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RESUMEN

En esta investigacién se hace una exposicion del Método de Fuentes Discretas
(DSM, por sus siglas en inglés), el cual es un método numérico utilizado para resolver
problemas de dispersién de ondas con condiciones en la frontera. La exposicién incluye la
justificacion tedrica del método en el caso particular del operador de Helmholtz, asi como
ejemplos de prueba para tal operador con condiciones en la frontera del tipo Dirichlet
sobre dominios bidimensionales con variantes en cuanto a la configuracién, como lo son la
aplicacién del método sobre dominios elfpticos y dominios rectangulares, y la eleccién de
diferentes formas de fronteras virtuales. La implementacién del DSM utiliza la técnica de
colocacién de los datos de frontera. Se muestran datos, conclusiones y sugerencias, tanto en

el caso de problemas internos, como en el caso de problemas externos.

(Palabras clave: Método de Fuentes Discretas, DSM, dispersién, ondas, obstédculo

sound-soft, problema interno, problema externo)
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ABSTRACT

This paper presents the Discrete Source Method (DSM), a numerical method used
to solve wave scattering problems with boundary conditions. The dissertation includes
the theoretical justification of the method in the particular case of the Helmholtz
operator, as well as test examples for such operator with Dirichlet boundary conditions on
two-dimensional domains with variations concerning configuration, such as the application
of the method to elliptical and rectangular domains, and the choice of different virtual
boundary shapes. The DSM implementation uses the boundary data collocation technique.

Data, conclusions, and suggestions are presented for both interior and exterior problems.

(Keywords: Discrete Source Method, DSM, scattering, waves, sound-soft obstacle, interior

problem, exterior problem)
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ESTRUCTURA DE LA TESIS

La presente tesis estd conformada de la manera siguiente:

en el capitulo I: Conceptos preliminares, se presentan algunos conceptos y resultados
dtilies en la lectura de los capitulos siguientes, a manera de un breve glosario. En el
capfitulo II: Introduccién, se presentan los antecedentes del Método de Fuentes Discretas,
asf como la Justificacién, Hipétesis y Objetivo de esta investigacién. En el capitulo I1I: El
Método de Fuentes Discretas (DSM), se comienza tratando la ecuacién de Helmholtz, se
continia con consideraciones de cardcter fisico en las que se encuentra enmarcado dicho
método, y concluye con la Fundamentaciéon Tedrica y la Metodologia empleada en la
implementacién numérica del mismo. En el capitulo IV: Ejemplos de prueba, se presentan
los experimentos numéricos y los resultados obtenidos. Finalmente, en el capitulo V se
muestran las conclusiones de la presente investigacion.

En los apéndices A y B el lector podréd encontrar los cédigos en Matlab, que se usaron en

el capitulo IV.
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Capitulo 1

CONCEPTOS PRELIMINARES

El propdsito de este capitulo es presentar a manera de glosario, y de forma no
exhaustiva, conceptos y teoremas generales que serdn utilizados a lo largo del presente
trabajo. Debido al cardcter general de los teoremas incluidos en este capitulo, se presentan
tnicamente los enunciados, indicdndose la referencia bibliografica donde pueden verificarse

las demostraciones respectivas.

1.1. Ecuaciones diferenciales parciales con condiciones en la
frontera

Se puede representar un operador diferencial de orden m sobre un conjunto abierto
Q C R” de la manera siguiente
L=L(x,D) = Z aq(x) D, x e R".
la]<m
Para las definiciones que se presentan a continuacién constltese: en el caso de los conceptos
de simbolo de un operador diferencial parcial, de parte principal de un operador y de
operador diferencial parcial eliptico, el libro [Renardy & Rogers, 2004, pp. 37 - 42]; para la

definicién de funcién analitica, puede consultarse [Vladimirov, 1971, p. 59].

Definicién 1 El simbolo de un operador diferencial parcial L, denotado por L(x,i§),
se define de la manera siguiente:
L(z,i6) = Y aalx)(i)®,  i*=-1z, €R"
|er|<m
La parte principal del operador L, denotado por L, (z,i§), también conocida como
‘parte principal del simbolo del operador’ queda definida por:

Lon(z,i8) = Y aa(2)(i)*,  i*=-Liz,{ €R™

laj=m



Definicién 2 Suponga que X y Y son espacios vectoriales complejos, y sea A: X — Y un
operador lineal. El kernel (o espacio nulo) del operador A es el subespacio de X definido
por

ker A ={u e X : Au=0}.

Esta definicidon se aplica también a los operadores diferenciales lineales.

Definicién 3 Una funcion f(x), © = (x1,...,xy), es llamada funciéon analitica en el
punto xg, si en cierta vecindad de ese punto puede ser representada en la forma de una
serie de potencias uniformemente convergente
(0%
f(z) = Z Co(r — ) = Z Dﬁxg)(x —x0)“.
|| >0 ||>0 )
Si una funcion f(x) es analitica en todo punto de alguna region G, se dice que es una

funcion analitica en G. El conjunto de todas las funciones analiticas en un cierto abierto G

se denota por C¥(Q).

Definicién 4 Sea £ = 3, <., @a(2)D® un operador diferencial parcial de orden m en
Q C R™. Se dice que L es un operador diferencial parcial eliptico en x € Q) si NO hay

caracteristicas reales en x, o de forma equivalente, si se cumple que
Lo (z,i€) #0 VE#£0€eR™
Se dice que el operador es eliptico en €2, si es eliptico en todo punto de €.

Definicién 5 Se dice que la frontera de un dominio Q) es frontera Lyapunov si en cada
punto x € 0L el vector normal n a la superficie existe, y ademds existen constantes positivas

L y «a, tales que el dngulo 6(x,y) entre los vectores normales en x y en'y cumple que

H(va) < L‘X_YIaavxay € 0Q.

Definicién 6 Se dice que un conjunto abierto Q@ C R2? con frontera acotada es un
dominio Lipschitz (o con frontera Lipschitz) si (1) existe una familia finita de conjuntos
abiertos {W;}j=1,.. 7 que cubren a 0Q (i. e. OQ C Uj=1 . jW;), (2) existe una familia

de hipografos Lipschitz rotados {Q;}j=1,..5 (i. e. Q5 = {(2h,25) : 24 < fi(z))},



donde (z),z4) es un sistema rotado de coordenadas cartesianas en R? y f; es una
funcion Lipschitz), y (3) W; N Q = W; N Q. Intuitivamente, lo anterior significa que
para cada x € 0ON), existe una vecindad en la cual la frontera se puede representar
como la grifica de una funcién Lipschitz, y Q yace solamente en un lado de 0. Los
dominios con frontera suave, asi como los poligonos son ejemplos de dominios Lipschitz.
Se dice que el dominio Q es dominio de clase C™, m = 0,1, ...,00 si las funciones f; son

de clase C™. [Moiola, 2020, p. 16].

1.2. Andglists Funcional

Definicién 7 Sea X un espacio métrico con métrica d. Un subconjunto A de X es llamado

conjunto acotado si existe un nimero M tal que
d(ai,a2) <M
para todo par ay,as de puntos en A. [Munkres, 2000, p. 121].

Definicién 8 Un subconjunto M de un espacio métrico X es llamado subconjunto denso
en X st

M = X.

[Kreyszig, 1978, p. 21].

Definicién 9 Sean X y Y espacios normados y T : D(T) — Y un operador lineal, donde
D(T) C X. El operador T se llama operador acotado si eziste un nimero real ¢ tal que

Vo € D(T) se tiene que ||Tz| < c||z].

Definicién 10 Si ¢ : X — R, donde X es un espacio topoldgico, se define el soporte de
la funcion ¢ como la cerradura del conjunto ¢~ (R\ {0}). Por lo tanto si x no pertenece

al soporte de ¢, existe una vecindad de x en la cual ¢ vale cero. [Munkres, 2000, p. 225].

Definicién 11 Si Q es un dominio abierto en R™, entonces el espacio C*(2), donde ¢ es
un entero no negativo, es el espacio que contiene todas las funciones u, las cuales junto con

todas sus deriadas parciales D*u de drdenes |a| < £, son continuas en §); ademds se define



C>=(Q) = () CYQ). El espacio C*(Q) consiste de todas las funciones u € C*(Q) para las
cuales Do‘ieis uniformemente continua y acotada en Q para todo |a| < £. De hecho, C*(Q)
es un espacio Banach. Ademds, Cé(Rn) es el conjunto de funciones u las cuales, junto con
todas sus derivadas parciales D*u de drdenes |a| < £, son continuas en R™ y satisfacen

que limyy o D%u(z) = 0, para cada |af < 4 C§(R™) es también un espacio Banach. Los

elementos de (C*(Q))" definen funcionales lineales acotados sobre C§(R™).

Proposiciéon 1 Si L es un operador eliptico con coeficientes constantes, de orden m en R™
y e = e(x) es una solucion fundamental de L, entonces D% € L}, (R™) para cada |a| < m.

Para la justificacion de esta proposicion se remite al lector a [Weinstock, 1973, pp. 513-514].

Definicién 12 Espacios LP. Suponga que U es un subconjunto abierto de R", y 1 <p <

00. Si f: U — R es medible, se define

(fU|f]pdcc)1/p sil<p<oo
Hf”Lp(u) =

ess supy | f| 81 p = 00.

Se define LP(U) como el espacio lineal de todas las funciones medibles f : U — R para las
cuales || f|| () < 00. LP es un espacio Banach. Ademds se define P (U)={u:U—R:

loc

uly, € LP(V) para todo V- C U, V' compacto}.

Definicién 13 Espacios Sobolev. Fije 1 < p < oo y sea k un entero mo negativo. Se
definen ciertos espacios funcionales, cuyos elementos poseen derivadas débiles de wvarios

drdenes en varios espacios LP. El espacio Sobolev
Wk’p(U)

consiste en todas las funciones localmente sumables uw : U — R, tales que para cada
multiindice o con |a] < k, D*u exista en el sentido débil y pertenezca a LP(U). Sip = 2,

usualmente se escribe

HYU) =W*(U), k=0,1,- -

Se usa la letra H dado que H*(U) es un espacio Hilbert.



Definicién 14 Denote por D(2) al espacio de funciones test, las cuales son funciones

en C°, de valor complejo, definidas en ) y con soporte compacto en 2.

Definicién 15 El espacio H}(Y) es el subespacio de H(Q) de los elementos que pueden

ser aprovimados en la norma de H(Q)) mediante una sucesion de elementos en D(2).

Definicién 16 Se dice que una funcion u € H} () si la restriccion de u a cualquier
subconjunto abierto acotado D en Q pertenece a H*(D). En el caso de que Q sea un conjunto

acotado, entonces H} (Q) = H'().

Definicién 17 Sea S' = {x € R? ||x|| = 1} la circunferencia unitaria. Para una funcion v
definida en S* se escribe v(0) para su valor en coordenadas polares. Se dice que v € L*(S*)
s ||UH%2(51) = 027r | df < 0o yv e HY(SY) si Hv||?11(51) = 027r(\1)]2+\v’|2)d9 < 00, donde
v’ es la deriwada en la coordenada angular. La expansién de v en armdnicos circulares es
v(0) = ez e’ para una sucesion de coeficientes Uy € C. Se pueden calcular las normas
usando esta exrpansion:
2 27
[Vl Z2(51) = / > do =21y [l [lvlFn e = / ([0 +]o'[)do = 273" (50l (1+2).
0 = 0 ez,

Por lo tanto, una funcion definida en la circunferencia estd en L?(S') si la sucesion de

coeficientes de Fourier es un elemento en el espacio de sucesiones 12(Z) = {(a),{ €
Z, ||(ap)||% = Zzezlaﬂz < oo}, y en HY(SY) si sus coeficientes de Fourier ponderados

con (14 02)Y/2 estan en 1*(Z). Lo anterior nos sugiere formas de definir espacios Sobolev
con otras regularidades:

Jole sty 7= 2 S [0 (14 2)75 H(S) = {0(0) = S 006™ - ol e < o0}, Vs € R

LeZ LeZ

Para s = 0 y s = 1 se tiene H°(S') = L?(SY) y HY(S') como fueron definidos arriba.
Mientras mayor sea el valor de s, mayor serd la suavidad de los elementos en H*(S'). Si
s > 1/2, los elementos de H*(S') son funciones continuas, si s > 0 serdn simplemente
clases de equivalencia L?(S1); para s < 0 los elementos sélo pueden ser entendidos como

distribuciones. [Moiola, 2020, p. 17]



Definicién 18 Dado un dominio Lipschitz acotado §2, si existe un mapeo bi-Lipschitz @ :
By = {|x| <1} — Q que mapee S* en 99Q, se puede definir el espacio H*(0Q) como el
espacio de funciones v definidas en O cuyo pullback (operador de composicion) v*(x) =
v(®(x)) es un elemento de H*(S'). Para —1 < s < 1 esto da un espacio bien definido,
independientemente de la eleccion de ®. En el contexto de la presente investigacion, serdn

necesarias sélo los espacios H*(0Y) para s = £1/2: HY/2(0Q) c L*(0Q) ¢ H~Y/2(0Q).

Teorema 19 (Aprozimacion global por funciones suaves). Suponga que U es acotado,
suponga también que u € Wk’p(U) para algin 1 < p < oo. Entonces existen funciones

U, € C°(U) N WHFP(U) tales que
U — u en WEP(U)
[Evans, 1998].

Al plantearse la posibilidad de asignar valores de frontera a lo largo de AU a una funcién
u € WHP(U), asumiendo que OU es clase C1. Si u € C(U), entonces claramente u tiene
valores en OU en el sentido usual. El problema es que una funcién tipica en W1P(U) no es
en general continua e, incluso peor, estd sélo definida en casi todas partes en U. Puesto que
OU tiene medida Lebesgue cero n-dimensional, no hay significado directo que se le pueda dar
a la expresion 'u restringida a JU’. El concepto de operador traza soluciona este problema.

Se considerard 1 < p < oo.

Teorema 20 Suponga que U es acotado y que OU es C*. Entonces existe un operador lineal
acotado

T:Wh(U) — LP(9U)

tal que (i)Tu = ulyy siu e WP(U)NC(U), y (i)l Tull o0y < Cllullyrpy  para cada

WP(U), con C dependiendo sélo de p y U.
Definicion 21 Se llamard a Tu la traza de uw en OU.

Definicién 22 Sea H un espacio Hilbert. Un sistema de elementos {1;}32, es llamado

un sistema completo en H si el span lineal de {1;}5°, o el conjunto de todas las



combinaciones lineales finitas de {1);}7°,
N
Sp{¢17¢27 } = {u = Z@z¢z He7S (C,N =1,2, }
i=1

es un conjunto denso en H, i. e. Sp{t;,vs,...} = H. [Doicu et al., 2000, p. 7].

1.3. Conceptos adicionales

Definicién 23 Las funciones de Hankel del primer y del seqgundo tipo estdn relacionadas

con las funciones de Bessel, a través de las siguientes expresiones, respectivamente:

HM () = J,(2)+1iY,(2),

HP(2) = J,(2)—iY,(2).

donde i® = —1, J, representa la funcién de Bessel del primer tipo de orden v, yY, representa

la funcion de Bessel del sequndo tipo de orden v. [Polyanin & Nazaikinskii, 2016, p. 1525].

Definiciéon 24 En la literatura sobre la dispersion de ondas, se dice que un obstdculo es
sound-soft cuando
utot

r =0,

scat

o viendo a u como incognita

uscat = e

T T

Obstdculos sound-hard son aquéllos para los cuales

8, utot}r —0,

o equivalentemente

ay uscat}r — _ay uinc|r .

Aqui 0, es la derivada normal, donde el vector normal apunta siempre hacia afuera [Sayas,
2006, p. 5]. En esta investigacion se utiliza esta terminologia en inglés al no disponerse de

una traduccion adecuada al espanol.



Capitulo II

INTRODUCCION

El Método de Fuentes Discretas, es un método que permite resolver de forma numeérica
problemas de dispersién de ondas, con condiciones en la frontera.

Dicho método tiene como principal antecedente el método de soluciones fundamentales
(MFS, por sus siglas en inglés). E1 MFS es usado para la resolucién de ecuaciones
diferenciales parciales elipticas con valores en la frontera. Una ecuacion diferencial eliptica es

una ecuacion diferencial parcial de segundo orden que puede escribirse en la forma candnica
Uge + Upy + 141 [u] = G(éa 77) (1)

donde u es la funcién que se estd modelando, & y 17 son las variables independientes, /1 es
un operador diferencial lineal de primer orden y G es una funcién [Pinchover & Rubinstein,

2005, p. 66].

Definicién 25 Si L denota un operador diferencial parcial en 2 C R™ y se tiene la ecuacidn
Lu =0 en §2, se dice que una solucion fundamental de dicha ecuacion diferencial es una

funcion ¢(x,s) [esta notacion se usard de aqui en adelante] tal que:
Lyp(-,8) = 0s, seR" (2)

donde L, ¢ indica que la funcion ¢ se deriva con respecto a x y 65 es la medida de Dirac

con masa unitaria en S.

Nétese que la funcién ¢ estd definida en todas partes, excepto cuando x = s, donde es
singular. Por lo tanto se dice que s es la singularidad de la solucién fundamental. La idea
central del MFS, asi como del Método de Fuentes Discretas, es expresar la solucién de una
ecuacién diferencial eliptica como una combinacién lineal de soluciones fundamentales del

operador involucrado. Es decir, se propone que

N
u(x,c) = Z cip(x —sj) (3)



donde las s; son las ubicaciones de las fuentes discretas, y los coeficientes c; se deben
determinar a partir de las condiciones de frontera.

En esta investigacion se aplica el método de fuentes discretas a distintas configuraciones
de problemas de dispersién, usando diferentes familias de soluciones fundamentales en
cada caso, para comparar la eficiencia del método en estos planteamientos. Se plantea
implementar el método y elaborar ejemplos de prueba, los cuales tienen las siguientes
caracteristicas: se trata de problemas de dispersién en medios homogéneos y libres de
fuentes, sobre dominios en R?, en los cuales se cuenta con solucién exacta. Se analiza
el comportamiento del error en dichas configuraciones con respecto a la familias de
soluciones fundamentales utilizada, la cantidad de términos que se usa en la aproximacién,
la distribucién de las fuentes discretas, asi como de las condiciones de frontera requeridas y
se comparan los niveles de error absoluto entre los casos. La hipétesis de esta investigacién
es:

Elmétodo de fuentes discretas presenta diferencias significativas en su eficiencia, medida
a través del error absoluto, siendo uno de los factores por considerar: la configuracion
del problema de dispersion (dominios acotados o dominios no acotados). La familia de
soluciones fundamentales que se utilice en cada caso también es un factor significativo sobre
la eficiencia. Ambos factores serdn considerados como variables categdricas.

En los problemas de dispersién, cuando el tamano del elemento dispersor es del mismo
orden de magnitud que la longitud de onda, A, de la radiacién incidente, el Método
de Fuentes Discretas tiene ventajas sobre los métodos de malla (método de elemento
finito, método de diferencias finitas, etc.), ya que requiere menor tiempo de cémputo y
su implementacién es més sencilla.

El uso del método de fuentes discretas no estd muy difundido, a pesar de sus ventajas
con respecto a los métodos de malla. Este trabajo pretende contribuir a la difusién del

conocimiento de esta herramienta.



2.1. Antecedentes

El Método de Fuentes Discretas (DSM, por las siglas en inglés de Discrete Sources
Method), es un método que permite resolver de forma numérica problemas de dispersién de
ondas, con condiciones en la frontera.

El DSM tiene como principal antecedente el método de soluciones fundamentales
(MFS, por sus siglas en inglés), el cual fue presentado en [Kupradze & Aleksidze, 1963]
e inicialmente se conocié como Método de series generalizadas de Fourier . En esta versién

inicial del método, para el problema de Dirichlet siguiente

Au =0, en €,
u=f, sobre 052,

donde:

= A representa el operador de Laplace,
= 4 es la funcién incégnita,
= () designa el dominio en el que se busca la solucién,

= f es la funcién que indica el comportamiento de u en la frontera, y

0f? indica la frontera del dominio,

en un dominio acotado Q C R™, n = 2, 3, sin agujeros, las fuentes puntuales (denominadas
fuentes discretas en el DSM) eran colocadas sobre una frontera virtual, es decir, sobre una
frontera prescrita 092’ de un dominio €/, satisfaciendo que  C €. Kupradze también aplicé
el MFS en problemas de elasticidad lineal, asi como en la ecuacién de calor [Kupradze &
Aleksidze, 1963].

