espećıfica para lograr la inferencia del modelo.
Algunas de las tareas son lectura de datos, multiplicación, acumulación, control de flujo, activación
y almacenamiento. Para coordinar el flujo de los datos entre los bloques se realiza mediante una
máquina de estados finitos (FSM, por sus siglas en inglés). El diagrama general del sistema de red
neuronal se muestra en la Figura 3.11.

ROM_PEOSOS

FSM_CONTROL_RED

X
MUX
2_1

+

ROM_SESGOS

X
MUX
2_1

DEMUX
1_2 ReLu

BLOQUE_REG_SALIDA

BLOQUE_REG_ACTUAL

x_2

Neurona

....

....

CONTADOR_FLAGS

ROM_ENTRADAS

x_1

BLOQUE_REG_PASADO

MUX
2_1

X

....

MOV_MAX

x_100

100 - Registros
100 - MUX 2 a 1

100 - Multiplicadores

7
x 16x67 16

16

16x100

16

7

16

16

16

16x100

16x67x210

32

32

32

2

32

16x210

16x67x100
PF:8.8

32
32

32

32

16x100

16 10

PF:8.8 PF:16.16

y

start

inc

clr

n_10
n_100

cta

inc

clr

n_100
n_10

s_ent s_pes

start capa_ok

ok

ld_reg

fin

addr

addr

ena

ena
addr

addr

d

d
q

addr

d

ena
q

q

ena

selec_mempesos

8
cta_in

cta_out
selec

REGISTROd q

REGISTROd q

REGISTROd q

16

16

[15:0]

[1583:1568]

[1599:1584]

fin

....

Figura 3.11: Diagrama de bloques de red neuronal en hardware.

A continuación, se describen las principales unidades de hardware utilizadas.

3.5.1. Módulo principal de la red MLP

El módulo principal integra todos los bloques de hardware, formando la unidad superior diseñada
para la inferencia del modelo de red neuronal ejecutada en el FPGA. Este módulo funciona como

43



un único circuito que coordina el direccionamiento y lectura de datos, ejecución de operaciones
aritméticas y de codificación, y finalmente la entrega del resultado de clasificación.

Con el fin de facilitar la integración con otros sistemas digitales, el módulo está diseñado con
una interconexión simple de control, ya que está compuesta de únicamente dos señales de entrada
y dos señales de salida, además de la señal de reloj y la señal de reinicio. La Figura 3.12 muestra
el diagrama de caja negra de la arquitectura de la red neuronal en hardware, y la Tabla 3.5 detalla
las señales de entrada/salida del módulo.

Tabla 3.5: Entradas y salidas del módulo principal de la red neuronal MLP.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema, con frecuencia de 25
MHz, utilizada para sincronizar todas las opera-
ciones internas del módulo.

rst 1 bit Entrada Señal de reinicio. Al activarse, inicializa el siste-
ma, reiniciando registros, contador y la máquina
de estados finitos.

start 1 bit Entrada Señal de control que inicia el proceso de infe-
rencia. Se activa por un ciclo de reloj cuando se
desea clasificar una nueva muestra.

x 7 bits Entrada Dirección de acceso a la memoria ROM de en-
tradas EMG.

fin 1 bit Salida Señal que indica la finalización del proceso de
inferencia por parte del modelo MLP. Se activa
cuando la clasificación está completa.

y 10 bits Salida Vector donde un único bit en alto (’1’) repre-
senta la clase predicha por la red neuronal. Ca-
da posición del vector está asociada a una clase
distinta.

MLP
7

start

x y

fin

10

Figura 3.12: Diagrama de caja negra del módulo principal de la red neuronal MLP.

El diseño modular de la red permite que todas las operaciones funcionen internamente, de forma
secuencial y ordenada, sin requerir intervención externa durante la clasificación. El flujo de datos
es controlado por una máquina de estados finitos que se describe a continuación.

44



FSM_CONTROL_RED

2

inc
clr

n_100

n_10

s_ent s_pes

start capa_ok

ok

ld_reg

fin

Figura 3.13: Diagrama de caja negra del módulo de máquina de estados finitos.

3.5.2. Módulo máquina de estados finitos para controlar el flujo de datos en la
red MLP

Este módulo FSM es responsable de la sincronización y coordinación del funcionamiento de
todos los bloques de hardware de la arquitectura para la inferencia del modelo de red neuronal
MLP dentro del FPGA. Esta máquina de estados gestiona el flujo de datos de las memorias ROM,
unidades aritméticas, registros, contador y bloques de activación, lo que asegura que cada operación
se realice en el orden y ubicación adecuados.

La FSM diseñada es de tipo Moore, ya que sus salidas dependen únicamente del estado actual,
no de las entradas. La elección de este tipo de máquina de estados permite un control estable de
las señales internas, ya que se tiene un ciclo de reloj adicional en la transición de estados para
verse reflejadas las salidas, lo que facilita la implementación y verificación en el diseño de hardware
digital.

Durante la ejecución de la inferencia del modelo, la FSM realiza:

Inicia la lectura de las muestras EMG desde la memoria de entrada.

Activa la lectura secuencial de pesos y sesgos desde sus respectivas ROMs, según la capa
actual.

Controla la carga de datos en los registros.

Coordina la multiplicación y acumulación de productos en cada neurona.

Determina el tipo de activación en las neuronas y de almacenar sus salidas.

Señaliza el cambio de capa y el fin del proceso de clasificación.

La Figura 3.13 presenta el diagrama de caja negra del módulo FSM, mientras que la Figura 3.14
muestra el grafo de estados definidos en el proceso.

La Tabla 3.6 detalla las señales de entrada y salida utilizadas por el módulo FSM:

45



ESPERA

0,0,0,0,00,0,0,0

CAPA1_0

0,0,0,0,00,0,0,0

CAPA1_1

0,0,0,0,00,0,0,0

CAPA1_2

0,0,1,0,00,0,0,0

CAPA1_3

0,0,0,0,00,0,0,0

CAPA1_4

0,0,0,0,00,0,0,0

CAPA1_RG

0,0,0,0,00,1,0,0

CAPA1_INC

1,0,0,0,00,0,0,0

CLR_CTA1

0,1,0,1,01,0,0,0

Salidas

inc 1 bit

clr 1 bit

ld_reg 1 bit

s_ent 1 bit

s_pes 2 bit

capa_ok 1 bit

ok 1 bit

s_fin 1 bit

Entradas

clk 1 bit

rst 1 bit

start 1 bit

n_10 1 bit

n_100 1 bit

n_100 =‘1’

CAPA2_1

0,0,0,1,01,0,0,0

CAPA2_2

0,0,1,1,01,0,0,0

CAPA2_3

0,0,0,1,01,0,0,0

CAPA2_4

0,0,0,1,01,0,0,0

CAPA2_RG

0,0,0,1,01,1,0,0

CAPA2_INC

1,0,0,1,01,0,0,0

CLR_CTA2

0,1,0,1,01,0,0,0

n_100 =‘1’

n_100 =‘0’

CAPA3_1

0,0,0,1,10,0,0,0

CAPA3_2

0,0,0,1,10,0,1,0

CAPA3_3

0,0,0,1,10,0,0,0

CAPA3_4

0,0,0,1,10,0,0,0

CAPA3_RG

0,0,0,1,10,0,0,1

CAPA3_INC

1,0,0,1,10,0,0,0

CLR_CTA3

0,1,0,0,00,0,0,1

n_10 =‘1’

n_10 =‘0’

FIN

0,0,0,0,00,0,0,1

rst =‘1’

Figura 3.14: Grafo de estados de la FSM para el control del flujo de datos del modelo MLP.

46



Tabla 3.6: Entradas y salidas del módulo de la máquina de estados finitos.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema (25 MHz), utilizada
para sincronizar las transiciones entre estados y
controlar las operaciones internas.

rst 1 bit Entrada Señal de reinicio aśıncrono. Al activarse, reini-
cia la FSM al estado inicial y pone en cero las
señales de control.

start 1 bit Entrada Señal que indica el inicio del proceso de inferen-
cia. Se activa por un solo ciclo de reloj.

s ent 1 bit Salida Selecciona si las entradas provienen de la me-
moria ROM de muestras EMG o del registro de
salidas de la capa anterior, dependiendo de la
capa en curso.

s pes 1 bit Salida Señal que informa al codificador de direcciones
qué capa está activa, para acceder a los pesos y
sesgos correspondientes.

inc 1 bit Salida Activa el incremento del contador de neuronas,
permitiendo pasar a la siguiente neurona en la
capa actual.

clr 1 bit Salida Limpia el valor del contador de neuronas al fi-
nalizar una capa.

n 100 1 bit Entrada Bandera proveniente del contador que indica que
se ha procesado la neurona número 100 (capas
ocultas).

n 10 1 bit Entrada Bandera proveniente del contador que indica que
se ha procesado la neurona número 10 (capa de
salida).

ld reg 1 bit Salida Señal que indica que el resultado de una neuro-
na ya fue calculado y puede almacenarse en los
registros de salida.

capa ok 1 bit Salida Señal que indica que todas las neuronas de la ca-
pa actual han sido procesadas. Activa la trans-
ferencia de resultados al siguiente bloque.

ok 1 bit Salida Indica que todas las salidas de la capa final han
sido almacenadas y están listas para el bloque
de decisión.

fin 1 bit Salida Señal de finalización global. Se activa cuando el
proceso completo de inferencia ha concluido y la
clase ha sido determinada.

