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RESUMEN

En esta investigación se hace una exposición del Método de Fuentes Discretas

(DSM, por sus siglas en inglés), el cual es un método numérico utilizado para resolver

problemas de dispersión de ondas con condiciones en la frontera. La exposición incluye la

justi�cación teórica del método en el caso particular del operador de Helmholtz, así como

ejemplos de prueba para tal operador con condiciones en la frontera del tipo Dirichlet

sobre dominios bidimensionales con variantes en cuanto a la con�guración, como lo son la

aplicación del método sobre dominios elípticos y dominios rectangulares, y la elección de

diferentes formas de fronteras virtuales. La implementación del DSM utiliza la técnica de

colocación de los datos de frontera. Se muestran datos, conclusiones y sugerencias, tanto en

el caso de problemas internos, como en el caso de problemas externos.

(Palabras clave: Método de Fuentes Discretas, DSM, dispersión, ondas, obstáculo

sound-soft, problema interno, problema externo)
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ABSTRACT

This paper presents the Discrete Source Method (DSM), a numerical method used

to solve wave scattering problems with boundary conditions. The dissertation includes

the theoretical justi�cation of the method in the particular case of the Helmholtz

operator, as well as test examples for such operator with Dirichlet boundary conditions on

two-dimensional domains with variations concerning con�guration, such as the application

of the method to elliptical and rectangular domains, and the choice of di¤erent virtual

boundary shapes. The DSM implementation uses the boundary data collocation technique.

Data, conclusions, and suggestions are presented for both interior and exterior problems.

(Keywords: Discrete Source Method, DSM, scattering, waves, sound-soft obstacle, interior

problem, exterior problem)
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ESTRUCTURA DE LA TESIS

La presente tesis está conformada de la manera siguiente:

en el capítulo I: Conceptos preliminares, se presentan algunos conceptos y resultados

útilies en la lectura de los capítulos siguientes, a manera de un breve glosario. En el

capíitulo II: Introducción, se presentan los antecedentes del Método de Fuentes Discretas,

así como la Justi�cación, Hipótesis y Objetivo de esta investigación. En el capítulo III: El

Método de Fuentes Discretas (DSM), se comienza tratando la ecuación de Helmholtz, se

continúa con consideraciones de carácter físico en las que se encuentra enmarcado dicho

método, y concluye con la Fundamentación Teórica y la Metodología empleada en la

implementación numérica del mismo. En el capítulo IV: Ejemplos de prueba, se presentan

los experimentos numéricos y los resultados obtenidos. Finalmente, en el capítulo V se

muestran las conclusiones de la presente investigación.

En los apéndices A y B el lector podrá encontrar los códigos en Matlab, que se usaron en

el capítulo IV.
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Capítulo I

CONCEPTOS PRELIMINARES

El propósito de este capítulo es presentar a manera de glosario, y de forma no

exhaustiva, conceptos y teoremas generales que serán utilizados a lo largo del presente

trabajo. Debido al carácter general de los teoremas incluidos en este capítulo, se presentan

únicamente los enunciados, indicándose la referencia bibliográ�ca donde pueden veri�carse

las demostraciones respectivas.

1.1. Ecuaciones diferenciales parciales con condiciones en la
frontera

Se puede representar un operador diferencial de orden m sobre un conjunto abierto


 � Rn de la manera siguiente

L = L(x;D) =
X
j�j�m

a�(x)D
�; x 2 Rn:

Para las de�niciones que se presentan a continuación consúltese: en el caso de los conceptos

de símbolo de un operador diferencial parcial, de parte principal de un operador y de

operador diferencial parcial elíptico, el libro [Renardy & Rogers, 2004, pp. 37 - 42]; para la

de�nición de función analítica, puede consultarse [Vladimirov, 1971, p. 59].

De�nición 1 El símbolo de un operador diferencial parcial L, denotado por L(x; i�),

se de�ne de la manera siguiente:

L(x; i�) =
X
j�j�m

a�(x)(i�)
�; i2 = �1;x; � 2 Rn:

La parte principal del operador L, denotado por Lm(x; i�), también conocida como

�parte principal del símbolo del operador�queda de�nida por:

Lm(x; i�) =
X
j�j=m

a�(x)(i�)
�; i2 = �1;x; � 2 Rn:

1



De�nición 2 Suponga que X y Y son espacios vectoriales complejos, y sea A : X ! Y un

operador lineal. El kernel (o espacio nulo) del operador A es el subespacio de X de�nido

por

kerA = fu 2 X : Au = 0g:

Esta de�nición se aplica también a los operadores diferenciales lineales.

De�nición 3 Una función f(x), x = (x1; :::; xn), es llamada función analítica en el

punto x0, si en cierta vecindad de ese punto puede ser representada en la forma de una

serie de potencias uniformemente convergente

f(x) =
X
j�j�0

c�(x� x0)� =
X
j�j�0

D�f(x0)

�!
(x� x0)�:

Si una función f(x) es analítica en todo punto de alguna región G, se dice que es una

función analítica en G. El conjunto de todas las funciones analíticas en un cierto abierto G

se denota por C!(G).

De�nición 4 Sea L =
P
j�j�m a�(x)D

� un operador diferencial parcial de orden m en


 � Rn. Se dice que L es un operador diferencial parcial elíptico en x 2 
 si NO hay

características reales en x, o de forma equivalente, si se cumple que

Lm(x; i�) 6= 0 8� 6= 0 2 Rn:

Se dice que el operador es elíptico en 
, si es elíptico en todo punto de 
.

De�nición 5 Se dice que la frontera de un dominio 
 es frontera Lyapunov si en cada

punto x 2 @
 el vector normal n a la super�cie existe, y además existen constantes positivas

L y �; tales que el ángulo �(x;y) entre los vectores normales en x y en y cumple que

�(x;y) � L jx� yj� ;8x;y 2 @
:

De�nición 6 Se dice que un conjunto abierto 
 � R2 con frontera acotada es un

dominio Lipschitz (o con frontera Lipschitz) si (1) existe una familia �nita de conjuntos

abiertos fWjgj=1;:::;J que cubren a @
 (i. e. @
 � [j=1;:::;JWj), (2) existe una familia

de hipografos Lipschitz rotados f
jgj=1;:::;J (i. e. 
j = f(x01; x02) : x02 < fj(x
0
1)g;
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donde (x01; x
0
2) es un sistema rotado de coordenadas cartesianas en R2 y fj es una

función Lipschitz), y (3) Wj \ 
 = Wj \ 
j : Intuitivamente, lo anterior signi�ca que

para cada x 2 @
; existe una vecindad en la cual la frontera se puede representar

como la grá�ca de una función Lipschitz, y 
 yace solamente en un lado de @
: Los

dominios con frontera suave, así como los polígonos son ejemplos de dominios Lipschitz.

Se dice que el dominio 
 es dominio de clase Cm; m = 0; 1; :::;1 si las funciones fj son

de clase Cm. [Moiola, 2020, p. 16].

1.2. Análisis Funcional

De�nición 7 Sea X un espacio métrico con métrica d: Un subconjunto A de X es llamado

conjunto acotado si existe un número M tal que

d(a1; a2) �M

para todo par a1; a2 de puntos en A: [Munkres, 2000, p. 121].

De�nición 8 Un subconjuntoM de un espacio métrico X es llamado subconjunto denso

en X si

M = X:

[Kreyszig, 1978, p. 21].

De�nición 9 Sean X y Y espacios normados y T : D(T ) ! Y un operador lineal, donde

D(T ) � X. El operador T se llama operador acotado si existe un número real c tal que

8x 2 D(T ) se tiene que kTxk � c kxk.

De�nición 10 Si � : X ! R, donde X es un espacio topológico, se de�ne el soporte de

la función � como la cerradura del conjunto ��1(R n f0g). Por lo tanto si x no pertenece

al soporte de �, existe una vecindad de x en la cual � vale cero. [Munkres, 2000, p. 225].

De�nición 11 Si 
 es un dominio abierto en Rn; entonces el espacio C`(
), donde ` es

un entero no negativo, es el espacio que contiene todas las funciones u, las cuales junto con

todas sus derivadas parciales D�u de órdenes j�j � `, son continuas en 
; además se de�ne
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C1(
) =
T
`2N

C`(
). El espacio C`(
) consiste de todas las funciones u 2 C`(
) para las

cuales D�u es uniformemente continua y acotada en 
 para todo j�j � `: De hecho, C`(
)

es un espacio Banach. Además, C`0(R
n) es el conjunto de funciones u las cuales, junto con

todas sus derivadas parciales D�u de órdenes j�j � `, son continuas en Rn y satisfacen

que l��mjxj!1D�u(x) = 0, para cada j�j � `; C`0(Rn) es también un espacio Banach. Los

elementos de (C`(
))0 de�nen funcionales lineales acotados sobre C`0(Rn).

Proposición 1 Si L es un operador elíptico con coe�cientes constantes, de orden m en Rn

y e = e(x) es una solución fundamental de L, entonces D�e 2 L1loc(Rn) para cada j�j < m.

Para la justi�cación de esta proposición se remite al lector a [Weinstock, 1973, pp. 513-514].

De�nición 12 Espacios Lp: Suponga que U es un subconjunto abierto de Rn; y 1 � p �

1: Si f : U ! R es medible, se de�ne

kfkLp(u) :=

8><>:
�R
U jf j

p dx
�1=p si 1 � p <1

ess supU jf j si p =1:

Se de�ne Lp(U) como el espacio lineal de todas las funciones medibles f : U ! R para las

cuales kfkLp(u) < 1: Lp es un espacio Banach. Además se de�ne L
p
loc(U) = fu : U ! R :

ujV 2 Lp(V ) para todo V � U; V compactog.

De�nición 13 Espacios Sobolev. Fije 1 � p � 1 y sea k un entero no negativo. Se

de�nen ciertos espacios funcionales, cuyos elementos poseen derivadas débiles de varios

órdenes en varios espacios Lp. El espacio Sobolev

W k;p(U)

consiste en todas las funciones localmente sumables u : U ! R, tales que para cada

multiíndice � con j�j � k, D�u exista en el sentido débil y pertenezca a Lp(U). Si p = 2;

usualmente se escribe

Hk(U) =W k;2(U), k = 0; 1; � � �

Se usa la letra H dado que Hk(U) es un espacio Hilbert.
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De�nición 14 Denote por D(
) al espacio de funciones test, las cuales son funciones

en C1, de valor complejo, de�nidas en 
 y con soporte compacto en 
.

De�nición 15 El espacio H1
0 (
) es el subespacio de H

1(
) de los elementos que pueden

ser aproximados en la norma de H1(
) mediante una sucesión de elementos en D(
).

De�nición 16 Se dice que una función u 2 H1
loc(
) si la restricción de u a cualquier

subconjunto abierto acotado D en 
 pertenece a H1(D). En el caso de que 
 sea un conjunto

acotado, entonces H1
loc(
) = H1(
).

De�nición 17 Sea S1 = fx 2 R2; kxk = 1g la circunferencia unitaria. Para una función v

de�nida en S1 se escribe v(�) para su valor en coordenadas polares. Se dice que v 2 L2(S1)

si kvk2L2(S1) :=
R 2�
0 jvj2 d� <1 y v 2 H1(S1) si kvk2H1(S1) :=

R 2�
0 (jvj2+ jv0j2)d� <1, donde

v0 es la derivada en la coordenada angular. La expansión de v en armónicos circulares es

v(�) =
P
`2Z bv`ei`�, para una sucesión de coe�cientes bv` 2 C. Se pueden calcular las normas

usando esta expansión:

kvk2L2(S1) =
Z 2�

0
jvj2 d� = 2�

X
`2Z

jbv`j2 ; kvk2H1(S1) =

Z 2�

0
(jvj2+

��v0��2)d� = 2�X
`2Z

jbv`j2 (1+`2):
Por lo tanto, una función de�nida en la circunferencia está en L2(S1) si la sucesión de

coe�cientes de Fourier es un elemento en el espacio de sucesiones l2(Z) = f(a`); ` 2

Z; k(a`)k2l2 :=
P
`2Z ja`j

2 < 1g, y en H1(S1) si sus coe�cientes de Fourier ponderados

con (1+ `2)1=2 están en l2(Z): Lo anterior nos sugiere formas de de�nir espacios Sobolev

con otras regularidades:

kvk2Hs(S1) := 2�
X
`2Z

jbv`j2 (1+ `2)s; Hs(S1) := fv(�) =
X
`2Z

bv`ei`� : kvkHs(S1) <1g; 8s 2 R:

Para s = 0 y s = 1 se tiene H0(S1) = L2(S1) y H1(S1) como fueron de�nidos arriba.

