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Resumen

La música, elemento fundamental en la vida cotidiana, impacta profundamente a la
sociedad debido a su capacidad para transmitir y evocar emociones. El estudio de esta
relación ha consolidado el campo interdisciplinario del Reconocimiento de Emociones
en la Música (MER). Tradicionalmente, los sistemas MER se han centrado en el aná-
lisis de características acústicas, a menudo omitiendo aspectos teóricos cruciales como
el contexto armónico de una obra, el cual está intrínsecamente ligado a la expresión
emocional.

El presente trabajo aborda esta limitación mediante el desarrollo de un sistema
MER multimodal que integra dos fuentes de información complementarias, utilizan-
do los conjuntos de datos unificados de PMEmo y DEAM. Para el análisis acústico,
se emplea una arquitectura ResNetSE como extractor de características a partir de
espectrogramas. De forma paralela, el contexto armónico se modela codificando las se-
cuencias de acordes con modelos Word2Vec. Finalmente, un modelo BiLSTM fusiona
ambas representaciones para realizar la predicción final.

El modelo de fusión propuesto alcanza un rendimiento robusto, con un error RMSE
de 0.1087 y un R2 de 0.5087 para la dimensión de valence, y un RMSE de 0.1271
y un R2 de 0.5232 para la dimensión de arousal. Estos resultados demuestran que
un enfoque multimodal, que combina la textura acústica con el contexto armónico,
simula de manera más fiel el proceso de análisis humano. Se concluye que la percepción
emocional no depende de un único componente, sino de la interacción de múltiples
factores como el timbre, la dinámica, el ritmo y la estructura armónica, validando así
la superioridad de la estrategia de fusión.

Abstract
Music, a fundamental element of daily life, profoundly impacts society through its
ability to convey and evoke emotions. The study of this relationship has established
the interdisciplinary field of Music Emotion Recognition (MER). Traditionally, MER
systems have primarily focused on the analysis of acoustic features, often overlooking
crucial theoretical aspects such as the harmonic context of a musical piece, which is
intrinsically linked to emotional expression.

This work addresses this limitation by developing a multimodal MER system that
integrates two complementary sources of information, utilizing the unified PMEmo and
DEAM datasets. For the acoustic analysis, a ResNetSE architecture is employed as a
deep feature extractor from spectrograms. In parallel, harmonic context is modeled by
encoding chord sequences using Word2Vec models. Finally, a BiLSTM model fuses both
representations to perform the final emotion prediction.

The proposed fusion model achieves a robust performance, yielding an RMSE of
0.1087 and an R2 of 0.5087 for the valence dimension, and an RMSE of 0.1271 and an



R2 of 0.5232 for the arousal dimension. These results demonstrate that a multimodal
approach, which combines acoustic texture with harmonic context, more faithfully si-
mulates the human analysis process. We conclude that emotional perception in music
does not depend on a single component, but rather on the complex interaction of multi-
ple factors such as timbre, dynamics, rhythm, and harmonic structure, thus validating
the superiority of the proposed fusion strategy.
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1. Introducción

La música es un elemento profundamente arraigado en la cotidianidad que impacta
de manera notable diferentes aspectos de la sociedad, desde el apartado cultural hasta el
político. La música estimula capacidades cognitivas y emocionales, de ahí que sea fuente
de inspiración en múltiples investigaciones. Un ejemplo específico es la comprensión de
la relación que existe entre la música y las emociones humanas [1], [2], [3].

El interés y la curiosidad en la relación musical-emocional no son algo nuevo, pues,
al menos, desde el siglo pasado han existido esfuerzos por explicar cómo se relacionan
ciertos componentes de la música con la activación de determinadas emociones [4], [5].

La búsqueda de determinar en qué radica el significado de una obra musical y enten-
der cómo sus componentes provocan emociones ha involucrado áreas como la filosofía,
la psicología y la teoría musical [6], [7]. Incluso, este interés se ha extendido al sector
científico y tecnológico, creando así campos multidisciplinarios con el fin de abordar
este problema.

Tal es el caso del campo MER (Music Emotion Recognition), que en español pue-
de entenderse como Reconocimiento de Emociones en la Música. Este campo emplea
el conocimiento de áreas como las ciencias computacionales, el cómputo afectivo, la
neurociencia, la psicología y la sociología para analizar características extraídas de la
música e identificar qué emoción puede provocar una obra [8], [9].

En el campo MER, el eje central es el análisis de características extraídas de obras
musicales, por lo general, a partir de archivos de audio. Es por ello que MER es con-
siderado una tarea secundaria del campo MIR (Music Information Retrieval),que por
su traducción al español es captura (o recuperación) de Información Musical. El campo
MIR se enfoca en la obtención de información de archivos de audio musicales por medio
de técnicas de procesamiento y análisis de señales digitales [10], [11], [12].

1.1. Planteamiento del problema

Desde el campo MER, la comunidad científica ha identificado una serie de barreras
que obstaculizan el éxito en la labor del reconocimiento de emociones.

De manera general, determinar qué emoción será transmitida por medio de la mú-
sica es una labor compleja que depende de múltiples factores. Por mencionar algunos:
características acústicas inherentes a la señal de audio, el contexto de la obra o factores
externos propios del usuario, tales como su contexto social, cultural o emocional, así
como sus gustos musicales [6], [13].

La labor de identificar qué emoción percibe alguien ante un estímulo musical es un
problema multivariable. La relación entre las variables y la emoción final puede caer
en la subjetividad, pues lo que para una persona resulta relevante para otra puede ser
insignificante.

Ahora bien, en la tarea de identificar emociones se manejan dos vertientes: la per-
cepción y la inducción. La inducción busca producir emociones a partir de un escenario



propicio. A menudo, los estímulos elegidos para esta labor tienen un vínculo con el usua-
rio, mientras que la percepción solo se centra en las características propias del estímulo
[14], [15].

Otra de las barreras es la elección de la taxonomía o del modelo que se emplea para
representar las emociones, es decir, la manera de cuantificarlas o categorizarlas. En este
sentido, existen dos visiones generales: la representación categórica y la dimensional. En
los modelos categóricos, se busca representar una emoción como una variable discreta
y categórica, centrándose en la asignación de adjetivos como felicidad, ira o tristeza [5],
[16], [17]. Por otra parte, los modelos dimensionales se basan en la idea de entender
las emociones como elementos formados por dos ejes, el valence (valencia) y el arousal
(activación). De esta forma, una emoción tiene un valor numérico compuesto por un
par ordenado [18], [19], [20].

La elección de una taxonomía que se adecue a los objetivos del problema es de
vital importancia, pues, dependiendo de la elección, el problema puede ser abordado
como una clasificación múltiple o una regresión [15]. Además, se debe tener en cuen-
ta la desventaja de ambos modelos. Para los categóricos, la desventaja radica en la
pobre capacidad de representar emociones complejas, mientras que para los modelos
dimensionales se hace complejo el interpretar los valores [21].

El nivel de reconocimiento de emociones radica, en gran parte, en la taxonomía
elegida y en el nivel en el que a una obra se le asigna una emoción. Es decir, dado
que una canción u obra musical es un elemento temporal y que presenta variaciones de
principio a fin, se suele etiquetar de manera estática o de manera dinámica.

De esta forma, se tienen los siguientes enfoques: Song-level (categórico y dimensio-
nal): Asigna una emoción a partir de un solo segmento representativo de la obra. MEVD
(categórico y dimensional): En este enfoque la asignación de una emoción no contempla
solo un segmento representativo, sino que evalúa las variaciones emocionales a lo largo
de toda la obra [22].

Los conjuntos de datos también suelen estar separados según el enfoque de reco-
nocimiento (Song-Level o MEVD) y la taxonomía. Aunado a esto, existen diferentes
metodologías para generar anotaciones emocionales, pues en ocasiones suelen seguir me-
todologías basadas en la psicología y la neurociencia o simplemente tomar las etiquetas
emocionales de rankings o listas en internet [23]. Todo esto dificulta el poder trabajar
con varios conjuntos al mismo tiempo.

Finalmente, el enfoque principal de las tareas de MER se basa en la extracción y
análisis de características de bajo o medio nivel, las cuales se obtienen directamente
de la señal de audio. No obstante, la manera de representar estas características está
ligada a otras tareas como el reconocimiento de voz o la separación de canales de audio
[10], [13].

1.2. Justificación

El reconocimiento de emociones en la música ha encontrado sitio en diversas apli-
caciones. Un ejemplo claro se encuentra en los servicios de streaming, los cuales han



implementado el reconocimiento de emociones en sistemas de recomendación [12]. De
igual forma, se ha explorado su aplicación en beneficio de las personas con discapacidad
auditiva, por ejemplo, mediante la generación de subtítulos que describen la música de
las películas [24].

Además de la aplicación directa de los sistemas de reconocimiento, la música, gracias
a su relación con las emociones, se usa como apoyo en tratamientos de afecciones como
la depresión [25] y en la terapia de trastornos del espectro autista [26]. Del mismo modo,
su capacidad para activar la memoria y evocar recuerdos [27] resulta beneficiosa en el
tratamiento de pacientes con alzhéimer. La investigación sobre los efectos de la música
se extiende incluso a respuestas fisiológicas directas, como su aplicación para el alivio
del dolor en neonatos durante procedimientos menores [28].

Teniendo en cuenta lo antes mencionado, la música es un gran apoyo frente a los
desafíos de la salud mental. La capacidad de generar una diversa gama de sentimientos
afectivos ayuda a contrarrestar efectos perjudiciales del estrés, la ansiedad y la depre-
sión. Dicha capacidad de evocar emociones convierte a la música en un recurso de apoyo
valioso para enfrentar problemas de salud mental.

Ahora bien, la tarea del MER se abordó inicialmente con enfoques basados en las
matemáticas, la física y la estadística. Sin embargo, el interés por aplicar nuevas estra-
tegias ha llevado a implementar Inteligencia Artificial en las tareas de reconocimiento
de emociones y tanto el Machine Learning (ML) [21], [29], [30], [31], [32] como el Deep
Learning (DL)[23], [24], [33], [34], [35] se han consolidado como los enfoques principales
para desarrollar sistemas MER.

Dentro del ML y el DL, el problema del reconocimiento de emociones musicales
se resuelve a partir del análisis de características extraídas de archivos de audio. No
obstante, no se ha llegado a un consenso sobre qué característica es la indicada para
realizar la tarea. En ocasiones, una característica en concreto puede ser mejor que el
resto, pero en otros experimentos la que menos éxito arrojaba de pronto es la más
significativa.

Por ende, es importante contemplar conceptos como la armonía y la teoría musical,
pues diferentes componentes de la estructura armónica de una obra musical juegan
un papel crucial en la expresión de emociones [5], [6]. Aunado a lo anterior, se ha
encontrado que la música es capaz de activar emociones por medio de inhibir y concluir
las expectativas que una obra genera en el oyente [4], lo cual se ve reflejado a través de
conceptos teóricos como las cadencias y la resolución de progresiones [7], [36].

Sumado a ello, la posibilidad de expresar notaciones de acordes mediante caracteres
ayuda a establecer cierta similitud con el lenguaje natural, pues, dado que una forma
de representar sucesiones de acordes es con conjuntos de caracteres alfanuméricos, es
posible aplicar métodos de Procesamiento del Lenguaje Natural (por sus siglas en inglés,
NLP) [37], [38]. De esta forma, se puede ampliar el enfoque tradicional de los sistemas
MER, permitiendo la continua mejora de estos sistemas.

La continua mejora de los sistemas MER enfrenta una serie de adversidades. Por
ende, es importante contemplar nuevos conceptos para solucionar estos desafíos. Por
ejemplo, a partir de la importancia de las estructuras armónicas con las emociones



en la música, es necesario continuar explorando y mejorando estas opciones, pues si
bien existen trabajos al respecto, no toman consideraciones como la importancia de la
posición y el contexto que rodea a un acorde.

2. Antecedentes

Como se ha mencionado, el interés por parte de la comunidad científica en la mú-
sica no es reciente. Durante los últimos años, este interés ha crecido y el número de
publicaciones en los campos de MIR y MER ha aumentado [12].

Esto se debe, en gran parte, a que la comunidad científica ha fomentado las inves-
tigaciones en estos campos, desarrollando concursos importantes como el AMC o el
MediaEval, por mencionar algunos.

En 2007 la evaluación Audio Mood Classification (AMC) se incluyó por primera
vez en MIREX (Music Information Retrieval Evaluation eXchange), organizado por
la International Society for Music Information Retrieval (ISMIR) [39]. Su objetivo es
proporcionar un punto de referencia estándar para la clasificación automática de estados
de ánimo en fragmentos de audio. Desde entonces, AMC se celebra anualmente y ha
ido creciendo tanto en número de participantes como en mejoras de rendimiento.

De la misma manera, en 2013, MediaEval (Multimedia Evaluation Benchmark), que
se ha convertido en una prestigiosa iniciativa de benchmarking para evaluar algoritmos
y tecnología en la recuperación, acceso y exploración de archivos multimedia, realizó
la primera convocatoria para la clasificación de emociones musicales bajo los enfoques
song-level y MEVD [40]. Como resultado de esta convocatoria, se construyó un conjunto
de datos con 1000 clips de audio con sus respectivas etiquetas, el cual sirve de base para
el conjunto de datos elaborado por el DEAM (Database for Emotional Analysis in
Music) [41].

Parte fundamental en las tareas de MER es la elección de un modelo de represen-
tación de emociones, los cuales suelen agruparse en dos ramas: dimensionales y categó-
ricos. A lo largo de los años, se han propuesto diversos modelos, como el de Hevner en
1963, J. Russell en 1980 o Thayer en 1990.

Hevner planteó la representación de emociones por medio de una lista de 67 ad-
jetivos, los cuales asoció con emociones. La lista se encuentra organizada en 8 grupos
llamados: solemne, triste, soñadora, tranquila, elegante, alegre, emocionada y poderosa.
Este modelo sostiene que ciertas características de la música evocan ciertas emociones
[5].

Por otro lado, en 1980, J. Russell, a partir de entender los estados afectivos como
elementos conformados por dos ejes, propuso un modelo con dos dimensiones [19]. La
primera dimensión, denominada valencia, determina qué tan placentera o poco placen-
tera es una emoción, mientras que la segunda, activación, indica el grado de intensidad
[18].

A menudo es fácil observar cómo las anotaciones valence y arousal pueden ser dis-
cretizadas a partir de dividir el plano bidimensional en cuadrantes, en donde cada



cuadrante representa el estado del valence o arousal, dando la posibilidad de ubicar las
anotaciones en los cuadrantes: Arousal Alto - Valence Positivo, Arousal Alto - Valence
Negativo, Arousal Bajo - Valence Positivo y Arousal Bajo - Valence Negativo [10], [11],
[21], [22].

Además de estos modelos, existe otro que se enfoca en la representación y evalua-
ción de emociones inducidas por música. En 2008, Zentner y Scherer, a través de una
serie de estudios, propusieron GEMS, escala emocional-musical de Ginebra. Esta es
una herramienta para evaluar las emociones inducidas por obras musicales. GEMS se
compone de una lista de 40 emociones. Estas están agrupadas en 9 factores, los cuales
representan el rango de emociones que una obra musical puede evocar [1].

Existen otras representaciones, aunque menos implementadas, por ejemplo: la dis-
tribución de probabilidades, pares de antónimos [8] y el ranking de emociones [15].

En general, la tarea del reconocimiento de emociones se puede agrupar en dos gran-
des enfoques, el reconocimiento estático y el dinámico, los cuales a su vez se pueden
clasificar en:

• reconocimiento de emociones musicales de manera categórica a nivel canción
(Song-level categorical MER)

• reconocimiento de emociones musicales de manera dimensional a nivel canción
(Song-level dimensional MER)

• Detección de variaciones emocionales musicales (Music Emotion Variation Detec-
tion)

Song-level categorical MER. Es un enfoque de clasificación, es decir, la representa-
ción de emociones es categórica. La clasificación de la obra se realiza sobre un segmento
de la misma.

En 2008, Pao et al. [29] sugirieron la clasificación de clips de audio, extraídos de los
coros de canciones populares, a través de un modelo KNN mejorado, añadiendo pesos
discretos entre las distancias de los vecinos. Demostraron que el algoritmo superó los
resultados de modelos basados en SVM y KNN, alcanzando más del 96 % de exactitud
en la labor de clasificar a qué cuadrante del modelo Thayer pertenece el extracto de
audio.

En 2013 [42], se propuso un modelo basado en AdaBoost y decision stump para
realizar la clasificación de canciones en 14 categorías, alcanzando un 79 % de éxito en
promedio.

En 2014, Akhilesh K Sharma et al. [30], realizaron la clasificación de ragas (música
tradicional de la India) por medio de evaluaciones estadísticas, tomando como base los
algoritmos de Naïve Bayes y EM (Expectation Maximization).

