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Resumen 

El océano es una fuente vital de oxígeno, y juega un papel crucial en la 

regulación del clima, además es proveedor de alimentos y recursos esenciales 

como el turismo y la pesca. Su biodiversidad, que es mayor que la terrestre, 

está dominada por microorganismos unicelulares que regulan procesos 

biogeoquímicos, como el ciclo del nitrógeno y la fijación de carbono. Sin 

embargo, el calentamiento global y la acidificación oceánica representan una 

amenaza para esta biodiversidad y aún se conoce poco sobre su impacto en la 

estructura de las comunidades microbianas marinas.  

 

En este estudio, se modelaron los efectos del cambio de pH y temperatura en 

la dinámica y estructura de las comunidades a través de un modelo 

Lotka-Volterra generalizado basado en rasgos y redes multicapa. Se realizaron 

múltiples simulaciones con datos sintéticos para representar a las 

comunidades, donde se modificaron progresivamente los valores de pH en el 

rango de 7.1-8.2 unidades y temperatura de 4°C-33°C.  De acuerdo a los 

resultados, las variaciones de temperatura y pH alteran la estructura de la 

microbiota core en las comunidades microbianas marinas, lo que puede 

comprometer la estabilidad ecológica de los ecosistemas marinos. Además, se 

observó la disminución de conectividades en las redes, lo que puede confirmar 

la influencia de variaciones abióticas en la pérdida de diversidad en 

ecosistemas.  

 

Este trabajo desarrolla el primer modelo Lotka-Volterra con efecto integrado de 

dos factores abióticos ligados al cambio climático (temperatura y pH) sobre la 

tasa de crecimiento bacteriana, que permite evaluar el impacto de las 

variaciones de estos factores sobre la estructura de una comunidad a través 

del tiempo. El uso integrado de herramientas de modelado matemático y 

métodos de inferencia bioinformática para el análisis de comunidades 

bacterianas mediante la construcción de redes multicapa provee un enfoque 

multidisciplinario e innovador, que proporciona una aproximación holística 

sobre el comportamiento de las comunidades oceánicas frente a 
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perturbaciones climáticas. Estos resultados resaltan la importancia de 

considerar la variabilidad abiótica en las investigaciones sobre biodiversidad 

marina y podría contribuir a la implementación temprana de estrategias de 

mitigación al reconocer transiciones críticas en comunidades microbianas.  
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Abstract 

The ocean is a vital source of oxygen, a major regulator of the global climate, 

and a key provider of food and essential resources, including tourism and 

fisheries. Its biodiversity, which exceeds that of terrestrial ecosystems, is 

composed mainly of unicellular microorganisms that drive crucial 

biogeochemical processes, including nitrogen cycling and carbon fixation. 

However, global warming and ocean acidification pose serious threats to this 

microbial diversity, and their impacts on the structure and dynamics of marine 

microbial communities remain poorly understood. 

In this study, we modeled the effects of pH and temperature shifts on 

community dynamics and structure using a trait-based generalized 

Lotka–Volterra model integrated with multilayer network analysis. Multiple 

simulations were conducted using synthetic datasets that represented microbial 

communities, where pH levels (ranging from 7.1 to 8.2) and temperatures (4°C 

to 33°C) were progressively altered. Our results demonstrate that such abiotic 

changes have a significant impact on the structure of the core microbiota, 

potentially compromising the ecological stability of marine ecosystems. 

Furthermore, a decline in network connectivity was observed, supporting the 

hypothesis that abiotic variability contributes to biodiversity loss in microbial 

ecosystems. 

This work develops the first Lotka-Volterra model that integrates the effects of 

two abiotic factors linked to climate change (temperature and pH) on the growth 

rate of bacteria, allowing for the evaluation of the impact of these factor 

variations on the structure of a community over time. The integrated use of 

mathematical modeling tools and bioinformatic inference methods to analyze 

bacterial communities through the construction of multilayer networks provides 

a holistic approximation of oceanic communities facing climatic perturbations. 

These findings underscore the importance of accounting for abiotic variability in 

marine biodiversity research. They could contribute to the early implementation 

of mitigation strategies if critical transitions in microbial communities are 

successfully recognized. 
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1.​ Introducción 

El océano es el lugar en donde se originó la vida y representa tres cuartas 

partes de la superficie terrestre (Duarte, 2010). Es la principal fuente de 

oxígeno del planeta, contribuye en la regulación del clima, es proveedor clave 

de alimentos y otras actividades como el turismo o la pesca. Está conformado 

por múltiples ecosistemas únicos que albergan una amplia variedad de 

especies macro y microscópicas.  Dentro de estos ecosistemas, la vida 

microscópica juega un papel clave en el mantenimiento del equilibrio 

biogeoquímico y ecológico del océano (Cosme, Otero & Haroun, 2020). 

 

Los microorganismos unicelulares representan aproximadamente dos tercios 

de la biomasa total en el océano, dentro de esta población encontramos 

protistas, hongos, bacterias, virus y arqueas (Bar & Milo, 2019). El estudio de la 

microbiota oceánica ha sido un tema relevante en los últimos años debido al 

papel que comunidades microbianas desempeñan dentro de ecosistemas 

marinos; participan activamente en procesos biogeoquímicos como el ciclo del 

nitrógeno, la remoción de dióxido de carbono de la atmósfera y fijación de 

carbono dentro del océano; además son responsables de mantener la  

estructura de las redes tróficas (Bar & Milo, 2019) pues organismos como 

algas, bacterias y protistas se encargan de realizar la mayor parte de la 

productividad primaria dentro del océano (Sbaoui et al., 2022).  

 

La actividad microbiana puede verse afectada por cambios en factores 

abióticos como la salinidad, la temperatura, las modificaciones en los valores 

de pH o la disponibilidad de nutrientes, variaciones que han ido en aumento 

debido a la influencia humana en los ecosistemas. Estas alteraciones son 

impulsadas por fenómenos como el calentamiento global y la acidificación de 

los océanos cuyos efectos derivan en la pérdida de biodiversidad y hábitats 

(Madin et al., 2016). El cambio climático es quizá el evento más alarmante de la 

actualidad, pues su impacto se extiende a múltiples niveles dentro de los 

sistemas biológicos y físicos del planeta (Espinosa, 2020).  
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Un factor regulador clave de los ecosistemas marinos es la temperatura, cuyo 

incremento, consecuencia directa del calentamiento global, altera la estructura 

y dinámica del océano. Este fenómeno está estrechamente ligado al aumento 

de las emisiones de gases de efecto invernadero y aerosoles producto de la 

actividad humana (Bindoff et al., 2013). Como resultado directo del incremento 

térmico, las aguas superficiales experimentan un calentamiento progresivo que 

contribuye al desarrollo de fenómenos meteorológicos extremos como 

persistentes olas de calor o fuertes sequías que alteran los ecosistemas 

(Bindoff et al., 2013).  

 

Las fluctuaciones en las temperaturas dentro del océano han tenido 

consecuencias que van desde el aumento global del nivel del mar, hasta 

modificaciones en la abundancia de especies y alteraciones del ciclo 

hidrológico (Mugwanya et al., 2022). La temperatura ejerce un control 

importante sobre el desarrollo de los organismos dentro del océano, ya que 

afecta la síntesis enzimática celular y, por lo tanto, las tasas de crecimiento, así 

como el éxito reproductivo, supervivencia y actividad general de los organismos 

(Cravatte et al., 2009; Pinet, 2019). Las aguas frías, ricas en nutrientes y con 

niveles altos de oxígeno disuelto, son preferidas por los organismos marinos en 

comparación a las aguas cálidas, bajas en nutrientes cuyos niveles de oxígeno 

son menores (Pinet, 2019), por ello las modificaciones producto del cambio 

climático incluyen el desplazamiento de especies a zonas donde las 

condiciones son mucho mejores para su desarrollo y reproducción (Duarte et 

al., 2013).  

 

El aumento de la temperatura en el océano no solo altera la distribución de 

especies macroscópicas, sino que también influye en la composición y 

funcionalidad de las comunidades microbianas marinas (Seidel et al., 2023). La 

temperatura modula la tasa de crecimiento microbiano por lo que la sensibilidad 

térmica de estos organismos puede comprometer su proliferación y el éxito en 

asociaciones simbióticas (Knapp & Huang, 2022). A largo plazo, el 
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calentamiento global puede favorecer la proliferación de microorganismos 

termotolerantes y la disminución de especies sensibles al calor, esto modifica la 

estructura y por tanto la función de comunidades microbianas (Seidel et al., 

2023).  Además, se ha descubierto que los cambios de temperatura regulan las 

tasas metabólicas de bacterias en ambientes marinos, por lo que la respiración 

y producción autótrofa en el océano podrían verse profundamente afectadas 

(Lomas et al., 2002). La alteración de estas comunidades metabólicamente 

versátiles puede implicar que la eficiencia de procesos ecológicos clave, como 

la fotosíntesis de cianobacterias, la degradación de materia orgánica o el flujo 

de carbono entre la atmósfera y el océano, se vean comprometidos (Mattoo, 

2023).  

 

En asociaciones planctónicas sometidas a cambios ambientales la alteración 

en la composición de las comunidades es una de las respuestas más rápidas y 

sencillas para sobrellevar el estrés biológico (Hutchins & Fu, 2017); 

microorganismos simbiontes han mostrado el mismo comportamiento frente al 

incremento de la temperatura del agua superficial (Maire et al., 2022; Castro et 

al., 2023). Sin embargo, la modificación sostenida de las condiciones climáticas 

en el océano requiere de nuevas proyecciones de comportamiento y 

conformación de comunidades para comprender sus respuestas a largo plazo.  

 

Además del calentamiento de aguas superficiales, otra problemática asociada 

al cambio climático es la acidificación de los océanos, este proceso derivado 

del aumento de dióxido de carbono, altera el entorno marino al modificar los 

niveles de pH. Esta medida ha decaído en los últimos 250 años, pasando de 

casi 8.25 a 8.1, se estima que estos valores continuarán en descenso hasta 

alcanzar un estimado de 7.85 para el final del siglo (Nelson et al., 2020). La 

alteración del pH como producto del aumento en los niveles de dióxido de 

carbono produce la descalcificación de organismos como corales, moluscos, 

erizos de mar o crustáceos (Barreto et al., 2021), estas variaciones provocan la 

pérdida de interacciones simbióticas como es el caso de corales y zooxantelas. 

La ausencia de estas interacciones puede llevar a la muerte progresiva de los 
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individuos asociados si las condiciones dentro del medio en el que se 

desarrollan no mejoran (Ateweberhan et al., 2013).   

 

Si bien el efecto que la acidificación tiene sobre organismos calcificadores ha 

sido estudiado de forma extensiva, a nivel microscópico las implicaciones de 

dicha alteración sobre el ecosistema han sido poco estudiadas. La disminución 

del pH océanico puede alterar la actividad enzimática de microorganismos 

clave, interfiriendo en procesos como la fijación de nitrógeno, la producción 

primaria, la respiración bacteriana y la actividad enzimática extracelular (Das & 

Mangwani, 2015).  

 

Predecir los efectos del calentamiento global en la estructura y funciones de 

comunidades microbianas en el océano es una tarea difícil. Aunque 

actualmente se realizan investigaciones con este enfoque, los avances 

científicos no consiguen seguir el ritmo de la evolución acelerada de los 

fenómenos climáticos y el incremento exacerbado de la temperatura en el 

planeta. Las consecuencias a largo plazo de la elevada emisión de CO₂, sobre 

las comunidades microbianas y su efecto sobre los ecosistemas marinos, son 

inciertas. Por ello, es necesario el uso de herramientas que permitan predecir y 

cuantificar dichos cambios y su impacto sobre el equilibrio ecosistémico.  

 

En este sentido, los modelos matemáticos son una herramienta clave para 

predecir y proyectar dichos fenómenos, ya que son la representación hipotética 

de procesos o entidades con gran complejidad (DiStefano, 2015). A través de 

estos y con el uso de ecuaciones y parámetros simbólicos es posible generar 

una aproximación de los componentes, sus asociaciones; así como sus 

propiedades y funcionamiento dentro de sistemas biológicos. Son 

increíblemente versátiles, por lo que es posible anexar múltiples parámetros 

con el objetivo de generar descripciones lo más cercanas posible a la realidad. 

De esta forma se puede comprender holísticamente el impacto de factores 

específicos sobre los ecosistemas (DiStefano, 2015; Dada & Mendes, 2011). El 

estudio de la biología a través de modelos matemáticos provee información 
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importante acerca de interacciones intra e interespecíficas dentro de 

comunidades. Este aspecto resulta de interés si se busca establecer el papel 

que desempeñan cuestiones como la competencia o estresores biológicos 

sobre las poblaciones. Además, los modelos matemáticos sirven como buenos 

predictores de cambios en el tiempo por lo que adquieren incluso mayor 

importancia en el estudio de sistemas biológicos donde la presencia de 

estresores o factores climáticos pueden afectar a largo plazo interacciones 

interespecíficas (Dada & Mendes, 2011)   

 

Las variaciones de factores abióticos como producto de la actividad humana 

afectan el ambiente marino. El cambio abrupto y sostenido de las condiciones 

climáticas en un entorno tan complejo como el océano tiene un efecto directo 

sobre el ecosistema y, por lo tanto, sobre la diversidad biológica que alberga; 

por ello el desarrollo de modelos matemáticos resulta una herramienta útil en la 

descripción y representación de dinámicas poblacionales dentro del ecosistema 

marino (Sagehashi, 2008). A través del modelaje matemático será posible 

predecir el cambio en el comportamiento, la pérdida de diversidad y la 

alteración de dinámicas poblacionales para determinar hasta qué punto 

fenómenos como el cambio climático pueden llegar a afectar la composición de 

la microbiota oceánica.   