“El método de soluciones fundamentales es una técnica para la solucién numérica de
ciertos problemas elipticos con valores en la frontera que pertenece a la clase de métodos
conocida generalmente como métodos de frontera.” [Fairweather & Karageorghis, 1998|.

“Los primeros usos del MFS se enfocaron en la solucién de problemas de potencial

lineal en dos y tres variables espaciales. Desde entonces ha sido aplicado a una variedad
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de problemas mds complicados tales como problemas de potencial plano involucrando
condiciones en la frontera no lineales tipo radiacion, problemas de frontera libre, problemas
biarménicos, problemas elastostaticos y problemas de dispersién de ondas.” [Fairweather &
Karageorghis, 1998].

Puede considerarse que el momento en el cual el MFS comenzé a utilizarse en problemas
de dispersion de ondas (principalmente ondas electromagnéticas), marca el inicio del método
de fuentes discretas (DSM) como tal. Las primeras aplicaciones de este tipo se dieron
a conocer en el ano 1979 y desde entonces el DSM qued6é enmarcado en el tipo de
métodos conocido como «Técnica de Multipolos Generalizada» [Eremin et al., 1999, p.
1296]. Inicialmente se us6 para modelar la dispersién de ondas electromagnéticas generada
por obstdculos que presentaran simetria axial en cuanto a su geometria, y que fueran
perfectamente conductores o aislantes de la electricidad. En esta etapa inicial del método,
era posible representar los campos electromagnéticos mediante combinaciones lineales de
dipolos eléctricos y magnéticos ubicados sobre el eje de simetria, estas fuentes de excitacién
fueron denominadas ‘fuentes discretas’.

El nombre «Técnica de Multipolos Generalizada» (GMT, por sus iniciales en inglés) fue
acunado por Art Ludwig para referirse a un conjunto de métodos relacionados para resolver
problemas electromagnéticos con valores en la frontera, dichos métodos fueron desarrollados
en forma independiente por varios grupos de investigacién. La caracteristica en comuin de
estas técnicas consiste en la expansién del campo a través de un conjunto de multipolos
colocados lejos de la superficie de frontera [Wriedt & Eremin, 2018].

En 1983 se realizé una continuacién (extensién) analitica de las fuentes discretas en el
plano complejo. Esta mejora tedrica permitié que se pudieran modelar obstéculos de forma
alargada mads general, ya que inicialmente el método sélo se aplicaba a objetos dispersores
con simetria axial (s6lidos de revolucién). En 1985 el método fue ampliado para considerar
fuentes de excitacién no necesariamente de cardcter axial, es decir, que las fuentes discretas
pudieran ubicarse ya sea sobre el eje de simetria o bien sobre el plano complejo.

El siguiente escalén de mejora en el DSM se llevé a cabo en el ano 1993. Esta

actualizaciéon permitié que también pudiera tomarse en cuenta en los problemas el tipo de
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polarizacién de las ondas electromagnéticas incidentes. Esta evolucién del DSM ha permitido
ampliar la gama de aplicaciones de este procedimiento en la actualidad, entre las cuales se
pueden mencionar: la microscopia de reflexién interna total, el andlisis de la dispersién de
ondas evanescentes, la caracterizacion de peliculas delgadas, la reconstruccién de imdgenes
de nanoestructuras, asi como la deteccién de particulas contaminantes y defectos en tarjetas

de circuito impreso [Eremin & Wriedt, 2004, p. 53].

2.2. Justificacion

Diversas técnicas se han desarrollado para analizar los problemas de dispersién de ondas.
Cada una de estas técnicas, generalmente, tiene un rango de aplicabilidad, determinado por
el tamano del objeto dispersor en relacién a la longitud de onda de la radiacién incidente
[Doicu et al., 2000, p. ix].

Considerando la longitud de onda (A) de la radiacién electromagnética, pueden

considerarse tres casos:
1. El tamano del elemento dispersor es mucho mayor a .
2. El tamano del dispersor es mucho menor a A.
3. El tamafio del elemento dispersor es del mismo orden de magnitud que A.

Para tratar los casos 1 y 2 existe una variedad de métodos que se utilizan en el modelado
de problemas de dispersién de ondas; sin embargo los métodos de los cuales se dispone para
el caso 3 presentan como principales desventajas el considerable tiempo de cémputo que
se requiere en su ejecucién, asi como la complejidad en su implementacién, al tratarse de
‘métodos de malla’.

Por otra parte, la existencia de diversas familias de soluciones fundamentales que se
pueden aplicar en la implementaciéon del DSM requiere investigar la influencia que la eleccién
de esta familia puede tener en la precisién de los resultados, de acuerdo a la configuracién
del problema especifico.

En esta investigacién se realiza una presentacion del Método de Fuentes Discretas (DSM)

y se analizan diferentes familias de soluciones fundamentales y la posible influencia que la
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eleccién de estas familias tenga sobre la precisién del método en diferentes configuraciones
de problemas de dispersién de ondas.

El uso del método de fuentes discretas no estd muy difundido, a pesar de sus ventajas
con respecto a los métodos de malla. Este trabajo pretende contribuir a la difusién del

conocimiento de esta herramienta.

2.3. Haipotesis

El método de fuentes discretas presenta diferencias significativas en su eficiencia,
medida a través del error absoluto, dependiendo de la configuracién del problema de
dispersién (dominios acotados o dominios no acotados), asi como de la familia de soluciones
fundamentales que se utilice en cada caso, considerando estos dos factores como variables

categoricas.

2.4. Objetivo

Aplicar el método de fuentes discretas a distintas configuraciones de problemas de
dispersién, usando diferentes familias de soluciones fundamentales en cada caso, para

comparar la eficiencia del método en estos planteamientos.
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Capitulo III

EL METODO DE FUENTES DISCRETAS (DSM)

3.1. La ecuacion de Helmholtz

La siguiente ecuacién diferencial parcial es conocida como la ecuacién de Helmholtz:
Au+ k*u =0 (5)

donde A denota al operador de Laplace en n variables, n € {2,3}, y k > 0 es un pardmetro
conocido como 'nimero de onda’ y u es la funcién incégnita. Esta ecuacién es relevante
dado que describe la intensidad de fenémenos fisicos en todos los puntos de un dominio bajo
estudio y que siguen una sola ley de evolucién en el tiempo [Karapetyants & Kravchenko,
2022]. De hecho, tanto la ecuacién de calor, como la ecuacién de onda se reducen a la
ecuacién de Helmholtz en los casos en los cuales los fenémenos fisicos correspondientes sean
armoénicos en el tiempo. Se dice que una funcién es arménica en el tiempo si su dependencia
con respecto a la variable tiempo es de cardcter sinusoidal. La importancia de la ecuacién
de Helmholtz, especificamente en los problemas de dispersién de fenémenos ondulatorios,
radica en el hecho de que describe todas las soluciones arménicas en el tiempo para la
ecuacion de onda. De igual forma esta ecuacién surge en problemas fisicos modelados por
la llamada ecuacidn del telégrafo, y por ecuaciones derivadas a partir de ella, como por
ejemplo la ecuacion de calor, la ecuacion de difusion que nos permite modelar reacciones
quimicas y reacciones en cadena que tengan lugar en algin medio material; y por supuesto
la misma ecuacién de onda, ya mencionada.

De acuerdo a la clasificacién estdndar de las ecuaciones diferenciales parciales de segundo
orden, la ecuacién de Helmholtz es una ecuacién del tipo eliptico. Recuerde que una ecuacién
diferencial eliptica es una ecuacién diferencial parcial de segundo orden que puede escribirse

en la forma canénica

Uge + ugy + lifu] = G(&;n) (6)
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donde u es la funcién que se estd modelando, ¢ y 1 son las variables independientes, ¢; es
un operador diferencial lineal de primer orden y G es una funcién [Pinchover & Rubinstein,
2005, p. 66]. De hecho, la parte principal del operador de Helmholtz no es otra cosa que el
operador de Laplace y comparte propiedades con dicho operador; como la de que todas sus
soluciones son funciones en el espacio C*° en sus respectivos dominios.

Se muestra a continuacién, a manera de ejemplo, la forma en la que se deduce la ecuacién
de Helmholtz a partir de la ecuacién de onda:

1 0°U
—— =AU 7
c? Ot? ™
en la que se buscan soluciones que sean armdnicas en el tiempo, es decir, se plantea que U

tenga la forma

U(x,t) = u(x)e" ™! (8)

donde u es la parte espacial de la solucién, x representa las coordenadas espaciales, t
representa el tiempo, ¢ es la unidad imaginaria, w > 0 es la frecuencia angular. Sustituyendo

(8) en (7), se tiene:

—C%u(x)wzefm = e " Au(x) 9)
= —6—12u(x)w2 = Au(x) (10)
WA 2
= Au(x) + (;) u(x)=0 (11)
y definiendo k = w/¢, finalmente
Au(x) + k*u(x)=0 (12)

con lo que se muestra que la parte espacial de la solucién, i.e. u(x) debe cumplir con
la ecuacién de Helmholtz. La importancia de buscar soluciones arménicas en el tiempo
estd basada en el hecho de que fenémenos arbitrarios dependientes del tiempo pueden
ser representados a través de superposiciones de componentes armoénicas en el tiempo

[Karapetyants & Kravchenko, 2022].
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3.2. Problemas internos y problemas externos

Se pueden plantear dos tipos de problemas de dispersién directos para la ecuacién de
Helmholtz, a saber: los problemas internos y los problemas externos.

Problemas internos

En este trabajo se llamardn también ’'problemas en dominios acotados’. Sea 2 C
R™ n € {2,3} un dominio acotado con frontera Lyapunov; un problema interno consiste
en determinar una funcién que satisfaga la ecuacién de Helmholtz en dicho dominio y
que ademds cumpla con las condiciones de frontera estipuladas. Dependiendo del tipo de
condiciones de frontera, se tienen problemas del tipo Dirichlet, del tipo Neumann o del tipo

Robin (para mayor detalle véase la descripcién de los problemas en la seccién 3.6).

M pominiodeinterés= 0
== Fronteradeldominio= a0}

@ Fuentesdiscretas

2 puntos de colocacion

" Fronteravirtual

Figura 1: Esquema para los problemas del tipo interno.

Problemas externos

En este trabajo se llamardn también 'problemas en dominios no acotados’. Sea V' C
R™ n € {2,3} una regién acotada con frontera Lyapunov; un problema externo consiste
en determinar una funcién que satisfaga la ecuaciéon de Helmholtz en el dominio 2 =

R™\ V,n € {2,3}, que cumpla con las condiciones de frontera estipuladas, y ademds una
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condicién adicional en el infinito. Dependiendo del tipo de condiciones de frontera, se tienen
problemas del tipo Dirichlet, del tipo Neumann o del tipo Robin (para mayor detalle véase

la descripcién de los problemas en la seccién 3.6).

M pominiodeinterés= 0
== Fronteradel dominio= a0l
@ Fuentesdiscretas
2 puntos de colocacidn

" Fronteravirtual

Figura 2: Esquema para los problemas del tipo externo.

3.3. Daispersion de ondas

Al mencionarse el estudio de la dispersién de ondas, se est4 haciendo referencia al estudio
de la propagacién de ondas arménicas en el tiempo en la presencia de obstédculos locales que
presentan diferentes propiedades materiales [Eremin & Sveshnikov, 1993]. Considerando el
caso acustico, que es el foco de la presente investigacion, la descripciéon matemadtica de la
dispersiéon de ondas armonicas en el tiempo por un obstdaculo D conduce a problemas con
condiciones de frontera para la ecuacién de Helmholtz.

Para entender lo que sucede cuando una onda se encuentra con un obstiaculo

mc(x) = ¢**d yna onda

impenetrable, se comienza por definir algunos conceptos. Sea u
plana con |d| = 1, donde d es el vector que define la direccién de propagacién de dicha

onda. A esto se le denomina campo incidente (u onda incidente). A la onda que se refleja al

encuentro del obstdculo se le llama campo dispersado (u onda dispersada), se acostumbra
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denotarlo por u*“(x). Finalmente u®(x) = u'"¢(x) + u*%(x), es el campo total, el cual es
el campo fisico susceptible de ser medido en el dominio de interés 2 [Moiola, 2020].

Dado 4, que es conocido, lo que se quiere determinar es u'*, de manera que cumpla la
ecuacién de Helmholtz en el dominio €2, y que satisfaga las condiciones estipuladas sobre la
frontera del mismo, i. e. en J€). Dependiendo de las caracteristicas del obstéculo, es posible
imponer condiciones sobre u!°!, de manera que en la practica lo que se determinarg es 1%
de manera que satisfaga la ecuaciéon de Helmholtz en la misma regién y que cumpla con
condiciones de frontera que dependeran de los valores de 4™ sobre 9. Esto es lo que se
realiza en los ejemplos de prueba que se presentan en este trabajo.

Cuando las ondas acusticas encuentran un obstdculo a través del cual no pueden
propagarse, en la interfaz entre el obstdculo y el medio de propagacién algunas condiciones

de frontera deben ser establecidas. Dependiendo de las caracteristicas del obstdculo y del

medio, se pueden presentar dos situaciones:

» Las caracteristicas del obstdculo y del medio son tales que la presién acistica en la
frontera debe ser cero. En este caso se dice que el obstdculo es del tipo sound-soft. En

este trabajo se consideran inicamente obstaculos de este tipo.

= Las caracteristicas del obstdculo y del medio son tales que la velocidad normal en
la frontera debe ser igual a cero. En este caso se dice que el obstdculo es del tipo

sound-hard.

Las ondas planas reflejadas por interfaces sound-soft o por interfaces sound-hard (una
interfaz se corresponde con la frontera del dominio 2) tienen la misma amplitud que las
ondas planas incidentes; en cuanto a la fase, ésta puede ser opuesta (en el caso sound-soft)
o la misma (en el caso sound-hard).

t

Establecer los valores de u!®® en la frontera del obstdculo, fisicamente se interpreta

como prescribir la presién de la onda actstica. Las condiciones sound-soft se traducen en
la condicién Dirichlet u!°" = 0, entonces siendo la onda actstica total de la forma u!*! =

w45 donde u*“* denota la onda dispersada implica que la presién total deber ser cero
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en la frontera, por lo que en la misma debe establecerse u*°* = —u¢. De manera similar,
el prescribir el valor de la derivada normal de u!** en la frontera, equivale fisicamente a
prescribir la componente normal de la velocidad de la onda actstica. Las condiciones para
obstéculos sound-hard se traducen entonces en la condicién Neumann n- Vu' = 0 [Moiola,
2020).

Es importante mencionar que el pardmetro k en la ecuacién de Helmholtz se definié
como w/¢, pero esto es vélido sélo si se considera que el medio no presenta ningun tipo de
amortiguamiento (no hay viscocidad), pero si se considera la propagacién de ondas actsticas
en un medio con coeficiente de amortiguamiento ¢, entonces el nimero de onda es dado por
k% = w(w + j7¢)/c?. Se elige el signo de k, de manera tal que Imk > 0 [Doicu et al., 2000].
Para mostrar la razén de esta definiciéon de k se presenta a continuacién la forma en la que

se deduce la ecuacién de Helmholtz a partir de la ecuacién de onda amortiguada:

1 (09U  oU

donde ( es el coeficiente de amortiguamiento, y en la que se buscan soluciones que sean

arménicas en el tiempo, es decir, se plantea que U tenga la forma
U(x,t) = u(x)e It (14)
donde u es la parte espacial de la solucién, x representa las coordenadas espaciales, ¢

representa el tiempo, j es la unidad imaginaria, w > 0 es la frecuencia angular. Sustituyendo

(14) en (13), se tiene:

-3 (u(x)w?e ™ 4 u(x)Ciwe ) = eI Au(x) (15)
— (e + u()Gi) = Aufx) (16)
— Au(x) + [“(“;JO] u(x)=0 (17)
y definiendo k? = w(w + j¢)/c?, finalmente
Au(x) + E*u(x)=0 (18)

con lo que se muestra que la parte espacial de la solucién, i.e. u(x) debe cumplir con la

ecuacién de Helmholtz también en el caso amortiguado.
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3.4. Problemas Dirichlet en dominios acotados

Sea © C R? un dominio abierto, acotado y con frontera Lyapunov. El problema Dirichlet
para la ecuacién de Helmholtz es: dado un término F' definido en €2 y un dato de frontera

f definido en 02, encontrar u en ) tal que
Au+k*u=—Fen§; u=fendQ. (19)

Es conocido que para el caso k = 0, el problema anterior estd bien planteado cuando los datos
F, f son suficientemente suaves. Sin embargo estas condiciones no son suficientes para el caso

de la ecuacién de Helmholtz. Por ejemplo, si se considera el recténgulo Q = (0, L) x (0, La),

. . o _ . ler . Jom
entonces para todo ji,j2 € N el campo uj, j,(x) = sin(%-z1)sin(£ z2) vale cero en la
<. . ., 9 9 272 j2m2
frontera del dominio y ademds es solucién de Au + k5 j,u = 0 con kj = =t =2

Juge T L2 L2 -
De manera que hay una cantidad infinita de valores de k tales que el problema Dirichlet
homogéneo (F' = 0, f = 0) para la ecuacién de Helmholtz admite soluciones no triviales, es
decir, para esos valores especificos de k el problema no estd bien planteado.

A las soluciones del problema Dirichlet homogéneo para la ecuacién de Helmholtz se
les llama funciones propias Dirichlet del laplaciano, con valor propio A = k%, dado que
satisfacen —Au = Au. La situacién del ejemplo anterior se presenta no sélo para dominios
rectangulares, y se presenta incluso si no es posible determinar en forma explicita los valores

y las funciones propias.

De hecho, dados 2 y k, s6lo pueden darse dos situaciones:

= SiQy k son tales que el problema Dirichlet homogéneo (F' = 0, f = 0) para la ecuacién
de Helmholtz admite tinicamente la solucién trivial u = 0, i. e. k% no es un valor propio,

entonces el problema admite una solucién tinica para cualquier F' € L%(Q).

= Sino se cumple la condicién anterior, i. e. k2 es un valor propio, entonces el problema
no estd bien planteado para ninguna F. Es decir, podria no haber soluciones para

algunos F), y soluciones no uinicas para otros F.

FEl enunciado del teorema de buen planteamiento para el problema Dirichlet para la

ecuacioén de Helmholtz, en dominios acotados, se encuentra en la seccién de fundamentacién
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tedrica de la presente investigacién (seccién 3.7).

3.5. Problemas Dirichlet en dominios no acotados

Sea V C R? un dominio acotado con frontera Lyapunov. Defina 2 = R? \ V. Se asume
que ) es conexo, es decir, V no posee agujeros. Se considerardn tinicamente obstdculos del

ot — () para este tipo de obstéculos,

tipo sound-soft. Sea u'™ la onda incidente. Dado que u
el problema consiste en determinar el campo ©*“* dispersado por V, que sea solucién de la
ecuacién de Helmholtz en Q, y tal que u** = —u™¢ en 05).

El campo dispersado es producido por la interaccién del obstéculo y el campo incidente

u'™, Asi que su comportamiento deberia ser el de una onda propagdndose hacia el infinito

desde V.

Definicién 26 (Solucién radiante). Sea v € H. (R?\ Bg) solucion de la ecuacion de
Helmholtz en el complemento de una bola. Se dice que u es radiante si satisface la condicion

de radiacion de Sommerfeld:
8,u — iku| = o(r~Y?), 7 — oo, (20)
La condicion de Sommerfeld se debe cumplir uniformemente en todas direcciones, i. e.
I supoeio 2V 01, 0) = iku(r 0)] = . 1)

El cumplimiento de esta condicion es indispensable para que la solucién de los problemas
del tipo de externo tenga sentido fisico, ya que garantiza que el campo dispersado sdlo tenga
componentes que se alejan del obstdculo hacia el infinito, y que no existan componentes que

vayan del infinito hacia el obstdculo.