Song-level dimensional MER. La diferencia de este enfoque con el anterior es que se
considera el problema como una regresión y trabaja con datos continuos.

En [31] se presenta un modelo generativo basado en modelos de mezcla gaussiana
(GMM) para la predicción de valores de valence y arousal en obras musicales, a partir



de las bases de datos de MER60 y DEAP. Los autores compararon su propuesta contra
modelos SVR y mejoraron los resultados en un 71.5 % y 40.3 %.

En [32] se propuso un sistema basado en SVR para el reconocimiento de emociones
musicales. Se basaron en el modelo de Thayer y obtuvieron un 94.55 % de exactitud.

En 2013, Markov y Matsui [43], [44], en el marco del taller internacional de Me-
diaEval, desarrollaron un sistema de reconocimiento de emociones musicales utilizando
procesos de regresión gaussianos GPR. Tomaron en cuenta el reconocimiento estático y
dinámico, no obstante los resultados para la detección dinámica no fueron satisfactorios.

Tras no haber alcanzado su meta en el reconocimiento dinámico, Markov y Matsui,
en 2014, para el taller MediaEval de ese año, propusieron un sistema basado en procesos
gaussianos y filtros de Kalman [45].

Music Emotion Variation Detection. La predicción no se realiza sobre un segmento
representativo, sino que se evalúan las variaciones emocionales a lo largo de toda la
obra. De acuerdo con la revisión [15], la primera vez que se propuso la idea de observar
las variaciones emotivas en una canción fue en [46].

L.Lu et al. [46] propusieron el reconocimiento de emociones en distintas obras de
música clásica usando modelos de mezcla gaussianos GMM con un total de 16 mez-
clas. Los segmentos representativos fueron clasificados en 4 estados de ánimo: frenético,
satisfactorio, depresivo y eufórico.

En 2016 [47], mediante un modelo basado en SVR, realizaron el reconocimiento
dinámico de emociones musicales. En su experimentación, cada canción tenía 60 anota-
ciones de valance y 60 anotaciones de arousal. De esta manera, implementaron 2 escalas
de anotaciones, es decir, una canción tenía una anotación emocional global, y a su vez
cada sección de la canción también contaba con una anotación individual.

El enfoque principal de las tareas de MER se basa en la extracción y análisis de
características de bajo o medio nivel, aquellas que se pueden extraer directamente de
la señal de audio, como el ritmo, el color tonal o los armónicos, entre otros [10], [13].
Estas características alimentan los modelos de DL o ML, los cuales, a su vez, efectúan
el análisis que permite llevar a cabo la predicción de la emoción.

En [47], como característica de entrada al modelo, usan señales de audio MFCC. De
igual manera, en el trabajo [44], también se usaron MFCC. Mientras que en [29] usan
anchura del timbre, volumen, centroide espectral, disonancia espectral y otras señales
de audio. Por otro lado, en [43], además de MFCC, usan otras señales de audio como
el factor cresta espectral y descriptores estadísticos del espectro. En [31] se utilizan
descriptores armónicos. Además, en [30], [32], [42], [46], también se usan señales de
audio como característica acústica de entrada.

Por su parte, Greer ha buscado la manera de contrarrestar algunos defectos que
las técnicas tradicionales tienen. Para ello, ha propuesto un nuevo modelo capaz de
generar características de audio y musicales, utilizando aprendizaje autosupervisado
y aprendizaje por cruce de dominio, todo ello por medio de un transformer encoder
bidireccional multicapa con mecanismos de autoatención [48].

Además de la información y características extraídas directamente de las señales de
audio en problemas referentes al procesamiento de señales también se utiliza otra ma-



nera de representar la información de una señal de audio, por medio de espectrogramas.
Los espectrogramas son una representación visual de la señal de audio que muestra la
distribución de la energía de las frecuencias a lo largo del tiempo. El resultado se dibuja
como un mapa de calor donde el eje horizontal es el tiempo, el vertical la frecuencia y
el color indica la intensidad de la energía.

En la tabla de antecedentes, se encuentra la información relevante de investigaciones
que incluyeron espectrogramas en la elaboración de sistemas MER.

La comunidad científica busca constantemente integrar el conocimiento punta de
lanza, por ejemplo, en los trabajos de [34], [49] se diseñan arquitecturas basadas en
transformers.

Los mecanismos de atención suelen estar enfocados en las características espaciales
y se suelen aplicar en espectrogramas. No obstante, también se ha explorado la idea de
trabajar con bloques squeeze-and-excitation (SE), que son una especie de mecanismos
de atención pero enfocados en la información de los canales. Esto se ha aplicado a redes
neuronales convolucionales, permitiéndoles identificar y priorizar automáticamente los
canales más importantes de un espectrograma.

En el trabajo de [50] se hizo uso de bloques SE en la predicción del nivel de depresión
en el habla. Por otro lado, en el trabajo [51] se emplearon bloques SE para la tarea de
detección y localización de eventos sonoros. Esto permitió que su modelo se enfocara
tanto en los canales más importantes como en las regiones de tiempo-frecuencia más
significativas del espectrograma, mejorando la identificación de las clases de sonido.

En el trabajo [52], los bloques SE se utilizaron para la tarea de MER. Los auto-
res integraron la atención SE dentro de su Módulo de Aprendizaje de Características
Temporales (TFLM). Su función era analizar las características extraídas de los espec-
trogramas para aprender la importancia de cada canal y así poder potenciar el peso de
las características más relacionadas con la emoción, mientras suprimía las que no con-
tribuían significativamente. Los resultados demostraron la eficacia de este enfoque, ya
que su modelo (denominado ADFF) logró una mejora relativa del 10,43% en el valence
y del 4,82% en el arousal en la puntuación R2 en comparación con otros modelos del
estado del arte.

Existen a su vez trabajos en donde se aborda el problema del reconocimiento de
emociones en música mediante estrategias multimodales, los cuales suelen incorporar
información contextual externa a las señales de audio en conjunto con enfoques tradi-
cionales.

En este sentido, Panda et al. [10] han desarrollado un trabajo notable, pues se es-
tablece la importancia de encontrar características enfocadas en las emociones de la
música, además de que muestra una detallada explicación de las características existen-
tes más importantes para las tareas de MER. El estudio no se limita a esta revisión, sino
que el autor desarrolla una serie de características enfocadas en el reconocimiento de
emociones, y realiza varias pruebas con modelos SVM (máquinas de soporte vectorial).

En [42], además de utilizar las señales de audio como característica acústica de
entrada, también usan las letras de las canciones como una entrada del modelo.

En [34] combina características de bajo y medio nivel con la letra de canciones



a través de un enfoque multimodal, en donde el análisis lo realizan modelos DL en
conjunto con técnicas de NLP. Como características tradicionales utiliza espectrogramas
y el análisis lo efectúan redes CNN. En el caso de la letra de canciones emplean diversos
métodos NLP, obteniendo mejores resultados con BERT. En la métrica de exactitud se
alcanzó un 94,58% tras realizar la fusión de los modelos.

En [33] también combina características de bajo nivel con letras. Por medio de
un sistema multimodal realiza el análisis de la información, la cual se obtiene de un
conjunto de datos de 2000 canciones extraídos de la API de Last FM. Tras la fusión de
los modelos se alcanzó un 78% de exactitud.

En 2019 Greer publicó dos artículos en donde propone que mediante una represen-
tación de acordes y letras, usando vectores compartidos, las tareas de clasificación de
géneros musicales pueden obtener mejores resultados [37]. No obstante, en tareas de
MER, si bien logra resultados mejores que otros modelos, estos no los sobrepasan por
mucho.

En cuanto a características de audio, Greer ha buscado la manera de contrarres-
tar algunos defectos que las técnicas tradicionales tienen, para ello, ha propuesto un
nuevo modelo capaz de generar características de audio y musicales, utilizando apren-
dizaje autosupervisado y aprendizaje por cruce de dominio, todo esto por medio de un
transformer encoder bidireccional multicapa con mecanismos de autoatención [48].

En [53] el autor realizó la detección de acordes tanto en archivos MIDI como en
archivos de audio comunes. Una vez obtenidos los acordes, procedieron a codificarlos de
acuerdo a su posición en la escala (I, II, III, etc.). De este modo se construyó una matriz
de transición de acordes, en donde se almacenaban las transiciones comunes entre cada
acorde. La labor se centra en la predicción de valores de valence y arousal, y para ello se
utilizan modelos de machine learning de regresión, en específico SVR (Support Vector
Regression) y LASSO (Least Absolute Shrinkage and Selection Operator). En el caso
del conjunto de datos MIDI, la incorporación de progresiones 2-chord redujo el MSE
de valencia de 0.96 a 0.71, mientras que en el conjunto de audio también se observaron
mejoras (por ejemplo, de 1.39 a 1.24 con MIRToolbox).

De manera parecida, en el trabajo [54] se creó una base de datos donde se relacionó
un conjunto de acordes con emociones. Luego, tras la extracción de características con la
transformada rápida de Fourier y métodos estadísticos (FFT y STAT), se identificaron
los acordes de cada audio. El reconocimiento de emociones se realizó por medio del
cálculo de la distancia euclidiana y la correlación.

Ahora bien, los métodos de NLP no solo se han implementado en el análisis de le-
tras. En [38] se muestra que mediante métodos de embeddings predictivos como lo son
word2vec se pueden capturar relaciones teóricas entre acordes. Por su parte, Greer [37]
propuso que mediante la representación de acordes y letras por medio de vectores com-
partidos las tareas de MER pueden obtener mejores resultados, aunque los resultados
no sobrepasan por mucho a los ya existentes.

Además de todo lo anterior, existen investigaciones que incorporan señales mioeléc-
tricas en sistemas MER [9], además de usar espectrogramas, acompaña el reconocimien-
to de emociones con imágenes EEG. Aunque este tipo de señales se utilizan cuando el



trabajo se centra en la inducción de emociones más que en la percepción [3], [14], [55],
[56], [57].

Cuadro 2: Tabla de Trabajos del Estado del Arte

Aporte B.D. Caract. Modelo Tax. Res.

[23] MER para IoT:
optimiza la extrac-
ción de caract. loca-
les/globales y la ex-
presividad de MFCC
(2021).

A partir
de listas
de Inter-
net. 637
canciones

Bajo-Nivel:
MFCC

GAN con
fusión de
doble ca-
nal

Cat. 93.4 % pre-
cisión (en
promedio)

[11] Metodología hi-
brida y B.D propia
para música turca
para capturar simul-
táneamente relaciones
espaciales (2021)

Propia.
124 can-
ciones
tradi-
cionales
turcas.

Bajo-Nivel:
MFCC,
Energías
Log-Mel,
caract.
acústicas
estándar.

CLDNN Cat. (3
clases
V-A)

99.19 % de
precisión

[49] Arquitectura seg-
mentada en dos eta-
pas: aprendizaje no
supervisado en carac-
terística y clasifica-
ción supervisada de
emociones (2022).

PMEMO:
767 can-
ciones.
AllMusic:
900 clips.

Medio-
Nivel: Es-
pectrogra-
mas Log-
mel

BiLSTM y
Autoenco-
der CNN

Cat. (D
V|A)

V: 79.01 % A:
83.62 % (acc)

[21] Optimización de
modelos clásicos con
técnicas de metaheu-
rística (2021).

MEMD.
1744 can-
ciones

Bajo-Nivel:
LLDs (des-
criptores
acústicos)

NN BP
(opt.
ABC)

Dim. V: RMSE
0.1066 R2

0.4606; A:
RMSE 0.1322
R2 0.6687

[52] Arquitectura
MER end-to-end con
atención SE y fusión
jerárquica espacio-
temporal (2022).

PMEMO.
767 can-
ciones

Medio-
Nivel: Es-
pectrogra-
mas log-mel

VGG16
adaptado
+ SE at-
tention +
BiLSTM

Dim. V: RMSE
0.2379 R2

0.4575; A:
RMSE 0.2213
R2 0.6393

Continúa en la siguiente página. . .



Cuadro 2: Continuación del Cuadro 2

Aporte B.D. Caract. Modelo Tax. Res.

[2] Contempla la im-
portancia del rol de
cada voz en la mú-
sica mediante la se-
paración de fuentes
(2020).

PMEMO.
767 can-
ciones

Medio-
Nivel: Es-
pectrogra-
mas log-mel

Demucs
MSS,
VGG16

Dim. V: RMSE
0.2466 R2

0.4143; A:
RMSE 0.2285
R2 0.6100

[24] Reconocimiento
de emociones musica-
les usando segmentos
cortos y bases de da-
tos científicas (2023)

The mu-
sical ex-
cerpts y
The film
music ex-
cerpts ,
94 frag-
mentos
de audio.

Medio-
Nivel: Es-
pectrogras-
mas STFT,
MEL y
CQT

CNN Cat. 79 % (resul-
tado general
con CQT)

[22] Marco para el
reconocimiento diná-
mico de emociones
musicales (valores
VA) mediante un mo-
delo de fusión CNN-
BiLSTM (2020)

The 1000
songs

Medio-
Nivel: Es-
pectrogra-
mas Mel y
Cochleo-
gram

CNN y
BiLSTM

Dim. V: RMSE
0.07; A: 0.06

Notas:

Encabezados B.D. = Base de Datos; Caract. = Características; Tax. = Taxonomía; Res. =
Resultados.

En Tax. Cat. = Categórica/o; Dim. = Dimensional; para formatos como (D V|A) o (3 clases
V-A): V = Valence, A = Arousal, D = Discreto.

En Modelo NN BP (opt. ABC) = Red neuronal de retropropagación optimizada con Colonia
de Abejas Artificiales.

3. Fundamentación teórica

3.1. Visiones generales de las emociones

Desde un punto de vista psicológico, una emoción es una respuesta que tiene el
organismo de los seres humanos ante los estímulos que nos rodean [16], teniendo como
finalidad preservar la supervivencia del individuo. Estas experiencias siempre se dan de



la mano de cambios fisiológicos [17].
La representación de la emoción es parte de las bases del campo de MER. Históri-

camente, han surgido dos grandes marcos teóricos para abordar este tema. El primero
concibe la emoción como un conjunto de estados discretos y distintos (comúnmente
agrupados por adjetivos), mientras que el segundo, más contemporáneo, la describe
como una estructura integrada y sistemática definida por un número reducido de di-
mensiones fundamentales.

El concepto de representar emociones categóricamente parte de la idea de que emo-
ciones como la felicidad o la tristeza son categorías fundamentalmente distintas. Un
ejemplo de esta perspectiva teórica es el trabajo de Kate Hevner [5]. Su investigación
se fundamenta en el supuesto de que existe un simbolismo sistemático en la música,
donde elementos estructurales específicos son capaces de expresar emociones definidas
y conceptos sentimentales.

Investigaciones posteriores comenzaron a cuestionar la idea de que los estados afec-
tivos fueran independientes. Estos trabajos proponían que, en lugar de ser factores
separados, las emociones están interrelacionadas de una manera altamente sistemáti-
ca. Esta observación llevó al desarrollo de una teoría estructural del afecto, donde las
emociones se definen por su posición dentro de un espacio compartido [17], [19].

La formulación más influyente de esta teoría es el Modelo Circumplejo del Afecto
[19]. La tesis central de Russell propone representar la estructura cognitiva del afecto por
medio de un círculo en un espacio bidimensional. Las bases de esta teoría se encuentran
en el hecho de que el espacio emocional está definido por dos dimensiones bipolares,
Placer-Displacer y Excitación-Sueño, además de contemplar que las emociones no son
puntos aislados, sino que se organizan en el espacio circular y cada emoción no se define
como una categoría, sino más bien por su ubicación dentro de este plano, como una
combinación de los valores de placer y excitación.

La teoría Thayer [20], ofrece una explicación funcional y biológica para la estructura
dimensional del afecto. En lugar de comenzar con un mapa cognitivo, Thayer postu-
la que la experiencia afectiva es una manifestación consciente de sistemas biológicos
fundamentales que han evolucionado para la supervivencia. Su modelo se centra en la
interacción de dos sistemas de activación (arousal) principales: Excitación Energética
(Energetic Arousal) y Excitación Tensa (Tense Arousal).

El continuo trabajo en la representación emocional por medio de un plano dimen-
sional, ha llevado no solo a la creación de herramientas de evaluación estandarizadas y
no verbales, como el Self-Assessment Manikin (SAM), sino también a la consolidación
de una terminología convencional para sus ejes fundamentales. Si bien los trabajos fun-
dacionales usaban términos como placer-displacer, la convención moderna, adoptada en
la mayoría de los modelos dimensionales, se refiere a estos ejes como valence (el conti-
nuo de placer, de positivo a negativo) y arousal ( nivel de activación, de alta a baja).
Estos dos ejes, a menudo complementados por una tercera dimensión de dominancia,
forman el marco estándar sobre el cual se representa y mide la respuesta emocional,
solidificando el paradigma dimensional en la investigación actual [16], [17], un ejemplo
gráfico de como lucen estos modelos se encuentra en la figura 1.



