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Resumen

La musica, elemento fundamental en la vida cotidiana, impacta profundamente a la
sociedad debido a su capacidad para transmitir y evocar emociones. El estudio de esta
relaciéon ha consolidado el campo interdisciplinario del Reconocimiento de Emociones
en la Musica (MER). Tradicionalmente, los sistemas MER se han centrado en el ana-
lisis de caracteristicas actusticas, a menudo omitiendo aspectos teoéricos cruciales como
el contexto armoénico de una obra, el cual esta intrinsecamente ligado a la expresion
emocional.

El presente trabajo aborda esta limitacion mediante el desarrollo de un sistema
MER multimodal que integra dos fuentes de informaciéon complementarias, utilizan-
do los conjuntos de datos unificados de PMEmo y DEAM. Para el anélisis acustico,
se emplea una arquitectura ResNetSE como extractor de caracteristicas a partir de
espectrogramas. De forma paralela, el contexto armoénico se modela codificando las se-
cuencias de acordes con modelos Word2Vec. Finalmente, un modelo BiLSTM fusiona
ambas representaciones para realizar la prediccion final.

El modelo de fusiéon propuesto alcanza un rendimiento robusto, con un error RMSE
de 0.1087 y un R? de 0.5087 para la dimensién de valence, y un RMSE de 0.1271
y un R? de 0.5232 para la dimensiéon de arousal. Estos resultados demuestran que
un enfoque multimodal, que combina la textura actstica con el contexto armonico,
simula de manera mas fiel el proceso de analisis humano. Se concluye que la percepciéon
emocional no depende de un dnico componente, sino de la interacciéon de miltiples
factores como el timbre, la dindmica, el ritmo y la estructura armonica, validando asi
la superioridad de la estrategia de fusion.

Abstract
Music, a fundamental element of daily life, profoundly impacts society through its
ability to convey and evoke emotions. The study of this relationship has established
the interdisciplinary field of Music Emotion Recognition (MER). Traditionally, MER
systems have primarily focused on the analysis of acoustic features, often overlooking
crucial theoretical aspects such as the harmonic context of a musical piece, which is
intrinsically linked to emotional expression.

This work addresses this limitation by developing a multimodal MER system that
integrates two complementary sources of information, utilizing the unified PMEmo and
DEAM datasets. For the acoustic analysis, a ResNetSE architecture is employed as a
deep feature extractor from spectrograms. In parallel, harmonic context is modeled by
encoding chord sequences using Word2Vec models. Finally, a BILSTM model fuses both
representations to perform the final emotion prediction.

The proposed fusion model achieves a robust performance, yielding an RMSE of
0.1087 and an R? of 0.5087 for the valence dimension, and an RMSE of 0.1271 and an



R? of 0.5232 for the arousal dimension. These results demonstrate that a multimodal
approach, which combines acoustic texture with harmonic context, more faithfully si-
mulates the human analysis process. We conclude that emotional perception in music
does not depend on a single component, but rather on the complex interaction of multi-
ple factors such as timbre, dynamics, rhythm, and harmonic structure, thus validating
the superiority of the proposed fusion strategy.
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1. Introduccion

La misica es un elemento profundamente arraigado en la cotidianidad que impacta
de manera notable diferentes aspectos de la sociedad, desde el apartado cultural hasta el
politico. La misica estimula capacidades cognitivas y emocionales, de ahi que sea fuente
de inspiracion en multiples investigaciones. Un ejemplo especifico es la comprension de
la relacién que existe entre la miusica y las emociones humanas [1], [2], [3].

El interés y la curiosidad en la relacion musical-emocional no son algo nuevo, pues,
al menos, desde el siglo pasado han existido esfuerzos por explicar como se relacionan
ciertos componentes de la musica con la activacion de determinadas emociones [4], [5].

La busqueda de determinar en qué radica el significado de una obra musical y enten-
der como sus componentes provocan emociones ha involucrado areas como la filosofia,
la psicologia y la teoria musical [6], [7]. Incluso, este interés se ha extendido al sector
cientifico y tecnologico, creando asi campos multidisciplinarios con el fin de abordar
este problema.

Tal es el caso del campo MER (Music Emotion Recognition), que en espanol pue-
de entenderse como Reconocimiento de Emociones en la Misica. Este campo emplea
el conocimiento de areas como las ciencias computacionales, el computo afectivo, la
neurociencia, la psicologia y la sociologia para analizar caracteristicas extraidas de la
musica e identificar qué emocion puede provocar una obra [§8], [9].

En el campo MER, el eje central es el anélisis de caracteristicas extraidas de obras
musicales, por lo general, a partir de archivos de audio. Es por ello que MER es con-
siderado una tarea secundaria del campo MIR (Music Information Retrieval),que por
su traduccion al espanol es captura (o recuperacion) de Informacion Musical. El campo
MIR se enfoca en la obtencion de informacion de archivos de audio musicales por medio
de técnicas de procesamiento y andlisis de senales digitales [10], [11], [12].

1.1. Planteamiento del problema

Desde el campo MER, la comunidad cientifica ha identificado una serie de barreras
que obstaculizan el éxito en la labor del reconocimiento de emociones.

De manera general, determinar qué emocion seré transmitida por medio de la mu-
sica es una labor compleja que depende de miltiples factores. Por mencionar algunos:
caracteristicas actusticas inherentes a la senal de audio, el contexto de la obra o factores
externos propios del usuario, tales como su contexto social, cultural o emocional, asi
como sus gustos musicales [6], [13].

La labor de identificar qué emocion percibe alguien ante un estimulo musical es un
problema multivariable. La relacién entre las variables y la emocion final puede caer
en la subjetividad, pues lo que para una persona resulta relevante para otra puede ser
insignificante.

Ahora bien, en la tarea de identificar emociones se manejan dos vertientes: la per-
cepcion y la induccion. La inducciéon busca producir emociones a partir de un escenario



propicio. A menudo, los estimulos elegidos para esta labor tienen un vinculo con el usua-
rio, mientras que la percepcion solo se centra en las caracteristicas propias del estimulo
[14], [15].

Otra de las barreras es la elecciéon de la taxonomia o del modelo que se emplea para
representar las emociones, es decir, la manera de cuantificarlas o categorizarlas. En este
sentido, existen dos visiones generales: la representacion categorica y la dimensional. En
los modelos categoricos, se busca representar una emocién como una variable discreta
y categorica, centrandose en la asignacion de adjetivos como felicidad, ira o tristeza [5],
[16], [17]. Por otra parte, los modelos dimensionales se basan en la idea de entender
las emociones como elementos formados por dos ejes, el valence (valencia) y el arousal
(activacion). De esta forma, una emocion tiene un valor numérico compuesto por un
par ordenado [18], [19], [20].

La eleccion de una taxonomia que se adecue a los objetivos del problema es de
vital importancia, pues, dependiendo de la eleccion, el problema puede ser abordado
como una clasificacion multiple o una regresion [15]. Ademas, se debe tener en cuen-
ta la desventaja de ambos modelos. Para los categoricos, la desventaja radica en la
pobre capacidad de representar emociones complejas, mientras que para los modelos
dimensionales se hace complejo el interpretar los valores [21].

El nivel de reconocimiento de emociones radica, en gran parte, en la taxonomia
elegida y en el nivel en el que a una obra se le asigna una emociéon. Es decir, dado
que una cancién u obra musical es un elemento temporal y que presenta variaciones de
principio a fin, se suele etiquetar de manera estatica o de manera dinédmica.

De esta forma, se tienen los siguientes enfoques: Song-level (categorico y dimensio-
nal): Asigna una emocion a partir de un solo segmento representativo de la obra. MEVD
(categorico y dimensional): En este enfoque la asignacion de una emociéon no contempla
solo un segmento representativo, sino que evaltua las variaciones emocionales a lo largo
de toda la obra [22].

Los conjuntos de datos también suelen estar separados segun el enfoque de reco-
nocimiento (Song-Level o MEVD) y la taxonomia. Aunado a esto, existen diferentes
metodologias para generar anotaciones emocionales, pues en ocasiones suelen seguir me-
todologias basadas en la psicologia y la neurociencia o simplemente tomar las etiquetas
emocionales de rankings o listas en internet [23]. Todo esto dificulta el poder trabajar
con varios conjuntos al mismo tiempo.

Finalmente, el enfoque principal de las tareas de MER se basa en la extraccion y
analisis de caracteristicas de bajo o medio nivel, las cuales se obtienen directamente
de la senal de audio. No obstante, la manera de representar estas caracteristicas esta
ligada a otras tareas como el reconocimiento de voz o la separaciéon de canales de audio
[10], [13].

1.2. Justificacion

El reconocimiento de emociones en la misica ha encontrado sitio en diversas apli-
caciones. Un ejemplo claro se encuentra en los servicios de streaming, los cuales han



implementado el reconocimiento de emociones en sistemas de recomendacion [12]|. De
igual forma, se ha explorado su aplicacién en beneficio de las personas con discapacidad
auditiva, por ejemplo, mediante la generacion de subtitulos que describen la misica de
las peliculas [24].

Ademas de la aplicacion directa de los sistemas de reconocimiento, la misica, gracias
a su relacion con las emociones, se usa como apoyo en tratamientos de afecciones como
la depresion [25] y en la terapia de trastornos del espectro autista [26]. Del mismo modo,
su capacidad para activar la memoria y evocar recuerdos [27] resulta beneficiosa en el
tratamiento de pacientes con alzhéimer. La investigacion sobre los efectos de la musica
se extiende incluso a respuestas fisiologicas directas, como su aplicacion para el alivio
del dolor en neonatos durante procedimientos menores [28].

Teniendo en cuenta lo antes mencionado, la musica es un gran apoyo frente a los
desafios de la salud mental. La capacidad de generar una diversa gama de sentimientos
afectivos ayuda a contrarrestar efectos perjudiciales del estrés, la ansiedad y la depre-
sion. Dicha capacidad de evocar emociones convierte a la musica en un recurso de apoyo
valioso para enfrentar problemas de salud mental.

Ahora bien, la tarea del MER se abord6 inicialmente con enfoques basados en las
matemaéticas, la fisica y la estadistica. Sin embargo, el interés por aplicar nuevas estra-
tegias ha llevado a implementar Inteligencia Artificial en las tareas de reconocimiento
de emociones y tanto el Machine Learning (ML) |21], [29], [30], [31], [32] como el Deep
Learning (DL)|23], |24], [33], [34], [35] se han consolidado como los enfoques principales
para desarrollar sistemas MER.

Dentro del ML y el DL, el problema del reconocimiento de emociones musicales
se resuelve a partir del analisis de caracteristicas extraidas de archivos de audio. No
obstante, no se ha llegado a un consenso sobre qué caracteristica es la indicada para
realizar la tarea. En ocasiones, una caracteristica en concreto puede ser mejor que el
resto, pero en otros experimentos la que menos éxito arrojaba de pronto es la més
significativa.

Por ende, es importante contemplar conceptos como la armonia y la teoria musical,
pues diferentes componentes de la estructura armoénica de una obra musical juegan
un papel crucial en la expresion de emociones [5], [6]. Aunado a lo anterior, se ha
encontrado que la misica es capaz de activar emociones por medio de inhibir y concluir
las expectativas que una obra genera en el oyente [4], lo cual se ve reflejado a través de
conceptos teodricos como las cadencias y la resolucion de progresiones [7], [36].

Sumado a ello, la posibilidad de expresar notaciones de acordes mediante caracteres
ayuda a establecer cierta similitud con el lenguaje natural, pues, dado que una forma
de representar sucesiones de acordes es con conjuntos de caracteres alfanuméricos, es
posible aplicar métodos de Procesamiento del Lenguaje Natural (por sus siglas en inglés,
NLP) [37], [38]. De esta forma, se puede ampliar el enfoque tradicional de los sistemas
MER, permitiendo la continua mejora de estos sistemas.

La continua mejora de los sistemas MER enfrenta una serie de adversidades. Por
ende, es importante contemplar nuevos conceptos para solucionar estos desafios. Por
ejemplo, a partir de la importancia de las estructuras armoénicas con las emociones



en la miusica, es necesario continuar explorando y mejorando estas opciones, pues si
bien existen trabajos al respecto, no toman consideraciones como la importancia de la
posicion y el contexto que rodea a un acorde.

2. Antecedentes

Como se ha mencionado, el interés por parte de la comunidad cientifica en la mi-
sica no es reciente. Durante los tltimos anos, este interés ha crecido y el nimero de
publicaciones en los campos de MIR y MER ha aumentado [12].

Esto se debe, en gran parte, a que la comunidad cientifica ha fomentado las inves-
tigaciones en estos campos, desarrollando concursos importantes como el AMC o el
MediaEval, por mencionar algunos.

En 2007 la evaluacion Audio Mood Classification (AMC) se incluy6é por primera
vez en MIREX (Music Information Retrieval Evaluation eXchange), organizado por
la International Society for Music Information Retrieval (ISMIR) [39]. Su objetivo es
proporcionar un punto de referencia estandar para la clasificaciéon automaética de estados
de dnimo en fragmentos de audio. Desde entonces, AMC se celebra anualmente y ha
ido creciendo tanto en niimero de participantes como en mejoras de rendimiento.

De la misma manera, en 2013, MediaFEval (Multimedia Evaluation Benchmark), que
se ha convertido en una prestigiosa iniciativa de benchmarking para evaluar algoritmos
y tecnologia en la recuperacion, acceso y exploracion de archivos multimedia, realizé
la primera convocatoria para la clasificaciéon de emociones musicales bajo los enfoques
song-level y MEVD [40]. Como resultado de esta convocatoria, se construy6 un conjunto
de datos con 1000 clips de audio con sus respectivas etiquetas, el cual sirve de base para
el conjunto de datos elaborado por el DEAM (Database for Emotional Analysis in
Music) [41].

Parte fundamental en las tareas de MER es la eleccion de un modelo de represen-
tacion de emociones, los cuales suelen agruparse en dos ramas: dimensionales y catego-
ricos. A lo largo de los anos, se han propuesto diversos modelos, como el de Hevner en
1963, J. Russell en 1980 o Thayer en 1990.

Hevner plante6 la representacion de emociones por medio de una lista de 67 ad-
jetivos, los cuales asocié con emociones. La lista se encuentra organizada en 8 grupos
llamados: solemne, triste, sonadora, tranquila, elegante, alegre, emocionada y poderosa.
Este modelo sostiene que ciertas caracteristicas de la musica evocan ciertas emociones
[5].

Por otro lado, en 1980, J. Russell, a partir de entender los estados afectivos como
elementos conformados por dos ejes, propuso un modelo con dos dimensiones [19]. La
primera dimensién, denominada valencia, determina qué tan placentera o poco placen-
tera es una emocion, mientras que la segunda, activacion, indica el grado de intensidad
[18].

A menudo es facil observar como las anotaciones valence y arousal pueden ser dis-
cretizadas a partir de dividir el plano bidimensional en cuadrantes, en donde cada



cuadrante representa el estado del valence o arousal, dando la posibilidad de ubicar las
anotaciones en los cuadrantes: Arousal Alto - Valence Positivo, Arousal Alto - Valence
Negativo, Arousal Bajo - Valence Positivo y Arousal Bajo - Valence Negativo [10], [11],
[21], [22].

Ademas de estos modelos, existe otro que se enfoca en la representacion y evalua-
cion de emociones inducidas por musica. En 2008, Zentner y Scherer, a través de una
serie de estudios, propusieron GEMS, escala emocional-musical de Ginebra. Esta es
una herramienta para evaluar las emociones inducidas por obras musicales. GEMS se
compone de una lista de 40 emociones. Estas estdn agrupadas en 9 factores, los cuales
representan el rango de emociones que una obra musical puede evocar [1].

Existen otras representaciones, aunque menos implementadas, por ejemplo: la dis-
tribucion de probabilidades, pares de anténimos [8] y el ranking de emociones [15].

En general, la tarea del reconocimiento de emociones se puede agrupar en dos gran-
des enfoques, el reconocimiento estatico y el dinamico, los cuales a su vez se pueden
clasificar en:

e reconocimiento de emociones musicales de manera categorica a nivel cancion
(Song-level categorical MER)

e reconocimiento de emociones musicales de manera dimensional a nivel cancion

(Song-level dimensional MER)

e Deteccion de variaciones emocionales musicales (Music Emotion Variation Detec-
tion)

Song-level categorical MER. Es un enfoque de clasificacion, es decir, la representa-
cion de emociones es categorica. La clasificacion de la obra se realiza sobre un segmento
de la misma.

En 2008, Pao et al. [29] sugirieron la clasificacion de clips de audio, extraidos de los
coros de canciones populares, a través de un modelo KNN mejorado, aniadiendo pesos
discretos entre las distancias de los vecinos. Demostraron que el algoritmo super6 los
resultados de modelos basados en SVM y KNN, alcanzando més del 96 % de exactitud
en la labor de clasificar a qué cuadrante del modelo Thayer pertenece el extracto de
audio.

En 2013 [42], se propuso un modelo basado en AdaBoost y decision stump para
realizar la clasificacion de canciones en 14 categorias, alcanzando un 79 % de éxito en
promedio.

En 2014, Akhilesh K Sharma et al. [30], realizaron la clasificacién de ragas (musica
tradicional de la India) por medio de evaluaciones estadisticas, tomando como base los
algoritmos de Naive Bayes y EM (Ezxpectation Mazximization).

Song-level dimensional MER. La diferencia de este enfoque con el anterior es que se
considera el problema como una regresiéon y trabaja con datos continuos.

En [31] se presenta un modelo generativo basado en modelos de mezcla gaussiana
(GMM) para la prediccion de valores de valence y arousal en obras musicales, a partir



de las bases de datos de MER60 y DEAP. Los autores compararon su propuesta contra
modelos SVR y mejoraron los resultados en un 71.5% y 40.3 %.

En [32] se propuso un sistema basado en SVR, para el reconocimiento de emociones
musicales. Se basaron en el modelo de Thayer y obtuvieron un 94.55 % de exactitud.

En 2013, Markov y Matsui [43], [44], en el marco del taller internacional de Me-
diaEval, desarrollaron un sistema de reconocimiento de emociones musicales utilizando
procesos de regresion gaussianos GPR. Tomaron en cuenta el reconocimiento estético y
dindmico, no obstante los resultados para la deteccién dinamica no fueron satisfactorios.

Tras no haber alcanzado su meta en el reconocimiento dinamico, Markov y Matsui,
en 2014, para el taller MediaEval de ese ano, propusieron un sistema basado en procesos
gaussianos y filtros de Kalman [45].

Music Emotion Variation Detection. La prediccion no se realiza sobre un segmento
representativo, sino que se evaliian las variaciones emocionales a lo largo de toda la
obra. De acuerdo con la revisiéon [15], la primera vez que se propuso la idea de observar
las variaciones emotivas en una cancion fue en [46].

L.Lu et al. [46] propusieron el reconocimiento de emociones en distintas obras de
musica clasica usando modelos de mezcla gaussianos GMM con un total de 16 mez-
clas. Los segmentos representativos fueron clasificados en 4 estados de animo: frenético,
satisfactorio, depresivo y euforico.

En 2016 [47], mediante un modelo basado en SVR, realizaron el reconocimiento
dindmico de emociones musicales. En su experimentacion, cada cancién tenia 60 anota-
ciones de valance y 60 anotaciones de arousal. De esta manera, implementaron 2 escalas
de anotaciones, es decir, una cancién tenia una anotacion emocional global, y a su vez
cada seccion de la canciéon también contaba con una anotacién individual.

El enfoque principal de las tareas de MER se basa en la extraccion y analisis de
caracteristicas de bajo o medio nivel, aquellas que se pueden extraer directamente de
la senal de audio, como el ritmo, el color tonal o los armonicos, entre otros [10], [13].
Estas caracteristicas alimentan los modelos de DL o ML, los cuales, a su vez, efectiian
el anélisis que permite llevar a cabo la prediccion de la emocion.

En [47], como caracteristica de entrada al modelo, usan sefiales de audio MFCC. De
igual manera, en el trabajo [44], también se usaron MFCC. Mientras que en [29] usan
anchura del timbre, volumen, centroide espectral, disonancia espectral y otras senales
de audio. Por otro lado, en [43], ademas de MFCC, usan otras sefiales de audio como
el factor cresta espectral y descriptores estadisticos del espectro. En [31] se utilizan
descriptores armoénicos. Ademaés, en [30], [32], [42], [46], también se usan senales de
audio como caracteristica actstica de entrada.

Por su parte, Greer ha buscado la manera de contrarrestar algunos defectos que
las técnicas tradicionales tienen. Para ello, ha propuesto un nuevo modelo capaz de
generar caracteristicas de audio y musicales, utilizando aprendizaje autosupervisado
y aprendizaje por cruce de dominio, todo ello por medio de un transformer encoder
bidireccional multicapa con mecanismos de autoatencion [48].

Ademas de la informacién y caracteristicas extraidas directamente de las senales de
audio en problemas referentes al procesamiento de senales también se utiliza otra ma-



nera de representar la informaciéon de una senal de audio, por medio de espectrogramas.
Los espectrogramas son una representacion visual de la senial de audio que muestra la
distribucion de la energia de las frecuencias a lo largo del tiempo. El resultado se dibuja
como un mapa de calor donde el eje horizontal es el tiempo, el vertical la frecuencia y
el color indica la intensidad de la energia.

En la tabla de antecedentes, se encuentra la informacion relevante de investigaciones
que incluyeron espectrogramas en la elaboracion de sistemas MER.

La comunidad cientifica busca constantemente integrar el conocimiento punta de
lanza, por ejemplo, en los trabajos de [34], [49] se disenan arquitecturas basadas en
transformers.

Los mecanismos de atencién suelen estar enfocados en las caracteristicas espaciales
y se suelen aplicar en espectrogramas. No obstante, también se ha explorado la idea de
trabajar con bloques squeeze-and-excitation (SE), que son una especie de mecanismos
de atencion pero enfocados en la informacion de los canales. Esto se ha aplicado a redes
neuronales convolucionales, permitiéndoles identificar y priorizar autométicamente los
canales més importantes de un espectrograma.

En el trabajo de [50] se hizo uso de bloques SE en la prediccion del nivel de depresion
en el habla. Por otro lado, en el trabajo [51] se emplearon bloques SE para la tarea de
deteccion y localizacion de eventos sonoros. Esto permitiéo que su modelo se enfocara
tanto en los canales mas importantes como en las regiones de tiempo-frecuencia mas
significativas del espectrograma, mejorando la identificacion de las clases de sonido.

En el trabajo [52|, los bloques SE se utilizaron para la tarea de MER. Los auto-
res integraron la atenciéon SE dentro de su Médulo de Aprendizaje de Caracteristicas
Temporales (TFLM). Su funcién era analizar las caracteristicas extraidas de los espec-
trogramas para aprender la importancia de cada canal y asi poder potenciar el peso de
las caracteristicas mas relacionadas con la emocién, mientras suprimia las que no con-
tribufan significativamente. Los resultados demostraron la eficacia de este enfoque, ya
que su modelo (denominado ADFF) logré una mejora relativa del 10,43 % en el valence
y del 4,82% en el arousal en la puntuaciéon R? en comparaciéon con otros modelos del
estado del arte.

Existen a su vez trabajos en donde se aborda el problema del reconocimiento de
emociones en musica mediante estrategias multimodales, los cuales suelen incorporar
informacion contextual externa a las senales de audio en conjunto con enfoques tradi-
cionales.