 

2.​  Antecedentes  

2.1 Cambio climático 

2.1.1 El efecto invernadero y su relación con el cambio climático 

El efecto invernadero es un proceso natural que permite que la Tierra sea 

habitable. Este fenómeno ocurre cuando gases en la atmósfera, conocidos 

como gases de efecto invernadero (GEI), atrapan el calor cerca de la superficie 

de la Tierra con el fin de mantener al planeta cálido y a una temperatura 

adecuada (Latake et al., 2015). Sin embargo, las actividades humanas como la 

quema de combustibles fósiles y la deforestación han incrementado 

significativamente la concentración de estos gases en la atmósfera (Ritchie, 
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Rosado & Roser 2020). Este aumento en los GEI intensifica el efecto 

invernadero y contribuye al cambio climático y el calentamiento global, lo que 

altera el equilibrio natural de los ecosistemas. 

 

Para el Grupo Intergubernamental de Expertos sobre el Cambio Climático, este 

término se refiere a cambios en el estado del clima que persisten durante 

largos periodos de tiempo y pueden deberse a procesos internos naturales o 

externos forzados. Dichos cambios afectan a la vida humana, a la biodiversidad 

y a los ecosistemas, tanto terrestres como oceánicos (Allison & Basset, 2015).  

 

2.1.2 El cambio climático y el océano 

Las modificaciones climáticas impactan especialmente los océanos, que juegan 

un papel crucial en la regulación del clima del planeta al absorber gran parte 

del calor terrestre (Duarte, 2010). Los ecosistemas marinos experimentan una 

serie de cambios perjudiciales que alteran las interacciones, estructuras y 

funciones de organismos nativos (Ritchie, Rosado & Roser, 2020; Madin et al., 

2016). Las principales manifestaciones del efecto del cambio climático en el 

océano incluyen el aumento de la temperatura interna del océano, el 

derretimiento de los glaciares y en consecuencia el aumento del nivel del mar 

(Nerem et al., 2018), así como la disminución de los valores de pH y 

alteraciones del ciclo hidrológico (Ritchie, Rosado & Roser, 2020); que resultan 

en la intensificación de fenómenos meteorológicos tales como inundaciones, 

sequías y ciclones (Nicholls et al., 2012). 

 

Como resultado de estas modificaciones, el equilibrio físico y químico, y las 

respuestas biológicas de los océanos también se ven comprometidas. Un 

ejemplo de ello es, en primera instancia, la pérdida de biodiversidad que se ve 

agravada por el efecto del cambio climático y su influencia en la fragmentación 

y perturbación de las características clave de los ecosistemas (Lovejoy, 2006). 

La diversidad biológica, considera toda especie; desde plantas, animales y 

microorganismos hasta los ecosistemas y procesos ecológicos de los que estos 

organismos forman parte (McNeely, 1990). 
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La pérdida de biodiversidad está estrechamente relacionada con la velocidad a 

la que cambian las condiciones ambientales debido al cambio climático 

(Lovejoy, 2006). La temperatura del planeta se mantuvo relativamente 

constante hasta hace dos siglos. Sin embargo, la actividad humana ha 

incrementado rápidamente las concentraciones de gases de efecto 

invernadero, alcanzando niveles que no habían existido en millones de años. 

Es probable que, incluso si las actividades humanas responsables del cambio 

se detuvieran, estos niveles no podrían ser revertidos por completo (Cardinale 

et al., 2012; Mikhaylov et al., 2020).  

Los organismos han evolucionado durante millones de años para adaptarse a 

condiciones específicas de temperatura, disponibilidad de recursos y 

estabilidad ecológica (Zobell & Conn, 1940). Pero el ritmo acelerado del cambio 

climático está superando la capacidad de muchas especies para adaptarse, lo 

que conduce a una mayor vulnerabilidad de ciertas poblaciones y por 

consiguiente a su potencial extinción (Lovejoy, 2006).  

 

En los ecosistemas marinos, se ha observado una pérdida significativa de 

biodiversidad en poblaciones de especies esenciales, como corales, peces y 

mamíferos marinos, debido a factores como el aumento de la temperatura del 

agua, la acidificación de los océanos y la disminución del oxígeno disponible 

(Talukder et al., 2022). 

Muchos de estos organismos no pueden adaptarse con la suficiente rapidez a 

los cambios en los factores abióticos del ecosistema. En consecuencia, las 

especies que pueden desplazarse tienden a migrar hacia áreas con 

condiciones menos estresantes y más favorables para su crecimiento, 

reproducción y supervivencia (Bianchi et al., 2013). Sin embargo, los 

organismos sésiles, como los corales, quedan expuestos inevitablemente a la 

progresión de estresores abióticos dentro de los ecosistemas. Por ello el 

blanqueamiento de los corales, causado por el calentamiento global, reduce la 

disponibilidad de hábitats para una gran cantidad de organismos marinos, lo 

que a su vez altera la estabilidad de la red trófica y por tanto el equilibrio 
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ecosistémico (Hughes et al., 2003). Esto compromete hábitats como los 

manglares, pastos marinos y las marismas, que se ven amenazados por el 

aumento del nivel del mar, producto del cambio climático. Esto reduce su 

capacidad de mitigar el impacto del calentamiento global (Yáñez, Twilley & 

Lara, 1998). 

 

A medida que el cambio climático se intensifica y los esfuerzos por mitigar sus 

efectos resultan insuficientes, las condiciones oceánicas se alteran de manera 

significativa, lo que aumenta el riesgo de colapsos ecológicos que amenazan la 

biodiversidad marina y los servicios ecosistémicos de los que dependen tanto 

las especies marinas como los seres humanos 

 

2.1.3. Proyecciones del cambio climático  

En 1988 se creó el Grupo Intergubernamental de Expertos sobre el Cambio 

Climático (IPCC), organismo encargado de realizar evaluaciones periódicas 

acerca del avance, las causas, posibles repercusiones y las potenciales 

estrategias de respuesta con respecto al aumento de la temperatura en el 

planeta. En su último informe, el IPCC (2023) confirmó que el calentamiento 

global ya está causando daños y pérdidas potencialmente irreversibles en 

distintos ecosistemas terrestres, costeros, oceánicos, así como en la criosfera. 

Además, impacta significativamente a las personas y los medios de vida de 

todo el mundo, pues aproximadamente entre 3.3 y 3.6 mil millones de personas 

viven en contextos vulnerables al cambio climático.  

 

Se estima que el aumento sostenido de la temperatura en los océanos 

intensificará el ciclo global del agua lo que contribuye a la aparición de 

fenómenos climáticos extremos, como lluvias torrenciales en regiones húmedas 

y sequías severas en zonas áridas. Según el Sexto Informe del IPCC (2023), 

se prevé un aumento en el nivel medio global del mar, junto con una mayor 

desoxigenación y acidificación de los ecosistemas marinos. Además, el informe 

proyecta la intensificación de ciclones tropicales y de tormentas extratropicales, 
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así como el incremento de la aridez y de condiciones propicias para el 

surgimiento de incendios forestales (Allison & Bassett, 2015).  

 

El IPCC (2023) señaló que los ecosistemas oceánicos ya están 

experimentando cambios a gran escala, los cuales podrían intensificarse si el 

calentamiento global llega a niveles de 1.5°C o superiores. Un aumento de la 

temperatura actual de hasta 1.5°C o 2°C podría generar modificaciones 

significativas en la distribución de algunas especies, como los peces o el 

plancton, desplazándolas hacia latitudes más altas.  Aquellos ecosistemas que 

no pueden trasladarse a espacios con condiciones óptimas para la 

supervivencia de especies nativas, como los bosques de algas pardas o 

arrecifes de coral, podrían experimentar una disminución de las densidades 

poblacionales, así como mayores tasas de mortalidad entre los miembros de la 

comunidad. 

 

Para mitigar estos efectos, el IPCC (2019) enfatiza la necesidad de limitar el 

calentamiento global a 1.5°C, con el objetivo de reducir las pérdidas 

potenciales en servicios ecosistémicos, como la productividad oceánica, la 

productividad pesquera, así como minimizar la redistribución de especies a 

latitudes más altas y el daño irreversible de ecosistemas oceánicos como 

manglares, praderas marinas, arrecifes de coral y otros ecosistemas de 

humedales. Además, los cambios en la química de los océanos, como la 

acidificación, la hipoxia, así como la formación de "zonas muertas", serán 

sustancialmente menores si los valores de cambio climático se mantienen por 

debajo de 1.5°C. Sin embargo, incluso si se cumple este objetivo, algunos 

ecosistemas, como los arrecifes de coral, seguirán sufriendo grandes pérdidas 

y podrían desaparecer si la temperatura supera los 2°C (IPCC, 2019). 

 

Desde su tercer informe, el IPCC (2001) advirtió sobre el creciente riesgo de 

extinción de especies vulnerables y susceptibles al cambio climático, así como 

su impacto en los ecosistemas. Desde el año 2001, declaró que los 

ecosistemas sufrirían las consecuencias del aumento de las concentraciones 
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de CO₂, reflejando pérdidas importantes de función, productividad y 

biodiversidad. Desde entonces, el riesgo de aparición de estos efectos 

adversos sobre los ecosistemas se vinculaba, a la magnitud y velocidad de las 

modificaciones en las condiciones abióticas del ambiente.   

 

Actualmente, la redistribución de especies, el colapso de arrecifes de coral y la 

pérdida de hábitats críticos ocurren a un ritmo acelerado. Sin embargo, más 

allá de las pérdidas de especies visibles, los organismos microscópicos, 

fundamentales en procesos biogeoquímicos que juegan un papel clave en la 

estabilidad ecosistémica, también son víctimas del cambio climático. La 

acidificación del agua, el calentamiento y la desoxigenación están modificando 

la composición y actividad de estos microorganismos, con posibles 

consecuencias en la productividad marina y el ciclo del carbono. Su alteración 

podría tener efectos en cascada en toda la red trófica por lo que es necesario 

considerar los impactos en la microbiota oceánica, cuya transformación podría 

redefinir el equilibrio biogeoquímico del planeta (IPCC, 2023).  

 

2.2. Cambio climático y la microbiota oceánica 

Los microorganismos tales como protistas, hongos, virus, bacterias, arqueas y 

fitoplancton desempeñan un papel fundamental en el ecosistema marino. Son 

organismos predominantes en los océanos que se encargan de facilitar el 

acceso a macromoléculas en el medio marino a través de la descomposición 

de materia orgánica, así como la regulación de la composición de la atmósfera, 

la purificación del agua y la mejora de la fertilidad del suelo (Pepper et al., 

2011). Además, son componentes clave de los ciclos de carbono y nitrógeno y 

participan en la eliminación de gases de efecto invernadero (Dutta & Dutta, 

2016). 

 

Los atributos físicos y químicos del medio en el que se desarrollan los 

microorganismos son clave, pues varios grupos microbianos presentan 

preferencia por rangos específicos de temperatura, salinidad, pH y nutrientes 

(Dutta & Dutta, 2016). Aspectos como la estructura y función de las 
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biomoléculas del organismo así como su metabolismo y optimización de 

energía dependen de estas restricciones. Si bien existen otros estresores, 

como la concentración de nutrientes, que pueden alterar procesos 

fundamentales dentro del organismo, la temperatura es un elemento crítico ya 

que afecta prácticamente todos los procesos metabólicos de los organismos 

(Dutta & Dutta 2016;  Pepper et al., 2011). 

 

La temperatura y sus alteraciones pueden tener impactos importantes en la 

composición de las comunidades microbianas, ya que modifica el crecimiento y 

la actividad de sus miembros. Esto resulta clave, pues funciones ecosistémicas 

como la fijación de nitrógeno, la desnitrificación y la metanogénesis son 

desempeñadas por organismos específicos (Mattoo, 2023). Estos 

microorganismos potencialmente difieren en términos de sensibilidad a la 

temperatura, por lo que la alteración de este factor puede modificar la tasa de 

crecimiento de organismos clave dentro del ecosistema y por consiguiente 

alterar múltiples procesos dentro del ecosistema (Dutta & Dutta, 2016).  

 

Las fluctuaciones en la temperatura promueven la aparición de cambios de la 

actividad enzimática; las proteínas poseen distintas estabilidades térmicas 

(Abirami et al., 2021). En este sentido, la temperatura regula indirectamente 

vías y mecanismos biológicos de protección o supervivencia, al mediar la 

producción microbiana de enzimas, así como alterar potencialmente las tasas 

de recambio de proteínas (Dutta & Dutta, 2016; Abirami et al., 2021). 

 

La variabilidad ambiental de un factor tan importante como la temperatura 

puede llevar a que el funcionamiento general del ecosistema marino se vea 

comprometido (Abirami et al., 2021). Pese a que las comunidades microbianas 

poseen una enorme resiliencia funcional, no se sabe con certeza cómo la 

modificación de la temperatura dentro del océano altera la estructura de las 

redes microbianas, asociaciones que son la base de las cadenas tróficas e 

impulsan los principales ciclos elementales en los ecosistemas (Hutchins & Fu, 

2017).  
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2.2.1. Ciclo del agua y su impacto en los microorganismos oceánicos 

La quema sin precedentes de combustibles fósiles y la deforestación a gran 

escala han aumentado la concentración de dióxido de carbono en la atmósfera, 

lo que ha intensificado el efecto invernadero y ha alterado el equilibrio 

hidrológico del planeta (Duchenne-Moutien & Neetoo, 2021). La modificación 

de patrones de calentamiento y enfriamiento no solo en la atmósfera, sino 

también toda la superficie del planeta,  alteran características clave del ciclo del 

agua, tales como la frecuencia, la intensidad y la duración de las 

precipitaciones (Allan et al., 2020). 