47



3.5.3. Módulos de memoria ROM

Para el almacenamiento de los datos necesarios durante la inferencia del modelo MLP en el
FPGA, se utilizaron tres bloques de memoria ROM, cada uno configurado y generado mediante la
herramienta Generate Memory IP Core incluidada en el entorno de desarrollo Vivado 2021.1®. A
cada módulo se le cargaron archivos .coe generados a partir del modelo entrenado en software, aśı
como de las muestras EMG utilizadas para pruebas.

La Figura 3.15 muestra el diagrama de caja negra de las tres memorias ROM utilizadas en el
sistema.

ROM_ENTRADAS

16x67

16x67x100
PF:8.8

addr q
7

ROM_PESOS

16x100

16x100x210
PF:8.8

addr q
8

ROM_SESGOS

32

32x210
PF:16.16

addr q
8

(a) (b) (c)

Figura 3.15: Diagrama de cajas negras de las memorias ROM. (a) ROM de entradas. (b) ROM de
pesos. (c) ROM de sesgos.

A continuación, se describen las caracteŕısticas de cada una:

Memoria ROM de entradas

Esta memoria contiene las muestras EMG utilizadas como entradas para el modelo MLP. Cada
muestra está compuesta por 67 caracteŕısticas, cada una codificada en 16 bits con formato punto fijo
8 bits parte entera y 8 bits parte fraccionaria. La memoria permite almacenar hasta 128 muestras
pero se estableció en 100 muestras para pruebas.

Entrada addr: 7 bits. Direcciona una de las 100 muestras almacenadas.

Salida q: Vector de 16× 67 bits. Contiene todas las caracteŕısticas de una muestra.

Memoria ROM de pesos

Esta memoria contiene los pesos sinápticos del modelo MLP. La red neuronal cuenta con 210
neuronas en total (100 en la primera capa oculta, 100 en la segunda y 10 en la salida), y cada
neurona utiliza 100 pesos. Cada peso se representa con 16 bits en formato punto fijo 8 bits parte
entera y 8 bits parte fraccionaria.

Entrada addr: 8 bits. Permite direccionar una neurona espećıfica.

Salida q: Vector de 16× 100 bits. Contiene los 100 pesos asociados a la neurona seleccionada.

Memoria ROM de sesgos

Esta memoria almacena los 210 sesgos asociados a cada neurona de la red. Cada sesgo es
codificado con 32 bits utilizando formato punto fijo 16 bits parte entera y 16 bits parte fraccionaria,
para mantener una alta precisión en las operaciones de suma acumulativa.

48



Entrada addr: 8 bits. Direcciona uno de los 210 sesgos.

Salida q: 32 bits. Valor del sesgo correspondiente a la neurona direccionada.

3.5.4. Módulo contador con banderas

Este módulo fue diseñado como un contador śıncrono ascendente, su función es llevar el control
de la cantidad de neuronas procesadas en cada capa de la red durante la inferencia en hardware,
como el proceso se divide por neurona procesada y por capas, fue necesario tener un conteo de
la neurona presente. El contador se activa por medio de señales generadas por la FSM que con-
trolan el incremento de la cuenta y su restablecimiento en cero automáticamente al completar el
procesamiento de una capa.

Cuenta con una salida principal de 7 bits que representa el valor de la cuenta actual. Esta
cantidad de bits es suficiente para cubrir las 100 neuronas de las capas ocultas. Además, este
módulo fue diseñado para incorporar dos banderas como señales de salida que se activan al alcanzar
umbrales espećıficos en la cuenta, lo que permite sincronizar los eventos del flujo en la FSM. La
Figura 3.16 presenta el diagrama de caja negra del módulo contador con banderas.

CONTADOR_FLAGS

7

inc

clr

n_100

n_10

cta

Figura 3.16: Diagrama de caja negra del módulo contador con banderas.

La Tabla 3.7 detalla las señales de entrada y salida utilizadas por el módulo contador.

Tabla 3.7: Entradas y salidas del módulo contador con banderas.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema, con una frecuencia de
25 MHz. Sincroniza el incremento y el restable-
cimiento del contador.

rst 1 bit Entrada Señal de reinicio aśıncrono que reinicia el conta-
dor a cero, sin depender del ciclo de reloj.

inc 1 bit Entrada Señal de habilitación para incrementar el valor
del contador en uno, en el flanco positivo del
reloj.

Continúa en la siguiente página

49



Tabla 3.7 – continuación de la página anterior

Nombre Tamaño Tipo Descripción

clr 1 bit Entrada Señal de limpieza śıncrona. Al activarse, resta-
blece el contador a cero en el siguiente ciclo de
reloj.

cta 7 bits Salida Valor actual del contador, representado como un
número binario de 7 bits.

n 10 1 bit Salida Bandera que se activa cuando el valor del con-
tador es igual a 10. Se utiliza para identificar el
final de la capa de salida.

n 100 1 bit Salida Bandera que se activa cuando el valor del con-
tador es igual a 100. Se utiliza para identificar
el final de una capa oculta.

3.5.5. Módulo Codificador de dirección de memoria para pesos

El módulo codificador de dirección de memoria de pesos, nombrado como selec mempesos en
el diseño, tiene como objetivo generar la dirección correcta para acceder a la memoria ROM que
contiene los pesos de todas las neuronas del modelo MLP. Dado que los pesos de las 210 neuronas
están almacenados de forma continua en una única memoria ROM, es necesario ajustar la cuenta
local de cada capa para que apunte al bloque correspondiente dentro de la memoria global.

Este módulo recibe como entrada la cuenta local de neuronas, generada por el contador, y una
señal de selección de capa de 2 bits proveniente de la FSM, que indica en qué capa del modelo se
encuentra actualmente el proceso de inferencia.

Con base en estos valores, el codificador realiza un desplazamiento del valor de cuenta del
contador según la capa activa, sumando un desplazamiento predefinido para cada capa:

Capa oculta 1: desplazamiento 0.

Capa oculta 2: desplazamiento 100.

Capa de salida: desplazamiento 200.

El resultado se entrega en la salida, una dirección de 8 bits que se utiliza para acceder a la
memoria ROM de pesos. Se optó por utilizar este codificador del direccionamiento de los pesos
para evitar el uso de un segundo contador, ya que la cuenta local también direcciona los registros
de almacenamiento de los resultados de las neuronas de la capa activa.

La Figura 3.18 muestra el diagrama de caja negra del módulo, mientras que la Tabla 3.8 describe
sus señales de entrada y salida.

50



8

selec_mempesos

cta_in
cta_out

selec

2

Figura 3.17: Diagrama de caja negra del codificador de dirección de memoria de pesos.

Tabla 3.8: Entradas y salidas del módulo codificador de dirección de pesos.

Nombre Tamaño Tipo Descripción

cta in 7 bits Entrada Cuenta local que indica la neurona actual en la
capa activa. Proviene del módulo contador.

selec 2 bits Entrada Señal de selección de capa. Codifica la etapa del
modelo en la que se encuentra el proceso: 00
para la primera capa oculta, 01 para la segunda
capa oculta, y 10 para la capa de salida.

cta out 8 bits Salida Dirección ajustada que se utiliza para acceder a
la memoria ROM de pesos. Esta dirección co-
rresponde al ı́ndice absoluto dentro del bloque
completo de pesos y permite el direccionamien-
to secuencial de neuronas a lo largo de todas las
capas.

3.5.6. Módulo multiplexor para selección de entradas a las neuronas

Este módulo cumple una función clave en la etapa de propagación hacia adelante de la red
neuronal MLP implementada en hardware. Su propósito es seleccionar, en cada etapa del proceso,
cuál conjunto de datos se utilizará como entrada para las neuronas: ya sea el vector de caracteŕısticas
EMG provenientes de la memoria ROM de entrada, o los resultados intermedios de cada neurona
después de su función de activación (en este caso la función ReLu) que fueron almacenados en los
registros correspondientes a la capa anterior.

La función de selección se realiza mediante una señal de control proveniente de la FSM, la cual
indica si el sistema se encuentra procesando la capa de entrada o una capa intermedia. Este módulo,
por su simplicidad, se implementa como un multiplexor dos a uno, donde las dos entradas son de
16 bits.

La Figura 3.18 muestra el diagrama de caja negra del módulo, y la Tabla 3.9 detalla sus señales
de entrada y salida.

51



MUX
2_1 16

16

16

selec
a

b

c

Figura 3.18: Diagrama de caja negra del codificador de dirección de memoria de pesos.

Tabla 3.9: Entradas y salidas del módulo multiplexor.

Nombre Tamaño Tipo Descripción

a 16 bits Entrada Vector proveniente de la memoria ROM que con-
tiene las caracteŕısticas de entrada EMG. Es uti-
lizado únicamente en la primera capa de la red
neuronal.

b 16 bits Entrada Valor proveniente del bloque de registros que
contiene las salidas de activación de la capa an-
terior. Es utilizado en capas ocultas y de salida.

selec 1 bit Entrada Señal de control proveniente de la FSM. Si su
valor es ‘0’, la salida toma el valor de a; si es ‘1’,
toma el valor de b.

c 16 bits Salida Valor de salida del multiplexor. Corresponde al
valor seleccionado entre las dos entradas en fun-
ción de la señal selec.

3.5.7. Módulos aritméticos

En el diseño en hardware implementado para la red neuronal, se emplean tres módulos encar-
gados de realizar operaciones matemáticas fundamentales: el sumador, multiplicador y el módulo
de activación ReLu. Estos módulos fueron diseñados en VHDL empleando las bibliotecas estándar
de IEEE, espećıficamente la biblioteca IEEE.NUMERIC STD que permite realizar operaciones
aritméticas con señales que representan números binarios con signo. El uso de las bibliotecas faci-
litó el diseño de estos módulos, ya que no hay que realizar las arquitecturas de estas operaciones a
nivel de bit a bit.