Tomando en cuenta lo anterior, el problema externo Dirichlet se plantea asi: Sea V un
dominio acotado con frontera Lyapunov, k > 0y f € H'/2(09). Se dice que u € H] (Q) es
solucién del problema externo Dirichlet para la ecuacién de Helmholtz si

Au+Eku=0 en €,
u=Ff en 0N (22)

u es radiante.
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El problema de dispersién sound-soft es un problema externo Dirichlet con u = v y f =
—u'¢. Este problema es bien planteado y el enunciado del teorema de buen planteamiento
se puede ver en la seccién de fundamentacién tedrica de la presente investigacion (seccién
3.7).

Es importante mencionar que los problemas internos y externos tratados en esta tesis,
pertenecen al tipo de problemas denominado: problema directo de dispersion, lo que quiere
decir que se conoce la onda incidente, se conoce la geometria del obstdculo y lo que se
desea determinar es el campo dispersado. En aplicaciones, tales como imagenologia médica,
deteccion remota atmosférica, deteccion de fallas en materiales, imagenes de radar, etc.,
es importante considerar los problemas tnversos de dispersion, en los cuales el campo
dispersado es conocido (mediante mediciones) y lo que se quiere determinar es la geometria
del obstaculo y/o la onda incidente. Los problemas inversos por lo general son mal planteados
y mucho més dificiles que los problemas directos, tanto desde el punto de vista tedrico como

del computacional.

3.6. Descripcion del problema

Al mencionarse el estudio de la dispersién de ondas, se estd haciendo referencia al estudio
de la propagacion de ondas armodnicas en el tiempo en la presencia de obstdculos locales

que presentan diferentes propiedades materiales [Eremin & Sveshnikov, 1993]

En la presente investigacién, el método de fuentes discretas se aplicard a la ecuacién de
Helmholtz:

Au+Eu=0 (23)

donde k € R, y la solucién se busca en un dominio abierto y simplemente conexo,  C R2. La
frontera del dominio, denotada por 92, debe ser suficientemente suave (generalmente basta
con que sea Lipschitz continua), siendo éste uno de los requisitos para la existencia y unicidad
de la solucién, una vez que a la ecuacién se le anadan las condiciones de frontera [Golberg
& Chen, 1998].

Esta ecuacién se presenta cuando se buscan soluciones armdnicas en el tiempo para la

ecuacion de onda, i.e. soluciones que dependan de la variable tiempo a través de una funcién

22



senoidal o cosenoidal. Al agregar condiciones de frontera, se pueden plantear tres tipos de
problemas [Karapetyants & Kravchenko, 2022, p. 359]:
Problemas del primer tipo (o problema Dirichlet): consisten en determinar una

funcion u(z) € C%(Q) N C(2) que cumpla con
Au(z) + E*u(z) = 0, x €N (24)
u(z) = f(z), x € 00
donde f es una funcién prestablecida.

Problemas del segundo tipo (o problema Neumann): en este caso el objetivo es

encontrar una funcién u(z) € C?(Q) N C1(Q) que satisfaga

Au(z) + k*u(z) = 0, z € (25)
ag(r‘f) = g(a), z €00

donde g es una funcién prestablecida y ag—f) denota la derivada normal de la funcién w.

Problemas del tercer tipo (o problema Robin): consisten en determinar una

funcion u(z) € C%(Q) N C1(2) que cumpla con

Au(z) + Eu(z) = 0, x e (26)
0uz) | hwyulz) = ha), z € o0
On
donde h y k son funciones conocidas y 8757(1155) denota la derivada normal de la funcién u.

En general, si se quiere expresar un problema de dispersion, sin especificar las condiciones

de frontera, se puede hacer de la siguiente manera:

Au+Kku = 0, enQ (27)

Bu = j, sobre 0f2

donde j es una funcién prestablecida, y B es un operador que se define de manera que se
obtenga alguno de los problemas (24), (25) o (26).

Los planteamientos para los tres tipos de problemas, en el caso de dominios no acotados,
se realiza de manera similar, pero debe anadirse en cada caso la condicién de radiacién de

Sommerfeld presentada ya en la seccién 3.5.
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3.7. Fundamentacion teorica

La aplicacién del método de fuentes discretas requiere el estudio de los siguientes

aspectos:

1. La existencia de la solucién del problema bajo estudio.
2. La unicidad de la solucién.

3. La completitud de los sistemas de soluciones fundamentales.

Para el estudio de los dos primeros puntos se recurre a la teorfa de ecuaciones integrales
en la mayoria de los textos; sin embargo una desventaja de este tratamiento es que para
probar de forma constructiva la existencia de soluciones para los problemas de dispersién
se requiere la suposicién de que las fronteras de los dominios son de clase C?. Es posible
debilitar ligeramente esta suposicion al permitir fronteras Lyapunov en lugar de las fronteras
C? y atin permanecer en el marco teérico de los operadores compactos en los espacios Holder
de funciones continuas. El tratamiento tedrico de los problemas Dirichlet para fronteras
Lyapunov es muy similar al que se da para fronteras C?2.

Sin embargo, la situacién cambia de forma drastica si se permite que la frontera tenga
aristas y esquinas. En este caso lo conveniente es permitir que los dominios posean fronteras
del tipo Lipschitz [Colton. & Kress, 2013, p. 55].

A continuacién se presentan los teoremas de buen planteamiento de los problemas
Dirichlet internos y externos para la ecuacién de Helmholtz, el primero de estos resultados
fue tomado del texto de [Moiola, 2020]; el segundo se extrajo del texto de [McLean, 2000].
Para las definiciones de los espacios funcionales involucrados, constltese la seccién 1.2.

Téngase en cuenta que k representa el niimero de onda en la ecuacién de Helmholtz:

Teorema 27 (Buen planteamiento del problema Helmholtz-Dirichlet
interno). Para wun dominio acotado ), con  frontera  Lipschitz,  existe
una  sucesion  de  numeros  positivos  (los  wvalores  propios  del  problema
Dirichlet  homogéneo) ki < ko < oo, con kj — oo, tales que:

o Si k = kj para algin j, entonces el problema Dirichlet (19) no estd bien planteado.
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En particular, el caso homogéneo con FF' = 0 y f = 0 admite soluciones no triviales.
e Si 0 < k # kj; para todo j, entonces el problema Dirichlet (19) estd bien planteado en
HY(Q) para toda F € L*(Q) y f € H2(9Q).

Teorema 28 (Buen planteamiento del problema Helmholtz-Dirichlet externo).
Sea Q2 = R2\ V, donde V es un dominio acotado con frontera Lipschitz. Si f € H%(E)Q),
entonces el problema Dirichlet externo para la ecuacion de Helmholtz (22), tiene una tunica

solucion radiante u € H}. (€2).

Una vez que se cumplen estas condiciones se requiere garantizar que el espacio de
combinaciones lineales de soluciones fundamentales sea denso en el espacio de soluciones
del operador diferencial de Helmholtz, es decir, se necesita mostrar que los sistemas de
soluciones fundamentales sean completos. Para ello se presentan a continuacion los teoremas
de completitud del articulo [Khmelnytskaya et al., 2003] (en donde pueden consultarse las
demostraciones), con algunos cambios en la notacién. Sea I' una superficie cerrada en R3
que sea frontera de un dominio acotado Q1 y de un dominio no acotado Q~ = R3 \ QF. El
sfmbolo I'~ denotars una superficie encerrada en Q7 y encerrando un dominio V, el simbolo
I't denotard una superficie que encierra a Q7.

Se denota por {s]_ j=1 al conjunto de puntos distribuidos en I'" y denso en I'", y
por {sj 2, al conjunto de puntos distribuidos en T'* y denso en I'*. Se asocian los
sistemas de soluciones fundamentales {¢(z — s;)}52; v {dp(x — sj) 72, a los conjuntos
anteriores, respectivamente. Para simplificar un poco la notacién, se define qb,; J(x) =
op(z—s;)y gb; (@) =z — sj) Se considera que las singularidades de las funciones del
primer sistema estdn distribuidas en la superficie interior I'” y por lo tanto solucionan
la ecuacién de Helmholtz en 27, suponga que también cumplen con la condicién de
radiacién de Sommerfeld. Suponga ademds que las funciones del segundo sistema tienen
sus singularidades en la superficie externa I'"™ y por lo tanto son soluciones de la ecuacién
de Helmholtz en Q.

Los resultados se presentan de la manera siguiente: primero el teorema de la completitud

en La(Q) Nker(A + k?). Después se presenta el resultado ampliado a H*(Q) N ker(A +
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k?). Finalmente, como H*(T') puede ser considerado como un espacio de las trazas de las
correspondientes soluciones de la ecuacién de Helmholtz, se puede probar la completitud de
los sistemas de soluciones fundamentales para el operador de Helmholtz en este espacio.

Resultados para dominios acotados

Teorema 29 Sea QT un dominio acotado en R con frontera Lyapunov I'. El sistema de

funciones {(b;j 22, es completo en La(QF) Nker(A + k?).

Teorema 30 Bajo las hipdtesis del teorema 29 el sistema de funciones {gé;:j G2 es

completo en H(Q) Nker(A + k?), s > 0.

Teorema 31 Sea I' una superficie cerrada suficientemente suave (el espacio H*(T') estd

definido). Fl sistema de funciones {gé;:j 321 es completo en H*(I'), s € R.

Resultados para dominios no acotados
Sea Bp una bola arbitraria con un radio R tal que QT C Bg. Denote Qp = Q" N Bg.
Por lo tanto 2 es un dominio en R3 con frontera consistente en I' y en la frontera de la

esfera, i. e. 0BRg.

Teorema 32 Sea I' una superficie Lyapunov y suponga que k* no es un eigenvalor del
problema Dirichlet en V. El sistema de funciones {¢; ;}32, es completo en Ly(S2g)Nker(A+
k?).

Teorema 33 Bajo las hipdtesis del teorema 32 el sistema de funciones {(;SI;J}JO’;l es

completo en H*(Q5) Nker(A + k%), s > 0.

Teorema 34 Sea I' una superficie cerrada suficientemente suave y suponga que k% no es
un eigenvalor del problema Dirichlet en V. El sistema de funciones {(;SI;J}JO’;l es completo

en H*(T'), s € R.

En cuanto a las herramientas que se requieren en la implementacién numérica, para la
determinacion de los coeficientes de las combinaciones lineales de soluciones fundamentales,

se puede hacer uso de algoritmos de optimizacién no lineal, si se implementa un modelo
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de fuentes 'movibles’. En el caso de usar un modelo de fuentes fijas, se puede usar
simplemente algin algoritmo de resolucién de sistemas de ecuaciones lineales [Fairweather
& Karageorghis, 1998].

La implementacién del método se realizard a través del software MATLAB®. 1a
exactitud del método se determinard con base en el conocimiento de soluciones exactas

de los problemas elipticos abordados (se considerardn problemas con dominios en R?).

3.8. Metodologia

La idea fisica del método de fuentes discretas esta ligada al principio de Huygens, el
cual establece que: todo punto de un frente de onda inicial puede considerarse como una
fuente de ondas esféricas secundarias que se extienden en todas las direcciones con la misma
velocidad, frecuencia y longitud de onda que el frente de onda del que proceden. De esta
manera, el elemento dispersor de las ondas, es decir, el obstdculo, siendo una fuente de
campo secundario, es sustituido por un conjunto de fuentes ficticias, las cuales generan el
mismo campo secundario que el obstéculo real [Doicu et al., 2000].

Para abordar un problema de dispersién de ondas, considerando una solucién que sea
armonica en el tiempo, como el que se plantea en la descripcion del problema (27), el DSM
plantea que la solucién sea aproximada a través de una combinacién lineal de soluciones

fundamentales para el operador de Helmholtz. Es decir, se plantea que u tenga la forma:

N
u(x,¢) =Y cjp(x —s;) (28)
j=1

donde la solucién fundamental ¢(x — s;) satisface en forma exacta la ecuacién diferencial
parcial homogénea, excepto en el punto singular (fuente) s;, pero no necesariamente satisface
las condiciones de frontera. De hecho, los valores de los coeficientes c; se determinardn
de manera que las condiciones de frontera se satisfagan. Los puntos singulares (fuentes
discretas) deben colocarse fuera del dominio donde se busca la solucién. Para obtener los
valores de los ¢; se usa el método de colocacién sobre la frontera, es decir, se plantea:

N
Y eiBlo(xi — ) = g(xi), x €00 i=1,...,M>N (29)
j=1
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donde B es un operador que define el tipo de condiciones de frontera, lo cual define un
sistema. de ecuaciones lineales. Si M > N se usard un procedimiento de minimos cuadrados
para su resolucién, mientras que en el caso M = N, se llega a un sistema de N ecuaciones

con N incégnitas que se puede resolver con los métodos usuales [Chen et al., 2009].

Antes de exponer los pasos que se seguirdn en la implementacién del DSM, cabe
mencionar que Bogomolny (1985) propuso colocar las fuentes puntuales (fuentes discretas),
i. e. las singularidades de las soluciones fundamentales, uniformemente distribuidas sobre la
frontera de un circulo que abarque al dominio computacional €. Por otro lado Heise (1976)
propone colocarlas sobre una frontera virtual, denotada por 99, que sea equidistante de
la frontera real, Q. El autor Tsai (véase [Tsai et al., 2006]) sugiere seguir el método de
Heise, que generalmente proporciona mejores resultados en dominios con formas bésicas; de
manera que, siguiendo tal recomendacién en lo posible, el procedimiento para colocar las
fuentes puntuales (cuando las formas de la frontera real y la virtual coinciden) que se siguié
en los experimentos numeéricos en esta investigacion es el siguiente: considerando el dominio

computacional en cuestién, €2, y siendo 02 su frontera, entonces:
I. Los puntos de colocacién se distribuyen uniformemente sobre 0f2.

11. Se localiza el centro geométrico, x., del dominio Q (el centro geométrico también es
conocido como centroide. El centroide es entonces el centro de masa de una ldmina
plana bidimensional o de un sélido tridimensional. En este trabajo se consideran todos

los dominios como ldminas con densidad de masa no nula y uniforme).

1. Las fuentes puntuales se colocan de acuerdo a la ecuacién siguiente
s=uxk + (f.d.)(xr — z) (30)

donde s; y xj son las coordenadas de las ubicaciones de las fuentes puntuales y de
los puntos de colocacién, respectivamente; f.d. (factor de distancia) es un pardmetro
escalar que determina la ‘cercanfa’ de las fuentes puntuales, s;, a la frontera real,
0f2. Nétese que de acuerdo a la ecuacién anterior, la ubicaciéon de una fuente puntual

dada, es la imagen homotética de un correspondiente punto de colocacién; el centro
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de homotecia es z. y la razén de homotecia es f.d., que por supuesto debe tener un
valor mayor que 1 para problemas internos, y menor que 1 para problemas externos,

ya que las fuentes puntuales deben quedar ‘fuera’ de la cerradura del dominio 2.

La figura 3 muestra de manera esquemética el resultado de aplicar el procedimiento

anterior a cierto dominio (en este caso un dominio rectangular):

Frontera real

¢ Centroide del dominio
® Punto de colocacion
O Fuente puntual

(o] o (o] @] o
L 2 L 2 L 2 L 2 L 2
Si
[} X ‘ '/@
®
O o
L ] L ]
X C
[0 [ ] [ [
o [ ] [ o
W
[ [ ]
O o
. . . . .
] ] O o] o]

Figura 3: Esquema del procedimiento de ubicacién de las fuentes discretas, para un problema
interno.
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Sin embargo, uno de los propdsitos de esta investigacién es explorar distintas variantes
en cuanto a las configuraciones de las fronteras virtuales, de manera que cuando se usé una

frontera virtual de distinta forma a la de la frontera real, se usé el procedimiento siguiente:

I. Los puntos de colocacién se distribuyen uniformemente sobre 0f2.
1. Se localiza el centro geométrico, ., del dominio €.

111. Las fuentes puntuales se generan sobre la frontera virtual, de manera que z. también
sea centroide de esta frontera y de manera que estén distribuidas uniformemente. Los
pardmetros que definen el tamafio de la frontera virtual se obtienen al multiplicar los
pardmetros de la frontera real por el pardmetro f.d. Nétese que en este caso las fuentes
puntuales no son imédgenes homotéticas de los puntos de colocacién. Se debe cumplir

que f.d. € (0,1) para problemas externos; f.d. € (1,00) para problemas internos.

Una vez explicada la metodologia seguida para ubicar a las fuentes puntuales, ahora
se continda con la exposicién de los pasos por seguir en la implementacién del Método de

Fuentes Discretas. La implementacion numérica del DSM consiste en:

1. Si la ecuacién diferencial correspondiente a nuestro problema es Lu = 0 en (),
determinar una funcién, ¢(z, s), tal que L,¢(-,s) = d5, con s € R™ (i. e. determinar

la solucién fundamental para la ecuacién dada).

2. Seleccionar {x;}¥_ ; de puntos sobre 99 (frontera real). Estos son los puntos de

colocacioén.

3. De acuerdo a la configuracién especifica del experimento, determinar la colocaciéon
de las fuentes discretas {s; }jvzl usando alguno de los procedimientos de los parrafos

inmediatos anteriores de esta misma seccion.

4. Se toma una de las s; y se obtiene ¢(x,s;); el resultado de dicha sustituciéon debe
ser acompafniado por un coeficiente ¢; que queda por determinar. Se realiza el mismo

procedimiento para las demds s; y finalmente se obtiene w(z) := Zévzl cio(z, s5).
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5. Se toma uno de los zj (ver el paso 2) y se sustituye en la condicién de
frontera, se obtiene después w(zy) y se establece una ecuacién entre los resultados
correspondientes. Se realiza el mismo procedimiento para las demds xj. De esta

manera, se obtiene el sistema lineal (29).

6. Se soluciona el sistema lineal (29), obtenido en el paso 5. De esta manera quedan

determinados los coeficientes c¢; de la combinacién lineal del paso 4; dicha combinacién
N

lineal de soluciones fundamentales es la aproximacion, uy(z;c) = E cio(z,s;5), ala
j=1

solucién del problema que estd en cuestion.

Se presenta a continuacién un cuadro con las soluciones fundamentales correspondientes
a algunas de las ecuaciones diferenciales parciales mas comunes [Tsai et al., 2006] [Smyrlis,

2009] [Balakrishnan & Ramachandran, 2000] [Barnett & Betcke, 2008].

Operador involucrado

Soluciéon fundamental
(R?)

Solucién fundamental
(R?)

1

Laplaciano S In (%) , R>0 | &lz— si| 71, donde wo
es el drea de la superficie
de la esfera unitaria 52
en R3.
Helmholtz Hél)(k: |z — si]), Hél) %, Jj es la unidad
es la funcién de Hankel imagiﬁaria.
del primer tipo, de orden
cero
Helmholtz modificado Ko(k|x —si]), Ko es %
la  funcién de Bessel
modificada del segundo
tipo, de orden cero
Biarménico c1, In(|jz — s4)) + —ﬁ |x — si|, donde wy

o, |x — si]2 In(|z — s;])

es el drea de la superficie
de la esfera unitaria S2
en R3.

x es un punto de prueba en el dominio Q; s; € O son las ubicaciones de las fuentes

puntuales. R representa el reescalamiento. k es el nimero de onda.
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Cuadro 1: Soluciones fundamentales para algunas ecuaciones diferenciales parciales comunes




En el presente trabajo se analizard la exactitud del DSM, asi como su estabilidad
numérica; para ello se seleccionardn ejemplos de prueba, es decir, problemas con soluciones
exactas conocidas [dichas soluciones se denominardn soluciones de pruebal, se aplicara el
método, se tomardn puntos en el dominio del problema [denominados de aqui en adelante
como puntos de prueba] y se determinard el error absoluto. De esta manera se pretende
observar céomo varfa la exactitud y la estabilidad numérica del método con respecto a los
siguientes factores: la distancia de la frontera virtual, 9, al dominio del problema (2); la
cantidad de términos, N, usados en la aproximacién; la configuracién de la frontera virtual

usada y la manera en que se distribuyen los puntos de colocacién y las fuentes discretas.
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Capitulo IV

EJEMPLOS DE PRUEBA

NOTA IMPORTANTE: TODAS LAS FUNCIONES Y SCRIPTS MENCIONADOS
EN ESTE CAPITULO FUERON CREADOS EN LA PLATAFORMA MATLAB®
R2014a. LOS CODIGOS FUENTE DE LAS FUNCIONES GENERALES PUEDEN SER
CONSULTADOS EN EL APENDICE A, MIENTRAS QUE LOS CODIGOS PARA
CADA UNO DE LOS EJEMPLOS SE ENCUENTRAN EN EL APENDICE B DE ESTA
INVESTIGACION.