 

Estos cambios en el ciclo hidrológico producen variaciones en la disponibilidad 

de nutrientes y la cantidad de oxígeno disuelto en el océano (Bormann & 

Likens, 1970), así como la salinidad del agua. Todos estos factores son 

determinantes en el crecimiento microbiano. Los microorganismos marinos, 

particularmente las bacterias y el fitoplancton, dependen de condiciones 

químicas estables para su metabolismo y reproducción (Zobell & Conn, 1940). 

Variaciones en la salinidad y la disponibilidad de nutrientes pueden afectar la 

estructura de sus comunidades, así como favorecer el crecimiento de especies 

halotolerantes, desplazando aquellas menos adaptadas (Kundzewicz, 2008).  

 

Además, el incremento del vapor de agua en la atmósfera intensifica eventos 

de precipitación extrema y el derretimiento de glaciares, lo que aumenta la 

entrada de agua dulce en los océanos (Allan et al., 2020). Este proceso puede 

generar estratificación en la columna de agua, reduciendo la mezcla de 

nutrientes y afectando la productividad primaria de organismos fotosintéticos, 

como las cianobacterias (Allan et al., 2020). 
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2.2.2. Eventos climáticos extremos y su efecto en la microbiota 
marina 

El aumento en la incidencia de fenómenos meteorológicos extremos, como 

huracanes, olas de calor marinas y tormentas intensas, es una consecuencia 

directa del calentamiento global (Allan et al., 2020). El incremento de humedad 

en la atmósfera intensifica las condiciones hidrológicas y por consiguiente 

modifica la frecuencia, intensidad, extensión espacial y duración de estos 

eventos (Easterling et al., 2000; Chatterjee et al., 2024). Estos fenómenos 

climáticos extremos afectan drásticamente la biogeografía de microorganismos 

marinos, así como la estabilidad de las comunidades microbianas al alterar la 

temperatura, la disponibilidad de nutrientes y la oxigenación de los ecosistemas 

oceánicos (Arrigo et al., 2017; Brown et al., 2012) 

 

Las olas de calor marinas, caracterizadas por períodos prolongados de 

temperaturas anómalamente altas en el agua, están relacionadas a pérdidas 

económicas y ecosistémicas importantes (Jacox et al., 2020), como eventos de 

mortalidad masiva en flora y fauna marina (Brown et al., 2024). Provocan la 

proliferación de microorganismos termotolerantes, mientras que especies 

menos resistentes pueden reducir sus tasas de crecimiento o desaparecer 

localmente (Jacox et al., 2020). Se ha observado que estas alteraciones 

afectan procesos clave como la fotosíntesis del fitoplancton, la remineralización 

de nutrientes y la fijación de nitrógeno, lo que impacta en cascada a toda la red 

trófica marina (Ummenhofer & Meehl, 2017). 

 

Los huracanes y tormentas intensas pueden alterar drásticamente la estructura 

de las comunidades microbianas al generar un aumento en la turbulencia del 

agua y modificar la distribución de nutrientes (Garrison et al., 2022). Las 

inundaciones también pueden modificar procesos biogeoquímicos dentro del 

océano al introducir material vegetal de alto peso molecular y microbiota 

terrestre al ecosistema marino, esto genera periodos anómalos de respiración y 

producción microbiana lo que altera la alimentación de microorganismos 

presentes en ambientes costeros (Bingeman et al., 1953). Asimismo, la 
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resuspensión de sedimentos por estos eventos puede incrementar la 

proliferación de ciertas bacterias heterótrofas, lo que favorece cambios en la 

composición de la microbiota del ecosistema (Frölicher, 2019). 

 

Finalmente, el aumento de la temperatura contribuye a la expansión de zonas 

hipóxicas y anóxicas, también conocidas como “zonas muertas”, donde el 

oxígeno es insuficiente para el crecimiento y supervivencia de muchas 

especies (Allan et al., 2020). Esto ocurre en parte porque las aguas cálidas 

retienen oxígeno en menor proporción que las frías; por lo tanto, el incremento 

de la temperatura superficial del océano se asocia con una reducción del 

oxígeno disuelto (Robinson, 2019) y con un aumento en los niveles de dióxido 

de carbono. La mayor disponibilidad de CO₂ estimula la actividad fotosintética 

del fitoplancton, incrementando la producción primaria y la generación de 

materia orgánica particulada (MOP). Sin embargo, la degradación microbiana 

de esta materia orgánica intensifica la respiración heterotrófica y, en 

consecuencia, el consumo de oxígeno, lo que agrava la desoxigenación y 

favorece la transición de zonas hipóxicas a anóxicas (Robinson, 2019). A su 

vez, la estratificación de la columna de agua limita el intercambio entre las 

capas superficiales y profundas, impidiendo el reequilibrio del oxígeno disuelto 

con la atmósfera (Thrash et al., 2017) y restringiendo la reoxigenación de las 

aguas profundas (Robinson, 2019). A estos procesos se suma la entrada de 

nutrientes inorgánicos y materia orgánica de origen terrestre, que promueve la 

eutrofización costera, estimulando un crecimiento excesivo del fitoplancton y 

acumulación de biomasa lábil. La descomposición de esta biomasa genera una 

alta demanda biológica de oxígeno que excede la capacidad de renovación del 

sistema, contribuyendo al establecimiento y expansión de zonas hipóxicas y 

anóxicas. Dichas condiciones alteran la estructura y funcionamiento de las 

comunidades microbianas (Beman & Carolan, 2013), favoreciendo la 

proliferación de microorganismos anaerobios como bacterias desnitrificantes y 

metanogénicas, cuya actividad incrementa la liberación de gases traza como el 

óxido nitroso y el metano, intensificando los efectos del cambio climático 

(Wright, Konwar & Hallam, 2012; Long et al., 2021). 
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2.2.3. Efectos de la temperatura en los ecosistemas marinos y la 
microbiota oceánica 

El cambio climático, como se ha mencionado con anterioridad, es uno de los 

principales estresores en el entorno marino. Amenaza la estabilidad y función 

de los ecosistemas marinos y tiene efectos importantes sobre las comunidades 

microbianas. Los microorganismos juegan un papel clave en la productividad 

primaria, el reciclaje de nutrientes y la regulación de gases de efecto 

invernadero en los océanos. Su alteración compromete significativamente los 

ciclos biogeoquímicos, las redes tróficas y por lo tanto el equilibrio del océano. 

 

Una de las consecuencias ecosistémicas del calentamiento global es el 

aumento de floraciones algales nocivas (FAN); el aumento de la temperatura 

del océano favorece las tasas de crecimiento de cianobacterias nocivas 

(Gobler, 2020). Reinfelder, en 2011, hipotetiza que esto puede deberse a que la 

enzima RUBISCO de los dinoflagelados, responsables de la mayoría de los 

florecimientos algales nocivos, tiene mayor afinidad por el CO₂, principal 

causante del cambio climático. Esta afinidad es distinta en algas eucariotas no 

nocivas, por lo que los dinoflagelados serían los principales beneficiados por el 

aumento de CO₂ en el planeta en comparación con otras algas.  

 

El desarrollo de FAN puede tener implicaciones importantes en los ecosistemas 

acuáticos, ya que comprometen el balance dentro de los hábitats y las especies 

dentro de estos (Reinfelder, 2011). El nivel de biomasa generado por las FAN 

puede generar niveles extremos de materia orgánica en el ecosistema, lo que 

reduce el oxígeno disponible y conduce a la hipoxia. Además, este proceso 

disminuye los niveles de pH, creando entornos más ácidos y de mayor estrés 

para los microorganismos (Wallace et al., 2014).  

 

Estos cambios impactan directamente en la fisiología y función de los 

organismos e indirectamente las interacciones entre los individuos de las 

comunidades. La alteración de estas dinámicas, en conjunto con las 
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modificaciones fisiológicas, pueden llevar a la extinción de especies 

importantes en la estructura de las comunidades (Tiedje et al., 2022). Esto 

podría llevar a la pérdida de funciones dentro de las redes tróficas de 

ecosistemas aislados, lo que impide sostener niveles tróficos superiores debido 

a la pérdida de biodiversidad y de productores primarios (Zhang et al., 2017). 

 

En ecosistemas abiertos, donde múltiples organismos pueden sustituir 

funciones perdidas debido al cambio climático, este fenómeno no representa un 

problema inmediato. Sin embargo, debido al aumento rápido de la temperatura 

en el planeta y la acelerada pérdida de diversidad, la estabilidad de las redes 

tróficas oceánicas podría verse comprometida, amenazando la vida marina que 

estas sustentan (Zhang et al., 2017).  

 

Las perturbaciones de los factores abióticos reducen la biodiversidad 

microbiana, esto altera la resiliencia de los ecosistemas marinos a futuras 

perturbaciones (Tiedje et al., 2022). Estudios sugieren que una menor 

diversidad funcional en comunidades microbianas disminuye la capacidad del 

océano para recuperarse de eventos extremos, como olas de calor marinas o 

tormentas intensas (Hutchins & Fu, 2017). A medida que estos fenómenos se 

vuelven más frecuentes, se prevé que los océanos experimenten transiciones 

hacia estados menos estables y con menor capacidad para sostener la vida 

marina (Long et al., 2021).   

 

2.2.4. Acidificación oceánica y su impacto en los microorganismos 
marinos 

La acidificación oceánica (AO) es una de las consecuencias asociadas al 

calentamiento global. Este proceso está relacionado con la absorción de CO₂ 

en el océano, lo cual produce ácido carbónico que, al contacto con el agua, se 

disocia en iones bicarbonato (HCO₃⁻) e hidrógeno (Das & Mangwani, 2015). 

Esto da paso a la formación de iones carbonato, esenciales para la formación 

de esqueletos y conchas de carbonato de calcio, los cuales, al entrar en 
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contacto con iones hidrógeno liberados por el mismo proceso, quedan menos 

disponibles para organismos calcificadores (Diaz, 2022).   

 

Frente a la acidificación oceánica, los animales calcificadores, como moluscos, 

equinodermos, crustáceos o corales, se encuentran vulnerables. La formación 

de estructuras calcáreas se ve comprometida conforme disminuye el pH 

oceánico, lo que pone en riesgo su supervivencia. Sin embargo, los efectos de 

la AO no se limitan a animales calcificadores. Munday et al. (2010) establecen 

que la disminución de pH oceánico modifica el sentido del olfato en los peces 

que les impide detectar a sus depredadores, lo que disminuye su 

supervivencia. Además, la disminución del pH oceánico ha mostrado 

comprometer procesos fisiológicos como el desarrollo larval (Diaz, 2022). La 

acidificación también es un factor importante en el desarrollo y funcionamiento 

microbiano, ya que modula múltiples actividades cruciales en microorganismos, 

como la actividad enzimática, la producción primaria, la fijación de N2 y carbono 

(Solomon et al., 2009). 

 

Los microorganismos marinos descomponen polímeros y compuestos 

orgánicos a través de enzimas celulares, las cuales son sensibles a los 

cambios de pH (Das & Mangwani). La actividad óptima de estas proteínas se 

da en un rango específico de pH, por lo que la AO puede disminuir la tasa 

enzimática. Esto altera el ambiente marino al modificar el flujo de materia 

orgánica disuelta en el océano (MOD) (Reche, 2003). La MOD es crucial, ya 

que desempeña múltiples roles en los ecosistemas marinos y ciclos 

biogeoquímicos globales. Esta materia se encuentra compuesta principalmente 

por moléculas orgánicas solubles provenientes de restos biológicos y es una 

fuente importante de nutrientes para diversos organismos marinos, en especial 

para bacterias heterótrofas que descomponen estos compuestos (Fraga & 

Vives, 1961). El resultado de una actividad enzimática comprometida es la 

disminución en la disponibilidad de nutrientes para los organismos dentro de un 

ecosistema, lo que modifica indirectamente la actividad y respiración 

microbiana, alterando con ello los ciclos biogeoquímicos y las redes tróficas.  
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La fijación de carbono es realizada principalmente por cianobacterias, 

responsables de al menos el 90% del carbono orgánico mediante este proceso 

(Ayón, Lara & Castro, 2017). En el sistema marino, la mayoría del fitoplancton, 

grupo al que pertenecen las cianobacterias, ha desarrollado mecanismos de 

concentración de carbono inorgánico, que permiten a los microorganismos 

captar el bicarbonato (HCO₃⁻) para que sea convertido en CO₂ utilizable en la 

fotosíntesis (Reinfelder, 2011). Esto, en un océano donde los niveles de CO₂ 

aumentan considerablemente cada año, favorecerá la actividad fotosintética del 

fitoplancton (Das & Mangwani, 2015), lo que puede provocar la eutrofización y 

anoxia en la superficie del océano. En consecuencia, el equilibrio global de 

nutrientes se verá comprometido (Rosgaard et al., 2012).  

 

Conforme el pH disminuye en el océano, los microorganismos tienden a 

destinar más energía de la necesaria al mantenimiento celular, lo que puede 

limitar su crecimiento (Bunse et al., 2016). Este proceso compensatorio puede 

comprometer las redes tróficas, ya que altera la estructura, función y 

mecanismos celulares que son vitales para el equilibrio ecosistémico. Shi et al. 

(2010) determinaron que la acidificación oceánica altera la solubilidad del hierro 

(Fe) en el océano, un nutriente esencial para el crecimiento de 

microorganismos cuya disponibilidad se ve comprometida a medida que el 

océano se acidifica (Lovley, 1997). Esto compromete funciones biológicas 

esenciales, lo que genera estrés en el fitoplancton de muchas zonas oceánicas 

(Shi et al., 2010). 