Figura 1: Modelo dimensional Valence Arousal ; adaptada de [10], [21], [22]

Con frecuencia es complicado entender qué emoción se activa en determinados mo-
mentos, y esta tarea aumenta en complejidad cuando se trata de terceros. Aun así,
existen respuestas que permiten identificar o medir una emoción, pues al efectuarse
suelen también presentarse respuestas fisiológicas como el aumento de la presión, va-
riaciones en el ritmo cardíaco, etc., cambios conductuales como tics nerviosos o en la
manera con la que nos expresamos y, finalmente, cambios cognitivos. Por un lado, los
cambios fisiológicos pueden ser observados usando tecnología, por ejemplo, los electro-
encefalogramas (EEG) para medir los cambios de la actividad eléctrica en el cerebro.
Del mismo modo, los cambios conductuales pueden ser percibidos por mera observación
del individuo. A su vez, medir los cambios en los procesos cognitivos solo es posible si
el individuo lo indica. Comúnmente, herramientas como los tests y cuestionarios son
utilizados para esta labor [16], [17].

El SAM (Self-Assessment-Manikin) es una herramienta que busca determinar qué
emoción se activa en un individuo ante un evento o estímulo [16]. El SAM es compatible
con la visión de representación dimensional, permitiendo al usuario expresar qué emo-
ción percibe midiendo el grado de arousal, valence y dominance. De esta forma, el SAM
es una encuesta no verbal y basada en imágenes. Para representar el grado de placer
(positividad) se utilizan diversas figuras que representan un cambio gradual partiendo
de la felicidad hasta la tristeza. Para representar la dimensión de arousal se represen-
ta a través de diversas figuras abrumadas. Finalmente, la dimensión de dominance se
representa por medio de un cambio gradual en el tamaño de las figuras, partiendo de
una figura pequeña hasta una grande [17].



Según Meyer en su trabajo [7] , las emociones surgen cuando se inhibe o detiene una
“tendencia”, entendida como un patrón de respuesta automática basado en experiencias
y conocimientos previos. Frente a un estímulo inesperado, por ejemplo, un perro que se
cruza en nuestro camino, el cerebro genera un escenario posible y, si la realidad difiere
de lo anticipado, la tensión acumulada alivia y se activa la emoción correspondiente.
Así, todas las tendencias, conscientes o no, pueden concebirse como expectativas que,
al cumplirse o frustrarse, moldean nuestra respuesta emocional.

En el ámbito musical, este mecanismo de expectativas se explica por la capacidad del
oyente para anticipar progresiones armónicas: cuando la resolución de un acorde coinci-
de con lo previsto, sentimos complacencia si se desvía, percibimos tensión y emoción [7].
Steinbeis [4] refuerza esta idea al señalar que las predicciones armónicas, construidas a
partir del bagaje cultural o vivencial del oyente, determinan la manera en que se expe-
rimenta una obra musical. En conjunto, Meyer y Steinbeis muestran que la percepción
emocional en la música depende tanto de la inhibición de tendencias como del grado en
que se satisfacen o rompen las expectativas armónicas.

3.2. Teoría musical

En el sistema de afinación temperada, predominante en la música occidental, la
octava se divide en doce sonidos equidistantes, separados por intervalos iguales deno-
minados semitonos o medios tonos [58], [59]. Dentro de este marco, surge el fenómeno
de la enarmonía, que se presenta cuando dos notas diferentes en notación reciben el
mismo valor acústico o altura sonora. Estas notas, conocidas como sonidos enarmóni-
cos, representan una misma frecuencia aunque se escriban de forma distinta [36]. Este
fenómeno es consecuencia tanto del sistema de afinación como de las convenciones de
notación musical y permite, por ejemplo, que una misma tecla del piano pueda repre-
sentar indistintamente un Do sostenido (C♯) o un Re bemol (D♭).

Las escalas constituyen un elemento primordial en la teoría musical, definidas como
sucesiones ordenadas de sonidos que siguen un patrón de intervalos específico. En la
música occidental, la escala mayor es fundamental, caracterizándose por la secuencia
de tonos (T) y semitonos (ST): T − T − ST − T − T − T − ST . Este patrón puede ser
aplicado a cualquiera de los 12 sonidos del sistema cromático temperado, generando así
su escala mayor. Cada escala presenta una jerarquía sonora centrada en la nota tónica,
que actúa como el núcleo gravitacional de la tonalidad, dando contexto a las demás
notas. La tonalidad organiza estas notas en grados identificados por numeración romana,
siendo la tónica (primer grado) la que nombra la tonalidad, la cual puede presentarse en
distintos modos, siendo los más comunes los modos mayor y menor. Cada grado, además,
cumple una función armónica específica con denominaciones particulares, susceptibles
a variaciones según el modo en que la tonalidad se manifiesta [36].

El anillo Z12, tal como se describe en [60], permite modelar matemáticamente las
escalas musicales mediante aritmética modular. Así, cada nota se representa como un
número entero módulo 12, y una escala se construye como una sucesión de intervalos.
Por ejemplo, la escala mayor responde al patrón {2, 2, 1, 2, 2, 2, 1}, donde 2 equivale a



un tono y 1 a un semitono. Aplicando este patrón desde una nota base x ∈ Z12, se
obtiene la escala correspondiente, sumando cada intervalo sucesivamente módulo 12.
Así, partiendo de x = 0 se obtiene la escala de C mayor; desde x = 7, la de G mayor.
La transposición, en este esquema, se reduce a una suma modular aplicada a todo el
patrón.

La transposición es una operación fundamental en teoría musical que consiste en
desplazar todos los elementos de una escala, acorde o melodía una misma cantidad
de semitonos hacia arriba o hacia abajo [36]. En el sistema Z12, esta operación se
simplifica al sumar un valor constante a cada elemento de la secuencia, aplicando la
operación módulo 12. Por ejemplo, transponer cualquier escala S = {s1, s2, . . . , sn}
por un intervalo k se expresa como S ′ = {(s1 + k) mód 12, . . . , (sn + k) mód 12}. Esta
formalización permite implementar la transposición de forma eficiente y consistente,
tanto en análisis teórico como en aplicaciones computacionales [60].

El punto principal de la teoría musical armónica es que los acordes de transición
(como los subdominantes) y de resolución (como la tónica) generan significado a través
de la manipulación de la tensión. Los acordes de transición nos alejan de la estabilidad,
creando un movimiento que conduce a la tensión casi insoportable del acorde dominante,
el cual, por su naturaleza disonante, exige regresar al reposo del acorde de tónica. Es
en este ciclo de tensión y liberación, en cómo se construye, se prolonga o se resuelve
esta expectativa, donde la música trasciende el sonido para convertirse en un lenguaje
emocional, capaz de evocar narrativas complejas que van desde la certeza y la finalidad
hasta el suspenso, la contemplación y el anhelo, pues esta es una forma de generar y
resolver tendencias [7], [36].

3.3. Características acusticas de la música

Espectrogramas: Una señal de audio es la representación de las características
acústicas del sonido. Este se entiende como un fenómeno de vibraciones que se propaga
en el tiempo, y cuyas variaciones producen cambios en dicho sonido. Al capturar sus
espectros, es posible generar una representación gráfica bidimensional que muestra la
evolución de sus frecuencias a lo largo del tiempo. Estos son los espectrogramas. El
espectrograma cuenta con dos dimensiones o ejes: el eje de las abscisas corresponde al
tiempo y el eje de las ordenadas corresponde a la frecuencia [34], [58], [61].

Transformada de Fourier de Tiempo Corto (STFT): La STFT es una he-
rramienta básica en el análisis tiempo-frecuencia que consiste en dividir la señal en
pequeños segmentos de duración fija y aplicar la transformada de Fourier a cada seg-
mento. Esto permite observar cambios en la frecuencia a lo largo del tiempo, proporcio-
nando una representación visual denominada espectrograma. Según [58], esta técnica
es fundamental para la comprensión didáctica y práctica del comportamiento espectral
de señales musicales debido a su capacidad para relacionar claramente la variabilidad
temporal y frecuencial de la señal.

De acuerdo con [34] la transformada de Fourier en corto plazo se define como la
siguiente ecuación:



STFT = {x(t)} ≡ X(τ, w) =

∫ +∞

−∞
x(t)w(t− τ)e−iwtdt (1)

El proceso se entiende como:

1. Sea una señal x(t) la función que se quiere transformar

2. Se multiplica esa señal por una ventana w(t), que es diferente de cero solo en un
intervalo corto (se suelen usar ventanas de Hann o Gaussianas).

3. A medida que la ventana se va deslizando a lo largo de la señal en el tiempo, se
calcula la transformada de Fourier de la porción de la señal que queda tapada por
la ventana.

En donde:

• x(t) es la señal original

• w(t− τ) es la ventana centrada en τ

• w es la frecuencia angular

• e−iwt corresponde al núcleo de la transformada de Fourier.

w(t − τ) es una función ventana que se traslada en el tiempo para analizar segmentos
sucesivos de la señal. La elección de la ventana y su duración determinan la resolución
tiempo-frecuencia del análisis [58].

En la librería librosa [62], los parámetros de la función stft controlan los elementos
de esta ecuación de la siguiente manera:

1. n_fft: Este parámetro define la resolución en frecuencia. Está directamente rela-
cionado con la variable de frecuencia ω en el núcleo de la transformada e−iωt. Un
n_fft mayor calcula la transformada para más puntos de frecuencia ω.

2. hop_length: Controla el desplazamiento de la ventana a lo largo del tiempo.
Corresponde al paso discreto de la variable temporal τ . Define qué tan seguido se
calcula una nueva transformada a lo largo de la señal x(t).

3. win_length: Determina el tamaño de la función ventana w(t− τ). Define cuánta
porción de la señal original x(t) se analiza en cada paso τ .

Espectrograma Mel (Mel-Gram): Los espectrogramas Mel, o Mel-Grams, se
basan en una escala mel que modela la percepción auditiva humana al enfatizar fre-
cuencias que son perceptualmente relevantes. Los espectrogramas Mel han demostrado
gran utilidad en tareas relacionadas con reconocimiento automático de características
musicales, debido a su correlación con la manera en que los humanos perciben diferen-
cias tonales y dinámicas en la música [63]. El trabajo de [34] enfatiza su aplicación en



la detección emocional multimodal por su capacidad de reflejar características psico-
acústicas.

Técnicamente, la conversión de frecuencias lineales a frecuencias mel se realiza uti-
lizando la ecuación:

mel(f) = 2595 log10

(
1 +

f

700

)
(2)

donde f es la frecuencia en hercios (Hz). Esto genera filtros espaciados según la per-
cepción auditiva humana, permitiendo enfatizar rangos frecuenciales que son relevantes
para el oído humano [63].

Transformada Q Constante (CQT): La Transformada Q Constante (CQT) pro-
porciona una representación logarítmica del contenido frecuencial, donde la resolución
frecuencial varía proporcionalmente a la frecuencia, generando una mejor adaptación a
características musicales como las notas y sus armónicos. La CQT permite una iden-
tificación más precisa de las notas musicales y una interpretación más clara de las
estructuras armónicas en comparación con métodos basados en STFT [61]. Esta ca-
racterística hace que la CQT sea particularmente útil en aplicaciones musicales como
identificación de notas, clasificación de instrumentos y seguimiento de modulaciones
tonales, como demuestra [64].

De acuerdo con el trabajo de [61], la CQT se define como:

X[k] =
1

N [k]

N [k]−1∑
n=0

x[n]w[n]e−j2πQn/N [k] (3)

donde Q es una constante que define la relación entre ancho de banda y frecuencia
central, manteniéndose constante a través de todas las frecuencias analizadas, y N [k]
es el número variable de puntos para cada frecuencia central.

Chromagramas: Los chromagramas son espectrogramas especializados que mues-
tran la distribución energética alrededor de las doce notas de la escala cromática, inde-
pendientemente de la octava. Estos espectrogramas son altamente efectivos para cap-
turar características emocionales en música debido a su capacidad de revelar patro-
nes armónicos consistentes relacionados con emociones específicas [9]. La combinación
de chromagramas con modelos de aprendizaje profundo ha resultado particularmente
exitosa para aplicaciones como el reconocimiento automático de emociones musicales,
gracias a su capacidad para destacar patrones melódicos y armónicos perceptualmente
relevantes.

Desde el punto de vista técnico, los chromagramas se calculan a partir de espec-
trogramas convencionales mediante una agrupación energética en cada nota cromática.
Matemáticamente, esto implica:

C(b, t) =
∑
k∈Ωb

|X(k, t)|2 (4)

donde C(b, t) es la energía en el bin cromático b en el tiempo t, y Ωb representa el
conjunto de frecuencias asociadas a la nota cromática específica b [9].



3.4. Redes Neuronales

En términos generales, una red neuronal es un modelo computacional inspirado en el
cerebro humano que se compone de una colección interconectada de unidades llamadas
neuronas. Cada neurona procesa la información que recibe, realiza una operación ma-
temática en ella y produce una salida. Las neuronas se organizan en capas, donde cada
capa se conecta con la siguiente mediante conexiones ponderadas. Estas conexiones y
ponderaciones son ajustadas a través del entrenamiento para que la red pueda aprender
y generalizar a partir de los datos de entrada [65].

La arquitectura de una red neuronal, como se ilustra en la Figura 2, se compone de
tres tipos de capas. La primera, denominada capa de entrada (input layer), contiene
las neuronas que reciben los datos iniciales. La última es la capa de salida (output
layer), que entrega el resultado final. Entre estas dos se ubican una o más capas ocultas
(hidden layers), las cuales procesan la información que fluye desde la entrada hacia la
salida [65], [66].

Figura 2: Arquitectura, simplificada, de una red neuronal; imagen adaptada de [65]

Un aspecto crucial en el diseño de modelos de redes neuronales es la correcta elección
de sus funciones de pérdida, optimización y activación. La función de pérdida cuantifica
el error del modelo durante el entrenamiento, mientras que el algoritmo de optimización
es el mecanismo que actualiza los parámetros del modelo para minimizar dicho error
[66]. Por su parte, la función de activación desempeña un rol central al introducir
la no linealidad, una característica indispensable para que el modelo pueda aprender
representaciones complejas de los datos [65].



La elección del optimizador es determinante para la eficacia y velocidad del entre-
namiento de una red neuronal. Este componente se encarga de ajustar los pesos del
modelo (parámetros) para minimizar la función de pérdida. A continuación, se detallan
los algoritmos empleados en este trabajo.

El Descenso de Gradiente Estocástico o SGD (por sus siglas en inglés) es el
algoritmo de optimización fundamental. En lugar de calcular el gradiente sobre todo
el conjunto de datos, SGD lo hace para un único ejemplo o un pequeño lote (mini-
batch), haciendo que el proceso sea mucho más rápido y computacionalmente eficiente.
Este algoritmo de optimización suele ayudar al modelo a no caer en mínimos locales
sub-óptimos [67].

Su regla de actualización es:

θt+1 = θt − η · ∇θJ(θt) (5)

Donde:

• θt+1 son los parámetros del modelo actualizados.

• θt son los parámetros en el paso actual.

• η (eta) es la tasa de aprendizaje (learning rate), que controla el tamaño del
paso de actualización.

• ∇θJ(θt) es el gradiente de la función de pérdida J con respecto a los parámetros
θ.

RMSprop (Root Mean Square Propagation) es un optimizador adaptable que ajus-
ta la tasa de aprendizaje de forma individual para cada parámetro. Lo logra dividiendo
la tasa de aprendizaje por un promedio móvil de las magnitudes recientes de los gradien-
tes. Esto permite amortiguar las oscilaciones en direcciones con gradientes muy grandes
y acelerar el aprendizaje en direcciones donde el gradiente es pequeño, resultando en
una convergencia más rápida y estable [67].

Su actualización se realiza en dos pasos:

E[g2]t = γE[g2]t−1 + (1− γ)g2t (6)

θt+1 = θt −
η√

E[g2]t + ϵ
gt (7)

Donde:

• gt es el gradiente en el paso actual t.

• E[g2]t es el promedio móvil de los gradientes al cuadrado.

• γ (gamma) es el factor de decaimiento (decay rate), que controla la importancia
de los gradientes pasados.



• ϵ (épsilon) es una constante de suavizado muy pequeña para evitar la división por
cero.

Adam (Adaptive Moment Estimation) es otro optimizador adaptativo que combi-
na las ventajas de dos métodos: RMSprop y Momentum. Almacena un promedio móvil
no solo de los gradientes al cuadrado (segundo momento, como RMSprop), sino tam-
bién de los propios gradientes (primer momento, como Momentum). Adam es conocido
por su robustez y buen rendimiento en una amplia variedad de problemas, a menudo
requiriendo poca configuración de hiperparámetros [68].