Mientras mayor sea el valor de s, mayor será la suavidad de los elementos en Hs(S1). Si

s > 1=2, los elementos de Hs(S1) son funciones continuas, si s � 0 serán simplemente

clases de equivalencia L2(S1); para s < 0 los elementos sólo pueden ser entendidos como

distribuciones. [Moiola, 2020, p. 17]
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De�nición 18 Dado un dominio Lipschitz acotado 
, si existe un mapeo bi-Lipschitz � :

B1 = fjxj � 1g ! 
 que mapee S1 en @
, se puede de�nir el espacio Hs(@
) como el

espacio de funciones v de�nidas en @
 cuyo pullback (operador de composición) v�(x) =

v(�(x)) es un elemento de Hs(S1). Para �1 � s � 1 esto da un espacio bien de�nido,

independientemente de la elección de �. En el contexto de la presente investigación, serán

necesarias sólo los espacios Hs(@
) para s = �1=2: H1=2(@
) � L2(@
) � H�1=2(@
).

Teorema 19 (Aproximación global por funciones suaves). Suponga que U es acotado,

suponga también que u 2 W k;p(U) para algún 1 � p < 1: Entonces existen funciones

um 2 C1(U) \W k;p(U) tales que

um ! u en W k;p(U)

[Evans, 1998].

Al plantearse la posibilidad de asignar valores de frontera a lo largo de @U a una función

u 2 W 1;p(U); asumiendo que @U es clase C1: Si u 2 C(U); entonces claramente u tiene

valores en @U en el sentido usual. El problema es que una función típica en W 1;p(U) no es

en general continua e, incluso peor, está sólo de�nida en casi todas partes en U . Puesto que

@U tiene medida Lebesgue cero n-dimensional, no hay signi�cado directo que se le pueda dar

a la expresión �u restringida a @U�. El concepto de operador traza soluciona este problema.

Se considerará 1 � p <1:

Teorema 20 Suponga que U es acotado y que @U es C1: Entonces existe un operador lineal

acotado

T :W 1;p(U)! Lp(@U)

tal que (i)Tu = uj@U si u 2 W 1;p(U) \ C(U), y (ii)kTukLp(@U) � C kukW 1;p(U) ; para cada

W 1;p(U), con C dependiendo sólo de p y U .

De�nición 21 Se llamará a Tu la traza de u en @U .

De�nición 22 Sea H un espacio Hilbert. Un sistema de elementos f ig1i=1 es llamado

un sistema completo en H si el span lineal de f ig1i=1 o el conjunto de todas las
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combinaciones lineales �nitas de f ig1i=1

Spf 1;  2; :::g = fu =
NX
i=1

�i i : �i 2 C; N = 1; 2; :::g

es un conjunto denso en H, i. e. Spf 1;  2; :::g = H. [Doicu et al., 2000, p. 7].

1.3. Conceptos adicionales

De�nición 23 Las funciones de Hankel del primer y del segundo tipo están relacionadas

con las funciones de Bessel, a través de las siguientes expresiones, respectivamente:

H(1)
� (z) = J�(z) + iY�(z);

H(2)
� (z) = J�(z)� iY�(z):

donde i2 = �1; J� representa la función de Bessel del primer tipo de orden �; y Y� representa

la función de Bessel del segundo tipo de orden �. [Polyanin & Nazaikinskii, 2016, p. 1525].

De�nición 24 En la literatura sobre la dispersión de ondas, se dice que un obstáculo es

sound-soft cuando

utot
��
�
= 0;

o viendo a uscat como incógnita

uscat
��
�
= �uinc

��
�
:

Obstáculos sound-hard son aquéllos para los cuales

@� u
tot
��
�
= 0;

o equivalentemente

@� u
scat
��
�
= �@� uinc

��
�
:

Aquí @� es la derivada normal, donde el vector normal apunta siempre hacia afuera [Sayas,

2006, p. 5]. En esta investigación se utiliza esta terminología en inglés al no disponerse de

una traducción adecuada al español.
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Capítulo II

INTRODUCCIÓN

El Método de Fuentes Discretas, es un método que permite resolver de forma numérica

problemas de dispersión de ondas, con condiciones en la frontera.

Dicho método tiene como principal antecedente el método de soluciones fundamentales

(MFS, por sus siglas en inglés). El MFS es usado para la resolución de ecuaciones

diferenciales parciales elípticas con valores en la frontera. Una ecuación diferencial elíptica es

una ecuación diferencial parcial de segundo orden que puede escribirse en la forma canónica

u�� + u�� + `1[u] = G(�; �) (1)

donde u es la función que se está modelando, � y � son las variables independientes, `1 es

un operador diferencial lineal de primer orden y G es una función [Pinchover & Rubinstein,

2005, p. 66].

De�nición 25 Si L denota un operador diferencial parcial en 
 � Rn y se tiene la ecuación

Lu = 0 en 
, se dice que una solución fundamental de dicha ecuación diferencial es una

función �(x; s) [esta notación se usará de aquí en adelante] tal que:

Lx�(�; s) = �s; s 2 Rn (2)

donde Lx� indica que la función � se deriva con respecto a x y �s es la medida de Dirac

con masa unitaria en s.

Nótese que la función � está de�nida en todas partes, excepto cuando x = s, donde es

singular. Por lo tanto se dice que s es la singularidad de la solución fundamental. La idea

central del MFS, así como del Método de Fuentes Discretas, es expresar la solución de una

ecuación diferencial elíptica como una combinación lineal de soluciones fundamentales del

operador involucrado. Es decir, se propone que

u(x; c) =

NX
j=1

cj�(x� sj) (3)
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donde las sj son las ubicaciones de las fuentes discretas, y los coe�cientes cj se deben

determinar a partir de las condiciones de frontera.

En esta investigación se aplica el método de fuentes discretas a distintas con�guraciones

de problemas de dispersión, usando diferentes familias de soluciones fundamentales en

cada caso, para comparar la e�ciencia del método en estos planteamientos. Se plantea

implementar el método y elaborar ejemplos de prueba, los cuales tienen las siguientes

características: se trata de problemas de dispersión en medios homogéneos y libres de

fuentes, sobre dominios en R2, en los cuales se cuenta con solución exacta. Se analiza

el comportamiento del error en dichas con�guraciones con respecto a la familias de

soluciones fundamentales utilizada, la cantidad de términos que se usa en la aproximación,

la distribución de las fuentes discretas, así como de las condiciones de frontera requeridas y

se comparan los niveles de error absoluto entre los casos. La hipótesis de esta investigación

es:

El método de fuentes discretas presenta diferencias signi�cativas en su e�ciencia, medida

a través del error absoluto, siendo uno de los factores por considerar: la con�guración

del problema de dispersión (dominios acotados o dominios no acotados). La familia de

soluciones fundamentales que se utilice en cada caso también es un factor signi�cativo sobre

la e�ciencia. Ambos factores serán considerados como variables categóricas.

En los problemas de dispersión, cuando el tamaño del elemento dispersor es del mismo

orden de magnitud que la longitud de onda, �; de la radiación incidente, el Método

de Fuentes Discretas tiene ventajas sobre los métodos de malla (método de elemento

�nito, método de diferencias �nitas, etc.), ya que requiere menor tiempo de cómputo y

su implementación es más sencilla.

El uso del método de fuentes discretas no está muy difundido, a pesar de sus ventajas

con respecto a los métodos de malla. Este trabajo pretende contribuir a la difusión del

conocimiento de esta herramienta.
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2.1. Antecedentes

El Método de Fuentes Discretas (DSM, por las siglas en inglés de Discrete Sources

Method), es un método que permite resolver de forma numérica problemas de dispersión de

ondas, con condiciones en la frontera.

El DSM tiene como principal antecedente el método de soluciones fundamentales

(MFS, por sus siglas en inglés), el cual fue presentado en [Kupradze & Aleksidze, 1963]

e inicialmente se conoció como Método de series generalizadas de Fourier . En esta versión

inicial del método, para el problema de Dirichlet siguiente8><>: 4u = 0; en 
;

u = f; sobre @
;
(4)

donde:

4 representa el operador de Laplace,

u es la función incógnita,


 designa el dominio en el que se busca la solución,

f es la función que indica el comportamiento de u en la frontera, y

@
 indica la frontera del dominio,

en un dominio acotado 
 � Rn, n = 2, 3, sin agujeros, las fuentes puntuales (denominadas

fuentes discretas en el DSM) eran colocadas sobre una frontera virtual, es decir, sobre una

frontera prescrita @
0 de un dominio 
0, satisfaciendo que 
 � 
0. Kupradze también aplicó

el MFS en problemas de elasticidad lineal, así como en la ecuación de calor [Kupradze &

Aleksidze, 1963].

�El método de soluciones fundamentales es una técnica para la solución numérica de

ciertos problemas elípticos con valores en la frontera que pertenece a la clase de métodos

conocida generalmente como métodos de frontera.�[Fairweather & Karageorghis, 1998].

�Los primeros usos del MFS se enfocaron en la solución de problemas de potencial

lineal en dos y tres variables espaciales. Desde entonces ha sido aplicado a una variedad
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de problemas más complicados tales como problemas de potencial plano involucrando

condiciones en la frontera no lineales tipo radiación, problemas de frontera libre, problemas

biarmónicos, problemas elastostáticos y problemas de dispersión de ondas.�[Fairweather &

Karageorghis, 1998].

Puede considerarse que el momento en el cual el MFS comenzó a utilizarse en problemas

de dispersión de ondas (principalmente ondas electromagnéticas), marca el inicio del método

de fuentes discretas (DSM) como tal. Las primeras aplicaciones de este tipo se dieron

a conocer en el año 1979 y desde entonces el DSM quedó enmarcado en el tipo de

métodos conocido como «Técnica de Multipolos Generalizada» [Eremin et al., 1999, p.

1296]. Inicialmente se usó para modelar la dispersión de ondas electromagnéticas generada

por obstáculos que presentaran simetría axial en cuanto a su geometría, y que fueran

perfectamente conductores o aislantes de la electricidad. En esta etapa inicial del método,

era posible representar los campos electromagnéticos mediante combinaciones lineales de

dipolos eléctricos y magnéticos ubicados sobre el eje de simetría, estas fuentes de excitación

fueron denominadas �fuentes discretas�.

El nombre «Técnica de Multipolos Generalizada» (GMT, por sus iniciales en inglés) fue

acuñado por Art Ludwig para referirse a un conjunto de métodos relacionados para resolver

problemas electromagnéticos con valores en la frontera, dichos métodos fueron desarrollados

en forma independiente por varios grupos de investigación. La característica en común de

estas técnicas consiste en la expansión del campo a través de un conjunto de multipolos

colocados lejos de la super�cie de frontera [Wriedt & Eremin, 2018].

En 1983 se realizó una continuación (extensión) analítica de las fuentes discretas en el

plano complejo. Esta mejora teórica permitió que se pudieran modelar obstáculos de forma

alargada más general, ya que inicialmente el método sólo se aplicaba a objetos dispersores

con simetría axial (sólidos de revolución). En 1985 el método fue ampliado para considerar

fuentes de excitación no necesariamente de carácter axial, es decir, que las fuentes discretas

pudieran ubicarse ya sea sobre el eje de simetría o bien sobre el plano complejo.

El siguiente escalón de mejora en el DSM se llevó a cabo en el año 1993. Esta

actualización permitió que también pudiera tomarse en cuenta en los problemas el tipo de
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polarización de las ondas electromagnéticas incidentes. Esta evolución del DSM ha permitido

ampliar la gama de aplicaciones de este procedimiento en la actualidad, entre las cuales se

pueden mencionar: la microscopía de re�exión interna total, el análisis de la dispersión de

ondas evanescentes, la caracterización de películas delgadas, la reconstrucción de imágenes

de nanoestructuras, así como la detección de partículas contaminantes y defectos en tarjetas

de circuito impreso [Eremin & Wriedt, 2004, p. 53].