 

El cambio climático representa uno de los mayores estresores oceánicos para 

la estructura y función de las comunidades microbianas marinas. Este 

fenómeno puede alterar la actividad enzimática, la fisiología, las relaciones 

simbióticas y los ciclos biogeoquímicos a través de la variación de factores 

como la temperatura y el pH. Sin embargo, el estudio de las comunidades 

marinas presenta múltiples limitantes, dado que los microorganismos marinos 

son, en muchos casos, no cultivables y la complejidad de sus interacciones, así 
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como la categorización de sus especies constituyen un reto significativo. Ante 

estos desafíos, el uso de herramientas innovadoras es esencial para avanzar 

en su comprensión.  

En este sentido, el modelaje matemático se ha convertido en una herramienta 

clave para estudiar y predecir el comportamiento de sistemas biológicos 

complejos, como las comunidades microbianas marinas. El modelaje permite 

integrar diversos factores ambientales, como la acidificación oceánica y el 

cambio climático, en simulaciones que proporcionan valiosa información sobre 

los efectos de estas alteraciones en los ecosistemas marinos. A pesar de las 

limitaciones que presenta el entorno oceánico, el modelaje matemático ofrece 

una forma de comprender y proyectar escenarios futuros, facilitando así el 

estudio de los impactos del cambio climático en la biología marina y 

contribuyendo a la toma de decisiones en estrategias de conservación y 

mitigación. 

 

2.3. Modelaje matemático 

El modelaje matemático es una herramienta fundamental en la descripción y 

análisis de fenómenos. Se trata de la representación abstracta y simplificada de 

un sistema real a través de expresiones matemáticas. Busca comprender un 

sistema, sus variables y la evolución de un fenómeno a través del tiempo 

(Barbosa, 2003). El modelaje hace uso de ecuaciones matemáticas y 

simulaciones para comprender las variables que componen un sistema y su 

evolución a través del tiempo. Estos modelos son construidos a partir de datos 

experimentales, suposiciones fundamentales de las dinámicas a las que se 

busca describir, así como el conocimiento de leyes matemáticas (Sagehashi, 

2008). Su aplicabilidad abarca múltiples disciplinas, incluyendo la ingeniería, la 

física, la sociología y la biología, proporcionando un enfoque cuantitativo y 

objetivo para el estudio de sistemas complejos. 
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2.3.1. Modelos matemáticos en biología 

En biología, los modelos matemáticos son esenciales para el análisis de 

procesos naturales y fenómenos biológicos. Las simulaciones basadas en 

estos modelos permiten representar el mundo real de forma simplificada, lo que 

es especialmente valioso en sistemas donde la observación o el muestreo 

directo son difíciles o costosos (Cardona, Leal & Ustariz, 2020). En 

microbiología, estos modelos se utilizan frecuentemente para estudiar el 

crecimiento poblacional de microorganismos (Cardenas et al., 2001), sus 

interacciones en ecosistemas microbianos, la dinámica de enfermedades 

infecciosas (Vidal et al., 2020), así como procesos biológicos complejos como 

la regulación génica o las redes metabólicas de los organismos (Gutiérrez, 

Moreno & Montoya, 2015). 

 

El modelaje de interacciones biológicas utiliza un conjunto de ecuaciones 

diferenciales que describen la evolución temporal de una variable de interés. La 

construcción de estos modelos puede estar inspirada en datos experimentales, 

en el conocimiento existente sobre el tipo de interacción a modelar o en una 

hipótesis acerca de cómo los componentes de un sistema funcionan y se 

relacionan (Tomlin & Axelrod, 2007). Las ecuaciones generadas en el modelaje 

biológico incluyen parámetros como las tasas de crecimiento y muerte dentro 

de la comunidad, así como interacciones de los individuos de una misma 

especie (interacciones intraespecíficas) o de especies distintas (interacciones 

interespecíficas) (Fiegna & Velicer, 2005). Las interacciones intraespecíficas 

pueden representar, por ejemplo, la competencia por alimento o pareja sexual; 

mientras que las interacciones interespecíficas pueden ser benéficas, 

perjudiciales o neutras, dependiendo del tipo de simbiosis o relación que exista 

entre cada una de las especies involucradas. Así, el modelaje puede utilizarse 

para describir dinámicas como mutualismos, competencias, depredación o 

parasitismos dentro de los ecosistemas. Además, la inclusión de otros 

parámetros como estresores o presiones evolutivas puede enriquecer estos 

modelos.  
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Uno de los modelos ampliamente utilizados para describir interacciones 

interespecíficas, particularmente relaciones de competencia o depredación, es 

el modelo de Lotka-Volterra, cuyo sistema de ecuaciones diferenciales permite 

estudiar la dinámica poblacional entre dos o más especies. 

 

2.3.2. Modelo presa-depredador 

El modelo de Lotka-Volterra, también conocido como modelo presa-depredador 

o modelo de competencia, es un sistema de ecuaciones diferenciales 

ordinarias que describe las interacciones dinámicas entre dos especies. Fue 

desarrollado de manera independiente por Alfred J. Lotka en 1925 y Vito 

Volterra en 1926, y se ha convertido en una herramienta fundamental para 

estudiar las relaciones ecológicas interespecíficas (Anisiu, 2014). Este modelo 

describe esencialmente las interacciones entre dos especies con una dinámica 

presa depredador, sin embargo, puede aplicarse a otras relaciones ecológicas 

como el mutualismo o la competencia, donde la interacción entre especies 

distintas puede significar un beneficio de asociación o por el contrario la 

competencia por recursos, alimento, hábitat o territorio (Zhu & Yin, 2009).  

 

El sistema de ecuaciones que describe el modelo Lotka-Volterra es el siguiente:  

 

 
 
Este sistema de ecuaciones está compuesto por dos variables que representan 

la población de presas (x) y la población de depredadores (y). La población de 

presas, en ausencia de depredadores experimenta un crecimiento exponencial, 

bajo el supuesto de que los recursos requeridos por las presas son 

abundantes. Por otra parte, en ausencia de presas, la población de 

depredadores puede llegar a la extinción, pues se asume que estas son su 

única fuente de alimento (Pata, 2017).  
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La interacción entre ambas especies ocurre cuando los depredadores 

consumen a las presas, esta relación está dada por xy dentro del modelo.  Para 

los depredadores, esta relación es beneficiosa, ya que la energía obtenida a 

partir del consumo de presas contribuye a su crecimiento poblacional; este 

efecto se expresa como δxy. Por el contrario, para las presas, esta interacción 

es perjudicial, ya que su número disminuye debido a la caza, y este descenso 

poblacional se modela mediante el término 𝛽xy, que indica la tasa de 

disminución como resultado de la interacción con los depredadores (Pata, 

2017). 

 
Aunque este modelo fue formulado originalmente para representar relaciones 

presa-depredador, su estructura puede adaptarse al estudio de múltiples 

dinámicas ecológicas. La inclusión de parámetros adicionales dentro del 

sistema de ecuaciones permite una descripción más integral de las 

interacciones en estudio. En este sentido, el modelo de Lotka-Volterra ha 

demostrado ser una herramienta versátil para explorar fenómenos biológicos 

complejos.  

 

Su aplicación se extiende también al ámbito de la microbiología, donde ha sido 

utilizado para describir las dinámicas de comunidades microbianas, a través de 

la incorporación de parámetros y variables que expanden el modelo y capturan 

las muchas formas en las que una población puede interaccionar (Davis et al., 

2022). Se trata de una herramienta valiosa, capaz de predecir interacciones 

interespecíficas, coexistencia e incluso la estructura y dinámica de 

comunidades microbianas (Dedrick et al., 2023). A pesar de las 

simplificaciones, estos modelos han demostrado ser herramientas muy valiosas 

para obtener información sobre la dinámica de sistemas biológicos diversos, 

incluyendo microbiotas intestinales, comunidades bacterianas en lagos y 

ciliados de agua dulce (Davis et al., 2022).  
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El modelo Lotka-Volterra generalizado permite considerar múltiples especies de 

forma simultánea, que interactúan entre sí en una amplia variedad de 

asociaciones simbióticas, representadas dentro del modelo mediante matrices 

de coeficientes que determinan la fuerza y el tipo de interacción de los 

miembros de la comunidad. A pesar de su simplicidad, este enfoque es capaz 

de predecir cómo los cambios en la abundancia de una especie impactan sobre 

otras y cómo estas interacciones colectivas influyen en la estabilidad y 

diversidad de la comunidad. Sin embargo, el uso de este modelo presenta 

algunas limitaciones, ya que al ser una aproximación simplificada puede no 

capturar adecuadamente todos los tipos de interacciones (Dedrick et al., 2023), 

y para su formulación se deben asumir ciertas condiciones sobre las 

comunidades bacterianas que podrían no reflejar completamente la realidad 

(Davis et al., 2022). 

 

La riqueza de información obtenida mediante los modelos de Lotka-Volterra 

puede potenciarse al combinarlos con herramientas computacionales como las 

redes de interacción, que permiten incorporar diferentes niveles de interacción 

biológica y escalar la complejidad del sistema modelado. En este contexto, las 

redes se presentan como una extensión natural de los modelos clásicos y 

facilitan la representación simultánea de diversas formas de simbiosis, como el 

mutualismo, el comensalismo o el parasitismo. Una forma avanzada de estas 

representaciones son las redes multicapa, que reflejan distintas dimensiones 

ecológicas y funcionales de un sistema complejo a través de capas 

interconectadas. Su base, sin embargo, es la misma que la de las redes 

convencionales, derivadas de la teoría de redes aplicada a la biología. 

 
2.4 Teoría de redes y su aplicación en biología 

La teoría de redes deriva de la teoría de grafos, una rama de las matemáticas 

que permite el estudio de estructuras formadas por nodos (también llamados 

vértices) y aristas (arcos) que los conectan. Estas representaciones no lineales 

son utilizadas con frecuencia para modelar sistemas en la vida cotidiana, como 

redes de transporte, rutas de telecomunicación o conexiones entre ciudades. 
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La estructura que adopte un grafo dependerá del tipo de relaciones que se 

busque representar, estas relaciones pueden ser dirigidas, ponderadas o 

simples (Barrero, García & Parra, 2010). 

 

Pese a su origen matemático, la teoría de redes es una herramienta altamente 

versátil que tiene múltiples aplicaciones en la descripción de dinámicas sociales 

o biológicas. En el estudio de sistemas biológicos complejos, esta teoría resulta 

fundamental para representar y analizar las interacciones entre distintos 

componentes de un sistema (De Domenico et al., 2016).  

 

En biología, se utiliza en la generación de redes, compuestas por nodos que 

pueden representar especies, individuos, genes, proteínas o microorganismos, 

y las aristas o enlaces, que retratan la relación entre estos componentes, es 

decir, la interacción metabólica, génica, de competencia o mutualismo. A 

medida que la investigación sobre sistemas complejos ha evolucionado, las 

redes se han vuelto una herramienta importante para la descripción y análisis 

realista de interacciones o procesos biológicos moleculares (Kivelä et al., 

2014). La combinación de redes con herramientas de modelado matemático ha 

impulsado la creación de representaciones más sofisticadas, como las redes 

multicapa, que permiten estudiar distintas interacciones o la evolución de estas 

bajo estresores ambientales. Estas representaciones se adaptan a la 

complejidad de los sistemas biológicos y contribuyen a su comprensión y 

estudio (Aleta & Moreno, 2019).  

 
2.4.1 Redes multicapa como herramienta para el modelado de 
interacciones complejas 

En el caso de las redes biológicas, los sistemas que buscan representarse son 

extremadamente complejos y heterogéneos, por lo que su comportamiento no 

depende únicamente de un factor o interacción entre los participantes, esto 

implica que la red clásica o representación convencional de estos sistemas 

puede resultar limitada frente a la estructura compleja e interconectada de los 

sistemas en biología. Por ello, las redes multicapa proporcionan una alternativa 
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útil en la representación de redes complejas como las biológicas (Hammoud & 

Kramer, 2020).  

 

Las redes multicapa poseen los componentes convencionales de una red: 

nodos y conexiones; sin embargo, se estructuran en capas, lo que permite 

ahondar en la naturaleza multiescala y multifactorial de los sistemas 

modelados. Los nodos utilizados en estas representaciones pertenecen a una o 

más capas y las conexiones entre ellos no se limitan exclusivamente a las 

conexiones dentro de una misma capa, pues se permiten enlaces entre todas 

las combinaciones posibles de nodos y capas (Kivelä et al., 2014).  

 

Este tipo de redes se utiliza para representar dos tipos de sistemas; las redes 

de redes y redes múltiples. Una red de redes está conformada por múltiples 

redes entrelazadas, en las que el conjunto de nodos que componen cada una 

de estas representaciones es distinto. Por otro lado, una red múltiple se define 

como aquella en la que cada capa contiene el mismo conjunto de nodos y la 

conexión entre ellos varía en función de la capa (Aleta & Moreno, 2019).  

 

En biología esto puede ser utilizado para la descripción de diversos sistemas. 

Por ejemplo, Zitnik y Leskovec desarrollaron una red multicapa de 

interacciones moleculares entre distintos tejidos del cuerpo humano, cada uno 

representado en la red como una capa distinta. Esto permite un análisis mucho 

más profundo con respecto al estudio que podría llevarse a cabo con una red 

monocapa. En microbiología, estas redes se utilizan para representar procesos 

complejos como la interacción proteica dentro de sistemas vivos, la síntesis 

génica o el análisis ecológico de comunidades (Kumar, Jalan & Kachhvah, 

2020). 