En este sentido, Panda et al. [10] han desarrollado un trabajo notable, pues se es-
tablece la importancia de encontrar caracteristicas enfocadas en las emociones de la
miusica, ademés de que muestra una detallada explicacion de las caracteristicas existen-
tes mas importantes para las tareas de MER. El estudio no se limita a esta revision, sino
que el autor desarrolla una serie de caracteristicas enfocadas en el reconocimiento de
emociones, y realiza varias pruebas con modelos SVM (maquinas de soporte vectorial).

En [42], ademas de utilizar las senales de audio como caracteristica actstica de
entrada, también usan las letras de las canciones como una entrada del modelo.

En [34] combina caracteristicas de bajo y medio nivel con la letra de canciones



a través de un enfoque multimodal, en donde el anélisis lo realizan modelos DL en
conjunto con técnicas de NLP. Como caracteristicas tradicionales utiliza espectrogramas
y el anélisis lo efecttian redes CNN. En el caso de la letra de canciones emplean diversos
métodos NLP, obteniendo mejores resultados con BERT. En la métrica de exactitud se
alcanzo un 94,58 % tras realizar la fusion de los modelos.

En [33] también combina caracteristicas de bajo nivel con letras. Por medio de
un sistema multimodal realiza el anéalisis de la informacion, la cual se obtiene de un
conjunto de datos de 2000 canciones extraidos de la API de Last FM. Tras la fusiéon de
los modelos se alcanzé un 78 % de exactitud.

En 2019 Greer publicoé dos articulos en donde propone que mediante una represen-
tacion de acordes y letras, usando vectores compartidos, las tareas de clasificacion de
géneros musicales pueden obtener mejores resultados [37]. No obstante, en tareas de
MER, si bien logra resultados mejores que otros modelos, estos no los sobrepasan por
mucho.

En cuanto a caracteristicas de audio, Greer ha buscado la manera de contrarres-
tar algunos defectos que las técnicas tradicionales tienen, para ello, ha propuesto un
nuevo modelo capaz de generar caracteristicas de audio y musicales, utilizando apren-
dizaje autosupervisado y aprendizaje por cruce de dominio, todo esto por medio de un
transformer encoder bidireccional multicapa con mecanismos de autoatencion [48].

En [53] el autor realizé la deteccion de acordes tanto en archivos MIDI como en
archivos de audio comunes. Una vez obtenidos los acordes, procedieron a codificarlos de
acuerdo a su posicion en la escala (I, I, III, etc.). De este modo se construy6 una matriz
de transicion de acordes, en donde se almacenaban las transiciones comunes entre cada
acorde. La labor se centra en la prediccion de valores de valence y arousal, y para ello se
utilizan modelos de machine learning de regresion, en especifico SVR, (Support Vector
Regression) y LASSO (Least Absolute Shrinkage and Selection Operator). En el caso
del conjunto de datos MIDI, la incorporaciéon de progresiones 2-chord redujo el MSE
de valencia de 0.96 a 0.71, mientras que en el conjunto de audio también se observaron
mejoras (por ejemplo, de 1.39 a 1.24 con MIRToolbox).

De manera parecida, en el trabajo [54] se cre6 una base de datos donde se relacion6
un conjunto de acordes con emociones. Luego, tras la extraccion de caracteristicas con la
transformada rapida de Fourier y métodos estadisticos (FFT y STAT), se identificaron
los acordes de cada audio. El reconocimiento de emociones se realizdé por medio del
calculo de la distancia euclidiana y la correlacion.

Ahora bien, los métodos de NLP no solo se han implementado en el analisis de le-
tras. En [38] se muestra que mediante métodos de embeddings predictivos como lo son
word2vec se pueden capturar relaciones tedricas entre acordes. Por su parte, Greer [37]
propuso que mediante la representacion de acordes y letras por medio de vectores com-
partidos las tareas de MER pueden obtener mejores resultados, aunque los resultados
no sobrepasan por mucho a los ya existentes.

Ademés de todo lo anterior, existen investigaciones que incorporan senales mioeléc-
tricas en sistemas MER [9], ademas de usar espectrogramas, acompana el reconocimien-
to de emociones con imagenes EEG. Aunque este tipo de senales se utilizan cuando el



trabajo se centra en la induccién de emociones mas que en la percepcion [3], [14], [55],

[56], [57].
Cuadro 2: Tabla de Trabajos del Estado del Arte

Aporte B.D. Caract. Modelo Tax. Res.
[23] MER para IoT: A partir  Bajo-Nivel: GAN con Cat. 93.4 % pre-
optimiza la extrac- de listas ~ MFCC fusion de cision (en
cion de caract. loca- de Inter- doble ca- promedio)
les/globales y la ex- net. 637 nal
presividad de MFCC  canciones
(2021).
[11] Metodologia hi-  Propia. Bajo-Nivel: ~ CLDNN Cat. (3 99.19% de
brida y B.D propia 124 can-  MFCC, clases  precision
para musica turca ciones Energfas V-A)
para capturar simul- tradi- Log-Mel,
taneamente relaciones cionales caract.
espaciales (2021) turcas. acusticas

estandar.
[49] Arquitectura seg- PMEMO: Medio- BiLSTM y Cat. (D V:79.01% A:
mentada en dos eta- 767 can-  Nivel: Es- Autoenco- VIA)  83.62% (acc)
pas: aprendizaje no ciones. pectrogra- der CNN
supervisado en carac- AllMusic: mas Log-
teristica y clasifica- 900 clips. mel
cion supervisada de
emociones (2022).
[21] Optimizacion de ~ MEMD.  Bajo-Nivel: NN BP Dim. V: RMSE
modelos clasicos con 1744 can- LLDs (des-  (opt. 0.1066 R?
técnicas de metaheu-  ciones criptores ABC) 0.4606; A:
ristica (2021). acusticos) RMSE 0.1322

R? 0.6687

[52] Arquitectura PMEMO. Medio- VGG16 Dim.  V: RMSE
MER end-to-end con 767 can-  Nivel: Es- adaptado 0.2379 R?
atencion SE y fusion  ciones pectrogra- + SE at- 0.4575; A:
jerarquica espacio- mas log-mel tention + RMSE 0.2213
temporal (2022). BiLSTM R? 0.6393

Continua en la siguiente pdgina. . .



Cuadro 2: Continuacion del Cuadro 2

Aporte B.D. Caract. Modelo Tax. Res.
[2] Contempla la im-  PMEMO. Medio- Demucs Dim.  V: RMSE
portancia del rol de 767 can-  Nivel: Es- MSS, 0.2466 R?
cada voz en la mu- ciones pectrogra- VGG16 0.4143; A:
sica mediante la se- mas log-mel RMSE 0.2285
paracion de fuentes R? 0.6100
(2020).
[24] Reconocimiento ~ The mu-  Medio- CNN Cat.  79% (resul-
de emociones musica-  sical ex- Nivel: Es- tado general
les usando segmentos  cerpts y pectrogras- con CQT)
cortos y bases de da-  The film  mas STFT,
tos cientificas (2023)  music ex- MEL y

cerpts , CcQT

94 frag-

mentos

de audio.
[22] Marco para el The 1000  Medio- CNNy Dim.  V: RMSE
reconocimiento dind-  songs Nivel: Es- BiLSTM 0.07; A: 0.06
mico de emociones pectrogra-
musicales (valores mas Mel y
VA) mediante un mo- Cochleo-
delo de fusion CNN- gram
BiLSTM (2020)
Notas:
Encabezados B.D. = Base de Datos; Caract. = Caracteristicas; Tax. = Taxonomia; Res. =

Resultados.
En Tax. Cat. = Categorica/o; Dim. = Dimensional; para formatos como (D V|A) o (3 clases
V-A): V = Valence, A = Arousal, D = Discreto.

En Modelo NN BP (opt. ABC) = Red neuronal de retropropagacion optimizada con Colonia

de Abejas Artificiales.

3. Fundamentaciéon tedrica

3.1. Visiones generales de las emociones

Desde un punto de vista psicologico, una emociéon es una respuesta que tiene el
organismo de los seres humanos ante los estimulos que nos rodean [16], teniendo como
finalidad preservar la supervivencia del individuo. Estas experiencias siempre se dan de



la mano de cambios fisiologicos [17].

La representacion de la emocion es parte de las bases del campo de MER. Histori-
camente, han surgido dos grandes marcos teéricos para abordar este tema. El primero
concibe la emocion como un conjunto de estados discretos y distintos (comunmente
agrupados por adjetivos), mientras que el segundo, mas contemporéaneo, la describe
como una estructura integrada y sistematica definida por un ntmero reducido de di-
mensiones fundamentales.

El concepto de representar emociones categéricamente parte de la idea de que emo-
ciones como la felicidad o la tristeza son categorias fundamentalmente distintas. Un
ejemplo de esta perspectiva teorica es el trabajo de Kate Hevner [5]. Su investigacion
se fundamenta en el supuesto de que existe un simbolismo sisteméatico en la misica,
donde elementos estructurales especificos son capaces de expresar emociones definidas
y conceptos sentimentales.

Investigaciones posteriores comenzaron a cuestionar la idea de que los estados afec-
tivos fueran independientes. Estos trabajos proponian que, en lugar de ser factores
separados, las emociones estédn interrelacionadas de una manera altamente sisteméti-
ca. Esta observacion llevo al desarrollo de una teoria estructural del afecto, donde las
emociones se definen por su posicién dentro de un espacio compartido [17], [19].

La formulacion més influyente de esta teoria es el Modelo Circumplejo del Afecto
[19]. La tesis central de Russell propone representar la estructura cognitiva del afecto por
medio de un circulo en un espacio bidimensional. Las bases de esta teoria se encuentran
en el hecho de que el espacio emocional esta definido por dos dimensiones bipolares,
Placer-Displacer y Ezcitacion-Sueno, ademéas de contemplar que las emociones no son
puntos aislados, sino que se organizan en el espacio circular y cada emociéon no se define
como una categoria, sino més bien por su ubicaciéon dentro de este plano, como una
combinacion de los valores de placer y excitacion.

La teoria Thayer [20], ofrece una explicacion funcional y biologica para la estructura
dimensional del afecto. En lugar de comenzar con un mapa cognitivo, Thayer postu-
la que la experiencia afectiva es una manifestacion consciente de sistemas biologicos
fundamentales que han evolucionado para la supervivencia. Su modelo se centra en la
interaccion de dos sistemas de activacion (arousal) principales: Fzcitacion Energética
(Energetic Arousal) y Fzcitacion Tensa (Tense Arousal).

El continuo trabajo en la representaciéon emocional por medio de un plano dimen-
sional, ha llevado no solo a la creacion de herramientas de evaluacion estandarizadas y
no verbales, como el Self-Assessment Manikin (SAM), sino también a la consolidacion
de una terminologia convencional para sus ejes fundamentales. Si bien los trabajos fun-
dacionales usaban términos como placer-displacer, la convenciéon moderna, adoptada en
la mayoria de los modelos dimensionales, se refiere a estos ejes como valence (el conti-
nuo de placer, de positivo a negativo) y arousal ( nivel de activacion, de alta a baja).
Estos dos ejes, a menudo complementados por una tercera dimensiéon de dominancia,
forman el marco estandar sobre el cual se representa y mide la respuesta emocional,
solidificando el paradigma dimensional en la investigacion actual [16], [17], un ejemplo
grafico de como lucen estos modelos se encuentra en la figura 1.
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Figura 1: Modelo dimensional Valence Arousal; adaptada de [10], [21], [22]

Con frecuencia es complicado entender qué emocion se activa en determinados mo-
mentos, y esta tarea aumenta en complejidad cuando se trata de terceros. Aun asi,
existen respuestas que permiten identificar o medir una emocién, pues al efectuarse
suelen también presentarse respuestas fisiologicas como el aumento de la presion, va-
riaciones en el ritmo cardiaco, etc., cambios conductuales como tics nerviosos o en la
manera con la que nos expresamos y, finalmente, cambios cognitivos. Por un lado, los
cambios fisiol6gicos pueden ser observados usando tecnologia, por ejemplo, los electro-
encefalogramas (EEG) para medir los cambios de la actividad eléctrica en el cerebro.
Del mismo modo, los cambios conductuales pueden ser percibidos por mera observacion
del individuo. A su vez, medir los cambios en los procesos cognitivos solo es posible si
el individuo lo indica. Comtunmente, herramientas como los tests y cuestionarios son
utilizados para esta labor [16], [17].

El SAM (Self-Assessment-Manikin) es una herramienta que busca determinar qué
emocion se activa en un individuo ante un evento o estimulo [16]. E1 SAM es compatible
con la vision de representacion dimensional, permitiendo al usuario expresar qué emo-
cién percibe midiendo el grado de arousal, valence y dominance. De esta forma, el SAM
es una encuesta no verbal y basada en imagenes. Para representar el grado de placer
(positividad) se utilizan diversas figuras que representan un cambio gradual partiendo
de la felicidad hasta la tristeza. Para representar la dimension de arousal se represen-
ta a través de diversas figuras abrumadas. Finalmente, la dimension de dominance se
representa por medio de un cambio gradual en el tamano de las figuras, partiendo de
una figura pequena hasta una grande [17].



Segun Meyer en su trabajo [7] , las emociones surgen cuando se inhibe o detiene una
“tendencia”, entendida como un patrén de respuesta automéatica basado en experiencias
y conocimientos previos. Frente a un estimulo inesperado, por ejemplo, un perro que se
cruza en nuestro camino, el cerebro genera un escenario posible y, si la realidad difiere
de lo anticipado, la tension acumulada alivia y se activa la emociéon correspondiente.
Asi, todas las tendencias, conscientes o no, pueden concebirse como expectativas que,
al cumplirse o frustrarse, moldean nuestra respuesta emocional.

En el ambito musical, este mecanismo de expectativas se explica por la capacidad del
oyente para anticipar progresiones armoénicas: cuando la resolucién de un acorde coinci-
de con lo previsto, sentimos complacencia si se desvia, percibimos tension y emocion [7].
Steinbeis [4] refuerza esta idea al senalar que las predicciones armonicas, construidas a
partir del bagaje cultural o vivencial del oyente, determinan la manera en que se expe-
rimenta una obra musical. En conjunto, Meyer y Steinbeis muestran que la percepciéon
emocional en la misica depende tanto de la inhibicion de tendencias como del grado en
que se satisfacen o rompen las expectativas armonicas.

3.2. Teoria musical

En el sistema de afinaciéon temperada, predominante en la miusica occidental, la
octava se divide en doce sonidos equidistantes, separados por intervalos iguales deno-
minados semitonos o medios tonos [58|, [59]. Dentro de este marco, surge el fen6meno
de la enarmonia, que se presenta cuando dos notas diferentes en notacién reciben el
mismo valor actuistico o altura sonora. Estas notas, conocidas como sonidos enarmoni-
cos, representan una misma frecuencia aunque se escriban de forma distinta [36]. Este
fenébmeno es consecuencia tanto del sistema de afinaciéon como de las convenciones de
notaciéon musical y permite, por ejemplo, que una misma tecla del piano pueda repre-
sentar indistintamente un Do sostenido (C'f) o un Re bemol (Db).

Las escalas constituyen un elemento primordial en la teoria musical, definidas como
sucesiones ordenadas de sonidos que siguen un patréon de intervalos especifico. En la
musica occidental, la escala mayor es fundamental, caracterizandose por la secuencia
de tonos (T) y semitonos (ST): T —T — ST —T —T — T — ST. Este patron puede ser
aplicado a cualquiera de los 12 sonidos del sistema cromatico temperado, generando asi
su escala mayor. Cada escala presenta una jerarquia sonora centrada en la nota ténica,
que actia como el niicleo gravitacional de la tonalidad, dando contexto a las demés
notas. La tonalidad organiza estas notas en grados identificados por numeracién romana,
siendo la tonica (primer grado) la que nombra la tonalidad, la cual puede presentarse en
distintos modos, siendo los mas comunes los modos mayor y menor. Cada grado, ademaés,
cumple una funcién armonica especifica con denominaciones particulares, susceptibles
a variaciones segtin el modo en que la tonalidad se manifiesta [36].

El anillo Z9, tal como se describe en [60], permite modelar matematicamente las
escalas musicales mediante aritmética modular. Asi, cada nota se representa como un
nimero entero moédulo 12, y una escala se construye como una sucesion de intervalos.
Por ejemplo, la escala mayor responde al patron {2,2,1,2,2,2,1}, donde 2 equivale a



un tono y 1 a un semitono. Aplicando este patréon desde una nota base x € Zqo, se
obtiene la escala correspondiente, sumando cada intervalo sucesivamente moédulo 12.
Asi, partiendo de x = 0 se obtiene la escala de C mayor; desde x = 7, la de G mayor.
La transposicion, en este esquema, se reduce a una suma modular aplicada a todo el
patrén.

La transposicion es una operacion fundamental en teoria musical que consiste en
desplazar todos los elementos de una escala, acorde o melodia una misma cantidad
de semitonos hacia arriba o hacia abajo [36]. En el sistema Zis, esta operacion se
simplifica al sumar un valor constante a cada elemento de la secuencia, aplicando la
operacion modulo 12. Por ejemplo, transponer cualquier escala S = {s1,s9,...,8,}
por un intervalo k se expresa como S’ = {(s; + k) méd 12,..., (s, + k) méd 12}. Esta
formalizacion permite implementar la transposicion de forma eficiente y consistente,
tanto en andlisis tedrico como en aplicaciones computacionales [60].

El punto principal de la teoria musical armoénica es que los acordes de transicion
(como los subdominantes) y de resolucion (como la ténica) generan significado a través
de la manipulacion de la tension. Los acordes de transicion nos alejan de la estabilidad,
creando un movimiento que conduce a la tension casi insoportable del acorde dominante,
el cual, por su naturaleza disonante, exige regresar al reposo del acorde de toénica. Es
en este ciclo de tension y liberacion, en como se construye, se prolonga o se resuelve
esta expectativa, donde la musica trasciende el sonido para convertirse en un lenguaje
emocional, capaz de evocar narrativas complejas que van desde la certeza y la finalidad
hasta el suspenso, la contemplacion y el anhelo, pues esta es una forma de generar y
resolver tendencias |7], [36].

3.3. Caracteristicas acusticas de la musica

Espectrogramas: Una senal de audio es la representacion de las caracteristicas
acusticas del sonido. Este se entiende como un fenémeno de vibraciones que se propaga
en el tiempo, y cuyas variaciones producen cambios en dicho sonido. Al capturar sus
espectros, es posible generar una representacion grafica bidimensional que muestra la
evolucion de sus frecuencias a lo largo del tiempo. Estos son los espectrogramas. El
espectrograma cuenta con dos dimensiones o ejes: el eje de las abscisas corresponde al
tiempo y el eje de las ordenadas corresponde a la frecuencia [34], [58], [61].

Transformada de Fourier de Tiempo Corto (STFT): La STFT es una he-
rramienta bésica en el andlisis tiempo-frecuencia que consiste en dividir la senal en
pequenos segmentos de duracion fija y aplicar la transformada de Fourier a cada seg-
mento. Esto permite observar cambios en la frecuencia a lo largo del tiempo, proporcio-
nando una representacion visual denominada espectrograma. Segun [58], esta técnica
es fundamental para la comprension didactica y practica del comportamiento espectral
de senales musicales debido a su capacidad para relacionar claramente la variabilidad
temporal y frecuencial de la senal.

De acuerdo con [34] la transformada de Fourier en corto plazo se define como la
siguiente ecuacion:
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El proceso se entiende como:
1. Sea una senal z(t) la funcién que se quiere transformar

2. Se multiplica esa senal por una ventana w(t), que es diferente de cero solo en un
intervalo corto (se suelen usar ventanas de Hann o Gaussianas).

3. A medida que la ventana se va deslizando a lo largo de la senal en el tiempo, se
calcula la transformada de Fourier de la porcion de la senial que queda tapada por
la ventana.

En donde:
e 1(t) es la senal original
e w(t — 1) es la ventana centrada en 7

e w es la frecuencia angular

e ¢~ ™! corresponde al niicleo de la transformada de Fourier.
w(t — 7) es una funcién ventana que se traslada en el tiempo para analizar segmentos
sucesivos de la senal. La eleccion de la ventana y su duracion determinan la resolucion
tiempo-frecuencia del anélisis [58].

En lalibreria 1ibrosa [62], los parametros de la funcion stft controlan los elementos
de esta ecuacion de la siguiente manera:

1. n_fft: Este parametro define la resoluciéon en frecuencia. Esta directamente rela-
cionado con la variable de frecuencia w en el nicleo de la transformada e~**. Un
n_fft mayor calcula la transformada para mas puntos de frecuencia w.

2. hop_length: Controla el desplazamiento de la ventana a lo largo del tiempo.
Corresponde al paso discreto de la variable temporal 7. Define qué tan seguido se
calcula una nueva transformada a lo largo de la senal z(t).

3. win_length: Determina el tamafio de la funcion ventana w(t — 7). Define cuanta
porcion de la senal original z(t) se analiza en cada paso 7.

Espectrograma Mel (Mel-Gram): Los espectrogramas Mel, o Mel-Grams, se
basan en una escala mel que modela la percepcion auditiva humana al enfatizar fre-
cuencias que son perceptualmente relevantes. Los espectrogramas Mel han demostrado
gran utilidad en tareas relacionadas con reconocimiento automético de caracteristicas
musicales, debido a su correlacion con la manera en que los humanos perciben diferen-
cias tonales y dindmicas en la musica [63]. El trabajo de [34] enfatiza su aplicacion en



la deteccion emocional multimodal por su capacidad de reflejar caracteristicas psico-
acusticas.

Técnicamente, la conversion de frecuencias lineales a frecuencias mel se realiza uti-
lizando la ecuacion: ;

mel(f) = 2595 logy, (1 + %) (2)

donde f es la frecuencia en hercios (Hz). Esto genera filtros espaciados segin la per-
cepcidn auditiva humana, permitiendo enfatizar rangos frecuenciales que son relevantes
para el oido humano [63].

Transformada Q Constante (CQT): La Transformada Q Constante (CQT) pro-
porciona una representacion logaritmica del contenido frecuencial, donde la resolucion
frecuencial varfa proporcionalmente a la frecuencia, generando una mejor adaptaciéon a
caracteristicas musicales como las notas y sus armonicos. La CQT permite una iden-
tificacion més precisa de las notas musicales y una interpretacion més clara de las
estructuras armonicas en comparacion con métodos basados en STFT [61]. Esta ca-
racteristica hace que la CQT sea particularmente 1til en aplicaciones musicales como
identificaciéon de notas, clasificaciéon de instrumentos y seguimiento de modulaciones
tonales, como demuestra [64].

De acuerdo con el trabajo de [61], la CQT se define como:

X[k] = z[n|w[n]e 2 Qn/NIK] (3)

3

donde @) es una constante que define la relacion entre ancho de banda y frecuencia
central, manteniéndose constante a través de todas las frecuencias analizadas, y N|k]
es el namero variable de puntos para cada frecuencia central.

Chromagramas: Los chromagramas son espectrogramas especializados que mues-
tran la distribucion energética alrededor de las doce notas de la escala cromatica, inde-
pendientemente de la octava. Estos espectrogramas son altamente efectivos para cap-
turar caracteristicas emocionales en misica debido a su capacidad de revelar patro-
nes armonicos consistentes relacionados con emociones especificas [9]. La combinacion
de chromagramas con modelos de aprendizaje profundo ha resultado particularmente
exitosa para aplicaciones como el reconocimiento automatico de emociones musicales,
gracias a su capacidad para destacar patrones melodicos y armoénicos perceptualmente
relevantes.