A continuación, se describe cada módulo.

Multiplicador

Este módulo realiza la multiplicación de dos números de 16 bits representados en complemento
a dos. Una de las entradas corresponde al peso de la neurona actual, y la otra representa una carac-

52



teŕıstica de entrada EMG o un resultado intermedio proveniente de la capa anterior. El resultado
es un valor de 32 bits, que es el producto de las dos entradas. En el diseño completo del modelo
de la red, se instancian 100 de estos módulos en paralelo para calcular simultáneamente todos los
productos requeridos por cada neurona. La Figura 3.19 muestra el diagrama de caja negra del
módulo multiplicador.

32
X

(Multiplicador)

a

p

16

16 b

Figura 3.19: Diagrama de caja negra del módulo multiplicador.

Sumador

El sumador es el bloque que suma los productos generados por los multiplicadores, junto con
el sesgo correspondiente a la neurona en proceso. El módulo tiene 101 entradas de 32 bits (100
productos + 1 sesgo) y una única salida también de 32 bits, que representa la salida de la neurona
antes de la función de activación. La Figura 3.20 muestra su diagrama de caja negra.

32
+

(Sumador)

e1

s

32

e232

e10032

.

.

.

sesgo

32

Figura 3.20: Diagrama de caja negra del módulo sumador.

Bloque ReLU

Este módulo realiza la función de activación ReLU, que se aplica al resultado del sumador. Este
evalúa si el valor de entrada en complemento a dos es menor o igual a cero. En ese caso, la salida es
cero. Si el valor es positivo, la salida reproduce el valor de la entrada. De esta manera, se aplica la
transformación no lineal caracteŕıstica de la función ReLU. La Figura 3.21 muestra su caja negra.

53



32ReLua r32

Figura 3.21: Diagrama de caja negra del módulo ReLU.

3.5.8. Módulos de bloques de registros

Para almacenar los resultados intermedios y de salida del modelo de la red implementada en
hardware, se diseñaron tres módulos que funcionan como bloques de registros especializados. Cada
uno de los bloques gestiona los datos generados durante el proceso de inferencia, facilitando la trans-
ferencia de los datos entre las capas del modelo o hacia el bloque de decisión final. Para sincronizar
los módulos en la arquitectura diseñada, se optó por utilizar estos bloques con múltiples registros
internos organizados por dirección, al igual para realizar las tareas de lectura y transferencia de los
datos en paralelo.

A continuación, se describen el funcionamiento de cada uno de estos bloques.

Bloque de registros actuales

Este módulo contiene 100 registros de 16 bits y se encarga de guardar los resultados de las
neuronas en las capas intermedias, espećıficamente almacena los resultados en la capa que se está
evaluando en la etapa presente del proceso. Cada resultado es escrito en un registro determinado
por la señal proveniente del contador. La escritura es controlada por una señal de habilitación
generada por la FSM. Los registros pueden ser léıdos simultáneamente por la señal de salida que
concatena los datos; esto permite su transferencia simultánea hacia el bloque de registros pasados.

En la Figura 3.22 se muestra el diagrama de caja negra de este módulo, y la Tabla 3.10 presenta
sus señales de entrada y salida.

32BLOQUE_REG_ACTUAL

addr7

d16

q
16x100

ena

Figura 3.22: Diagrama de caja negra del bloque de registros actuales.

54



Tabla 3.10: Entradas y salidas del bloque de registros actuales.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema (25 MHz).

rst 1 bit Entrada Señal de reinicio aśıncrono.

addr 7 bits Entrada Dirección de escritura del registro, proveniente
del contador.

ena 1 bit Entrada Habilita la escritura del dato en el registro se-
leccionado.

d 16 bits Entrada Dato de activación a almacenar.

q 16x100 bits Salida Todos los registros disponibles para lectura si-
multánea.

Bloque de registros pasados

Este módulo también contiene 100 registros internos de 16 bits, al igual que el módulo de
registros actuales. Su función es leer y almacenar todos los valores del bloque de registros actuales
una vez que el proceso completo de activar las neuronas de una capa. La escritura se realiza en
paralelo de todos los registros y se produce al activarse la señal de habilitación producida por la
FSM. Todos los valores de este bloque se leen simultáneamente desde la salida que concatena los
valores, para alimentar las siguientes neuronas en el proceso de la red.

La Figura 3.23 muestra su diagrama de caja negra y la Tabla 3.11 describe sus señales.

32BLOQUE_REG_PASADO

d
16X100

q
16x100

ena

Figura 3.23: Diagrama de caja negra del bloque de registros pasados.

Tabla 3.11: Entradas y salidas del bloque de registros pasados.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema.

rst 1 bit Entrada Señal de reinicio aśıncrono.

Continúa en la siguiente página

55



Tabla 3.11 – continuación de la página anterior

Nombre Tamaño Tipo Descripción

ena 1 bit Entrada Habilita la escritura de todos los registros en
paralelo.

d 16x100 bits Entrada Conjunto de datos provenientes del bloque de
registros actuales.

q 16x100 bits Salida Registros disponibles para lectura paralela.

Bloque de registros de salida

Este bloque contiene 10 registros internos de 16 bits. Cada registro corresponde a cada clase del
modelo a clasificar. Su funcionalidad es replicada del bloque de registros actuales, con la diferencia
de que este bloque cuenta con menos registros, los cuales están dedicados a almacenar los resultados
de las neuronas de la capa de salida. Los registros son léıdos en paralelo para que el módulo de
número mayor determine la clase con mayor activación.

La Figura 3.24 presenta el diagrama de caja negra de este módulo y la Tabla 3.12 su especifi-
cación funcional.

32BLOQUE_REG_SALIDA

addr7

d16

q
16x10

ena

Figura 3.24: Diagrama de caja negra del bloque de registros de salida.

Tabla 3.12: Entradas y salidas del bloque de registros de salida.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema.

rst 1 bit Entrada Señal de reinicio.

addr 7 bits Entrada Dirección de escritura del resultado de activa-
ción de cada neurona de salida.

ena 1 bit Entrada Habilita la escritura del resultado.

d 16 bits Entrada Dato proveniente de las neuronas en la capa de
salida.

Continúa en la siguiente página

56



Tabla 3.12 – continuación de la página anterior

Nombre Tamaño Tipo Descripción

q 16x10 bits Salida Resultados de salida disponibles para compara-
ción.

3.5.9. Módulo número mayor

El módulo número mayor, o nombrado MOV MAX en el diseño, es el bloque final de la arquitec-
tura digital de la red neuronal MLP implementada en FPGA. Funciona para determinar cuál de las
salidas generadas por las 10 neuronas de la capa final tiene el mayor valor numérico, considerando
la representación binaria en punto fijo, 8 bits para parte entera y 8 bits para la parte fraccionaria.
Determinar la neurona de salida con mayor peso, equivale a identificar la clase predicha por el
modelo. Este módulo funciona como la operación Argmax que sustituye a la función de activación
Softmax empleada en el modelo en software, esto porque no es necesario obtener la distribución
completa de probabilidades sobre las clases. Basta con identificar la salida con el valor máximo
para determinar el gesto que clasificó la red.

El módulo genera un vector de 10 bits en su salida, donde únicamente uno de los bits es activado
(’1’), donde, la posición de este bit indica la clase con mayor peso, es decir, la clase que clasificó
la red. Mientras el proceso no termina, determinado por la FSM, el vector de salida permanece en
ceros, esto para evitar una salida transitoria errónea.

En la Figura 3.25 se presenta el diagrama de caja negra del módulo, y en la Tabla 3.13 se
describen sus señales de entrada y salida.

32MOV_MAX

d
16x10

y
10

ena

Figura 3.25: Diagrama de caja negra del módulo número mayor.

Tabla 3.13: Entradas y salidas del módulo número mayor.

Nombre Tamaño Tipo Descripción

ena 1 bit Entrada Señal de habilitación. Cuando está activa (‘1’),
permite que el módulo realice la comparación y
active la salida correspondiente. Si está en ‘0’,
la salida ‘y‘ se mantiene en ceros.

Continúa en la siguiente página

57



Tabla 3.13 – continuación de la página anterior

Nombre Tamaño Tipo Descripción

d 16x10 bits Entrada Vector que contiene las salidas de las 10 neuro-
nas finales de la red. Cada valor representa el
resultado asociado a una clase distinta.

y 10 bits Salida Vector codificado en un solo bit alto (‘1’) que
representa la clase con la mayor activación. La
posición activa indica la predicción del modelo.

3.6. Diseño para evaluar la precisión de la red MLP en hardware

Una vez completada la implementación de la red neuronal MLP en hardware, se diseñó una
arquitectura adicional con el objetivo de evaluar la precisión en la clasificación de señales EMG
por la red. En este nuevo diseño, la red MLP se emplea como un módulo funcional encapsulado
dentro de un sistema mayor, ya que el diseño modular en el FPGA permite reutilizar los diseños.
A Figura 3.26 presenta el diagrama de bloques del sistema completo diseñado.

FSM_PRECISION

i_cta

f_cta

i_mlp

inicio

h_cto

f_mlp

fin

CONTADOR_FLAG

flag

cta

inc

MLP

start
x

12

fin

y

rom_entradas_etiquetas

doutaaddra

DECODIFICADOR_BCP

mov

bin

COMPARADOR
a

b

c

CONTADOR

inc
cta

AND

MUX
2_1

0

inicio

fin

led

10

10

4

12

12

Figura 3.26: Diagrama de bloques del diseño de prueba de precisión para la red neuronal MLP en
hardware.