 

La aplicación de redes multicapa en el modelaje matemático facilita la 

simulación y el análisis de fenómenos biológicos complejos. Estas 

herramientas permiten estudiar cómo se propaga una alteración a través de 

distintos niveles de organización biológica, o cómo una interacción en una capa 
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puede afectar otras dimensiones del sistema. Esto resulta crucial en la 

comprensión de redes ecológicas, donde las especies interactúan en múltiples 

contextos de forma simultánea, y su comportamiento colectivo no puede 

explicarse únicamente mediante interacciones estáticas. 

 

En este sentido, las redes multicapa representan un puente entre los modelos 

biológicos tradicionales y el estudio de sistemas complejos, al proporcionar una 

estructura formal que permite integrar, escalar y analizar relaciones múltiples 

dentro de un ecosistema. Su uso abre nuevas posibilidades para generar 

predicciones más robustas, identificar nodos clave con funciones 

multifuncionales, y explorar la resiliencia y estabilidad de los sistemas 

biológicos desde una perspectiva más realista y holística. 

 

3.​  Justificación 

El aumento de la temperatura del océano tiene un impacto significativo en los 

ecosistemas marinos. Entre sus principales consecuencias se encuentran la 

alteración de las cadenas tróficas y de las asociaciones simbióticas, que 

resultan en una importante pérdida de la biodiversidad y de los hábitats (Madin 

et al. 2016). Este fenómeno climático incrementa el estrés biológico en 

microorganismos marinos. Modifica las reacciones químicas, altera las vías de 

señalización celular (Sharp et al., 2014) y afecta procesos biológicos esenciales 

como la respiración bacteriana o la actividad enzimática (Das & Mangwani, 

2015). 

 

El impacto acumulado de las actividades humanas sobre el océano ha sido un 

tema relevante en los últimos años, siendo la disbiosis de algunos organismos, 

como los corales, el foco de atención primaria en lo que respecta al cambio 

climático y acidificación oceánica (Chai et al., 2024). Sin embargo, el 

incremento constante de gases de efecto invernadero también altera la 

conformación y función de la microbiota oceánica, lo que repercute 

potencialmente en todos los ecosistemas marinos (Abirami et al., 2021). 
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Determinar cómo sucede este cambio dentro de las comunidades microbianas, 

así como el efecto a largo plazo que fenómenos climáticos, como el 

calentamiento global, tienen sobre un hábitat y toda la vida que alberga, es un 

proceso complicado que puede ayudarse de herramientas como las utilizadas 

en investigaciones in silico (Colquitt et al., 2011). El estudio de comunidades a 

través de modelaje matemático proporciona una visión del impacto en conjunto 

que alteraciones en los factores abióticos, como temperatura y pH, tienen sobre 

el océano. La construcción de modelos que incluyen parámetros bióticos dentro 

de un sistema complejo ha sido utilizada por años para obtener información 

importante acerca de la evolución a largo plazo de un nicho ecológico 

(Sagehashi, 2008). Esta metodología es útil en el estudio de comunidades 

microbianas marinas, dada la dificultad que representa su cultivo, observación 

y caracterización en el laboratorio (Pedrós-Alió, 2006).  

 

4.​  Hipótesis 

El cambio de la temperatura y pH en los ecosistemas marinos resulta en la 

pérdida de asociaciones dentro de las comunidades microbianas oceánicas, 

afectando negativamente la diversidad, riqueza, abundancias y las 

interacciones ecológicas entre estos microorganismos 

 

5.​  Objetivos  

4.1 ​Objetivo general  

Utilizar un modelo Lotka-Volterra generalizado para describir el efecto que 

variaciones en la temperatura y pH a través del tiempo tendrán sobre la 

abundancia de especies microbianas e interacciones interespecíficas 

 

4.2 Objetivos específicos 

●​ Crear un modelo Lotka-Volterra generalizado que considere variaciones 

en la temperatura y pH afectando la tasa de crecimiento de cada 

individuo dentro de la comunidad. 
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●​ Predecir el impacto que el aumento de la temperatura en el ecosistema 

marino puede tener sobre el tipo de interacciones exhibidas por 

microorganismos dentro de comunidades microbianas  

●​ Utilizar simulaciones computacionales para determinar que el 

comportamiento descrito por el modelo explica de forma correcta el tipo 

de alteraciones que sufre la microbiota marina 

●​ Inferir redes multicapa para el estudio de sus propiedades topológicas y 

su efecto de los estresores biológicos sobre las interacciones 

microbianas. 

 

6.​  Metodología. 

5.1 Herramientas para el modelado y simulación  

El desarrollo y la resolución numérica del modelo aquí propuesto fueron 

realizados en el lenguaje de programación R a través de la plataforma RStudio 

(R Core Team, 2025). Esto con ayuda de las siguientes bibliotecas 

especializadas:  

●​ deSolve. Utilizada para la resolución de las ecuaciones diferenciales 

utilizadas en el modelo, esta biblioteca está disponible en el repositorio 

CRAN (Soetaert, Petzoldt, Setzer, 2010). 

●​ MLBioNets. Usada en este trabajo para realizar las inferencias 

numéricas para la construcción de redes multicapa de interacción, 

recurso disponible en el repositorio GITHUB (Lázaro-Vidal et al. 2025; 

https://github.com/Nertekkad/mlBioNets). 

 
5.2 Construcción del modelo matemático  

Se desarrolló un modelo Lotka-Volterra generalizado con un efecto añadido de 

variaciones en temperatura y pH sobre las tasas de crecimiento. Este modelo 

se fundamenta en dos aproximaciones Lotka-Volterra previamente utilizadas en 

otras investigaciones; el primero incorpora el pH como modulador de la tasa de 

crecimiento microbiano (Chaturvedy & Misra, 2019), mientras el segundo utiliza 

en su lugar a la temperatura (Abreu et al., 2023). Ambos trabajos fueron 

https://github.com/Nertekkad/mlBioNets


43 

retomados para la construcción de un nuevo modelo que incorpora ambos 

factores abióticos, con el objetivo de analizar el efecto de los estresores 

ambientales sobre las tasas de crecimiento de los microorganismos en 

entornos marinos. 

 

Estas investigaciones son precursoras del presente trabajo, las cuales adapté 

para la generación de un modelo unificado (Eq. 1) que toma en cuenta ambos 

modelos. Este modelo utiliza las tasas de crecimiento máximas ( ), las 𝑟

interacciones entre especies dentro de la comunidad ( , así como la muerte α
𝑖𝑗

)

de miembros de la población ( ) ligada a una función dependiente del pH ( ) δ σ

para describir el comportamiento de los miembros de una comunidad frente al 

estrés abiótico que representa el aumento de la temperatura en el océano.  

 

En este modelo, la tasa máxima de crecimiento es descrita en función de la 

temperatura con el modelo de Arrhenius y el cambio del pH en el océano (Eq. 

2).  

 

La función que describe el efecto de las variaciones de pH se encuentra 

descrita en la (Eq. 3), que utiliza el valor de pH oceánico para determinar, en 

función de los valores máximo ( , mínimo (  y óptimo ( de pH 𝑝𝐻
𝑚𝑎𝑥

) 𝑝𝐻
𝑚𝑖𝑛

) 𝑝𝐻
𝑜𝑥

) 

requerido por una especie, el efecto benéfico o perjudicial de la acidificación 

oceánica sobre la tasa de crecimiento máxima ( ) así como su influencia en la 𝑟
𝑖

muerte de miembros de la población ( ). δσ

 

Para determinar el valor del pH oceánico (pH), se empleó la (Eq. 4) que 

considera el valor promedio de pH reportado por el IPCC (8.1). Este valor base 

varía en función de la temperatura utilizada en las simulaciones, dado que el 

pH oceánico disminuye con el aumento de la temperatura. Según el IPCC, 

dicha relación implica una variación de 0.017 unidades de pH por cada grado 

Kelvin que aumente o disminuya la temperatura del océano. 
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Cabe destacar que esta fórmula representa una aproximación empírica basada 

en datos del IPCC, útil para identificar tendencias generales en escenarios de 

cambio climático. Sin embargo, no debe considerarse una estimación 

químicamente precisa del pH oceánico actual, ya que no incorpora variables 

clave del sistema carbonato marino como la alcalinidad o la concentración de 

CO₂ disuelto. 

 

 
(Eq. 1) 

 

 

(Eq. 2) 

 

 

 

(Eq. 3) 

 
 
 

(Eq. 4) 

 
5.3 Condiciones de simulado en el modelo  

Los parámetros utilizados en las simulaciones del modelo Lotka-Volterra bajo 

variaciones de pH y temperatura, fueron definidos a partir de los trabajos de 

Abreu et al. (2023), Hu et al. (2022) y Chaturvedi & Misra (2019). 

 

La tasa máxima de crecimiento en el modelo depende principalmente de la 

temperatura y el pH. El primer conjunto de parámetros que determina esta tasa 

se basa en una adaptación de la ecuación de Arrhenius, en la cual el 

crecimiento incrementa de forma uniforme con la temperatura y es proporcional 

al número de copias de ARNr ( ). Este valor es entero (entre 1-10) y en cada 𝑅

simulación fue extraído de una distribución geométrica , en donde  (1 − 𝑝)𝑘−1𝑝  𝑘
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representa el número de copias y  corresponde a la fracción de taxones con 𝑝

una sola copia en la distribución inicial de la comunidad, este valor fue 

determinado para cada especie en todas las simulaciones.  

 

El prefactor (a) dentro de la ecuación fue fijado en 1.7 x 105 1/hora, esto para 

que el modelo produzca tasas de crecimiento biológicamente plausibles dentro 

del rango de temperaturas estudiado. Este valor fue elegido para asegurar que, 

a una temperatura de 298 K, las tasas máximas de crecimiento se mantuvieran 

dentro de los límites empíricamente observados. La temperatura fue expresada 

en Kelvin (en un rango de 278-298 K) y la energía de activación se fijó a 0.33 

eV, siguiendo los valores utilizados en el modelo propuesto por Abreu et al. 

 

A diferencia de la interpretación tradicional de la ecuación de Arrhenius, donde 

la tasa r representa la frecuencia de colisiones reactivas, en este modelo r se 

refiere a la tasa máxima de crecimiento celular (1/hora). La energía de 

activación  así como el producto comparten las mismas unidades (eV) 𝐸 𝑘
𝐵

𝑇 

(Abreu et al., 2023). 

 

El segundo conjunto de parámetros que influye en la tasa de crecimiento 

máxima está relacionado con los requerimientos de pH. En este componente 

se utilizaron valores de pH óptimo, mínimo y máximo específicos para cada 

especie. El valor de pH óptimo fue extraído de una distribución normal dentro 

de un rango definido (x a y). El pH mínimo fue determinado a partir de una 

distribución normal en un rango comprendido entre un valor inferior arbitrario f y 

el valor óptimo ( ). De forma análoga, el pH máximo se definió a partir de 𝑝𝐻
𝑂

una distribución normal con un rango entre  y un valor superior g.  𝑝𝐻
𝑂

 

Se realizaron simulaciones sobre una comunidad de 50 especies utilizando 

ambos modelos previamente descritos: el primero, que considera únicamente 

el efecto aislado de la temperatura, y el segundo, que integra de manera 

conjunta los efectos de la temperatura y el pH. En ambos modelos se 
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implementaron tres fases distintas, determinadas por la matriz de interacción 

generada para la comunidad. Dichas matrices fueron construidas 

aleatoriamente a partir de una distribución normal, con valores de media (m) y 

desviación estándar (std) que aumentaban proporcionalmente: m = 0.08, std = 

0.04 (fase I); m = 0.16, std = 0.08 (fase II); y m = 0.64, std = 0.32 (fase III) (Hu 

et al., 2022). Cada una de estas fases representa un estado de equilibrio 

diferente en la comunidad: completa coexistencia (fase I), coexistencia parcial 

(fase II) y fluctuaciones constantes en la abundancia y biomasa de especies 

(fase III). 

 

 
Figura 1. Representación gráfica del procedimiento a seguir para la generación de redes de 

interacción basadas en un modelo Lotka-Volterra con el efecto añadido de factores abióticos 

 

5.4 Construcción y visualización de redes multicapa  

Los resultados de cada simulación con el modelo Lotka-Volterra fueron 

utilizados para la construcción de redes de interacción. Esto realizado con 

ayuda de la biblioteca MlBIONETS (Lázaro-Vidal et al. 2023;  

https://github.com/Nertekkad/mlBioNets), que utiliza las abundancias relativas 

de las especies dentro del sistema para realizar la inferencia de interacciones 

https://github.com/Nertekkad/mlBioNets
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biológicas. Dichas inferencias fueron utilizadas entonces para la construcción 

de múltiples redes, cada una con un pH y temperatura asociados para 

determinar el efecto del sistema bajo dichas condiciones.  Finalmente, la 

visualización, manipulación y análisis de las redes multicapa se realizó a través 

del software Cytoscape (Shannon et al., 2003) 

 

7.​ Parámetros del modelo  

Tabla 1. Parámetros del modelo  

Parámetro Descripción 

 𝑟 Tasa de crecimiento máxima  

 𝑎 Prefactor  

 𝑅 Número de copias de ARNr 

 𝐸 Energía de activación 

 𝑘
𝐵

Constante de Boltzman 

 𝑇 Temperatura 

 𝑋
𝑖

Abundancia de especie i 

 α
𝑖𝑗

Fuerza de interacción. Efecto de la especie i sobre la 
tasa de crecimiento de la especie j  

 δ Tasa de mortalidad  

 σ Efecto de pH sobre la abundancia de especies  

 𝑝𝐻 Valores de pH oceánico  

 𝑝𝐻
𝑜

Valor de pH óptimo para el crecimiento de especies  

 𝑝𝐻
𝑚𝑖𝑛

Valor de pH mínimo para el crecimiento de especies  

 𝑝𝐻
𝑚𝑎𝑥

Valor de pH máximo para el crecimiento de especies.  
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8.​ Resultados  

8.1 Modelo Lotka-Volterra con efecto de temperatura  

El modelo Lotka-Volterra dependiente de la temperatura, desarrollado por 

Abreu et al. (2023), fue utilizado en conjunto con configuraciones específicas 

de matrices de interacción para simular comunidades ecológicas compuestas 

por 50 especies. Estas matrices fueron generadas según las tres fases de 

interacción propuestas con anterioridad: completa coexistencia (fase I), 

coexistencia parcial (fase II) y la fluctuación en la estabilidad de la comunidad 

(fase III). Para cada una de las fases se ejecutaron simulaciones a lo largo de 

un gradiente térmico que va desde 278 K a 298 K, rango empleado también por 

Abreu et al. (2023), con el fin de observar las transiciones estructurales de la 

comunidad bajo condiciones ambientales variables. 