2.2. Justi�cación

Diversas técnicas se han desarrollado para analizar los problemas de dispersión de ondas.

Cada una de estas técnicas, generalmente, tiene un rango de aplicabilidad, determinado por

el tamaño del objeto dispersor en relación a la longitud de onda de la radiación incidente

[Doicu et al., 2000, p. ix].

Considerando la longitud de onda (�) de la radiación electromagnética, pueden

considerarse tres casos:

1. El tamaño del elemento dispersor es mucho mayor a �.

2. El tamaño del dispersor es mucho menor a �.

3. El tamaño del elemento dispersor es del mismo orden de magnitud que �.

Para tratar los casos 1 y 2 existe una variedad de métodos que se utilizan en el modelado

de problemas de dispersión de ondas; sin embargo los métodos de los cuales se dispone para

el caso 3 presentan como principales desventajas el considerable tiempo de cómputo que

se requiere en su ejecución, así como la complejidad en su implementación, al tratarse de

�métodos de malla�.

Por otra parte, la existencia de diversas familias de soluciones fundamentales que se

pueden aplicar en la implementación del DSM requiere investigar la in�uencia que la elección

de esta familia puede tener en la precisión de los resultados, de acuerdo a la con�guración

del problema especí�co.

En esta investigación se realiza una presentación del Método de Fuentes Discretas (DSM)

y se analizan diferentes familias de soluciones fundamentales y la posible in�uencia que la
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elección de estas familias tenga sobre la precisión del método en diferentes con�guraciones

de problemas de dispersión de ondas.

El uso del método de fuentes discretas no está muy difundido, a pesar de sus ventajas

con respecto a los métodos de malla. Este trabajo pretende contribuir a la difusión del

conocimiento de esta herramienta.

2.3. Hipótesis

El método de fuentes discretas presenta diferencias signi�cativas en su e�ciencia,

medida a través del error absoluto, dependiendo de la con�guración del problema de

dispersión (dominios acotados o dominios no acotados), así como de la familia de soluciones

fundamentales que se utilice en cada caso, considerando estos dos factores como variables

categóricas.

2.4. Objetivo

Aplicar el método de fuentes discretas a distintas con�guraciones de problemas de

dispersión, usando diferentes familias de soluciones fundamentales en cada caso, para

comparar la e�ciencia del método en estos planteamientos.
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Capítulo III

EL MÉTODO DE FUENTES DISCRETAS (DSM)

3.1. La ecuación de Helmholtz

La siguiente ecuación diferencial parcial es conocida como la ecuación de Helmholtz:

4u+ k2u = 0 (5)

donde 4 denota al operador de Laplace en n variables, n 2 f2; 3g, y k > 0 es un parámetro

conocido como �número de onda�y u es la función incógnita. Esta ecuación es relevante

dado que describe la intensidad de fenómenos físicos en todos los puntos de un dominio bajo

estudio y que siguen una sola ley de evolución en el tiempo [Karapetyants & Kravchenko,

2022]. De hecho, tanto la ecuación de calor, como la ecuación de onda se reducen a la

ecuación de Helmholtz en los casos en los cuales los fenómenos físicos correspondientes sean

armónicos en el tiempo. Se dice que una función es armónica en el tiempo si su dependencia

con respecto a la variable tiempo es de carácter sinusoidal. La importancia de la ecuación

de Helmholtz, especí�camente en los problemas de dispersión de fenómenos ondulatorios,

radica en el hecho de que describe todas las soluciones armónicas en el tiempo para la

ecuación de onda. De igual forma esta ecuación surge en problemas físicos modelados por

la llamada ecuación del telégrafo, y por ecuaciones derivadas a partir de ella, como por

ejemplo la ecuación de calor, la ecuación de difusión que nos permite modelar reacciones

químicas y reacciones en cadena que tengan lugar en algún medio material; y por supuesto

la misma ecuación de onda, ya mencionada.

De acuerdo a la clasi�cación estándar de las ecuaciones diferenciales parciales de segundo

orden, la ecuación de Helmholtz es una ecuación del tipo elíptico. Recuerde que una ecuación

diferencial elíptica es una ecuación diferencial parcial de segundo orden que puede escribirse

en la forma canónica

u�� + u�� + `1[u] = G(�; �) (6)
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donde u es la función que se está modelando, � y � son las variables independientes, `1 es

un operador diferencial lineal de primer orden y G es una función [Pinchover & Rubinstein,

2005, p. 66]. De hecho, la parte principal del operador de Helmholtz no es otra cosa que el

operador de Laplace y comparte propiedades con dicho operador; como la de que todas sus

soluciones son funciones en el espacio C1 en sus respectivos dominios.

Se muestra a continuación, a manera de ejemplo, la forma en la que se deduce la ecuación

de Helmholtz a partir de la ecuación de onda:

1

c2
@2U

@t2
= 4U (7)

en la que se buscan soluciones que sean armónicas en el tiempo, es decir, se plantea que U

tenga la forma

U(x; t) = u(x)e�i!t (8)

donde u es la parte espacial de la solución, x representa las coordenadas espaciales, t

representa el tiempo, i es la unidad imaginaria, ! > 0 es la frecuencia angular. Sustituyendo

(8) en (7), se tiene:

� 1
c2
u(x)!2e�i!t = e�i!t4u(x) (9)

=) � 1
c2
u(x)!2 = 4u(x) (10)

=) 4u(x) +
�!
c

�2
u(x)=0 (11)

y de�niendo k = !=c, �nalmente

4u(x) + k2u(x)=0 (12)

con lo que se muestra que la parte espacial de la solución, i.e. u(x) debe cumplir con

la ecuación de Helmholtz. La importancia de buscar soluciones armónicas en el tiempo

está basada en el hecho de que fenómenos arbitrarios dependientes del tiempo pueden

ser representados a través de superposiciones de componentes armónicas en el tiempo

[Karapetyants & Kravchenko, 2022].
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3.2. Problemas internos y problemas externos

Se pueden plantear dos tipos de problemas de dispersión directos para la ecuación de

Helmholtz, a saber: los problemas internos y los problemas externos.

Problemas internos

En este trabajo se llamarán también �problemas en dominios acotados�. Sea 
 �

Rn; n 2 f2; 3g un dominio acotado con frontera Lyapunov; un problema interno consiste

en determinar una función que satisfaga la ecuación de Helmholtz en dicho dominio y

que además cumpla con las condiciones de frontera estipuladas. Dependiendo del tipo de

condiciones de frontera, se tienen problemas del tipo Dirichlet, del tipo Neumann o del tipo

Robin (para mayor detalle véase la descripción de los problemas en la sección 3.6).

Figura 1: Esquema para los problemas del tipo interno.

Problemas externos

En este trabajo se llamarán también �problemas en dominios no acotados�. Sea V �

Rn; n 2 f2; 3g una región acotada con frontera Lyapunov; un problema externo consiste

en determinar una función que satisfaga la ecuación de Helmholtz en el dominio 
 =

Rn n V ; n 2 f2; 3g, que cumpla con las condiciones de frontera estipuladas, y además una
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condición adicional en el in�nito. Dependiendo del tipo de condiciones de frontera, se tienen

problemas del tipo Dirichlet, del tipo Neumann o del tipo Robin (para mayor detalle véase

la descripción de los problemas en la sección 3.6).

Figura 2: Esquema para los problemas del tipo externo.

3.3. Dispersión de ondas

Al mencionarse el estudio de la dispersión de ondas, se está haciendo referencia al estudio

de la propagación de ondas armónicas en el tiempo en la presencia de obstáculos locales que

presentan diferentes propiedades materiales [Eremin & Sveshnikov, 1993]. Considerando el

caso acústico, que es el foco de la presente investigación, la descripción matemática de la

dispersión de ondas armónicas en el tiempo por un obstáculo D conduce a problemas con

condiciones de frontera para la ecuación de Helmholtz.

Para entender lo que sucede cuando una onda se encuentra con un obstáculo

impenetrable, se comienza por de�nir algunos conceptos. Sea uinc(x) = eikx�d una onda

plana con jdj = 1, donde d es el vector que de�ne la dirección de propagación de dicha

onda. A esto se le denomina campo incidente (u onda incidente). A la onda que se re�eja al

encuentro del obstáculo se le llama campo dispersado (u onda dispersada), se acostumbra
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denotarlo por uscat(x). Finalmente utot(x) = uinc(x) + uscat(x), es el campo total, el cual es

el campo físico susceptible de ser medido en el dominio de interés 
 [Moiola, 2020].

Dado uinc, que es conocido, lo que se quiere determinar es utot, de manera que cumpla la

ecuación de Helmholtz en el dominio 
, y que satisfaga las condiciones estipuladas sobre la

frontera del mismo, i. e. en @
. Dependiendo de las características del obstáculo, es posible

imponer condiciones sobre utot, de manera que en la práctica lo que se determinará es uscat

de manera que satisfaga la ecuación de Helmholtz en la misma región y que cumpla con

condiciones de frontera que dependerán de los valores de uinc sobre @
. Esto es lo que se

realiza en los ejemplos de prueba que se presentan en este trabajo.

Cuando las ondas acústicas encuentran un obstáculo a través del cual no pueden

propagarse, en la interfaz entre el obstáculo y el medio de propagación algunas condiciones

de frontera deben ser establecidas. Dependiendo de las características del obstáculo y del

medio, se pueden presentar dos situaciones:

Las características del obstáculo y del medio son tales que la presión acústica en la

frontera debe ser cero. En este caso se dice que el obstáculo es del tipo sound-soft. En

este trabajo se consideran únicamente obstáculos de este tipo.

Las características del obstáculo y del medio son tales que la velocidad normal en

la frontera debe ser igual a cero. En este caso se dice que el obstáculo es del tipo

sound-hard.

Las ondas planas re�ejadas por interfaces sound-soft o por interfaces sound-hard (una

interfaz se corresponde con la frontera del dominio 
) tienen la misma amplitud que las

ondas planas incidentes; en cuanto a la fase, ésta puede ser opuesta (en el caso sound-soft)

o la misma (en el caso sound-hard).

Establecer los valores de utot en la frontera del obstáculo, físicamente se interpreta

como prescribir la presión de la onda acústica. Las condiciones sound-soft se traducen en

la condición Dirichlet utot = 0, entonces siendo la onda acústica total de la forma utot =

uinc+uscat donde uscat denota la onda dispersada implica que la presión total deber ser cero
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en la frontera, por lo que en la misma debe establecerse uscat = �uinc. De manera similar,

el prescribir el valor de la derivada normal de utot en la frontera, equivale físicamente a

prescribir la componente normal de la velocidad de la onda acústica. Las condiciones para

obstáculos sound-hard se traducen entonces en la condición Neumann n �rutot = 0 [Moiola,

2020].

Es importante mencionar que el parámetro k en la ecuación de Helmholtz se de�nió

como !=c, pero esto es válido sólo si se considera que el medio no presenta ningún tipo de

amortiguamiento (no hay viscocidad), pero si se considera la propagación de ondas acústicas

en un medio con coe�ciente de amortiguamiento �; entonces el número de onda es dado por

k2 = !(! + j�)=c2. Se elige el signo de k; de manera tal que Im k � 0 [Doicu et al., 2000]:

Para mostrar la razón de esta de�nición de k se presenta a continuación la forma en la que

se deduce la ecuación de Helmholtz a partir de la ecuación de onda amortiguada:

1

c2

�
@2U

@t2
+ �

@U

@t

�
= 4U (13)

donde � es el coe�ciente de amortiguamiento, y en la que se buscan soluciones que sean

armónicas en el tiempo, es decir, se plantea que U tenga la forma

U(x; t) = u(x)e�j!t (14)

donde u es la parte espacial de la solución, x representa las coordenadas espaciales, t

representa el tiempo, j es la unidad imaginaria, ! > 0 es la frecuencia angular. Sustituyendo

(14) en (13), se tiene:

� 1
c2
�
u(x)!2e�j!t + u(x)�j!e�j!t

�
= e�j!t4u(x) (15)

=) � 1
c2
�
u(x)!2 + u(x)�j!