Este sistema incluye una nueva FSM, memoria ROM, un decodificador, un multiplexor 2 a 1
y dos contadores, que interactúan con el diseño de red neuronal. A continuación se describen los
módulos más relevantes que componen la arquitectura de pruebas de precisión. El módulo MLP ya
no se describe, ya que su arquitectura fue desglosada en la sección anterior. Se hace especial énfasis
en el módulo FSM PRECISION, ya que es el más relevante al coordinar el flujo de datos.

FSM PRECISION: La máquina de estados finitos es de tipo Moore y se encarga de la
sincronización secuencial de todos los módulos. Inicia el proceso de inferencia de la red, espera

58



la finalización del resultado, válida la predicción y actualiza los contadores correspondientes.
En la Figura 3.27 se muestra el grafo de estados de esta FSM. Y en la Tabla 3.14 se muestra
la descripción de entradas y salidas de este módulo FSM.

ESPERA

0,0,0,0

INICIO_MLP

1,0,0,0

PROCESO_MLP

REG_CTA

PAUSA1

PAUSA2

MOSTRAR_CTA

NUEVO_MLP

inicio=‘1’

Salidas

i_mlp 1 bit

i_cta 1 bit

h_cto 1 bit

fin 1 bit

Entradas

clk 1 bit

rst 1 bit

inicio 1 bit

f_cta 1 bit

f_mlp 1 bit

rst =‘1’

0,0,0,0

0,0,1,0

0,1,0,00,0,0,0

0,0,0,0

0,0,0,1

f_mlp=‘1’

f_cta=‘0’

f_cta=‘1’

inicio=‘1’

Figura 3.27: Grafo de los estados de la FSM para prueba de precisión de red neuronal.

Tabla 3.14: Entradas y salidas del módulo FSM PRECISION.

Nombre Tamaño Tipo Descripción

clk 1 bit Entrada Señal de reloj del sistema.

rst 1 bit Entrada Señal de reinicio aśıncrono.

inicio 1 bit Entrada Señal para iniciar el proceso de evaluación de
precisión.

i mlp 1 bit Salida Señal de inicio para el módulo MLP, activa la
propagación hacia adelante.

fmlp 1 bit Entrada Indica que la red MLP ha terminado la inferen-
cia y su salida está disponible.

h cto 1 bit Salida Habilita el incremento del contador de aciertos
cuando la predicción es correcta.

Continúa en la siguiente página

59



Tabla 3.14 – continuación

Nombre Tamaño Tipo Descripción

i cta 1 bit Salida Señal para incrementar el contador de muestras
una vez procesada cada muestra.

f cta 1 bit Entrada Señal que indica que se han evaluado todas las
muestras almacenadas.

fin 1 bit Salida Señal de finalización del proceso completo de
evaluación. Permite mostrar el total de aciertos.

Contador con bandera: Este bloque, nombrado como CONBTADOR FLAG en el diseño,
es un contador śıncrono que lleva el control del número de muestras evaluadas. Su valor
se utiliza como dirección para acceder a la ROM de etiquetas. La bandera de salida indica
cuándo se ha alcanzado el total de muestras almacenadas.

Memoria ROM para etiquetas: Este módulo, nombrado rom entradas etiquetas en el di-
seño, contiene las etiquetas reales correspondientes a cada muestra de entrada almacenada en
el módulo MLP. Estas etiquetas fueron previamente extráıdas de la base de datos EMG. El
contenido de esta ROM permite validar la predicción realizada por la red neuronal, compa-
rando la salida del módulo MLP con la clase esperada.

Decodificador de etiquetas a vector de 10 bits

Este módulo nombrado como DECODIFICADOR BCP convierte las etiquetas almacenadas
en la memoria ROM como números binarios de 0 a 9 a una representación por posición en
un vector de 10 bits, donde únicamente el bit correspondiente a la clase está en alto. Esta
representación es compatible con la salida del módulo MLP, que también entrega un vector
de 10 bits donde el bit activo es la clase predicha según la ubicación de este. Se hace esta
conversión para poder realizar la comparación.

Comparador: El comparador verifica si la clase predicha por el módulo MLP es igual con la
clase real proveniente de la ROM de etiquetas. Si ambos vectores coinciden, genera una señal
en alto que indica un acierto en la predicción.

Contador de aciertos

Este contador incrementa su valor cada vez que el comparador detecta una predicción correcta,
a la par que el proceso de la FSM habilita el incremento de aciertos, permitiendo aśı obtener el
total de aciertos al final del proceso. El valor final del proceso se usa para calcular la precisión
del modelo en hardware con respecto al total de las muestras probadas.

3.7. Diseño para control de servomotores con red neuronal en
hardware

Una vez validada la precisión de la inferencia del modelo red neuronal MLP en hardware, se
desarrolló el diseño de la arquitectura final para integrar el modelo a un sistema embebido de
control f́ısico. Este diseño utiliza las predicciones de la red neuronal para controlar directamente

60



cinco servomotores SG90 que simulan los movimientos de los dedos de la mano en el actuador para
pruebas f́ısicas. La arquitectura general de este sistema se presenta en la Figura 3.28.

MLP

start
x

7 fin

y
DECO_MLP_PWMsy

PWM_MODULE

inicio

10

x
pwm1

pwm2

pwm3

pwm4

pwm5

ena

p

pwm

PWM_MODULE

ena

p

pwm

PWM_MODULE

ena

p

pwm

PWM_MODULE

ena

p

pwm

PWM_MODULE

ena

p

pwm

10

10

10

10

10

pwm(0)

pwm(1)

pwm(2)

pwm(3)

pwm(4)

led

Figura 3.28: Diagrama de bloques del diseño de control de servomotores con red neuronal en hard-
ware.

Esta arquitectura representa un sistema de control en lazo abierto, ya que no se emplea re-
troalimentación de posición. La salida generada por la red neuronal al procesar las caracteŕısticas
de las señales EMG produce las decisiones de control. El sistema está formado por tres bloques
principales: el módulo MLP, el decodificador DECO MLP PWMs y los módulos generadores de
PWM.

El módulo MLP es el núcleo de inferencia que recibe un vector de caracteŕısticas de 67 compo-
nentes de 100 muestras para pruebas que se integraron en la memoria ROM interna. Y entrega un
vector de 10 bits, donde un único bit en alto representa la clase predicha, correspondiente a una de
las diez posibles posiciones de la mano.

El decodificador, DECO MLP PWMSY, interpreta la salida de 10 bits del MLP y genera cinco
señales de control, una por servomotor, asignando a cada uno un ciclo de trabajo espećıfico. Este
módulo determina si cada dedo debe estar extendido o contráıdo dependiendo la clase que asignó
la red en el proceso de clasificación de las muestras EMG. Cada clase se interpreta como una
codificación que configura la posición de los cinco dedos; por lo tanto, la salida del decodificador se
traduce en señales PWM ajustadas.

Cada servomotor SG90 está asociado a un módulo PWM MODULE, el cual genera una señal de
modulación por ancho de pulso de 20 ms de peŕıodo y con una resolución de 10 bits. En este caso,

61



se definieron dos posiciones por dedo: extensión y contracción, determinadas mediante el ancho de
los ciclos en alto. La Tabla 3.15 muestra la configuración correspondiente para cada servomotor.

Tabla 3.15: Configuraciones del ciclo en alto del PWM por dedo y posición.

Dedo (servomotor) Contracción Extensión

Pulgar 1.63 ms en alto de 20 ms 1.3 ms en alto de 20 ms

Índice 1.3 ms en alto de 20 ms 1.9 ms en alto de 20 ms

Medio 1.1 ms en alto de 20 ms 1.8 ms en alto de 20 ms

Anular 1.1 ms en alto de 20 ms 1.9 ms en alto de 20 ms

Meñique 1.1 ms en alto de 20 ms 1.9 ms en alto de 20 ms

Estos ciclos de trabajo en cada servomotor se eligieron de forma emṕırica con los servomotores
acoplados a cada mecanismo que simula el movimiento de dedo hasta ajustar las posiciones deseadas.

El sistema resultante representa f́ısicamente las clases predichas por el modelo de red neuronal
MLP mediante los movimientos en paralelo de los dedos en el actuador de mano artificial.

3.8. Desarrollo de actuador que simule movimientos de mano

A la par que se desarrollaban las anteriores secciones de la metodoloǵıa y como parte del sistema
de validación f́ısico para el modelo de red neuronal, se desarrolló un actuador impreso en 3D, el
cual simula los movimientos de los dedos en una mano humana. Con este dispositivo se permite
representar visualmente las clases predichas por la red MLP mediante el posicionamiento de los
dedos de forma paralela, por el accionamiento de los servomotores.

Para el diseño del mecanismo que conforma los dedos se tuvo la referencia de un modelo de
código abierto publicado en [72]. Este modelo base incluye un mecanismo con dos articulaciones
para el dedo pulgar y otro mecanismo de tres articulaciones para el resto de los dedos. Se realizó
un ajuste en el diseño para el ensamble de los servomotores SG90 empleados en este trabajo, ya
que el modelo original está diseñado para servomotores de distinto modelo.

Se realizaron modificaciones, en los engranajes, actuadores y en los soportes de los servomotores,
para el correcto ensamblaje con estos. Además, se rediseñó completamente la base y el soporte que
alinean los cinco servomotores. Para el control de los dedos se optó un servomotor por dedo, ya
que los mecanismos del diseño base, el dedo ı́ndice y medio comparten servo, al igual que el dedo
anular y meñique.