Desde el punto de vista técnico, los chromagramas se calculan a partir de espec-
trogramas convencionales mediante una agrupacion energética en cada nota cromatica.
Matematicamente, esto implica:

Cb.t) =Y [X (k0P (4)

ke

donde C'(b,t) es la energia en el bin cromético b en el tiempo ¢, y €, representa el
conjunto de frecuencias asociadas a la nota croméatica especifica b [9].



3.4. Redes Neuronales

En términos generales, una red neuronal es un modelo computacional inspirado en el
cerebro humano que se compone de una coleccion interconectada de unidades llamadas
neuronas. Cada neurona procesa la informacion que recibe, realiza una operacién ma-
tematica en ella y produce una salida. Las neuronas se organizan en capas, donde cada
capa se conecta con la siguiente mediante conexiones ponderadas. Estas conexiones y
ponderaciones son ajustadas a través del entrenamiento para que la red pueda aprender
y generalizar a partir de los datos de entrada [65].

La arquitectura de una red neuronal, como se ilustra en la Figura 2, se compone de
tres tipos de capas. La primera, denominada capa de entrada (input layer), contiene
las neuronas que reciben los datos iniciales. La ultima es la capa de salida (output
layer), que entrega el resultado final. Entre estas dos se ubican una o més capas ocultas

(hidden layers), las cuales procesan la informacion que fluye desde la entrada hacia la
salida [65], [66].

Capas ocultas

Capas
de
entrada

)

Capas de salida

Figura 2: Arquitectura, simplificada, de una red neuronal; imagen adaptada de [65]

Un aspecto crucial en el disenno de modelos de redes neuronales es la correcta eleccion
de sus funciones de pérdida, optimizacion y activacion. La funcién de pérdida cuantifica
el error del modelo durante el entrenamiento, mientras que el algoritmo de optimizaciéon
es el mecanismo que actualiza los pardmetros del modelo para minimizar dicho error
[66]. Por su parte, la funcién de activacion desempena un rol central al introducir
la no linealidad, una caracteristica indispensable para que el modelo pueda aprender
representaciones complejas de los datos [65].



La eleccion del optimizador es determinante para la eficacia y velocidad del entre-
namiento de una red neuronal. Este componente se encarga de ajustar los pesos del
modelo (parametros) para minimizar la funciéon de pérdida. A continuacion, se detallan
los algoritmos empleados en este trabajo.

El Descenso de Gradiente Estocastico o SGD (por sus siglas en inglés) es el
algoritmo de optimizacion fundamental. En lugar de calcular el gradiente sobre todo
el conjunto de datos, SGD lo hace para un tnico ejemplo o un pequeno lote (mini-
batch), haciendo que el proceso sea mucho més rapido y computacionalmente eficiente.
Este algoritmo de optimizaciéon suele ayudar al modelo a no caer en minimos locales
sub-6ptimos [67].

Su regla de actualizacion es:

Ori1=0r — 1 - Vo J(6r) (5)
Donde:
e ;.1 son los parametros del modelo actualizados.
e 6, son los parametros en el paso actual.

e 7 (eta) es la tasa de aprendizaje (learning rate), que controla el tamano del
paso de actualizacion.

e VyJ(0,) es el gradiente de la funcion de pérdida J con respecto a los parametros

6.

RMSprop (Root Mean Square Propagation) es un optimizador adaptable que ajus-
ta la tasa de aprendizaje de forma individual para cada pardmetro. Lo logra dividiendo
la tasa de aprendizaje por un promedio moévil de las magnitudes recientes de los gradien-
tes. Esto permite amortiguar las oscilaciones en direcciones con gradientes muy grandes
y acelerar el aprendizaje en direcciones donde el gradiente es pequeno, resultando en
una convergencia mas rapida y estable [67].

Su actualizacion se realiza en dos pasos:

Elg°) = vE[g°]i-1 + (1 —7)g; (6)
L, 7
011 =0, —E[gzh n egt (7>

Donde:
e g, es el gradiente en el paso actual t.
o E[g%; es el promedio mévil de los gradientes al cuadrado.

e 7 (gamma) es el factor de decaimiento (decay rate), que controla la importancia
de los gradientes pasados.



e ¢ (épsilon) es una constante de suavizado muy pequena para evitar la division por
cero.

Adam (Adaptive Moment Estimation) es otro optimizador adaptativo que combi-
na las ventajas de dos métodos: RMSprop y Momentum. Almacena un promedio movil
no solo de los gradientes al cuadrado (segundo momento, como RMSprop), sino tam-
bién de los propios gradientes (primer momento, como Momentum). Adam es conocido
por su robustez y buen rendimiento en una amplia variedad de problemas, a menudo
requiriendo poca configuracion de hiperparametros [68].

Las ecuaciones que rigen su actualizaciéon son:

my = Bime—1 + (1= Bi) g (8)
v = Pavra + (1= Ba)g} (9)
i = (10)

iy = 15—}5 (11)

Opir = 0, — ﬁmt (12)

Donde:

e m; v v; son las estimaciones del primer y segundo momento, respectivamente.
e 31y [y son los factores de decaimiento para ambos momentos.

e M, y ¥; son las estimaciones de los momentos corregidas para evitar el sesgo inicial
hacia cero.

e t es el niimero del paso de iteracion actual.

La funcion Tangente Hiperbolica (Tanh) es una de las activaciones clésicas.
Comprime cualquier valor de entrada a un rango entre [—1 — 1] [65].

Su ecuacion es:
et —e "

f(z) = tanh(x) = pr— (13)

Donde:
e 1 es el valor de entrada a la neurona.

La funcién Unidad Lineal Rectificada (ReLU) es la activacién mas utilizada
en las redes neuronales modernas por su simplicidad y eficiencia computacional [69].
Simplemente, devuelve el propio valor de entrada si este es positivo y cero en caso
contrario. Esto ayuda a mitigar el problema del desvanecimiento del gradiente [35],
[65].

Su ecuacion es:

f(z) = max(0, x) (14)
Donde:



e 7 cs el valor de entrada a la neurona.

Leaky ReLU es una variante de ReLLU disenada para solucionar el problema de la
neurona muerta, que ocurre cuando una neurona se atasca en la region negativa y deja
de aprender. De este modo, a diferencia de ReLLU, se le asigna a ax un valor pequeno
cercano a cero en lugar de usar directamente 0 [66]. Su ecuacion es:

fla) = {x six >0 (15)

ar stz <0
Donde:
e 1 es el valor de entrada a la neurona.
e « (alfa) es una pequena constante positiva, usualmente un valor como 0.01.

Unidad Lineal de Error Gaussiano (GELU) es una funcion de activacién mas
moderna y suave, popular en arquitecturas avanzadas como los Transformers. Modula la
salida de una neurona de forma probabilistica, basandose en la funcién de distribucion
acumulada de la distribuciéon normal estandar. Intuitivamente, decide si mantener o
anular una salida de forma méas suave que ReLU [70].

Su ecuacion es:

f@) = - o(x) (16)
Donde:

e z es el valor de entrada a la neurona.

e O(z) es la Funcion de Distribucion Acumulada de la distribucion gaussiana es-
tandar.

Existen multiples funciones de pérdida y esta se debe adaptar a la naturaleza del
problema, pues su uso principal es el de reducir el error del modelo. En problemas de
regresion es comun encontrar funciones como MSE o MAE. No obstante, existe una
opcidon més robusta que combina tanto el MSE como el MAE, la funciéon de pérdida
Huber loss o pérdida de Huber, que reduce la sensibilidad a valores atipicos. Por lo
general, es usada para mejorar la estabilidad del modelo [49].

L(;(ZL‘) =

{ 0,5 a2 Cifle| >0 (17)

§- |z —05-862 : otherwise
En Donde:
e 1: Es la diferencia entre los valores reales y los predichos.

e § (delta): Es un hiperparametro que define el umbral. Los errores por debajo de §
son tratados como cuadraticos, mientras que los errores méas grandes son tratados
de forma lineal.



3.5. Redes Nueronales Convolucionales CNN

Son un tipo especial de red neuronal, estas son comtinmente utilizadas en el proce-
samiento de informacion que tiene una estructura en forma de cuadricula. [12] [66]. De
acuerdo con [65] las principales caracteristicas de las CNN son: Recepccidn de campos
locales, Pesos compartidos y Agrupacion.

La recepcion de campos locales es un proceso que ocurre por medio de convoluciones,
una convolucién es un operador que permitira extraer informacion de los datos ingresa-
dos en la neurona [66]. La ecuacion 18 es la operacion de convolucion que implementaron
en [35]

Fi,j) = (Rxw)(i,j) = 3 S R(i - a,j — yu(z,y) (18)

Ademas de la operacion de convolucion, otro paso dentro la CNN es la funcion de
agrupamiento o pooling, una técnica par agrupacion es el Max Pooling. De acuerdo
con [66] en el proceso de max pooling, a partir de la informacion entrante y saliente se
extraen regiones o ventanas. Y de estas regiones se conservan solo los valores maximos.
La ecuacion 19 es la funcion para la operacion de pooling usada en [35].

MaxPooling(x,y) = max(z,y) (19)

3.6. Memoria a largo y corto plazo LSTM

Las redes neuronales LSTM son un tipo de redes neuronales recurrentes, en ocasiones
son denotadas como LSTM-RNN; dentro de las RNN las LSTM son de las mas poderosas
y por ende también son de las que més recursos consumen [69].

Este tipo de RNN ofrece solucién a uno de los problemas que aquejan a las RNN el
cual es el problema del gradiente inestable, en lineas generales este problema ocasiones
que el aprendizaje en las primeras capas sea en extremo lento [71].

Los bloques de LSTM poseen una memoria a largo plazo, la cual se le denomina
como estado de la célula (cell state). A su vez, los bloques se compone de tres puertas:

e Input Gate: Se encarga de generar los valores que se necesitan para deducir los
nuevos estados.

e Forget Gate: Se encarga de controlar la informacion que ha sido descartada en
estados previos.

e Output Gate: Se encarga de generar los valores que determinaran los siguientes
estados [72].

Este tipo de arquitecturas son unidireccionales, es por esta razén que para problemas
en donde es importante el contexto en ambas direcciones se emplea la arquitectura
bidireccional. De esta forma existen arquitecturas que proponen unir dos bloques LSTM,
asi, se puede enfocar en procesar la secuencia hacia adelante (forward) y la otra procesa
hacia atréas (backward) [22], [71].



3.7. Redes Residuales ResNet

Las Redes Neuronales Residuales (ResNet) son una arquitectura de redes neuronales
profundas introducida para resolver el problema de la degradacién del rendimiento,
este define que, contrario a lo esperado, anadir més capas a un modelo de red neuronal
puede llevar a un error de entrenamiento mas alto, esto se debe a que al ser un modelo
con més capas la optimizacion de la red se convierte en una tarea mas compleja [73].

La idea fundamental de ResNet es introducir conexiones de salto (skip connec-
tions) que permiten que la informacion de una capa anterior se sume a la de una capa
posterior, saltAndose una o mas capas intermedias.

El componente clave de una ResNet es el bloque residual. En lugar de esperar que
un conjunto de capas apiladas aprenda directamente una funciéon de mapeo subyacente
H(z), se les obliga a aprender una funcién residual F(z) [73].

La salida del bloque, y, se define matematicamente como:

y=F(z,{W;})+x
Donde:

e 1 cs el vector de caracteristicas de entrada al bloque.

o F(x,{W;}) es el mapeo residual aprendido por las capas del bloque, con pesos
Wi;.

e La operacion +x es la conexion de salto (skip connection) que suma la entrada
original (identidad) a la salida de las capas.

3.8. Bloques Squeeze-and-Excitation (SE)

Durante el boom de las redes CNN, muchas arquitecturas de referencia, como la pro-
pia ResNet, VGG o Inception, se centraban principalmente en capturar caracteristicas
espaciales: bordes, formas, texturas, etc., tratando a los canales o mapas de activacion
por igual, sin ponderar la importancia que cada uno tuviera.

Por ende, en es que el trabajo de |74] propuso una especie de mecanismo de atencion
primigenio enfocados en la importancia de los mapas de cara. Su objetivo es modelar ex-
plicitamente las interdependencias entre las caracteristicas de los canales. Para lograrlo,
realiza una recalibraciéon adaptativa de caracteristicas por canal, permitiendo
que la red aprenda a enfatizar las caracteristicas informativas y suprimir las menos
utiles, este proceso se divide en dos operaciones Squeeze y Fxcitation.

La operacion Squeeze condensa la informacion espacial del mapa de caracteristicas
de entrada utilizando una agregaciéon global por canal. A través de una operacién de
Global Average Pooling (GAP), se genera un vector descriptor 74|, donde cada com-
ponente se calcula como:

z. = Fgp(textbfu,)



En done u, es el canal ntimero ¢ del vector de entrada U = [uy, uy, ..., u.] el cual
fue generado por una operacion de convolucion, Fgp es la operacion de pooling. Esto
genera el vector descriptor z. [50].

El segundo paso, Fxcitation, tiene como objetivo capturar completamente las de-
pendencias de los canales a partir de la informacién agregada. Para ello, utiliza un

mecanismo de compuerta (gating mechanism) con dos capas completamente conecta-
das (FC) alrededor de una no linealidad [50], [74]:

S = 0'(W25(W1Z))
Donde:

e ) es la funcién de activacion ReL.U.
e o es la funciéon de activacion sigmoide.

e W, € RFxC y Wy € RE* son los pesos de las dos capas FC. Estas capas
forman un cuello de botella (bottleneck) con un ratio de reduccion r para limitar
la complejidad del modelo y ayudar a la generalizacion.

Finalmente, el mapa de caracteristicas es reescalado canal a canal utilizando los
valores de s:

f(c =S¢ Ue
De esta manera, el bloque SE permite que la red enfatice dinaAmicamente los canales
mas relevantes.

3.9. Embeddings y Modelos Word2Vec

Los embeddings son representaciones vectoriales numéricas de datos en un espacio de
menor dimension, donde los elementos similares en el contexto de los datos originales
quedan cerca entre si. En el ambito de procesamiento del lenguaje natural o NLP
por sus siglas en inglés (Natural Language Process), los embeddings son especialmente
utiles para representar palabras en un espacio vectorial, facilitando que los modelos
interpreten relaciones y similitudes semanticas entre palabras [37], [38].

Word2Vec es un método ampliamente utilizado para generar embeddings de pala-
bras, desarrollado por investigadores de Google [75]. Este modelo emplea redes neuro-
nales poco profundas para aprender representaciones distribuidas de palabras a partir
de su contexto, logrando que términos semanticamente similares estén representados
por vectores cercanos en el espacio. Word2Vec presenta dos arquitecturas principales:
CBOW (Continuous Bag of Words) y Skip-gram.

CBOW: Este modelo predice una palabra objetivo a partir de su contexto cir-
cundante, es decir, utiliza las palabras circundantes para predecir una palabra central.



CBOW resulta 1til cuando se requiere capturar una representacion basada en el con-
texto global, pues este modelo se entrena para minimizar la probabilidad de error al
predecir una palabra a partir de el conjunto de palabras que la rodean [38|.
Skip-gram: A diferencia de CBOW, el modelo Skip-gram realiza la operacién in-
versa: dada una palabra central, intenta predecir las palabras que la rodean en un
contexto definido [37]. Este enfoque es especialmente util para capturar relaciones y
similitudes seméanticas a nivel individual, ya que el modelo se entrena para maximizar
la probabilidad de las palabras del contexto condicionado a una sola palabra objetivo.

1 T
ESkip—gram = T Z Z logp(wH—j ‘ wt)7
t=1 —cjg;égog c
T

exp (U{Uo ’uwi)

w
Z exp (U:UT V)
w=1

P(wo | wi) =

En donde:
e T Numero total de palabras en el corpus de entrenamiento.

e ¢ Tamano de la ventana de contexto (numero de palabras a cada lado de la
central).

e t Indice de la palabra central en la secuencia, t = 1,2,...,T.

e j Desplazamiento dentro de la ventana de contexto, —c < j <cy j #0.

e w,; Palabra central en la posicion .

e w;; Palabra de contexto desplazada j posiciones respecto a la central.

o Lskip-gram Funcion objetivo (average log-probability) del modelo Skip-gram.
e v, € R? Vector de entrada (“input”) de dimension d asociado a la palabra w.
e v/ € R? Vector de salida (“output”) de dimension d asociado a la palabra w.
e IV Tamano total del vocabulario.M.E.R.

e p(w, | w;) Probabilidad de predecir la palabra de salida w, dado el vector de
entrada de la palabra central w;, definida por la softmax.



3.10. Meétricas

Dado que el problema abordado en este trabajo es de naturaleza regresiva, es fun-
damental emplear métricas que cuantifiquen con precision el error entre los valores
predichos por el modelo y los valores reales. Para ello, se utilizan cuatro métricas am-
pliamente reconocidas en tareas de regresion: el Error Cuadrdtico Medio (MSE), la Raiz
del Error Cuadrdtico Medio (RMSE), el Error Absoluto Medio (MAE) y el coeficiente
de determinacion R%. Estas métricas permiten evaluar distintos aspectos del desempefio
del modelo, tales como la magnitud promedio del error, su sensibilidad a errores grandes
y la proporcién de la varianza explicada por el modelo.

Raiz del error cuadratico medio (RMSE): Mide la precisién de un modelo de
regresion. Se calcula como la raiz cuadrada de la media de los errores cuadrados entre
las predicciones del modelo y los valores reales. En la ecuacién 20, n corresponde al
nimero total de muestras, y; corresponde al valor real de la variable dependiente de la
muestra y y; es la prediccion [21].

n

RMSE = %Z(yj —9;)? (20)

Jj=1

Raiz de error relativo (RSE): Esta ecuacién 21 se usa para calcular R?. Es el
residuo de la suma de los cuadrados, donde y; representa la media del valor de y [21].

> iy — U5)?
Z?:1 (y; — ;)
Puntuacién R2 (score): Es usualmente usada para evaluar la exactitud de mode-

los de regresion. Calcula qué tan lejos se encuentran los valores de los datos de la linea
de regresion [21].

RSE =

(21)

R*>=1- RSE (22)

Aunque en ocasiones también se llega a usar el error absoluto medio. Error abso-
luto medio (MAE): Este calcula el error de la prediccion del modelo. Con la ecuacion
23 se puede calcular el MAE. Dicha ecuacién esté basada en la implementada por Yang
en [21].

1 n
MAFE = — = 23
nZ‘% Jjl (23)

Jj=1

4. Hipotesis

Mediante un sistema automético basado en machine learning, que analiza y discri-
mina tanto caracteristicas de audio como el contexto arménico de obras musicales es
capaz de encontrar patrones y relaciones de una manera natural y parecida a como un
miusico efectuaria el reconocimiento de emociones en obras musicales.



5. Objetivos

1. Objetivo general:

Analizar caracteristicas de bajo y alto nivel de obras musicales, por medio de
un modelo miltiple de I.A basado en técnicas de deep learning, para efectuar el
reconocimiento de emociones en obras musicales.

2. Objetivos especificos:

e Preparar los datos, con técnicas de preprocesamiento, para alimentar los
modelos de aprendizaje.

e Analizar las caracteristicas extraidas, por medio de modelos de aprendizaje,
para realizar un primer reconocimiento de emociones.

e Realizar la fusion de ambos modelos de I.A para obtener la clasificacion final
de emociones.

6. Meétodos y Materiales

6.1. Introducién a la metodologia

La metodologia a seguir para el desarrollo del proyecto se encuentra planteada en
la figura 3, la cual estd compuesta por cuatro fases: la primera corresponde al proceso
de recoleccién de los datos. La segunda, al proceso de extracciéon de informaciéon o
caracteristicas. La tercera son los modelos de analisis y aprendizaje, finalmente, la
cuarta es la fusion de dichos modelos.
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Figura 3: Metodologia para el proyecto

6.2. Materiales

6.2.1. Conjunto de datos

Los conjuntos de datos existentes para la tarea de MER son variados y reflejan
el panorama actual de esta tarea, pues presentan diferencias tanto ne las caracteris-
ticas como la taxonomia (dimensional o categorica), el nivel en el que las canciones
son etiquetadas (estatica o dinamica) o la metodologia con la que las anotaciones se
obtienen.

Es esta falta de homogeneidad en los conjuntos de datos resulta valioso encontrar
aquellos con similitudes que permitan utilizarlos de manera conjunta. Por ello, para este
trabajo se seleccionaron dos de los conjuntos de datos méas utilizados en MER PMEmo
[76] y DEAM [41]. Estos conjuntos siguen una metodologia parecida en la generacion
de etiquetas, pues ambos se basan en una taxonomia dimensional. Cada anotacion
cuenta con valores en los ejes de walence y arousal. Por su parte, ambos conjuntos
utilizaron encuestas SAM y miltiples anotadores para generar cada anotacion estatica
global para cada una de las canciones. Tanto PMEmo como el conjunto de datos de
DEAM son publicos y cuentan con archivos de audio. La tabla 3 muestra algunas de
las caracteristicas esenciales de los conjuntos de datos seleccionados.



Cuadro 3: Principales caracteristicas de los conjuntos de datos PMFEmo y DEAM

Base de datos Ano Contenido Formato Tipo Rango
PMEmo 2019 794 extractos  MP3 Dimensional (VA) (0 —1)
DEAM 2017 1802 extractos MP3 Dimensional (VA) (1 —-9)

PMEmo: Contiene 794 anotaciones, recolectadas a partir de un experimento rea-
lizado a 457 sujetos. Para la generacion de estas anotaciones se utilizo la escala Self-
Assessment Manikin (SAM) con nueve valores, los cuales fueron posteriormente nor-
malizados al rango [0,1]. El conjunto de datos ofrece diferentes tipos de anotaciones.
Para la presente investigacion se seleccionaron las anotaciones emocionales dimensio-
nales Valence-Arousal, obteniendo un total de 767 archivos de audio en formato .mp3
con sus respectivas anotaciones estaticas. Los extractos de audio tienen una frecuencia
de 44.1 kHz y la duracién de los mismos es variable.

DEAM: El conjunto de datos de Mediakval cuenta con un total de 1802 archivos de
audio en formato .mp3 con sus respectivas anotaciones. Estos datos han sido recopilados
durante un periodo de 3 anos, de 2013 a 2015. Cuenta con miusica libre de derechos. Al
igual que PMEmo, las anotaciones fueron obtenidas en escala SAM de nueve puntos,
de [1,9]. DEAM cuenta con anotaciones estéticas y dindmicas, ambas dimensionales,
de las cuales solo se seleccionaron las estéaticas. Al igual que PMFEmo, los extractos de
audio tienen una frecuencia de 44.1 kHz. La duracion de los audios es de 45 segundos, no
obstante, los datos recopilados en 2015 no cumplen con esta caracteristica y la mayoria
de audios contienen la cancién completa.

6.2.2. Gestor de base de datos relacional

Para reunir la informacion de los metadatos y anotaciones de ambos conjuntos de
datos en un solo lugar, se disen6é una pequena base de datos relacional. Como gestor
se utilizo SQLite, debido a su sencillez y portabilidad, pues toda la informacién se
concentra en un dnico archivo, ademas de no requerir un servidor dedicado.

El uso de una base de datos relacional, en lugar de un archivo CSV que unifique
la informacion de los datasets, se debe a que la estructura fisica de almacenamiento se
encuentra separada de la parte logica, lo cual permite modificar la estructura fisica sin
afectar los programas que acceden a los datos.
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Figura 4: Diagrama relacional de la base de datos final.