4.1. Acerca del pardmetro factor de distancia (f. d.)

En los experimentos de este capitulo las fuentes discretas se colocaron sobre una curva a
la que se le denomina frontera virtual, para distinguirla de la frontera del dominio (frontera
real). La generacién de la frontera virtual se controlé a través del pardmetro que fue
llamado factor de distancia (f. d.). Para ello los pardmetros que definen a la frontera real
se multiplicaron por el factor de distancia, obteniéndose asi los pardmetros que definen a la
frontera virtual. Por ejemplo: si la frontera del dominio €2 es un rectdngulo cuyas dimensiones
son: base = a, altura = b y el valor del pardmetro factor de distancia es f. d. < 1, y se
quiere que la frontera virtual sea una elipse, entonces las dimensiones de esta elipse serdn:
eje horizontal = a x f.d., eje vertical = b x f.d.; con lo que ademds se deduce que en
este caso la frontera virtual se encuentra totalmente en el interior del drea acotada por el
rectdngulo (véase la figura 4); si se asignan a f. d. valores positivos ain menores se obtienen
fronteras virtuales mas alejadas de la frontera real.

En los experimentos de esta seccién, cuando la forma de la frontera real y la virtual
coinciden (son ambas elipses, o ambas son rectangulares), el procedimiento anterior implica
que la frontera virtual es una transformacién homotética de la frontera real, siendo f.d. la

razén de homotecia.
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FRONTERA REAL Y FRONTERA VIRTUAL
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Figura 4: Esquema de la ubicacién de la frontera real y de la frontera virtual, usando para
esta ultima un factor de distancia f. d. = 0.8

Noétese entonces que si f. d. — 1, entonces la distancia entre la frontera virtual y
la frontera real tiende a cero. De manera que el pardmetro factor de distancia se puede
interpretar como un indicador del alejamiento de la frontera virtual con respecto a la
frontera real (frontera del dominio). Dado que el método exige que las fuentes discretas
no se encuentren en el dominio 2, se tiene que para el caso de problemas internos, f. d.
debe elegirse en el intervalo (1,00); en el caso de problemas externos debe elegirse en el

intervalo (0,1).

4.2. Acerca de la generacion de los puntos de prueba

En todos los experimentos de este capitulo, a los puntos en el dominio en los cudles
se determiné el error absoluto, se les denominé puntos de prueba. Dichos puntos fueron
generados sobre sucesivas curvas homotéticas a la frontera del dominio (frontera real). De
manera que aquellos puntos de prueba ubicados sobre curvas homotéticas con razén de
homotecia préxima a 1.0 son puntos de prueba més cercanos a la frontera del dominio, que

aquellos punto de prueba ubicados sobre curvas homotéticas con razén de homotecia més
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alejada de dicho valor.
Por ejemplo: si la frontera del dominio €2 es un rectdngulo cuyas dimensiones son: base =
4, altura = 4 y el tipo de problema que se aborda es uno del tipo externo, los puntos de

prueba se generarfan como se puede ver en la figura 5.
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Figura 5: Esquema de la ubicacién de los puntos de prueba. En este caso se considera un
problema del tipo externo.

Noétese que en el caso de los problemas del tipo interno, los valores de las razones de
homotecia para los puntos de prueba deben pertenecer al intervalo (0, 1); mientras que para

los problemas del tipo externo, deben tomarse en el intervalo (1, 00).
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4.3. Problemas internos
4.3.1. Ejemplo 1
Au+ k%u = 0, kEeR,(x,y) €

u(z,y) = cos % cos %, (x,y) € 0.

En este ejemplo se considera un dominio eliptico Q = {(z,y) € R? : % + 9% < 1}, cuyo

semieje horizontal tiene longitud cinco y la longitud del semieje vertical es uno.

Para la validacién y el cdlculo de los errores absolutos se utilizé la

9 . = cos 2z cos kL
Solucién exacta: u(x,y) = cos 5 Cos 5

con el valor k = /2.

FRONTERA REAL Y FRONTERA VIRTUAL

151
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Figura 6: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 1. f. d.=1.1, lo que implica una distancia minima entre la frontera real y la
frontera virtual igual a 0.1.

En la implementaciéon numérica las fuentes discretas fueron colocadas sobre una frontera
virtual eliptica (figura 6), utilizando un factor de distancia de 1.1 para la frontera virtual
(para informacién del pardmetro factor de distancia, constltese la seccién 4.1). El valor
minimo de N utilizado fue 50, el maximo fue N = 500 con un tamano de paso igual a

cincuenta. En la figura 7 se muestra la solucién exacta y la solucién aproximada para dos
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valores de N, observiandose la mejoria en la aproximacién al incrementarse el valor de tal
pardmetro.

1SSOLUCIC)N EXACTA, Y APROXIMADA POR DSM S:lOLUCION EXACTA, Y APROXIMADA POR DSM

Soln.exacta | T ) - Soln. exacta
O Soln. aproximada @ N ©  Soln. aproximada

0.5

0.5

Valor de u
Valorde u

-0.5
-0.5

1o 0 5 1 0 5
Eje x Eje x

Figura 7: Grificas de la superficie de la solucién exacta y de los valores de la solucién
aproximada en los puntos de prueba para el ejemplo 1. En la gréfica de la izquierda se
utilizaron N = 50 términos; en la grafica de la derecha se utilizaron N = 150 términos. f.
d.=1.1, lo que implica una distancia minima entre la frontera real y la frontera virtual igual
a 0.1.

En la figura 8 se muestra la gréfica de la superficie del error absoluto sobre el dominio
Q). Se puede observar que las regiones donde el error es mayor son aquéllas mds cercanas a
la frontera del dominio, y longitudinalmente a lo largo del eje menor de la elipse.

Para un estudio méds detallado del error se eligieron puntos de prueba sobre curvas
homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
consultese la seccién 4.2). Se calculd el error absoluto maximo obtenido en cada una de dichas
curvas. En la figura 9 se puede observar el comportamiento del error absoluto maximo a
lo largo del interior del dominio, para varios valores de N. Se puede observar que el error
absoluto méximo mantiene un comportamiento estable a lo largo del dominio, excepto para
los valores més grandes de NV, en los que el error se incrementa conforme los puntos de prueba
se encuentran mas cercanos a la frontera del dominio. De la separacién entre las sucesivas
grificas se puede inferir que el error disminuye de forma exponencial, en funcién de V.
Para apoyar esta iltima inferencia, se consideraron los valores de error absoluto méximo

obtenidos sobre las curvas con razén de homotecia igual a 0.1 y los valores correspondientes

de N, y se realizé un ajuste de curva exponencial; obteniéndose:
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SUPERFICIE DEL ERROR ABSOLUTO

error absoluto

s

WUBATS
o
RO

-1 5 Eje x

Figura 8: Grafica de la superficie del error absoluto para el ejemplo 1. N = 150 términos.
f. d.=1.1, lo que implica una distancia minima entre la frontera real y la frontera virtual
igual a 0.1.

error abs. max = 1.04¢~ 004264V (31)

con un coeficiente de determinacién R cuadrado ajustado con valor 1.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 1.1 se experimenté aumentando los valores de N, con el fin de observar hasta qué punto
se mantiene la disminucién del error. Se observé que para valores mayores de N = 1100,
donde el orden de magnitud del error absoluto fue del orden de 1074, el nivel de error ya
no disminuye necesariamente.

Finalmente se exploro el efecto que se presenta el variar el pardmetro factor de distancia
(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 2 se presentan
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ERROR ABSOLUTO MAXIMO A LO LARGO DEL DOMINIO
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Figura 9: Gréficas del error absoluto maximo, para diversos valores de N, para el ejemplo
1. f. d.=1.1, lo que implica una distancia minima entre la frontera real y la frontera virtual
igual a 0.1.

los valores de error absoluto méximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razén de homotecia 0.1, para diferentes valores de N y de f.d.

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto méximo disminuye en al menos dos érdenes de magnitud en cada paso

de alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para los

valores mayores de N este efecto ya no es tan pronunciado.
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Factor de distancia (f. d.)

N 1.1 1.5 1.9

50 0.12338 0.00124 1.16300e-05
100 0.01474 0.00017 6.08688e-06
150 0.00118 1.05905e-06 1.34803e-08
200 0.00013 1.34944e-08  4.67471e-10
250 | 2.00316e-05 1.42266e-09 4.72117e-12
300 | 2.29835e-06 2.58314e-11 1.34891e-13
350 | 2.50937e-07 3.56992e-12  1.68830e-14
400 || 4.45402e-08 9.83123e-14 3.10231e-14
450 || 6.86380e-09 1.75839%-14 1.52209e-14
500 || 1.08823e-09 2.84433e-14 4.85350e-14

Cuadro 2: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
1. Las distancias minimas entre la frontera real y la frontera real son: 0.1 para f. d.=1.1;
0.5 para f. d.=1.5 y 0.9 para f. d.=1.9.

4.3.2. Ejemplo 2
( Au + k*u =0, keR,(x,y) e
u(a,y) = (1 — L)eivk — S0k e 111}, 3 <y <3
u(z,y) = (22 — 3)e — Sinl}c(g?’ik), y=3-l<z<l1
u(z,y) = (a2 4 F)e ¥k - SR -y~ 3 1 ca <l
En este ejemplo se considera un dominio rectangular Q@ = {(z,y) € R? : -1 < z <

1,—-3 < y < 3}, cuya base tiene longitud dos y cuya longitud de la altura es seis. Este
problema se abordard en dos formas, presentadas como incisos 2a) y 2b).

2a) Problema rectangular interno.

Para la validacién y el cdlculo de los errores absolutos se utilizé la
Solucién exacta: u(z,y) = (2% — % )e¥* — Sm};c(#k)

con el valor k = /2.

En la implementaciéon numérica las fuentes discretas fueron colocadas sobre una frontera
virtual circular (figura 10), utilizando un factor de distancia de 3.3523 para la frontera
virtual (para informacién del pardmetro factor de distancia, constltese la seccién 4.1). El
valor minimo de N utilizado fue 40, el médximo fue N = 400 con un tamano de paso igual
a cuarenta. En la figura 11 se muestra la parte real de la solucién exacta y la parte real de

la solucién aproximada para dos valores de N, observandose la mejoria en la aproximacién
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FRONTERA REAL Y FRONTERA VIRTUAL
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Figura 10: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 2, inciso a. f. d.=3.3523, lo que implica una distancia minima entre la
frontera real y la frontera virtual igual a 0.19.

al incrementarse el valor de tal pardmetro.

SOLUCION EXACTA, Y APROXIMADA POR DSM SOLUCION EXACTA, Y APROXIMADA POR DSM

Soln. exacta . = : Soln. exacta
O Soln. aproximada 35— & Yo O Soln. aproximada

Valor de Re{u}
Valor de Refu}

Figura 11: Graficas de la superficie de la parte real de la solucién exacta y de los valores
de la parte real de la solucién aproximada en los puntos de prueba para el ejemplo 2, inciso
a. En la grifica de la izquierda se utilizaron N = 40 términos; en la gréfica de la derecha
se utilizaron N = 120 términos. f. d.=3.3523, lo que implica una distancia minima entre la
frontera real y la frontera virtual igual a 0.19.

En la figura 12 se muestra la grifica de la superficie del error absoluto sobre el dominio
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). Se puede observar que las regiones donde el error es mayor son aquéllas més cercanas a

la frontera del dominio, especialmente en las cercanias de las esquinas del rectdngulo.

SUPERFICIE DEL ERROR ABSOLUTO

error absoluto

Figura 12: Gréfica de la superficie del error absoluto para el ejemplo 2, inciso a. N =
120 términos. f. d.=3.3523, lo que implica una distancia minima entre la frontera real y la
frontera virtual igual a 0.19.

Para un estudio méds detallado del error se eligieron puntos de prueba sobre curvas
homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
consultese la seccién 4.2). Se calculd el error absoluto maximo obtenido en cada una de dichas
curvas. En la figura 13 se puede observar el comportamiento del error absoluto méximo a
lo largo del interior del dominio, para varios valores de N. Se puede observar que el error
absoluto maximo mantiene un comportamiento estable a lo largo del dominio, excepto para
los puntos de prueba que se encuentran maés cercanos a la frontera del dominio, donde el
error se incrementa. De la separacion entre las sucesivas gréficas no es claro que se pueda
inferir que el error disminuye de forma exponencial, en funcién de N. Para apoyar esta

dltima inferencia, se consideraron los valores de error absoluto maximo obtenidos sobre las
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curvas con razén de homotecia igual a 0.1 y los valores correspondientes de N, y se realizé

un ajuste de curva exponencial; obteniéndose:

error abs. max = 0.2129¢0-009733N (32)

con un coeficiente de determinacién R cuadrado ajustado con valor 0.1848.

ERROR ABSOLUTO MAXIMO A LO LARGO DEL DOMINIO
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Figura 13: Graficas del error absoluto maximo, para diversos valores de N, para el ejemplo
2, inciso a. f. d.=3.3523, lo que implica una distancia minima entre la frontera real y la
frontera virtual igual a 0.19.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 3.3523 se experimenté aumentando los valores de N, con el fin de observar hasta qué
punto se mantiene la disminucién del error. Se observé que para valores mayores de N = 800,
donde el orden de magnitud del error absoluto fue del orden de 10~!3, el nivel de error ya
no disminuye necesariamente.

Finalmente se exploro el efecto que se presenta el variar el pardmetro factor de distancia
(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 3 se presentan
los valores de error absoluto maximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razén de homotecia 0.1, para diferentes valores de N y de f.d.
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Factor de distancia (f. d.)
N 3.3528 | 4.3528 | 5.3523 |
40 | 0.04706  4.35081e-06 6.33143e-09
80 || 0.31688  1.55080e-11 5.95803e¢-14
120 ]| 0.01026  2.99306e-14 1.01930e-13
160 ]| 0.00025  3.58586e-14 1.03833¢-13
200 | 6.92710e-07 1.45979%-13  7.50559¢-14
240 || 2.16600e-08 5.62743c-14  1.03702¢-13
280 | 1.27711e-09  6.28705e-14  1.03876e-13
320 || 3.47415¢-11  5.83660c-14  3.52594e-13
360 || 3.05755¢-12  1.02956e-13  2.02645¢-13
400 || 6.80675¢-13  2.46652¢-13  1.16814e-13

Cuadro 3: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
2, inciso a. Las distancias minimas entre la frontera real y la frontera real son: 0.19 para f.
d.=3.3523; 1.19 para f. d.=4.3523 y 2.19 para f. d.=5.3523.

Se puede observar que sélo para los valores menores de N (primeros dos renglones de la
tabla), el error absoluto méximo disminuye en al menos tres érdenes de magnitud en cada

paso de alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para

los valores mayores de N este efecto ya no se presenta, incluso el error se puede incrementar.
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2b) Problema rectangular interno.

Para la validacién y el cdlculo de los errores absolutos se utilizé la
- ; inh(iyk
Solucién exacta: u(z,y) = (2% — #)e™r — Smk#

)

con el valor k = /2.

FRONTERA REAL Y FRONTERA VIRTUAL

4
*  Puntos de colocacion
O O O O 0O O 0 O C O Fuentes discretas
3r * K K K Ok Kk X ¥ k5
O @]
* *
O
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Oy %O
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> O % *C
Qo 0r
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-1.5 -1 -0.5 0 0.5 1 15

Figura 14: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 2, inciso b. f. d.=1.1, lo que implica una distancia minima entre la frontera
real y la frontera virtual igual a 0.1.

En la implementacién numérica las fuentes discretas fueron colocadas, en este caso,
sobre una frontera virtual rectangular (figura 14). Nétese que se trata del mismo problema
presentado en 2a), con la diferencia de que la frontera virtual es distinta, esto se hizo con
el propésito de investigar si la el grado de suavidad de la misma influye en el nivel de error
obtenido. Se utilizé un factor de distancia de 1.1 para la frontera virtual (para informacién
del parametro factor de distancia, constiltese la seccién 4.1). El valor minimo de N utilizado
fue 40, el méximo fue N = 400 con un tamano de paso igual a cuarenta. En la figura 15 se
muestra la parte real de la solucién exacta y la parte real de la solucién aproximada para
dos valores de N, observandose la mejorfa en la aproximacién al incrementarse el valor de

tal pardmetro.
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SOLUCION EXACTA, Y APROXIMADA POR DSM SOLUCION EXACTA, Y APROXIMADA POR DSM

o . Soln. exacta PR : Soln. exacta
2 O Soln. aproximada 27 O Soln. aproximada
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Valor de Re{u}
o
L
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Figura 15: Graficas de la superficie de la parte real de la solucién exacta y de los valores
de la parte real de la solucién aproximada en los puntos de prueba para el ejemplo 2, inciso
b. En la gréfica de la izquierda se utilizaron N = 40 términos; en la grifica de la derecha
se utilizaron N = 120 términos. f. d.=1.1, lo que implica una distancia minima entre la
frontera real y la frontera virtual igual a 0.1.

En la figura 16 se muestra la gréfica de la superficie del error absoluto sobre el dominio
). Se puede observar que las regiones donde el error es mayor son aquéllas més cercanas
a la frontera del dominio; sin embargo, en comparacién con lo observado en el inciso a, el
error ya no se encuentra tan localizado en las cercanias de las esquinas del rectdngulo, y el
nivel de error general es menor.

Para un estudio méds detallado del error se eligieron puntos de prueba sobre curvas
homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
constltese la seccién 4.2). Se calcul6 el error absoluto méximo obtenido en cada una de
dichas curvas. En la figura 17 se puede observar el comportamiento del error absoluto
méaximo a lo largo del interior del dominio, para varios valores de N. Se puede observar
que el error absoluto méximo mantiene un comportamiento estable a lo largo del dominio,
para los primeros valores de NV, sin embargo, para los valores mayores de dicho pardmetro,
se observa que el error comienza a incrementarse desde los puntos de prueba cercanos al
centroide del dominio, alcanzando sus mdximos en la cercania de la frontera del mismo.
De la separacién entre las sucesivas gréficas no es claro que se pueda inferir que el error

disminuye de forma exponencial, en funcién de N. Sin embargo, al considerarse los valores

de error absoluto maximo obtenidos sobre las curvas con razén de homotecia igual a 0.1 y
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Figura 16: Gréfica de la superficie del error absoluto para el ejemplo 2, inciso b. N = 120
términos. f. d.=1.1, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.1.

los valores correspondientes de IV, y realizar un ajuste de curva exponencial; se obtuvo:

error abs. max = 1.5¢~ 004537V (33)

con un coeficiente de determinacién R cuadrado ajustado con valor 0.9997.
Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 1.1 se experimenté aumentando los valores de N, con el fin de observar hasta qué punto
se mantiene la disminucién del error. Se observé que para valores mayores de N = 900,
donde el orden de magnitud del error absoluto fue del orden de 10~!3, el nivel de error ya
no disminuye necesariamente.
Finalmente se exploré el efecto que se presenta el variar el pardmetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
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Figura 17: Graficas del error absoluto maximo, para diversos valores de N, para el ejemplo
2, inciso b. f. d.=1.1, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.1.

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 4 se presentan
los valores de error absoluto médximo en los puntos de prueba ubicados sobre las curvas
homotéticas con razén de homotecia 0.1, para diferentes valores de N y de f.d.

Se puede observar que para los valores menores de N (primeros renglones de la tabla),
el error absoluto méximo disminuye en dos o tres érdenes de magnitud en cada paso de

alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para los

valores mayores de IV este efecto ya no se presenta, incluso el error se puede incrementar.
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Factor de distancia (f. d.)

N 1.1 1.5 1.9

40 0.24414 0.00041 0.00041
80 0.04098 2.01444e-05 4.45078e-08
120 0.00289 3.25008e-07  9.73447e-09
160 0.00046 1.75616e-07  9.09901e-10
200 0.00020 3.18215e-09 1.70214e-11
240 || 3.62004e-05 1.65674e-10 4.54293¢-13
280 | 1.66221e-06 1.88398e-11 2.16640e-13
320 || 1.25279e-07  9.28682e-13  8.73565¢e-14
360 | 2.24616e-08 4.14129e-14 1.06884e-13
400 || 5.83601e-09 2.93551e-14 1.86831e-13

Cuadro 4: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
2, inciso b. Las distancias minimas entre la frontera real y la frontera real son: 0.1 para f.
d.=1.1; 0.5 para f. d.=1.5 y 0.9 para f. d.=1.9.