La edición y creación de las piezas se realizó empleando el software SolidWorks 2020®. Las
piezas se imprimieron con una impresora 3D modelo Ender, como se muestra en las Figuras 3.29
y 3.30.

62



Figura 3.29: Proceso de impresión 3D del dispositivo.

Figura 3.30: Impresión 3D de partes del dispositivo.

63



Las Figuras 3.31, 3.34, 3.32 y 3.33 muestran algunos componentes principales del diseño impreso,
incluyendo la base y tapa para montaje de servos, aśı como los mecanismos individuales de los dedos.

Figura 3.31: Soporte para servomotores.

Figura 3.32: Tapa de soporte para servomotores.

64



Figura 3.33: Dedo pulgar acoplado a servomotor.

Figura 3.34: Dedo con tres articulaciones acoplado a servomotor.

Finalmente, en las Figuras 3.35 y 3.36 se muestra el dispositivo ensamblado en dos posiciones:

Figura 3.35: Dispositivo ensamblado con posición “mano extendida”.

65



Figura 3.36: Dispositivo ensamblado con posición “mano cerrada”.

66



CAPÍTULO 4

Resultados

En esta sección se presenta el análisis de los resultados obtenidos. Se hacen varios análisis del
modelo MLP implementado en hardware, tales como: análisis de la utilización de recursos en el
FPGA, análisis de tiempo de procesamiento en la inferencia del modelo, análisis de potencia en el
chip, y se analiza la eficiencia obtenida del modelo. Estos resultados se describen con más detalle
en las secciones siguientes.

4.1. Recursos utilizados en FPGA

En el FPGA los recursos son limitados, como la lógica programable, los bloques de memoria,
ĺıneas de entrada/salida (IO), y bloques DSP. Evaluar la cantidad de recursos que requiere el
diseño es de suma importancia, para considerar la capacidad del dispositivo para agregar nuevas
etapas en el sistema o para su posible migración a otros dispositivos con diferentes capacidades.
Las herramientas de śıntesis del diseño nos proporcionan estos resultados de recursos en el diseño
en este caso el software Vivado 2021.1®, en la tabla 4.1 se muestran el reporte de la utilización
del diseño de red neuronal MLP en el FPGA Artix 7® que se empleó para la implementación.

Tabla 4.1: Utilización de recursos por la red neuronal MLP en FPGA Artix 7®.

Recurso Utilización Disponibles Utilizado (%)

LUT 5735 20800 27.57

LUTRAM 3 9600 0.03

FF 3764 41600 9.05

BRAM 38 50 76.00

DSP 90 90 100.00

IO 21 106 19.81

Se muestra que los recursos cŕıticos en este diseño son los bloques DSP, con una utilización del
100%, lo que es esperado por la cantidad de multiplicaciones que se realizan en paralelo durante
la inferencia de la red. Otro recurso de alta demanda son los bloques de RAM, ya que se utiliza
el 76% de los disponibles, los cuales se emplean para almacenar los pesos y sesgos del modelo. La

67



cantidad de lógica programable en las LUTs y flip-flops presenta un uso moderado, lo que indica
que existe un margen para agregar lógica adicional para otras funciones. En cambio, las ĺıneas IO
emplean una baja utilización, lo cual es considerable para la posible adaptación a módulos externos
o sensores.

De acuerdo al análisis de los recursos, si se requiere la implementación de una red de mayor
tamaño con esta arquitectura de diseño, es necesario considerar un dispositivo FPGA con mayores
recursos en DSPs y BRAM para no afectar el rendimiento de la inferencia. O también la posibilidad
de considerar el uso de estrategias de optimización para reducir el uso de recursos

Además, con el fin de contextualizar la eficiencia de este diseño se hizo una comparación con
trabajos reportados en el estado del arte en la Tabla 4.2, donde se puede apreciar resultados similares
e incluso por debajo en la cantidad de recursos reportados con otras implementaciones de modelos
de clasificación de señales EMG en FPGA.

Tabla 4.2: Comparación de uso de recursos en FPGA entre diferentes trabajos.

Trabajo Dispositivo Modelo FF LUT BRAM DSP

[73] Pynq-Z1® SVM 43624 38836 91 147

[74] Zynq
XC7Z020

KNN 9770 12783 33 16

[75] Kintex 7®

(XC7K325T)
SVM 186635 38087 94 108

[11] Intel MAX
10®

Red neuronal bi-
narizada (BNN)

– 3577 – 46

[31] Zedboard® Red neuronal de
picos (R-SNN)

4256 7980 3 –

Este trabajo Basys 3®

(Artix 7®)
MLP 3764 5735 38 90

4.2. Tiempo de procesamiento

En esta sección se presenta el análisis del tiempo de inferencia del modelo MLP implementado
en el FPGA, considerando la ejecución completamente en hardware. El tiempo de procesamiento
en sistemas embebidos es fundamental para la clasificación de señales EMG en tiempo real.

El diseño de la red neuronal fue probado en la tarjeta Basys 3®, la cual cuenta con una
frecuencia de reloj de 100 MHz, pero en esta frecuencia resulto incapaz de funcionar el modelo,
debido al retraso necesario en los componentes f́ısicos, tales como el tiempo necesario para acceder
a los bloques de memoria RAM y para la propagación de las señales a lo largo de todos los módulos.
Por lo que se optó por configurar la frecuencia del reloj a 25 MHz, lo cual equivale a un periodo
de 40 ns por ciclo de reloj. Esta configuración del reloj del sistema se estableció al hacer pruebas
f́ısicas con el modelo implementado en la tarjeta de desarrollo.

Se evaluó la simulación del funcionamiento del diseño midiendo el número de ciclos de reloj
necesarios desde que se inicia la inferencia de la red al activar la señal (start), hasta que se tiene
una predicción de clase, indicada por la señal de finalización del proceso (fin). Con esto se obtuvo
la latencia total de la red neuronal implementada, la cual fue de:

68



Latencia total: 843 ciclos de reloj

Frecuencia del sistema: 25 MHz (T = 40 ns)

Tiempo de inferencia: 843× 40 ns = 33.72 µs

La Figura 4.1 muestra la simulación obtenida en el entorno de desarrollo Vivado 2021.1®,
donde se observa medición del tiempo de procesamiento.

Figura 4.1: Simulación de la red para clasificar una muestra, con medición de tiempo de procesa-
miento.

Este resultado de latencia a la frecuencia de reloj configurado, indica que el modelo, en su
caso ideal simulado, puede clasificar una muestra de entrada en menos de 34 microsegundos, lo
que equivale a aproximadamente 29600 muestras por segundo. Logrando la inferencia del modelo
de clasificación en tiempo real, adecuado para aplicaciones que requieran una respuesta lo más
inmediata posible.

Esta medición de tiempo solo corresponde al proceso de inferencia de la red neuronal. Por lo que
no se están considerando etapas como adquisición de las señales, procesamiento de estas, conversión
A/D, entre otras etapas que pueden ser agregadas para tener una solución de sistema completo.

Para finalizar el análisis del tiempo de procesamiento del modelo, se realizó una comparación
entre la implementación en hardware (FPGA) y la ejecución en software utilizando el lenguaje
Python. El modelo en software fue ejecutado en una computadora portátil equipada con un proce-
sador Intel® CoreTM i7-1255U de 12ª generación a 1.70 GHz. La medición del tiempo en software
se realizó utilizando las herramientas disponibles en Python time y perf counter, con las que se
hizo el registro del tiempo necesario para que el modelo tenga una predicción desde que se inicia la
clasificación. Los resultados se muestran en la Tabla 4.3.

69



Tabla 4.3: Comparación del tiempo de procesamiento entre la implementación en software y hard-
ware.

Implementación Dispositivo Tiempo de procesamiento

Software (Python) Intel® CoreTM i7-1255U @ 1.70 GHz 52.03730 ms

Hardware (VHDL – FPGA) Artix 7® (Basys 3®) 0.03372 ms

Con esta comparación, se obtuvo que la inferencia del modelo en hardware logra una aceleración
considerable con respecto a la ejecución en software.

4.3. Consumo de potencia en FPGA

Es importante conocer el consumo de potencia del diseño, para determinar su capacidad de
usarse en aplicaciones embebidas donde la eficiencia energética es un factor clave. La estimación de
potencia se obtuvo mediante la herramienta de análisis de consumo incluida en Vivado 2021.1®,
tras la implementación del modelo MLP en el FPGA.

La Figura 4.2 muestra el reporte de potencia generado, donde se presenta tanto la potencia
total estimada como la distribución entre componentes estáticos y dinámicos.

Figura 4.2: Reporte de potencia del modelo en el FPGA.

La potencia total estimada del diseño es de 0.153 W, distribuida en dos componentes princi-
pales:

Potencia dinámica: 0.079 W (52% del total)

70



Potencia estática: 0.074 W (48% del total)

La potencia dinámica representa el consumo de la actividad de los relojes, señales internas,
lógica programable, memoria BRAM, DSPS y periféricos durante el funcionamiento del modelo.
En el modelo, el mayor consumo de la potencia dinámica está dada por:

Señales de interconexión: 0.046 W (58% de la potencia dinámica)

Lógica: 0.025 W (32%)

BRAM, DSPs, I/O y relojes: 0.008 W en conjunto (10%)

De acuerdo con este análisis, se concluye que la mayoŕıa del consumo dinámico se encuentra en
el ruteo de señales y en la lógica combinacional de la red neuronal.

La potencia estática corresponde al consumo sin actividad lógica, mientras el modelo se encuen-
tra en espera. Representa el 48% del consumo total, el cual está relacionado con el consumo medio
en las hojas de datos del chip FPGA.