La informacion de PMFEmo y DEAM se unifico en una sola base de datos. De
acuerdo con la figura 4, la tabla central, ntcleo de la unificacién, canciones, contiene
la informacion basica de cada cancidon, como el nombre y el artista. La tabla de origen,
datasets, indica de qué fuente original proviene cada cancién. Por tdltimo, las tablas
audio_files, anotaciones, acordes, augmented_audios y tipo_acordes contienen
toda la informacién especifica y técnica. La informacion se conecta con cada canciéon
para detallar los nombres de los archivos de audio, las anotaciones emocionales y los
acordes extraidos.

6.2.3. Entorno de Python y librerias utilizadas

Con el fin de preservar la modularidad y separar el proyecto por fases, cada tarea fue
llevada a cabo en entornos virtuales de Python. Cada entorno fue configurado y creado
mediante la plataforma de Anaconda. Los entornos virtuales se encuentran descritos en
la tabla 4.



Cuadro 4: Entornos viruatles de python utilizados

Entorno Virtual Version de Python Uso

chord extraction 38 3.8.20 Para tareas de extraccion de acor-
des a partir de audio, utilizando
librerias compatibles con Python
3.8.

mer_prepdata 3.9.21 Para la preparacion y preprocesa-
miento de datos destinados a mo-
delos de Reconocimiento de Emo-
ciones en la Musica (MER).

nlp-audio-env 3.10.17 Para la construccion y experimen-
tacion con los diferentes modelos
tanto DL como NLP para el ana-
lisis de caracteristicas actusticas y
simbolicas

Para el desarrollo de este proyecto, se emple6 un conjunto de librerias clave de
Python. Las tareas de aprendizaje profundo y optimizacién de hiperparametros se rea-
lizaron con PyTorch y Optuna, respectivamente.

El procesamiento de senales de audio y la extraccion de caracteristicas musicales
fueron manejados principalmente por Madmom [77] y Librosa [62]. Por su parte, la
manipulacion de datos, el analisis numérico y la implementaciéon de modelos de machine
learning tradicionales se apoyaron en las fundamentales Pandas, Numpy y Scikit-learn.

6.2.4. Hardware utilizado

El desarrollo del proyecto y la experimentacion se llevaron a cabo en un equipo de
escritorio con el sistema operativo Manjaro Linuz. El sistema estd impulsado por un
procesador AMD Ryzen 5 5600G con grificos integrados Radeon Vega y cuenta con 6/
GB de memoria RAM, lo que facilito el manejo eficiente de grandes volaumenes de datos
y el entrenamiento de los modelos.

6.3. Tratameinto de los datos

6.3.1. Metadatos y anotaciones

Ambos conjuntos de datos comparten caracteristicas importantes que posibilitan su
fusion. No obstante, presentan ciertas diferencias en cuanto al formato, la organizacion
de los datos y las anotaciones. Por ello, como paso inicial, se realizdé una limpieza de
datos nulos y, posteriormente, se homogeneiz6 la estructura y el formato de estos para



permitir el uso de ambos conjuntos. El diagrama de la figura 5 es el proceso simplificado
que se implement6 para la limpieza y preparacion de los datos.
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Cargar archivos
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Figura 5: Proceso para el tratamiento de las anotaciones y metadatos de los conjuntos
de datos

En el caso de PMEmo, este cuenta con un total de 4 archivos CSV. No obstante,
para este trabajo, solo se tomaron en cuenta las anotaciones estaticas a nivel de cancion
(Song-Level). La estructura del CSV de anotaciones utilizado cuenta con 3 columnas:
la primera es un id, la segunda es el valor del arousal y la tercera, el valor del valence.
A partir de estas anotaciones, se obtuvieron las entradas tinicas por id, lo que permitio
eliminar duplicados de forma segura.

Posteriormente, se cargaron las rutas de los archivos de audio en una lista y también
se cargo el archivo de metadatos. De este tltimo solo se tomaron en cuenta las columnas
del id, el nombre del artista, el nombre de la cancion y el nombre del archivo de audio.
De modo similar al archivo de anotaciones, se conservaron las entradas tinicas por id
en los metadatos. Ademas, se filtraron los datos para mantener solo aquellas entradas
cuyo id también se encontrara en el archivo de anotaciones. De esta forma, se selecciona
la informacion de audios que cuentan con anotaciones.

Por ultimo, del archivo de metadatos, se comprueba que en cada entrada la ruta del
archivo de audio almacenada exista en la lista de rutas para conservar solo la informacion
de los audios que cuentan tanto con anotaciones como con un archivo de audio MP3.

Todos los archivos de audio del conjunto de datos de PMEmo se encuentran alma-
cenados en la misma carpeta raiz. Esta ruta se define como una variable de entorno en
un archivo .env. Asi, al conocer el nombre del archivo de audio, es posible obtener la



ruta completa y acceder al archivo MP3 correspondiente.

En el caso del conjunto DEAM, como parte de la limpieza de datos, los audios del
2015 tienen duracion completa, por lo tanto estos audios se separaron del resto y se
segmentaron en clips de 45 segundos, los fragmentos de 45 segundos de cada cancién
se seleccionaron de forma aleatoria respetando la metodologia del propio DEAM. Los
segmentos de 45s fueron guardados con el resto de clips.

DEAM divide sus anotaciones estaticas a nivel de cancién en dos archivos, am-
bos poseen las mismas columnas. El primer archivo tiene la informaciéon de la version
pre-2015. En cada archivo de anotaciones se conserva un id tnico. Ambos archivos se
fusionaron para crear un nuevo archivo con todas las anotaciones. El archivo final con-
serva solo 3 columnas de los archivos de anotaciones originales: la columna del id y las
columnas con los valores de wvalence y arousal.

Debido a que las anotaciones en el dataset de DEAM se encuentran en la escala de
[1 — 9], los valores se normalizan a un rango de [0 — 1] aplicando la ecuacion 24:

— LT Tmin (24)

Tmaz — Tmin

6.3.2. Control de las rutas de los archivos de audio

Para no almacenar la ruta completa del archivo de audio en la base de datos, se
guardd una cadena del tipo: $PMEMO: {nombre_archivo} De este modo, la ruta real
se construye dinamicamente sustituyendo el prefijo por la variable de entorno. Los
algoritmos 1 y 2 muestran el pseudocodigo para codificar y decodificar las rutas de los
archivos de audio.

Algorithm 1 EncodeRuta: Codifica el nombre de archivo en la cadena con prefijo
Require: nombre_archivo (cadena, por ejemplo “track123.mp3”)
Ensure: ruta_codificada (cadena en formato “$SPMEMO:track123.mp3”)

1: prefijo < $PMEMO:

2: ruta_codificada < prefijo || nombre_archivo

3: return ruta_codificada

6.3.3. Fusion de los conjuntos de datos

Para este trabajo, las emociones se representan en un espacio bidimensional donde
el eje horizontal corresponde al valence y el eje vertical al arousal, ambos normalizados
en el rango [0, 1]. Para facilitar el analisis y la visualizacion, el espacio dimensional fue
divididé en cuatro cuardantes [18], [19]:

e Cuadrante 1 (Q1): arousal > 0,5y valence > 0,5. Corresponde a emociones de
alta activacion y valencia positiva.



Algorithm 2 DecodeRuta: Convierte la cadena codificada en ruta absoluta

Require: ruta_codificada (cadena, p. ej. “SPMEMO:track123.mp3”)
Ensure: ruta_absoluta (cadena con la ruta de disco)

1:
2:
3:

4
5
6
7
8
9

prefijo <— $PMEMO:
if startsWith(ruta codificada,prefijo) then
nombre__archivo < substring(ruta_codificada, |prefijo| + 1, fin)
ruta_base < LeerVariableEntorno(PMEMO_ROOT)
ruta__absoluta < ruta_base||” ) || nombre__archivo
return ruta_absoluta
else
return ruta_codificada {Ya es ruta absoluta o no usa prefijo}

. end if

e Cuadrante 2 (Q2): arousal > 0,5 y valence < 0,5. Representa emociones de
alta activaciéon pero valencia negativa.

e Cuadrante 3 (Q3): arousal < 0,5y valence < 0,5. Agrupa emociones de baja
activacion y valencia negativa.

e Cuadrante 4 (Q4): arousal < 0,5 y valence > 0,5. Indica emociones de baja
activacion pero valencia positiva.

En la practica, se toma cada par (valence, arousal) y se le aplica la siguiente regla:

Q1, siarousal > 0,5 A valence > 0,5,
Q2, siarousal > 0,5 A valence < 0,5,
Q3, siarousal < 0,5 A valence < 0,5,
Q4, siarousal < 0,5 A valence > 0,5.

cuadrante =

De este modo, cada punto en la grafica de dispersion se clasifica en uno de los cuatro

cuadrantes, lo que permite visualizar facilmente en qué regiones del espacio emocional
se concentran las anotaciones de cada dataset antes de la fusion.
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Figura 6: Comparativa de la distribucién de los valores en los conjuntos de datos PME-
mo(azul) Y DEAM(naranja)

Antes de efectuar la fusion de los conjuntos de datos, la dispersion en ambos varia
ligeramente. En PMEmo se observa una mayor concentraciéon de anotaciones en el Q1,
como se aprecia en la figura 6. En DEAM, existe una mayor concentracion de datos
en el centro (valence =~ 0.5, arousal =~ 0.5), aunque cabe recalcar que en la zona del
cuadrante Q1 como en la zona de Q3 es donde se nota una mayor densidad. No obstante,
la varianza de ambos datasets es comparativamente similar (ver la tabla 6.3.3), y en
ambos casos las anotaciones se concentran en torno a valores medios de cada eje, tal
como muestra la grafica de cajas 7. PMFEmo muestra una ligera tendencia hacia valores
més altos de valence y arousal. De hecho, en PMEmo aparecen un par de outliers en
valores muy bajos de arousal y valence. Por su parte, DEAM tiende atin més al centro
sin gran dispersion hacia los extremos y solo con un outlier en el eje de valence, préximo
al.

Cuadro 5: Media y varianza de Valence y Arousal para
PMEmo y DEAM

DS VM \AY% AM AV

PMEmo 0.596581 0.026239 0.622355 0.034156
DEAM 0488018 0.021544 0.476754 0.025688

DS: Dataset; VM: Valence Mean; VV: Valence Variance; AM:
Arousal Mean; AV: Arousal Variance.




Distribucion Valence y Arousal (Boxplots) - PMEmo vs DEAM
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Figura 7: Comparativa distribuciéon de los valores Valence y arousal en los conjuntos
PMEmo(azul) Y DEAM (naranja)

Tras la fusion de PMEmo y DEAM, la dispersion conjunta agrupada por cuadrantes
(ver figura 8) muestra que la mayoria de las canciones se agrupan alrededor del punto
medio (valence =~ 0.5, arousal =~ 0.5). En concreto, se mantiene cierta preferencia por
valores de wvalence moderadamente altos y arousal medios, aunque aparecen ejemplos
distribuidos en todos los cuadrantes (Q1-Q4), lo que refleja la combinacién de ambas
fuentes originales.

Dispersion cuadrantes - PMEmo y DEAM (originales)
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Figura 8: Dispersion de los anotaciones Valence, Arousal tras realizar la fusion de los
datos.

En el boxplot resultante para el dataset fusionado (figura 9), la mediana de valence
se ubica cerca de 0,52, mientras que la de arousal ronda 0,50, confirmando que las
anotaciones més frecuentes se encuentran en la region central. El rango intercuartili-



co de wvalence se extiende aproximadamente entre 0,40 y 0,65, y el de arousal entre
0,38 y 0,66, lo que indica una variabilidad moderada. Los bigotes sugieren que no hay
valores extremos demasiado alejados de 0 o 1. En conjunto, estos graficos evidencian
que la fusion logra eliminar los datos con comportamiento lejano a la media, ademés
de mantener la herencia de la dispersion original de PMEmo y DEAM. Sin embargo,
también es notable como los datos tienden a concentrarse en la zona media del espacio
emocional.

Distribucion de Valence y Arousal - PMemo + DEAM
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Figura 9: Comparativa distribuciéon de los valores Valence y arousal en los conjuntos
fusionados

6.3.4. Archivos de audio

Los archivos de audio se sometieron a un sencillo proceso que incluia:
e Conversion de tipo MP3 a WAV.

e Down-sampling 44.100 kHz — 22.050 kHz.

e Aumento de datos (sobre archivos de audio)

Antes, en cada carpeta raiz ($PMEMO: y $DEAM: ) de los audios se crearon tres subcar-
petas para almacenar los archivos resultantes: una carpeta para los audios aumentados,
otra para los audios WAV vy, finalmente, una carpeta para almacenar aquellos archivos
producto del aumento de datos. La figura 10 muestra un ejemplo de la distribucion de
las carpetas para almacenar los audios originales y aquellos producto del procesamiento.
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Figura 10: Distribuciéon de folder donde se almacenan los archivos de audio procesados

Una vez que los audios son transformados, se registran las entradas en la base de
datos, de los cuales se almacena el id del audio original y la ruta del archivo (la cual se
construye dindmicamente).

Gracias al control de las rutas de los archivos de audio establecido, tan solo basta
con modificar el proceso de construccion de rutas, sustituyendo el valor placeholder
($PMEMO: o $DEAM:) por la ruta de la carpeta de down-sampling correspondiente, y en
el nombre del archivo se sustituyo el .mp3 por .wav.

6.4. Obtencién de las caracteristicas

Para realizar el reconocimiento de emociones en una pieza musical, se disen6 un es-
quema de extraccion de caracteristicas basado en dos componentes fundamentales: las
caracteristicas acusticas derivadas de espectrogramas y las caracteristicas armdnicas
extraidas a partir de progresiones de acordes. Esta doble perspectiva permite captu-
rar tanto la dimension temporal y espectral del audio como su estructura armoénica
subyacente.

6.4.1. Caracteristicas basadas en espectrogramas

Para capturar la dimension actstica de cada cancién, se extrajeron cuatro tipos de
espectrogramas ampliamente utilizados en tareas de analisis musical y reconocimiento
emocional: Chromagramas, CQT (Constant-Q Transform), Espectrogramas
Mel y Tempogramas. Estas representaciones fueron calculadas utilizando la biblioteca
librosa [62]. El proceso de extraccion se representa visualmente el figura 11
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Figura 11: Fusion de modelos; A) Obtencion de espectrogramas con padding; B) Seg-
mentar en 45 sub-espectrogramas iguales; C) Redimnesionamiento de cada segmento.

Generacion de espectrogramas: Cada archivo de audio (original y aumentado)
fue cargado a una frecuencia de muestreo fija de 22,050 kHz. Una vez cargado el audio,
se obtuvo su espectrograma correspondiente por medio de la libreria librosa. Para
estandarizar la entrada, todos los espectrogramas fueron recortados o rellenados (pad-
ding) hasta una duracion total de 45 segundos. Esta longitud garantiza uniformidad en
el nimero de frames temporales generados por los espectrogramas.

Los parametros empleados para la obtencion de espectrogramas fueron:

e Frecuencia de muestreo: sr = 22,050kHz
e Tamano de la venatana (n_fft): 2048 muestras
e Tamano del hop (hop_length): 1024 muestras

Con estos parametros es posible calcular la cantidad de frames que el espectrograma
tendra para 45 segundos de audio, la ecuacion 25 muestra el calculo de frames.

duration seconds x sr-‘ (25)

Nframes — X
hop _size

En donde:
e duration_seconds: Duracién total del audio en segundos (es decir, 45 s).

e sr: Frecuencia de muestreo, es decir, cudntas muestras por segundo toma el sis-
tema (sr = 22050 Hz).



e hop size: Tamafio del salto (hop size) en muestras, que indica cuantas muestras
se avanza entre frames consecutivos (aqui, hop size = 1024).

e [-]: Funcion “techo” o “ceiling”, que siempre redondea hacia arriba al entero més
cercano.

Para el ejemplo concreto:

d .
uratlon_sec?nds xsro 45 x 22050 _ 992 250 ~ 968.0041 . .
hop _size 1024 1024
Como el resultado de esa divisién no es un nimero entero, aplicamos la funcién de

redondeo hacia arriba:

Nframes = | 968,994140625...] = 969

De esta forma, al tomar en cuenta 45 s, un sr de 22050 Hz y un hop_size = 1024,
obtenemos Ngames = 969. El uso de [-] garantiza que siempre cubramos completamente
la duracion del audio, aunque el ultimo frame necesite aplicarse con padding (ceros)
para completarse.

Chromagramas (12 x 969):

e Numero de filas: 12. Cada fila corresponde a un semitono de la escala cromatica,
es decir, a las clases de notas musicales (C, C4/Db, D, ..., B).

e Numero de columnas: 969, igual al nimero de frames temporales calculados
en la ecuacion (25).

e Procedimiento:

(a) Se calcula la STFT de la senal de audio con ventana de 2048 muestras y hop
de 1024.

(b) El espectrograma resultante se agrupa en 12 bandas logaritmicas (cada banda
abarca las frecuencias correspondientes a un semitono).

Constant-Q Transform (CQT) (60 x 969):

e Numero de filas: 60. Cubren 5 octavas completas (de C2 a C7), lo cual da
5 x 12 = 60 bins, cada uno correspondiente a un semitono en escala logaritmica.

e Numero de columnas: 969,se mantienen los mismos frames temporales que en
la STFT (hop de 1024 muestras).

e Procedimiento:

(a) Se calcula primero la STFT con ng = 2048 y hop = 1024, obteniendo un
espectrograma lineal de dimension (1025, 969).



(b) Cada columna de ese espectrograma lineal se remapea en 60 bandas logarit-
micas, aplicando filtros ponderados cuya resolucion relativa () es constante.

Mel-Spectrogramas (128 x 969):

e Namero de filas: 128. Se define un banco de 128 filtros mel distribuidos entre
0y sr/2 = 11025 Hz, escalados segun la percepcion humana (escala mel).

e Numero de columnas: 969, se emplea la misma segmentacién temporal que la
STFT (hop de 1024 muestras).

e Procedimiento:

(a) Se calcula la STFT con ng, = 2048 y hop = 1024, obteniendo un espectro-
grama lineal de (1025, 969).

(b) Se construye un banco de 128 filtros triangulares en escala mel. Por cada
frame temporal (columna), se multiplica la magnitud espectral por esos 128
perfiles para obtener un vector de 128 coeficientes mel.

Tempogramas (ntempo_bins X 969):

e Primero se extrae la onset envelope o envolvente de transitorios, calculada a partir
de la STFT con ventana de 2048 y hop de 1024, lo que produce 969 valores de
energia de onset (uno cada hop).

e Sobre esa envolvente se realiza un analisis corto en el dominio de la frecuencia de
pulso por medio de autocorrelaciéon en ventanas de M frames, desplazando cada
ventana de M frames en pasos de hop igual al original (46 ms).

e El resultado es una matriz de (ntempo bins s 969), donde 7tempo bins depende de
cuantas frecuencias ritmicas (BPM) se deseen cubrir.

Segmentacion espacial:

Los espectrogramas son una representacion visual del cambio de las frecuencias a
lo largo del tiempo. En una visiéon simplista, cada columna del espectrograma refleja
el estado del evento en un espacio temporal especifico. De este modo, para que los
modelos captaran la evolucion temporal de los espectrogramas, cada uno fue dividido
en 45 segmentos iguales. Estos segmentos se generan a lo largo del eje temporal.

De esta forma, dado que 969 frames = 45 segundos, entonces dividir % ~
21,53 frames, logrando un redimensionamiento controlado y asegurando que cada seg-
mento tuviese una dimension temporal de exactamente 21 frames, pues se aplicé un
recorte o truncamiento en esta cantidad de frames por segmento. Por lo tanto, la di-
mension de cada segmento fue de (frecuencia x 21). Donde frecuencia corresponde al
namero de bins espectrales (filas) en cada tipo de espectrograma. Para ello se definieron

las siguiente variables:



e Negmentos: numero de segmentos (45).

e F': dimensién frecuencia del espectrograma (12 para Chroma, 60 para CQT, 128
para Mel).

e T': dimension temporal total del espectrograma con padding aplicado (969 frames).
e OG7: nimero de frames antes de aplicar padding.
e NT =T//Nsegmentos: nimero de frames por segmento (division entera).

e 'R =T %Nsegmentos: nimero de frames residuales no asignables de forma equi-
tativa.

El tratamiento de estos frames residuales FR es esencial para evitar sesgos temporales
y garantizar una correcta segmentacion simétrica. El algoritmo para su descarte se
detalla en la figura 12

si 0G_T>=T

No 1
Eliminar FR frames del inicio PD=T-0G_T
PD=>FR ——
N
—> FR=FR-PD

Si

Eliminar PD frames del final.
Eliminar FR frames del inicio

Eliminar FR frames del final

Figura 12: Diagrama de flujo para la seleccion de frames a descartar en el proceso de
segmentacion de espectrogramas.

El algoritmo sigue esta logica:

e Si el namero original de frames (OGr) es mayor o igual a T, se eliminan F'R
frames desde el inicio.

e Si OGr < T, se calcula el numero de frames anadidos por padding:

PD =T - 0OGr.



e Si PD > FR, seeliminan F'R frames al final del espectrograma (solo del padding).

e Si PD < FR, se eliminan primero PD frames al final (del padding) y luego
FR — PD frames desde el inicio (del contenido original).

Esta logica asegura una distribucion equitativa de los frames validos en los segmentos
finales, Prioriznado la eliminaciéon de frames iniciales y cuidando mantener los frames
finales del segmento, los cuales suelen contener las resoluciones musicales.

El resultado final es una matriz segmentada de forma uniforme, con dimensiones
por espectrograma de (45,1, NT, F').

Donde NT' es el nimero de frames por segmento (21), y F' es la resolucion de
frecuencia. Esta estructura es la entrada directa para redes convolucionales 2D en el
modelo propuesto.

En la figura 13 se muestra un caso practico del proceso de segmentacion temporal
sobre un espectrograma CQT generado con una duraciéon de 44 segundos. Inicialmente,
la dimension temporal del espectrograma era de 949 frames, y se aplicé padding hasta
alcanzar los 969 frames necesarios. La divisiéon en 45 segmentos genera una particion
entera como se ve en la ecuacién 26 dejando un residuo como el de la ecuacion 27.

969

NT = | ==
{45

J =21 frames por segmento (26)

FR =969 mdd 45 =24 frames residuales (27)

Dado que el padding fue de 20 frames, se procede a eliminar primero los 4 frames
restantes desde el inicio del espectrograma original y luego los 20 frames del final (co-
rrespondientes al padding). Este procedimiento garantiza que la dimension temporal
final sea multiplo de 45 y que los segmentos generados tengan exactamente 21 frames
cada uno, preservando la homogeneidad temporal.



N_segmentos = 45
F =60
| T=969
‘ ! 0G_T =949
NT =969 // 45 =21
969 x 21 =945
FR =969 % 45 = 24
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Figura 13: Proceso de segmentacion de espectrogramas en 45 partes iguales; ejemplo
con un espectrograma CQT.

Mascaras para los espectrogramas: Al momento de crear espectrogramas con
padding, es importante identificar la informaciéon del contenido original de la informa-
cion producto del rellenado con ceros. Para lograrlo, se aplica el siguiente algoritmo:

1.

Partimos de un lote de espectrogramas de forma (N , F, T), donde N es el
tamano del lote, F' el nimero de bandas en frecuencia y T el nimero total de
frames (después de haber agregado padding en el eje temporal).

Se elige un nimero fijo de segmentos temporales deseados, num _seg.

Se calcula cuantos frames de espectrograma corresponden, en promedio, a cada
segmento:

e
num frames = |——|.
num_ seg

De esta forma, dividimos los T' frames en num_seg bloques temporales iguales (o
casi iguales).

Inicializamos la méascara como una matriz de ceros:
frame_mask = 0 nxnum seg-

Cada fila 7 representaréa la méscara binaria para el espectrograma i-ésimo.