�
= 4u(x) (16)

=) 4u(x) +
�
!(! + j�)

c2

�
u(x)=0 (17)

y de�niendo k2 = !(! + j�)=c2, �nalmente

4u(x) + k2u(x)=0 (18)

con lo que se muestra que la parte espacial de la solución, i.e. u(x) debe cumplir con la

ecuación de Helmholtz también en el caso amortiguado.
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3.4. Problemas Dirichlet en dominios acotados

Sea 
 � R2 un dominio abierto, acotado y con frontera Lyapunov. El problema Dirichlet

para la ecuación de Helmholtz es: dado un término F de�nido en 
 y un dato de frontera

f de�nido en @
; encontrar u en 
 tal que

4u+ k2u = �F en 
; u = f en @
: (19)

Es conocido que para el caso k = 0; el problema anterior está bien planteado cuando los datos

F; f son su�cientemente suaves. Sin embargo estas condiciones no son su�cientes para el caso

de la ecuación de Helmholtz. Por ejemplo, si se considera el rectángulo 
 = (0; L1)�(0; L2);

entonces para todo j1; j2 2 N el campo uj1;j2(x) = sin( j1�L1 x1) sin(
j2�
L2
x2) vale cero en la

frontera del dominio y además es solución de 4u + k2j1;j2u = 0 con k2j1;j2 =
j21�

2

L21
+

j22�
2

L22
.

De manera que hay una cantidad in�nita de valores de k tales que el problema Dirichlet

homogéneo (F = 0; f = 0) para la ecuación de Helmholtz admite soluciones no triviales, es

decir, para esos valores especí�cos de k el problema no está bien planteado.

A las soluciones del problema Dirichlet homogéneo para la ecuación de Helmholtz se

les llama funciones propias Dirichlet del laplaciano, con valor propio � = k2; dado que

satisfacen �4u = �u. La situación del ejemplo anterior se presenta no sólo para dominios

rectangulares, y se presenta incluso si no es posible determinar en forma explícita los valores

y las funciones propias.

De hecho, dados 
 y k; sólo pueden darse dos situaciones:

Si 
 y k son tales que el problema Dirichlet homogéneo (F = 0; f = 0) para la ecuación

de Helmholtz admite únicamente la solución trivial u = 0; i. e. k2 no es un valor propio,

entonces el problema admite una solución única para cualquier F 2 L2(
).

Si no se cumple la condición anterior, i. e. k2 es un valor propio, entonces el problema

no está bien planteado para ninguna F: Es decir, podría no haber soluciones para

algunos F; y soluciones no únicas para otros F .

El enunciado del teorema de buen planteamiento para el problema Dirichlet para la

ecuación de Helmholtz, en dominios acotados, se encuentra en la sección de fundamentación
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teórica de la presente investigación (sección 3.7).

3.5. Problemas Dirichlet en dominios no acotados

Sea V � R2 un dominio acotado con frontera Lyapunov. De�na 
 = R2 r V : Se asume

que 
 es conexo, es decir, V no posee agujeros. Se considerarán únicamente obstáculos del

tipo sound-soft. Sea uinc la onda incidente. Dado que utot = 0 para este tipo de obstáculos,

el problema consiste en determinar el campo uscat dispersado por V , que sea solución de la

ecuación de Helmholtz en 
, y tal que uscat = �uinc en @
:

El campo dispersado es producido por la interacción del obstáculo y el campo incidente

uinc: Así que su comportamiento debería ser el de una onda propagándose hacia el in�nito

desde V:

De�nición 26 (Solución radiante). Sea u 2 H1
loc(R

2 n BR) solución de la ecuación de

Helmholtz en el complemento de una bola. Se dice que u es radiante si satisface la condición

de radiación de Sommerfeld:

j@ru� ikuj = o(r�1=2); r !1: (20)

La condición de Sommerfeld se debe cumplir uniformemente en todas direcciones, i. e.

l��m
r!1

sup�2[0;2�]
p
r j@ru(r; �)� iku(r; �)j = 0: (21)

El cumplimiento de esta condición es indispensable para que la solución de los problemas

del tipo de externo tenga sentido físico, ya que garantiza que el campo dispersado sólo tenga

componentes que se alejan del obstáculo hacia el in�nito, y que no existan componentes que

vayan del in�nito hacia el obstáculo.

Tomando en cuenta lo anterior, el problema externo Dirichlet se plantea así: Sea V un

dominio acotado con frontera Lyapunov, k > 0 y f 2 H1=2(@
): Se dice que u 2 H1
loc(
) es

solución del problema externo Dirichlet para la ecuación de Helmholtz si

4u+ k2u = 0 en 
;

u = f en @


u es radiante.

(22)
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El problema de dispersión sound-soft es un problema externo Dirichlet con u = uscat y f =

�uinc. Este problema es bien planteado y el enunciado del teorema de buen planteamiento

se puede ver en la sección de fundamentación teórica de la presente investigación (sección

3.7).

Es importante mencionar que los problemas internos y externos tratados en esta tesis,

pertenecen al tipo de problemas denominado: problema directo de dispersión, lo que quiere

decir que se conoce la onda incidente, se conoce la geometría del obstáculo y lo que se

desea determinar es el campo dispersado. En aplicaciones, tales como imagenología médica,

detección remota atmosférica, detección de fallas en materiales, imágenes de radar, etc.,

es importante considerar los problemas inversos de dispersión, en los cuales el campo

dispersado es conocido (mediante mediciones) y lo que se quiere determinar es la geometría

del obstáculo y/o la onda incidente. Los problemas inversos por lo general son mal planteados

y mucho más difíciles que los problemas directos, tanto desde el punto de vista teórico como

del computacional.

3.6. Descripción del problema

Al mencionarse el estudio de la dispersión de ondas, se está haciendo referencia al estudio

de la propagación de ondas armónicas en el tiempo en la presencia de obstáculos locales

que presentan diferentes propiedades materiales [Eremin & Sveshnikov, 1993]

En la presente investigación, el método de fuentes discretas se aplicará a la ecuación de

Helmholtz:

4u+ k2u = 0 (23)

donde k 2 R, y la solución se busca en un dominio abierto y simplemente conexo, 
 � R2. La

frontera del dominio, denotada por @
; debe ser su�cientemente suave (generalmente basta

con que sea Lipschitz continua), siendo éste uno de los requisitos para la existencia y unicidad

de la solución, una vez que a la ecuación se le añadan las condiciones de frontera [Golberg

& Chen, 1998].

Esta ecuación se presenta cuando se buscan soluciones armónicas en el tiempo para la

ecuación de onda, i.e. soluciones que dependan de la variable tiempo a través de una función
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senoidal o cosenoidal. Al agregar condiciones de frontera, se pueden plantear tres tipos de

problemas [Karapetyants & Kravchenko, 2022, p. 359]:

Problemas del primer tipo (o problema Dirichlet): consisten en determinar una

función u(x) 2 C2(
) \ C(
) que cumpla con

4u(x) + k2u(x) = 0; x 2 
 (24)

u(x) = f(x); x 2 @


donde f es una función prestablecida.

Problemas del segundo tipo (o problema Neumann): en este caso el objetivo es

encontrar una función u(x) 2 C2(
) \ C1(
) que satisfaga

4u(x) + k2u(x) = 0; x 2 
 (25)

@u(x)

@n
= g(x); x 2 @


donde g es una función prestablecida y @u(x)
@n denota la derivada normal de la función u.

Problemas del tercer tipo (o problema Robin): consisten en determinar una

función u(x) 2 C2(
) \ C1(
) que cumpla con

4u(x) + k2u(x) = 0; x 2 
 (26)

@u(x)

@n
+ k(x)u(x) = h(x); x 2 @


donde h y k son funciones conocidas y @u(x)
@n denota la derivada normal de la función u.

En general, si se quiere expresar un problema de dispersión, sin especi�car las condiciones

de frontera, se puede hacer de la siguiente manera:

4u+ k2u = 0; en 
 (27)

Bu = j; sobre @


donde j es una función prestablecida, y B es un operador que se de�ne de manera que se

obtenga alguno de los problemas (24), (25) o (26).

Los planteamientos para los tres tipos de problemas, en el caso de dominios no acotados,

se realiza de manera similar, pero debe añadirse en cada caso la condición de radiación de

Sommerfeld presentada ya en la sección 3.5.
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3.7. Fundamentación teórica

La aplicación del método de fuentes discretas requiere el estudio de los siguientes

aspectos:

1. La existencia de la solución del problema bajo estudio.

2. La unicidad de la solución.

3. La completitud de los sistemas de soluciones fundamentales.

Para el estudio de los dos primeros puntos se recurre a la teoría de ecuaciones integrales

en la mayoría de los textos; sin embargo una desventaja de este tratamiento es que para

probar de forma constructiva la existencia de soluciones para los problemas de dispersión

se requiere la suposición de que las fronteras de los dominios son de clase C2: Es posible

debilitar ligeramente esta suposición al permitir fronteras Lyapunov en lugar de las fronteras

C2 y aún permanecer en el marco teórico de los operadores compactos en los espacios Hölder

de funciones continuas. El tratamiento teórico de los problemas Dirichlet para fronteras

Lyapunov es muy similar al que se da para fronteras C2.

Sin embargo, la situación cambia de forma drástica si se permite que la frontera tenga

aristas y esquinas. En este caso lo conveniente es permitir que los dominios posean fronteras

del tipo Lipschitz [Colton. & Kress, 2013, p. 55].

A continuación se presentan los teoremas de buen planteamiento de los problemas

Dirichlet internos y externos para la ecuación de Helmholtz, el primero de estos resultados

fue tomado del texto de [Moiola, 2020]; el segundo se extrajo del texto de [McLean, 2000].

Para las de�niciones de los espacios funcionales involucrados, consúltese la sección 1.2.

Téngase en cuenta que k representa el número de onda en la ecuación de Helmholtz:

Teorema 27 (Buen planteamiento del problema Helmholtz-Dirichlet

interno). Para un dominio acotado 
; con frontera Lipschitz, existe

una sucesión de números positivos (los valores propios del problema

Dirichlet homogéneo) k1 < k2 < � � � ; con kj ! 1; tales que:

� Si k = kj para algún j; entonces el problema Dirichlet (19) no está bien planteado.
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En particular, el caso homogéneo con F = 0 y f = 0 admite soluciones no triviales.

� Si 0 < k 6= kj para todo j; entonces el problema Dirichlet (19) está bien planteado en

H1
0 (
) para toda F 2 L2(
) y f 2 H

1
2 (@
).

Teorema 28 (Buen planteamiento del problema Helmholtz-Dirichlet externo).

Sea 
 = R2 n V ; donde V es un dominio acotado con frontera Lipschitz. Si f 2 H
1
2 (@
);

entonces el problema Dirichlet externo para la ecuación de Helmholtz (22), tiene una única

solución radiante u 2 H1
loc(
).

Una vez que se cumplen estas condiciones se requiere garantizar que el espacio de

combinaciones lineales de soluciones fundamentales sea denso en el espacio de soluciones

del operador diferencial de Helmholtz, es decir, se necesita mostrar que los sistemas de

soluciones fundamentales sean completos. Para ello se presentan a continuación los teoremas

de completitud del artículo [Khmelnytskaya et al., 2003] (en donde pueden consultarse las

demostraciones), con algunos cambios en la notación. Sea � una super�cie cerrada en R3

que sea frontera de un dominio acotado 
+ y de un dominio no acotado 
� = R3r
+: El

símbolo �� denotará una super�cie encerrada en 
+ y encerrando un dominio V; el símbolo

�+ denotará una super�cie que encierra a 
+:

Se denota por fs�j g1j=1 al conjunto de puntos distribuidos en �� y denso en ��; y

por fs+j g1j=1 al conjunto de puntos distribuidos en �+ y denso en �+: Se asocian los

sistemas de soluciones fundamentales f�k(x � s�j )g1j=1 y f�k(x � s+j )g1j=1 a los conjuntos

anteriores, respectivamente. Para simpli�car un poco la notación, se de�ne ��k;j(x) :=

�k(x� s�j ) y �
+
k;j(x) := �k(x� s+j ). Se considera que las singularidades de las funciones del

primer sistema están distribuidas en la super�cie interior �� y por lo tanto solucionan

la ecuación de Helmholtz en 
�; suponga que también cumplen con la condición de

radiación de Sommerfeld. Suponga además que las funciones del segundo sistema tienen

sus singularidades en la super�cie externa �+ y por lo tanto son soluciones de la ecuación

de Helmholtz en 
+:

Los resultados se presentan de la manera siguiente: primero el teorema de la completitud

en L2(
) \ ker(4 + k2): Después se presenta el resultado ampliado a Hs(
) \ ker(4 +
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k2). Finalmente, como Hs(�) puede ser considerado como un espacio de las trazas de las

correspondientes soluciones de la ecuación de Helmholtz, se puede probar la completitud de

los sistemas de soluciones fundamentales para el operador de Helmholtz en este espacio.