Con un consumo total en el chip de 153 mW, la implementación del modelo MLP en FPGA,
muestra ser eficaz de forma energética y adecuada para aplicaciones portátiles. Aunque se debe
tener en cuenta que esta medición solo está enfocada en el consumo en el chip, no se consideran
los demás componentes en la tarjeta de desarrollo, la cual debe ser alimentada con 5 V para su
funcionamiento.

4.4. Evaluación del modelo en FPGA

Para evaluar el rendimiento del modelo implementado en hardware, se realizaron pruebas de la
red neuronal con el diseño descrito en la sección de la metodoloǵıa 3.6. Donde este sistema compara
las predicciones generadas por el modelo con las etiquetas reales provenientes de una memoria
ROM, contabilizando los aciertos y errores de clasificación.

Para estas pruebas se evaluaron, 21490 muestras, correspondientes a una parte de los datos para
pruebas que se asignaron de la base de datos. Se descartó una porción de los datos para no saturar la
capacidad de la memoria ROM y, ya que el tiempo en simulación se incrementa considerablemente,
entre más muestras.

Se documentaron los resultados de clasificación para cada muestra, con lo cual sé obtuvo la
precisión de la red neuronal del 94.09%. Donde el modelo presentó una disminución en la precisión
con respecto a la implementación en software, ya que se obtuvo una precisión de 96.19% al ejecutar
el algoritmo del modelo en Python con los mismos datos para pruebas. Esta diferencia se atribuye
a la pérdida de valores debido a la representación de los datos, ya que en la implementación en
hardware se utilizó una representación de 16 y 32 bits, en cambio, en el software se manejan datos
de 64 bits.

Adicionalmente, con el registro de los resultados de la clasificación, se generó la matriz de
confusión del modelo. En la figura 4.3 se presenta la matriz.

71



mov1 mov2 mov3 mov4 mov5 mov6 mov7 mov8 mov9 mov10
Clase predicha

m
ov

1
m

ov
2

m
ov

3
m

ov
4

m
ov

5
m

ov
6

m
ov

7
m

ov
8

m
ov

9
m

ov
10

C
la

se
 re

al
2068 42 1 1 15 3 9 1 4 5

53 2019 6 3 21 13 7 14 2 11

7 9 2080 6 0 2 22 17 2 4

2 4 29 2010 0 6 1 90 1 6

131 44 4 1 1864 36 47 1 17 4

26 50 1 70 16 1942 7 4 32 1

43 4 30 4 17 7 2029 1 9 5

2 8 26 19 1 1 0 2090 1 1

17 12 8 4 26 48 14 18 1996 6

6 4 4 1 0 0 0 9 1 2124

0

250

500

750

1000

1250

1500

1750

2000

Figura 4.3: Matriz de confusión del modelo MLP implementado en FPGA.

En la matriz, se muestra la comparación de las predicciones de clases del modelo, representadas
por las columnas, comparadas con las clases reales, representadas con las filas. De esta manera
se permitió analizar en detalle los errores y aciertos de la clasificación. En la diagonal principal
se muestran los casos en que la red clasificó de forma correcta. Los valores fuera de la diagonal
equivalen a los casos en que la red calificó erróneamente.

De acuerdo con los resultados, la clase 10, que corresponde a la mano en posición de reposo, fue
la que tiene la mayor cantidad de aciertos en la clasificación, debido a que su diferenciación es más
notable, al no contar con activación significativa en los músculos. En cambio, la clase 5, que es la
extensión de los dedos ı́ndice y medio es la que menos aciertos obtuvo, al confundirse con la clase 1
y clase 7, por la activación de músculos similares en los movimientos, ya que la clase 7 corresponde
a la extensión del dedo ı́ndice, y la clase 1 a la extensión de los dedos a excepción del pulgar.

Con base en la matriz de confusión se obtuvieron las variables: verdaderos positivos, verdaderos
negativos, falsos positivos y falsos positivos. Estas variables son necesarias para calcular las métricas

72



para evaluar el rendimiento del modelo. Cuyas ecuaciones son: ecuación 2.23 para exactitud, 2.24
para sensibilidad y 2.25 para obtener la especificidad. En la tabla 4.4 se muestran las métricas para
cada clase.

Tabla 4.4: Métricas de evaluación del modelo MLP por clase.

Clase Exactitud Sensibilidad Especificidad

Movimiento 1 98.288% 96.231% 98.516%

Movimiento 2 98.571% 93.951% 99.085%

Movimiento 3 99.172% 96.789% 99.436%

Movimiento 4 98.846% 93.532% 99.436%

Movimiento 5 98.227% 86.738% 99.504%

Movimiento 6 98.497% 90.368% 99.400%

Movimiento 7 98.944% 94.416% 99.447%

Movimiento 8 99.004% 97.255% 99.199%

Movimiento 9 98.967% 92.880% 99.643%

Movimiento 10 99.684% 98.837% 99.778%

Promedio 98.820% 94.100% 99.344%

A partir de estos resultados, se calculó la eficiencia del modelo implementado, dando como
resultado un porcentaje de 97.42%, cumpliendo con la hipótesis planteada.

4.5. Control del actuador por medio de red neuronal implemen-
tada en FPGA

Para validar el modelo de red neuronal, se realizó un control de un actuador que simula los
movimientos de mano a partir de las predicciones del modelo. En las Figura 4.4 se muestra el
actuador de la mano artificial en cada posición de las 10 clases que el modelo clasifica. De esta
forma se apreciaron f́ısicamente los resultados de la red neuronal. Y se muestra que el módulo de
red neuronal MLP desarrollado puede aplicarse en el diseño de sistemas embebidos para aplicaciones
útiles, en este caso el control de posición por servomotores en un sistema en lazo abierto.

73



1 2

3 4

5 6

7 8

9 10

Figura 4.4: Pruebas de control de movimientos. 1) Oposición del pulgar. 2) Oposición de los dedos
pulgar e ı́ndice. 3) Extensión de los dedos pulgar e ı́ndice. 4) Extensión de los dedos pulgar y
meñique. 5) Extensión de los dedos ı́ndice y medio. 6) Extensión de meñique. 7) Extensión de

ı́ndice. 8) Extensión de pulgar. 9) Mano cerrada. 10) Mano en reposo o mano abierta.

74



CAPÍTULO 5

Conclusiones

En este trabajo se describe cómo implementar una red neuronal MLP funcional para clasificar
señales EMG en hardware con un dispositivo FPGA. La inferencia de la red se realizó de forma
modular por bloques que conforman una arquitectura completa. La arquitectura de este trabajo
permite clasificar 10 movimientos de la mano a partir de caracteŕısticas extráıdas de las señales
EMG.

El FPGA se demostró como una plataforma adecuada para la inferencia de modelos de redes
neuronales, empleando hasta 100 neuronas por capa, con la posibilidad de aumentarse, siguiendo
la arquitectura propuesta. Además, la implementación en este tipo de dispositivos permite tiempos
de procesamiento reducidos en la ejecución de la red neuronal, al ejecutar tareas en paralelo por
su diseño a nivel hardware, aśı como por la configuración altamente personalizada de lógica y
conexiones.

Según los resultados obtenidos, en cuestión de recursos del FPGA, estos incrementan a medida
que incrementa la complejidad del modelo. Especialmente los requisitos en componentes como
bloques de memoria BRAM, ya que estos se emplean para almacenar los pesos y sesgos de la red.
También consideración en los bloques DSPs, útiles para realizar las multiplicaciones en el diseño. Al
aumentar el tamaño de la red neuronal, hay que considerar estos recursos en el FPGA, por lo que
resalta la necesidad de un diseño eficiente y balanceado. En este trabajo, los recursos de la tarjeta
de desarrollo empleados fueron suficientes para ejecutar el diseño, pero si se espera aumentar la
complejidad, es necesario optar por un dispositivo de mayores capacidades, o en su caso optar por
usar técnicas de optimización de recursos en el diseño.

El modelo propuesto da como resultado un bloque funcional pre-diseñado que se puede integrar
en un sistema FPGA de mayor tamaño para realizar la tarea espećıfica de red neuronal MLP para
clasificación. El diseño es modular y flexible, lo que facilita la migración a otro dispositivo y es
posible aplicarlo en la calificación de diferentes tipos de datos.

De manera relevante, el calsificador EMG en el FPGa logra resultados adecuados para poder
ser integrados en aplicaciones como prótesis inteligentes o aplicaciones de control por gesto. Con-
siderando la integración de otras etapas y diseño de los componentes necesarios. Ya que en este
trabajo solo se realizó un prototipo, para visualizar los resultados de forma f́ısica.

Como posibles trabajos futuros, se propone integrar las etapas de adquisición de señales EMG,
aśı como la conversión AD, y el procesamiento de estas, especialmente su extracción de caracteŕısti-
cas. Para desarrollar un sistema más autónomo y completo. Aśı como mejorar el prototipo de mano
artificial para su posible uso como prótesis inteligente.

75



Por otro lado, se propone utilizar el bloque prediseñado de la red MLP para otras aplicaciones
útiles que puedan embeberse para posibles funciones portátiles que ayuden a más sectores de la
población y de la industria.

76



Bibliograf́ıa

[1] M. Aviles, J. Rodŕıguez-Reséndiz, and D. Ibrahimi, “Optimizing emg classification through
metaheuristic algorithms. technologies, 11(4), 87,” 2023.

[2] M. R. Azghadi, C. Lammie, J. K. Eshraghian, M. Payvand, E. Donati, B. Linares-Barranco,
and G. Indiveri, “Hardware implementation of deep network accelerators towards healthcare
and biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14,
no. 6, pp. 1138–1159, 2020.