. Disponemos de un vector og_ dims € RY, donde og_ dims[i] = a; indica el ntimero

real de frames originales (sin padding) del espectrograma i.



6. Para cada ejemplo 7, calculamos cuantos segmentos temporales cubre el contenido
original usando

frame_limit, = {round (a;/ num_frames)J .

Por ejemplo, si el espectrograma original tiene a; = 100 frames y num__frames = 2,
entonces frame limit, = round(100/2) = 50.

7. Nos aseguramos de no superar el nimero de segmentos:

masked _frames, = min (frame_limiti, num_seg).

8. Finalmente, llenamos con 1 los primeros masked frames, segmentos de la fila i:
frame mask][i, 0 : masked frames;| = 1.

De esta forma, los segmentos correspondientes a la parte original del espectro-
grama quedan marcados con valor 1, mientras que los segmentos que provienen
exclusivamente del padding permanecen en 0.

Con esta méascara se logra identificar la informacion del espectrograma que contiene
datos reales y evita que el padding sea interpretado como parte de la senal.

6.4.2. Caracteristicas simbéolicas (acordes)

Para la extraccion de caracteristicas basadas en la estructura armoénica de las can-
ciones se siguié un proceso que comprende los siguientes pasos: extraccion de los acordes
a partir de los archivos de audio, estimacion de la tonalidad, creacion del modelo de
embeddings base, construcciéon y armonizaciéon de la escala, y la construccion de los
embeddings con tokens estructurados. Este proceso se describe de manera grafica en la
figura 14.
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Figura 14: Diagrama del proceso en la extraccion y codificacion de caracteristicas sim-
bolicas basadas en acordes.

En teoria musical, la estructura armoénica de una cancién es clave para comprender el
manejo de emociones en la musica. Por ello, se implementd un proceso para la extraccion
de acordes, tonalidad y su representacion funcional mediante grados a partir de los
archivos de audio.

Para la estimacion de acordes y tonalidad se utilizo la herramienta madmom [77], la
cual permiti6é realizar la deteccién de acordes a partir de la senal de audio extraida de
los archivos WAV. Ademas, también se obtuvo una aproximacion de la tonalidad global
de la cancion.

La deteccién automatica de acordes generd una serie de cadenas textuales corres-
pondientes a la progresiéon armonica de la canciéon. Estas secuencias se transformaron
en una lista de cadenas con la forma:

7 Cmaj77 , b Gmaj”’ 2 Fma/jﬂ , 7 Emz‘n” , 7 Cmaj77

Cabe destacar que la librerfa de madmom tiene una gran limitaciéon, pues solo es
capaz de identificar acordes mayores y menores. Esto implica que acordes complejos
como los aumentados, disminuidos o de séptima no sean contemplados en la salida
del sistema. Esto simplifica las estructuras armonicas, pero al mismo tiempo limita la
riqueza armonica original de una obra.

Dado que los nombres de acordes pueden estar expresados en formas enarmoénicas
equivalentes (por ejemplo, D#min y Ebmin), se realiz6 un proceso de normalizacién
enarmonica para unificar todas las notaciones a su forma con sostenido (#). Esto
reduce la redundancia en el vocabulario de acordes y mejora la calidad de los embeddings
aprendidos. La equivalencia se basa en principios musicales estandar, como:



Ct=Db, Di=Eb, Fi=Gb, Gi=Ab, A= Bb.

De esta forma, se garantiza que progresiones armonicas funcionalmente idénticas no
se representen con etiquetas distintas debido a notaciones alternativas.

Representacion Vectorial de Acordes mediante Embeddings: Inspirado en
técnicas de procesamiento de lenguaje natural (PLN) [37], [38], se aplicaron modelos
Word2Vec basados en coocurrencias para representar las representaciones textuales de
los acordes por medio de un espacio continuo. Esta técnica permite capturar relaciones
sintacticas y semanticas entre acordes en un contexto musical, de forma parecida a
como se modelan palabras en lenguaje natural.

Como primer acercamiento a este proceso, la representacion armoénica de las cancio-
nes se construyo a partir de una secuencia lineal de cadenas de acordes, sin contemplar
informacion acerca de la tonalidad. Asi, cada cancién es representada por una progresion
de acordes codificada en una lista secuencial de cadenas:

{Emin, Gmaj, Ffmaj, Gmaj, Ffmaj, Emaj, Emin, Gmaj, Emin}

Sobre este corpus se entrenaron modelos de tipo Word2Vec en sus variantes Skip-
gram y CBOW. Estos modelos permiten predecir un acorde a partir de su contexto
(CBOW) o predecir el contexto a partir del acorde central (Skip-gram). Formalmente,
cada acorde ¢; se proyecta como un vector en RY, donde N € 100, 200:

v., € RY (28)

Estos modelos capturan regularidades contextuales basadas en la co-ocurrencia de
acordes dentro de una ventana de contexto.

Corpus = {C(1),C(2),...,C(N)}, C(i) = [c1,¢2, ..., ¢4) (29)

donde ¢; representa el simbolo de un acorde ya normalizado. Se experiment6 con tama-
nos de ventana de w = 5, 10, 20, tal como se propone en trabajos previos como el de
Lahnala et al. [38].

Longitud maxima y representaciéon por cancién: Cada cancion fue represen-
tada como una secuencia de vectores de embedding de dimension d:

Song; = [ver,vey, . .., vey], Vo € RY

Dado que las progresiones de acordes varian en longitud, se establecié un limite
maximo de 32 acordes por canciéon. En caso de que la progresion tuviera una longitud
menor a 32 se aplic6 padding con ceros.

Grados de los acordes a partir de la tonalidad de la progresiéon: Para
enriquecer la representacion armonica més alla de la coocurrencia lineal de acordes, se
disené un método de embeddings estructurados que incorpora explicitamente la tonali-
dad y los grados armonicos de cada acorde.



Para calcular a que grado pertenece cada acorde de la progresion, primero se cons-
truy6 una lista con los 12 sonidos de la escala cromatica, solo contemplando sostenidos:

C,Ct,D,Dy, B, F,F,G,Gt, A AL, B

Dada esta codificacion, es posible asignar a cada sonido de la escala croméatica un
indice en la lista, del 0 al 11. De esta forma, avanzar una posicién en la lista corresponde
a avanzar un semitono (s), y avanzar 2 posiciones corresponde a avanzar un tono (T).

Esto nos permitié realizar calculos matematicos para encontrar las notas de una
escala dada a partir de la nota base y el patron de la escala que desea conseguir.

Cada escala se define por una secuencia tnica de tonos y semitonos. Construyendo
asi el patron de construccion de la siguiente forma:

Escala Mayor

e Formula: T-T-S-T-T-T-S

e Patréon Numérico: [2, 2, 1, 2, 2, 2, 1]

Escala Menor Natural

e Formula: T-S-T-T-S-T-T

e Patron Numérico: [2, 1, 2, 2, 1, 2, 2]

Escala Menor Armoénica

o Férmula:T—S—T—T—S—T%—S
e Patron Numérico: [2, 1, 2, 2, 1, 3, 1]

e Nota: El intervalo de Tono y medio (T%) equivale a 8 semitonos.

Escala Menor Melodica (Ascendente)

e Formula: T-S-T-T-T-T-S

e Patréon Numérico: [2, 1, 2, 2, 2, 2, 1]

El proceso para construir una escala es un algoritmo simple que combina una nota
de inicio (la tonica), un patréon de intervalos y aritmética. Este detalla en el algoritmo
3.



Algorithm 3 Generacion de Escala Musical (Version Robusta)

Require: nombreTonica, tipoEscala
Ensure: escalaResultante

ca}

escalaResultante < {}
patronSeleccionado <— ObtenerPatron(tipoEscala)

indiceActual <— ObtenerIndice(nombreTonica)
Anadir(escalaResultante, NOTAS CROMATICAS|indiceActual]) {anade la toni-

for cada intervalo en patronSeleccionado do
indiceActual < (indiceActual + intervalo) mod 12
Anadir(escalaResultante, NOTAS CROMATICAS|[indiceActual])
end for
return escalaResultante

A continuacion, se muestra una ejecucion manual del algoritmo para verificar su
funcionamiento.

1. ENTRADA: ConstruirEscala(«Ey,«Mayors»).
2. INICIALIZACION:

e escalaResultante « []

e patronSeleccionado + [2,2,1,2,2,2,1]
e indiceActual < 4 (indice de “E”)

e Se anade E a escalaResultante, que queda [E].

3. ITERACIONES DEL BUCLE:

intervalo
intervalo
intervalo
intervalo
intervalo
intervalo

intervalo

= 2: indiceActual + méd 12 = 6. Se anade Ff.

(4+2)
= 2: indiceActual < (6 + 2) mdd 12 = 8. Se anade Gf.
= 1: indiceActual < (8 + 1) mdd 12 = 9. Se anade A.
= 2: indiceActual < (9 + 2) méd 12 = 11. Se anade B.
= 2: indiceActual < (11 +2) mdd 12 = 1. Se anade Cf.
= 2: indiceActual < (1 +2) mdd 12 = 3. Se anade D4.
(

= 1: indiceActual < (3+ 1) méd 12 = 4. Se anade E (octava).

4. SALIDA: La lista resultante es [«E»,<«F#>»,«G#>,<A»,«B>»,«C#y»,«D#>,<E»].

Armonizaciéon de la escala: La armonizacion consiste en asignar una cualidad de
acorde a cada una de las notas de una escala. Este proceso nos da la paleta de acordes
que pertenecen a una tonalidad especifica.

Cada tipo de escala genera un patréon tinico y predecible de acordes. A continuaciéon
se presentan las listas para las cuatro escalas principales, usando las abreviaturas maj
(mayor), min (menor), dis (disminuido) y aug (aumentado).



Escala Mayor:

e Patréon: [maj, min, min, maj, maj, min, dis]

Escala Menor Natural:
e Patréon: [min, dis, maj, min, min, maj, maj]

Escala Menor Armoénica:

e Patréon: [min, dis, aug, min, maj, maj, dis]

Escala Menor Melddica (Ascendente):
e Patréon: [min, min, aug, maj, maj, dis, dis]

El proceso para construir la escala armonizada es una simple concatenaciéon uno a
uno, entre la escala de notas y el patron de armonizaciéon.
Entonces, dadas la siguiente escala y su patréon de armonizacion:

1. La escala de notas calculada:

A,B,C,D,E,F,Gf

2. El patron de armonizacién (menor armdnica):

[min, dis, aug, min, maj, maj, dis]

El proceso de concatenacidn, donde a cada nota se le asigna la cualidad de acorde
en la misma posicion:

Nota de la Escala | Patron Armonico | Acorde Resultante

A min A min
B dis B dis

C aug C aug
D min D min
E maj E maj
F maj F maj
Gf dis Gt dis

Grados de una escala: La asignacion de grados es el paso final y es un mapeo
directo. A cada acorde de la escala armonizada se le asigna un numero romano de una
lista predefinida, segiin el modo de la escala.

e Mayor: [ I, ii, iii, IV, V, vi, vii dis ]



e Menor Natural (nat): [ i, ii dis, III, iv, v, VI, VII ]
e Menor Armoénica (arm): [ i, ii dis, III aug, iv, V, VI, vii dis ]

e Menor Melédica (mel): [ i, ii, IIT agu, IV, V, vi dis, vii dis ]

Estos grados se guardan en una lista paralela a la escala previamente armonizada. Si
bien los grados y acordes de la escala contemplan acordes disminuidos y aumentados,
en la practica nunca se encuentran estos acordes dentro de la escala, pues madmom
simplificara estos acordes. Sin embargo, esto conlleva a que el acorde simplificado no se
encuentre dentro de la escala, asi que simplemente se marcara como un dis que indica
una disonancia, guardando asf la funciéon de este acorde dentro de la escala.

Calculo de grados en una progresion: FEl objetivo final de este proceso es
analizar una progresion de acordes dentro de una tonalidad especifica. Este proceso
automatizado utiliza las escalas armonizada y de grados que generamos previamente
como listas de referencia.

El método consiste en recorrer la progresion acorde por acorde. Para cada uno, se
busca su posicién en la escala armonizada de la tonalidad. Si se encuentra, se toma
el grado que estd en la misma posicion en la lista de grados. Si no se encuentra, se
etiqueta como una disonancia (dis). Generando asi dos listas, una con los acordes de la
progresion y otra que guarda, en la misma posicion que la lista de acordes, los grados
de los acordes de acuerdo con la tonalidad.

En el caso de las tonalidades menores, existen tres modos. Sin embargo, la detecciéon
automatizada no hace distincion de qué modo es el que se usa, por lo que el algoritmo
de analisis se refina con una légica de busqueda jerarquica para las tonalidades
menores.

Para cualquier acorde en una progresion en tonalidad menor, el algoritmo intentara
encontrar una coincidencia en el siguiente orden de precedencia:

1. Escala Menor Natural: Es la base de la tonalidad.

2. Escala Menor Armonica: Si no se encuentra en la natural, se busca aqui. Es
la fuente mas comun de acordes prestados, especialmente el V grado mayor.

3. Escala Menor Melédica: Si atn no se encuentra, se busca en la melddica.

4. Disonancia (dis): Si el acorde no existe en ninguna de las tres escalas, se marca
como disonancia.

El grado que se asigna correspondera a la primera escala en la que se encuentre el
acorde.



Algorithm 4 Analisis de Progresion con Logica Jerarquica

Require: Tonalidad, ProgresionAcordes
Ensure: analisisResultante
1. analisisResultante < ||
2: if Tonalidad es MAYOR then
3:  escalaArmonizada < GenerarEscalaArmonizada(Tonalidad)

4:  escalaDeGrados <— GenerarEscalaDeGrados(Tonalidad)

5. for cada acorde en ProgresionAcordes do

6 {Aqui irfa la logica basica de mapeo}

T e

8: end for

9: else

10:  if Tonalidad es MENOR then

11: escalaArm Nat < GenerarEscalaArmonizada(Tonalidad, Natural’)
12: grados_Nat < GenerarEscalaDeGrados(Tonalidad,’Natural’)

13: escalaArm _Armonica < GenerarEscalaArmonizada(Tonalidad,” Armonica’)
14: grados__Armonica <— GenerarEscalaDeGrados(Tonalidad,’ Armonica’)
15: escalaArm_Melodica < GenerarEscalaArmonizada(Tonalidad,’Melodica’)
16: grados_Melodica < GenerarEscalaDeGrados(Tonalidad,’Melodica’)
17: for cada acorde en ProgresionAcordes do

18: encontrado <+ falso

19: indice «— BuscarIndice(acorde, escalaArm_Nat)

20: if indice existe y no encontrado then

21: Anadir(analisisResultante, grados Nat|indice|)

22: encontrado < verdadero

23: end if

24: indice «— BuscarIndice(acorde, escalaArm _Armonica)

25: if indice existe y no encontrado then

26: Anadir(analisisResultante, grados Armonicalindice|)

27: encontrado < verdadero

28: end if

29: indice «— BuscarIndice(acorde, escalaArm Melodica)

30: if indice existe y no encontrado then

31: Anadir(analisisResultante, grados_Melodicalindice|)

32: encontrado < verdadero

33: end if

34: if no encontrado then

35: Anadir(analisisResultante,’dis’)

36: end if

37 end for

38:  end if

39: end if

40: return analisisResultante




Construcciéon del Modelo y Tokens Estructurados:

Para generar los tokens estructurados y construir un nuevo modelo Word2Vec, se ob-
tienen los grados de cada acorde dentro de la progresion, para posteriormente combinar
ambas fuentes de informacion (acorde y funcién armonica) en cada token.

Para cada cancion, se validé que la lista de acordes y la lista de grados tuvieran
la misma longitud. El primer token se construye con la tonalidad, generando un token
de tonalidad con el formato {tonalidad}_T_, por ejemplo, Emin_T_. Tras esto, para
cada par (acorde, grado) se generaba un token de la forma {acorde}_{grado}_, como
Emin_i_, Gmaj_III_ o Amaj_dis_ (cuando el acorde no pertenece a la escala). De este

-t

modo, la lista final de tokens para la progresion de una cancién luce asi:
[tonalidad_T_, acorde_grado_,, acorde_grado_,, ..., acorde_grado_L}.

Al concluir, cada cancién queda asociada a su secuencia completa de tokens estructu-
rados. Generando asi el corpus para entrenar el modelo Word2Vec.

Entrenamiento del Modelo Word2Vec: Utilizando el corpus de tokens gene-
rados, se entrenaron modelos Word2Vec con parametros fijos: dimension del embed-
ding [150,250,350], ventana de contexto [9,18,36], 30 épocas de entrenamiento, Skip-
gram y CBOW, y min_count = 1. El resultado es un modelo que asocia cada token
(“tonalidad_T_” o “acorde_grado_") a un vector en R?*°. Este modelo se guarda en
un archivo, por ejemplo structured_skipgram_model_250_18_30.npy, de modo que,
si existe, simplemente se carga para evitar reentrenar.

Estructuras Producto del Entrenamiento: Al finalizar el entrenamiento, el
vocabulario de tokens V incluye todas las tonalidades con su sufijo“ T 7y cada token
“acorde grado” correspondiente. Cada token t € V estd representado por un vector
u, € RV, en el cual:

e Sit es de tipo ““tonalidad_T_”’, u; codifica la representacion de la tonalidad.

—t=

e Sit es de tipo ‘‘acorde_grado_’’, u; captura tanto el nombre del acorde como su
funcion dentro de la tonalidad.

Para cada canciéon con L acordes, construimos una matriz

U+tonalidad_T_

US _ 1101771_ c R(L—&-I)XN‘

Uep vy

La primera fila corresponde al vector de tonalidad, mientras que cada fila subsiguiente es
el vector asociado a cada token “acorde grado”. Esta matriz Ug se emplea directamente
en modelos secuenciales (por ejemplo, un BiLSTM), agregando padding cuando L <
Lméx-



Entrada con Embeddings multiples: Los embeddings estructurados contem-
plan la tonalidad al inicio de la progresion de la forma: tonalidad_T_. Sin embargo,
este token no se repite a lo largo de la progresion.

Por ello, para contemplar en todo momento el peso de la tonalidad, se obtienen
el embedding base de la tonalidad junto con los embeddings de los tokens estructu-
rados, creando asi una entrada con dos diferentes tipos de embeddings, combinando
asi la informacién completa de la progresion de acordes (embeddings estructurados) y
la representacion vectorial de la tonalidad (embedding base). Asi, la entrada de cada
cancion consta de:

e Una matriz de embeddings X; € Rm&*N que cubre toda la progresion de acordes
hasta una longitud fija L, s = 32. Cuando la progresion real tiene menos de 32
tokens, aplicamos padding con ceros. Asimismo, generamos una mascara mask; €
{0, 1}Fmé< que indica con 1 las posiciones correspondientes a tokens validos y con
0 las de padding.

e Un vector de tonalidad et € R1% obtenido previamente mediante un modelo
base de Word2Vec entrenado tnicamente sobre tokens de tonalidad.

val aro
i Y

e El par de valores [U } € R? que representa el valence y arousal objetivo

para esa canciom.
Resumen de Salida: Para cada cancion, el preprocesamiento genera tres tensores:
X; e R0 mask; € {0,1}%, ¢ e R,

Junto con el vector [Uival, vfro] € R?, estos datos conforman un minibatch que alimen-
ta directamente el modelo de regresiéon emocional, incorporando tanto la progresion

completa de acordes (y sus funciones) como la representacion numérica de la tonalidad.

6.5. Aumento de datos

6.5.1. Transposiciéon de acordes

Al implementar una estructura de tokens estructurados, se adopté un enfoque de
aumento de datos basado en la transposicion de la tonalidad por intervalos. Este método
se fundamenta en una técnica musical comun: desplazar acordes hacia arriba o abajo
en el eje de alturas, conservando su estructura interna (modo mayor o menor).

Logica béasica para la transposicion: Para enriquecer el conjunto de datos de
entrenamiento y asegurar que el modelo aprenda a reconocer patrones armonicos in-
dependientemente de la tonalidad, se implement6é una estrategia de aumento de da-
tos basada en la transposicion. Este proceso genera nuevas progresiones musicalmente
coherentes al desplazar una progresion existente a diferentes tonalidades, la figura 15
muestra un ejemplo grafico de como funciona esta técnica.



El método se basa en el anélisis de grados previamente realizado y sigue un procedi-
miento estructurado para garantizar la correcta correspondencia armonica en la nueva
tonalidad.

Dada una progresion original, su tonalidad y su analisis de grados, el proceso para
generar una nueva progresion transpuesta es el siguiente:

1. Transposiciéon de la Tonalidad: Se elige un intervalo de transposicion (medido
en semitonos) y se aplica a la tonica de la tonalidad original. Esto define la nueva
tonalidad base. Por ejemplo, transponer C maj en ‘42° semitonos resulta en la
nueva tonalidad de D maj. Un ejemplo gréfico de transposiciéon de un acorde se
puede observar en la figura 15.

2. Generacion de la Nueva Escala de Referencia: Utilizando los algoritmos ya
definidos, se genera la escala armonizada completa para la nueva tonalidad. Esta
Y
escala servira como "diccionario"para construir la nueva progresion.

3. Reconstruccion de la Progresion Diaténica: Se recorre la lista de grados de
la progresion original. Para cada grado (ej. I, V, vi), se busca el acorde que ocupa
esa misma posicion en la nueva escala armonizada generada en el paso anterior.
Este mapeo directo asegura que la funciéon armoénica de los acordes se preserve.

4. Manejo de Acordes Disonantes (dis): Los acordes que fueron marcados como
dis no tienen un grado diaténico, por lo que no pueden mapearse como en el paso
anterior. En su lugar, se transponen croméaticamente:

e Se toma la nota raiz del acorde disonante original (ej. la nota ‘D* del acorde
‘D maj).

e Se busca la posicion de esta nota en la lista de los 12 sonidos cromaticos.

e Se desplaza su indice segtn el intervalo de transposicion (ej. ‘42 semitonos).

e La nueva nota raiz y la cualidad del acorde original (mayor o menor) forman
el nuevo acorde disonante transpuesto.

A cada progresion se le aplico transposicion en 4 intervalos dados. Estos intervalos
se encuentran detallados en la tabla 6.

Cuadro 6: Intervalos de Transposicion (Estilo Minimalista)
Nombre del Intervalo Valor en Semitonos

Segunda mayor 2
Tercera mayor 4
Cuarta justa )
Quinta justa 7
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Figura 15: Transposiciéon de un acorde de Do mayor, % tono y 1 tono arriba y abajo.
Notacion musical clasica con pentagrama.

La tabla 7 muestra un ejemplo de como se aplica la transposiciéon en una de las
canciones del dataset de PMEmo.

Cuadro 7: Aumento de datos a la canciéon de I Have Questions"de la artista Camila
Cabello"del conjunto de datos de Pmemo (solo los 4 primeros acordes).

Transposicion Tonalidad Progresion Resultante

Af min, Ff maj, Gf maj, Afmin,

Original Ct maj i IV. V. vi

B min, G maj, A maj, B min

Segunda menor D mayj vi, IV, V, vi

D min, Af maj, C maj, D min

Tercera mayor  F maj vi IV, V. vi

Df min, B maj, Cf maj, Df min

Cuarta justa Ff maj i IV V. vi

F min, Cf maj, Df maj, F min

Quinta justa Gt maj vi, IV, V, vi

A partir de las muestras originales, este método permitié generar versiones trans-
puestas de cada canciéon. A pesar de la limitacién impuesta por el nimero reducido
de acordes posibles, el corpus aument6 de manera significativa, pasando de unas 2569
muestras originales a 12,845 progresiones tnicas. Esta expansion mejoré la robustez del
entrenamiento sin modificar la distribucién emocional de las canciones.