4.4. Problemas externos

4.4.1. Ejemplo 3
Au+ k*u =0, kEeR,(x,y) €
u(z,y) = Hél)(lm/:z:2 +42), (z,y) € 00
ou

5 —tku=o0 (#) , cuando 7 — 4-o00.

Donde H((]l) representa la funcién de Hankel del primer tipo, de orden cero. La ultima de
las condiciones anteriores es la condicion de radiacion de Sommerfeld, donde r? = 2 4 y2,
x =rcost, y=rsinf y o representa la notacién asintética o pequena.

En este ejemplo se considera un dominio Q = {(z,y) € R? : % +y? > 1}, cuyo

complemento es una elipse con semieje horizontal de longitud cinco y con longitud del

semieje vertical igual a uno.

Para la validacién y el cdlculo de los errores absolutos se utilizé la
Solucién exacta: u(z,y) = Hél)(k\/m)
con el valor k = /2.
En la implementaciéon numérica las fuentes discretas fueron colocadas sobre una frontera
virtual eliptica (figura 18), utilizando un factor de distancia de 0.8 para la frontera virtual
(para informacién del pardametro factor de distancia, constltese la seccién 4.1). El valor

minimo de N utilizado fue 10, el maximo fue N = 100 con un tamano de paso igual a
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Figura 18: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 3. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la
frontera virtual igual a 0.2.

diez. En la figura 19 se muestra la parte real de la solucién exacta y la parte real de la
solucién aproximada para dos valores de N, observiandose la mejorfa en la aproximacion al
incrementarse el valor de tal parametro.

En la figura 20 se muestra la gréfica de la superficie del error absoluto sobre el dominio
). Se puede observar que las regiones donde el error es mayor son aquéllas més cercanas a
la frontera del dominio; principalmente en la cercania de las extensiones longitudinales del
eje menor de la elipse que es complemento del dominio de estudio.

Para un estudio méds detallado del error se eligieron puntos de prueba sobre curvas
homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
consultese la seccién 4.2). Se calculd el error absoluto maximo obtenido en cada una de dichas
curvas. En la figura 21 se puede observar el comportamiento del error absoluto méximo a
lo largo del interior del dominio, para varios valores de N. Se puede observar que el error
absoluto maximo mantiene un comportamiento estable a lo largo del dominio, excepto para

los valores mds grandes de N, en los que el error aumenta conforme los puntos de prueba
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Figura 19: Graficas de la superficie de la parte real de la solucién exacta y de los valores
de la parte real de la solucién aproximada en los puntos de prueba para el ejemplo 3. En la
grifica de la izquierda se utilizaron N = 10 términos; en la gréafica de la derecha se utilizaron
N = 30 términos. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la
frontera virtual igual a 0.2.

se encuentran mds cercanos a la frontera del dominio. De la separacién entre las sucesivas
graficas no es claro que se pueda inferir que el error disminuya de forma exponencial, en
funcién de N. Sin embargo, al considerarse los valores de error absoluto méximo obtenidos

sobre las curvas con razén de homotecia igual a 1.9 y los valores correspondientes de N, y

realizar un ajuste de curva exponencial; se obtuvo:

error abs. max = 35.48¢0-2793N (34)

con un coeficiente de determinacién R cuadrado ajustado con valor 0.9998.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 0.8 se experimenté aumentando los valores de N, con el fin de observar hasta qué punto
se mantiene la disminucién del error. Se observé que para valores mayores de N = 110,
donde el orden de magnitud del error absoluto fue del orden de 10™4, el nivel de error ya
no disminuye necesariamente.

Finalmente se exploré el efecto que se presenta el variar el pardmetro factor de distancia
(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 5 se presentan

los valores de error absoluto médximo en los puntos de prueba ubicados sobre las curvas
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Figura 20: Gréfica de la superficie del error absoluto para el ejemplo 3. N = 30 términos.
f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera virtual
igual a 0.2.

homotéticas con razén de homotecia 1.9, para diferentes valores de N y de f.d.

Se puede observar que para los valores menores de N (primeros renglones de la tabla),
el error absoluto méximo disminuye en dos o tres érdenes de magnitud en cada paso de
alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores

de N este efecto se presenta incluso de manera mds pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente seis 6rdenes de magnitud.
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Figura 21: Gréficas del error absoluto méximo, para diversos valores de N, para el ejemplo
3. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera virtual
igual a 0.2.

4.4.2.

Ejemplo 4
Au+ Kk*u =0,
u(z,y) = B (/T +12) + B (/121 + 32),
u(z,y) = HP (ky/T+37) + HSD (k081 + 42),
u(z,y) = HE) (kv/a2+9) + HEY (ky/(z = 0.1)7 +9),

ou

L or

1

kEeR,(z,y) €

r=-1,-3<y<3
r=1-3<y<3

ye{-3,3},-1<z<1

tku =o0 (W) , cuando r — +o0.

Donde H((]l) representa la funcién de Hankel del primer tipo, de orden cero. La ultima de

las condiciones anteriores es la condicion de radiacion de Sommerfeld, donde r? = 22 + 42,

x =rcosb, y=rsinf y o representa la notacién asintética o pequena.

En este ejemplo se considera un dominio Q = {(z,y) € R?: -1 <z <1,-3 <y < 3},

cuyo complemento es un rectdngulo con base de longitud dos y con longitud de la altura

igual a seis. Este problema se abordard en dos formas, presentadas como incisos 4a) y 4b).

4a)

Rectangular externo.

Para la validacién y el cdlculo de los errores absolutos se utilizé la

Solucién exacta: u(z,y) = Hél)(k\/W) + Hél)(k
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Cuadro 5: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
3. Las distancias minimas entre la frontera real y la frontera real son: 0.2 para f. d.=0.8;

0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

con el valor k = v/2.

Factor de distancia (f. d.)

N 0.8 0.5 0.2

10 2.26123 0.07386 0.00059
20 0.14052 0.00292 6.54538e-08
30 0.03617 0.00021 1.17935e-09
40 0.00912 1.80279¢-06  5.03366e-10
50 0.00699 1.21970e-06  3.38675e-10
60 | 0.00124  1.24330e-06 8.19874e-10
70 0.00064 2.86809e-05 4.13493e-11
80 || 9.67414e-05 4.73607e-05 6.56613e-12
90 0.00016 1.05272e-05 3.41528e-11
100 | 4.84981e-05 2.32953e-06 9.73658e-12

FRONTERA REAL Y FRONTERA VIRTUAL
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Figura 22: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 4, inciso a. f. d.=0.8, lo que implica una distancia minima entre la frontera
real y la frontera virtual igual a 0.2.

En la implementaciéon numérica las fuentes discretas fueron colocadas sobre una frontera
virtual eliptica (figura 22), utilizando un factor de distancia de 0.8 para la frontera virtual

(para informacién del pardmetro factor de distancia, constltese la seccién 4.1). El valor
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minimo de N utilizado fue 12, el maximo fue N = 84 con un tamano de paso igual a
ocho. En la figura 23 se muestra la parte real de la solucién exacta y la parte real de la
solucién aproximada para dos valores de IV, observandose la mejorfa en la aproximacion al
incrementarse el valor de tal pardmetro.

SOLUCION EXACTA, Y APROXIMADA POR DSM SOLUCION EXACTA, Y APROXIMADA POR DSM

15" Soln. exacta 15" Soln. exacta
O Soln. aproximada O Soln. aproximada

0547 0571

Valor de Refu}
Valor de Refu}

05 7

Figura 23: Graficas de la superficie de la parte real de la solucién exacta y de los valores
de la parte real de la solucién aproximada en los puntos de prueba para el ejemplo 4, inciso
a. En la gréafica de la izquierda se utilizaron N = 12 términos; en la grafica de la derecha se
utilizaron N = 28 términos. f. d.=0.8, lo que implica una distancia minima entre la frontera
real y la frontera virtual igual a 0.2.

En la figura 24 se muestra la gréfica de la superficie del error absoluto sobre el dominio
Q). Se puede observar que las regiones donde el error es mayor son aquéllas mds cercanas a
la frontera del dominio; principalmente en la cercania de las extensiones longitudinales del
eje de simetria paralelo al eje x del rectdngulo que es complemento del dominio en estudio.

Para un estudio més detallado del error se eligieron puntos de prueba sobre curvas
homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
consultese la seccién 4.2). Se calculd el error absoluto maximo obtenido en cada una de dichas
curvas. En la figura 25 se puede observar el comportamiento del error absoluto méximo a
lo largo del interior del dominio, para varios valores de N. Se puede observar que el error
absoluto méximo mantiene un comportamiento estable a lo largo del dominio, excepto para
los valores mas grandes de N, en los que el error aumenta conforme los puntos de prueba
se encuentran m&s cercanos a la frontera del dominio. De la separacién entre las sucesivas

gréificas no es claro que se pueda inferir que el error disminuya de forma exponencial, en
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error absoluto

Figura 24: Grafica de la superficie del error absoluto para el ejemplo 4, inciso a. N = 28
términos. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.2.

funcién de N. Sin embargo, al considerarse los valores de error absoluto méximo obtenidos

sobre las curvas con razén de homotecia igual a 1.9 y los valores correspondientes de IV, y

realizar un ajuste de curva exponencial; se obtuvo:

error abs. maz = 2.624e~ 183N (35)

con un coeficiente de determinaciéon R cuadrado ajustado con valor 0.9999.
Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 0.8 se experimenté aumentando los valores de N, con el fin de observar hasta qué punto
se mantiene la disminucién del error. Se observé que para valores mayores de N = 96,
donde el orden de magnitud del error absoluto fue del orden de 1075, el nivel de error ya

no disminuye necesariamente.
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Figura 25: Gréficas del error absoluto méximo, para diversos valores de N, para el ejemplo
4, inciso a. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.2.

Finalmente se exploro el efecto que se presenta el variar el pardmetro factor de distancia
(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 6 se presentan
los valores de error absoluto médximo en los puntos de prueba ubicados sobre las curvas
homotéticas con razén de homotecia 1.9, para diferentes valores de N y de f.d.

Se puede observar que para los valores menores de N (primeros renglones de la tabla),
el error absoluto méximo disminuye en dos o tres 6érdenes de magnitud en cada paso de
alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores
de N este efecto se presenta incluso de manera mds pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente cinco érdenes de magnitud.
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Factor de distancia (f. d.)
N 0.8 0.5 0.2
12 0.29183 0.00662  6.30035e-06
20 0.06882 0.00011  1.76001e-08
28 0.01318  1.50608¢-06 6.24924e-11
36 0.00289  6.50408¢-08 5.36159¢-11
44 0.00050  2.04515e-09 3.57656e-11
| 52 || 2.14768e-05  7.63688¢-09  1.99602e-12
60 || 1.68870e-05 1.88247¢-07 1.32924e-12
68 || 6.86860e-06 3.87598¢-07 1.66803e-12
76 || 3.04081e-07 5.87654e-08  8.75085¢-13
84 || 1.20256e-07 7.31551e-08 9.81476e-13

Cuadro 6: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
4, inciso a. Las distancias minimas entre la frontera real y la frontera real son: 0.2 para f.

d.=0.8; 0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

4b)

Rectangular externo.

Para la validacién y el cdlculo de los errores absolutos se utilizé la
Solucién exacta: u(z,y) = Hél)(k\/m) + Hél)(k\/m)

con el valor k = /2.

En la implementacién numérica las fuentes discretas fueron colocadas, en este caso,
sobre una frontera virtual rectangular (figura 26). Nétese que se trata del mismo problema
presentado en /a), con la diferencia de que la frontera virtual es distinta, esto se hizo con
el propdésito de investigar si la el grado de suavidad de la misma influye en el nivel de error
obtenido. Se utilizé un factor de distancia de 0.8 para la frontera virtual (para informacién
del pardametro factor de distancia, constltese la seccién 4.1). El valor minimo de N utilizado
fue 8, el médximo fue N = 80 con un tamano de paso igual a ocho. En la figura 27 se muestra
la parte real de la solucién exacta y la parte real de la solucién aproximada para dos valores
de N, observdndose la mejoria en la aproximacioén al incrementarse el valor de tal pardmetro.

En la figura 28 se muestra la gréfica de la superficie del error absoluto sobre el dominio
Q). Se puede observar que las regiones donde el error es mayor son aquéllas més cercanas a la
frontera del dominio; principalmente en la cercanfa de las extensiones longitudinales del eje
de simetria paralelo al eje x del rectdngulo que es complemento del dominio en estudio. En

comparacion a lo observado en el inciso a, el comportamiento cualitativo del error absoluto

58



FRONTERA REAL Y FRONTERA VIRTUAL

3r * * * * * * * * * *
¥ O 0O O 0O 0O O 0O 0O 0O © *
2z o © *
@) ©)
E3 *
1k o o
X *
@) O
- f 0 *  Puntos de colocacion | © *
o 0r i
i | o O Fuentes discretas o %
@) O
X* *
1 r 0 O
E3 *
@) O
2% 0 o) *
£ o o o o o O o o O O *
-3 * * % * H——k * ¥ % * :
-1 -0.5 0 0.5 1

Eje x

Figura 26: Esquema de la distribucién de los puntos de colocacién y de las fuentes discretas
para el ejemplo 4, inciso b. f. d.=0.8, lo que implica una distancia minima entre la frontera
real y la frontera virtual igual a 0.2.

SOLUCION EXACTA, Y APROXIMADA POR DSM

Soln. exacta 15" Soln. exacta
O Soln. aproximada O Soln. aproximada

05"

Valor de Re{u}
Valor de Re{u}

05 {7

Eje x 5 0 Ejey S D Eje x

Figura 27: Graficas de la superficie de la parte real de la solucién exacta y de los valores
de la parte real de la solucién aproximada en los puntos de prueba para el ejemplo 4, inciso
b. En la gréfica de la izquierda se utilizaron N = 8 términos; en la grifica de la derecha se
utilizaron N = 24 términos. f. d.=0.8, lo que implica una distancia minima entre la frontera
real y la frontera virtual igual a 0.2.

es muy similar, salvo que es este caso se dio un incremento en la magnitud general del error.

Para un estudio mds detallado del error se eligieron puntos de prueba sobre curvas
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SUPERFICIE DEL ERROR ABSOLUTO

error absoluto

Figura 28: Grafica de la superficie del error absoluto para el ejemplo 4, inciso b. N = 24
términos. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.2.

homotéticas a la frontera del dominio (para informacién acerca de los puntos de prueba,
constltese la seccién 4.2). Se calcul6 el error absoluto mdximo obtenido en cada una de
dichas curvas. En la figura 29 se puede observar el comportamiento del error absoluto
méaximo a lo largo del interior del dominio, para varios valores de N. Se puede observar
que el error absoluto méximo mantiene un comportamiento estable a lo largo del dominio,
excepto para los valores mds grandes de N, en los que el error se incrementa conforme los
puntos de prueba se encuentran mads cercanos a la frontera del dominio. De la separacién
entre las sucesivas graficas se puede inferir que el error disminuye de forma exponencial,
en funcién de N. Para apoyar esta iltima inferencia, se consideraron los valores de error
absoluto méximo obtenidos sobre las curvas con razén de homotecia igual a 1.9 y los valores

correspondientes de N, y se realizé un ajuste de curva exponencial; obteniéndose:
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error abs. max = 3.961e~ 01952V (36)

con un coeficiente de determinaciéon R cuadrado ajustado con valor 0.9991.

ERROR ABSOLUTO MAXIMO A LO LARGO DEL DOMINIO
10
T T T T

10

10

<

&
<

10

<

Error absoluto maximo

Sl ol ] TI
«=@=+ N=8 términos "&:-'*QQM
« == N= 16 términos e, -hT-L-.t_-—. ........
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107 £ ’ >
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<

10 | | | | | | | |
1 11 12 13 1.4 15 1.6 17 18 19
Razéon de homotecia

Figura 29: Gréficas del error absoluto méximo, para diversos valores de N, para el ejemplo
4, inciso b. f. d.=0.8, lo que implica una distancia minima entre la frontera real y la frontera
virtual igual a 0.2.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual
en 0.8 se experimenté aumentando los valores de N, con el fin de observar hasta qué punto
se mantiene la disminucién del error. Se observé que para valores mayores de N = 88,
donde el orden de magnitud del error absoluto fue del orden de 1075, el nivel de error ya
no disminuye necesariamente.

Finalmente se exploré el efecto que se presenta el variar el pardmetro factor de distancia
(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 7 se presentan
los valores de error absoluto méximo en los puntos de prueba ubicados sobre las curvas
homotéticas con razén de homotecia 1.9, para diferentes valores de N y de f.d.

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto méximo disminuye en uno, dos o tres érdenes de magnitud en cada paso de
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Factor de distancia (f. d.)
N 0.8 0.5 0.2
8 0.83213 0.07046 0.00234
16 0.16611 0.00758  3.38195¢-06
24 0.05253 0.00055  1.21608e-08
32 0.01785  7.50192¢-05 3.79579¢-11
40 0.00779  7.21131e-06 9.18203e-11
48 || 0.00295  1.11294e-06 4.83145e-11
56 0.00099  8.08728e-07 4.1571le-11
64 0.00038  2.58229¢-07 1.35575e-11
72 0.00015  1.15276e-07 2.85507e-12
80 || 5.51124e-05 1.60432e-07 8.75242e-12

Cuadro 7: Errores absolutos méximos para diferentes valores de N y de f. d. para el ejemplo
4, inciso b. Las distancias minimas entre la frontera real y la frontera real son: 0.2 para f.
d.=0.8; 0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores
de N este efecto se presenta incluso de manera més pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente cinco 6rdenes de magnitud.
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Capitulo V

CONCLUSIONES

A partir de los resultados obtenidos en los experimentos numéricos que se presentan en

el capftulo de ejemplos de prueba, se puede concluir lo siguiente:

1. El error disminuye al incrementar el valor de N. También disminuye al alejar la

frontera virtual de la frontera real, confirmédndose los resultados de la literatura.

2. El error presenta un comportamiento mds estable (se observa menor variabilidad en
sus valores) conforme los puntos de prueba estén més alejados de la frontera del

dominio 2.

3. Se observa que el error tiende a propagarse a lo largo de los ejes de menor longitud
de los objetos dispersores, o bien de las extensiones de dichos ejes. En los dominios
rectangulares el error muestra valores mayores en los puntos de prueba cercanos a las

esquinas.

4. En general, se observa que el error disminuye de forma exponencial al incrementarse

el valor de V.

5. Respecto al punto anterior: el inico caso donde no se observa disminucién exponencial
del error fue en el problema interno para dominio rectangular con frontera virtual

circular.

6. Se confirma el hecho ya consignado en la literatura que afirma la gran sensibilidad del

error a la distancia entre la frontera virtual y la frontera real.

7. Respecto al punto anterior: en esta investigacién se observa que para los problemas
del tipo interno, la sensibilidad disminuye conforme aumenta el valor de N. Para los

problemas externos la sensibilidad aumenta al incrementarse el valor de V.
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8.

10.

Con base en los puntos 1 y 5: se sugiere, si se usan valores relativamente bajos de IV,
entonces incrementar la distancia entre la frontera real y la frontera virtual, a manera

de compensacion en el nivel de error.

Para los problemas internos se observé que el valor de N puede incrementarse hasta
valores mayores, con respecto a los problemas externos, antes de que el computo deje
de dar resultados confiables; por lo que en los problemas externos se sugiere no usar
valores grandes de N, pero aumentar la distancia entre la frontera real y la virtual,
para aumentar la exactitud. El nivel de error observado es mayor para los problemas

externos.

En los problemas internos con dominio rectangular se observa que el nivel de error es
mayor al usar una frontera virtual circular; mientras que en los problemas externos

rectangulares el nivel de error es mayor al usar una frontera virtual rectangular.
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Apéndice A

CODIGOS DE LAS FUNCIONES GENERALES

A.1. cboundary.m

function [ ab,or ] = cboundary( a,b,n,tl,t2 }

$CBOUNDARY Calcula puntos sobre un arco de ELIPSE.