Las ecuaciones que rigen su actualización son:

mt = β1mt−1 + (1− β1)gt (8)
vt = β2vt−1 + (1− β2)g

2
t (9)

m̂t =
mt

1− βt
1

(10)

v̂t =
vt

1− βt
2

(11)

θt+1 = θt −
η√

v̂t + ϵ
m̂t (12)

Donde:

• mt y vt son las estimaciones del primer y segundo momento, respectivamente.

• β1 y β2 son los factores de decaimiento para ambos momentos.

• m̂t y v̂t son las estimaciones de los momentos corregidas para evitar el sesgo inicial
hacia cero.

• t es el número del paso de iteración actual.

La función Tangente Hiperbólica (Tanh) es una de las activaciones clásicas.
Comprime cualquier valor de entrada a un rango entre [−1− 1] [65].

Su ecuación es:
f(x) = tanh(x) =

ex − e−x

ex + e−x
(13)

Donde:

• x es el valor de entrada a la neurona.

La función Unidad Lineal Rectificada (ReLU) es la activación más utilizada
en las redes neuronales modernas por su simplicidad y eficiencia computacional [69].
Simplemente, devuelve el propio valor de entrada si este es positivo y cero en caso
contrario. Esto ayuda a mitigar el problema del desvanecimiento del gradiente [35],
[65].

Su ecuación es:
f(x) = máx(0, x) (14)

Donde:



• x es el valor de entrada a la neurona.

Leaky ReLU es una variante de ReLU diseñada para solucionar el problema de la
neurona muerta, que ocurre cuando una neurona se atasca en la región negativa y deja
de aprender. De este modo, a diferencia de ReLU, se le asigna a αx un valor pequeño
cercano a cero en lugar de usar directamente 0 [66]. Su ecuación es:

f(x) =

{
x si x > 0

αx si x ≤ 0
(15)

Donde:

• x es el valor de entrada a la neurona.

• α (alfa) es una pequeña constante positiva, usualmente un valor como 0.01.

Unidad Lineal de Error Gaussiano (GELU) es una función de activación más
moderna y suave, popular en arquitecturas avanzadas como los Transformers. Modula la
salida de una neurona de forma probabilística, basándose en la función de distribución
acumulada de la distribución normal estándar. Intuitivamente, decide si mantener o
anular una salida de forma más suave que ReLU [70].

Su ecuación es:
f(x) = x · Φ(x) (16)

Donde:

• x es el valor de entrada a la neurona.

• Φ(x) es la Función de Distribución Acumulada de la distribución gaussiana es-
tándar.

Existen múltiples funciones de pérdida y esta se debe adaptar a la naturaleza del
problema, pues su uso principal es el de reducir el error del modelo. En problemas de
regresión es común encontrar funciones como MSE o MAE. No obstante, existe una
opción más robusta que combina tanto el MSE como el MAE, la función de pérdida
Huber loss o pérdida de Huber, que reduce la sensibilidad a valores atípicos. Por lo
general, es usada para mejorar la estabilidad del modelo [49].

Lδ(x) =

{
0,5 · x2 : if |x| ≥ δ

δ · |x| − 0,5 · δ2 : otherwise
(17)

En Donde:

• x: Es la diferencia entre los valores reales y los predichos.

• δ (delta): Es un hiperparámetro que define el umbral. Los errores por debajo de δ
son tratados como cuadráticos, mientras que los errores más grandes son tratados
de forma lineal.



3.5. Redes Nueronales Convolucionales CNN

Son un tipo especial de red neuronal, estas son comúnmente utilizadas en el proce-
samiento de información que tiene una estructura en forma de cuadrícula. [12] [66]. De
acuerdo con [65] las principales características de las CNN son: Recepcción de campos
locales, Pesos compartidos y Agrupación.

La recepción de campos locales es un proceso que ocurre por medio de convoluciones,
una convolución es un operador que permitirá extraer información de los datos ingresa-
dos en la neurona [66]. La ecuación 18 es la operación de convolución que implementaron
en [35]

F (i, j) = (R ∗ w)(i, j) =
∑
x

∑
y

R(i− x, j − y)w(x, y) (18)

Además de la operación de convolución, otro paso dentro la CNN es la función de
agrupamiento o pooling, una técnica par agrupación es el Max Pooling. De acuerdo
con [66] en el proceso de max pooling, a partir de la información entrante y saliente se
extraen regiones o ventanas. Y de estas regiones se conservan solo los valores máximos.
La ecuación 19 es la función para la operación de pooling usada en [35].

MaxPooling(x, y) = max(x, y) (19)

3.6. Memoria a largo y corto plazo LSTM

Las redes neuronales LSTM son un tipo de redes neuronales recurrentes, en ocasiones
son denotadas como LSTM-RNN, dentro de las RNN las LSTM son de las más poderosas
y por ende también son de las que más recursos consumen [69].

Este tipo de RNN ofrece solución a uno de los problemas que aquejan a las RNN, el
cual es el problema del gradiente inestable, en líneas generales este problema ocasiones
que el aprendizaje en las primeras capas sea en extremo lento [71].

Los bloques de LSTM poseen una memoria a largo plazo, la cual se le denomina
como estado de la célula (cell state). A su vez, los bloques se compone de tres puertas:

• Input Gate: Se encarga de generar los valores que se necesitan para deducir los
nuevos estados.

• Forget Gate: Se encarga de controlar la información que ha sido descartada en
estados previos.

• Output Gate: Se encarga de generar los valores que determinaran los siguientes
estados [72].

Este tipo de arquitecturas son unidireccionales, es por esta razón que para problemas
en donde es importante el contexto en ambas direcciones se emplea la arquitectura
bidireccional. De esta forma existen arquitecturas que proponen unir dos bloques LSTM,
así, se puede enfocar en procesar la secuencia hacia adelante (forward) y la otra procesa
hacia atrás (backward) [22], [71].



3.7. Redes Residuales ResNet

Las Redes Neuronales Residuales (ResNet) son una arquitectura de redes neuronales
profundas introducida para resolver el problema de la degradación del rendimiento,
este define que, contrario a lo esperado, añadir más capas a un modelo de red neuronal
puede llevar a un error de entrenamiento más alto, esto se debe a que al ser un modelo
con más capas la optimización de la red se convierte en una tarea más compleja [73].

La idea fundamental de ResNet es introducir conexiones de salto (skip connec-
tions) que permiten que la información de una capa anterior se sume a la de una capa
posterior, saltándose una o más capas intermedias.

El componente clave de una ResNet es el bloque residual. En lugar de esperar que
un conjunto de capas apiladas aprenda directamente una función de mapeo subyacente
H(x), se les obliga a aprender una función residual F(x) [73].

La salida del bloque, y, se define matemáticamente como:

y = F(x, {Wi}) + x

Donde:

• x es el vector de características de entrada al bloque.

• F(x, {Wi}) es el mapeo residual aprendido por las capas del bloque, con pesos
Wi.

• La operación +x es la conexión de salto (skip connection) que suma la entrada
original (identidad) a la salida de las capas.

3.8. Bloques Squeeze-and-Excitation (SE)

Durante el boom de las redes CNN, muchas arquitecturas de referencia, como la pro-
pia ResNet, VGG o Inception, se centraban principalmente en capturar características
espaciales: bordes, formas, texturas, etc., tratando a los canales o mapas de activación
por igual, sin ponderar la importancia que cada uno tuviera.

Por ende, en es que el trabajo de [74] propuso una especie de mecanismo de atención
primigenio enfocados en la importancia de los mapas de cara. Su objetivo es modelar ex-
plícitamente las interdependencias entre las características de los canales. Para lograrlo,
realiza una recalibración adaptativa de características por canal, permitiendo
que la red aprenda a enfatizar las características informativas y suprimir las menos
útiles, este proceso se divide en dos operaciones Squeeze y Excitation.

La operación Squeeze condensa la información espacial del mapa de características
de entrada utilizando una agregación global por canal. A través de una operación de
Global Average Pooling (GAP), se genera un vector descriptor [74], donde cada com-
ponente se calcula como:

zc = FGP (textbfuc)



En done uc es el canal número c del vector de entrada U = [u1,u2, . . . ,uc] el cual
fue generado por una operación de convolución, FGP es la operación de pooling. Esto
genera el vector descriptor zc [50].

El segundo paso, Excitation, tiene como objetivo capturar completamente las de-
pendencias de los canales a partir de la información agregada. Para ello, utiliza un
mecanismo de compuerta (gating mechanism) con dos capas completamente conecta-
das (FC) alrededor de una no linealidad [50], [74]:

s = σ(W2δ(W1z))

Donde:

• δ es la función de activación ReLU.

• σ es la función de activación sigmoide.

• W1 ∈ RC
r
×C y W2 ∈ RC×C

r son los pesos de las dos capas FC. Estas capas
forman un cuello de botella (bottleneck) con un ratio de reducción r para limitar
la complejidad del modelo y ayudar a la generalización.

Finalmente, el mapa de características es reescalado canal a canal utilizando los
valores de s:

x̃c = sc · uc

De esta manera, el bloque SE permite que la red enfatice dinámicamente los canales
más relevantes.

3.9. Embeddings y Modelos Word2Vec

Los embeddings son representaciones vectoriales numéricas de datos en un espacio de
menor dimensión, donde los elementos similares en el contexto de los datos originales
quedan cerca entre sí. En el ámbito de procesamiento del lenguaje natural o NLP
por sus siglas en inglés (Natural Language Process), los embeddings son especialmente
útiles para representar palabras en un espacio vectorial, facilitando que los modelos
interpreten relaciones y similitudes semánticas entre palabras [37], [38].

Word2Vec es un método ampliamente utilizado para generar embeddings de pala-
bras, desarrollado por investigadores de Google [75]. Este modelo emplea redes neuro-
nales poco profundas para aprender representaciones distribuidas de palabras a partir
de su contexto, logrando que términos semánticamente similares estén representados
por vectores cercanos en el espacio. Word2Vec presenta dos arquitecturas principales:
CBOW (Continuous Bag of Words) y Skip-gram.

CBOW: Este modelo predice una palabra objetivo a partir de su contexto cir-
cundante, es decir, utiliza las palabras circundantes para predecir una palabra central.



CBOW resulta útil cuando se requiere capturar una representación basada en el con-
texto global, pues este modelo se entrena para minimizar la probabilidad de error al
predecir una palabra a partir de el conjunto de palabras que la rodean [38].

Skip-gram: A diferencia de CBOW, el modelo Skip-gram realiza la operación in-
versa: dada una palabra central, intenta predecir las palabras que la rodean en un
contexto definido [37]. Este enfoque es especialmente útil para capturar relaciones y
similitudes semánticas a nivel individual, ya que el modelo se entrena para maximizar
la probabilidad de las palabras del contexto condicionado a una sola palabra objetivo.

LSkip-gram =
1

T

T∑
t=1

∑
−c≤ j≤ c

j ̸=0

log p
(
wt+j | wt

)
,

p
(
wo | wi

)
=

exp
(
v′wo

⊤ vwi

)
W∑
w=1

exp
(
v′w

⊤
vwi

)
En donde:

• T Número total de palabras en el corpus de entrenamiento.

• c Tamaño de la ventana de contexto (número de palabras a cada lado de la
central).

• t Índice de la palabra central en la secuencia, t = 1, 2, . . . , T .

• j Desplazamiento dentro de la ventana de contexto, −c ≤ j ≤ c y j ̸= 0.

• wt Palabra central en la posición t.

• wt+j Palabra de contexto desplazada j posiciones respecto a la central.

• LSkip-gram Función objetivo (average log-probability) del modelo Skip-gram.

• vw ∈ Rd Vector de entrada (“input”) de dimensión d asociado a la palabra w.

• v′w ∈ Rd Vector de salida (“output”) de dimensión d asociado a la palabra w.

• W Tamaño total del vocabulario.M.E.R.

• p(wo | wi) Probabilidad de predecir la palabra de salida wo dado el vector de
entrada de la palabra central wi, definida por la softmax.



3.10. Métricas

Dado que el problema abordado en este trabajo es de naturaleza regresiva, es fun-
damental emplear métricas que cuantifiquen con precisión el error entre los valores
predichos por el modelo y los valores reales. Para ello, se utilizan cuatro métricas am-
pliamente reconocidas en tareas de regresión: el Error Cuadrático Medio (MSE), la Raíz
del Error Cuadrático Medio (RMSE), el Error Absoluto Medio (MAE) y el coeficiente
de determinación R2. Estas métricas permiten evaluar distintos aspectos del desempeño
del modelo, tales como la magnitud promedio del error, su sensibilidad a errores grandes
y la proporción de la varianza explicada por el modelo.

Raíz del error cuadrático medio (RMSE): Mide la precisión de un modelo de
regresión. Se calcula como la raíz cuadrada de la media de los errores cuadrados entre
las predicciones del modelo y los valores reales. En la ecuación 20, n corresponde al
número total de muestras, yj corresponde al valor real de la variable dependiente de la
muestra y ŷj es la predicción [21].

RMSE =

√√√√ 1

n

n∑
j=1

(yj − ŷj)2 (20)

Raíz de error relativo (RSE): Esta ecuación 21 se usa para calcular R2. Es el
residuo de la suma de los cuadrados, donde ȳj representa la media del valor de y [21].

RSE =

∑n
j=1(yj − ŷj)

2∑n
j=1(yj − ȳj)2

(21)

Puntuación R2 (score): Es usualmente usada para evaluar la exactitud de mode-
los de regresión. Calcula qué tan lejos se encuentran los valores de los datos de la línea
de regresión [21].

R2 = 1−RSE (22)

Aunque en ocasiones también se llega a usar el error absoluto medio. Error abso-
luto medio (MAE): Este calcula el error de la predicción del modelo. Con la ecuación
23 se puede calcular el MAE. Dicha ecuación está basada en la implementada por Yang
en [21].

MAE =
1

n

n∑
j=1

|yj − ŷj| (23)

4. Hipótesis

Mediante un sistema automático basado en machine learning, que analiza y discri-
mina tanto características de audio como el contexto armónico de obras musicales es
capaz de encontrar patrones y relaciones de una manera natural y parecida a como un
músico efectuaría el reconocimiento de emociones en obras musicales.



5. Objetivos

1. Objetivo general:

Analizar características de bajo y alto nivel de obras musicales, por medio de
un modelo múltiple de I.A basado en técnicas de deep learning, para efectuar el
reconocimiento de emociones en obras musicales.

2. Objetivos específicos:

• Preparar los datos, con técnicas de preprocesamiento, para alimentar los
modelos de aprendizaje.

• Analizar las características extraídas, por medio de modelos de aprendizaje,
para realizar un primer reconocimiento de emociones.

• Realizar la fusión de ambos modelos de I.A para obtener la clasificación final
de emociones.

6. Métodos y Materiales

6.1. Introdución a la metodología

La metodología a seguir para el desarrollo del proyecto se encuentra planteada en
la figura 3, la cual está compuesta por cuatro fases: la primera corresponde al proceso
de recolección de los datos. La segunda, al proceso de extracción de información o
características. La tercera son los modelos de análisis y aprendizaje, finalmente, la
cuarta es la fusión de dichos modelos.



Figura 3: Metodología para el proyecto

6.2. Materiales

6.2.1. Conjunto de datos

Los conjuntos de datos existentes para la tarea de MER son variados y reflejan
el panorama actual de esta tarea, pues presentan diferencias tanto ne las caracterís-
ticas como la taxonomía (dimensional o categórica), el nivel en el que las canciones
son etiquetadas (estática o dinámica) o la metodología con la que las anotaciones se
obtienen.

Es esta falta de homogeneidad en los conjuntos de datos resulta valioso encontrar
aquellos con similitudes que permitan utilizarlos de manera conjunta. Por ello, para este
trabajo se seleccionaron dos de los conjuntos de datos más utilizados en MER PMEmo
[76] y DEAM [41]. Estos conjuntos siguen una metodología parecida en la generación
de etiquetas, pues ambos se basan en una taxonomía dimensional. Cada anotación
cuenta con valores en los ejes de valence y arousal. Por su parte, ambos conjuntos
utilizaron encuestas SAM y múltiples anotadores para generar cada anotación estática
global para cada una de las canciones. Tanto PMEmo como el conjunto de datos de
DEAM son públicos y cuentan con archivos de audio. La tabla 3 muestra algunas de
las características esenciales de los conjuntos de datos seleccionados.



Cuadro 3: Principales características de los conjuntos de datos PMEmo y DEAM
Base de datos Año Contenido Formato Tipo Rango

PMEmo 2019 794 extractos MP3 Dimensional (VA) (0− 1)
DEAM 2017 1802 extractos MP3 Dimensional (VA) (1− 9)

PMEmo: Contiene 794 anotaciones, recolectadas a partir de un experimento rea-
lizado a 457 sujetos. Para la generación de estas anotaciones se utilizó la escala Self-
Assessment Manikin (SAM) con nueve valores, los cuales fueron posteriormente nor-
malizados al rango [0, 1]. El conjunto de datos ofrece diferentes tipos de anotaciones.
Para la presente investigación se seleccionaron las anotaciones emocionales dimensio-
nales Valence-Arousal, obteniendo un total de 767 archivos de audio en formato .mp3
con sus respectivas anotaciones estáticas. Los extractos de audio tienen una frecuencia
de 44.1 kHz y la duración de los mismos es variable.