Resultados para dominios acotados

Teorema 29 Sea 
+ un dominio acotado en R3 con frontera Lyapunov �. El sistema de

funciones f�+k;jg1j=1 es completo en L2(
+) \ ker(4+ k2):

Teorema 30 Bajo las hipótesis del teorema 29 el sistema de funciones f�+k;jg1j=1 es

completo en Hs(
+) \ ker(4+ k2), s � 0.

Teorema 31 Sea � una super�cie cerrada su�cientemente suave (el espacio Hs(�) está

de�nido). El sistema de funciones f�+k;jg1j=1 es completo en Hs(�), s 2 R.

Resultados para dominios no acotados

Sea BR una bola arbitraria con un radio R tal que 
+ � BR: Denote 

�
R = 


� \ BR.

Por lo tanto 
�R es un dominio en R
3 con frontera consistente en � y en la frontera de la

esfera, i. e. @BR:

Teorema 32 Sea � una super�cie Lyapunov y suponga que k2 no es un eigenvalor del

problema Dirichlet en V: El sistema de funciones f��k;jg1j=1 es completo en L2(

�
R)\ker(4+

k2).

Teorema 33 Bajo las hipótesis del teorema 32 el sistema de funciones f��k;jg1j=1 es

completo en Hs(
�R) \ ker(4+ k2), s � 0.

Teorema 34 Sea � una super�cie cerrada su�cientemente suave y suponga que k2 no es

un eigenvalor del problema Dirichlet en V: El sistema de funciones f��k;jg1j=1 es completo

en Hs(�); s 2 R.

En cuanto a las herramientas que se requieren en la implementación numérica, para la

determinación de los coe�cientes de las combinaciones lineales de soluciones fundamentales,

se puede hacer uso de algoritmos de optimización no lineal, si se implementa un modelo
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de fuentes �movibles�. En el caso de usar un modelo de fuentes �jas, se puede usar

simplemente algún algoritmo de resolución de sistemas de ecuaciones lineales [Fairweather

& Karageorghis, 1998].

La implementación del método se realizará a través del software MATLAB R
. La

exactitud del método se determinará con base en el conocimiento de soluciones exactas

de los problemas elípticos abordados (se considerarán problemas con dominios en R2).

3.8. Metodología

La idea física del método de fuentes discretas está ligada al principio de Huygens, el

cual establece que: todo punto de un frente de onda inicial puede considerarse como una

fuente de ondas esféricas secundarias que se extienden en todas las direcciones con la misma

velocidad, frecuencia y longitud de onda que el frente de onda del que proceden. De esta

manera, el elemento dispersor de las ondas, es decir, el obstáculo, siendo una fuente de

campo secundario, es sustituido por un conjunto de fuentes �cticias, las cuales generan el

mismo campo secundario que el obstáculo real [Doicu et al., 2000].

Para abordar un problema de dispersión de ondas, considerando una solución que sea

armónica en el tiempo, como el que se plantea en la descripción del problema (27), el DSM

plantea que la solución sea aproximada a través de una combinación lineal de soluciones

fundamentales para el operador de Helmholtz. Es decir, se plantea que u tenga la forma:

u(x; c) =
NX
j=1

cj�(x� sj) (28)

donde la solución fundamental �(x � sj) satisface en forma exacta la ecuación diferencial

parcial homogénea, excepto en el punto singular (fuente) sj , pero no necesariamente satisface

las condiciones de frontera. De hecho, los valores de los coe�cientes cj se determinarán

de manera que las condiciones de frontera se satisfagan. Los puntos singulares (fuentes

discretas) deben colocarse fuera del dominio donde se busca la solución. Para obtener los

valores de los cj se usa el método de colocación sobre la frontera, es decir, se plantea:

NX
j=1

cjB[�(xi � sj)] = g(xi); xi 2 @
; i = 1; : : : ;M � N (29)
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donde B es un operador que de�ne el tipo de condiciones de frontera, lo cual de�ne un

sistema de ecuaciones lineales. Si M > N se usará un procedimiento de mínimos cuadrados

para su resolución, mientras que en el caso M = N , se llega a un sistema de N ecuaciones

con N incógnitas que se puede resolver con los métodos usuales [Chen et al., 2009].

Antes de exponer los pasos que se seguirán en la implementación del DSM, cabe

mencionar que Bogomolny (1985) propuso colocar las fuentes puntuales (fuentes discretas),

i. e. las singularidades de las soluciones fundamentales, uniformemente distribuidas sobre la

frontera de un círculo que abarque al dominio computacional 
. Por otro lado Heise (1976)

propone colocarlas sobre una frontera virtual, denotada por @
0, que sea equidistante de

la frontera real, @
. El autor Tsai (véase [Tsai et al., 2006]) sugiere seguir el método de

Heise, que generalmente proporciona mejores resultados en dominios con formas básicas; de

manera que, siguiendo tal recomendación en lo posible, el procedimiento para colocar las

fuentes puntuales (cuando las formas de la frontera real y la virtual coinciden) que se siguió

en los experimentos numéricos en esta investigación es el siguiente: considerando el dominio

computacional en cuestión, 
, y siendo @
 su frontera, entonces:

i. Los puntos de colocación se distribuyen uniformemente sobre @
.

ii. Se localiza el centro geométrico, xc, del dominio 
 (el centro geométrico también es

conocido como centroide. El centroide es entonces el centro de masa de una lámina

plana bidimensional o de un sólido tridimensional. En este trabajo se consideran todos

los dominios como láminas con densidad de masa no nula y uniforme).

iii. Las fuentes puntuales se colocan de acuerdo a la ecuación siguiente

s = xk + (f:d:)(xk � xc) (30)

donde sj y xk son las coordenadas de las ubicaciones de las fuentes puntuales y de

los puntos de colocación, respectivamente; f:d: (factor de distancia) es un parámetro

escalar que determina la �cercanía� de las fuentes puntuales, sj , a la frontera real,

@
. Nótese que de acuerdo a la ecuación anterior, la ubicación de una fuente puntual

dada, es la imagen homotética de un correspondiente punto de colocación; el centro
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de homotecia es xc y la razón de homotecia es f:d:, que por supuesto debe tener un

valor mayor que 1 para problemas internos, y menor que 1 para problemas externos,

ya que las fuentes puntuales deben quedar �fuera�de la cerradura del dominio 
.

La �gura 3 muestra de manera esquemática el resultado de aplicar el procedimiento

anterior a cierto dominio (en este caso un dominio rectangular):

Frontera real
Centroide del dominio
Punto de colocación
Fuente puntual

Ω

xk

xc

sj

Figura 3: Esquema del procedimiento de ubicación de las fuentes discretas, para un problema
interno.
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Sin embargo, uno de los propósitos de esta investigación es explorar distintas variantes

en cuanto a las con�guraciones de las fronteras virtuales, de manera que cuando se usó una

frontera virtual de distinta forma a la de la frontera real, se usó el procedimiento siguiente:

i. Los puntos de colocación se distribuyen uniformemente sobre @
.

ii. Se localiza el centro geométrico, xc, del dominio 
.

iii. Las fuentes puntuales se generan sobre la frontera virtual, de manera que xc también

sea centroide de esta frontera y de manera que estén distribuidas uniformemente. Los

parámetros que de�nen el tamaño de la frontera virtual se obtienen al multiplicar los

parámetros de la frontera real por el parámetro f:d: Nótese que en este caso las fuentes

puntuales no son imágenes homotéticas de los puntos de colocación. Se debe cumplir

que f:d: 2 (0; 1) para problemas externos; f:d: 2 (1;1) para problemas internos.

Una vez explicada la metodología seguida para ubicar a las fuentes puntuales, ahora

se continúa con la exposición de los pasos por seguir en la implementación del Método de

Fuentes Discretas. La implementación numérica del DSM consiste en:

1. Si la ecuación diferencial correspondiente a nuestro problema es Lu = 0 en 
;

determinar una función, �(x; s), tal que Lx�(�; s) = �s; con s 2 Rn (i. e. determinar

la solución fundamental para la ecuación dada).

2. Seleccionar fxkgNk=1 de puntos sobre @
 (frontera real). Éstos son los puntos de

colocación.

3. De acuerdo a la con�guración especí�ca del experimento, determinar la colocación

de las fuentes discretas fsjgNj=1 usando alguno de los procedimientos de los párrafos

inmediatos anteriores de esta misma sección.

4. Se toma una de las sj y se obtiene �(x; sj); el resultado de dicha sustitución debe

ser acompañado por un coe�ciente cj que queda por determinar. Se realiza el mismo

procedimiento para las demás sj y �nalmente se obtiene w(x) :=
PN
j=1 cj�(x; sj).
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5. Se toma uno de los xk (ver el paso 2) y se sustituye en la condición de

frontera, se obtiene después w(xk) y se establece una ecuación entre los resultados

correspondientes. Se realiza el mismo procedimiento para las demás xk. De esta

manera, se obtiene el sistema lineal (29).

6. Se soluciona el sistema lineal (29), obtenido en el paso 5. De esta manera quedan

determinados los coe�cientes cj de la combinación lineal del paso 4; dicha combinación

lineal de soluciones fundamentales es la aproximación, uN (x; c) =
NX
j=1

cj�(x; sj), a la

solución del problema que está en cuestión.

Se presenta a continuación un cuadro con las soluciones fundamentales correspondientes

a algunas de las ecuaciones diferenciales parciales más comunes [Tsai et al., 2006] [Smyrlis,

2009] [Balakrishnan & Ramachandran, 2000] [Barnett & Betcke, 2008].

Operador involucrado Solución fundamental
(R2)

Solución fundamental
(R3)

Laplaciano �1
2� ln

�
jx�sij
R

�
; R > 0 1

!2
jx� sij�1 ; donde !2

es el área de la super�cie
de la esfera unitaria S2

en R3:
Helmholtz H

(1)
0 (k jx� sij); H

(1)
0

es la función de Hankel
del primer tipo, de orden
cero

e�jkjx�sij
jx�sij ; j es la unidad

imaginaria.

Helmholtz modi�cado K0(k jx� sij); K0 es
la función de Bessel
modi�cada del segundo
tipo, de orden cero

e�kjx�sij
jx�sij

Biarmónico c1i ln(jx� sij) +
c2i jx� sij

2 ln(jx� sij)
� 1
2!2

jx� sij ; donde !2
es el área de la super�cie
de la esfera unitaria S2

en R3:
x es un punto de prueba en el dominio 
; si 2 @
0 son las ubicaciones de las fuentes
puntuales. R representa el reescalamiento. k es el número de onda.

Cuadro 1: Soluciones fundamentales para algunas ecuaciones diferenciales parciales comunes
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En el presente trabajo se analizará la exactitud del DSM, así como su estabilidad

numérica; para ello se seleccionarán ejemplos de prueba, es decir, problemas con soluciones

exactas conocidas [dichas soluciones se denominarán soluciones de prueba], se aplicará el

método, se tomarán puntos en el dominio del problema [denominados de aquí en adelante

como puntos de prueba] y se determinará el error absoluto. De esta manera se pretende

observar cómo varía la exactitud y la estabilidad numérica del método con respecto a los

siguientes factores: la distancia de la frontera virtual, @
0, al dominio del problema (
); la

cantidad de términos, N , usados en la aproximación; la con�guración de la frontera virtual

usada y la manera en que se distribuyen los puntos de colocación y las fuentes discretas.
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Capítulo IV

EJEMPLOS DE PRUEBA

NOTA IMPORTANTE: TODAS LAS FUNCIONES Y SCRIPTS MENCIONADOS

EN ESTE CAPÍTULO FUERON CREADOS EN LA PLATAFORMA MATLAB R


R2014a. LOS CÓDIGOS FUENTE DE LAS FUNCIONES GENERALES PUEDEN SER

CONSULTADOS EN EL APÉNDICE A, MIENTRAS QUE LOS CÓDIGOS PARA

CADA UNO DE LOS EJEMPLOS SE ENCUENTRAN EN ELAPÉNDICE B DE ESTA

INVESTIGACIÓN.