6.5.2. Técnicas de aumento de datos en archivos de audio

Para incrementar la cantidad de datos disponibles y mejorar la generalizacion del
modelo sin introducir cambios significativos en la percepcién emocional de los audios,
se implementaron técnicas clasicas de aumento de datos directamente sobre la senal de
audio. Estas transformaciones se aplicaron antes de la extraccion de espectrogramas.



Se aplicaron dos métodos principales de transformacion de la senal:
Time stretching: Consiste en modificar la velocidad de reproduccion del audio
sin alterar su tono. Se aplicaron cuatro configuraciones:

[ J

0,81 x velocidad
[ J

0,93 x velocidad
[ J

1,07 x velocidad
®

1,23 x velocidad

Este método permite simular interpretaciones més lentas o rapidas de una misma
pieza musical, respetando su estructura tonal.

Time shifting: En esta técnica, los ultimos 5 segundos del audio se recortan y
se colocan al inicio del archivo, generando una nueva version del mismo audio con un
reordenamiento temporal.

Este tipo de desplazamiento es ttil para redes neuronales que exploran la evolucién
temporal, ya que modifica el punto de entrada sin alterar el contenido total.

Sefial de audio crudo de Different for Girls time shifting Sefal de audio crudo de Different for Girls fast stretching
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Figura 16: Ejemplo de las senales de audio de un elemento aumentado con time stret-
ching y time shifting: A) Time shifting; B), C) y D) Time stretching x(0,81,0,93,1,07).
Cancion “Different for Girls”.



6.6. Caracteristicas profundas

Como antesala del reconocimiento de emociones, de cada tipo de caracteristicas,
acusticas y simbolicas (estructuras armonicas), se extraen las caracteristicas profundas
por medio de modelos profundos. El objetivo de este proceso es fusionar las caracteris-
ticas con diferentes dimensiones en una sola.

6.6.1. Caracteristicas profundas de las estrcutras armonicas

Para la caracteristicas armoénicas se tiene un vector de embeddings con tokens es-
tructurados y un vector de embeddings para representar la tonalidad de la progresion.
Ademés de un vector mascara para identificar aquellos espacios rellenados con ceros.
Obteniendo una entrada como:

X; € R0 magk; € {0,113, el" € R'C.

El extractor de caracteristicas armonicas recibe, para cada lote de datos, tres ten-
sores principales:

e X: Secuencias de embeddings de acordes, de forma B x T x Dy,.

e mask: Mascara binaria de tamano B x T que indica qué posiciones de la secuencia
son validas (1) y cudles son padding (0).

e tonality: Embedding de la tonalidad, de tamano B x 100, constante para toda
la progresion de acordes.

En donde:
e T'= 32 es la longitud méaxima de la secuencia de tokens de acordes.
e D;, = 250 es la dimension de los embeddings de cada acorde (estructurado).

Las redes LSTM bidireccionales (BiLSTM) procesan secuencias de acordes en ambos
sentidos, permitiendo que el modelo aprenda dependencias contextuales tanto pasadas
(hacia atras) como futuras (hacia adelante). Esto es fundamental, pues en la estructura
armonica un acorde no es un elemento aislado, ya que esta condicionado por su contexto
completo. La figura 17 muestra el diagrama de la arquitectura del modelo extractor para
las caracteristicas simbolicas.
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Figura 17: Extractor de caracteristicas profundas y fusiéon de embeddings modelo
BiLSTM

Descripcion capa por capa: A continuacion se enumeran los bloques clave del
modelo, en orden de procesamiento (seis capas principales):

e BiLSTM bidireccional (2 capas, dropout)

o Recibe X y procesa las secuencias de longitud variable (usando mask para
ignorar padding).
o Genera una salida de tamano B x T x (2 - 128).

e Pooling promedio enmascarado

e Se aplica la mascara sobre la salida de la LSTM para anular posiciones de
padding.

e Se calcula el promedio a lo largo de la dimensién temporal, obteniendo un
vector B x (2 x 128).

e Concatenacién con embedding de tonalidad

e El vector obtenido tras el pooling se concatena con tonality (dimension
100), formando un tensor B x (2 - 128 4 100).

e Capa densa 1 (FC1)

o Proyecta la concatenacion anterior desde (2 - 128 + 100) a fcl _dim.



¢ Incluye activaciéon ReLU y dropout para evitar sobreajuste.
e Capa densa 2 (FC2)

e Toma la salida de FC1 (fc1 dim) y la proyecta a fc2 dim.
e También aplica ReLLU y dropout.

e El resultado final de FC2 se considera la “caracteristica profunda armonica”
(dimension fc2  dim).

6.6.2. Caracteristicas profundas acusticas

A continuacion, se explica como se obtuvieron las representaciones profundas de
cada tipo de espectrograma y cémo se fusionan dichas caracteristicas. El extractor
principal combina bloques residuales de tipo ResNet con bloques de atencion Squeeze-
and-Excitation (SE). La figura 18 refleja el diagrama y la composicion del modelo
extractor de caracteristicas acusticas.
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Figura 18: Extractor de caracteristicas profundas ResNetSE para caracteristicas acust-
cias (espectrogrmas)

ResidualBlock: Cada bloque residual consta de dos convoluciones con normaliza-
cion y activacion, mas un atajo (shortcut) que ajusta la dimension cuando es necesario.



La estructura esencial de este bloque se puede observar en el segmento C de la figura
18.

SEBIlock (Squeeze-and-Excitation): Este bloque recalibra los canales mediante
atencion global. De igual forma, la parte B de la figura 18 muestra el bloque completo.

ResNetSEBlock: Combina un ResidualBlock con un SEBlock tal como se muestra
en la seccion D de la figura 18.

En general, primero se aplica la convolucion residual y luego se recalibran los canales
con atencion SE.

Finalmente, el extractor de caracteristicas, denominado ResNetSEFExtractor, tiene
la estructura descrita en la seccion A de la figura 18.

Construccién de extractores segin tipo de espectrograma: Dependiendo del
numero de “bins” de frecuencia del espectrograma, se crea un extractor con in_channels
equivalente a la cantidad de bins:

e Cromagrama: in_channels = 12.

e CQT: in_channels = 60.

e Mel-spectrograma: in_channels = 128.

e Espectrograma temporal (TMP): in_channels = 384.

En cada caso, el flujo es:

ResNetSEExtractor

Espectrograma [ (B, 1, T, F)] (B, 1024).

Una vez extraidos los vectores de 1024 dimensiones para cada espectrograma, se
combinan mediante una concatenacion:

e Concatenacion:

ffusic’)n = [fchroma H fcqt H fmel} € Rg 024.

Con cuatro extractores:
ffusic’)n = [fchroma H fcqt H fmel H ftmp] S R4096-

De este modo, la fusion permite aprovechar la informacion complementaria de cada
representacion espectral. Preservando la identidad de cada extractor para capas poste-
riores.

De manera general, el proceso de extraccion y fusion de caracteristicas acisticas se
puede describir asi:

1. Céalculo de espectrogramas: A partir de la senal de audio preprocesada (nor-
malizacion y padding a duracion fija), se obtienen:

Cromagrama, CQT, Mel-spectrograma, opcionalmente TMP.

Cada uno con dimensiones (B, 1, T, F).



2. Extraccion de caracteristicas: Para cada espectrograma se aplica el extractor
correspondiente:

fchroma = 612($chroma)> fcqt = gGO(-cht)? fmel = 5128(xme1)>

donde &£, denota un ResNetSEExtractor con ¢ canales de entrada, y cada f €
R1024

3. Fusion de vectores profundos: Se concatenan los vectores para obtener frusisn-

4. Entrada al modelo principal: El vector fusionado fgsisn se utiliza como entrada
a la red que predice arousal y valence.

6.7. Modelos para el reconocimiento de emociones

La prediccion final de las emociones de una cancién parte de generar y cargar las
caracteristicas profundas (tanto actsticas como simbolicas), las mascaras asociadas a
los espectrogramas y las etiquetas de arousal y wvalence necesarias para entrenar el
modelo.

A continuacion, se detalla el procedimiento para la lectura y divisién de los datos en
conjuntos de entrenamiento, validacion y prueba, empleando una particion 60 %-20 %-
20 % estratificada por el identificador de cada cancion.

6.7.1. Carga y division de los datos

En primer lugar, se cargan desde disco cinco conjuntos de datos principales. Las
caracteristicas actuisticas profundas se obtienen previamente al procesar cada espectro-
grama (cromagrama, CQT, Mel-spectrograma y Tempogramas) con el extractor Res-
Net+SFE y se almacenan en un arreglo de dimension N x 1024. De manera analoga, las
caracteristicas simbolicas —compuestas por los embeddings de acordes, tonalidades y
grados armoénicos— se guardan en otro arreglo, cuya segunda dimensiéon corresponde
a la longitud de los vectores simboélicos. Para distinguir las posiciones de padding den-
tro de cada espectrograma, se dispone de un tercer arreglo binario que asigna a cada
muestra una mascara de tamano 7' (el nimero de frames temporales). Las etiquetas de
emociones, es decir, los valores de arousal y valence normalizados, se encuentran reuni-
das en un cuarto arreglo con forma N x 2. Finalmente, un archivo CSV de metadatos
contiene, al menos, la columna song_id, que indica a qué cancién corresponde cada
fragmento. Al realizar la lectura, todos estos arreglos resultan tener el mismo ntmero
de filas N, de modo que para cada indice ¢ se dispone de la tupla: (vector acustico,
vector simbolico, mascara binaria, etiqueta de emociones, identificador de cancion).

Una vez que los datos han sido cargados y después de verificar que comparten la
misma longitud, el siguiente paso consiste en dividirlos en tres subconjuntos: entrena-
miento (60 %), validacion (20 %) y prueba (20 %). Para asegurar que fragmentos de una
misma cancién no aparezcan en mas de una particion, se emplea el identificador de can-
cion como criterio de estratificacion. En la practica, esto se logra extrayendo el vector



unidimensional de song_id del archivo de metadatos y pasédndolo, junto con los indices
de todas las muestras, a una funcion de particion que reserva el 60 % de las muestras
para entrenamiento. El resultado es un conjunto de indices y los correspondientes frag-
mentos acisticos, simboélicos, méascaras y etiquetas que conforman exactamente el 60 %
del total, garantizando que la proporcién de canciones se mantenga equilibrada. E1 40 %
restante se destina a una particiéon temporal que servira para generar los subconjun-
tos de validaciéon y prueba. Sobre ese 40 %, se realiza una segunda division en partes
iguales, de modo que cada una represente el 20 % del total original y conserve tam-
bién la estratificacion por cancion. Al concluir el proceso, se obtienen tres conjuntos
(entrenamiento, validacion y prueba), cada uno con sus arreglos actsticos, simbolos,
méscaras y etiquetas correspondientes, preparados para alimentar las etapas siguientes
del entrenamiento del modelo.

6.7.2. Modelos predictores intermedios

Con el objetivo de probar las caracteristicas extraidas, una vez obtenidas las carac-
teristicas profundas, se ingresaron en dos modelos sencillos: un modelo denso completa-
mente conectado y un modelo BiLSTM, cuya representacion grafica se puede observar
en la figura 19.
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Figura 19: Modelos para la prediccion de emociones valence arousal sobre caracteristicas
acusticas.

En el caso de la caracteristicas simbdlicas solo se probaron con el modelo BiLSTM,
mientras que las caracteristicas acusticas se probaron con un modelo BiLSTM y un
modelo totalmente conectado.



6.7.3. Modelo final y fusién de caracteristicas

Como paso definitivo antes de realizar el reconocimiento de emociones, es necesario
combinar las representaciones profundas obtenidas de dos fuentes: las caracteristicas
acusticas extraidas de los espectrogramas y las caracteristicas simbolicas ya procesadas
de las estructuras armoénicas. Dado que los espectrogramas varian en dimensiones y los
embeddings simbolicos ya se encuentran en forma de vectores profundos, cada tipo de
datos se maneja con una rama especifica para extraer o refinar su representacion antes
de fusionarlos en un bloque comun que produciré las predicciones de arousal y valence.

6.7.4. Caracteristicas profundas actsticas

Para las caracteristicas actsticas, disponemos de un arreglo
X e RTPe mask® € {0,1}7,

donde T es el nimero méaximo de segmentos temporales (frames) y D,. la dimension de
cada vector producido por los extractores ResNetSE de los distintos espectrogramas.
La maéscara indica, para cada posicion, si corresponde a senal vélida (1) o a padding
(0).

La rama acustica emplea dos capas de BiLSTM encadenadas, cada una con uni-
dades bidireccionales y dropout intermedio. La primera BiLSTM recorre la secuencia
completa de vectores aciisticos, procesandola en ambas direcciones. Su salida se pasa a
la segunda BiLLSTM, que refina la representacion en cada instante de tiempo. Duran-
te el procesamiento, se usa la méascara para omitir las posiciones de padding en cada
BiLSTM, de manera que las LSTM no consideren las zonas sin senal. Al concluir la se-
gunda capa, se extraen los estados finales en las direcciones hacia adelante y hacia atréas,
se concatenan y se aplica dropout adicional. Este vector concatenado, de dimension 2H,
se proyecta mediante una capa fully-connected con activacion ReLLU y dropout, seguida
de otra capa que reduce la dimension a 64. De este modo, cada fragmento acustico se

resume en un unico vector
fiac c R64,

que conserva la informacion temporal y espectral mas relevante de todo el segmento.

6.7.5. Caracteristicas profundas simbdlicas

En la rama simbolica, las caracteristicas ya estdn representadas como vectores pro-
fundos de dimension Dgyy,, fruto de haber pasado previamente los embeddings de acor-
des, grados y tonalidad por un extractor BiLSTM y capas densas. Por lo tanto, no es
necesario aplicar una nueva red recurrente ni utilizar méscara en esta etapa. A cada
fragmento musical ¢ le corresponde un vector simbodlico
f'sym7 in c RDSym,

]

que ya sintetiza la progresion armoénica.



La rama simboélica se limita a refinar este vector mediante dos capas fully-connected
en serie. La primera capa reduce la dimension de Dgyy, a una mitad de la dimension final
de fusion, aplicando activacion ReLLU y dropout para evitar sobreajuste. A continuacion,
una segunda capa fully-connected proyecta la salida a un espacio de dimension F;. Este
vector

e R
(2

es la “caracteristica profunda simbolica” final que participara de la fusion.

6.7.6. Fusion de caracteristicas y predicciéon de emociones

Una vez definidos f& € R% y ™ € R, el proceso de fusién consiste en conca-
tenarlos y generar la entrada al bloque final de predicciéon. Concretamente, se forma el
vector combinado

fi = [F 5] € R

Este vector se alimenta a una capa fully-connected intermedia que proyecta de dimen-
sion 64 + Fy a Fyy, aplicando activacion ReLLU y dropout. Finalmente, una capa fully-
connected de salida mapea este espacio de Fp, a dos valores continuos, correspondientes
a valence y arousal, tal como lo muestra la figura 20.

De esta manera, el modelo aprovecha las dependencias temporales capturadas en la
rama acustica, junto con la representacion simbolica ya procesada, para aprender las
interacciones entre ambas fuentes de informacion. El flujo general resumido es:

1. La secuencia actstica X2 y su méscara mask{® se procesan a través de dos
BiLSTM con dropout y luego se proyectan mediante capas densas, producien-
do f € R%.

sy e RDPsvm pasa por dos capas fully-connected

con ReLU y dropout, resultando en f;*™ € Rf2.

2. El vector simbodlico preextraido f

3. Se concatena ( fae 7 ym) para formar fIUs.

4. flus atraviesa una capa fully-connected intermedia con activacion ReLU y dropout,
y luego la capa de salida genera las predicciones [arousall-, Valencei].
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Figura 20: Extractor de caracteristicas profundas ResNetSE para caracteristicas acust-
cias (espectrogrmas)

6.8. Ajuste de Hiperparametros

Para garantizar un rendimiento 6ptimo en la predicciéon conjunta de valence y arou-
sal, se empled Optuna como herramienta de optimizacién bayesiana. Se realizaron dos
procesos de ajuste por separado, uno para el modelo Bi-LSTM (con componentes recu-
rrentes) y otro para el modelo FC (basado tnicamente en capas densas). A continuacion
se detallan las caracteristicas comunes y particulares del proceso de ajuste.

e Objetivo de optimizacién: Minimizar la suma de los Root Mean Square Error
(RMSE) y maximizar la suma de los coeficientes de determinacion R? en valida-
cion, ambos calculados sobre las dimensiones de valence y arousal.

e Numero de pruebas (trials): 50 por modelo.
e Criterio de parada temprana (early stopping): El entrenamiento de cada
prueba se detuvo si no hubo mejora en la métrica de validacion durante 3 épocas

consecutivas, con un méaximo de 15 épocas por prueba.

e Algoritmo de busqueda:



e Para el modelo Bi-LSTM se utiliz6 el muestreador NSGAIISampler, adecuado
para optimizacion multiobjetivo.

o Para el modelo FC se us6 el muestreador TPESampler.

En la Tabla 8 se muestra el espacio de busqueda empleado para ambos modelos. Se

detallan los hiperparametros ajustados, su tipo y rango o conjunto de valores explora-
dos.

Cuadro 8: Espacio de busqueda de hiperpardmetros para ambos modelos de fusion

Hiperparametro Tipo Rango / Candidatos Modelo
audio_lstm_hidden entero {32, 64, ..., 256} Bi-LSTM
audio_dropout_rate continuo  [0,0, 0,5] (unif.) Bi-LSTM
audio_fc_hidden entero {64, 128, ..., 512} Bi-LSTM
audio_fcl_dropout_rate continuo [0,3, 0,5] (unif.) Bi-LSTM
audio_fc2_dropout_rate continuo [0,2, 0,5] (unif.) Bi-LSTM
audio_fc3_dropout_rate continuo  [0,0, 0,5] (unif.) Bi-LSTM
fusion_hidden entero {32, 64, ..., 512} Ambos
fusion_dropout_rate continuo  [0,0, 0,6] (unif.) Ambos
fcl_output_dim entero {32, 64, ..., 256} FC
fc2_output_dim entero {32, 160, 288, 416, 512} FC
fcl_dropout_rate continuo  [0,0, 0,6] (unif.) FC
fc2_dropout_rate continuo  [0,0, 0,6] (unif.) FC
fc3_dropout_rate continuo  [0,0, 0,6] (unif.) FC
activation categorico {ReLU, LReLU, GELU, Tanh} Ambos

Hiperpardmetros del optimizador
optimizer categorico {Adam, SGD, RMSprop} Ambos
1r continuo  [107*, 107?] (log-unif.) Ambos
weight_decay continuo  [107%, 1073] (log-unif.) Ambos

- momentum (solo SGD)  continuo  [0,5, 0,9] (unif.) Ambos

[

- alpha (solo RMSprop) continuo [0,9, 0,99] (unif.) Ambos

Nota: (unif.) y (log-unif.) indican distribuciones uniforme y logaritmica uniforme, respectivamente.
LReLU refiere a LeakyReLU.

7. Resultados y discusion

7.1. Embeddings



7.1.1. Embeddings base

Para los embeddings base (solo representaciones textuales de acordes) se constru-
yeron dos modelos Word2Vec: Skip-gram y CBOW, ambos con una ventana contextual
de tamano 5 y un vector final de dimension 100. Una vez obtenido el modelo, se grafico
el espacio vectorial generado por los embeddings con un algoritmo PCA. Por tultimo,
se valid6 la coherencia de los embeddings calculando, para cada acorde, las similitudes
de coseno con sus cinco vecinos mas cercanos.

Visualizacién y andlisis estructural: Para estudiar las relaciones aprendidas
entre acordes, se aplicé un algoritmo de reduccion de dimensionalidad PCA (Analisis de
Componentes Principales) sobre los embeddings obtenidos. El resultado fue proyectado
en un plano bidimensional.

La figura 21 muestra el espacio vectorial que comparten los embeddings de los
acordes (representados por un punto en dicho espacio). Los vectores presentan un patron
en su organizacion en el espacio, pues se puede observar como estdn distribuidos de
manera circular.

La disposicion que se observa en la grafica sugiere que el modelo capturar par-
cialmente las relaciones tonales entre acordes vecinos, reflejando de manera notable el
circulo de quintas, un principio en la teoria musical que agrupa los acordes por su si-
militud estructural. No obstante, el modelo no captura la relaciéon estructural, pues no
tiene acceso a dicha informacion, lo que captura es la coocurrencia de un acorde en el
mismo contexto que otro. Ahora bien, en la musica esta coocurrencia no es aleatoria,
sino que esta implicita en la estructura armoénica, pues el contexto de un acorde esté
determinado por su tonalidad.

De este modo, el modelo Word2Vec, a base de aprender el contexto en el que un
acorde suele aparecer, logra representar la relacion musical existente entre acordes.
El modelo no es perfecto, pues existe un ligero desfase entre el espacio de los acordes
mayores y menores, lo cual podria indicar que en las progresiones analizadas los relativos
mayores y menores suelen coexistir poco.



2D Visualization of Chord Embeddings (SKIPGRAM)
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Figura 21: Representacion vectorial de las relaciones capturadas por los embeddings de
los acordes tnicos. El circulo exterior esta formado por los acordes menores y el circulo
interior por los acordes menores.

Similitud coseno Skip-gram vs CBOW: Para comprobar si existe alguna dife-
rencia sustancial entre los dos algoritmos de entrenamiento de Word2Vec, la figura 22
compara lado a lado, cada tonalidad (Amin, Cmaj, Bmin y Dmaj), los cinco acordes mas
similares obtenidos con Skip-gram (barras en color azul) y con CBOW (barras en color
rojo). Los valores numéricos sobre cada barra indican la similitud coseno obtenida por
cada enfoque.

Gracias a esta figura, se puede observar como tanto Skip-gram como CBOW son
capaces de capturar la cercania entre acordes tal como dicta la teoria musical y el circulo
de quintas, tomando como ejemplo el caso de Amin, cuya escala armonizada seria:

Amin, Bdim, Cmaj, Dmin, FEmin, Fmaj, Gmaj.

La grafica muestra que los acordes similares a Amin serfan: Cmaj (su relativo mayor),
Dmin (el cuarto grado de la escala), Fmaj (sexto grado de la escala), Gmaj (séptimo
grado de la escala) y Emin (quinto grado de la escala), es decir, todas las notas se
encuentran dentro de la escala de Amin. De forma similar, al ser Cmayj el relativo mayor
de Amin, la grafica refleja que la mayoria de acordes similares a Amin se encuentran
en Cmaj. Esta similitud la logran capturar ambos modelos, aunque Skip-gram tiende a
mantener valores de la similitud coseno levemente superiores a CBOW.
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Figura 22: Comparacion de similitud coseno entre Skip-gram (azul) y CBOW (rojo)
para los cinco acordes mas cercanos a cada tonalidad de referencia.

7.1.2. Embeddings estructurados

Para la evaluacion de los embeddings estructurados, los cuales contemplan los acor-
des y su funciéon de acuerdo a su grado y tonalidad, se entrenaron modelos Word2Vec
(Skip-gram y CBOW). Con el modelo generado, y dado que la relacion entre estos to-
kens es mas compleja, se gener6 el grafico del espacio generado por medio del algoritmo
t-SNE. Ademaés, se calcul6 la similitud coseno. A partir de ello, se identificaron los seis
tokens mas similares a cada token de tonalidad.