DEAM: El conjunto de datos de MediaEval cuenta con un total de 1802 archivos de
audio en formato .mp3 con sus respectivas anotaciones. Estos datos han sido recopilados
durante un periodo de 3 años, de 2013 a 2015. Cuenta con música libre de derechos. Al
igual que PMEmo, las anotaciones fueron obtenidas en escala SAM de nueve puntos,
de [1, 9]. DEAM cuenta con anotaciones estáticas y dinámicas, ambas dimensionales,
de las cuales solo se seleccionaron las estáticas. Al igual que PMEmo, los extractos de
audio tienen una frecuencia de 44.1 kHz. La duración de los audios es de 45 segundos, no
obstante, los datos recopilados en 2015 no cumplen con esta característica y la mayoría
de audios contienen la canción completa.

6.2.2. Gestor de base de datos relacional

Para reunir la información de los metadatos y anotaciones de ambos conjuntos de
datos en un solo lugar, se diseñó una pequeña base de datos relacional. Como gestor
se utilizó SQLite, debido a su sencillez y portabilidad, pues toda la información se
concentra en un único archivo, además de no requerir un servidor dedicado.

El uso de una base de datos relacional, en lugar de un archivo CSV que unifique
la información de los datasets, se debe a que la estructura física de almacenamiento se
encuentra separada de la parte lógica, lo cual permite modificar la estructura física sin
afectar los programas que acceden a los datos.



Figura 4: Diagrama relacional de la base de datos final.

La información de PMEmo y DEAM se unificó en una sola base de datos. De
acuerdo con la figura 4, la tabla central, núcleo de la unificación, canciones, contiene
la información básica de cada canción, como el nombre y el artista. La tabla de origen,
datasets, indica de qué fuente original proviene cada canción. Por último, las tablas
audio_files, anotaciones, acordes, augmented_audios y tipo_acordes contienen
toda la información específica y técnica. La información se conecta con cada canción
para detallar los nombres de los archivos de audio, las anotaciones emocionales y los
acordes extraídos.

6.2.3. Entorno de Python y librerías utilizadas

Con el fin de preservar la modularidad y separar el proyecto por fases, cada tarea fue
llevada a cabo en entornos virtuales de Python. Cada entorno fue configurado y creado
mediante la plataforma de Anaconda. Los entornos virtuales se encuentran descritos en
la tabla 4.



Cuadro 4: Entornos viruatles de python utilizados

Entorno Virtual Versión de Python Uso

chord_extraction_38 3.8.20 Para tareas de extracción de acor-
des a partir de audio, utilizando
librerías compatibles con Python
3.8.

mer_prepdata 3.9.21 Para la preparación y preprocesa-
miento de datos destinados a mo-
delos de Reconocimiento de Emo-
ciones en la Música (MER).

nlp-audio-env 3.10.17 Para la construcción y experimen-
tación con los diferentes modelos
tanto DL como NLP para el aná-
lisis de características acústicas y
simbólicas

Para el desarrollo de este proyecto, se empleó un conjunto de librerías clave de
Python. Las tareas de aprendizaje profundo y optimización de hiperparámetros se rea-
lizaron con PyTorch y Optuna, respectivamente.

El procesamiento de señales de audio y la extracción de características musicales
fueron manejados principalmente por Madmom [77] y Librosa [62]. Por su parte, la
manipulación de datos, el análisis numérico y la implementación de modelos de machine
learning tradicionales se apoyaron en las fundamentales Pandas, Numpy y Scikit-learn.

6.2.4. Hardware utilizado

El desarrollo del proyecto y la experimentación se llevaron a cabo en un equipo de
escritorio con el sistema operativo Manjaro Linux. El sistema está impulsado por un
procesador AMD Ryzen 5 5600G con gráficos integrados Radeon Vega y cuenta con 64
GB de memoria RAM, lo que facilitó el manejo eficiente de grandes volúmenes de datos
y el entrenamiento de los modelos.

6.3. Tratameinto de los datos

6.3.1. Metadatos y anotaciones

Ambos conjuntos de datos comparten características importantes que posibilitan su
fusión. No obstante, presentan ciertas diferencias en cuanto al formato, la organización
de los datos y las anotaciones. Por ello, como paso inicial, se realizó una limpieza de
datos nulos y, posteriormente, se homogeneizó la estructura y el formato de estos para



permitir el uso de ambos conjuntos. El diagrama de la figura 5 es el proceso simplificado
que se implementó para la limpieza y preparación de los datos.

Figura 5: Proceso para el tratamiento de las anotaciones y metadatos de los conjuntos
de datos

En el caso de PMEmo, este cuenta con un total de 4 archivos CSV. No obstante,
para este trabajo, solo se tomaron en cuenta las anotaciones estáticas a nivel de canción
(Song-Level). La estructura del CSV de anotaciones utilizado cuenta con 3 columnas:
la primera es un id, la segunda es el valor del arousal y la tercera, el valor del valence.
A partir de estas anotaciones, se obtuvieron las entradas únicas por id, lo que permitió
eliminar duplicados de forma segura.

Posteriormente, se cargaron las rutas de los archivos de audio en una lista y también
se cargó el archivo de metadatos. De este último solo se tomaron en cuenta las columnas
del id, el nombre del artista, el nombre de la canción y el nombre del archivo de audio.
De modo similar al archivo de anotaciones, se conservaron las entradas únicas por id
en los metadatos. Además, se filtraron los datos para mantener solo aquellas entradas
cuyo id también se encontrara en el archivo de anotaciones. De esta forma, se selecciona
la información de audios que cuentan con anotaciones.

Por último, del archivo de metadatos, se comprueba que en cada entrada la ruta del
archivo de audio almacenada exista en la lista de rutas para conservar solo la información
de los audios que cuentan tanto con anotaciones como con un archivo de audio MP3.

Todos los archivos de audio del conjunto de datos de PMEmo se encuentran alma-
cenados en la misma carpeta raíz. Esta ruta se define como una variable de entorno en
un archivo .env. Así, al conocer el nombre del archivo de audio, es posible obtener la



ruta completa y acceder al archivo MP3 correspondiente.
En el caso del conjunto DEAM, como parte de la limpieza de datos, los audios del

2015 tienen duración completa, por lo tanto estos audios se separaron del resto y se
segmentaron en clips de 45 segundos, los fragmentos de 45 segundos de cada canción
se seleccionaron de forma aleatoria respetando la metodología del propio DEAM. Los
segmentos de 45s fueron guardados con el resto de clips.

DEAM divide sus anotaciones estáticas a nivel de canción en dos archivos, am-
bos poseen las mismas columnas. El primer archivo tiene la información de la versión
pre-2015. En cada archivo de anotaciones se conserva un id único. Ambos archivos se
fusionaron para crear un nuevo archivo con todas las anotaciones. El archivo final con-
serva solo 3 columnas de los archivos de anotaciones originales: la columna del id y las
columnas con los valores de valence y arousal.

Debido a que las anotaciones en el dataset de DEAM se encuentran en la escala de
[1− 9], los valores se normalizan a un rango de [0− 1] aplicando la ecuación 24:

xnorm =
x− xmin

xmax − xmin

(24)

6.3.2. Control de las rutas de los archivos de audio

Para no almacenar la ruta completa del archivo de audio en la base de datos, se
guardó una cadena del tipo: $PMEMO:{nombre_archivo} De este modo, la ruta real
se construye dinámicamente sustituyendo el prefijo por la variable de entorno. Los
algoritmos 1 y 2 muestran el pseudocódigo para codificar y decodificar las rutas de los
archivos de audio.

Algorithm 1 EncodeRuta: Codifica el nombre de archivo en la cadena con prefijo
Require: nombre_archivo (cadena, por ejemplo “track123.mp3”)
Ensure: ruta_codificada (cadena en formato “$PMEMO:track123.mp3”)
1: prefijo← $PMEMO:
2: ruta_codificada← prefijo ∥nombre_archivo
3: return ruta_codificada

6.3.3. Fusión de los conjuntos de datos

Para este trabajo, las emociones se representan en un espacio bidimensional donde
el eje horizontal corresponde al valence y el eje vertical al arousal, ambos normalizados
en el rango [0, 1]. Para facilitar el análisis y la visualización, el espacio dimensional fue
divididó en cuatro cuardantes [18], [19]:

• Cuadrante 1 (Q1): arousal > 0,5 y valence > 0,5. Corresponde a emociones de
alta activación y valencia positiva.



Algorithm 2 DecodeRuta: Convierte la cadena codificada en ruta absoluta
Require: ruta_codificada (cadena, p. ej. “$PMEMO:track123.mp3”)
Ensure: ruta_absoluta (cadena con la ruta de disco)
1: prefijo← $PMEMO:
2: if startsWith(ruta_codificada, prefijo) then
3: nombre_archivo← substring(ruta_codificada, |prefijo|+ 1, fin)
4: ruta_base← LeerVariableEntorno(PMEMO_ROOT)
5: ruta_absoluta← ruta_base ∥ ”/” ∥nombre_archivo
6: return ruta_absoluta
7: else
8: return ruta_codificada {Ya es ruta absoluta o no usa prefijo}
9: end if

• Cuadrante 2 (Q2): arousal > 0,5 y valence ≤ 0,5. Representa emociones de
alta activación pero valencia negativa.

• Cuadrante 3 (Q3): arousal ≤ 0,5 y valence ≤ 0,5. Agrupa emociones de baja
activación y valencia negativa.

• Cuadrante 4 (Q4): arousal ≤ 0,5 y valence > 0,5. Indica emociones de baja
activación pero valencia positiva.

En la práctica, se toma cada par (valence, arousal) y se le aplica la siguiente regla:

cuadrante =


Q1, si arousal > 0,5 ∧ valence > 0,5,

Q2, si arousal > 0,5 ∧ valence ≤ 0,5,

Q3, si arousal ≤ 0,5 ∧ valence ≤ 0,5,

Q4, si arousal ≤ 0,5 ∧ valence > 0,5.

De este modo, cada punto en la gráfica de dispersión se clasifica en uno de los cuatro
cuadrantes, lo que permite visualizar fácilmente en qué regiones del espacio emocional
se concentran las anotaciones de cada dataset antes de la fusión.



Figura 6: Comparativa de la distribución de los valores en los conjuntos de datos PME-
mo(azul) Y DEAM(naranja)

Antes de efectuar la fusión de los conjuntos de datos, la dispersión en ambos varía
ligeramente. En PMEmo se observa una mayor concentración de anotaciones en el Q1,
como se aprecia en la figura 6. En DEAM, existe una mayor concentración de datos
en el centro (valence ≈ 0.5, arousal ≈ 0.5), aunque cabe recalcar que en la zona del
cuadrante Q1 como en la zona de Q3 es donde se nota una mayor densidad. No obstante,
la varianza de ambos datasets es comparativamente similar (ver la tabla 6.3.3), y en
ambos casos las anotaciones se concentran en torno a valores medios de cada eje, tal
como muestra la gráfica de cajas 7. PMEmo muestra una ligera tendencia hacia valores
más altos de valence y arousal. De hecho, en PMEmo aparecen un par de outliers en
valores muy bajos de arousal y valence. Por su parte, DEAM tiende aún más al centro
sin gran dispersión hacia los extremos y solo con un outlier en el eje de valence, próximo
a 1.

Cuadro 5: Media y varianza de Valence y Arousal para
PMEmo y DEAM

DS VM VV AM AV

PMEmo 0.596581 0.026239 0.622355 0.034156
DEAM 0.488018 0.021544 0.476754 0.025688

DS: Dataset; VM: Valence Mean; VV: Valence Variance; AM:
Arousal Mean; AV: Arousal Variance.



Figura 7: Comparativa distribución de los valores Valence y arousal en los conjuntos
PMEmo(azul) Y DEAM(naranja)

Tras la fusión de PMEmo y DEAM, la dispersión conjunta agrupada por cuadrantes
(ver figura 8) muestra que la mayoría de las canciones se agrupan alrededor del punto
medio (valence ≈ 0.5, arousal ≈ 0.5). En concreto, se mantiene cierta preferencia por
valores de valence moderadamente altos y arousal medios, aunque aparecen ejemplos
distribuidos en todos los cuadrantes (Q1-Q4), lo que refleja la combinación de ambas
fuentes originales.

Figura 8: Dispersión de los anotaciones Valence, Arousal tras realizar la fusión de los
datos.

En el boxplot resultante para el dataset fusionado (figura 9), la mediana de valence
se ubica cerca de 0,52, mientras que la de arousal ronda 0,50, confirmando que las
anotaciones más frecuentes se encuentran en la región central. El rango intercuartíli-



co de valence se extiende aproximadamente entre 0,40 y 0,65, y el de arousal entre
0,38 y 0,66, lo que indica una variabilidad moderada. Los bigotes sugieren que no hay
valores extremos demasiado alejados de 0 o 1. En conjunto, estos gráficos evidencian
que la fusión logra eliminar los datos con comportamiento lejano a la media, además
de mantener la herencia de la dispersión original de PMEmo y DEAM. Sin embargo,
también es notable cómo los datos tienden a concentrarse en la zona media del espacio
emocional.

Figura 9: Comparativa distribución de los valores Valence y arousal en los conjuntos
fusionados

6.3.4. Archivos de audio

Los archivos de audio se sometieron a un sencillo proceso que incluía:

• Conversión de tipo MP3 a WAV.

• Down-sampling 44.100 kHz → 22.050 kHz.

• Aumento de datos (sobre archivos de audio)

Antes, en cada carpeta raíz ($PMEMO: y $DEAM:) de los audios se crearon tres subcar-
petas para almacenar los archivos resultantes: una carpeta para los audios aumentados,
otra para los audios WAV y, finalmente, una carpeta para almacenar aquellos archivos
producto del aumento de datos. La figura 10 muestra un ejemplo de la distribución de
las carpetas para almacenar los audios originales y aquellos producto del procesamiento.



Figura 10: Distribución de folder donde se almacenan los archivos de audio procesados

Una vez que los audios son transformados, se registran las entradas en la base de
datos, de los cuales se almacena el id del audio original y la ruta del archivo (la cual se
construye dinámicamente).

Gracias al control de las rutas de los archivos de audio establecido, tan solo basta
con modificar el proceso de construcción de rutas, sustituyendo el valor placeholder
($PMEMO: o $DEAM:) por la ruta de la carpeta de down-sampling correspondiente, y en
el nombre del archivo se sustituyó el .mp3 por .wav.

6.4. Obtención de las características

Para realizar el reconocimiento de emociones en una pieza musical, se diseñó un es-
quema de extracción de características basado en dos componentes fundamentales: las
características acústicas derivadas de espectrogramas y las características armónicas
extraídas a partir de progresiones de acordes. Esta doble perspectiva permite captu-
rar tanto la dimensión temporal y espectral del audio como su estructura armónica
subyacente.

6.4.1. Características basadas en espectrogramas

Para capturar la dimensión acústica de cada canción, se extrajeron cuatro tipos de
espectrogramas ampliamente utilizados en tareas de análisis musical y reconocimiento
emocional: Chromagramas, CQT (Constant-Q Transform), Espectrogramas
Mel y Tempogramas. Estas representaciones fueron calculadas utilizando la biblioteca
librosa [62]. El proceso de extracción se representa visualmente el figura 11



Figura 11: Fusión de modelos; A) Obtención de espectrogramas con padding; B) Seg-
mentar en 45 sub-espectrogramas iguales; C) Redimnesionamiento de cada segmento.

Generación de espectrogramas: Cada archivo de audio (original y aumentado)
fue cargado a una frecuencia de muestreo fija de 22,050 kHz. Una vez cargado el audio,
se obtuvo su espectrograma correspondiente por medio de la librería librosa. Para
estandarizar la entrada, todos los espectrogramas fueron recortados o rellenados (pad-
ding) hasta una duración total de 45 segundos. Esta longitud garantiza uniformidad en
el número de frames temporales generados por los espectrogramas.

Los parámetros empleados para la obtención de espectrogramas fueron:

• Frecuencia de muestreo: sr = 22,050kHz

• Tamaño de la venatana (n_fft): 2048 muestras

• Tamaño del hop (hop_length): 1024 muestras

Con estos parámetros es posible calcular la cantidad de frames que el espectrograma
tendrá para 45 segundos de audio, la ecuación 25 muestra el calculo de frames.

nframes =

⌈
duration_seconds× sr

hop_size

⌉
(25)

En donde:

• duration_seconds: Duración total del audio en segundos (es decir, 45 s).

• sr: Frecuencia de muestreo, es decir, cuántas muestras por segundo toma el sis-
tema (sr = 22 050 Hz).