% Los argumentos de entrada de la funcién son: a»0,b>0, la longitud del
semieje horizontal y del semieje wvertical, respectivamente, de

la elipse; n es el nimero de puntos gque gqueremos calcular,

n»>=4; tl y t2 son los valores inicial y final del parametro,
respectivamente, que nos permiten establecer el segmento de

elipse considerado.

Los argumentos de salida son: ab, or que son los vectores que guardan
las abscisas y ordenadas, respectivamente, de los puntos calculados.
NOTA: la funcién utiliza x=a¥cos(t), y=b*sin(t) como ecuaciones
paramétricas de la elipse.

o o off off off of of o o

$Validacidn.
if ~isscalar(a)||~isscalar(b)||~(b>0)|]|~{a>0)|1tl<0]|tl>2*pi| |t2<0]| |t2>2*pi...
| In~=fix(n) | |n<4
error{['a y b deben ser escalares mayores a cero; n debe ser un entero’...
' al menos igual a 4; tl y tZ deben tener valores en el intervalo'...
' 10,2*pil.'1);
end

$La funcidén calculard n puntos sobre el arco de elipse definido por los
tvalores del parametro (tl y t2) asi como por los wvalores de a y b.

%5e procede al calculo de los puntos sobre el arco de elipse.

%ze inicializa el vector gque contendra las abscisas de los puntos calculados.
ab=[1;
%se inicializa el vector gue contendra las ordenadas de los puntos calculados.
or=[]:

for i=1:n
if tl==0 && tZ==2*pi || tl==2*pi && tZ==0
xc=a*cos ((i-1)*(tZ=-tl)/n); %calculando la abscisa.
yo=b*sin((i-1)*(t2-t1l)/n}; %calculando la ordenada.
else
xc=a*cos (CL1+i* (t2-t1)/ (n+l)); %calculando la abscisa.
yo=b*sin (L1+4i* (t2-t1)/(n4l}}; %calculando la ordenada.
end

ab=[ab =c]; %guardando la abscisa calculada.
or=[or yc]; %guardando la ordenada calculada.

end

end %fin del programa.

Published with MATLAB® R2014a
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A.2. pboundary.m

function [ ab,or ] = pboundary( x,y.,n,c )

$PBOUNDARY Calcula puntos sobre una trayectoria POLIGONAL.

% Los argumentos de entrada de la funcidn son: %,y que son los vectores gque
contienen las abscisas y ordenadas, respectivamente, de los wvértices

del poligono, dichos wectores deben ser de igual longitud (mayor o igual
a 3), una vez gque el usuario determina cuial es el primer vértice, se debe
elegir una direccidén (sentido horario o antihorario) de recorrido del
poligono y siguiendo esa direccién es el orden en gque deben ser
ingresados los demas wvértices hasta llegar al dltimo de ellos;

n es el nimero de puntos gque queremos calcular, n debe ser un entero al
menos igual a la longitud de los vectores x y y; C nos permite indicar

si gqueremos gque la trayectoria poligonal se cierre entre el primer y el
dltimo wvértice, si c=0 la trayectoria gqueda abierta, si c toma

cualquier otro valor, la trayectoria se cierra.

Los argumentos de salida son: ab, or gue son los vectores gue guardan

las abscisas y ordenadas, respectivamente, de los puntos calculados.

o® o off of of o of off of off o of o

if length(®)~=length(y)||length(x)<3|In~=fix(n) | |n<length (x) $Validacidn.
error {['El nimeroc de elementos del vector x y del vector y deben ser'...
' iguales, dicha longitud debe ser al menos igual a 3; n debe ser'...

un entero al menos igual al tamafio del wvector x.']};

end

$La funcidén calculard n/ (nimero de wértices) puntos sobre cada una de las
taristas de la trayectoria poligonal cerrada, o bien tantos puntos como la
tparte entera del resultado de dicha operacién. Se llamara j la variable
$que guardari el nimero de puntos calculados sobre cada arista y ari es la
$variable gue guardara el nimero de aristas.

%La funcién calculard n/f (nimero de vértices - 1) puntos sobre cada una de
%las aristas de la trayectoria poligonal abierta, o bien tantos puntos como
%la parte entera del resultado de dicha operacién. Se llamara j la wvariable
$que guardara el nimero de puntos calculados sobre cada arista y ari es la
$variable gue guardara el nimero de aristas.

if c~=0
ari=length (x);
j=fix(nfari);

else
ari=length(x)-1;
j=fix(nfari);

end
$Se procede al calculo de los puntos sobre la trayectoria.

ab=[]; %se inicializa el wvector gue contendrd las abscisas de los puntos
fcalculados.
or=[]; %se inicializa el wvector gue contendra las ordenadas de los puntos
fcalculados.
for i=l:ari %bucle gue controla el avance sobre la trayectoria poligonal.
for k=1:j %bucle gue controla el avance sobre una arista.
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end
end

if i~=ari || c==0

o= (1)+ (kS (3+1) )% (x(i+1l)=-x(1)); $calculando la abscisza.

yosy i)+ (kS (3+1) )% (y(i+1l) =y (1)) ; %calculando la ordenada.
else

Ho=H i)+ (kS (341) )% (x(1)=-x(1)): %calculando la abscisza.

yoesy (1) + (kS (3411 )% (v (1) =v (1)) : $calculando la ordenada.

end
ab=[ab xc]; %guardando la abscisa calculada.
or=[or yc]; %guardando la ordenada calculada.

end %fin del programa.

Published with MATLAB® R2014a
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A.3.

sol aproximada.m

function [ sol ] = sol_aproximada( k,coef,¥1,¥2,¥1,¥2 )
$50L APROXIMADA Evalia la aproximacién cbtenida en el DSM.

%

o of o off o o

Los argumentos de entrada son: k, que es el nimero de onda; el vector
coef gque contiene los coeficientes del DSM; X1 y X2 son los vectores que
contienen las abscisas y ordenadas, respectivamente, de los puntos de

de prueba. Y1 y YZ contienen las abscisas y ordenadas, respectivamente,
de las fuentes discretas.

El Gnico argumento de salida es: sol, gque e3 un vector gque guarda los
valores obtenidos en las evaluaciones.

Nl=length (X1} ;
WN=length (Y1) ;
sol=zeros(1,M1);
Xa=zeros (1,HM);
ya=zeros (1,HM);

%5
for

end

end

procede a la evaluacién

i=1:N1

xa(l, :)=X1(1);

yail, :)=xZ(i);

d=sgrt ((xa-¥1l). 2+ (ya=Y¥2)."2);

eval=sum(coef.* (besselh(0,k*d))."); %en este punto se ejecuta la
tevaluacidn.

zol (i) =eval;

$fin del programa.

Published with MATLAB® R2014a
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Apéndice B

CODIGOS DE LOS SCRIPTS Y FUNCIONES PARA LOS
EJEMPLOS

B.1. Ejemplo 1

il
EJEMPLO 1
Eliptico interno. Frontera wvirtual eliptica.

Dominio: {(x,y) en R2Z: x"2/25+y"2<1}
Froblema:
{ delta(u)+Zu=0, (®%,¥) en el dominio
ui®, y)=cos xcos(sgrt(l-x"2/25)), (%,¥) en la frontera

Solucidn exacta: u(x,y)=cos Xcos y
%)
gEEEERAEAA A AT A A A A GG A G A AE S TNICTALTZANDD * oo oo awa s a s w a s a s A aw v ww s s oo
cle %limpiando wentana de comandos
clear all %limpiando el Workspace
close all %cerrando todas las figuras

k=zgrt(2); %nimero de onda

R=5; tlongitud del semieje horizontal
R1=1; $longitud del semieje wvertical
EN=20; %$cantidad de términos deseados en la aproximacidn

fd=1+ 0.1; %factor de distancia deseado para la frontera wirtual.
tAjustar el segundo sumando, de manera gque fd > 1

N inic=50; %valor inicial para N

incr=50; %$incremento deseado para M

N_fin=500; %valor final para N

N1=50; $cantidad de puntos de prueba en cada distancia
fd min=0.1; %factor de distancia minimo para los puntos de prueba

cont=0;
n_cond=zeros(1,3); %vector donde se guardara el no. de condicidn
%de las diversas iteraciones.

Matriz errores r=cell(l,3); %matriz de celdas donde se guardaran las
tmatrices de errores relativos en cada iteraciém.

Matriz errores_a=cell (1,3); %matriz de celdas donde se guardaran las
$matrices de errores absolutos en cada iteracién.

Matriz err r max=zeros(3,9); %matriz gue guardara en sus renglones los
$errores relativos maximos a lo largo del interior
$del dominio, en cada iteracidn.

Matriz err a max=zeros(3,9); %matriz gque guardara en sus renglones los
gerrores absolutos maximos a lo largo del interior
$del dominio, en cada iteracidm.

for N= N_inic:incr:N_fin
gEawkswakass CATCULANDO PUNTOS DE COLOCACION Y FUENTES DISCRETAS #%#s#ddwws

cont=cont+1;
[¥1,¥2])=cboundary( R,R1,N,0,2"pi }); %puntos de colocacién (frontera real)
[¥1l,¥2])=cboundary| R*fd,R1*fd,N,0,2%pi };%fuentes discretas (frontera wirtual)
if cont== 74

figure

plot (X1,%2,"*',¥Y1,¥2,'0");



%axis square;
title ('FRONTERA REAL Y FRONTERA VIRTUAL'):
#label ("Eje x');
ylabel ('Eje y"):
legend (' Puntos de colocacidn', 'Fuentes discretas', 'Location®','Best');
box off
end

grasswwwsss EITECUTANDO EL DSM Y CALCULANDO EL NUMERO DE COMDICION ###wwwsws
tic
[M,B]=Matriz_extendida_ejl(k,X1,X2,¥1,¥2);
coef=M\B;
toc
n_cond (cont ) =cond (M) ;

%1‘1‘1‘1‘1‘1‘1‘1‘1‘1‘1‘1‘1‘1‘1111‘***1‘1‘ VALIDACIGN Y GMFICAS LR R R R

#=[]; %en este vector se guardan las abscisas de los puntos de prueba
y=[]; %en este vector se guardan las ordenadas de los puntos de prueba
Z_aprox=[];
z_exact=[];
error_re=[];
error_a=[];

for r =linspace (fd min,0.85,9)
[21,22)=cboundary( R*r,R1*r,N1,0,2*pi ); %generando puntos de prueba
sol_aprox =sol_aproximada (k,coef,21,22,Y1,Y2);
sol_exact =sol_exacta_ejl(21,22);
error_a=(error_a; abs(sol_exact-sol_aprox)):
error_r=[error_r; abs(sol_exact-sol_aprox)./abs(sol_exact)];
¥x=[x Z1); %guardando puntos de prueba
y=Iy 22];
z_aprox=[z_aprox real (sol_aprox)]:
z_exact=[z_exact real(sol_exact)];

end

Matriz errores_r (cont)={error_r};

Matriz_err_r_max (cont,:)=(max(error_r,[],2))";

Matriz errores_a(cont)=(error_a};

Matriz err_a_max(cont,:)=(max(error_a,[],2))";

% Graficando la solucidén exacta y la aproximada
if contmm=]| |contm=3

figure
[%xg, ygl=meshgrid(linspace (min (x) ,max (x),100),linspace (min(y) ,max(y)},100));
vg=griddata (x,y,z_exact, xg, yg, "cubic’);
mash (xq, yq,vq)
hold on
plot3(x,y,z_aprox,'mo’});
kaxis sgquare
legend('Soln. exacta'; 'Soln. aproximada‘'};
titliﬂ'SDLUCIGN EXACTA, Y APROXIMADA POR DSM');
xlabel ('Eje x");
ylabel ('Eje y"):
zlabel ("Valor de u'});
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hold off
end

end

% Graficando el error relativo maximo
figure
rl=linspace (fd_min, 0.%5, 9} ;
semilogy (rl,Matriz err r max','-.d', 'LineWidth',2.5);
grid on
title ("ERROR RELATIVO MAXIMO A LO LARGO DEL DOMINIO');
xlabel ("Razén de homotecia');
ylabel ('Error relativo maximo'};
legend (num2str ((N_inic:incr:N fin)}', 'N= %d términos'), 'Location', 'Best'});

% Graficando el error absoluto maximo
figure
rl=linspace (fd_min,0.%5, 9} ;
semilogy (rl,Matriz_err_a max','-.d','LineWidth',2.5);
title ("ERROR ABSOLUTO MAXIMO A LO LARGO DEL DOMINIO');
xlabel ("Razén de homotecia');
ylabel ('Error absoluto maximo'});
legend (num2str ((N_inic:incr:N_fin} ', 'N= %d términos'), 'Location', 'Best'});

tGraficando la superficie de error relativo
C=Matriz errores r{3}"';
wv=C(:2)";
vg=griddata (x,y,v,xq,yq, 'linear"};
figure
surf (=g, yq,vq);
hold on
plot3 (=, y,v, 'on');
taxis sguare
title ("SUPERFICIE DEL ERROE RELATIVOD'};
xlabel ("Eje =");
ylabel ("Eje y'"};
zlabel ("error relativo'};
hold off

tGraficando la superficie de error absoluto
C=Matriz errores_a{3}"';
v=C(:)";
vg=griddata (%, vy,v,%xq, ¥ygq, 'linear");
figure
surf (xq, yq,vg);
hold on
plot3(x,y,v, 'om"};
taxis square
title ("'SUPERFICIE DEL ERROR ABSQLUTO'};
xlabel ("Eje =");
ylabel ("Eje y"};
zlabel ("error absoluto'}:;
hold off
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%fin del script

Published with MATLAB® R2014a

function [ M,B ] = Matriz extendida ejl( k,X1,X2,¥1,¥Y2 )
$MATRIZ EXTENDIDA EJ1 Calcula la matriz extendida para el DSM.

o of o off o of

Los argumentos de entrada son: k (nimero de onda); X1 y X2, wvectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacién; los vectores Y1 y Y2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M y B. M es la matriz del sistema y

B contiene los valores en la frontera.

N=length (¥1);
M=zeros (N,HN) ;
B=zeros (N, 1) ;
%Se procede al calculo de M y de B

for

end

end

i=1:N

for j=1:N
de=sqgrt ((X1{i)=-Y1(j))."2+(X2(1)-Y2(]))."2);
v=hesselh (0, k¥d);
Htlr]} = Wy

end

B{i)=sol exacta ejl(X1ii),X2Zii));

$fin del programa.

Published with MATLABE R2014a
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function [ r | = sol exacta ejl{ x,y )
$50L_EXACTA EJ1 Ewvalida la solucién exacta para el DSM.

% Los argumentos de entrada son x y ¥ que son los vectores gue contienen
% las abscisas y ordenadas, respectivamente, de los puntos donde se
% evaluara la soln. exacta. El argumento de salida es el wvector r que
% contiene los valores obtenidos en la evaluacién.
$Evaluacidn de la solucidn exacta.
r=cos (x) . *cos (y); topcidn de solucidn exacta

end %fin del programa.

Published with MATLABE® R2014a

78



B.2. Ejemplo 2

B.2.1. 2a)
EJEMELD Za

Rectangular interno. Frontera virtual circular.

Dominio: {(x,y)en RZ:-1<x<l,-3<y<3}

Froblema:

{delta{u)+2u=0, (#,y) en el dominio

ulx,yl=(l-y/(i*sgrt(2)))e~{iy*sgrt(2) }-sinh(iy*sgrt(2)}/2,x en {=1,1},=-3<y<3
uix, yl=(x"2=-3/(i*sgrt (2) ) }e{i*3sgrt(2) }-sinh (i*3sgrt (2))/2, y=3, -1l<x<l

ulx, yl=(x"2+43/ (i*sgrt(2)))e~{-i*3sgrt (2) }-sinh (-i*3sqgrt (2)) /2, y=-3,-1<x<l
Solucidén exacta: u(x,y)=(x"2-y/(i*=sgrt(2)))e~{iy*sgrt(2) }-sinh (iy*sgrt (2)) /2
%}

%'\l"\l"\l‘1**1?1**1?1**1??**1??1‘1‘1 INICIALIZANDD R R R R R W R R R W W R W R W W R W R W W

cle tlimpiando ventana de comandos
clear all %limpiando el Workspace
close all %f%cerrando todas las figuras

k=sgrt(2); %numero de onda

a=2; tlongitud de la base del rectangulo

b=g; %longitud de la altura del rectangulo

EN=20; %cantidad de términos deseados en la aproximacién
fd=sqgrt(a~2+4b"2)fa+ 0.19; tfactor de distancia deseado para la

%frontera virtual. Ajustar el segundo sumando
N _inig=40; %valor inicial para N, debe ser miltiplo de 4
incr=40; $incremento deseado para N, debe ser miltiplo de 4
N _fin=400; %valor final para N, debe ser miltiplo de 4

N1=100; %cantidad de puntos de prueba en cada distancia
fd min=0.1; %factor de distancia minimo para los puntos de prueba

cont=0;
n_cond=zeros(1,3); %vector donde se guardara el no. de condicidn
%2de lasz diversas iteraciones.

Matriz errores_r=cell(l,3); %matriz de celdas donde se guardaran las
ftmatrices de errores relativos en cada iteracidn.

Matriz errores_a=cell(l,3); %matriz de celdas donde se guardaran las
fmatrices de errores absolutos en cada iteracidén.

Matriz err r max=zeros(3,9); $matriz gque guardara en sus renglones los
terrores relativos maximos a lo largo del interior
%2del dominio, en cada iteracidn.

Matriz err_a max=zeros(3,9); %matriz gque guardara en sus renglones los
terrores absolutos maximos a lo largo del interior
%del dominio, en cada iteracidn.

for N= N_inic:incr:N_fim
gewwwwwwwww® CALCULANDO PUNTOS DE COLOCACION ¥ FUENTES DISCRETAS ®® % # & #&ww

cont=cont+1;

ab_v=[a/Z -af2 -a/2 a/2]; tabzscizas de los vértices

or_v=[b/2 b/2 -b/2 -b/f2]; $tordenadas de los wvértices

[¥1,%2]=pboundary( ab v,or_v,N,1 }; %puntos de colocacidn (frontera real)
[Y1l,Y¥2]=cboundary| a/2*fd,af2*fd, N,0,2%pi );%fuentes discretas (frontera wirtual
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if cont==3
figure
plot (¥1,X2,'*', ¥1,Y2, "0'");
axi=s square;
title ('FRONTERA REAL Y FRONTERA VIRTUAL');
xlabel ('Eje x'});
ylabel ("Eje y'};
legend ('Puntos de colocacidn', 'Fuentes discretas', "Location', 'Best');
box off
end

grwswwwwnwy RIJECUTANDO EL DSM Y CALCULANDO EL NUMERO DE CONDICION # & #&&¥s
tic
[M,B]=Matriz_extendida_ejZa(k,X1,X2,Y1,Y2);
coef=M\E;
toc
n_cond (cont)=cond (M) ;

S SRR W W W W ‘JALIDAE]G‘N ¥ GRAFIEAS TR R R R R R R R R R R R R R R R R R R R R E R

x=[];
y=I1:
z_aprox=[];
z_exact=[];
error_r=[];
error_a=[];

for r =linspace(fd min,0.95,9)
[21,2Z2]=pboundary( ab_v*r,or_v*r,N1,1 }; %generando puntos de prueba
sol aprox =sol aproximada (k,coef,21,22,¥1,¥2);
sol_exact =sol_exacta_ejZa(Zl,ZZ);
eIIar_az[errar_a; abs:sol_exact-sul_aprux}];
error_r=[error_r; abs(sol_exact-sol aprox)./abs(sol_exact)];
x=[x Z1]; %guardando puntos de prueba
y=[y 22];
Z_aprox=[z_aprox real(sol_aprox)];
z_exact=[z_exact real(sol exact)];
end
Matriz_errures_r[cunt}z[errur_r};
Matriz err r max(cont,:)=(max(error r,[],2))"';
Hatriz_errmres_a[cnnt}=[errur_a};
Matriz err a max(cont,:)=(max(error_a,[],2))";

% Graficando la solucién exacta y la aproximada
if cont==1||cont==3

figure
[®g, vgl=meshgrid(linspace (min (%) ,max(x),100),linspace (min(y) ,max(y)},100));
vq=griddata:x,y,z_exact,xq,yq,'cubic'};
mesh (xg, yq, vg) -
hold on
plutth,y,z_aprux,'mo'};
taxis square
legend ('Soln. exacta', "Soln. aproximada');
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title ('SOLUCION EXACTA, Y APROMNIMADA POR DSM');
xlabel('Eje x'};
ylabel ("Eje y'};
zlabel ("Valor de Reh{u\}');
hold off
end

end

% Graficando el error relativo maximo
figure
rl=linspace (fd min,0.95, %) ;
semilogy(rl,Matriz err r max','-.d",'LineWidth’,2.5);
title ("ERROR RELATIVO MAXIMO A LO LARGO DEL DOMINIC');
¥xlabel ('Razdn de homotecia®):
ylabel ('Error relativo maximo');
legend (num2str ((N_inic:incr:N_fin) ', 'N= %d términos'), 'Location’, 'Best');

% Graficando el error absoluto maximo
figure
rl=linspace (fd min,0.95, 9} ;
semilogy(rl,Matriz err a max','-.d",'LineWidth’,2.5);
title ("ERROR ARSOLUTO MAXIMO A LO LARGO DEL DOMINIO');
¥xlabel ('Razdn de homotecia');
ylabel ("Error absoluto maximo');
legend (num2str ( (M inic:incr:N fin)','N= %d términos'), 'Location', 'Best'};

iGraficando la superficie de error relatiwvo
C=Matriz errores r{3}';
w=C(z)";
vg=griddata (x, ¥, V,Xq,yg, 'linear'};
figure
surf (=g, yq, vq) ;
hold on
plot3ix,y,v,"on');
taxis square
title('SUFERFICIE DEL ERROR RELATIVO');
xlabel ('Eje x'};
ylabel ("Eje y'};
zlabel ('error relativo'};
hold off

%Graficando la superficie de error absoluto
C=Matriz errores_a{3}';
w=C(:2})";
vg=griddata (x, y,V,Xq,yg, 'linear'};
figure
surf (=g, yq, vq) ;
hold on
plot3ix,y,v,"on');
taxis sguare
title ('SUPERFICIE DEL ERROER ABSOLUOTO');
xlabel ("Eje x');
vlabel ('Eje v'};
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zlabel ("error absoluto');
hold off

%fin del script

FPublished with MATLAB® R2014a

function [ M,B ] = Matriz extendida ejZa( k,X1,X2,¥1,¥2 )

$MATRIZ EXTENDIDA EJ2A Calcula la matriz extendida para el DSM.