4.1. Acerca del parámetro factor de distancia (f. d.)

En los experimentos de este capítulo las fuentes discretas se colocaron sobre una curva a

la que se le denomina frontera virtual , para distinguirla de la frontera del dominio (frontera

real). La generación de la frontera virtual se controló a través del parámetro que fue

llamado factor de distancia (f. d.). Para ello los parámetros que de�nen a la frontera real

se multiplicaron por el factor de distancia, obteniéndose así los parámetros que de�nen a la

frontera virtual. Por ejemplo: si la frontera del dominio 
 es un rectángulo cuyas dimensiones

son: base = a, altura = b y el valor del parámetro factor de distancia es f: d: < 1, y se

quiere que la frontera virtual sea una elipse, entonces las dimensiones de esta elipse serán:

eje horizontal = a � f:d:, eje vertical = b � f:d:; con lo que además se deduce que en

este caso la frontera virtual se encuentra totalmente en el interior del área acotada por el

rectángulo (véase la �gura 4); si se asignan a f: d: valores positivos aún menores se obtienen

fronteras virtuales más alejadas de la frontera real.

En los experimentos de esta sección, cuando la forma de la frontera real y la virtual

coinciden (son ambas elipses, o ambas son rectangulares), el procedimiento anterior implica

que la frontera virtual es una transformación homotética de la frontera real, siendo f:d: la

razón de homotecia.
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Figura 4: Esquema de la ubicación de la frontera real y de la frontera virtual, usando para
esta última un factor de distancia f. d. = 0.8

Nótese entonces que si f: d: ! 1, entonces la distancia entre la frontera virtual y

la frontera real tiende a cero. De manera que el parámetro factor de distancia se puede

interpretar como un indicador del alejamiento de la frontera virtual con respecto a la

frontera real (frontera del dominio). Dado que el método exige que las fuentes discretas

no se encuentren en el dominio 
, se tiene que para el caso de problemas internos, f: d:

debe elegirse en el intervalo (1;1); en el caso de problemas externos debe elegirse en el

intervalo (0; 1).

4.2. Acerca de la generación de los puntos de prueba

En todos los experimentos de este capítulo, a los puntos en el dominio en los cuáles

se determinó el error absoluto, se les denominó puntos de prueba: Dichos puntos fueron

generados sobre sucesivas curvas homotéticas a la frontera del dominio (frontera real). De

manera que aquellos puntos de prueba ubicados sobre curvas homotéticas con razón de

homotecia próxima a 1:0 son puntos de prueba más cercanos a la frontera del dominio, que

aquellos punto de prueba ubicados sobre curvas homotéticas con razón de homotecia más
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alejada de dicho valor.

Por ejemplo: si la frontera del dominio 
 es un rectángulo cuyas dimensiones son: base =

4, altura = 4 y el tipo de problema que se aborda es uno del tipo externo, los puntos de

prueba se generarían como se puede ver en la �gura 5.

­4 ­3 ­2 ­1 0 1 2 3 4
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­3

­2

­1

0

1

2

3

4

Eje x

Ej
e 

y

Puntos de prueba
Puntos de colocación

Figura 5: Esquema de la ubicación de los puntos de prueba. En este caso se considera un
problema del tipo externo.

Nótese que en el caso de los problemas del tipo interno, los valores de las razones de

homotecia para los puntos de prueba deben pertenecer al intervalo (0; 1); mientras que para

los problemas del tipo externo, deben tomarse en el intervalo (1;1).
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4.3. Problemas internos
4.3.1. Ejemplo 18><>: �u+ k2u = 0; k 2 R; (x; y) 2 


u(x; y) = cos kxp
2
cos kyp

2
; (x; y) 2 @
:

En este ejemplo se considera un dominio elíptico 
 = f(x; y) 2 R2 : x225 + y2 < 1g, cuyo

semieje horizontal tiene longitud cinco y la longitud del semieje vertical es uno.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = cos kxp
2
cos kyp

2

con el valor k =
p
2.
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Figura 6: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 1. f. d.=1.1, lo que implica una distancia mínima entre la frontera real y la
frontera virtual igual a 0.1.

En la implementación numérica las fuentes discretas fueron colocadas sobre una frontera

virtual elíptica (�gura 6), utilizando un factor de distancia de 1:1 para la frontera virtual

(para información del parámetro factor de distancia, consúltese la sección 4.1). El valor

mínimo de N utilizado fue 50; el máximo fue N = 500 con un tamaño de paso igual a

cincuenta. En la �gura 7 se muestra la solución exacta y la solución aproximada para dos
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valores de N , observándose la mejoría en la aproximación al incrementarse el valor de tal

parámetro.
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Figura 7: Grá�cas de la super�cie de la solución exacta y de los valores de la solución
aproximada en los puntos de prueba para el ejemplo 1. En la grá�ca de la izquierda se
utilizaron N = 50 términos; en la grá�ca de la derecha se utilizaron N = 150 términos. f.
d.=1.1, lo que implica una distancia mínima entre la frontera real y la frontera virtual igual
a 0.1.

En la �gura 8 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio


. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas a

la frontera del dominio, y longitudinalmente a lo largo del eje menor de la elipse.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de dichas

curvas. En la �gura 9 se puede observar el comportamiento del error absoluto máximo a

lo largo del interior del dominio, para varios valores de N . Se puede observar que el error

absoluto máximo mantiene un comportamiento estable a lo largo del dominio, excepto para

los valores más grandes deN , en los que el error se incrementa conforme los puntos de prueba

se encuentran más cercanos a la frontera del dominio. De la separación entre las sucesivas

grá�cas se puede inferir que el error disminuye de forma exponencial, en función de N .

Para apoyar esta última inferencia, se consideraron los valores de error absoluto máximo

obtenidos sobre las curvas con razón de homotecia igual a 0:1 y los valores correspondientes

de N , y se realizó un ajuste de curva exponencial; obteniéndose:
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Figura 8: Grá�ca de la super�cie del error absoluto para el ejemplo 1. N = 150 términos.
f. d.=1.1, lo que implica una distancia mínima entre la frontera real y la frontera virtual
igual a 0.1.

error abs: m�ax = 1:04e�0:04264N (31)

con un coe�ciente de determinación R cuadrado ajustado con valor 1.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 1:1 se experimentó aumentando los valores de N , con el �n de observar hasta qué punto

se mantiene la disminución del error. Se observó que para valores mayores de N = 1100,

donde el orden de magnitud del error absoluto fue del orden de 10�14; el nivel de error ya

no disminuye necesariamente.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 2 se presentan
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 N= 50 términos
N= 100 términos
N= 150 términos
N= 200 términos
N= 250 términos
N= 300 términos
N= 350 términos
N= 400 términos
N= 450 términos
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Figura 9: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
1. f. d.=1.1, lo que implica una distancia mínima entre la frontera real y la frontera virtual
igual a 0.1.

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razón de homotecia 0:1, para diferentes valores de N y de f:d:

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto máximo disminuye en al menos dos órdenes de magnitud en cada paso

de alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para los

valores mayores de N este efecto ya no es tan pronunciado.
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Factor de distancia (f: d:)
N 1.1 1.5 1.9
50 0.12338 0.00124 1.16300e-05
100 0.01474 0.00017 6.08688e-06
150 0.00118 1.05905e-06 1.34803e-08
200 0.00013 1.34944e-08 4.67471e-10
250 2.00316e-05 1.42266e-09 4.72117e-12
300 2.29835e-06 2.58314e-11 1.34891e-13
350 2.50937e-07 3.56992e-12 1.68830e-14
400 4.45402e-08 9.83123e-14 3.10231e-14
450 6.86380e-09 1.75839e-14 1.52209e-14
500 1.08823e-09 2.84433e-14 4.85350e-14

Cuadro 2: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
1. Las distancias mínimas entre la frontera real y la frontera real son: 0.1 para f. d.=1.1;
0.5 para f. d.=1.5 y 0.9 para f. d.=1.9.

4.3.2. Ejemplo 28>>>>>>><>>>>>>>:

�u+ k2u = 0; k 2 R; (x; y) 2 


u(x; y) = (1� y
ik )e

iyk � sinh(iyk)
k2

; x 2 f�1; 1g;�3 < y < 3

u(x; y) = (x2 � 3
ik )e

3ik � sinh(3ik)
k2

; y = 3;�1 < x < 1

u(x; y) = (x2 + 3
ik )e

�3ik � sinh(�3ik)
k2

; y = �3;�1 < x < 1:

En este ejemplo se considera un dominio rectangular 
 = f(x; y) 2 R2 : �1 < x <

1;�3 < y < 3g, cuya base tiene longitud dos y cuya longitud de la altura es seis. Este

problema se abordará en dos formas, presentadas como incisos 2a) y 2b).

2a) Problema rectangular interno.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = (x2 � y
ik )e

iyk � sinh(iyk)
k2

con el valor k =
p
2.

En la implementación numérica las fuentes discretas fueron colocadas sobre una frontera

virtual circular (�gura 10), utilizando un factor de distancia de 3:3523 para la frontera

virtual (para información del parámetro factor de distancia, consúltese la sección 4.1). El

valor mínimo de N utilizado fue 40; el máximo fue N = 400 con un tamaño de paso igual

a cuarenta. En la �gura 11 se muestra la parte real de la solución exacta y la parte real de

la solución aproximada para dos valores de N , observándose la mejoría en la aproximación
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Figura 10: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 2, inciso a. f. d.=3.3523, lo que implica una distancia mínima entre la
frontera real y la frontera virtual igual a 0.19.

al incrementarse el valor de tal parámetro.
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Figura 11: Grá�cas de la super�cie de la parte real de la solución exacta y de los valores
de la parte real de la solución aproximada en los puntos de prueba para el ejemplo 2, inciso
a. En la grá�ca de la izquierda se utilizaron N = 40 términos; en la grá�ca de la derecha
se utilizaron N = 120 términos. f. d.=3.3523, lo que implica una distancia mínima entre la
frontera real y la frontera virtual igual a 0.19.

En la �gura 12 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio
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. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas a

la frontera del dominio, especialmente en las cercanías de las esquinas del rectángulo.
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Figura 12: Grá�ca de la super�cie del error absoluto para el ejemplo 2, inciso a. N =
120 términos. f. d.=3.3523, lo que implica una distancia mínima entre la frontera real y la
frontera virtual igual a 0.19.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de dichas

curvas. En la �gura 13 se puede observar el comportamiento del error absoluto máximo a

lo largo del interior del dominio, para varios valores de N . Se puede observar que el error

absoluto máximo mantiene un comportamiento estable a lo largo del dominio, excepto para

los puntos de prueba que se encuentran más cercanos a la frontera del dominio, donde el

error se incrementa. De la separación entre las sucesivas grá�cas no es claro que se pueda

inferir que el error disminuye de forma exponencial, en función de N . Para apoyar esta

última inferencia, se consideraron los valores de error absoluto máximo obtenidos sobre las
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curvas con razón de homotecia igual a 0:1 y los valores correspondientes de N , y se realizó

un ajuste de curva exponencial; obteniéndose:

error abs: m�ax = 0:2129e�0:009733N (32)

con un coe�ciente de determinación R cuadrado ajustado con valor 0:1848.
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 N= 80 términos
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N= 160 términos
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Figura 13: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
2, inciso a. f. d.=3.3523, lo que implica una distancia mínima entre la frontera real y la
frontera virtual igual a 0.19.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 3:3523 se experimentó aumentando los valores de N , con el �n de observar hasta qué

punto se mantiene la disminución del error. Se observó que para valores mayores deN = 800,

donde el orden de magnitud del error absoluto fue del orden de 10�13; el nivel de error ya

no disminuye necesariamente.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 3 se presentan

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razón de homotecia 0:1, para diferentes valores de N y de f:d:
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Factor de distancia (f: d:)
N 3.3523 4.3523 5.3523
40 0.04706 4.35081e-06 6.33143e-09
80 0.31688 1.55080e-11 5.95803e-14
120 0.01026 2.99306e-14 1.01930e-13
160 0.00025 3.58586e-14 1.03833e-13
200 6.92710e-07 1.45979e-13 7.50559e-14
240 2.16600e-08 5.62743e-14 1.03702e-13
280 1.27711e-09 6.28705e-14 1.03876e-13
320 3.47415e-11 5.83660e-14 3.52594e-13
360 3.05755e-12 1.02956e-13 2.02645e-13
400 6.80675e-13 2.46652e-13 1.16814e-13

Cuadro 3: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
2, inciso a. Las distancias mínimas entre la frontera real y la frontera real son: 0.19 para f.
d.=3.3523; 1.19 para f. d.=4.3523 y 2.19 para f. d.=5.3523.