• hop_size: Tamaño del salto (hop size) en muestras, que indica cuántas muestras
se avanza entre frames consecutivos (aquí, hop_size = 1024).

• ⌈·⌉: Función “techo” o “ceiling”, que siempre redondea hacia arriba al entero más
cercano.

Para el ejemplo concreto:

duration_seconds× sr

hop_size
=

45× 22 050

1 024
=

992 250

1 024
≈ 968,9941 . . .

Como el resultado de esa división no es un número entero, aplicamos la función de
redondeo hacia arriba:

nframes = ⌈968,994140625 . . . ⌉ = 969

De esta forma, al tomar en cuenta 45 s, un sr de 22 050 Hz y un hop_size = 1024,
obtenemos nframes = 969. El uso de ⌈·⌉ garantiza que siempre cubramos completamente
la duración del audio, aunque el último frame necesite aplicarse con padding (ceros)
para completarse.

Chromagramas (12× 969):

• Número de filas: 12. Cada fila corresponde a un semitono de la escala cromática,
es decir, a las clases de notas musicales (C, C♯/D♭, D, . . . , B).

• Número de columnas: 969, igual al número de frames temporales calculados
en la ecuación (25).

• Procedimiento:

(a) Se calcula la STFT de la señal de audio con ventana de 2048 muestras y hop
de 1024.

(b) El espectrograma resultante se agrupa en 12 bandas logarítmicas (cada banda
abarca las frecuencias correspondientes a un semitono).

Constant-Q Transform (CQT) (60× 969):

• Número de filas: 60. Cubren 5 octavas completas (de C2 a C7), lo cual da
5× 12 = 60 bins, cada uno correspondiente a un semitono en escala logarítmica.

• Número de columnas: 969,se mantienen los mismos frames temporales que en
la STFT (hop de 1024 muestras).

• Procedimiento:

(a) Se calcula primero la STFT con nfft = 2048 y hop = 1024, obteniendo un
espectrograma lineal de dimensión

(
1025, 969

)
.



(b) Cada columna de ese espectrograma lineal se remapea en 60 bandas logarít-
micas, aplicando filtros ponderados cuya resolución relativa Q es constante.

Mel-Spectrogramas (128× 969):

• Número de filas: 128. Se define un banco de 128 filtros mel distribuidos entre
0 y sr/2 = 11025 Hz, escalados según la percepción humana (escala mel).

• Número de columnas: 969, se emplea la misma segmentación temporal que la
STFT (hop de 1024 muestras).

• Procedimiento:

(a) Se calcula la STFT con nfft = 2048 y hop = 1024, obteniendo un espectro-
grama lineal de

(
1025, 969

)
.

(b) Se construye un banco de 128 filtros triangulares en escala mel. Por cada
frame temporal (columna), se multiplica la magnitud espectral por esos 128
perfiles para obtener un vector de 128 coeficientes mel.

Tempogramas (ntempo_bins × 969):

• Primero se extrae la onset envelope o envolvente de transitorios, calculada a partir
de la STFT con ventana de 2048 y hop de 1024, lo que produce 969 valores de
energía de onset (uno cada hop).

• Sobre esa envolvente se realiza un análisis corto en el dominio de la frecuencia de
pulso por medio de autocorrelación en ventanas de M frames, desplazando cada
ventana de M frames en pasos de hop igual al original (46 ms).

• El resultado es una matriz de
(
ntempo_bins, 969

)
, donde ntempo_bins depende de

cuántas frecuencias rítmicas (BPM) se deseen cubrir.

Segmentación espacial:
Los espectrogramas son una representación visual del cambio de las frecuencias a

lo largo del tiempo. En una visión simplista, cada columna del espectrograma refleja
el estado del evento en un espacio temporal específico. De este modo, para que los
modelos captaran la evolución temporal de los espectrogramas, cada uno fue dividido
en 45 segmentos iguales. Estos segmentos se generan a lo largo del eje temporal.

De esta forma, dado que 969 frames ≈ 45 segundos, entonces dividir 969 frames
45

≈
21,53 frames, logrando un redimensionamiento controlado y asegurando que cada seg-
mento tuviese una dimensión temporal de exactamente 21 frames, pues se aplicó un
recorte o truncamiento en esta cantidad de frames por segmento. Por lo tanto, la di-
mensión de cada segmento fue de (frecuencia× 21). Donde frecuencia corresponde al
número de bins espectrales (filas) en cada tipo de espectrograma. Para ello se definieron
las siguiente variables:



• Nsegmentos: número de segmentos (45).

• F : dimensión frecuencia del espectrograma (12 para Chroma, 60 para CQT, 128
para Mel).

• T : dimensión temporal total del espectrograma con padding aplicado (969 frames).

• OGT : número de frames antes de aplicar padding.

• NT = T//Nsegmentos: número de frames por segmento (división entera).

• FR = T %Nsegmentos: número de frames residuales no asignables de forma equi-
tativa.

El tratamiento de estos frames residuales FR es esencial para evitar sesgos temporales
y garantizar una correcta segmentación simétrica. El algoritmo para su descarte se
detalla en la figura 12

Figura 12: Diagrama de flujo para la selección de frames a descartar en el proceso de
segmentación de espectrogramas.

El algoritmo sigue esta lógica:

• Si el número original de frames (OGT ) es mayor o igual a T , se eliminan FR
frames desde el inicio.

• Si OGT < T , se calcula el número de frames añadidos por padding:

PD = T −OGT .



• Si PD ≥ FR, se eliminan FR frames al final del espectrograma (sólo del padding).

• Si PD < FR, se eliminan primero PD frames al final (del padding) y luego
FR− PD frames desde el inicio (del contenido original).

Esta lógica asegura una distribución equitativa de los frames válidos en los segmentos
finales, Prioriznado la eliminación de frames iniciales y cuidando mantener los frames
finales del segmento, los cuales suelen contener las resoluciones musicales.

El resultado final es una matriz segmentada de forma uniforme, con dimensiones
por espectrograma de (45, 1, NT, F ).

Donde NT es el número de frames por segmento (21), y F es la resolución de
frecuencia. Esta estructura es la entrada directa para redes convolucionales 2D en el
modelo propuesto.

En la figura 13 se muestra un caso práctico del proceso de segmentación temporal
sobre un espectrograma CQT generado con una duración de 44 segundos. Inicialmente,
la dimensión temporal del espectrograma era de 949 frames, y se aplicó padding hasta
alcanzar los 969 frames necesarios. La división en 45 segmentos genera una partición
entera como se ve en la ecuación 26 dejando un residuo como el de la ecuación 27.

NT =

⌊
969

45

⌋
= 21 frames por segmento (26)

FR = 969 mód 45 = 24 frames residuales (27)

Dado que el padding fue de 20 frames, se procede a eliminar primero los 4 frames
restantes desde el inicio del espectrograma original y luego los 20 frames del final (co-
rrespondientes al padding). Este procedimiento garantiza que la dimensión temporal
final sea múltiplo de 45 y que los segmentos generados tengan exactamente 21 frames
cada uno, preservando la homogeneidad temporal.



Figura 13: Proceso de segmentación de espectrogramas en 45 partes iguales; ejemplo
con un espectrograma CQT.

Máscaras para los espectrogramas: Al momento de crear espectrogramas con
padding, es importante identificar la información del contenido original de la informa-
ción producto del rellenado con ceros. Para lograrlo, se aplica el siguiente algoritmo:

1. Partimos de un lote de espectrogramas de forma
(
N, F, T

)
, donde N es el

tamaño del lote, F el número de bandas en frecuencia y T el número total de
frames (después de haber agregado padding en el eje temporal).

2. Se elige un número fijo de segmentos temporales deseados, num_seg.

3. Se calcula cuántos frames de espectrograma corresponden, en promedio, a cada
segmento:

num_frames =

⌊
T

num_seg

⌋
.

De esta forma, dividimos los T frames en num_seg bloques temporales iguales (o
casi iguales).

4. Inicializamos la máscara como una matriz de ceros:

frame_mask = 0 N×num_seg.

Cada fila i representará la máscara binaria para el espectrograma i-ésimo.

5. Disponemos de un vector og_dims ∈ RN , donde og_dims[i] = ai indica el número
real de frames originales (sin padding) del espectrograma i.



6. Para cada ejemplo i, calculamos cuántos segmentos temporales cubre el contenido
original usando

frame_limiti =
⌊

round
(
ai/num_frames

)⌋
.

Por ejemplo, si el espectrograma original tiene ai = 100 frames y num_frames = 2,
entonces frame_limiti = round(100/2) = 50.

7. Nos aseguramos de no superar el número de segmentos:

masked_framesi = mı́n
(
frame_limiti, num_seg

)
.

8. Finalmente, llenamos con 1 los primeros masked_framesi segmentos de la fila i:

frame_mask[i, 0 : masked_framesi] = 1.

De esta forma, los segmentos correspondientes a la parte original del espectro-
grama quedan marcados con valor 1, mientras que los segmentos que provienen
exclusivamente del padding permanecen en 0.

Con esta máscara se logra identificar la información del espectrograma que contiene
datos reales y evita que el padding sea interpretado como parte de la señal.

6.4.2. Características simbólicas (acordes)

Para la extracción de características basadas en la estructura armónica de las can-
ciones se siguió un proceso que comprende los siguientes pasos: extracción de los acordes
a partir de los archivos de audio, estimación de la tonalidad, creación del modelo de
embeddings base, construcción y armonización de la escala, y la construcción de los
embeddings con tokens estructurados. Este proceso se describe de manera gráfica en la
figura 14.



Figura 14: Diagrama del proceso en la extracción y codificación de características sim-
bólicas basadas en acordes.

En teoría musical, la estructura armónica de una canción es clave para comprender el
manejo de emociones en la música. Por ello, se implementó un proceso para la extracción
de acordes, tonalidad y su representación funcional mediante grados a partir de los
archivos de audio.

Para la estimación de acordes y tonalidad se utilizó la herramienta madmom [77], la
cual permitió realizar la detección de acordes a partir de la señal de audio extraída de
los archivos WAV. Además, también se obtuvo una aproximación de la tonalidad global
de la canción.

La detección automática de acordes generó una serie de cadenas textuales corres-
pondientes a la progresión armónica de la canción. Estas secuencias se transformaron
en una lista de cadenas con la forma:

”Cmaj”, ”Gmaj”, ”Fmaj”, ”Emin”, ”Cmaj”

Cabe destacar que la librería de madmom tiene una gran limitación, pues solo es
capaz de identificar acordes mayores y menores. Esto implica que acordes complejos
como los aumentados, disminuidos o de séptima no sean contemplados en la salida
del sistema. Esto simplifica las estructuras armónicas, pero al mismo tiempo limita la
riqueza armónica original de una obra.

Dado que los nombres de acordes pueden estar expresados en formas enarmónicas
equivalentes (por ejemplo, D#min y E♭min), se realizó un proceso de normalización
enarmónica para unificar todas las notaciones a su forma con sostenido (#). Esto
reduce la redundancia en el vocabulario de acordes y mejora la calidad de los embeddings
aprendidos. La equivalencia se basa en principios musicales estándar, como:



C♯ ≡ D♭, D♯ ≡ E♭, F ♯ ≡ G♭, G♯ ≡ A♭, A♯ ≡ B♭.

De esta forma, se garantiza que progresiones armónicas funcionalmente idénticas no
se representen con etiquetas distintas debido a notaciones alternativas.

Representación Vectorial de Acordes mediante Embeddings: Inspirado en
técnicas de procesamiento de lenguaje natural (PLN) [37], [38], se aplicaron modelos
Word2Vec basados en coocurrencias para representar las representaciones textuales de
los acordes por medio de un espacio continuo. Esta técnica permite capturar relaciones
sintácticas y semánticas entre acordes en un contexto musical, de forma parecida a
como se modelan palabras en lenguaje natural.

Como primer acercamiento a este proceso, la representación armónica de las cancio-
nes se construyó a partir de una secuencia lineal de cadenas de acordes, sin contemplar
información acerca de la tonalidad. Así, cada canción es representada por una progresión
de acordes codificada en una lista secuencial de cadenas:

{Emin, Gmaj, F ♯maj, Gmaj, F ♯maj, Emaj, Emin, Gmaj, Emin}

Sobre este corpus se entrenaron modelos de tipo Word2Vec en sus variantes Skip-
gram y CBOW. Estos modelos permiten predecir un acorde a partir de su contexto
(CBOW ) o predecir el contexto a partir del acorde central (Skip-gram). Formalmente,
cada acorde ci se proyecta como un vector en RN , donde N ∈ 100, 200:

vci ∈ RN (28)

Estos modelos capturan regularidades contextuales basadas en la co-ocurrencia de
acordes dentro de una ventana de contexto.

Corpus = {C(1), C(2), . . . , C(N)}, C(i) = [c1, c2, . . . , cn] (29)

donde ci representa el símbolo de un acorde ya normalizado. Se experimentó con tama-
ños de ventana de w = 5, 10, 20, tal como se propone en trabajos previos como el de
Lahnala et al. [38].

Longitud máxima y representación por canción: Cada canción fue represen-
tada como una secuencia de vectores de embedding de dimensión d:

Songi = [vc1, vc2, . . . , vcn], vck ∈ Rd

Dado que las progresiones de acordes varían en longitud, se estableció un límite
máximo de 32 acordes por canción. En caso de que la progresión tuviera una longitud
menor a 32 se aplicó padding con ceros.

Grados de los acordes a partir de la tonalidad de la progresión: Para
enriquecer la representación armónica más allá de la coocurrencia lineal de acordes, se
diseñó un método de embeddings estructurados que incorpora explícitamente la tonali-
dad y los grados armónicos de cada acorde.



Para calcular a que grado pertenece cada acorde de la progresión, primero se cons-
truyó una lista con los 12 sonidos de la escala cromática, solo contemplando sostenidos:

C,C♯,D,D♯,E, F, F ♯,G,G♯,A,A♯,B

Dada esta codificación, es posible asignar a cada sonido de la escala cromática un
índice en la lista, del 0 al 11. De esta forma, avanzar una posición en la lista corresponde
a avanzar un semitono (s), y avanzar 2 posiciones corresponde a avanzar un tono (T).

Esto nos permitió realizar cálculos matemáticos para encontrar las notas de una
escala dada a partir de la nota base y el patrón de la escala que desea conseguir.

Cada escala se define por una secuencia única de tonos y semitonos. Construyendo
así el patrón de construcción de la siguiente forma:

• Escala Mayor

• Fórmula: T - T - S - T - T - T - S

• Patrón Numérico: [2, 2, 1, 2, 2, 2, 1]

• Escala Menor Natural

• Fórmula: T - S - T - T - S - T - T

• Patrón Numérico: [2, 1, 2, 2, 1, 2, 2]

• Escala Menor Armónica

• Fórmula: T - S - T - T - S - T1
2

- S

• Patrón Numérico: [2, 1, 2, 2, 1, 3, 1]

• Nota: El intervalo de Tono y medio (T1
2
) equivale a 3 semitonos.

• Escala Menor Melódica (Ascendente)

• Fórmula: T - S - T - T - T - T - S

• Patrón Numérico: [2, 1, 2, 2, 2, 2, 1]

El proceso para construir una escala es un algoritmo simple que combina una nota
de inicio (la tónica), un patrón de intervalos y aritmética. Este detalla en el algoritmo
3.



Algorithm 3 Generación de Escala Musical (Versión Robusta)
Require: nombreTonica, tipoEscala
Ensure: escalaResultante
1: escalaResultante ← {}
2: patronSeleccionado ← ObtenerPatron(tipoEscala)
3: indiceActual ← ObtenerIndice(nombreTonica)
4: Añadir(escalaResultante, NOTAS_CROMATICAS[indiceActual]) {añade la tóni-

ca}
5: for cada intervalo en patronSeleccionado do
6: indiceActual ← ( indiceActual + intervalo) mód 12
7: Añadir(escalaResultante, NOTAS_CROMATICAS[indiceActual])
8: end for
9: return escalaResultante

A continuación, se muestra una ejecución manual del algoritmo para verificar su
funcionamiento.

1. ENTRADA: ConstruirEscala(«E»,«Mayor»).

2. INICIALIZACIÓN:

• escalaResultante ← []

• patronSeleccionado ← [2,2,1,2,2,2,1]

• indiceActual ← 4 (índice de “E”)
• Se añade E a escalaResultante, que queda [E].

3. ITERACIONES DEL BUCLE:

• intervalo = 2: indiceActual← (4 + 2) mód 12 = 6. Se añade F♯.
• intervalo = 2: indiceActual← (6 + 2) mód 12 = 8. Se añade G♯.
• intervalo = 1: indiceActual← (8 + 1) mód 12 = 9. Se añade A.
• intervalo = 2: indiceActual← (9 + 2) mód 12 = 11. Se añade B.
• intervalo = 2: indiceActual← (11 + 2) mód 12 = 1. Se añade C♯.
• intervalo = 2: indiceActual← (1 + 2) mód 12 = 3. Se añade D♯.
• intervalo = 1: indiceActual← (3 + 1) mód 12 = 4. Se añade E (octava).