Finalmente, sobre los embeddings estructurados se muestra como la dimension del
embedding y el tamano de la ventana contextual impactan en la tarea de la prediccion
(ver Tablas 9 y 10), ademaés las tablas 12 y 11 ofrecen una comparativa de las métricas
para el valence y arousal por modelo.

Visualizacion Y andlisis estructural: Para visualizar las relaciones que los
embeddings capturaron sobre los acordes y sus funciones de acuerdo con su grado
y tonalidad, se aplicé un algoritmo de reducciéon de dimensionalidad t-SNE sobre los
embeddings obtenidos. La eleccion de t-SNE sobre PCA en estos embeddings fue debido
a que las relaciones de acordes, grados y su funcién de acuerdo con la tonalidad no son
lineales. El resultado fue proyectado en un plano bidimensional en la figura 23. El
resultado muestra como los embeddings logran agrupar en el mismo espacio vectorial
las tonalidades junto con sus grados. Es posible observar como en el grafico los datos
se agrupan en 24 conjuntos que corresponden a las 12 tonalidades disponibles en los
modos mayor y menor, mientras que las disonancias se concentran en el centro del



espacio vectorial.

Visualizacién de embeddings estructurados Word2Vec
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Figura 23: Representacion vectorial de las relaciones capturadas por los embeddings de
los tokens estructurados.

En este caso, a diferencia de los embeddings base, este modelo si posee informaciéon
estructural de una tonalidad, pues cada token esté formado no solo por el acorde, sino
por el grado al que pertenece de acuerdo con la tonalidad de la progresion. Es por ello
que en el grafico 23 cada tonalidad esta agrupada en un sector del espacio vectorial.
Ademas, cada claster o grupo que se forma en el espacio se conforma por un token de
tonalidad y varios tokens de grado.

Esto demuestra que, a diferencia del modelo anterior que solo inferia relaciones
de contexto, este enfoque construye un mapa musical coherente que captura tanto la
pertenencia a una tonalidad como la funcién especifica de cada acorde dentro de ella.

Grados mas similares a cada tonalidad:

La Figura 24 muestra, para cuatro tonalidades de referencia (Amin_T_, Cmaj_T_,
Bmin_T_ y Dmaj_T_), los seis grados con mayor similitud coseno respecto a su vector
de tonalidad. En cada uno de los cuatro subgréficos:

e El eje vertical enumera los token correspondientes a cada grado (por ejemplo,
Amin_i (nat), Emaj_V (arm), Gmaj_VII(nat), etc.).



e El ¢je horizontal indica el valor de similarity (coseno).

e El color de cada barra refleja la categoria de grado (ténica, dominante, etc.), tal
como se detalla en la leyenda.
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Figura 24: Similitud coseno de los top 5 acordes similares a las tonalidades de Amin,
Bmin, Cmaj y Dmaj.

De acuerdo con la figura, se puede observar que para Amin_T_, los grados con mayor
similitud (~ 0.79-0.81) corresponden a Amin_i (nat) (grado tonica), Emaj_V (arm)
(dominante), Gmaj_VII (nat) (submediante), etc. Este resultado concuerda con la fun-
cibn armonica esperada en la tonalidad de La menor.

En Cmaj_T_, los grados mas cercanos (=~ 0.80-0.82) incluyen Fmaj_IV (subdominan-
te), Cmaj_I (tonica), Gmaj_V (dominante), demostrando que el embedding ha capturado
correctamente las relaciones funcionales.

De forma similar, tanto para Bmin_T_ como para Dmaj_T_, se observa que los gra-
dos similares a su tonalidad corresponden con su estructura armoénica correspondiente,
evidenciando nuevamente la coherencia armoénica.

Impacto de los embeddings en la predicciéon de emociones: Para verificar el
efecto de los embeddings entrenados en un escenario practico, utilizamos ambos modelos
(Skip-gram y CBOW) como capa de entrada para un regresor que estima la dimension
de arousal a partir de los vectores resultantes.



En las tablas 9 y 10 se muestran los resultados obtenidos agrupados por la dimension
del embedding y el tamano de ventana de contexto con el que se experimento. Se
muestran los errores MAE, RMSE y el R? score obtenido.

Cuadro 9: Resultados Skip-gram (Valence vs Arousal) agrupados por Dimension

Valence Arousal
MAE RMSE R? MAE RMSE R?

Dim: 150
Win: 9 0.1243 0.1515 0.0370 0.1453 0.1771 0.0387
Win: 18 0.1249 0.1536  0.0101  0.1457 0.1790 0.0175
Win: 32 0.1247 0.1525 0.0251 0.1467 0.1801  0.0052

Dim: 250
Win: 9 0.1266  0.1568 -0.0306 0.1479 0.1793 0.0143
Win: 18 0.1253 0.1537 0.0088 0.1453 0.1782 0.0267
Win: 32 0.1251  0.1540 0.0057 0.1456  0.1787  0.0207

Dim: 350
Win: 9 0.1243 0.1535 0.0115 0.1455 0.1777 0.0313
Win: 18  0.1245 0.1532 0.0151 0.1463 0.1790 0.0171
Win: 32 0.1248  0.1529 0.0202 0.1461 0.1787  0.0207

Mientras que en las tablas 12 y 11 se muestran las métricas promedio (mean) y
desviacion estandar (std) de MAE, RMSE y R? obtenidas, el entrenamiento se realizo
sobre el 60% de los datos con un conjunto de validacion del 20% y el conjunto de
pruebas igual de 20 %.

Dado los resultados obtenidos, ni la dimensiéon del embedding ni el tamano de la
ventana del contexto representan una mejora sustancial en los resultados de la pre-
diccion de la emocion, pues tanto los errores como el R? no varfan mucho, lo cual se
evidencia en las tablas con la informacién promedio y la desviacion estandar.

En los modelos Skip-gram, el valor més bajo en la dimension de wvalence para el
error MAE es de 0,1243, mientras que el RMSE es de 0,1515. Este valor corresponde a
la configuraciéon con un embedding de tamano de 150 y una ventana contextual de 9.
Por el contrario, el valor mas alto corresponde a la configuracién de tamano 250 en la
dimension del embedding y una ventana de 9, alcanzando un valor de 0,1266 (MAE) y
0,1568 en el RMSE. Este mismo comportamiento se refleja en la dimension del arousal,
pues tanto el mejor valor como el peor valor en los errores se alcanzan en las mismas
configuraciones. De este modo, para la dimension arousal, el mejor valor de MAFE es de
0,1445 y el RMSE es de 0,1773.

Sin embargo, al analizar las métricas promedio, se puede observar que el valor para
MAF en la dimensién del valence es de 0,1249 con una desviacion estandar de 0,000707.
Esto hace evidente que, a pesar de la diferencia entre el mejor y el peor valor en esta



Cuadro 10: Resultados CBOW (Valence vs Arousal) agrupados por Dimension

Valence Arousal
MAE RMSE R? MAE RMSE R?

Dim: 150

Win: 9 0.1221 0.1500 0.0563 0.1445 0.1773 0.0357
Win: 18 0.1222  0.1501 0.0555 0.1458 0.1783  0.0257
Win: 32 0.1242 0.1528 0.0211 0.1463 0.1799 0.0076

Dim: 250

Win: 9 0.1259 0.1531 0.0169 0.1458 0.1790 0.0179
Win: 18  0.1241  0.1512 0.0416 0.1454 0.1787  0.0203
Win: 32 0.1226 0.1499 0.0576 0.1469 0.1782 0.0259

Dim: 350

Win: 9 0.1224 0.1508 0.0458 0.1474 0.1794 0.0126
Win: 18 0.1227 0.1514 0.0393 0.1462 0.1786 0.0214
Win: 32 0.1233 0.1519 0.0323 0.1454 0.1779  0.0297

Cuadro 11: Comparativa de estadisticas (mean & std) para Valence
Modelo MAE RMSE R?
mean std mean std mean std

Skip-gram  (0.124944 0.000707  0.153522  0.001442  0.011433  0.018504
CBOW 0.123278 0.001251 0.151244 0.001182 0.040711 0.014991

métrica, en general los valores se mantienen muy cerca. Lo mismo pasa con los valores
de la métrica de RMSE, pues el valor medio, sin importar la configuracion, es de 0,1535
con una desviacion estandar de 0,001442. En esta métrica, los valores si difieren un poco
mas que en el error MAE. No obstante, la diferencia en el rango sigue siendo minima.
Para el R?, los valores presentan una mayor desviacion, lo cual indica que hay una
mayor desigualdad entre las diferentes configuraciones, aunque en general los valores se
mantienen en un rango muy bajo, menor a 0,037, con un valor promedio de 0,011.

Este comportamiento, de minima diferencia entre configuraciones, se replica en la
dimension de arousal, pues tanto en los errores MAE y RMSE, cuyos valores respectivos
son 00,1460 promedio y 0,1786 promedio con una desviacion estandar pequena de 0,00084
y 0,00088 respectivamente. El R? igual se mantiene en rangos cercanos con un promedio
de 0,021. La diferencia radica en la desviaciéon, pues en este caso, el valor minimo
registrado no tiene tanta diferencia con el valor maximo alcanzado.

En los resultados con el modelo CBOW, los resultados reflejan un patrén similar,
pues en general, los valores alcanzados en cada métrica no varian mucho de configuraciéon
en configuracion, sin embargo si hay un R? mayor cuando se emplea el modelo CBOW.



Cuadro 12: Comparativa de estadisticas (mean & std) para Arousal
Modelo MAE RMSE R?

mean std mean std mean std

Skip-gram  0.146044 0.000841  0.178644  0.000886  0.021356  0.009829
CBOW 0.145967  0.000862 0.178589 0.000785 0.021867 0.008599

e La diferencia en MAF, para la dimension arousal, es minima: Skip-gram alcanza
un promedio de 0.1460 (std 0.00084) frente a 0.1459 (std 0.00086) de CBOW.

e Esto mismo se refleja en la dimension valence, pues en Skip-gram se alcanza un

valor promedio de 0,1249 (std 0,0007) frente a 0,123278 (std 0,0012) de CBOW.

e En la dimension de aruosal en la métrica RMSE los promedios son 0.1786 (std
0.0008) para Skip-gram y 0.1785 (std 0.0007) para CBOW, una variaciéon muy
pequena.

e En la dimension wvalence, el comportamiento es parecido, pues los promedios de
RMSE son 0.1535 (std 0.0014) para Skip-gram y 0.1512 (std 0.0011) para CBOW,
una variacion muy pequena.

e El coeficiente de determinacion (R?) también presenta valores cercanos a cero (=~
0.02), indicando que la prediccion de arousal resulta en gran medida una tarea de
regresion dificil para ambas representaciones, si bien CBOW muestra ligeramente
mejor R? promedio (0.0213 vs. 0.0218).

En este sentido, para ambos modelos, las diferencias en los errores son minimas:
en MAEFE, la brecha entre CBOW y Skip-gram es de aproximadamente 0,001, mientras
que en RMSE apenas alcanza 0,0002. Esto sugiere que ni el modelo, ni el tamano del
embedding, ni la ventana de contexto influyen de manera significativa en la reduccion
del error entre la prediccion y el valor real de valence y arousal.

Por el contrario, la diferencia mas significativa entre ambos métodos aparece en el
R?: CBOW obtiene un valor superior al de Skip-gram. Esto indica que, para nuestra
tarea de regresion de wvalence y arousal, lo que mas impacta en el rendimiento es la
eleccion del modelo de Word2Vec, mientras que el tamano de la ventana de contexto
tiene un efecto marginal. Una explicaciéon sencilla podria ser que CBOW, al prever
la palabra objetivo a partir del conjunto de palabras vecinas, tiende a promediar y
suavizar mejor las relaciones seménticas globales. Por ello, sus vectores capturan con
mayor coherencia la informacion relevante para predecir las dimensiones emocionales.

7.2. Caracteristicas acustcias

En esta seccion se presentan los resultados obtenidos al entrenar dos tipos de modelos
(una red totalmente conectada, FC, y una red BiLSTM) utilizando distintos espectro-



gramas como entrada. Primero examinamos el desempeno de la arquitectura FC por
separado para cada tipo de espectrograma (Tabla 13) al igual que con la arquitectura
BiLSTM 14. Después, comparamos los resultados de la misma FC con los de BiLSTM
cuando se entrenan usando la fusion de todos los espectrogramas disponibles (Tabla 15).
Para la evaluacion se utilizaron tres métricas para cada dimension emocional (valence y
arousal): Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) y coeficiente
de determinacién (R?). Para realizar los entrenamientos se realizé6 una separacion de
datos estratificada dejando el 60 % para datos de entrenamiento, 20 % para datos de
validacion y 20 % para datos de prueba.

Desempeno de la red FC segtin tipo de espectrograma: La Tabla 13 re-
copila, para cada tipo de espectrograma (Chromagramas, CQT, Mel-spectrogramas y
Tempogramas), el MAE, RMSE y R? promedio a lo largo de un entrenamiento, valida-
cion y pruebas sobre los conjuntos divididos en 60 %, 20 % y 20 %, tanto en la dimensién
de wvalence como en la de arousal.

Cuadro 13: Resultados FC (Valence vs Arousal) agrupados por Espectrograma

Valence Arousal
MAE RMSE R? MAE RMSE R?
Chromagramas 0,1303  0,1578 0,0004 0,148  0,1800 —0,0003

cQT 0.1165 0.1436 0.1729 0.1304 0.1648 0.1625
Mel-Spectrogram 0.1065 0.1311 0.2949 0.1071 0.1325 0.4052
Tempograma 0,1362 0,1643 —-0,0834 0,1536 0,1851 —0,0573

A partir de los resultados de la tabla, se puede observar que, en los crhomagramas
para valence, el valor promedio de R? es significativamente bajo (0,0004), lo cual indica
que el modelo FC con Chromagramas apenas captura relaciones ttiles para predecir la
dimension de wvalence, obteniendo un desempeno ligeramente mejor que una regresion
constante. En arousal sucede algo similar (R? = —0,0003), lo que sugiere que los Chro-
magramas, en este caso, no contienen suficiente informaciéon discriminativa para ambas
dimensiones emocionales en la configuracion dada.

Para los CQT, la CQT produce un mejor desempeno para ambas dimensiones que
los cromagramas. Con respecto a wvalence, el FC alcanza MAE = 0,1165, RMSE =
0,1436 y R? = 0,1729, mientras que en arousal logra MAE = 0,1304, RMSE = 0,1648
y R? = 0,1625. Estos valores positivos de R? indican que el modelo esta ajustando
relaciones tutiles entre la representacion espectral y las etiquetas de emocion. Ademés,
con estas caracteristicas, el modelo presenta predicciones mas apegadas a los valores
reales, pues el error es menor en comparaciéon con los espectrogramas previos.

Por otra parte, en los Mel-spectrogramas se obtiene un mejor desempeno, con
R?* = 0,2949 para valence y R? = 0,4052 para arousal. El error (MAE y RMSE) es
mejor que en Chromagramas y CQT. Esto sugiere que los Mel-spectrogramas contienen
mas informacién relevante que los Chromagramas y CQT.



Finalmente, los Tempogramas tienen el peor desempeno de los cuatro espectrogra-
mas. Aunque en el error MAE y RMSE es ligeramente menor que los Chromagramas,
por su parte, para el R? solo supera a los Chromagramas en la dimension del valence,
mientras que en la del arousal es la peor.

Desempeno de la red BiLSTM segtn tipo de espectrograma: La Tabla 14
recoge, para cada tipo de espectrograma (Chromagramas, CQT y Mel-spectrogramas),
la configuracion del experimento es igual que la implementada con la arquitectura de

FC.

Cuadro 14: Resultados BiLSTM (Valence vs Arousal) agrupados por Espectrograma

Valence Arousal

MAE RMSE R? MAE RMSE R?
Chromagramas 0,1320 0,1594 -0,0199 0,1500 0,1811 —0,0118

cQT 0.1107 0.1375 0.2408 0.1266 0.1569 0.2407
Mel-Spectrogram 0.1090 0.1333 0.2713 0.1125 0.1384 0.3516
Tempograma 0,1307  0,1581 —0,0037 0,1490 0,1802 —0,0020

De estos resultados destacan los siguientes puntos:

e Chromagramas: en valence, R = —0,0199, v en arousal, R> = —0,0118. Es-
to indica que la BiLSTM con Chromagramas no obtiene mejoras significativas
respecto a una regresion constante, arrojando un desempenio muy pobre.

e CQT: la BiLSTM logra MAE = 0,1107, RMSE = 0,1375, R*> = 0,2408 en
valence. Mientras que, las métricas MAE = 0,1266, RMSE = 0,1569, R? =
0,2407 en arousal. Estos valores positivos de R? reflejan que la red aprovecha las
caracteristicas espectrales de la CQT para modelar relaciones relevantes.

e Mel-spectrogram: esta configuraciéon alcanza el mejor rendimiento dentro de la
BiLSTM. En valence, MAE = 0,1090, RMSE = 0,1333, R?> = 0,2713. En arousal,
MAE = 0,1125, RMSE = 0,1384, R?> = 0,3516. Los valores de R? sugieren que la
BiLSTM, al procesar Mel-spectrogramas, extrae patrones temporales mas tutiles
que con otros espectrogramas.

e Tempograma: en ambas dimensiones, los coeficientes R? son practicamente cero
o negativos (—0,0037 en wvalence, —0,0020 en arousal), lo que indica que este
tipo de representaciéon no aporta informacion suficiente para esa arquitectura en
nuestro contexto.

En general, tanto los mel-spectrogramas como los espectrogramas de Transformada
Q Constante (CQT) presentan resultados notablemente superiores a las otras repre-
sentaciones. Esto se debe, en parte, a que ambos se basan en escalas perceptuales,
disenadas para imitar la forma en que el oido humano procesa el sonido. Es por ello



que, si bien tanto la CQT como los Chromagramas buscan capturar las frecuencias de
las notas, la CQT conserva una riqueza de informaciéon mucho mayor. Mientras que el
Chromagrama colapsa todo en las 12 notas de la escala cromatica, la CQT preserva la
informacion en varias octavas. Esta distincion representa una gran diferencia, ya que el
registro de una melodia es un elemento potente en cuestion del contenido emocional.

Por otro lado, resulta sorprendente que los tempogramas obtengan los peores resul-
tados, especialmente cuando el ritmo es un factor clave en la percepcién de emociones.
La razon de esta aparente contradiccion no es que el ritmo no sea importante, sino que
el tempograma es una representacion demasiado simplificada de la complejidad ritmica
que transmite emociones.

Por ultimo, en las cuatro representaciones de espectrogramas, el error en la pre-
diccion es similar, es evidente que hay representaciones que tienden a tener un error
menor, pero en los 4 casos el error es considerablemente aceptable en este tipo de ta-
reas donde el reconocimiento de emociones presenta cierto grado de subjetividad. No
obstante la mayor diferencia entre tipos de caracteristicas se encuentra en la métrica
de R?, demostrando que tanto tempogramas como cromagramas estan teniendo peores
resultados que simplemente calcular la media. Este desempeno se puede atribuir a dos
aspectos importantes:

e Caracteristicas poco informativas: Como se ha discutido, tanto tempogramas co-
mo cromagramas carecen de la riqueza timbrica, dindmica y ritmica necesaria
para esta tarea.

e Baja varianza en los datos: La prediccion se ve dificultada por la alta concentracion
de las etiquetas de valence y arousal en los rangos medios de la escala. Cuando
la mayoria de los datos se agrupan en torno al promedio, un modelo tiene muy
poca varianza que .plicar", lo que la métrica R? penaliza severamente.

Comparaciéon entre modelos FC y BiLSTM usando todos los espectrogra-
mas: Para determinar el beneficio de emplear una arquitectura recurrente en lugar de
una completamente conectada, entrenamos simultaneamente los modelos FC y BiLSTM
utilizando como entrada la concatenacion de todos los espectrogramas (Chromagramas
+ CQT + Mel-spectrogramas + Tempogramas). Los resultados se muestran en la Ta-
bla 15, nuevamente con validacion cruzada de 10 folds y las mismas métricas de MAE,
RMSE y R?.

Cuadro 15: Comparacion de modelos entrenados con todos los espectrogramas (Valence
vs Arousal)

Valence Arousal
MAE RMSE R? MAE RMSE R?

BiLSTM 0.1003 0.1258 0,3647 0.1108 0.1380 0,4129
FC 0.1009 0.1262 0,3607 0.1125 0.1402 0,3939




De acuerdo con estos datos, podemos resaltar que, en la prediccion de wvalence, la
BiLSTM reduce ligeramente el error promedio (M AE = 0,1003 vs. 0,1009) y mejora
el coeficiente de determinacion (R? = 0,3647 vs. 0,3607) frente a la FC. El RMSFE
también es algo menor para la BiLSTM (0,1258 vs. 0,1262).

En la prediccion de arousal, la ventaja de la BILSTM es mas evidente: logra M AE =
0,1108 frente a 0,1125 de FC, y reduce el RMSE a 0,1380 (por 0,1402 de FC). El R? pasa
de 0,3939 en FC a 0,4129 en BiLSTM, lo que indica una mejor capacidad explicativa
sobre la varianza de los datos.

En términos generales, la red BiLSTM obtiene un desempeno ligeramente superior
al FC cuando se utilizan las tres representaciones espectrales simultdneamente. Esto
sugiere que la capacidad de la BILSTM para capturar dependencias temporales a lo largo
de las tramas (frames) del espectrograma resulta ttil para la prediccion de emociones
en audio. Sin embargo, la diferencia es muy baja, por lo que no es posible declarar que
arquitectura es categoéricamente mejor.

7.3. Fusidon de Caracteristicas

Para evaluar el desempeno de la estrategia de fusion de caracteristicas, se entre-
naron dos modelos (FC y BiLSTM) utilizando un reparto de los datos en 60 % para
entrenamiento, 20 % para validacion y 20% para prueba. En esta configuracion, se
integraron las representaciones espectrales (Chromagrama, CQT, Mel-spectrograma y
Tempograma) junto con las caracteristicas simbolicas (embeddings). En la tabla 16
se comparan las métricas de desempeno de dos arquitecturas distintas BiLSTM y FC
sobre las dimensiones Valence y Arousal.

Cuadro 16: Comparacion de métricas por arquitectura de modelo (BiLSTM vs FC)
caracteristicas actusticas y simbolicas

BiLSTM FC
Meétrica Valence Arousal Valence Arousal
MAE 0.10305 0.10470 0.1026 0.1079
RMSE 0.12797 0.13115 0.1281 0.1339
MSE 0.01638 0.01720 0.0164 0.0179
R? 0.32839 0.41735 0.3266 0.3924

A partir de la tabla 16, se puede observar que:

e Error Absoluto Medio (MAE): El modelo FC alcanza un MAE ligeramente
inferior en Valence (0.1026 vs. 0.10305), lo que indica una precision marginalmente
mejor al predecir la dimension afectiva del valence. Sin embargo, en Arousal,
el BiLSTM supera al FC (0.10470 vs. 0.10790), sugiriendo que la arquitectura
recurrente captura mejor la variabilidad temporal asociada al arousal.



e Raiz del Error Cuadratico Medio (RMSE) y Error Cuadratico Medio
(MSE): Las diferencias en RMSE son minimas: 0.12797 vs. 0.12810 para Valence
y 0.13115 vs. 0.13390 para Arousal. Del mismo modo, las variaciones en MSE
son reducidas (0.01638 vs. 0.01640 y 0.01720 vs. 0.01790). Esto indica que, en
términos de penalizacion de errores més grandes, ambas arquitecturas ofrecen un
desempeno equivalente, con una ligera ventaja del BiLSTM en la dimension de
arousal.

e Coeficiente de Determinacion (R?): El R? del BILSTM es superior en ambas
dimensiones, destacando especialmente en Arousal (0.41735 vs. 0.39240). Esto
sugiere que el modelo recurrente explica una mayor proporciéon de la varianza en
las predicciones de arousal, probablemente gracias a su capacidad para modelar
dependencias secuenciales en los espectrogramas.

e Balance entre complejidad y rendimiento: Aunque la arquitectura FC mues-
tra un desempeno competitivo en valence, la ventaja global del BILSTM en arousal
y R? indica que la incorporaciéon de estructura temporal mediante LSTM aporta
un beneficio significativo para la tarea de predicciéon de emociones musicales. No
obstante, la diferencia en MAE y RMSE es pequena, por lo que el modelo FC
podria considerarse una alternativa mas eficiente computacionalmente cuando el
recurso de computo es una limitacion.