[3] J. O. d. O. de Souza, M. D. Bloedow, F. C. Rubo, R. M. de Figueiredo, G. Pessin, and
S. J. Rigo, “Investigation of different approaches to real-time control of prosthetic hands with
electromyography signals,” IEEE Sensors Journal, vol. 21, no. 18, pp. 20674–20684, 2021.

[4] A. Boschmann, G. Thombansen, L. Witschen, A. Wiens, and M. Platzner, “A zynq-based dy-
namically reconfigurable high density myoelectric prosthesis controller,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2017, pp. 1002–1007, IEEE, 2017.

[5] C. Cedeño, J. Cordova-Garcia, V. Asanza, R. Ponguillo, and L. Muñoz, “K-nn-based emg re-
cognition for gestures communication with limited hardware resources,” in 2019 IEEE Smart-
World, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Com-
puting & Communications, Cloud & Big Data Computing, Internet of People and Smart City
Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), pp. 812–817, IEEE,
2019.

[6] J. F. Castruita-López, M. Aviles, D. C. Toledo-Pérez, I. Maćıas-Socarrás, and J. Rodŕıguez-
Reséndiz, “Electromyography signals in embedded systems: A review of processing and classi-
fication techniques,” Biomimetics, vol. 10, no. 3, p. 166, 2025.

[7] E. Mastinu, J. Ahlberg, E. Lendaro, L. Hermansson, B. H̊akansson, and M. Ortiz-Catalan, “An
alternative myoelectric pattern recognition approach for the control of hand prostheses: A case
study of use in daily life by a dysmelia subject,” IEEE journal of translational engineering in
health and medicine, vol. 6, pp. 1–12, 2018.

[8] S. Benatti, F. Casamassima, B. Milosevic, E. Farella, P. Schönle, S. Fateh, T. Burger, Q. Huang,
and L. Benini, “A versatile embedded platform for emg acquisition and gesture recognition,”
IEEE transactions on biomedical circuits and systems, vol. 9, no. 5, pp. 620–630, 2015.

77



[9] D. Bonilla, M. Bravo, S. P. Bonilla, A. M. Iragorri, D. Mendez, I. F. Mondragon, C. Alvarado-
Rojas, and J. D. Colorado, “Progressive rehabilitation based on emg gesture classification and
an mpc-driven exoskeleton,” Bioengineering, vol. 10, no. 7, p. 770, 2023.

[10] S. Bisi, L. De Luca, B. Shrestha, Z. Yang, and V. Gandhi, “Development of an emg-controlled
mobile robot,” Robotics, vol. 7, no. 3, p. 36, 2018.

[11] S. Kang, H. Kim, C. Park, Y. Sim, S. Lee, and Y. Jung, “semg-based hand gesture recognition
using binarized neural network,” Sensors, vol. 23, no. 3, p. 1436, 2023.

[12] H.-S. Choi, “Siamese neural network for user authentication in field-programmable gate arrays
(fpgas) for wearable applications,” Electronics, vol. 12, no. 19, p. 4030, 2023.

[13] A. T. Nguyen, M. W. Drealan, D. K. Luu, M. Jiang, J. Xu, J. Cheng, Q. Zhao, E. W. Keefer,
and Z. Yang, “A portable, self-contained neuroprosthetic hand with deep learning-based finger
control,” Journal of neural engineering, vol. 18, no. 5, p. 056051, 2021.

[14] M. Aviles, J. Rodŕıguez-Reséndiz, and D. Ibrahimi, “Optimizing emg classification through
metaheuristic algorithms,” 2023.

[15] D. Baptista, S. Abreu, F. Freitas, R. Vasconcelos, and F. Morgado-Dias, “A survey of software
and hardware use in artificial neural networks,” Neural Computing and Applications, vol. 23,
no. 3–4, p. 591–599, 2013.

[16] E. Tikhonov, K. Chebanov, and V. Burlyaeva, “Hardware and software implementation of
neural network control of power systems based on the system of residual classes,” in 2019
International Multi-Conference on Industrial Engineering and Modern Technologies (FarEast-
Con), pp. 1–5, IEEE, 2019.

[17] M. R. Azghadi, C. Lammie, J. K. Eshraghian, M. Payvand, E. Donati, B. Linares-Barranco,
and G. Indiveri, “Hardware implementation of deep network accelerators towards healthcare
and biomedical applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 14,
no. 6, pp. 1138–1159, 2020.

[18] M. M. Saady and M. H. Essai, “Hardware implementation of neural network-based engine
model using fpga,” Alexandria Engineering Journal, vol. 61, no. 12, pp. 12039–12050, 2022.

[19] J. Hernandez, “Frecuencia y causas de amputaciÓn en pacientes atendidos en la direcciÓn de
atenciÓn a la discapacidad, por el programa de apoyo de ayudas funcionales del dif estado de
mÉxico, 2011-2012,” 2012.

[20] “Porcentaje de la población con discapacidad según dificultad en la actividad 2020,” 2020.

[21] E. V. V. Sánchez, “Los amputados y su rehabilitación,” Un reto para el Estado. Academia
Nacional de Medicina. Mexico, 2016.

[22] J. C. B. Gámez, F. Cabrera, ““diseno de una prótesis biomecánica para ninos”,” 2016.

[23] S. C. A. y. E. M. R. F. Álvarez, ““desarrollo histórico y fundamentos teóricos de la electro-
miograf́ıa como medio diagnóstico”,” 2006.

78



[24] I. Vasilev, D. Slater, G. Spacagna, P. Roelants, and V. Zocca, Python Deep Learning: Ex-
ploring deep learning techniques and neural network architectures with Pytorch, Keras, and
TensorFlow. Packt Publishing Ltd, 2019.

[25] J. Venugopalan, L. Tong, H. R. Hassanzadeh, and M. D. Wang, “Multimodal deep learning
models for early detection of alzheimer’s disease stage,” Scientific Reports, vol. 11, no. 1, 2021.

[26] M. B. I. Reaz, M. S. Hussain, and F. Mohd-Yasin, “Techniques of emg signal analysis: detection,
processing, classification and applications,” Biological procedures online, vol. 8, pp. 11–35, 2006.

[27] W. Liu, Q. Guo, S. Chen, S. Chang, H. Wang, J. He, and Q. Huang, “A fully-mapped and
energy-efficient fpga accelerator for dual-function ai-based analysis of ecg,” Frontiers in Phy-
siology, vol. 14, p. 1079503, 2023.

[28] S. S. Selvi, B. D, A. Qadir, and P. K. R, “Fpga implementation of a face recognition sys-
tem,” 2021 IEEE International Conference on Electronics, Computing and Communication
Technologies (CONECCT), 2021.

[29] H.-S. Choi, “Simple siamese model with long short-term memory for user authentication with
field-programmable gate arrays,” Electronics, vol. 13, no. 13, p. 2584, 2024.

[30] M. A. Scrugli, G. Leone, P. Busia, L. Raffo, and P. Meloni, “Real-time semg processing with
spiking neural networks on a low-power 5k-lut fpga,” IEEE Transactions on Biomedical Cir-
cuits and Systems, 2024.

[31] M. I. Ogbodo, K. N. Dang, and A. B. Abdallah, “Study of a multi-modal neurorobotic prosthe-
tic arm control system based on recurrent spiking neural network,” in SHS Web of Conferences,
vol. 139, p. 03019, EDP Sciences, 2022.

[32] H.-S. Choi, “Electromyogram (emg) signal classification based on light-weight neural network
with fpgas for wearable application,” Electronics, vol. 12, no. 6, p. 1398, 2023.

[33] T. Triwiyanto, S. Luthfiyah, W. Caesarendra, and A. A. Ahmed, “Implementation of super-
vised machine learning on embedded raspberry pi system to recognize hand motion as preli-
minary study for smart prosthetic hand,” Indonesian Journal of Electrical Engineering and
Informatics (IJEEI), vol. 11, no. 3, pp. 685–699, 2023.

[34] A. Yılmaz, B. Büyükyılmaz, H. C. Sert, O. Uğuroğlu, and A. E. Algüner, “Hand movement
classification with four channel emg signals for underactuated hand prosthesis test platform,”
in 2024 32nd Signal Processing and Communications Applications Conference (SIU), pp. 1–4,
IEEE, 2024.

[35] R. D. Babu, S. S. Adithya, and M. Dhanalakshmi, “Design and development of an emg con-
trolled transfemoral prosthesis,” Measurement: Sensors, vol. 36, p. 101399, 2024.

[36] V. A. Bezrukov, R. R. Vakhitov, S. A. Chuykin, P. Y. Anuchin, A. V. Kruglov, and A. Y.
Siziakova, “Evaluating the accuracy of knn classifier for gesture detection based on forearm
emg signal,” in 2024 6th International Youth Conference on Radio Electronics, Electrical and
Power Engineering (REEPE), pp. 1–5, IEEE, 2024.

79



[37] R. Suppiah, K. Noori, K. Abidi, and A. Sharma, “Real-time edge computing design for phy-
siological signal analysis and classification,” Biomedical Physics & Engineering Express, 2024.

[38] P. A. Sanipat́ın-Dı́az, P. D. Rosero-Montalvo, and W. Hernandez, “Portable facial expression
system based on emg sensors and machine learning models,” Sensors, vol. 24, no. 11, p. 3350,
2024.

[39] O. Kerdjidj, K. Amara, F. Harizi, and H. Boumridja, “Implementing hand gesture recognition
using emg on the zynq circuit,” IEEE Sensors Journal, 2023.

[40] M. R. Avilés et al., “Clasificación de senales mioeléctricas por medio de algoritmos genéticos
y máquinas de soporte de vectores,” 2023.