4. SALIDA: La lista resultante es [«E»,«F#»,«G#»,«A»,«B»,«C#»,«D#»,«E»].

Armonización de la escala: La armonización consiste en asignar una cualidad de
acorde a cada una de las notas de una escala. Este proceso nos da la paleta de acordes
que pertenecen a una tonalidad específica.

Cada tipo de escala genera un patrón único y predecible de acordes. A continuación
se presentan las listas para las cuatro escalas principales, usando las abreviaturas maj
(mayor), min (menor), dis (disminuido) y aug (aumentado).



• Escala Mayor:

• Patrón: [maj, min, min, maj, maj, min, dis]

• Escala Menor Natural:

• Patrón: [min, dis, maj, min, min, maj, maj]

• Escala Menor Armónica:

• Patrón: [min, dis, aug, min, maj, maj, dis]

• Escala Menor Melódica (Ascendente):

• Patrón: [min, min, aug, maj, maj, dis, dis]

El proceso para construir la escala armonizada es una simple concatenación uno a
uno, entre la escala de notas y el patrón de armonización.

Entonces, dadas la siguiente escala y su patrón de armonización:

1. La escala de notas calculada:

A,B,C,D,E, F,G♯

2. El patrón de armonización (menor armónica):

[min, dis, aug, min, maj, maj, dis]

El proceso de concatenación, donde a cada nota se le asigna la cualidad de acorde
en la misma posición:

Nota de la Escala Patrón Armónico Acorde Resultante
A min A min
B dis B dis
C aug C aug
D min D min
E maj E maj
F maj F maj
G♯ dis G♯ dis

Grados de una escala: La asignación de grados es el paso final y es un mapeo
directo. A cada acorde de la escala armonizada se le asigna un número romano de una
lista predefinida, según el modo de la escala.

• Mayor: [ I, ii, iii, IV, V, vi, vii dis ]



• Menor Natural (nat): [ i, ii dis, III, iv, v, VI, VII ]

• Menor Armónica (arm): [ i, ii dis, III aug, iv, V, VI, vii dis ]

• Menor Melódica (mel): [ i, ii, III agu, IV, V, vi dis, vii dis ]

Estos grados se guardan en una lista paralela a la escala previamente armonizada. Si
bien los grados y acordes de la escala contemplan acordes disminuidos y aumentados,
en la práctica nunca se encuentran estos acordes dentro de la escala, pues madmom
simplificará estos acordes. Sin embargo, esto conlleva a que el acorde simplificado no se
encuentre dentro de la escala, así que simplemente se marcará como un dis que indica
una disonancia, guardando así la función de este acorde dentro de la escala.

Calculo de grados en una progresión: El objetivo final de este proceso es
analizar una progresión de acordes dentro de una tonalidad específica. Este proceso
automatizado utiliza las escalas armonizada y de grados que generamos previamente
como listas de referencia.

El método consiste en recorrer la progresión acorde por acorde. Para cada uno, se
busca su posición en la escala armonizada de la tonalidad. Si se encuentra, se toma
el grado que está en la misma posición en la lista de grados. Si no se encuentra, se
etiqueta como una disonancia (dis). Generando así dos listas, una con los acordes de la
progresión y otra que guarda, en la misma posición que la lista de acordes, los grados
de los acordes de acuerdo con la tonalidad.

En el caso de las tonalidades menores, existen tres modos. Sin embargo, la detección
automatizada no hace distinción de qué modo es el que se usa, por lo que el algoritmo
de análisis se refina con una lógica de búsqueda jerárquica para las tonalidades
menores.

Para cualquier acorde en una progresión en tonalidad menor, el algoritmo intentará
encontrar una coincidencia en el siguiente orden de precedencia:

1. Escala Menor Natural: Es la base de la tonalidad.

2. Escala Menor Armónica: Si no se encuentra en la natural, se busca aquí. Es
la fuente más común de acordes prestados, especialmente el V grado mayor.

3. Escala Menor Melódica: Si aún no se encuentra, se busca en la melódica.

4. Disonancia (dis): Si el acorde no existe en ninguna de las tres escalas, se marca
como disonancia.

El grado que se asigna corresponderá a la primera escala en la que se encuentre el
acorde.



Algorithm 4 Análisis de Progresión con Lógica Jerárquica
Require: Tonalidad, ProgresionAcordes
Ensure: analisisResultante
1: analisisResultante ← []
2: if Tonalidad es MAYOR then
3: escalaArmonizada ← GenerarEscalaArmonizada(Tonalidad)
4: escalaDeGrados ← GenerarEscalaDeGrados(Tonalidad)
5: for cada acorde en ProgresionAcordes do
6: {Aquí iría la lógica básica de mapeo}
7: . . .
8: end for
9: else

10: if Tonalidad es MENOR then
11: escalaArm_Nat ← GenerarEscalaArmonizada(Tonalidad,’Natural’)
12: grados_Nat ← GenerarEscalaDeGrados(Tonalidad,’Natural’)
13: escalaArm_Armonica ← GenerarEscalaArmonizada(Tonalidad,’Armonica’)
14: grados_Armonica ← GenerarEscalaDeGrados(Tonalidad,’Armonica’)
15: escalaArm_Melodica ← GenerarEscalaArmonizada(Tonalidad,’Melodica’)
16: grados_Melodica ← GenerarEscalaDeGrados(Tonalidad,’Melodica’)
17: for cada acorde en ProgresionAcordes do
18: encontrado ← falso
19: indice ← BuscarIndice(acorde, escalaArm_Nat)
20: if indice existe y no encontrado then
21: Añadir(analisisResultante, grados_Nat[indice])
22: encontrado ← verdadero
23: end if
24: indice ← BuscarIndice(acorde, escalaArm_Armonica)
25: if indice existe y no encontrado then
26: Añadir(analisisResultante, grados_Armonica[indice])
27: encontrado ← verdadero
28: end if
29: indice ← BuscarIndice(acorde, escalaArm_Melodica)
30: if indice existe y no encontrado then
31: Añadir(analisisResultante, grados_Melodica[indice])
32: encontrado ← verdadero
33: end if
34: if no encontrado then
35: Añadir(analisisResultante,’dis’)
36: end if
37: end for
38: end if
39: end if
40: return analisisResultante



Construcción del Modelo y Tokens Estructurados:
Para generar los tokens estructurados y construir un nuevo modelo Word2Vec, se ob-

tienen los grados de cada acorde dentro de la progresión, para posteriormente combinar
ambas fuentes de información (acorde y función armónica) en cada token.

Para cada canción, se validó que la lista de acordes y la lista de grados tuvieran
la misma longitud. El primer token se construye con la tonalidad, generando un token
de tonalidad con el formato {tonalidad}_T_, por ejemplo, Emin_T_. Tras esto, para
cada par (acorde, grado) se generaba un token de la forma {acorde}_{grado}_, como
Emin_i_, Gmaj_III_ o Amaj_dis_ (cuando el acorde no pertenece a la escala). De este
modo, la lista final de tokens para la progresión de una canción luce así:[

tonalidad_T_, acorde_grado_1, acorde_grado_2, . . . , acorde_grado_L
]
.

Al concluir, cada canción queda asociada a su secuencia completa de tokens estructu-
rados. Generando así el corpus para entrenar el modelo Word2Vec.

Entrenamiento del Modelo Word2Vec: Utilizando el corpus de tokens gene-
rados, se entrenaron modelos Word2Vec con parámetros fijos: dimensión del embed-
ding [150,250,350], ventana de contexto [9,18,36], 30 épocas de entrenamiento, Skip-
gram y CBOW, y min_count = 1. El resultado es un modelo que asocia cada token
(“tonalidad_T_” o “acorde_grado_”) a un vector en R250. Este modelo se guarda en
un archivo, por ejemplo structured_skipgram_model_250_18_30.npy, de modo que,
si existe, simplemente se carga para evitar reentrenar.

Estructuras Producto del Entrenamiento: Al finalizar el entrenamiento, el
vocabulario de tokens V incluye todas las tonalidades con su sufijo “_T_” y cada token
“acorde_grado” correspondiente. Cada token t ∈ V está representado por un vector
ut ∈ RN , en el cual:

• Si t es de tipo “tonalidad_T_”, ut codifica la representación de la tonalidad.

• Si t es de tipo “acorde_grado_”, ut captura tanto el nombre del acorde como su
función dentro de la tonalidad.

Para cada canción con L acordes, construimos una matriz

US =


utonalidad_T_

uc1_γ1_

...
ucL_γL_

 ∈ R(L+1)×N .

La primera fila corresponde al vector de tonalidad, mientras que cada fila subsiguiente es
el vector asociado a cada token “acorde_grado”. Esta matriz US se emplea directamente
en modelos secuenciales (por ejemplo, un BiLSTM), agregando padding cuando L <
Lmáx.



Entrada con Embeddings multiples: Los embeddings estructurados contem-
plan la tonalidad al inicio de la progresión de la forma: tonalidad_T_. Sin embargo,
este token no se repite a lo largo de la progresión.

Por ello, para contemplar en todo momento el peso de la tonalidad, se obtienen
el embedding base de la tonalidad junto con los embeddings de los tokens estructu-
rados, creando así una entrada con dos diferentes tipos de embeddings, combinando
así la información completa de la progresión de acordes (embeddings estructurados) y
la representación vectorial de la tonalidad (embedding base). Así, la entrada de cada
canción consta de:

• Una matriz de embeddings Xi ∈ RLmáx×N , que cubre toda la progresión de acordes
hasta una longitud fija Lmáx = 32. Cuando la progresión real tiene menos de 32
tokens, aplicamos padding con ceros. Asimismo, generamos una máscara maski ∈
{0, 1}Lmáx que indica con 1 las posiciones correspondientes a tokens válidos y con
0 las de padding.

• Un vector de tonalidad eton
i ∈ R100, obtenido previamente mediante un modelo

base de Word2Vec entrenado únicamente sobre tokens de tonalidad.

• El par de valores
[
vval
i , varo

i

]
∈ R2 que representa el valence y arousal objetivo

para esa canción.

Resumen de Salida: Para cada canción, el preprocesamiento genera tres tensores:

Xi ∈ R32×250, maski ∈ {0, 1}32, eton
i ∈ R100.

Junto con el vector
[
vval
i , varo

i

]
∈ R2, estos datos conforman un minibatch que alimen-

ta directamente el modelo de regresión emocional, incorporando tanto la progresión
completa de acordes (y sus funciones) como la representación numérica de la tonalidad.

6.5. Aumento de datos

6.5.1. Transposición de acordes

Al implementar una estructura de tokens estructurados, se adoptó un enfoque de
aumento de datos basado en la transposición de la tonalidad por intervalos. Este método
se fundamenta en una técnica musical común: desplazar acordes hacia arriba o abajo
en el eje de alturas, conservando su estructura interna (modo mayor o menor).

Lógica básica para la transposición: Para enriquecer el conjunto de datos de
entrenamiento y asegurar que el modelo aprenda a reconocer patrones armónicos in-
dependientemente de la tonalidad, se implementó una estrategia de aumento de da-
tos basada en la transposición. Este proceso genera nuevas progresiones musicalmente
coherentes al desplazar una progresión existente a diferentes tonalidades, la figura 15
muestra un ejemplo gráfico de como funciona esta técnica.



El método se basa en el análisis de grados previamente realizado y sigue un procedi-
miento estructurado para garantizar la correcta correspondencia armónica en la nueva
tonalidad.

Dada una progresión original, su tonalidad y su análisis de grados, el proceso para
generar una nueva progresión transpuesta es el siguiente:

1. Transposición de la Tonalidad: Se elige un intervalo de transposición (medido
en semitonos) y se aplica a la tónica de la tonalidad original. Esto define la nueva
tonalidad base. Por ejemplo, transponer C maj en ‘+2‘ semitonos resulta en la
nueva tonalidad de D maj. Un ejemplo gráfico de transposición de un acorde se
puede observar en la figura 15.

2. Generación de la Nueva Escala de Referencia: Utilizando los algoritmos ya
definidos, se genera la escala armonizada completa para la nueva tonalidad. Esta
escala servirá como "diccionario"para construir la nueva progresión.

3. Reconstrucción de la Progresión Diatónica: Se recorre la lista de grados de
la progresión original. Para cada grado (ej. I, V, vi), se busca el acorde que ocupa
esa misma posición en la nueva escala armonizada generada en el paso anterior.
Este mapeo directo asegura que la función armónica de los acordes se preserve.

4. Manejo de Acordes Disonantes (dis): Los acordes que fueron marcados como
dis no tienen un grado diatónico, por lo que no pueden mapearse como en el paso
anterior. En su lugar, se transponen cromáticamente:

• Se toma la nota raíz del acorde disonante original (ej. la nota ‘D‘ del acorde
‘D maj‘).

• Se busca la posición de esta nota en la lista de los 12 sonidos cromáticos.

• Se desplaza su índice según el intervalo de transposición (ej. ‘+2‘ semitonos).

• La nueva nota raíz y la cualidad del acorde original (mayor o menor) forman
el nuevo acorde disonante transpuesto.

A cada progresión se le aplicó transposición en 4 intervalos dados. Estos intervalos
se encuentran detallados en la tabla 6.

Cuadro 6: Intervalos de Transposición (Estilo Minimalista)
Nombre del Intervalo Valor en Semitonos
Segunda mayor 2
Tercera mayor 4
Cuarta justa 5
Quinta justa 7



Figura 15: Transposición de un acorde de Do mayor, 1
2

tono y 1 tono arriba y abajo.
Notación musical clásica con pentagrama.

La tabla 7 muestra un ejemplo de cómo se aplica la transposición en una de las
canciones del dataset de PMEmo.

Cuadro 7: Aumento de datos a la canción de Ï Have Questions"de la artista C̈amila
Cabello"del conjunto de datos de Pmemo (solo los 4 primeros acordes).

Transposición Tonalidad Progresión Resultante

Original C♯ maj A♯ min, F♯ maj, G♯ maj, A♯min,
vi, IV, V, vi

Segunda menor D maj B min, G maj, A maj, B min
vi, IV, V, vi

Tercera mayor F maj D min, A♯ maj, C maj, D min
vi, IV, V, vi

Cuarta justa F♯ maj D♯ min, B maj, C♯ maj, D♯ min
vi, IV, V, vi

Quinta justa G♯ maj F min, C♯ maj, D♯ maj, F min
vi, IV, V, vi

A partir de las muestras originales, este método permitió generar versiones trans-
puestas de cada canción. A pesar de la limitación impuesta por el número reducido
de acordes posibles, el corpus aumentó de manera significativa, pasando de unas 2569
muestras originales a 12,845 progresiones únicas. Esta expansión mejoró la robustez del
entrenamiento sin modificar la distribución emocional de las canciones.

6.5.2. Técnicas de aumento de datos en archivos de audio

Para incrementar la cantidad de datos disponibles y mejorar la generalización del
modelo sin introducir cambios significativos en la percepción emocional de los audios,
se implementaron técnicas clásicas de aumento de datos directamente sobre la señal de
audio. Estas transformaciones se aplicaron antes de la extracción de espectrogramas.



Se aplicaron dos métodos principales de transformación de la señal:
Time stretching: Consiste en modificar la velocidad de reproducción del audio

sin alterar su tono. Se aplicaron cuatro configuraciones:

•
0,81× velocidad

•
0,93× velocidad

•
1,07× velocidad

•
1,23× velocidad

Este método permite simular interpretaciones más lentas o rápidas de una misma
pieza musical, respetando su estructura tonal.

Time shifting: En esta técnica, los últimos 5 segundos del audio se recortan y
se colocan al inicio del archivo, generando una nueva versión del mismo audio con un
reordenamiento temporal.

Este tipo de desplazamiento es útil para redes neuronales que exploran la evolución
temporal, ya que modifica el punto de entrada sin alterar el contenido total.

Figura 16: Ejemplo de las señales de audio de un elemento aumentado con time stret-
ching y time shifting: A) Time shifting; B), C) y D) Time stretching ×(0,81, 0,93, 1,07).
Canción “Different for Girls”.



6.6. Características profundas

Como antesala del reconocimiento de emociones, de cada tipo de características,
acústicas y simbólicas (estructuras armónicas), se extraen las características profundas
por medio de modelos profundos. El objetivo de este proceso es fusionar las caracterís-
ticas con diferentes dimensiones en una sola.

6.6.1. Características profundas de las estrcutras armonicas

Para la características armónicas se tiene un vector de embeddings con tokens es-
tructurados y un vector de embeddings para representar la tonalidad de la progresión.
Además de un vector máscara para identificar aquellos espacios rellenados con ceros.
Obteniendo una entrada como:

Xi ∈ R32×250, maski ∈ {0, 1}32, eton
i ∈ R100.