 

A partir de las abundancias resultantes de cada simulación se construyeron 21 

redes ecológicas, una por cada temperatura analizada. Para inferir las 

interacciones dentro de la comunidad simulada a partir de simulaciones del 

modelo Lotka-Volterra, se utilizó el algoritmo ARACNe (Algorithm for the 

Reconstruction of Accurate Cellular Networks). Que se basa en el uso de 

información mutua entre pares de especies, esto permite eliminar asociaciones 

débiles y la construcción de redes que reflejan conexiones significativas. Se 

seleccionó ARACNe debido a que en comparación con otros algoritmos como 

SparCC, identifica interacciones lineales y no lineales lo que permitió la 

construcción de redes multicapa robustas a partir de los datos de abundancia 

relativa generados en las simulaciones. Estas redes fueron evaluadas mediante 

métricas estructurales como el número de conglomerados conectados, el 

porcentaje de nodos activos en la red y la densidad de conexiones entre 

especies (Figuras 2–10; Tabla 3).  
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Figura 2. Número de conglomerados conectados en redes pertenecientes a la fase 1 (completa 

coexistencia).  

 

Figura 3. Porcentaje de conectividades en redes pertenecientes a la fase 1 (completa 

coexistencia).  
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Figura 4. Porcentaje de nodos conectados en redes pertenecientes a la fase 1 (completa 

coexistencia). La línea discontinua corresponde a la media de los valores registrados y la curva 

roja muestra la tendencia de la variable en función de la temperatura.  

 
Figura 5. Número de conglomerados conectados en redes pertenecientes a la fase 2 

(coexistencia parcial).  
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Figura 6. Porcentaje de conectividades en redes pertenecientes a la fase 2 (coexistencia 

parcial).  

 
Figura 7. Porcentaje de nodos conectados en redes pertenecientes a la fase 2 (coexistencia 

parcial).  La línea discontinua corresponde a la media de los valores registrados, y la curva roja 

muestra la tendencia de la variable en función de la temperatura.  
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Figura 8. Número de conglomerados conectados en redes pertenecientes a la fase 3 

(fluctuación en la estabilidad de la comunidad).  

 

 
Figura 9. Porcentaje de conectividades en redes pertenecientes a la fase 3 (fluctuaciones en la 

estabilidad de la comunidad). 
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Figura 10. Porcentaje de nodos conectados en redes pertenecientes a la fase 3 (fluctuaciones 

en la estabilidad de la comunidad).   La línea discontinua corresponde a la media de los valores 

registrados, y la curva roja muestra la tendencia de la variable en función de la temperatura. 

 

Las métricas estructurales obtenidas a partir de las redes ecológicas generadas 

con el modelo Lotka-Volterra bajo gradientes de temperatura revelan 

diferencias notables entre las tres fases simuladas. Aunque en todas las fases 

se observan oscilaciones en el número de conglomerados conectados a lo 

largo del gradiente térmico, estos valores se mantienen consistentemente bajos 

en todas las simulaciones. En la fase I, el número de conglomerados presenta 

variaciones marcadas a lo largo del gradiente, con picos y caídas alternadas; 

no obstante, a partir de los 290 K, esta métrica permanece baja y no vuelve a 

incrementarse. En contraste, la fase II muestra oscilaciones más suaves y 

controladas en todo el rango térmico. Por su parte, la fase III se caracteriza por 

fluctuaciones abruptas y un comportamiento más errático, sin una tendencia 

clara hacia el final del gradiente. 

 

El porcentaje de conectividad de la red es marcadamente variable en la fase I, 

relativamente constante en la fase II, y estable en la fase III salvo por un 

incremento abrupto en las temperaturas 284–286 K. Por último, el porcentaje 
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de nodos conectados muestra alta variabilidad en la fase I pero con una 

tendencia general ascendente; en la fase II los valores son más estables; y en 

la fase III, se observa una tendencia ligeramente descendente a medida que 

aumenta la temperatura. 

 

A partir de las redes individuales generadas para cada punto del gradiente 

térmico, se construyeron redes multicapa correspondientes a cada una de las 

tres fases del sistema (Anexos 11.2.1–11.2.3). Cada multicapa fue conformada 

por tres capas que representan las temperaturas extremas y un punto 

intermedio del gradiente: 278 K, 288 K y 298 K. Estas redes fueron visualizadas 

y analizadas con ayuda del software Cytoscape (Shannon et al., 2003), lo que 

permitió examinar la organización estructural de cada capa, así como identificar 

patrones de reorganización a lo largo del gradiente térmico. Posteriormente, se 

evaluaron a través de un conjunto de métricas topológicas que permitieron 

cuantificar el comportamiento de las comunidades simuladas en cada fase 

(Tablas 3–5). 

 

La red generada para la fase 1 (Anexo 11.2.1), correspondiente a interacciones 

de baja magnitud, exhibe una creciente desconexión estructural a lo largo del 

gradiente térmico. En la capa correspondiente a la temperatura más baja, se 

observa un clúster hiperconectado, que pierde progresivamente sus 

componentes conforme aumenta la temperatura. Paralelamente, emergen 

pequeñas asociaciones entre dos o tres especies. Este patrón revela una 

fragmentación evidente en la comunidad.  

 

En la fase 2 (Anexo 11.2.2), donde las interacciones tienen una magnitud 

media se observa una estructura más dinámica. La primera capa muestra al 

menos cuatro agrupaciones principales, que se disgregan en la capa 

intermedia.  En esta, solo una de las agrupaciones mantiene conectividad, 

aunque reducida. Sin embargo, en la temperatura máxima, los conglomerados 

iniciales reaparecen, más robustos debido a la integración de nuevas especies 
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en cada agrupación. Este patrón sugiere cierta capacidad de reorganización a 

medida que avanza el gradiente térmico.  

 

En la fase 3 (Anexo 11.2.3), caracterizada por interacciones de alta fuerza y 

variabilidad, se observan al menos seis agrupaciones iniciales. A lo largo del 

gradiente térmico, estas experimentan modificaciones notables, incluyendo 

reestructuraciones internas, fusiones entre conglomerados y la aparición o 

disolución de nuevas asociaciones. La composición de los conglomerados 

cambia considerablemente entre capas, indicando una elevada dinámica de 

reconfiguración estructural.  

 

Tabla 2. Métricas utilizadas en el análisis de redes 

Métrica Significado  

Número de nodos  Número de componentes dentro del 
sistema (Flores de la Mota, 2023) 

Número de aristas (conexiones) Número total de interacciones entre 
los nodos (Flores de la Mota, 2023) 

Promedio de nodos vecinos  Indicador de la conectividad 
promedio de la red (Barrat et al. 
2004) 

Diámetro de la red Distancia más larga entre dos nodos 
dentro de la red (Barrat et al. 2004) 

Radio de la red Distancia mínima desde un nodo 
hacia el resto dentro de la red (Barrat 
et al. 2004) 

Longitud de ruta característica Promedio de las rutas más cortas 
entre todos los pares posibles de 
nodos en una red (Flores de la Mota, 
2023) 

Coeficiente de agrupamiento Mide el grado de agrupamiento de los 
nodos de una red (Hansen et al. 
2020) 

Densidad de la red Número de conexiones entre los 
nodos de una red (Bedru et al. 2020) 
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Heterogeneidad de la red Refleja la tendencia de una red a 
contener nodos centrales; un valor 
bajo indica homogeneidad en el 
número de conexiones (Hansen et al. 
2020) 

Centralización de la red  Indica el grado de centralidad dentro 
de la red (Rodrigues, 2019) 

Componentes conectados Medida de la conectividad global de 
la red: valores bajos denotan alta 
conectividad, mientras que valores 
altos reflejan fragmentación 
estructural (Rodrigues, 2019). 

 

Tabla 3. Métricas por capa de la red conjunta LVT fase 1 

LVT1 
Métrica 278 288 298 

Número de nodos  50 50 50 
Número de aristas 
(conexiones) 58 42 29 
Promedio de nodos vecinos  10 7 5 
Diámetro de la red  1 1 1 
Radio de la red  1 1 1 
Longitud de ruta característica 1 1 1 
Coeficiente de agrupamiento 1 1 1 
Densidad de la red  1 1 1 
Heterogeneidad de la red  0 0 0 
Centralización de la red 0 0 0 
Componentes conectados 37 34 36 
 

Tabla 4. Métricas por capa de la red conjunta LVT fase 2 

LVT2 
Métrica 278 288 298 

Número de nodos  50 50 50 
Número de aristas 
(conexiones) 29 9 66 
Promedio de nodos vecinos  4 3 9 
Diámetro de la red  1 1 1 
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Radio de la red  1 1 1 
Longitud de ruta característica 1 1 1 
Coeficiente de agrupamiento 1 1 1 
Densidad de la red  1 1 1 
Heterogeneidad de la red  0 0 0 
Centralización de la red 0 0 0 
Componentes conectados 37 44 33 
 

Tabla 5. Métricas por capa de la red conjunta LVT fase 3 

LVT3 
Métrica 278 288 298 

Número de nodos  50 50 50 
Número de aristas 
(conexiones) 48 31 31 
Promedio de nodos vecinos  5 6 5 
Diámetro de la red  1 1 1 
Radio de la red  1 1 1 
Longitud de ruta característica 1 1 1 
Coeficiente de agrupamiento 1 1 1 
Densidad de la red  1 1 1 
Heterogeneidad de la red  0 0 0 
Centralización de la red 0 0 0 
Componentes conectados 29 37 36 
 

En la red correspondiente a la fase I (Tabla 3), el número de conexiones 

disminuye con el aumento de temperatura, pasando de 58 en 278 K a 29 en 

298 K. Esta disminución se refleja también en el número promedio de nodos 

vecinos, que desciende de 10 a 5. A pesar de estos cambios, las métricas 

globales como el diámetro, radio, longitud ruta característica, coeficiente de 

agrupamiento, densidad, heterogeneidad y centralización permanecen 

constantes con valores fijos (predominantemente igual a 1 o 0). El número de 

componentes conectados se mantiene alto en todas las capas, con valores de 

37, 34 y 36, lo que indica una fuerte fragmentación de la red. 
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En la fase II (Tabla 4) se observa una dinámica diferente. El número de 

conexiones disminuye inicialmente (de 29 en 278 K a 9 en 288 K), seguido de 

un aumento considerable a 66 conexiones en 298 K. El número promedio de 

nodos vecinos sigue una tendencia similar. El número de componentes 

conectados también varía de manera más marcada, con un incremento a 44 en 

288 K seguido de una disminución a 33 en 298 K. Las métricas globales 

permanecen invariables, como en la fase 1. 

 

La fase III (Tabla 5) presenta una configuración más estable en cuanto a 

número de conexiones, que oscila entre 48 y 31, y el número promedio de 

nodos vecinos se mantiene relativamente constante (entre 5 y 6). El número de 

componentes conectados varía moderadamente (29, 37 y 36), sin un patrón 

definido. Nuevamente, las métricas globales son constantes entre capas. 

 

8.2 Modelo Lotka-Volterra con efecto de temperatura y pH 

Una vez incorporado el efecto del pH sobre la tasa máxima de crecimiento en 

el modelo Lotka-Volterra, se realizaron nuevas simulaciones que integran las 

variaciones de temperatura y pH sobre una comunidad compuesta por 50 

especies. Estas simulaciones se organizaron nuevamente en las tres fases 

antes descritas, cada una con su respectiva matriz de interacción. A partir de 

los datos obtenidos, se construyeron las redes ecológicas para cada punto de 

un nuevo gradiente ambiental, que abarca desde los 278 K hasta los 307 K. 

Posteriormente, se calcularon las métricas estructurales previamente descritas 

(Figuras 11–19), con el fin de evaluar los cambios en la configuración de las 

comunidades bajo escenarios ambientales más complejos. 
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Figura 11. Número de conglomerados conectados en redes pertenecientes a la fase 1 

(completa coexistencia). Modelo Lotka-Volterra con temperatura y pH. 

 

Figura 12. Porcentaje de conectividades en redes pertenecientes a la fase 1 (completa 

coexistencia) del modelo Lotka-Volterra con temperatura y pH.  



60 

 

Figura 13. Porcentaje de nodos conectados en redes pertenecientes a la fase 1 (completa 

coexistencia) del modelo Lotka-Volterra con temperatura y pH.  La línea discontinua 

corresponde a la media de los valores registrados, y la curva roja muestra la tendencia de la 

variable en función de la temperatura.  

 

 
Figura 14. Número de conglomerados conectados en redes pertenecientes a la fase 2 

(coexistencia parcial). Modelo Lotka-Volterra con temperatura y pH.  
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Figura 15.Porcentaje de conectividades en redes pertenecientes a la fase 2 (coexistencia 

parcial). Modelo Lotka-Volterra con temperatura y pH.  