[41] G. M. Hernandez et al., “Diseño e implementación de una red neutral artificial en fpga para
la identificación de sistemas en ĺınea,” 2013.

[42] I. J. R. Ángeles, “Detección y clasificación de señales mioeléctricas en el brazo mediante el uso
de algoritmos basados en inteligencia artificial.,” 2023.

[43] J. F. Girón et al., “Algoritmos de clasificación de movimientos de señales mioeléctricas basados
en técnicas kernel,” 2021.

[44] D. C. A. Blair and F. John, “Emg control systems and methods for instructing extracorporeal
prosthesis users,” 2020.

[45] S. P. A. Einarsson and S. Atli, “Electromyography with prosthetic or orthotic devices,” 2016.

[46] K. Momen and T. Kin, “Method, system and apparatus for real-time classification of muscle
signals from self-selected intentional movements,” 2013.

[47] M. Reaz, M. Hussain, and F. Mohd-Yasin, “Techniques of emg signal analysis: detection,
processing, classification and applications (correction),” Biological procedures online, vol. 8,
pp. 163–163, 2006.

[48] D. C. Toledo-Pérez, J. Rodŕıguez-Reséndiz, R. A. Gómez-Loenzo, and J. Jauregui-Correa,
“Support vector machine-based emg signal classification techniques: A review,” Applied Scien-
ces, vol. 9, no. 20, p. 4402, 2019.

[49] L. Bi, C. Guan, et al., “A review on emg-based motor intention prediction of continuous human
upper limb motion for human-robot collaboration,” Biomedical Signal Processing and Control,
vol. 51, pp. 113–127, 2019.

[50] M. Hakonen, H. Piitulainen, and A. Visala, “Current state of digital signal processing in
myoelectric interfaces and related applications,” Biomedical Signal Processing and Control,
vol. 18, pp. 334–359, 2015.

[51] S. Zhou, K. Yin, F. Fei, and K. Zhang, “Surface electromyography–based hand movement
recognition using the gaussian mixture model, multilayer perceptron, and adaboost method,”
International Journal of Distributed Sensor Networks, vol. 15, no. 4, p. 1550147719846060,
2019.

80



[52] T. Song, Z. Yan, S. Guo, Y. Li, X. Li, and F. Xi, “Review of semg for robot control: techniques
and applications,” Applied Sciences, vol. 13, no. 17, p. 9546, 2023.

[53] T. M. Vieira, R. Merletti, and L. Mesin, “Automatic segmentation of surface emg images:
Improving the estimation of neuromuscular activity,” Journal of biomechanics, vol. 43, no. 11,
pp. 2149–2158, 2010.

[54] M. Rojas-Mart́ınez, M. A. Mañanas, and J. F. Alonso, “High-density surface emg maps from
upper-arm and forearm muscles,” Journal of neuroengineering and rehabilitation, vol. 9, pp. 1–
17, 2012.

[55] E. Tikhonov, K. Chebanov, and V. Burlyaeva, “Hardware and software implementation of
neural network control of power systems based on the system of residual classes,” 2019 Inter-
national Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon),
2019.

[56] J. Zou, Y. Han, and S.-S. So, “Overview of artificial neural networks,” Artificial neural net-
works: methods and applications, pp. 14–22, 2009.

[57] A. Krenker, J. Bešter, and A. Kos, “Introduction to the artificial neural networks,” Artificial
Neural Networks: Methodological Advances and Biomedical Applications. InTech, pp. 1–18,
2011.

[58] A. Abraham, “Artificial neural networks,” Handbook of measuring system design, 2005.

[59] A. N. Perez-Garcia, G. M. Tornez-Xavier, L. M. Flores-Nava, F. Gómez-Castañeda, and J. A.
Moreno-Cadenas, “Multilayer perceptron network with integrated training algorithm in fp-
ga,” in 2014 11th International Conference on Electrical Engineering, Computing Science and
Automatic Control (CCE), pp. 1–6, IEEE, 2014.

[60] A. Krogh, “What are artificial neural networks?,” Nature biotechnology, vol. 26, no. 2, pp. 195–
197, 2008.

[61] M. Sokolova and G. Lapalme, “A systematic analysis of performance measures for classification
tasks,” Information processing & management, vol. 45, no. 4, pp. 427–437, 2009.

[62] S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and
future,” Multimedia tools and applications, vol. 80, pp. 8091–8126, 2021.

[63] K. Sastry, D. Goldberg, and G. Kendall, “Genetic algorithms,” Search methodologies: Intro-
ductory tutorials in optimization and decision support techniques, pp. 97–125, 2005.

[64] C. Maxfield, The design warrior’s guide to FPGAs: devices, tools and flows. Elsevier, 2004.

[65] W. Wolf, FPGA-based system design. Pearson education, 2004.

[66] M. M. Mano and J. F. Gonzalez, Diseño digital. Pearson Educación, 2003.

[67] N. Jiang, A. Pradhan, and J. He, “Gesture recognition and biometrics electromyogram (grabm-
yo).” PhysioNet, 2022. Version 1.0.2. RRID:SCR 007345.

81



[68] K. Englehart, B. Hudgin, and P. A. Parker, “A wavelet-based continuous classification scheme
for multifunction myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 48,
no. 3, pp. 302–311, 2001.

[69] D. C. Toledo-Pérez, J. Rodŕıguez-Reséndiz, R. A. Gómez-Loenzo, and J. Jauregui-Correa,
“Support vector machine-based emg signal classification techniques: A review,” Applied Scien-
ces, vol. 9, no. 20, p. 4402, 2019.

[70] K. Englehart and B. Hudgins, “A robust, real-time control scheme for multifunction myoelectric
control,” IEEE transactions on biomedical engineering, vol. 50, no. 7, pp. 848–854, 2003.

[71] M.-F. Lucas, A. Gaufriau, S. Pascual, C. Doncarli, and D. Farina, “Multi-channel surface emg
classification using support vector machines and signal-based wavelet optimization,” Biomedi-
cal Signal Processing and Control, vol. 3, no. 2, pp. 169–174, 2008.

[72] N. Witham, “Atlas hand.” https://grabcad.com/library/atlas-hand-1, 2024. 2018-09-22.

[73] G. Franco, P. Cancian, L. Cerina, E. Besana, N. Beretta, and M. D. Santambrogio, “Fpga-based
muscle synergy extraction for surface emg gesture classification,” in 2017 IEEE Biomedical
Circuits and Systems Conference (BioCAS), pp. 1–4, IEEE, 2017.

[74] O. Kerdjidj, K. Amara, F. Harizi, and H. Boumridja, “Implementing hand gesture recognition
using emg on the zynq circuit,” IEEE Sensors Journal, vol. 23, no. 9, pp. 10054–10061, 2023.

[75] M. Majolo and A. Balbinot, “Proposal of a hardware svm implementation for fast semg clas-
sification,” in XXVI Brazilian Congress on Biomedical Engineering: CBEB 2018, Armação de
Buzios, RJ, Brazil, 21-25 October 2018 (Vol. 2), pp. 381–386, Springer, 2019.

82

https://grabcad.com/library/atlas-hand-1

	3749d5b958124ac5f86fe7485d9b4c0857702ec995c48d85b7e48073b22cee28.pdf
	130917bb336d6fb20980668314eb58e278e476107ab660f14e66030068ba1ed5.pdf
	a30fc8097156640bedcd81d77e76f41f7a1fc612b1911d33899a6aacbd9ed2b0.pdf

	3749d5b958124ac5f86fe7485d9b4c0857702ec995c48d85b7e48073b22cee28.pdf
	Introducción
	Descripción del problema
	Justificación
	Hipótesis y Objetivos
	Hipótesis
	Objetivo general
	Objetivos particulares

	Antecedentes
	Estructura de la tesis

	Fundamentación teórica
	Señales EMG
	Adquisición de señal EMG
	Filtrado y tasa de muestreo
	Segmentación
	Extracción de características

	Redes neuronales artificiales 
	Perceptrón multicapa
	Etapa de avance en el entrenamiento del MLP
	Etapa de retropropagación en el entrenamiento del MLP
	Funciones de Activación
	Validación del modelo MLP

	Algoritmo genético
	FPGA
	Diseño en FPGA


	Metodología
	Base de datos de señales EMG
	Preprocesamiento de los datos
	Exportación de base de datos limpiada y preprocesada

	Elección de entradas en el modelo de red MLP
	Reducción del número de características mediante algoritmo genético
	Reducción del número de características según la participación de sensores

	Modelo red neuronal en software
	Exportación de parámetros del modelo MLP para implementación en hardware
	Extracción de pesos y sesgos desde el modelo entrenado
	Análisis de rangos y decisión del formato de punto fijo
	Conversión a binario y generación de archivos .COE

	Modelo red neuronal en hardware
	Módulo principal de la red MLP
	Módulo máquina de estados finitos para controlar el flujo de datos en la red MLP
	Módulos de memoria ROM
	Módulo contador con banderas
	Módulo Codificador de dirección de memoria para pesos
	Módulo multiplexor para selección de entradas a las neuronas
	Módulos aritméticos
	Módulos de bloques de registros
	Módulo número mayor

	Diseño para evaluar la precisión de la red MLP en hardware
	Diseño para control de servomotores con red neuronal en hardware
	Desarrollo de actuador que simule movimientos de mano

	Resultados
	Recursos utilizados en FPGA
	Tiempo de procesamiento
	Consumo de potencia en FPGA
	Evaluación del modelo en FPGA
	Control del actuador por medio de red neuronal implementada en FPGA

	Conclusiones
	Referencias