En conjunto, estos resultados apuntan a que la arquitectura BiLSTM ofrece una
mejor capacidad de generalizacion, especialmente en la dimensiéon de arousal, mientras
que la arquitectura FC puede ser adecuada para escenarios donde la simplicidad y
velocidad de entrenamiento sean prioritarias.

Los resultados obtenidos por el modelo de fusién, que integra el conjunto completo
de espectrogramas (Mel, CQT, Cromagrama y Tempograma) con los embeddings ar-
monicos, demuestran de manera contundente el principio de sinergia en el aprendizaje
automatico. Al alcanzar un rendimiento superior a cualquiera de los modelos basados
en caracteristicas individuales, se confirma que la clave para una prediccién mas precisa
reside en proporcionar al modelo una vision holistica y multifacética de la pieza musical.

7.4. Ajuste de hiperparametros

Sobre el modelo BiLSTM y FC se implemento el ajuste de hiperparametros por me-
dio de la herramienta de optuna. Optuna seleccioné la combinacién de hiperparametros
que minimiza la suma de RMSEs en validacién y méaximiza la suma de la puntuacién
R? también en validacién. En la tabla se muestran los mejores 5 resultados.

Los resultados de la optimizacion de hiperparametros confirman y refuerzan el anali-
sis previo: la arquitectura BiLSTM supera de manera consistente al modelo FC cuando
se ajustan sus parametros.

En el mejor trial del modelo FC (n.© 41) se obtuvo una suma de RMSE de 0.272272
y una suma de R? de 0.840231, mientras que en el mejor trial de la BILSTM (n.© 29) se



Cuadro 17: Comparacion de los 5 mejores trials de ajuste de hiperparametros para
los modelos FC y BiLSTM

FC BiLSTM
Posicion Trial # Objetivo Trial # Objetivo
#1 41 [0.272272, 0.840231] 29 [0.253768, 0.991941]
#2 40 [0.272834, 0.834869] 38 [0.257297, 0.963327]
#3 14 [0.272973, 0.833601] 12 [0.262492, 0.921630]
#4 38 [0.273435, 0.830433] 14 [0.264304, 0.906078]
#5 29 [0.273461, 0.829801] 48 [0.269539, 0.863136]

Nota: El vector objetivo se define como [0, 1], donde el elemento 0 corresponde a la suma de
RMSE (a minimizar) y el elemento 1 a la suma de R? (a maximizar).

alcanzo una suma de RMSE de 0.253768 y una suma de R? de 0.991941. Esto representa
una reduccion de aproximadamente un 6.8 % en la suma de RMSE y un incremento de
alrededor de un 18.1% en la suma de R%.

Ademas, en las cinco mejores configuraciones de cada arquitectura, todas las posi-
ciones del modelo BiLSTM muestran valores de suma de RMSE inferiores y de suma
de R? superiores frente a sus homologas del modelo FC. Esta ventaja es indicativa de
la mayor capacidad de la BiLSTM para capturar dependencias temporales en los es-
pectrogramas y, por ende, de su mejor capacidad de generalizacion en la prediccion de
las dimensiones afectivas (valence y arousal).

En conjunto, la busqueda bayesiana de Optuna consolida la eleccion de la arquitec-
tura BiLSTM como la méas adecuada para la tarea de predicciéon de emociones musicales,
favoreciendo tanto la precision (menor RMSE) como la explicabilidad (mayor R?). Im-
portancia de hiperparametros para el modelo BiLSTM: Para el modelo de
BiLSTM se graficé la importancia de cada hiperparametro para alcanzar los objetivos.
A partir de las graficas de importancia generadas con Optuna para los dos objetivos
(suma de RMSE y suma de R?), se identificaron los siguientes patrones:

e Dropout en la capa final acustica (audio_fc3_dropout_rate): Con un peso
relativo cercano al 0.23-0.24 en ambos objetivos, es el hiperparametro més decisivo
para mejorar tanto la precision (bajar RMSE) como la capacidad explicativa
(aumentar R?).

e Tasa de aprendizaje (1r): Ocupa el segundo lugar (= 0,19 — 0,20). Un ajuste
fino del learning rate acelera la convergencia y evita tanto el sobreajuste como el
subajuste.

e Dropout en la rama acustica (audio_dropout_rate): Con valores entre 0.14
y 0.19, confirma que la regularizacion interna de las LSTM es critica para la
estabilidad de las predicciones.
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Figura 25: Importancia de hiperparametros segtin la suma de R2.

e Otros dropouts intermedios: Su importancia (= 0,06 —0,09) indica que la ubi-
cacion del dropout en distintas capas impacta moderadamente en el rendimiento.

e Weight decay y optimizador: Con valores alrededor de 0.05-0.09, la regulari-
zacion L2 y la eleccion del algoritmo de optimizacion juegan un papel secundario
pero significativo.

e Dimensiones de capas y funciéon de activaciéon: las capas ocultas para ca-
racteristicas de audio, las capas ocultas en la fusion y la funciéon de activacion
presentan importancias muy bajas (<0.03), lo que sugiere que la complejidad
arquitectonica (ntimero de neuronas) aporta poco al ajuste final.

Los resultados indican que, para optimizar la BiLSTM en tareas de prediccion de
valence y arousal, conviene concentrar el esfuerzo de afinado en los parametros de
regularizacion (especialmente los dropouts) y en la tasa de aprendizaje. En cambio,
modificar el tamano de las capas o cambiar la funcién de activaciéon tiene un impacto
marginal. Este hallazgo orienta a priorizar la exploraciéon de rangos finos de dropout y
learning rate antes que aumentar la complejidad de la red.

La Tabla 18 presenta los valores 6ptimos de cada hiperpardmetro obtenidos en el
mejor trial. Se observa que la red LSTM utiliza un tamano de 64 unidades con un
dropout intermedio moderado en las capas actsticas, mientras que la capa de fusion es
més amplia (256 neuronas) con un dropout cercano al 0.24. La tasa de aprendizaje (1r)
se ajusto a 0.00168, junto con una minima penalizacion L2 (weight decay). Finalmente,
se emplea la funciéon de activacion leaky_relu y el optimizador Adam para lograr el
mejor compromiso entre convergencia y generalizacion.



Importancia de parametros (Suma RMSE)

audio_fc3_dropout_rate 0.23

| 0.20

audio_dropout_rate 0.14

audio_fc1_dropout_rate 0.09

fusion_dropout_rate 0.09

o
o
=3

weight_decay|

optimizer| 0.06

Hiperparametro

audio_fc2_dropout_rate;

o O
g o
a

audio_fc_hidden
fusion_hidden|Jjfj .01
audioflstmfhidden. <0.01

activation . <0.01

(=}
o
=}
a

0.1 0.15 0.2

Importancia relativa

Figura 26: Importancia de hiperparametros segtin la suma de RMSE.

7.5. Validacion cruzada

Finalmente, con el objetivo de validar el modelo ya ajustado, se realiz6 un proceso
de validaciéon cruzada con un total de 10 folds. El conjunto de datos se dividié en un
primer instante en 80 % y 20 %. El 20 % seran los datos de prueba para cada uno de
los folds, mientras que el resto de datos se ird dividiendo para probar con diferentes
conjuntos de entrenamiento y validacion.

La Tabla 19 muestra la consistencia del modelo BiLSTM a lo largo de los 10 plie-
gues de validacion con 50 épocas de entrenamiento. Para la dimension Valence, el MAE
varié entre 0.0875 y 0.1065, y el R? oscil6 entre 0.3809 y 0.5087, reflejando una preci-
sion estable y una capacidad explicativa moderada. En Arousal, el MAE se mantuvo
entre 0.0976 y 0.1139, mientras que el R? alcanzé un méximo de 0.5620, lo cual indi-
ca un rendimiento ligeramente superior en la prediccion de Arousal. Estos resultados
subrayan la robustez del modelo: las variaciones inter-pliegues son pequenas y ambos
objetivos (error y varianza explicada) se mantienen en rangos estrechos, confirmando
que la configuracion optimizada generaliza bien sobre distintas particiones del conjunto
de datos.

La validacion cruzada a 10 pliegues (Tabla 19) muestra que el modelo BiLSTM
mantiene un desempeno estable y robusto en ambas dimensiones afectivas:

e Valence:

e El MAE promedio es 0.0942 con una desviacion estandar de 0.0057, indicando
que la mayoria de los pliegues se sitian en un rango muy estrecho (0.0875-
0.1065).



Cuadro 18: Mejor configuracion de hiperparametros (BiLSTM)

Parametro Valor
audio Istm hidden 64
audio dropout_rate 0.1753
audio fc_hidden 64

audio fcl dropout rate 0.4406
audio fc2 dropout rate 0.3445
audio fc3 dropout rate 0.0151

fusion hidden 256

fusion dropout_rate 0.2379

Ir 0.001679
weight decay 1.2791e-06
activation leaky_relu
optimizer Adam

o El RMSE promedio es 0.1183 (std = 0.0063), confirmando que los errores
grandes permanecen controlados y casi idénticos entre los distintos subsets.

e El MSE medio (0.0140, std = 0.0015) refuerza la baja varianza del error
cuadratico.

o El R? medio es 0.4516 con std = 0.0424, lo que sugiere una capacidad expli-
cativa moderada pero consistente (rango 0.3809-0.5087).

e Arousal:

o El MAE promedio es 0.1032 (std = 0.0042), con valores por fold entre 0.0976
y 0.1139, lo que indica predicciones ligeramente menos precisas que para
Valence, pero igual de estables.

e El RMSE promedio es 0.1287 (std = 0.0050), mostrando una dispersion
reducida de los errores més significativos.

o El MSE medio de 0.0166 (std = 0.0013) también refleja baja variabilidad en
la magnitud de los errores.

e El R? promedio alcanza 0.5007 (std = 0.0422), superior al de Valence, y llega
a picos de 0.5620 en ciertos pliegues.

Las desviaciones estandar reducidas en todas las métricas indican que el modelo
generaliza consistentemente a lo largo de diferentes particiones de los datos. Aunque la
prediccion de Arousal presenta un MAE ligeramente superior al de Valence, compensa
con un R? medio mayor, lo que sugiere una mejor capacidad para capturar la varianza
emocional en esta dimension. En conjunto, estos resultados validan la configuracion
optimizada y confirman la robustez del BILSTM para la tarea de prediccion de valence
y arousal en musica.



Cuadro 19: Resultados de validacion cruzada (10 folds) para el modelo BiLSTM

Valence Arousal
Fold MAE RMSE MSE R? MAE RMSE MSE R?

1 0.0912 0.1169 0.01367 0.4687 0.1001 0.1263  0.01595  0.4426
2 0.1065 0.1312 0.01720 0.3809 0.1139 0.1385 0.01917  0.4520
3 0.0925 0.1183 0.01398 0.4033 0.1020 0.1255 0.01574 0.4412
4 0.0969 0.1233 0.01521 0.4416 0.1031 0.1321 0.01745 0.5143
5 0.0907  0.1141 0.01302  0.4549 0.1032 0.1260  0.01587  0.5570
6
7
8

0.0898 0.1113 0.01239  0.4974 0.1059 0.1317 0.01735  0.5058
0.0939 0.1198 0.01436  0.4729 0.1009  0.1267 0.01606  0.5256
0.0875 0.1087 0.01182 0.5087 0.1017 0.1271 0.01616 0.5232
9 0.1023  0.1243 0.01546 0.3975 0.1036 0.1334 0.01780  0.4835
10 0.0911  0.1153 0.01329 0.4905 0.0976 0.1196 0.01431  0.5620

Media 0.0942 0.1183 0.0140 0.4516 0.1032 0.1287 0.0166 0.5007
std 0.0057 0.0063 0.0015 0.0424 0.0042 0.0050 0.0013 0.0422

Note: std = desviacion estandar.

Las curvas de la Figura 27 muestran que la pérdida Huber (etiquetada como MSE
en la leyenda) desciende de forma pronunciada durante las primeras 10-15 épocas y
luego se estabiliza alrededor de 0.007. E1 RMSE también cae rapidamente al comienzo
y alcanza valores cercanos a (.12 tras unas 20-25 épocas, con un sobreajuste minimo
observable (las curvas de validacion siguen muy de cerca a las de entrenamiento). En
conjunto, esto indica una convergencia rapida y estable del modelo bajo la configuracion
optima.

7.6. Comparativa

A continuacién presentamos una comparacion cuantitativa entre nuestro mejor mo-
delo de fusion (obtenido en el fold 6 de la validacion cruzada) y tres enfoques represen-
tativos del estado del arte en Music Emotion Recognition.

Meétodos de referencia:

e [21] “Optimizacion de modelos clasicos con técnicas de metaheuristica” (MEMD,
1744 canciones).
o Caracteristicas de entrada: Bajo nivel (LLDs, descriptores acusticos).

e Modelo: Red neuronal back-propagation optimizada con ABC (Artificial Bee
Colony).

e Resultados en prueba:
. Valence: RMSE = 0.1066, R? = 0,4606.



RMSE

Figura 27: Curvas de entrenamiento y validacion del modelo BiLSTM (pérdida Huber
y RMSE) para el mejor fold.

. Arousal: RMSE = 0.1322, R? = 0,6687.

e [52] “Arquitectura MER end-to-end con atencion SE y fusion jerarquica espacio-
temporal” (PMEMO, 767 canciones).
o Caracteristicas de entrada: Espectrogramas log-mel (nivel medio).

e Modelo: VGG16 adaptado + Squeeze-and-Excitation attention + BiLSTM.
e Resultados en prueba:

. Valence: RMSE = 0.2379, R? = 0,4575.
. Arousal: RMSE = 0.2213, R? = 0,6393.

e [53] “Prediccion de emociones a partir de acordes” (conjunto de acordes).

o Caracteristicas de entrada: Solo acordes (embedding CBOW).
e Resultados en prueba:

. Valence: RMSE = 1.22, R? = 0,65.
. Arousal: RMSE = 1.104, R? = 0,806.

Nuestro modelo de fusiéon (mejor fold)

e Caracteristicas de entrada: Fusion de representaciones espectrales (Chromagrama,
CQT, Mel-spectrograma, Tempograma) y embeddings de acordes (CBOW).

e Modelo: BiLSTM que recibe en paralelo los espectrogramas concatenados y el
embedding estructurado de acordes.



e Resultados en el fold 6 de validacion cruzada:

e Valence: RMSE = 0.1238, R? = 0,3711.
e Arousal: RMSE = 0.1224, R? = 0,4928.

Cuadro 20: Comparacion de nuestro modelo con enfoques del estado del arte.

Meétodo Valence Arousal

RMSE R?2 Fuente RMSE R?2 Fuente
[21] 0.1066  0.4606 MEMD (1744) 0.1322  0.6687 MEMD (1744)
[52] 0.2379  0.4575 PMEMO (767) 0.2213  0.6393 PMEMO (767)
[53] 1.22 0.65 Solo acordes 1.104 0.806 Solo acordes
2] 0.2466  0.4143 PMEMO (767) 0.2285  0.6100 PMEMO (767)
Nuestro modelo  0.1087 0.5087 Fusion® 0.1271 0.5232 Fusion'

t Conjunto de datos propio (fusién de espectrogramas y acordes) resultados del mejor fold: (fusion,
fold 8).

Analisis de la comparaciéon

e Valence:

o El enfoque de [21] (RMSE = 0.1066, R? = 0,4606) supera a nuestro modelo
(RMSE = 0.1238, R? = 0,3711) en ambas métricas, gracias a la optimizacion
metaheuristica de descriptores actisticos de bajo nivel.

o [52] (RMSE = 0.2379, R?* = 0,4575) obtiene un RMSE mayor y un R? similar
al de Yang et al. lo que indica que, a pesar de su arquitectura compleja, no
alcanza la precision ni la capacidad explicativa de Yang et al.

e [53] (RMSE = 1.22, R* = 0,65) presenta un error absoluto muy alto (escala
distinta) pero un R? relativamente grande, lo que sugiere que el modelo
captura tendencias generales aunque sus predicciones individuales resulten
imprecisas en valor absoluto.

e Nuestro modelo (RMSE = 0.1238, R? = 0,3711) mejora ampliamente a [52)]
en RMSE y se ubica en segundo lugar respecto a [21]. La discrepancia en R?
con Cho radica en la diferencia de escalas: Cho emplea una escala de acordes
distinta a la métrica actstica, por lo que su R?* elevado no se traduce en un

RMSE bajo.
e Arousal:

e Yang et al. (|21]) obtiene RMSE = 0.1322 y R? = 0,6687, situdndose como
el mejor en R2.



o Huang et al. ([52]) logra RMSE = 0.2213 y R? = 0,6393, mostrando buen
R? pero un RMSE considerablemente mayor que Yang et al.

e Cho ([53]) reporta RMSE = 1.104 y R? = 0,806. El R? mas alto entre todos
indica que el modelo de acordes captura la varianza de arousal en su propia
escala; sin embargo, el RMSE elevado revela que, en términos absolutos, las
predicciones estén lejos de los valores reales.

e Nuestro modelo (RMSE = 0.1224, R? = 0,4928) presenta el RMSE mas
bajo de los cuatro métodos, pero un R? inferior a Yang y Cho debido a
la combinaciéon de diferentes fuentes de datos y escalas. Esto sugiere que,
aunque nuestra fusion reduce el error absoluto, la varianza explicada en la
escala del conjunto propio resulta menor.

8. Conclusiones

En el presente trabajo, se abord6 la tarea de reconocimiento de emociones en obras
musicales bajo un enfoque integral, combinando tanto caracteristicas actsticas como
caracteristicas simbolicas representadas por la estructura armoénica de una canciéon. Para
ello, se unifico la informacion de los conjuntos de datos de PMEmo y DEAM. Al observar
la dispersion de los datos, tanto unificados como por separado, es evidente como estos
tienden a concentrarse en el rango de los valores medios del plano, ademés de seguir
una distribucién cuasi-lineal. Esto se debe a dos cuestiones importantes: la primera
viene de lo postulado por Russell [19], pues la dupla valence y arousal no son valores
independientes y siguen una distribucién simétrica. Lo segundo es el problema de la
subjetividad, pues la percepcion varia de persona en persona. Aunque existen elementos
y conceptos base que son percibidos de igual forma sin importar contextos sociales y
culturales [6], sigue existiendo una pequena discrepancia entre las observaciones de cada
persona. Si bien esta discrepancia no es extrema, las ligeras variaciones en la percepcion
de las emociones regresan a la media. De este modo, la concentracion de la mayoria de las
anotaciones en los rangos medios ocasiona que los modelos tengan un gran desempeno
prediciendo emociones neutras que se encuentran en el rango medio del plano, pero
fallen significativamente al enfrentarse a los extremos emocionales.

Por otra parte, al observar los resultados de la codificacion del contexto armoénico de
una obra musical por medio de embeddings, se puede notar que los modelos de embed-
dings predictivos basados en coocurrencia, como Word2Vec, son capaces de aprender y
reconstruir conceptos de la teoria musical de manera implicita. A pesar de no tener in-
formacion sobre la estructura de notas, el espacio vectorial resultante imita con notable
fidelidad el Circulo de Quintas. Esto demuestra que el modelo interpreta correctamente
que la proximidad espacial entre acordes denota una fuerte similitud funcional, la cual,
en la teoria, significa que pertenecen al mismo contexto armoénico.

Al proponer estructuras mas complejas, se comprueba que al enriquecer el modelo
con conocimiento explicito de la estructura tonal (mediante tokens Acorde_Grado), se



obtienen representaciones superiores. El espacio vectorial resultante no solo es més or-
ganizado, sino también jerarquico e interpretable, donde el grado ténico (I) se establece
como el centro de cada clister tonal. Esto valida que la incorporaciéon de conocimiento
de dominio en el preprocesamiento de los datos resulta en un espacio latente de mayor
calidad y mas fiel a la teoria musical.

En lo que respecta a las caracteristicas actisticas analizadas de forma individual, se
concluye de manera clara que las representaciones basadas en la percepciéon humana son
las mas eficaces. Caracteristicas como los mel-spectrogramas y CQT, que modelan el
sonido de forma analoga al sistema auditivo, demostraron capturar con mayor fidelidad
la informacién timbrica y textural que resulta crucial para el reconocimiento emocional.

Finalmente, se establece que abordar este problema desde un enfoque multimodal
es la estrategia mas robusta y completa. Este método simula de manera més fiel el
proceso de analisis humano, donde la percepciéon emocional no depende de un tnico
componente, sino de la interacciéon de multiples factores como el timbre, la dinamica,
el ritmo y las estructuras armonicas. Se confirma asi que la emociéon en la misica es
una propiedad emergente. Por ello, es necesario analizar cada componente por separado
para luego sintetizar la informacion y comprender la obra en su conjunto. De esta forma,
se logra un anélisis integral capaz de realizar el reconocimiento de emociones a partir
de la combinacién de miultiples representaciones, alcanzando una comprension holistica
que supera las limitaciones de cada perspectiva individual.
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Abstract. Music emotion recognition (M.E.R.) is a multidisciplinary
field that integrates computer science, affective computing, and
neuroscience elements to analyze musical features to detect emotions.
Most research in this field has focused on low and mid-level features,
often ignoring theoretical and harmonic aspects of music. In this work,
we propose using regression-based machine learning models applied to
word embeddings in harmonic structures (chords). The results indicate
an RMSE of 0.0252 and an R? score of 0.9751 for the valence dimension,
in comparison with the arousal, an RMSE of 0.1319 and an R?
score of 0.4676. These findings indicate that incorporating theoretical
and harmonic concepts enhances the performance of M.E.R models,
particularly in the valence dimension, reflecting improved detection of
the positivity of emotions.

Keywords: mer, word embeddings, machine learning, musical features.

1 Introduction

Music has remarkably impacted social, cultural, and political aspects. For this
reason, it has been the target of many studies, one of them being the relationship
between emotions and music [13] since music is a means of expression capable
of evoking emotions [6].

Music Emotion Recognition (M.E.R.) has incorporated knowledge from
several fields, such as computer science, affective computing, and neuroscience. It
aims to analyze musical features extracted from audio signals (low and mid-level)
and abstract features such as song lyrics (high-level) [13, 9, 15, 7].

Within M.E.R.’s works, two approaches for linking emotions and songs
predominate. The first one attaches a general emotion to the whole work
(song-level), a static approach. The second, dynamic approach, focuses on
detecting the music emotion variations that occur through the song, namely
MEDV (music emotion variation) [9, 6].

Emotional perception is complex because it involves multiple variables, such
as the song or external information, such as the listener’s social, cultural, and
emotional context [17, 7).

Selecting the appropriate taxonomy is crucial for clearly delineating the
problem as either a multi-class classification or a regression task [9]. In this
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