Se puede observar que sólo para los valores menores de N (primeros dos renglones de la

tabla), el error absoluto máximo disminuye en al menos tres órdenes de magnitud en cada

paso de alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para

los valores mayores de N este efecto ya no se presenta, incluso el error se puede incrementar.
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2b) Problema rectangular interno.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = (x2 � y
ik )e

iyk � sinh(iyk)
k2

con el valor k =
p
2.
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Figura 14: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 2, inciso b. f. d.=1.1, lo que implica una distancia mínima entre la frontera
real y la frontera virtual igual a 0.1.

En la implementación numérica las fuentes discretas fueron colocadas, en este caso,

sobre una frontera virtual rectangular (�gura 14). Nótese que se trata del mismo problema

presentado en 2a), con la diferencia de que la frontera virtual es distinta, esto se hizo con

el propósito de investigar si la el grado de suavidad de la misma in�uye en el nivel de error

obtenido. Se utilizó un factor de distancia de 1:1 para la frontera virtual (para información

del parámetro factor de distancia, consúltese la sección 4.1). El valor mínimo de N utilizado

fue 40; el máximo fue N = 400 con un tamaño de paso igual a cuarenta. En la �gura 15 se

muestra la parte real de la solución exacta y la parte real de la solución aproximada para

dos valores de N , observándose la mejoría en la aproximación al incrementarse el valor de

tal parámetro.
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Figura 15: Grá�cas de la super�cie de la parte real de la solución exacta y de los valores
de la parte real de la solución aproximada en los puntos de prueba para el ejemplo 2, inciso
b. En la grá�ca de la izquierda se utilizaron N = 40 términos; en la grá�ca de la derecha
se utilizaron N = 120 términos. f. d.=1.1, lo que implica una distancia mínima entre la
frontera real y la frontera virtual igual a 0.1.

En la �gura 16 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio


. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas

a la frontera del dominio; sin embargo, en comparación con lo observado en el inciso a, el

error ya no se encuentra tan localizado en las cercanías de las esquinas del rectángulo, y el

nivel de error general es menor.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de

dichas curvas. En la �gura 17 se puede observar el comportamiento del error absoluto

máximo a lo largo del interior del dominio, para varios valores de N . Se puede observar

que el error absoluto máximo mantiene un comportamiento estable a lo largo del dominio,

para los primeros valores de N; sin embargo, para los valores mayores de dicho parámetro,

se observa que el error comienza a incrementarse desde los puntos de prueba cercanos al

centroide del dominio, alcanzando sus máximos en la cercanía de la frontera del mismo.

De la separación entre las sucesivas grá�cas no es claro que se pueda inferir que el error

disminuye de forma exponencial, en función de N . Sin embargo, al considerarse los valores

de error absoluto máximo obtenidos sobre las curvas con razón de homotecia igual a 0:1 y
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Figura 16: Grá�ca de la super�cie del error absoluto para el ejemplo 2, inciso b. N = 120
términos. f. d.=1.1, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.1.

los valores correspondientes de N , y realizar un ajuste de curva exponencial; se obtuvo:

error abs: m�ax = 1:5e�0:04537N (33)

con un coe�ciente de determinación R cuadrado ajustado con valor 0:9997.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 1:1 se experimentó aumentando los valores de N , con el �n de observar hasta qué punto

se mantiene la disminución del error. Se observó que para valores mayores de N = 900,

donde el orden de magnitud del error absoluto fue del orden de 10�13; el nivel de error ya

no disminuye necesariamente.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento
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Figura 17: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
2, inciso b. f. d.=1.1, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.1.

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 4 se presentan

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razón de homotecia 0:1, para diferentes valores de N y de f:d:

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto máximo disminuye en dos o tres órdenes de magnitud en cada paso de

alejamiento de la frontera virtual con respecto a la frontera real; sin embargo, para los

valores mayores de N este efecto ya no se presenta, incluso el error se puede incrementar.
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Factor de distancia (f: d:)
N 1.1 1.5 1.9
40 0.24414 0.00041 0.00041
80 0.04098 2.01444e-05 4.45078e-08
120 0.00289 3.25008e-07 9.73447e-09
160 0.00046 1.75616e-07 9.09901e-10
200 0.00020 3.18215e-09 1.70214e-11
240 3.62004e-05 1.65674e-10 4.54293e-13
280 1.66221e-06 1.88398e-11 2.16640e-13
320 1.25279e-07 9.28682e-13 8.73565e-14
360 2.24616e-08 4.14129e-14 1.06884e-13
400 5.83601e-09 2.93551e-14 1.86831e-13

Cuadro 4: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
2, inciso b. Las distancias mínimas entre la frontera real y la frontera real son: 0.1 para f.
d.=1.1; 0.5 para f. d.=1.5 y 0.9 para f. d.=1.9.

4.4. Problemas externos
4.4.1. Ejemplo 38>>>><>>>>:

�u+ k2u = 0; k 2 R; (x; y) 2 


u(x; y) = H
(1)
0 (k

p
x2 + y2); (x; y) 2 @


@u
@r � iku = o

�
1p
r

�
; cuando r ! +1:

Donde H(1)
0 representa la función de Hankel del primer tipo, de orden cero. La última de

las condiciones anteriores es la condición de radiación de Sommerfeld, donde r2 = x2 + y2,

x = r cos �, y = r sin � y o representa la notación asintótica o pequeña.

En este ejemplo se considera un dominio 
 = f(x; y) 2 R2 : x2

25 + y2 > 1g, cuyo

complemento es una elipse con semieje horizontal de longitud cinco y con longitud del

semieje vertical igual a uno.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = H
(1)
0 (k

p
x2 + y2)

con el valor k =
p
2.

En la implementación numérica las fuentes discretas fueron colocadas sobre una frontera

virtual elíptica (�gura 18), utilizando un factor de distancia de 0:8 para la frontera virtual

(para información del parámetro factor de distancia, consúltese la sección 4.1). El valor

mínimo de N utilizado fue 10; el máximo fue N = 100 con un tamaño de paso igual a
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Figura 18: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 3. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la
frontera virtual igual a 0.2.

diez. En la �gura 19 se muestra la parte real de la solución exacta y la parte real de la

solución aproximada para dos valores de N , observándose la mejoría en la aproximación al

incrementarse el valor de tal parámetro.

En la �gura 20 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio


. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas a

la frontera del dominio; principalmente en la cercanía de las extensiones longitudinales del

eje menor de la elipse que es complemento del dominio de estudio.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de dichas

curvas. En la �gura 21 se puede observar el comportamiento del error absoluto máximo a

lo largo del interior del dominio, para varios valores de N . Se puede observar que el error

absoluto máximo mantiene un comportamiento estable a lo largo del dominio, excepto para

los valores más grandes de N , en los que el error aumenta conforme los puntos de prueba
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Figura 19: Grá�cas de la super�cie de la parte real de la solución exacta y de los valores
de la parte real de la solución aproximada en los puntos de prueba para el ejemplo 3. En la
grá�ca de la izquierda se utilizaron N = 10 términos; en la grá�ca de la derecha se utilizaron
N = 30 términos. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la
frontera virtual igual a 0.2.

se encuentran más cercanos a la frontera del dominio. De la separación entre las sucesivas

grá�cas no es claro que se pueda inferir que el error disminuya de forma exponencial, en

función de N . Sin embargo, al considerarse los valores de error absoluto máximo obtenidos

sobre las curvas con razón de homotecia igual a 1:9 y los valores correspondientes de N , y

realizar un ajuste de curva exponencial; se obtuvo:

error abs: m�ax = 35:48e�0:2753N (34)

con un coe�ciente de determinación R cuadrado ajustado con valor 0:9998.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 0:8 se experimentó aumentando los valores de N , con el �n de observar hasta qué punto

se mantiene la disminución del error. Se observó que para valores mayores de N = 110,

donde el orden de magnitud del error absoluto fue del orden de 10�4; el nivel de error ya

no disminuye necesariamente.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 5 se presentan

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas
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Figura 20: Grá�ca de la super�cie del error absoluto para el ejemplo 3. N = 30 términos.
f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera virtual
igual a 0.2.

homotéticas con razón de homotecia 1:9, para diferentes valores de N y de f:d:

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto máximo disminuye en dos o tres órdenes de magnitud en cada paso de

alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores

de N este efecto se presenta incluso de manera más pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente seis órdenes de magnitud.
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Figura 21: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
3. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera virtual
igual a 0.2.

4.4.2. Ejemplo 48>>>>>>>>>>><>>>>>>>>>>>:

�u+ k2u = 0; k 2 R; (x; y) 2 


u(x; y) = H
(1)
0 (k

p
1 + y2) +H

(1)
0 (k

p
1:21 + y2); x = �1;�3 < y < 3

u(x; y) = H
(1)
0 (k

p
1 + y2) +H

(1)
0 (k

p
0:81 + y2); x = 1;�3 < y < 3

u(x; y) = H
(1)
0 (k

p
x2 + 9) +H

(1)
0 (k

p
(x� 0:1)2 + 9); y 2 f�3; 3g;�1 < x < 1

@u
@r � iku = o

�
1p
r

�
; cuando r ! +1:

Donde H(1)
0 representa la función de Hankel del primer tipo, de orden cero. La última de

las condiciones anteriores es la condición de radiación de Sommerfeld, donde r2 = x2 + y2,

x = r cos �, y = r sin � y o representa la notación asintótica o pequeña.

En este ejemplo se considera un dominio 
 = f(x; y) 2 R2 : �1 � x � 1;�3 � y � 3gc,

cuyo complemento es un rectángulo con base de longitud dos y con longitud de la altura

igual a seis. Este problema se abordará en dos formas, presentadas como incisos 4a) y 4b).

4a) Rectangular externo.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = H
(1)
0 (k

p
x2 + y2) +H

(1)
0 (k

p
(x� 0:1)2 + y2)
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Factor de distancia (f: d:)
N 0.8 0.5 0.2
10 2.26123 0.07386 0.00059
20 0.14052 0.00292 6.54538e-08
30 0.03617 0.00021 1.17935e-09
40 0.00912 1.80279e-06 5.03366e-10
50 0.00699 1.21970e-06 3.38675e-10
60 0.00124 1.24330e-06 8.19874e-10
70 0.00064 2.86809e-05 4.13493e-11
80 9.67414e-05 4.73607e-05 6.56613e-12
90 0.00016 1.05272e-05 3.41528e-11
100 4.84981e-05 2.32953e-06 9.73658e-12

Cuadro 5: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
3. Las distancias mínimas entre la frontera real y la frontera real son: 0.2 para f. d.=0.8;
0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

con el valor k =
p
2.
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Figura 22: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 4, inciso a. f. d.=0.8, lo que implica una distancia mínima entre la frontera
real y la frontera virtual igual a 0.2.

En la implementación numérica las fuentes discretas fueron colocadas sobre una frontera

virtual elíptica (�gura 22), utilizando un factor de distancia de 0:8 para la frontera virtual

(para información del parámetro factor de distancia, consúltese la sección 4.1). El valor
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mínimo de N utilizado fue 12; el máximo fue N = 84 con un tamaño de paso igual a

ocho. En la �gura 23 se muestra la parte real de la solución exacta y la parte real de la

solución aproximada para dos valores de N , observándose la mejoría en la aproximación al

incrementarse el valor de tal parámetro.
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Figura 23: Grá�cas de la super�cie de la parte real de la solución exacta y de los valores
de la parte real de la solución aproximada en los puntos de prueba para el ejemplo 4, inciso
a. En la grá�ca de la izquierda se utilizaron N = 12 términos; en la grá�ca de la derecha se
utilizaron N = 28 términos. f. d.=0.8, lo que implica una distancia mínima entre la frontera
real y la frontera virtual igual a 0.2.