 

Figura 16. Porcentaje de nodos conectados en redes pertenecientes a la fase 2 (coexistencia 

parcial). Modelo Lotka-Volterra con temperatura y pH.  La línea discontinua corresponde a la 

media de los valores registrados, y la curva roja muestra la tendencia de la variable en función 

de la temperatura.  
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Figura 17. Número de conglomerados conectados en redes pertenecientes a la fase 3 

(fluctuaciones en la estabilidad de la comunidad). Modelo Lotka-Volterra con temperatura y pH.  

 

Figura 18. Porcentaje de conectividades en redes pertenecientes a la fase 3 (fluctuaciones en 

la estabilidad de la comunidad). Modelo Lotka-Volterra con temperatura y pH.  
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Figura 19. Porcentaje de nodos conectados en redes pertenecientes a la fase 3 (fluctuaciones 

en la estabilidad de la comunidad). Modelo Lotka-Volterra con temperatura y pH.  La línea 

discontinua corresponde a la media de los valores registrados, y la curva roja muestra la 

tendencia de la variable en función de la temperatura.  

 

En la fase I (Figura 11), el número de conglomerados conectados en la 

comunidad permanece relativamente constante a lo largo del gradiente térmico, 

con una variación menor en comparación con su análogo del modelo 

Lotka-Volterra que considera solo temperatura. Se observan caídas marcadas 

en el número de conglomerados en las temperaturas de 288 K y 289 K, pero en 

general la red mantiene una estructura estable. En la fase II (Figura 14), el 

número de conglomerados es mayor en las temperaturas más bajas, 

alcanzando hasta 11 conglomerados conectados. Sin embargo, esta tendencia 

decrece progresivamente a partir de los 288 K, sin una recuperación posterior, 

alcanzando los valores más bajos de conectividad estructural en la comunidad. 

En la fase 3 (Figura 17), se observa la mayor variabilidad en el número de 

conglomerados conectados. A lo largo del gradiente, estos aumentan y 

disminuyen frecuentemente, reflejando una estructura menos estable. Este 

comportamiento es similar al observado en el modelo que considera 

únicamente el efecto de la temperatura.  
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Respecto al porcentaje de conectividades, en la fase I (Figura 12), se observa 

un valor elevado al inicio del gradiente térmico, que disminuye de forma 

sostenida conforme aumenta la temperatura. En la fase II (Figura 15), el 

porcentaje se mantiene relativamente constante, con un ligero aumento hacia 

las temperaturas más altas. En la fase III (Figura 18), las conectividades oscilan 

considerablemente, aunque siguen una tendencia decreciente a partir de los 

285 K.  

 

En cuanto al porcentaje de nodos conectados, se observa la mayor variación 

entre fases. En la fase I (Figura 13) y la fase III (Figura 19), se presenta una 

curva en forma de “U”: los valores iniciales son altos, disminuyen a medida que 

avanza el gradiente térmico y de pH, y luego aumentan nuevamente. En 

contraste, la fase II (Figura 16) muestra una disminución progresiva del 

porcentaje de nodos conectados, alcanzando su valor más bajo en la 

temperatura 307 K. 

 

Con base en las gráficas de porcentaje de nodos conectados (Figuras 13, 16 y 

19), se seleccionaron cuatro temperaturas representativas para la construcción 

de una red multicapa por fase (Anexos 11.2.4–11.2.6). Estas temperaturas 

fueron elegidas por reflejar transiciones estructurales significativas en la 

comunidad simulada, de acuerdo con las tendencias identificadas en las 

métricas. Cada una corresponde a lo que se clasificó como un evento ecológico 

clave, al representar momentos de pérdida, reorganización o recuperación de 

conectividad entre especies, como se resume en la Tabla 6. 
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Tabla 6. Relación evento-capa por fase de estudio 

Evento ecológico clave  LVTpH1 
(0.08/0.04) 

LVTpH2 
(0.16/0.08) 

LVTpH3 
(0.64/0.32) 

Punto con alta conectividad 281 K 285 K 282 K 

Descenso en la 
conectividad 

286 K 289 K 285 K 

Colapso en la conectividad 299 K 302 K 296 K 

Intento de recuperación en 
el sistema  

305 K 306 K 302 K 

 
La red multicapa correspondiente a la fase I (Anexo 11.2.4) exhibe un 

comportamiento dinámico a lo largo del gradiente térmico y de pH. En la 

primera capa (281 K), se observa una estructura compuesta por múltiples 

conglomerados densamente conectados. Esta configuración se disgrega en la 

segunda capa (286 K), donde varias agrupaciones pierden cohesión mientras 

emergen nuevas asociaciones entre especies. En la tercera capa (299 K), el 

sistema alcanza su punto de mayor desconexión, fragmentación y pérdida de 

relaciones simbióticas funcionales. Sin embargo, en la cuarta capa (305 K), se 

evidencia una recuperación parcial pues reaparecen varios de los 

conglomerados originales, aunque con menor densidad de conexiones. Este 

patrón sugiere una reorganización de la comunidad, así como la persistencia 

parcial de las agrupaciones iniciales.  

 

En el caso de la fase II (Anexo 11.2.5), la comunidad muestra una 

fragmentación temprana y marcada. La primera capa (285 K) presenta al 

menos diez pequeños conglomerados, los cuales se reducen drásticamente a 

tres en la segunda capa (289 K). En la tercera capa (302 K), la red colapsa 

hacia un único clúster, indicando una fuerte pérdida de conectividad. 

Finalmente, en la cuarta capa (306 K), se forman dos nuevos conglomerados, 

ambos con una cantidad considerable de especies y conexiones, lo que 

evidencia una reorganización estructural distinta a la observada en fases 

previas. 
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Por último, la fase III (Anexo 11.2.6) presenta una evolución estructural que 

combina rasgos de las fases anteriores. Inicia con cinco conglomerados 

interconectados en la primera capa (282 K), los cuales comienzan a 

desintegrarse parcialmente en la segunda capa (285 K), donde aún se observa 

un rastro de la configuración original. En la tercera capa (296 K), la mayoría de 

los conglomerados desaparecen, exceptuando uno.  Sin embargo, en la cuarta 

capa (302 K), dicho clúster se disuelve y emerge una nueva agrupación 

altamente densa, conformada por 19 especies, lo que representa una 

recuperación notable en la cohesión del sistema. 

Al igual que en el modelo previo, cada una de las capas que conforman las 

redes multicapa fue analizada mediante el software Cytoscape (Shannon et al., 

2003), con el objetivo de calcular las métricas topológicas correspondientes. 

Este análisis permitió cuantificar el comportamiento estructural de las 

comunidades simuladas en cada fase, bajo el efecto combinado de 

temperatura y pH (Tablas 7-9).  

Tabla 7. Métricas por capa de la red conjunta LVTpH fase 1 

LVTpH1 
Métrica 281 286 299 305 

Número de nodos  50 50 50 50 
Número de aristas 
(conexiones) 243 89 82 116 

Promedio de nodos vecinos  14 8 9 10 
Diámetro de la red  1 1 1 1 
Radio de la red  1 1 1 1 
Longitud de ruta característica 1 1 1 1 
Coeficiente de agrupamiento 1 1 1 1 
Densidad de la red  1 1 1 1 
Heterogeneidad de la red  0 0 0 0 
Centralización de la red 0 0 0 0 
Componentes conectados 7 22 32 18 
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Tabla 8. Métricas por capa de la red conjunta LVTpH fase 2 

LVTpH2 
Métrica 285 289 302 306 

Número de nodos  50 50 50 50 
Número de aristas 
(conexiones) 94 89 36 73 
Promedio de nodos vecinos  8 9 8 8 
Diámetro de la red  1 1 1 1 
Radio de la red  1 1 1 1 
Longitud de ruta característica 1 1 1 1 
Coeficiente de agrupamiento 1 1 1 1 
Densidad de la red  1 1 1 1 
Heterogeneidad de la red  0 0 0 0 
Centralización de la red 0 0 0 0 
Componentes conectados 16 28 42 33 
 

Tabla 9. Métricas por capa de la red conjunta LVTpH fase 3 

LVTpH3 
Métrica 282 285 296 302 

Número de nodos  50 50 50 50 
Número de aristas 
(conexiones) 225 94 45 171 
Promedio de nodos vecinos  9 9 9 18 
Diámetro de la red  1 1 1 1 
Radio de la red  1 1 1 1 
Longitud de ruta característica 1 1 1 1 
Coeficiente de agrupamiento 1 1 1 1 
Densidad de la red  1 1 1 1 
Heterogeneidad de la red  0 0 0 0 
Centralización de la red 0 0 0 0 
Componentes conectados 5 23 41 32 
 

En la fase I, la red inicia con una alta conectividad (243 conexiones a 281 K), 

que disminuye progresivamente a medida que aumenta la temperatura (82 
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conexiones a 299 K), aunque presenta una recuperación parcial en la última 

capa (116 conexiones a 305 K). Asimismo, la fragmentación de la red 

(denotada por el número de componentes conectado) aumenta en las 

condiciones intermedias (pasa de 7 a 32 componentes conectados en 299 K), 

lo que sugiere un debilitamiento de la cohesión estructural, seguido de una 

reconexión parcial en la capa final (18 componentes a 305 K). 

La fase II muestra un comportamiento más inestable. La conectividad es baja 

desde el inicio (94 conexiones a 285 K) y se reduce aún más a 302 K (36 

conexiones), sin señales de reorganización. El número de componentes 

conectados aumenta considerablemente hasta 42 en esa misma capa, lo que 

refleja una red altamente fragmentada frente al estrés ambiental. Aunque este 

valor disminuye a 33 componentes en la última capa (306 K), el sistema no 

logra recuperar su cohesión inicial y presenta una fragmentación mayor a la de 

la fase anterior. En este caso, la diferencia entre el número de componentes 

conectados al inicio y al final es de 17 unidades, superando la variación 

observada en la fase I. 

En contraste, la fase III exhibe una dinámica estructural distinta. La red inicia 

con una alta conectividad (225 conexiones a 282 K), que disminuye 

bruscamente en 296 K (45 conexiones), pero muestra una recuperación 

sustancial en la capa final (171 conexiones en 302 K), similar a lo observado en 

la fase I. Este patrón también se refleja en la fragmentación de las redes: la 

temperatura inicial presenta solo 5 componentes conectados, lo que indica baja 

fragmentación en la comunidad, pero este valor aumenta drásticamente a 41 

componentes en 296 K, para luego disminuir a 32 en la última capa. Sin 

embargo, la diferencia entre los valores inicial (5 componentes) y final (32 

componentes) de la fase III es de 27 unidades, lo que sugiere que, aunque 

existe una capacidad de reorganización, la resiliencia estructural es 

considerablemente menor en comparación con la fase I, que finaliza con una 

diferencia de solo 11 unidades (de 7 en 281 K a 18 en 305 K), o la fase II, que 

presenta una variación intermedia de 17 unidades (de 16 en 285 K a 33 en 306 

K). 
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9.​ Discusión 

9.1 Dinámica estructural de redes bajo gradiente térmico 

El comportamiento estructural de la comunidad varía notablemente en función 

de dos factores principales: la intensidad de las interacciones entre los 

miembros de la comunidad y el tipo de estímulo ambiental. Estas diferencias se 

observan con claridad en las redes multicapa. En las fases sometidas 

exclusivamente a la variación del gradiente térmico, se observa una tendencia 

general hacia la fragmentación progresiva a medida que aumenta la 

temperatura. Asimismo, la resiliencia y plasticidad estructural aumentan 

conforme la fuerza y variabilidad de las interacciones interespecíficas se 

incrementan. 

En la fase I, la red presenta una alta fragmentación desde el inicio, lo que lleva 

a la formación de múltiples conglomerados pequeños y aislados. Este patrón 

sugiere una baja resiliencia comunitaria frente al incremento térmico de la 

simulación. Al tratarse de una fase con interacciones débiles, las asociaciones 

entre especies son efímeras y son deshechas con facilidad. La ausencia de 

mecanismos evidentes de reorganización o sustitución funcional implica que la 

red no logra adaptarse al estrés térmico, lo que posiciona a esta fase como la 

más frágil y menos resiliente de este primer modelo. 

 

La fase II exhibe un patrón estructural más dinámico. A pesar de experimentar 

una caída abrupta en la conectividad a 288 K, la comunidad logra una 

reorganización parcial en la última capa. La reaparición de agrupaciones 

presentes al inicio de la simulación, integradas después por un mayor número 

de especies, sugiere una respuesta adaptativa frente a la perturbación térmica. 

Aunque la red se fragmenta, también muestra capacidad de recuperación y 

reconfiguración, lo cual puede interpretarse como un aumento en la resiliencia 

ecológica, facilitada por interacciones más fuertes y variables que las 

observadas en la fase anterior. 
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Asimismo, la fase III exhibe la mayor resiliencia y plasticidad estructural de las 

tres configuraciones de este primer modelo. En esta fase, las asociaciones 

entre especies son lo suficientemente fuertes y variables para resistir los 

efectos del gradiente térmico, al mismo tiempo que permiten una constante 

reorganización de la red. Esta capacidad de reestructuración continua refleja 

una comunidad altamente resiliente, que no colapsa ni se fragmenta de forma 

irreversible, sino que se transforma activamente en respuesta a las condiciones 

cambiantes. Aquí las agrupaciones logran adaptarse de forma dinámica, lo que 

contrasta con la fragilidad observada en la fase I de este modelo. 

 

9.2 Efecto combinado de temperatura y pH  

La incorporación de pH al modelo modifica sustancialmente la dinámica 

estructural de las redes en cada una de las fases. Bajo el efecto aditivo de 

estos estímulos, las fases muestran un comportamiento inverso al expuesto en 

el modelo que incorpora únicamente el gradiente térmico.  