Los argumentos de entrada son: k (nimero de onda); X1 y X2, vectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacidn; los wectores Y1 y Y2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M y B. M es la matriz del sistema y

B contiene los valores en la frontera.

o o o o of of

N=length (Y1) ;
M=zeros (N, HN) ;
B=zeros (N, 1);
%Se procede al calculo de M y de B
for i=1:N
for j=1:N
d=sgrt ((X1{1)-¥1(§)). 2+ (X2(1)-Y2(§))."2);
v=besselh (0, k*d) ;
M{i,j) = v;
end
B(i)=s0l exacta ejZa(X1(i),X2(i));
end

end %fin del programa.

FPublished with MATLAB® R2014a
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function [ r ] = sol exacta ejZa( x,y )

%S0l EXACTA EJZA Evalda la solucidn exacta para el DSM.

% Los argumentos de entrada son X ¥ ¥ que son los vectores que contlienen
% las abscisas y ordenadas, respectivamente, de los puntos donde se

% evaluara la soln. exacta. El argumento de salida es el wvector r gque

% contiene los valores obtenidos en la evaluacién.

$Evaluacién de la solucidn exacta.

r={x."2-y/ii*sgrt (2))) ."expisgrt(2)*i*y) -1/2%sinh(sgrt (2) *i¥y);
topcidn de solucidn exacta

end %fin del programa.

Published with MATLABE R2014a
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B.2.2. 2b)

B
EJEMPLO Zb

Rectangular interno. Frontera wvirtual rectangular.

Dominio: {(x,y)en R2:-1<x<l,=-3<y<3}

Problema:

{delta(u)+2u=0, (x,¥) en el dominio

ul(x, yv)=(l-y/(i*sgrt (2)))e~{iy*sgrt(2) j-sinh(iy*sgrt(2))/2,x en {-1,1},-3<y<3
ulx, yl=(x"2-3/(i*sgrt(2)))e*{i*3sgrt(2) }-sinh (i*3sgrt(2)) /2, y=3,-1l<x<l

ulx,y)=(x"243/ (ivsqrt (2)}}e*{-i*3sqgrt (2) }=-sinh (-i¥3sqrt (2} } /2, y=-3,-1<x<l
Solucidén exacta: ulx,y)=(x"2-y/(i*sqgrt(2)))e~{iy¥*sgrt (2) }-sinh(iy¥sgrt(2))/2
%}

%v1*1}***\}1?1*****\}1?1*****&1 THICTALT ZRMIDN Y i i i i s i i i i i i o o8 o8 i o i i i i o oo i o o o o o o o o

cle %limpiando ventana de comandos
clear all %limpiando el Workspace
close all %cerrando todas las figuras

k=sgrt(2); %ndmero de onda

a=2; $longitud de la base del rectangulo
b=8; tlongitud de la altura del rectangulo
iN=20; fcantidad de términos deseados en la aproximacién

fd=1+ 0.1; %factor de distancia deseado para la frontera wvirtual.
$Ajustar el segundo sumando, de manera gue fd > 1

N inic=40; %valor inicial para N, debe ser miltiplo de 4

incr=40; $incremento deseado para N, debe ser miltiplo de 4

N fin=400; %valor final para N, debe ser miltiplo de 4

N1=100; ftcantidad de puntos de prueba en cada distancia
fd min=0.1; %factor de distancia minimo para los puntos de prueba

cont=0;
n_cond=zeros(l,3); %vector donde se guardarid el no. de condicién
%2de las diversas iteraciones.

Matriz errores_r=cell(l,3); %matriz de celdas donde se guardaran las
tmatrices de errores relativos en cada iteracidn.

Matriz errores a=cell(l,3); %matriz de celdas donde se guardaran las
tmatrices de errores absolutos en cada iteracidn.

Matriz err r max=zeros(3,9); %matriz gque guardard en sus renglones los
terrores relativos maximos a lo largo del interior
tdel dominio, en cada iteracidén.

Matriz err a max=zeros(3,9); %matriz gque guardara en sus renglones los
terrores absolutos maximos a lo largo del interior
tdel dominio, en cada iteracidn.

for N= N_inic:incr:N_fin
graawakwwwws CALCULANDD PUNTOS DE COLOCACION Y FUENTES DISCRETAS #*®%#sasw#%

cont=cont+l;

ab v=[a/2 -a/2 -a/2 a/2]; fabscisas de los wvértices

or_v=[b/2Z bf2 -bfZ -b/fZ]; $tordenadas de los wvértices

[¥1,X2]=pboundary( ab_v,or_v,N,1 }); %puntos de colocacidn (frontera real)
[Y1,¥2]=pboundary({ ab v*fd,or v*fd,N,1 };%fuentes discretas (frontera virtual)
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if cont==3
figure
plot (X1,X2,'*',¥1,Y2,'0");
axis square;
title('FRONTERA REAL ¥ FRONTERA VIRTUAL'):
xlabel ("Eje x"});
ylabel ("Eje y"});
legend ('Puntos de colocacidn', 'Fuentes discretas', 'Location’', 'Best'};
box off
end

grawwwwwwws REIRCUTANDO EL DSM Y CALCULANDO EL NUMERO DE CONDICION #*##w#wwws
tic
[M,B]=Matriz_extendida_ejzb(k,X1,X2,Y1,¥2);
coef=M\B;
toc
n_cond (cont ) =cond (M) ;

S i i ‘.FALIDACIGN Y GMFICAS i i i i i i o o o o o

x=[]:
y=[1]:
Z_aprox=[];
z_exact=[];
error_r=[];
error_a=[];

for r =linspace(fd min,0.95,9)
[21,22)=pboundary( ab_v*r,or_v*r,N1,1 }; %generando puntos de prueba
sol_aprox =sol_aproximada(k,coef,21,22,¥1,Y2);
sol_exact =sol_exacta_ejZb(Z1,22);
error_a=[error_a; abs(sol_exact-sol_aprox)];
error_r=[error_r; abs(sol_exact-sol_aprox)./abs(sol_exact)];
¥=[x Z1]; %guardando puntos de prueba
y=Iy 22);
Z_aprox=[z_aprox real (sol_aprox)];
z_exact=[z_exact real (sol_exact)];
end
Matriz errores_r(cont)={error_r};
Matriz_err_r_max(cont,:)=(max(error_r,[],2))";
Matriz errores_a(cont)={error_a};
Matriz_err_a max(cont,:)=(max(error_a,[],2))";

% Graficando la soluciédn exacta y la aproximada
if conte==]1||cont==3

figure
[#g, ygl=meshgrid(linspace (min (x) ,max(x),100), linspace (min(y) ,max(y),100));
vg=griddata (x,y,z_exact, xq, yg, 'cubic’);
mesh (xg, yg,vg) ;
hold on
plot3(x,y,z_aprox, 'mo');
%taxis square
legend('Soln. exacta','Soln. aproximada');
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title("SOLUCION EXACTA, Y APRONIMADA POR DSM');
xlabel ("Eje x"};
vliabel ("Eje y");
zlabel ('Valor de Re“{u%}'):
hold off
end

end

% Graficando el error relativo maximo
figure
rl=linspace(fd min,0.95,9);
semilogy(rl,Matriz err r max',"'-.d', "LineWidth',2.5);
title("ERRCE RELATIVO MANIMO A LO LARGO DEL DOMINIO');
xlabel ("Razén de homotecia');
ylabel ("Error relativo maximo'};
legend (numZstr ((N_inic:incr:N_fim)','N= %d términos'}, 'Location', 'Best');

% Graficando el error absoluto maximo
figure
rl=linspace (fd min,0.95,8);
semilogy(rl,Matriz err a max',"'-.d', "LineWidth',2.5);
title('ERRCE ABSOLUTC MANIMO A LO LARGO DEL DOMINIO');
xlabel ("Razén de homotecia');
ylabel ('"Error absoluto maximo'};
legend (numZstr ((N_inic:incr:N_fim)','N= %d términos'}, 'Location', 'Best');

%Graficando la superficie de error relatiwvo
C=Matriz errores r{3}';
w=C(:)";
vg=griddata (x, y,v,®q,yd, 'linear"};
figure
surf (xq, yg, vg) ;
hold on
plot3(x,y,v, 'on’);
taxis sguare
title ("SUPERFICIE DEL ERRQOR RELATIVOD'};
xlabel ("Eje x'};
ylabel ("Eje y'});
zlabel ("error relativo'};
hold off

tGraficando la superficie de error absoluto
C=Matriz errores_a{3}"';
w=Cl) "y
vg=griddata (x, y, Vv, ®q,yg, "linear"};
figure
surf (xg, yg,vg);
hold on
plot3(x,y,v, 'om');
taxis square
title ("SUPERFICIE DEL ERRQOR ABSOLUTO'};
xlabel ("Eje x");
vliabel ("Eje v');
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zlabel ("error absoluto');
hold off

3fin del script

Published with MATLAB® R2014a

function [ M,B ] = Matriz extendida ej2b( k,X1,X2,¥1,Y2 )

$MATRIZ EXTENDIDA EJ2B Calcula la matriz extendida para el DSM.

Los argumentos de entrada son: k (nimero de onda); X1 y X2, vectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacién; los vectores ¥1 y ¥2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M y B. M es la matriz del sistema y

B contiene los valores en la frontera.

o o off of of o

N=length(¥1);
M=zeros (N,N)} ;
B=zeros(N,1);
%Se procede al calculo de M y de B
for i=1:NW
for j=1:M
de=sgrt (K1 (1)=Y1{J)).%2+ (X2({1)-¥2(3))."2);
v=besselh (0, k¥d);
Mii,j) = wv;
end
B({i)=sol exacta ejZbi(X1{i),X2{i));
end

end %fin del programa.

Published with MATLAB® R2014a
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function [ r | = sol exacta ejZb( =,y )
$50L EXACTA EJZ2B Evalida la solucidn exacta para el DSM.

% Los argumentos de entrada son ® y y gque son los vectores que contienen
% las abscisas y ordenadas, respectivamente, de los puntos donde se

% evaluara la soln. exacta. El argumento de salida es el wvector r gque

% contiene los valores obtenidos en la evaluacidn.

tEvaluacidon de la solucidn exacta.

r=(x."2-y/(i*sgrt (2)) ) .%exp(sgrt (2)*i*y)-1/2*sinh(sgrt (2) *i*y);
topcidn de solucidn exacta

end %fin del programa.

FPublished with MATLAB® R2014a
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B.3. Ejemplo 3

%
EJEMEFLO 3
Eliptico externo. Frontera wvirtual eliptica.
Dominio: {(x,y)}) en R2: x"2/254y"2>1}
Problema:
{delta (u)+2u=0, (%,y) en el dominio
ulx,y)=besselh(0,sqgrt (2) *sqgrt((24/25)x"2+1)), (x,¥) en la frontera
dufdr-iku=o(l/sgrt(r)), cuando r->+Infinito. (Cond. de Sommerfeld)
Solucidn exacta: u(x,y)=besselh(0,sgrt(2)*sgrt(x."24+y."2))
%}

%vvwvvvvwvvwvv?????wf?w?w?w\r THICTALT Z R o o i i i i i i o i 8 i o 8 o o i o8 o8 o 8 A8 o

clec $tlimpiando ventana de comandos
clear all %limpiando el Workspace
clogse all Scerrando todas las figuras

k=sqgrt (2}; %nimeroc de onda

B=5; $longitud del semieje horizontal

Rl=1; %$longitud del semieje wvertical

EN=20; %cantidad de términos deseados en la aproximacién

fd=1- 0.2; $factor de distancia deseado para la frontera virtual.

%Ajustar el segundo sumando de manera gue fd < 1
N_inic=10; %valor inicial para W
incr=10; fincremento deseado para N
N fin=100; %valor final para N

M1=50; %cantidad de puntos de prueba en cada distancia
fd max=1.9; %factor de distancia maximo para los puntos de prueba

cont=0;
n_cond=zeros (1,3); %vector donde se guardara el no. de condicidn
$de las diversas iteraciones.

Matriz errores_r=cell(l,3); %matriz de celdas donde se guardaran las
tmatrices de errores relativos en cada iteracidn.

Matriz errores a=cell(l,3); %matriz de celdas donde se guardaran las
tmatrices de errores absolutos en cada iteracidn.

Matriz err r max=zeros(3,9); %matriz que guardard en sus renglones los
terrores relativos maximos a lo largo del interior
$del dominio, en cada iteracidn.

Matriz err_ a max=zeros(3,9); %matriz gue guardara en sus renglones los
terrores absolutos maximos a lo largo del interiorx
tdel dominio, en cada iteracidn.

for W= N_inic:incr:N_fin
gaEakwakwwdkd CALCULANDD PUNTOS DE COLOCACION ¥ FUENTES DISCRETAS *#&®d&ddws

cont=cont+1l;
[¥1,X2]=cboundary( R,R1,N,0,2*pi }; %puntos de colocacién (frontera real)
[¥1l,Y¥2])=cbhoundary( R*fd,R1*fd,N,0,2%pi );%fuentes discretas (frontera wvirtual)

if cont==3
figure
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plot (¥1,X2,"*",¥1,¥2,'0"};
$axis square;
title ("FRONTERA REAL Y FROWNTERA VIRTUAL');
xlabel ("Eje =x'});
vlabel ("Eje y'});
legend('Puntos de colocacién', 'Fuentes discretas', 'Location', 'Best');
box off
end

grvwwwsswwy RJECUTANDO EL DSM Y CALCULANDO EL NOMERO DE CONDICION ##wwwwwws
tic
[M,B]=Matriz extendida ej3(k,X1,X2,Y1,Y2);
coef=M\B;
toc
n_cond (cont)=cond (M} ;

Guwwwwwamawawwwwwwwwawww JALIDACTION ¥ GRAFTCAS o oo oo i i s i o i o oo i i i o i o i o i o

#=[1:
y=I[1:
£ aprox=[];
z exact=[];
error r=[];
error_a=[];

for r =linspace(1.05, fd max, 9)
[21, Z2)=cboundary( R*r,R1*r,N1,0,2*pi ); %generando puntos de prueba
sol_aprox =sol_aproximada (k,coef,21,22,Y1,Y2);
sol_exact =sol_exacta ej3(Z1,22);
error a=|error_a; abs(sol_exact-sol aprox)]:
error_r=[error_r; abs(sol_exact-sol_aprox)./fabs(sol_exact)];
¥x=[x Z1]; %guardando puntos de prueba
y=Ily 22];
z_aprox=[z_aprox real (sol aprox)];
z exact=[z exact real (sol exact)];
end
Matriz errores r(cont)={error r};
Hatriz_err_r_max:cunt,:}-:max:errcr_r,[],Z}}';
Matriz errores a(cont)={error a};
Hatriz_err_a_max:cont,:}-:max:error_a,[],2}}';

% Graficando la solucién exacta y la aproximada
if cont==1||cont==3

figure
[#g, ygl=meshgrid(linspace (min (x),max (%), 100}, linspace (min(y),max(y),100));:
vg=griddata(x,y,Zz_exact,xqd,yq, "cubic');
meszh (xg, yq,vg) ;
hold on
plmtB:x,y,z_aprmx,'mu'};
faxis square
legend('Soln. exacta','Soln. aproximada'});
title('SOLUCION EXACTA, ¥ APROXIMADA POR DSM'});
xlabel ("Eje =x'});
ylabel ("Eje y'};
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% Graficando el error relativo maximo
figure
rl=linspace (1.05, fd_max, 9);
semilogy(rl,Matriz err r max',"'-.d', 'LineWidth’,2.5);
title ('ERROR RELATIVO MAXIMO & LO LARGO DEL DOMINIO");
xlabel ('Razdén de homotecia');
ylabel ("Error relativo maximo');
legend (numZstr ((N_inic:incr:N_fin)', 'N= %d términos'),'Location', 'Best");

% Graficando el error absoluto maximo
figure
rl=linspace(1.05, fd max,9);
semilogy(rl,Matriz err a max',"'-.d", "LineWidth",2.5);
title ('ERROR ARSOLUTO MAXIMO A LO LARGO DEL DOMINIO');
xlabel ('Razdn de homotecia');
ylabel ("Error absoluto maximo'};
legend (num2str ((N_inic:incr:N _fin)', 'N= %d términos'), "Location’, "Best');

tGraficando la superficie de error relativo
C=Matriz errores r{3}";
w=C(:)";
vg=griddata (x, y, v, ®xq, yg, 'linear')};
figure
surf (xq, yq,vg) ;
hold on
plot3 (x,y,v, 'om"};
$axis square
title('SUPERFICIE DEL ERROR RELATIVO'}:
xlabel ("Eje x'});
ylabel ("Eje y');
zlabel ("error relativo');
hold off

tGraficando la superficie de error absoluto
C=Matriz errores_a{3}';
wv=C(:)";
vg=griddata (%, v, Vv, ®d, ¥d, "linear");
figure
surf (xq, yq, vqg) ;
hold on
plot3(x, y,v, 'om");
ftaxis square
title ('SUPERFICIE DEL ERROR ABSOLUTO");
xlabel ("Eje x'};
vlabel ("Eje v');
zlabel ("error absoluto');
hold off

£fin del script

Published with MATLABE® R2014a
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function [ M,B ] = Matriz extendida ej3{ k,X1,X2,¥1,¥2 )

$MATRIZ EXTENDIDA EJ3 Calcula la matriz extendida para el DSM.

Los argumentos de entrada son: k (nimero de onda); X1 y X2, vectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacidn; los wvectores Y1 y ¥2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M ¥y B. M es la matriz del sistema y

B contiene los valores en la frontera.

o o o o of of

N=length (¥1};
M=zeros (N,HN};
B=zeros (N, 1) ;
%5e procede al cdlculo de M y de B
for i=1:NW
for j=1:N
de=sqrt ((X1(i)=-Y1{j)) .2+ (X2{i)-¥Y2(§))."2);
v=besselh (0, k*d) ;
Mi{i,§) = v;
end
Bli)=sol exacta ej3(X1i(i),X2(i));
end

end %fin del programa.

Published with MATLAB® R2014a
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function [ r ] = sol exacta ej3( x,y )
%$50L EXACTA EJ3 Evalida la solucién exacta para el DSM.