En la �gura 24 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio


. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas a

la frontera del dominio; principalmente en la cercanía de las extensiones longitudinales del

eje de simetría paralelo al eje x del rectángulo que es complemento del dominio en estudio.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de dichas

curvas. En la �gura 25 se puede observar el comportamiento del error absoluto máximo a

lo largo del interior del dominio, para varios valores de N . Se puede observar que el error

absoluto máximo mantiene un comportamiento estable a lo largo del dominio, excepto para

los valores más grandes de N , en los que el error aumenta conforme los puntos de prueba

se encuentran más cercanos a la frontera del dominio. De la separación entre las sucesivas

grá�cas no es claro que se pueda inferir que el error disminuya de forma exponencial, en
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Figura 24: Grá�ca de la super�cie del error absoluto para el ejemplo 4, inciso a. N = 28
términos. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.2.

función de N . Sin embargo, al considerarse los valores de error absoluto máximo obtenidos

sobre las curvas con razón de homotecia igual a 1:9 y los valores correspondientes de N , y

realizar un ajuste de curva exponencial; se obtuvo:

error abs: m�ax = 2:624e�0:183N (35)

con un coe�ciente de determinación R cuadrado ajustado con valor 0:9999.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 0:8 se experimentó aumentando los valores de N , con el �n de observar hasta qué punto

se mantiene la disminución del error. Se observó que para valores mayores de N = 96,

donde el orden de magnitud del error absoluto fue del orden de 10�5; el nivel de error ya

no disminuye necesariamente.
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N= 28 términos
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Figura 25: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
4, inciso a. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.2.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 6 se presentan

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razón de homotecia 1:9, para diferentes valores de N y de f:d:

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto máximo disminuye en dos o tres órdenes de magnitud en cada paso de

alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores

de N este efecto se presenta incluso de manera más pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente cinco órdenes de magnitud.
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Factor de distancia (f: d:)
N 0.8 0.5 0.2
12 0.29183 0.00662 6.30035e-06
20 0.06882 0.00011 1.76001e-08
28 0.01318 1.50608e-06 6.24924e-11
36 0.00289 6.50408e-08 5.36159e-11
44 0.00050 2.04515e-09 3.57656e-11
52 2.14768e-05 7.63688e-09 1.99602e-12
60 1.68870e-05 1.88247e-07 1.32924e-12
68 6.86860e-06 3.87598e-07 1.66803e-12
76 3.04081e-07 5.87654e-08 8.75085e-13
84 1.20256e-07 7.31551e-08 9.81476e-13

Cuadro 6: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
4, inciso a. Las distancias mínimas entre la frontera real y la frontera real son: 0.2 para f.
d.=0.8; 0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

4b) Rectangular externo.

Para la validación y el cálculo de los errores absolutos se utilizó la

Solución exacta: u(x; y) = H
(1)
0 (k

p
x2 + y2) +H

(1)
0 (k

p
(x� 0:1)2 + y2)

con el valor k =
p
2.

En la implementación numérica las fuentes discretas fueron colocadas, en este caso,

sobre una frontera virtual rectangular (�gura 26). Nótese que se trata del mismo problema

presentado en 4a), con la diferencia de que la frontera virtual es distinta, esto se hizo con

el propósito de investigar si la el grado de suavidad de la misma in�uye en el nivel de error

obtenido. Se utilizó un factor de distancia de 0:8 para la frontera virtual (para información

del parámetro factor de distancia, consúltese la sección 4.1). El valor mínimo de N utilizado

fue 8; el máximo fue N = 80 con un tamaño de paso igual a ocho. En la �gura 27 se muestra

la parte real de la solución exacta y la parte real de la solución aproximada para dos valores

de N , observándose la mejoría en la aproximación al incrementarse el valor de tal parámetro.

En la �gura 28 se muestra la grá�ca de la super�cie del error absoluto sobre el dominio


. Se puede observar que las regiones donde el error es mayor son aquéllas más cercanas a la

frontera del dominio; principalmente en la cercanía de las extensiones longitudinales del eje

de simetría paralelo al eje x del rectángulo que es complemento del dominio en estudio. En

comparación a lo observado en el inciso a, el comportamiento cualitativo del error absoluto
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Figura 26: Esquema de la distribución de los puntos de colocación y de las fuentes discretas
para el ejemplo 4, inciso b. f. d.=0.8, lo que implica una distancia mínima entre la frontera
real y la frontera virtual igual a 0.2.
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Figura 27: Grá�cas de la super�cie de la parte real de la solución exacta y de los valores
de la parte real de la solución aproximada en los puntos de prueba para el ejemplo 4, inciso
b. En la grá�ca de la izquierda se utilizaron N = 8 términos; en la grá�ca de la derecha se
utilizaron N = 24 términos. f. d.=0.8, lo que implica una distancia mínima entre la frontera
real y la frontera virtual igual a 0.2.

es muy similar, salvo que es este caso se dio un incremento en la magnitud general del error.

Para un estudio más detallado del error se eligieron puntos de prueba sobre curvas
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Figura 28: Grá�ca de la super�cie del error absoluto para el ejemplo 4, inciso b. N = 24
términos. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.2.

homotéticas a la frontera del dominio (para información acerca de los puntos de prueba,

consúltese la sección 4.2). Se calculó el error absoluto máximo obtenido en cada una de

dichas curvas. En la �gura 29 se puede observar el comportamiento del error absoluto

máximo a lo largo del interior del dominio, para varios valores de N . Se puede observar

que el error absoluto máximo mantiene un comportamiento estable a lo largo del dominio,

excepto para los valores más grandes de N , en los que el error se incrementa conforme los

puntos de prueba se encuentran más cercanos a la frontera del dominio. De la separación

entre las sucesivas grá�cas se puede inferir que el error disminuye de forma exponencial,

en función de N . Para apoyar esta última inferencia, se consideraron los valores de error

absoluto máximo obtenidos sobre las curvas con razón de homotecia igual a 1:9 y los valores

correspondientes de N , y se realizó un ajuste de curva exponencial; obteniéndose:
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error abs: m�ax = 3:961e�0:1952N (36)

con un coe�ciente de determinación R cuadrado ajustado con valor 0:9991.
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 N= 8 términos
N= 16 términos
N= 24 términos
N= 32 términos
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Figura 29: Grá�cas del error absoluto máximo, para diversos valores de N, para el ejemplo
4, inciso b. f. d.=0.8, lo que implica una distancia mínima entre la frontera real y la frontera
virtual igual a 0.2.

Posteriormente, manteniendo el factor de distancia de alejamiento de la frontera virtual

en 0:8 se experimentó aumentando los valores de N , con el �n de observar hasta qué punto

se mantiene la disminución del error. Se observó que para valores mayores de N = 88,

donde el orden de magnitud del error absoluto fue del orden de 10�5; el nivel de error ya

no disminuye necesariamente.

Finalmente se exploró el efecto que se presenta el variar el parámetro factor de distancia

(f. d.) que determina el alejamiento de la frontera virtual, y en consecuencia el alejamiento

de las fuentes discretas, respecto a la frontera del dominio. En el cuadro 7 se presentan

los valores de error absoluto máximo en los puntos de prueba ubicados sobre las curvas

homotéticas con razón de homotecia 1:9, para diferentes valores de N y de f:d:

Se puede observar que para los valores menores de N (primeros renglones de la tabla),

el error absoluto máximo disminuye en uno, dos o tres órdenes de magnitud en cada paso de
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Factor de distancia (f: d:)
N 0.8 0.5 0.2
8 0.83213 0.07046 0.00234
16 0.16611 0.00758 3.38195e-06
24 0.05253 0.00055 1.21608e-08
32 0.01785 7.50192e-05 3.79579e-11
40 0.00779 7.21131e-06 9.18203e-11
48 0.00295 1.11294e-06 4.83145e-11
56 0.00099 8.08728e-07 4.15711e-11
64 0.00038 2.58229e-07 1.35575e-11
72 0.00015 1.15276e-07 2.85507e-12
80 5.51124e-05 1.60432e-07 8.75242e-12

Cuadro 7: Errores absolutos máximos para diferentes valores de N y de f. d. para el ejemplo
4, inciso b. Las distancias mínimas entre la frontera real y la frontera real son: 0.2 para f.
d.=0.8; 0.5 para f. d.=0.5 y 0.8 para f. d.=0.2.

alejamiento de la frontera virtual con respecto a la frontera real; para los valores mayores

de N este efecto se presenta incluso de manera más pronunciada, dado que se observaron

mejoras en el nivel de error de aproximadamente cinco órdenes de magnitud.

62



Capítulo V

CONCLUSIONES

A partir de los resultados obtenidos en los experimentos numéricos que se presentan en

el capítulo de ejemplos de prueba, se puede concluir lo siguiente:

1. El error disminuye al incrementar el valor de N . También disminuye al alejar la

frontera virtual de la frontera real, con�rmándose los resultados de la literatura.

2. El error presenta un comportamiento más estable (se observa menor variabilidad en

sus valores) conforme los puntos de prueba están más alejados de la frontera del

dominio 
.

3. Se observa que el error tiende a propagarse a lo largo de los ejes de menor longitud

de los objetos dispersores, o bien de las extensiones de dichos ejes. En los dominios

rectangulares el error muestra valores mayores en los puntos de prueba cercanos a las

esquinas.

4. En general, se observa que el error disminuye de forma exponencial al incrementarse

el valor de N .

5. Respecto al punto anterior: el único caso donde no se observa disminución exponencial

del error fue en el problema interno para dominio rectangular con frontera virtual

circular.

6. Se con�rma el hecho ya consignado en la literatura que a�rma la gran sensibilidad del

error a la distancia entre la frontera virtual y la frontera real.

7. Respecto al punto anterior: en esta investigación se observa que para los problemas

del tipo interno, la sensibilidad disminuye conforme aumenta el valor de N: Para los

problemas externos la sensibilidad aumenta al incrementarse el valor de N .
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8. Con base en los puntos 1 y 5: se sugiere, si se usan valores relativamente bajos de N;

entonces incrementar la distancia entre la frontera real y la frontera virtual, a manera

de compensación en el nivel de error.

9. Para los problemas internos se observó que el valor de N puede incrementarse hasta

valores mayores, con respecto a los problemas externos, antes de que el cómputo deje

de dar resultados con�ables; por lo que en los problemas externos se sugiere no usar

valores grandes de N , pero aumentar la distancia entre la frontera real y la virtual,

para aumentar la exactitud. El nivel de error observado es mayor para los problemas

externos.

10. En los problemas internos con dominio rectangular se observa que el nivel de error es

mayor al usar una frontera virtual circular; mientras que en los problemas externos

rectangulares el nivel de error es mayor al usar una frontera virtual rectangular.
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Apéndice A

CÓDIGOS DE LAS FUNCIONES GENERALES

A.1. cboundary.m
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A.2. pboundary.m
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A.3. sol_aproximada.m
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Apéndice B

CÓDIGOS DE LOS SCRIPTS Y FUNCIONES PARA LOS

EJEMPLOS

B.1. Ejemplo 1
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B.2. Ejemplo 2
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B.4. Ejemplo 4
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Apéndice C

NOTACIÓN

Se presenta a continuación una lista con los principales símbolos utilizados en esta tesis.

SÍMBOLO CONCEPTO REPRESENTADO

�(x; s) solución fundamental

L operador diferencial parcial

u solución de una ecuación diferencial parcial


 dominio en estudio

supp  (x) soporte de la función  

s coordenadas de la ubicación de una fuente puntual

@
 frontera del dominio 
; frontera real

@
0 frontera virtual

fsjgMj=1 conjunto de las ubicaciones de las fuentes puntuales

fxkgNk=1 conjunto de puntos de colocación para un problema dado

uM;N (x; c) solución aproximada para un problema dado

c; fcjgNj=1 coe�cientes por determinar en el DSM

f(xk) condición de frontera evaluada en el punto xk

M cantidad de fuentes puntuales

N cantidad de puntos de colocación

B operador diferencial asociado con la función f (cond. de frontera)


c complemento del conjunto 
, relativo a Rn

X 0 espacio dual del espacio vectorial X

xc centroide del dominio en estudio

f: d: factor que determina el alejamiento de @
0 con respecto a 


R parámetro de reescalamiento

4 operador diferencial de Laplace
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