 

En la fase I, la red muestra una capacidad parcial de recuperación de las 

conectividades tras la perturbación térmica. A lo largo del gradiente, los 

conglomerados formados inicialmente se desintegran, reagrupan o 

desaparecen; sin embargo, algunas de estas conexiones, aunque inicialmente 

perdidas, logran reemerger al final de la simulación. Esto sugiere una forma de 

memoria ecológica en la que ciertas configuraciones simbióticas son 

preservadas a lo largo del gradiente. Esto contrasta con el comportamiento de 

esta fase en el modelo anterior, donde la comunidad perdía cohesión de 

manera irreversible, fragmentándose sin capacidad de regenerar conexiones.  

 

La fase III representa lo opuesto. Esta red presenta relaciones más fuertes y 

complejas, evidenciadas en la densidad de las conexiones entre agrupaciones 

de la comunidad. No obstante, conforme el gradiente térmico aumenta las 

agrupaciones se disgregan, exhibiendo mayores fluctuaciones estructurales y 

una pérdida significativa de conectividad en capas con termicidad mayor. Este 

resultado sugiere que una red con excesiva densidad de vínculos puede 



71 

volverse rígida y con poca plasticidad, características que dificultan la 

adaptación de la comunidad y pueden comprometer su capacidad de 

reorganización. Esta rigidez en consecuencia puede volver a las comunidades 

frágiles ante el estrés ambiental.  

 

Finalmente, la fase II representa un punto intermedio, donde la comunidad es 

capaz de fragmentarse y posteriormente reorganizarse parcialmente. Sin 

embargo, no alcanza el nivel de resiliencia ni la plasticidad estructural 

observadas en la Fase I. Este comportamiento puede reflejar la importancia del 

equilibrio entre la fuerza de las interacciones y la flexibilidad estructural en la 

configuración de comunidades resilientes frente al cambio ambiental 

 

 

9.3 Relación con la teoría complejidad–estabilidad 

El comportamiento de la comunidad muestra diferencias marcadas en función 

del modelo. La fase III, caracterizada por tener relaciones más fuertes, 

complejas y variables, manifiesta un comportamiento resiliente y con baja 

fragmentación bajo el modelo térmico. Sin embargo, cuando se incorpora el 

efecto aditivo del gradiente térmico y del pH, esta misma fase se transforma en 

aquella donde las interacciones limitan la flexibilidad de la comunidad, lo que 

compromete su reorganización y potencialmente limitando su respuesta 

adaptativa.  

 

Estas diferencias sugieren que la resiliencia estructural de una comunidad no 

depende únicamente de la fortaleza de las interacciones entre los miembros, 

sino también del efecto combinado que factores ambientales como el pH y la 

temperatura tienen sobre su configuración. De forma aislada, la temperatura 

representa un estímulo que induce una rápida fragmentación y reorganización 

de las comunidades, provocando un número considerable de pérdidas de 

conectividad en las fases con interacciones débiles. En contraste, su efecto 

conjunto con el pH genera una respuesta más gradual de la comunidad frente a 

perturbaciones; lo cual sugiere que la incorporación del pH en el modelo 
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Lotka-Volterra actúa como un filtro ambiental que permite la pérdida paulatina 

de conexiones, en lugar de la disrupción abrupta observada cuando sólo 

interviene la temperatura.  

 

Asimismo, la capacidad de recuperación mostrada en las simulaciones del 

modelo con pH coincide con la dinámica observada en ecosistemas oceánicos 

donde las comunidades se reorganizan hacia estados de estabilidad 

alternativos una vez que los cambios ambientales superan su punto de inflexión 

(Zobell & Conn, 1940). En este contexto, el efecto aditivo de la temperatura y el 

pH no necesariamente conducen al colapso de la comunidad, sino a una 

transición hacia una configuración estable. Desde una perspectiva funcional, la 

presencia de interacciones débiles junto con un filtro ambiental como el pH 

favorece que la comunidad no colapse ante perturbaciones, sino que 

reorganice su arquitectura para mantener cierta integridad ecológica a lo largo 

del gradiente ambiental.  

 

Estos hallazgos son consistentes con la teoría sobre la relación 

complejidad-estabilidad en redes ecológicas. May (1973) demostró que los 

sistemas complejos con interacciones fuertes tienden a ser menos estables que 

los sistemas simples. Estudios posteriores han mostrado que la coexistencia 

entre los miembros de una comunidad es más probable cuando predominan 

interacciones débiles, estableciendo la necesidad dentro de los sistemas de 

tener muchas conexiones débiles y pocas fuertes (Kokkoris et al., 2002; Koch 

et al., 2024). Esto promueve la estabilidad al permitir la persistencia de 

múltiples especies mediante mecanismos de compensación y modularidad 

(Koch et al., 2024).  

 

9.4 Microbiota central como eje de la resiliencia comunitaria 

Otro elemento de interés dentro del sistema es la aparente presencia de una 

microbiota central, especialmente observable en las redes correspondientes al 

modelo que incorpora el efecto del pH. En estas fases se identifica un conjunto 

de especies que podría considerarse el núcleo de la comunidad. Dichas 
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especies, que reaparecen a lo largo del gradiente térmico, parecen sostener la 

organización basal de las redes y concentran la mayoría de los cambios 

estructurales observados durante las simulaciones.  

 

La existencia de una microbiota central se ha documentado en distintos 

entornos y se ha propuesto que su presencia es fundamental para sostener la 

estabilidad y las funciones ecosistémicas, ya que estas especies suelen 

desempeñar un papel clave en procesos biológicos esenciales, como los ciclos 

de nutrientes, la producción primaria o la descomposición de materia orgánica 

(Krabberød et al., 2022; Banerjee et al., 2018). Shade y Handelsman (2012) 

sugieren que el concepto de núcleo no debe limitarse a la presencia recurrente 

de determinados taxones dentro de un ecosistema, sino que debe incorporar 

las interacciones ecológicas que sustentan la organización comunitaria. Este 

concepto de microbiota central o núcleo coincide con lo observado en el 

modelo aquí descrito, donde las especies centrales no sólo persisten a lo largo 

del gradiente térmico, sino que además concentran los principales cambios 

topológicos de la red. De manera complementaria, Banerjee et al. (2018) 

demostraron que la presencia de taxones clave o keystone taxa desempeña un 

papel clave en la estabilidad y el funcionamiento del microbioma, esto podría 

sugerir que las especies del núcleo identificado podrían cumplir una función 

análoga.  

 

La presencia de esta microbiota central podría actuar como un mecanismo 

amortiguador que contribuye a mantener la integridad de la comunidad frente a 

los estímulos ambientales. Incluso cuando progresa la desconexión de la red, 

se observa una tendencia a recuperar interacciones previas, características de 

los estados más estables. En otras palabras, la microbiota central facilita la 

transición hacia estados alternativos de estabilidad al conservar parte de la 

funcionalidad del sistema pese a las perturbaciones ambientales. Este 

comportamiento es consistente con lo reportado en ecosistemas marinos, 

donde los núcleos microbianos sostienen funciones ecológicas esenciales y 
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favorecen la resiliencia frente a variaciones ambientales (Pita et al., 2018; 

Krabberød et al., 2022). 

 

10.​ Conclusión 

El análisis de las redes multicapa basadas en el modelo Lotka-Volterra 

evidencia que la dinámica estructural de la comunidad microbiana está 

fuertemente modulada por la interacción entre temperatura y pH. Mientras que 

la temperatura, de forma aislada, induce la fragmentación abrupta y 

reorganización de las redes, la incorporación del pH genera un efecto 

amortiguador que permite una pérdida gradual de la conectividad en las redes. 

Este comportamiento sugiere que la resiliencia de la comunidad no depende 

exclusivamente de la fortaleza de las interacciones entre sus miembros, sino 

también del papel modulador de factores ambientales que, como el pH en este 

modelo, pueden actuar como filtros ecológicos. 

 

Estos resultados respaldan la teoría de que los sistemas con predominio de 

interacciones débiles presentan mayor estabilidad estructural, lo que permite la  

resiliencia de la comunidad a través de mecanismos de compensación y 

modularidad derivados de la fortaleza o debilidad de las interacciones. La 

evidencia obtenida indica que existe una relación entre la resiliencia de la 

comunidad y la fortaleza de las interacciones, así como la presencia de filtros 

ambientales que promueven la reconfiguración de la comunidad lo que la 

vuelve capaz de resistir perturbaciones sin colapsar y mantener la integridad 

funcional del sistema.  

 

Este es el primer estudio que integra de manera conjunta el efecto de la 

temperatura y el pH sobre la tasa de crecimiento microbiana, así como su 

relación con las perturbaciones sobre la configuración estructural de 

comunidades microbianas en el océano. El modelo propuesto puede utilizarse 

para evaluar las implicaciones que factores abióticos, modificados como 

consecuencia del calentamiento global, pueden tener sobre consorcios 

microbianos, lo que permite analizar el impacto potencial que fenómenos 
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climáticos como la acidificación oceánica o el aumento de la temperatura tienen 

sobre microbiota marina.  

 

La identificación de potenciales cambios abruptos en la configuración de las 

comunidades microbianas, como parte de la implementación del modelo y la 

inferencia de redes, sugiere la posibilidad de anticipar colapsos ecológicos en 

comunidades complejas. Este enfoque puede ser utilizado como herramienta 

análoga a los biomarcadores de red dinámicos, que son genes o moléculas 

utilizados comúnmente para la identificación de estados de transición críticos 

en la progresión de enfermedades (Aihara et al., 2022). Dichos biomarcadores 

permiten identificar de manera temprana la entrada hacia estados irreversibles 

lo que facilita la elección de tratamientos adecuados (Han et al., 2022). De 

forma paralela, el modelo propuesto puede funcionar como una herramienta 

predictiva para reconocer transiciones críticas en comunidades microbianas y 

facilitar el diseño e implementación de estrategias de mitigación tempranas 

como la restauración de hábitats antes de que se produzcan pérdidas 

irreversibles de biodiversidad.  

 

Resulta imprescindible la integración de factores abióticos adicionales 

asociados al cambio climático dentro del modelo aquí propuesto, esta 

incorporación de variables representa el enriquecimiento necesario para su 

potencial aplicación práctica. Asimismo, la integración del modelo con datos 

ómicos puede favorecer y mejorar la precisión de las predicciones al vincular la 

respuesta de las comunidades con procesos metabólicos específicos. Esto 

permitiría identificar cuál es el efecto combinado de las variaciones de 

temperatura y el pH sobre la síntesis de moléculas clave involucradas en los 

ciclos biogeoquímicos y con ello determinar, con una visión más completa, el 

grado de perturbación ambiental inducido por el cambio climático. En este 

contexto, el modelo propuesto podría convertirse en una herramienta de apoyo 

importante para la conservación marina y la evaluación de la resiliencia marina.  
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Más allá del ámbito ecológico, el modelo aquí presentado ofrece potencial de 

aplicación en otras áreas como la biotecnología, donde su uso podría contribuir 

a optimizar las condiciones de pH y temperatura para mantener la estabilidad 

de comunidades productoras de compuestos de interés biotecnológico, como 

biocombustibles o agentes degradadores de contaminantes. En conjunto, los 

resultados obtenidos y la metodología utilizada establecen un precedente 

importante para la exploración de interacciones simbióticas y la predicción del 

comportamiento de comunidades microbianas bajo el escenario actual del 

cambio climático.  
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11.​  Anexos  

11.1 Liga al código  

El  código desarrollado para este trabajo puede ser consultado a través de la 

plataforma Github por medio del siguiente enlace: 

https://github.com/may-pixxy/tesis_licenciatura.git  

 

11.2 Anexos Gráficos  

Anexo 11.2.1 Red multicapa perteneciente a la fase 1 (completa coexistencia) del 

modelo Lotka-Volterra con temperatura. Donde la capa cyan corresponde a la 

temperatura 278 K, la verde a la temperatura 288 K y morada a la temperatura 298 K.  

 

 

 

 

 

 

 

https://github.com/may-pixxy/tesis_licenciatura.git
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Anexo 11.2.2 Red multicapa perteneciente a la fase 2 (coexistencia parcial) del modelo 

Lotka-Volterra con temperatura. Donde la capa cyan corresponde a la temperatura 278 

K, la verde a la temperatura 288 K y morada a la temperatura 298 K. 

 

Anexo 11.2.3 Red multicapa perteneciente a la fase 3 (fluctuaciones en la coexistencia 

de la comunidad) del modelo Lotka-Volterra con temperatura. Donde la capa cyan 

corresponde a la temperatura 278 K, la verde a la temperatura 288 K y morada a la 

temperatura 298 K. 
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Anexo 11.2.4 Red multicapa perteneciente a la fase 1 (completa coexistencia) del 

modelo Lotka-Volterra con temperatura y pH integrados. Donde la capa cyan 

corresponde a la temperatura 281 K, la capa verde a la temperatura 286 K, la capa 

morada a la temperatura 299 K y la capa rosa a la temperatura 305 K.  
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Anexo 11.2.5 Red multicapa perteneciente a la fase 2 (coexistencia parcial) del modelo 

Lotka-Volterra con temperatura y pH integrados. Donde la capa cyan corresponde a la 

temperatura 285 K, la capa verde a la temperatura 289 K, la capa morada a la 

temperatura 302 K y la capa rosa a la temperatura 306 K.  

 

 
Anexo 11.2.6 Red multicapa perteneciente a la fase 3 (fluctuaciones en la coexistencia 

de la comunidad) del modelo Lotka-Volterra con temperatura y pH integrados. Donde 

la capa cyan corresponde a la temperatura 282 K, la capa verde a la temperatura 285 

K, la capa morada a la temperatura 296 K y la capa rosa a la temperatura 302 K.  
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