%

%
%
%

Los argumentos de entrada son x ¥y ¥ que son los vectores que contienen
las abscisas y ordenadas, respectivamente, de los puntos donde se
evaluara la soln. exacta. El argumento de salida es el wvector r gque
contiene los valores obtenidos en la evaluacidn.

%(Evaluacidon de la solucidn exacta.

r=besselh (0,sgrt (2) *sgrt(=."2+y."2)); topcién de solucidn exacta
topcidn de solucidn exacta

end %fin del programa.

Published with MATLABE R2014a
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B.4. Ejemplo 4
B.4.1. 4a)

%1
EJEMPLO 4a
Rectangular externo. Frontera virtual eliptica.
Dominio: {(x,ylen RZ:-l<=x<=1,-3<=y<=3}"cC
Problema:
{delta{u)+2u=0, (%,¥) en el dominio
uix,yl=besselh(0,sqgrt(2) *sgro(l+y*2))+...
besselh(0,sgrt (2) *sgrt(1.214y"2)), x==1,=3<y<3
uix, yl=besselh(0,sgrt(2) *sgrio(l+y*2))1+...
besselh(0,sgrt (2) *sqrt (0.81+y"2)), x=1,-3<y<3
uix, yl=besselh (0, sqrt(2) *sgrt (x"24+49) ) +...
besselh(0,sgrt (2) *sgrt((x-0.1)"2+9)), vy en {-3,3},-1<x<1
dufdr-iku=o(l/sgrt(r)), cuando r->+Infinito. {Cond. de Sommerfeld)
Solucidn exacta: ul(x,y)=besselh(0,sgrt(2)*sgrt(x"24+y"2))+...
besselh(0,sgrt (2) *sgrt((x-0.1)"2+4+y"~2)}
%}

%-\r-\t-\t-\r\tﬂ--\rw*i*wi*w*wﬂ-w?w*i*ﬂ-i-\r THICTALTZAN DY e e i i i v i shr i i o8 i o oo o o s i oo i o o o o o o i o

cle tlimpiando wventana de comandos
clear all %limpiando el Workspace
close all %cerrando todas las figuras

k=sgrt(2); %nimerc de onda

a=2; %longitud de la base del rectangulo
b=&; tlongitud de la altura del rectangulo
EN=20; $cantidad de términos deseados en la aproximacidn

fd=1- 0.2; %factor de distancia deseado para la frontera wirtual.
$Ajustar el segundo sumando de manera gque fd < 1

N _inic=12; %valor inicial para N, debe ser miltiplo de 4

incr=8; %fincremento deseado para N, debe ser maltiplo de 4

N fin=84; %valor final para N, debe ser miltiplo de 4

N1=100; $cantidad de puntos de prueba en cada distancia
fd max=1.9; 3%factor de distancia maximo para los puntos de prueba

cont=0;
n_cond=zeros(1,3); %vector donde se guardara el no. de condicidn
%de las diversas iteraciones.

Matriz errores r=cell(l,3); %matriz de celdas donde se guardaran las
fmatrices de errores relativos en cada iteracidn.

Matriz errores_a=cell(l,3); $matriz de celdas donde se guardarin las
fmatrices de errores absolutos en cada iteracidén.

Matriz err r max=zeros(3,9); %matriz que guardara en sus renglones los
ferrores relativos maximos a lo largo del interior
%del dominio, en cada iteracidmn.

Matriz err a max=zeros(3,9); %matriz gque guardara en sus renglones los
ferrores absolutos maximos a lo largo del interior
%del dominio, en cada iteracidmn.

for N= N_inic:incr:N_fin
gewwwwmwwwwy CALCULANDD PUNTOS DE COLOCACION Y FUENTES DISCRETAS ®*#swswwww
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cont=cont+l;

ab v=[a/f2 -a/Z -a/Z afZ)]; %tabscisas de los vértices

or v=[b/2 bf2 -b/2 -b/2]; $tordenadas de los wvértices

[¥1, X2]=pboundary( ab_v,or_v,N,1 ); %*puntos de colocacidn (frontera real)
[¥1l,Y¥2]=cboundary( a/2*fd,b/2%fd,N,0,2*pi );%fuentes discretas (frontera wvirtual

if cont==3
figure
plot (X1,X2,'*" Y1,¥2,"0");
%axis sguare;
title('FRONTERA REAL Y FRONTERA WVIRTUAL'"});
xlabel ('Eje x');
ylabel ("Eje y"};
legend('Puntos de colocacidn', 'Fuentes discretas', 'Location’, "Best');
box off
end

S o o EJECUTANDO EL DSM ¥ CALCULANDO EL NUMERQ DE CONDICION *###%s&ws
tic
[M,Bl=Matriz_extendida_ejda(k,X1,X2,Y1,Y2);
coaf=M\E;
toc
n_cond (cont)=cond (M) ;

®=[1:
y=[1:
z_aprox=[];
z_exact=[];
error_r=[];
error_a=[]:

for r =linspace(1.05, fd max, 9)
[21, 22 ]=pboundary( ab v*r,or v*r,N1,1 }: %generando puntos de prueba
sol_aprox =sol_aproximada (k,coef, 21,22,¥1,¥2);
sol exact =sol_exacta ejda(Zl,22);
error_a=[error_a; abs(sol_exact-sol_aprox)];
error r=[error r; abs(sol exact-sol aprox)./abs(sol exact)];
¥=[x Z1]; %guardando puntos de prueba
y=Iy 22];
z_aprox=[z_aprox real (sol_aprox)];:
z_exact=[z_exact real(sol_exact)];
end
Matriz errores_r(cont)={error_rj};
Matriz err r max(cont,:)=(max(error_r,[],2))";
Matriz errores a(cont)={error_a};
Matriz_err_a_maxtcnnt,:}-:max!errur_a,[],Z}}':

% Graficando la solucidén exacta y la aproximada
if cont==1]||cont==3
figure
[%g, ygl=meshgrid(linspace (min (x),max(x),100}),linspace iminiy) max(y)},100)});
vg=griddata (%, y,2_exact,xq, yg, 'cublic');
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mesh (xd, yq, vd) ;
hold on
plut3:x,y,z_aprax,'mo'}:
%axis sguare
legend('Soln. exacta','Soln. aproximada');
title ("SOLUCION EXACTA, Y APROXIMADA POR DSM'):
xlabel ('Eje =x'};
ylabel ("Eje y"};
zlabel ("Valor de Reh{u\}"):
hold off
end

end

% Graficando el error relativo maximo
figure
rl=linspace(1.05, fd max, 9);
semilogy(rl,Matriz err r max','-.d', 'LineWidth',2.5};
title('ERROR RELATIVO MAXIMO A LO LARGO DEL DOMINIO' ) ;
xlabel ("Razdn de homotecia');
ylabel ("Error relativo maximo');
legend (numZstr ((N_inic:incr:N_fin)', 'N= %d términos'), "Location', 'Best'};

%2 Graficando &l error abzoluto maximo
figure
rl=linspace(1.05, fd max, 9);
semilogy(rl,Matriz err a max','-.d', "LineWidth',2.5);
title ('ERROR ABSOLUTO MAXIMO A LO LARGO DEL DOMINIG');
xlabel ("REazdédn de homotecia');
ylabel ("Error absoluto maximo');
legend (num2str( (N inic:incr:N fin)','N= %d términos'),'Location', 'Best');

$Graficando la superficie de error relativo
C=Matriz errores r{3}';
wv=C(:)";
vg=griddata (=, y,Vv,®dq, yq, 'linear'};
figure
surf (=g, yq,vg) ;
hold on
plot3ix,y,v, "om"};
%taxis square
title('SUFERFICIE DEL ERROR RELATIVO"):
xlabel ("Eje =x'};
ylabel ("Eje y'}):
zlabel ("error relativo'};
hold off

$Graficando la superficie de error absoluto
C=Matriz errores a{3}';
wv=C(z)";
vg=griddata (x, y,V,®q, ¥g, 'lineaxr'};
figure
surf (xqg, yg, vg) ;
hold on
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plot3(x,y,v, 'om");

taxis square

title ('SUPERFICIE DEL ERROR ABSOQOLUTO');
xlabel ("Eje ®x'});

ylabel ("Eje y'}:

zlabel ("error absoluto');

hold off

%fin del secript

Published with MATLABE R2014a

function [ M,B | = Matriz extendida ejda( k,X1,XZ,Y1,¥Z2 )

$MATRIZ EXTENDIDA EJ4A Calcula la matriz extendida para el DSM.

Los argumentos de entrada son: k (nimero de onda); X1 y X2, vectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacidn; los wvectores Y1 y Y2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M y B. M es la matriz del sistema y

E contiene los wvalores en la frontera.

of of of of of of

MN=length (Y1} ;
M=zeros (N,N) ;
B=zeros (N, 1)
%5e procede al calculo de M y de B
for i=1:N
for j=1:N
desqrt ( (X1 (i) =Y1(§)). 2+ (X2 (i)=-Y2(§)).*2);
v=hes=zelh (0, k¥d);
M{i,3) = w;
end
B(i)=sol_exacta_ejda(X1(i),X2(i));
end

end %fin del programa.

Published with MATLAB® R2014a
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function [ r ] = sol exacta ejdal %,y )
$50L_EXACTA EJ4A Evalia la solucidn exacta para el DSM.

% Los argumentos de entrada son x y ¥ que son los vectores que contienen
% las abscisas y ordenadas, respectivamente, de los puntos donde se

% evaluara la soln. exacta. El argumento de salida es el wvector r gue

% contiene los valores obtenidos en la evaluacidn.

tEvaluacidn de la solucidn exacta.

r=besselh (0, sgrt (2) *sgri(x."24y."2) ) +...
besselh(0,sgrt (2) *sgrit((x-0.1)."24y."2)); topcidn de solucidn exacta
topcidn de solucién exacta

end %fin del programa.

Published with MATLABE R2014a
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B.4.2. 4b)

%
EJEMFLO 4b
Rectangular externo. Frontera virtual rectangular.
Dominio: {(x,ylen R2:-l<=x<=1,-3<=y<=3}"cC
Froblema:
{delta (u)+2u=0, (%,y) en el dominio
uix, yl=besselh(0,sqgrt(2) *sgrt (1+y"2))+...
besselh (0, sgrt(2) *sgrt (1.214y"2) ), x==1,=3ay<3
uix, yl=besselh (0, sgrt(2) *sgrt (1+y"2) ) +...
besselh (0, sgqrt (2) *sgrt (0.81+y"2) ), x=1, =3<y<3
u(x,y)=besselh(0,sgrt(2) *sgrt (x"2+9))+...
besselh (0, sgrt(2) *sgrt((x-0.1)"2+9)), y en {-3,3},-1<x<l
du/dr-iku=o(1l/sgrt(r)}, cuando r->+Infinito. (Cond. de Sommerfeld)
Solucién exacta: ul(x,y)=besselh(0,sgrt(2) *sgri(x"24+4y"2))+...
besselh (0, sgrt (2) *sgrt ( (x-0.1) “24y"2))
%}

%1‘11fi“i“i‘i‘i‘i‘i‘fi‘i‘fi‘fiifi‘fi‘fi‘i‘f INICIALIZANDD L R R

clec %limpiando ventana de comandos
clear all %$limpiando el Workspace
close all %$cerrando todas las figuras

k=sqgrt(2); %nimero de onda

a=2; $longitud de la base del rectangulo
b=6&; %longitud de la altura del rectangulo
EN=20; $cantidad de términos deseados en la aproximacidn

fd=1- 0.2; %factor de distancia deseado para la frontera wvirtual.
tAjustar el segundo sumando de manera gque fd < 1

N inic=8; %valor inicial para N, debe ser miltiplo de 4

incr=8; $incremento deseado para N, debe ser miltiplo de 4

N_fin=80; %valor final para N, debe ser miltiplo de 4

N1=100; %cantidad de puntos de prueba en cada distancia
fd max=1.9; %factor de distancia maximo para los puntos de prueba

cont=0;
n_cond=zeros(1,3); %vector donde se guardara el no. de condicidn
$de las diversas iteraciones.

Matriz errores r=cell(l,3); %matriz de celdas donde se guardaran las
ftmatrices de errores relativos en cada iteracién.

Matriz errores a=cell(l,3); %matriz de celdas donde se guardardn las
ftmatrices de errores absclutos en cada iteracidn.

Matriz err r max=zeros(3,9); %matriz que guardara en sus renglones los
terrores relativos maximos a lo largo del interior
tdel dominio, en cada iteracidn.

Matriz err a max=zeros(3,9); %matriz que guardard en sus renglones los
terrores absolutos maximos a lo largo del interior
%tdel dominio, en cada iteracidn.

for N= N_inic:incr:N_fin
gaekwwkwwwd s CALCULANDD PUNTOS DE COLOCACION Y FUENTES DISCRETAS *#*#®&#add
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cont=cont+l;

ab_v=[a/2 -af2 -a/f2 a/2]; %abscisas de los wvértices

or_v=[b/2 b/2 -bf2 -b/2]; fordenadas de los wvértices

[X1,X2])=pboundary({ ab_v,or_v,N,1 }; %puntos de colocacidn (frontera real)
[Y1l,¥2]=pboundary( ab_v*fd,or_v*fd,N,1 );%fuentes discretas (frontera virtual)

if contm=3
figure
plot (X1,X2,'** ¥1,¥2,'0"});
%axis square;
title('FRONTERA REAL ¥ FRONTERA VIRTUAL'):;
xlabel ('Eje x");
ylabel ('Eje y'});
legend('Puntos de colocacidn', "Fuentes discretas®,'Location’', 'Best'):
box off
end

gewmswwwsww EJECUTANDO EL DSM Y CALCULANDO EL NUMERO DE CONDICION #*%#wwxws
tiec
[M,B]=Matriz_extendida_ejdb(k,X1,X2,¥1,¥2};
coef=M\E;
toc
n_cond (cont)=cond (M) ;

%11111111111111111111111 vﬂLIDACIﬁNYGmFICAS L R R

x=[];
y=[1:
Z_aprox=[];
Z_exact=[];
error_r=[];
error_a=[];

for r =linspace(1.05, fd max,9)
(21,22 ])=pboundary( ab_v*r,or_v*r,Nl,1 }; %generando puntos de prueba
sol_aprox =sol_aproximada (k,coef,21,22,Y1,¥2);
sol_exact =sol_exacta_ejdb(21,22);
error_a=[error_a; abs(sol_exact-sol_aprox)];
error_r=[error_r; abs(sol_exact-sol_aprox)./abs (sol_exact)];:
¥=m[x Z1]; %$guardando puntos de prueba
y=[y Z2]:
z_aprox=[z_aprox real (sol_aprox));
z_exact=[z_exact real(sol_exact));
end
Matriz errores_ri(cont)={error_r};
Matriz _err_r max(cont,:)=(max(error_xr,[],2))";
Matriz_errores_al(cont)={error_a};
Matriz_err_a_max(cont,:)=(max(error_a,[],2))";

% Graficando la solucidén exacta y la aproximada
if cont==]||cont==3
figure
[®%g, yg]=meshgrid(linspace (min (%) ,max (x},100), linspace (min(y),max (y),100)});
vg=griddata(x,y,z_exact,xd,yq, 'cubic’);
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mesh (xq, yg, vg) ;
hold on
platB:x,y,Z_aprax,'ma'};
%taxis square
legend ('Soln. exacta', "Soln. aproximada');
title ('SOLUCION EXACTA, Y APROXIMADA FOR DSM');
xlabel ("Eje ®x");
yvlabel ('Eje y"};
zlabel ('Valor de RehZ{u\}');:
hold off
end

end

% Graficando el error relativo maximo
figure
rl=linspace(1.05, fd max, 9);
semilogy(rl,Matriz err r max','-.d','LineWidth"',2.5);
title ('ERROR RELATIVQO MANIMO A LO LARGO DEL DOMINIG'):
xlabel {'Razdn de homotecia');
ylabel ('Error relativo maximo');
legend (numZstr ((N_inic:incr:N_fin)','l= %d términos'), 'Location’', "Best'};

% Graficando el error absoluto maximo
figure
rl=linspace(1.05, fd max, 9);
semilogy (rl,Matriz err a max','-.d', 'LineWidth',2.5);
title ('ERROR ABSCLUTO MANIMO A LO LARGO DEL DOMINIC');
¥label ('Eazdn de homotecia');
ylabel ('Error absoluto maximo');
legend (num2str ((N_inic:incr:N_fin)','l= %d términos'), 'Location’', "Best'};

tGraficando la superficie de error relativo
C=Matriz errores r{3}';
wv=C(:)";
vg=griddata (%, y,V,®xq,y¥g, "linear");
figure
surf (=g, yg, vg) ;
hold on
plot3(x,y,v, 'om");
taxis square
title ('SUPERFICIE DEL ERROR RELATIVD');
xlabel ('Eje x'};
ylabel ("Eje y'};
zlabel ('error relativo'};
hold off

tGraficando la superficie de error absoluto
C=Matriz errores_a{3}';
w=Cl:)";
vg=griddata(x,y,v,xq,yg, 'linear'};
figure
surf (=g, yg,vg) ;
hold on
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plot3ix,y,v, 'om");

taxis square

title ('SUPFERFICIE DEL ERROR ABSOLUTO');
xlabel ("Eje x');

vlabel ('Eje v'):

zlabel {'error absoluto');

hold off

%fin del script

FPublished with MATLAB® R2014a

function [ M,B ] = Matriz extendida ejdb( k,X1,X2,Y1,¥2 )
$MATRIZ EXTENDIDA EJ4B Calcula la matriz extendida para el DSM.

o o o of of o

Los argumentos de entrada son: k (nimero de onda); X1 y X2, vectores
que contienen las abscisas y ordenadas, respectivamente, de los puntos
de colocacién; los vectores Y1 y ¥2 contienen las abscisas y ordenadas,
respectivamente, de las fuentes discretas.

Los argumentos de salida son M y B. M es la matriz del sistema y

B contiene los valores en la frontera.

N=length(¥1);
M=zeros (N,HN) ;
B=zeros (N, 1} ;
%Se procede al cdlculo de M y de B

for

end

i=1:N

for j=1:H
desgrt ((X1(i)-Y1(§)) . 2+ (X2 (1)-Y2(]))."2);
v=besselh (0, k*d);
M{i,3) = v;

end

B(i)=sol exacta ejdb (X1 (i),X2(i)};

end %fin del programa.

Published with MATLAB® R2014a
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function [ r | = sol exacta ejdbi x,y )
%50L EXACTA EJ4B Evalua la solucidén exacta para el DSM.

% Los argumentos de entrada son x y ¥ que son los vectores gque contienen
% las abscisas y ordenadas, respectivamente, de los puntos donde se

% evaluarid la soln. exacta. El argumento de salida es el wvector r gue

% contiene los wvalores obtenidos en la evaluacidn.

%(Evaluacidn de la solucidn exacta.

r=besselh (0,sqrt(2) *sgri(x."24+y."2)) 4. ..
besselh (0, sgrt(2) *sgrt((x-0.1)."24y."2)); $opcidn de solucidn exacta

end %fin del programa.

Published with MATLAB® R2014a
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Apéndice C

NOTACION

Se presenta a continuacién una lista con los principales simbolos utilizados en esta tesis.

SIMBOLO
é(x, s)
L

u

Q

supp ¥ ()

o2

oY
{Sj}j]\il
{zr}ils
upm,N(z,c)
¢ {Cj}é‘vﬂ

f(zk)

QC
Xl
Tc

f.d.

CONCEPTO REPRESENTADO

solucién fundamental

operador diferencial parcial

solucién de una ecuacién diferencial parcial

dominio en estudio

soporte de la funcién

coordenadas de la ubicacién de una fuente puntual
frontera del dominio €2; frontera real

frontera virtual

conjunto de las ubicaciones de las fuentes puntuales
conjunto de puntos de colocacién para un problema dado
solucién aproximada para un problema dado

coeficientes por determinar en el DSM

condicion de frontera evaluada en el punto x

cantidad de fuentes puntuales

cantidad de puntos de colocacién

operador diferencial asociado con la funcién f (cond. de frontera)
complemento del conjunto €2, relativo a R™

espacio dual del espacio vectorial X

centroide del dominio en estudio

factor que determina el alejamiento de 9’ con respecto a Q
pardmetro de reescalamiento

operador diferencial de Laplace
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