El extractor de características armónicas recibe, para cada lote de datos, tres ten-
sores principales:

• X: Secuencias de embeddings de acordes, de forma B× T×Din.

• mask: Máscara binaria de tamaño B×T que indica qué posiciones de la secuencia
son válidas (1) y cuáles son padding (0).

• tonality: Embedding de la tonalidad, de tamaño B × 100, constante para toda
la progresión de acordes.

En donde:

• T = 32 es la longitud máxima de la secuencia de tokens de acordes.

• Din = 250 es la dimensión de los embeddings de cada acorde (estructurado).

Las redes LSTM bidireccionales (BiLSTM) procesan secuencias de acordes en ambos
sentidos, permitiendo que el modelo aprenda dependencias contextuales tanto pasadas
(hacia atrás) como futuras (hacia adelante). Esto es fundamental, pues en la estructura
armónica un acorde no es un elemento aislado, ya que está condicionado por su contexto
completo. La figura 17 muestra el diagrama de la arquitectura del modelo extractor para
las características simbólicas.



Figura 17: Extractor de características profundas y fusión de embeddings modelo
BiLSTM

Descripción capa por capa: A continuación se enumeran los bloques clave del
modelo, en orden de procesamiento (seis capas principales):

• BiLSTM bidireccional (2 capas, dropout)

• Recibe X y procesa las secuencias de longitud variable (usando mask para
ignorar padding).

• Genera una salida de tamaño B× T× (2 · 128).

• Pooling promedio enmascarado

• Se aplica la máscara sobre la salida de la LSTM para anular posiciones de
padding.

• Se calcula el promedio a lo largo de la dimensión temporal, obteniendo un
vector B× (2× 128).

• Concatenación con embedding de tonalidad

• El vector obtenido tras el pooling se concatena con tonality (dimensión
100), formando un tensor B× (2 · 128 + 100).

• Capa densa 1 (FC1)

• Proyecta la concatenación anterior desde (2 · 128 + 100) a fc1_dim.



• Incluye activación ReLU y dropout para evitar sobreajuste.

• Capa densa 2 (FC2)

• Toma la salida de FC1 (fc1_dim) y la proyecta a fc2_dim.

• También aplica ReLU y dropout.

• El resultado final de FC2 se considera la “característica profunda armónica”
(dimensión fc2_dim).

6.6.2. Características profundas acusticas

A continuación, se explica cómo se obtuvieron las representaciones profundas de
cada tipo de espectrograma y cómo se fusionan dichas características. El extractor
principal combina bloques residuales de tipo ResNet con bloques de atención Squeeze-
and-Excitation (SE). La figura 18 refleja el diagrama y la composición del modelo
extractor de características acústicas.

Figura 18: Extractor de características profundas ResNetSE para caracteristicas acust-
cias (espectrogrmas)

ResidualBlock: Cada bloque residual consta de dos convoluciones con normaliza-
ción y activación, más un atajo (shortcut) que ajusta la dimensión cuando es necesario.



La estructura esencial de este bloque se puede observar en el segmento C de la figura
18.

SEBlock (Squeeze-and-Excitation): Este bloque recalibra los canales mediante
atención global. De igual forma, la parte B de la figura 18 muestra el bloque completo.

ResNetSEBlock: Combina un ResidualBlock con un SEBlock tal como se muestra
en la sección D de la figura 18.

En general, primero se aplica la convolución residual y luego se recalibran los canales
con atención SE.

Finalmente, el extractor de características, denominado ResNetSEExtractor, tiene
la estructura descrita en la sección A de la figura 18.

Construcción de extractores según tipo de espectrograma: Dependiendo del
número de “bins” de frecuencia del espectrograma, se crea un extractor con in_channels
equivalente a la cantidad de bins:

• Cromagrama: in_channels = 12.

• CQT: in_channels = 60.

• Mel-spectrograma: in_channels = 128.

• Espectrograma temporal (TMP): in_channels = 384.

En cada caso, el flujo es:

Espectrograma
[
(B, 1, T, F )

] ResNetSEExtractor−−−−−−−−−−−→ (B, 1024).

Una vez extraídos los vectores de 1024 dimensiones para cada espectrograma, se
combinan mediante una concatenación:

• Concatenación:

ffusión =
[
fchroma ∥ fcqt ∥ fmel

]
∈ R3 024.

Con cuatro extractores:

ffusión =
[
fchroma ∥ fcqt ∥ fmel ∥ ftmp

]
∈ R4 096.

De este modo, la fusión permite aprovechar la información complementaria de cada
representación espectral. Preservando la identidad de cada extractor para capas poste-
riores.

De manera general, el proceso de extracción y fusión de características acústicas se
puede describir así:

1. Cálculo de espectrogramas: A partir de la señal de audio preprocesada (nor-
malización y padding a duración fija), se obtienen:

Cromagrama, CQT, Mel-spectrograma, opcionalmente TMP.

Cada uno con dimensiones (B, 1, T, F ).



2. Extracción de características: Para cada espectrograma se aplica el extractor
correspondiente:

fchroma = E12(xchroma), fcqt = E60(xcqt), fmel = E128(xmel),

donde Ec denota un ResNetSEExtractor con c canales de entrada, y cada f ∈
R1024.

3. Fusión de vectores profundos: Se concatenan los vectores para obtener ffusión.

4. Entrada al modelo principal: El vector fusionado ffusión se utiliza como entrada
a la red que predice arousal y valence.

6.7. Modelos para el reconocimiento de emociones

La predicción final de las emociones de una canción parte de generar y cargar las
características profundas (tanto acústicas como simbólicas), las máscaras asociadas a
los espectrogramas y las etiquetas de arousal y valence necesarias para entrenar el
modelo.

A continuación, se detalla el procedimiento para la lectura y división de los datos en
conjuntos de entrenamiento, validación y prueba, empleando una partición 60 %-20 %-
20 % estratificada por el identificador de cada canción.

6.7.1. Carga y división de los datos

En primer lugar, se cargan desde disco cinco conjuntos de datos principales. Las
características acústicas profundas se obtienen previamente al procesar cada espectro-
grama (cromagrama, CQT, Mel-spectrograma y Tempogramas) con el extractor Res-
Net+SE y se almacenan en un arreglo de dimensión N × 1024. De manera análoga, las
características simbólicas —compuestas por los embeddings de acordes, tonalidades y
grados armónicos— se guardan en otro arreglo, cuya segunda dimensión corresponde
a la longitud de los vectores simbólicos. Para distinguir las posiciones de padding den-
tro de cada espectrograma, se dispone de un tercer arreglo binario que asigna a cada
muestra una máscara de tamaño T (el número de frames temporales). Las etiquetas de
emociones, es decir, los valores de arousal y valence normalizados, se encuentran reuni-
das en un cuarto arreglo con forma N × 2. Finalmente, un archivo CSV de metadatos
contiene, al menos, la columna song_id, que indica a qué canción corresponde cada
fragmento. Al realizar la lectura, todos estos arreglos resultan tener el mismo número
de filas N , de modo que para cada índice i se dispone de la tupla: (vector acústico,
vector simbólico, máscara binaria, etiqueta de emociones, identificador de canción).

Una vez que los datos han sido cargados y después de verificar que comparten la
misma longitud, el siguiente paso consiste en dividirlos en tres subconjuntos: entrena-
miento (60 %), validación (20 %) y prueba (20 %). Para asegurar que fragmentos de una
misma canción no aparezcan en más de una partición, se emplea el identificador de can-
ción como criterio de estratificación. En la práctica, esto se logra extrayendo el vector



unidimensional de song_id del archivo de metadatos y pasándolo, junto con los índices
de todas las muestras, a una función de partición que reserva el 60 % de las muestras
para entrenamiento. El resultado es un conjunto de índices y los correspondientes frag-
mentos acústicos, simbólicos, máscaras y etiquetas que conforman exactamente el 60 %
del total, garantizando que la proporción de canciones se mantenga equilibrada. El 40 %
restante se destina a una partición temporal que servirá para generar los subconjun-
tos de validación y prueba. Sobre ese 40 %, se realiza una segunda división en partes
iguales, de modo que cada una represente el 20 % del total original y conserve tam-
bién la estratificación por canción. Al concluir el proceso, se obtienen tres conjuntos
(entrenamiento, validación y prueba), cada uno con sus arreglos acústicos, símbolos,
máscaras y etiquetas correspondientes, preparados para alimentar las etapas siguientes
del entrenamiento del modelo.

6.7.2. Modelos predictores intermedios

Con el objetivo de probar las características extraídas, una vez obtenidas las carac-
terísticas profundas, se ingresaron en dos modelos sencillos: un modelo denso completa-
mente conectado y un modelo BiLSTM, cuya representación gráfica se puede observar
en la figura 19.

Figura 19: Modelos para la predicción de emociones valence arousal sobre caracteristicas
acusticas.

En el caso de la características simbólicas solo se probaron con el modelo BiLSTM,
mientras que las características acusticas se probaron con un modelo BiLSTM y un
modelo totalmente conectado.



6.7.3. Modelo final y fusión de características

Como paso definitivo antes de realizar el reconocimiento de emociones, es necesario
combinar las representaciones profundas obtenidas de dos fuentes: las características
acústicas extraídas de los espectrogramas y las características simbólicas ya procesadas
de las estructuras armónicas. Dado que los espectrogramas varían en dimensiones y los
embeddings simbólicos ya se encuentran en forma de vectores profundos, cada tipo de
datos se maneja con una rama específica para extraer o refinar su representación antes
de fusionarlos en un bloque común que producirá las predicciones de arousal y valence.

6.7.4. Características profundas acústicas

Para las características acústicas, disponemos de un arreglo

Xac
i ∈ RT×Dac , maskac

i ∈ {0, 1}T ,

donde T es el número máximo de segmentos temporales (frames) y Dac la dimensión de
cada vector producido por los extractores ResNetSE de los distintos espectrogramas.
La máscara indica, para cada posición, si corresponde a señal válida (1) o a padding
(0).

La rama acústica emplea dos capas de BiLSTM encadenadas, cada una con uni-
dades bidireccionales y dropout intermedio. La primera BiLSTM recorre la secuencia
completa de vectores acústicos, procesándola en ambas direcciones. Su salida se pasa a
la segunda BiLSTM, que refina la representación en cada instante de tiempo. Duran-
te el procesamiento, se usa la máscara para omitir las posiciones de padding en cada
BiLSTM, de manera que las LSTM no consideren las zonas sin señal. Al concluir la se-
gunda capa, se extraen los estados finales en las direcciones hacia adelante y hacia atrás,
se concatenan y se aplica dropout adicional. Este vector concatenado, de dimensión 2H,
se proyecta mediante una capa fully-connected con activación ReLU y dropout, seguida
de otra capa que reduce la dimensión a 64. De este modo, cada fragmento acústico se
resume en un único vector

f ac
i ∈ R64,

que conserva la información temporal y espectral más relevante de todo el segmento.

6.7.5. Características profundas simbólicas

En la rama simbólica, las características ya están representadas como vectores pro-
fundos de dimensión Dsym, fruto de haber pasado previamente los embeddings de acor-
des, grados y tonalidad por un extractor BiLSTM y capas densas. Por lo tanto, no es
necesario aplicar una nueva red recurrente ni utilizar máscara en esta etapa. A cada
fragmento musical i le corresponde un vector simbólico

f sym, in
i ∈ RDsym ,

que ya sintetiza la progresión armónica.



La rama simbólica se limita a refinar este vector mediante dos capas fully-connected
en serie. La primera capa reduce la dimensión de Dsym a una mitad de la dimensión final
de fusión, aplicando activación ReLU y dropout para evitar sobreajuste. A continuación,
una segunda capa fully-connected proyecta la salida a un espacio de dimensión F2. Este
vector

f sym
i ∈ RF2

es la “característica profunda simbólica” final que participará de la fusión.

6.7.6. Fusión de características y predicción de emociones

Una vez definidos f ac
i ∈ R64 y f sym

i ∈ RF2 , el proceso de fusión consiste en conca-
tenarlos y generar la entrada al bloque final de predicción. Concretamente, se forma el
vector combinado

f fus
i =

[
f ac
i ∥ f

sym
i

]
∈ R64+F2 .

Este vector se alimenta a una capa fully-connected intermedia que proyecta de dimen-
sión 64 + F2 a Ffus, aplicando activación ReLU y dropout. Finalmente, una capa fully-
connected de salida mapea este espacio de Ffus a dos valores continuos, correspondientes
a valence y arousal, tal como lo muestra la figura 20.

De esta manera, el modelo aprovecha las dependencias temporales capturadas en la
rama acústica, junto con la representación simbólica ya procesada, para aprender las
interacciones entre ambas fuentes de información. El flujo general resumido es:

1. La secuencia acústica Xac
i y su máscara maskac

i se procesan a través de dos
BiLSTM con dropout y luego se proyectan mediante capas densas, producien-
do f ac

i ∈ R64.

2. El vector simbólico preextraído f sym, in
i ∈ RDsym pasa por dos capas fully-connected

con ReLU y dropout, resultando en f sym
i ∈ RF2 .

3. Se concatena
(
f ac
i ∥ f

sym
i

)
para formar f fus

i .

4. f fus
i atraviesa una capa fully-connected intermedia con activación ReLU y dropout,

y luego la capa de salida genera las predicciones
[
arousali, valencei

]
.



Figura 20: Extractor de características profundas ResNetSE para caracteristicas acust-
cias (espectrogrmas)

6.8. Ajuste de Hiperparámetros

Para garantizar un rendimiento óptimo en la predicción conjunta de valence y arou-
sal, se empleó Optuna como herramienta de optimización bayesiana. Se realizaron dos
procesos de ajuste por separado, uno para el modelo Bi-LSTM (con componentes recu-
rrentes) y otro para el modelo FC (basado únicamente en capas densas). A continuación
se detallan las características comunes y particulares del proceso de ajuste.

• Objetivo de optimización: Minimizar la suma de los Root Mean Square Error
(RMSE) y maximizar la suma de los coeficientes de determinación R2 en valida-
ción, ambos calculados sobre las dimensiones de valence y arousal.

• Número de pruebas (trials): 50 por modelo.

• Criterio de parada temprana (early stopping): El entrenamiento de cada
prueba se detuvo si no hubo mejora en la métrica de validación durante 3 épocas
consecutivas, con un máximo de 15 épocas por prueba.

• Algoritmo de búsqueda:



• Para el modelo Bi-LSTM se utilizó el muestreador NSGAIISampler, adecuado
para optimización multiobjetivo.

• Para el modelo FC se usó el muestreador TPESampler.

En la Tabla 8 se muestra el espacio de búsqueda empleado para ambos modelos. Se
detallan los hiperparámetros ajustados, su tipo y rango o conjunto de valores explora-
dos.

Cuadro 8: Espacio de búsqueda de hiperparámetros para ambos modelos de fusión
Hiperparámetro Tipo Rango / Candidatos Modelo

audio_lstm_hidden entero {32, 64, ..., 256} Bi-LSTM
audio_dropout_rate continuo [0,0, 0,5] (unif.) Bi-LSTM
audio_fc_hidden entero {64, 128, ..., 512} Bi-LSTM
audio_fc1_dropout_rate continuo [0,3, 0,5] (unif.) Bi-LSTM
audio_fc2_dropout_rate continuo [0,2, 0,5] (unif.) Bi-LSTM
audio_fc3_dropout_rate continuo [0,0, 0,5] (unif.) Bi-LSTM
fusion_hidden entero {32, 64, ..., 512} Ambos
fusion_dropout_rate continuo [0,0, 0,6] (unif.) Ambos
fc1_output_dim entero {32, 64, ..., 256} FC
fc2_output_dim entero {32, 160, 288, 416, 512} FC
fc1_dropout_rate continuo [0,0, 0,6] (unif.) FC
fc2_dropout_rate continuo [0,0, 0,6] (unif.) FC
fc3_dropout_rate continuo [0,0, 0,6] (unif.) FC
activation categórico {ReLU, LReLU, GELU, Tanh} Ambos

Hiperparámetros del optimizador

optimizer categórico {Adam, SGD, RMSprop} Ambos
lr continuo [10−4, 10−2] (log-unif.) Ambos
weight_decay continuo [10−6, 10−3] (log-unif.) Ambos

- momentum (solo SGD) continuo [0,5, 0,9] (unif.) Ambos
- alpha (solo RMSprop) continuo [0,9, 0,99] (unif.) Ambos

Nota: (unif.) y (log-unif.) indican distribuciones uniforme y logarítmica uniforme, respectivamente.
LReLU refiere a LeakyReLU.

7. Resultados y discusión

7.1. Embeddings



7.1.1. Embeddings base

Para los embeddings base (solo representaciones textuales de acordes) se constru-
yeron dos modelos Word2Vec: Skip-gram y CBOW, ambos con una ventana contextual
de tamaño 5 y un vector final de dimensión 100. Una vez obtenido el modelo, se gráfico
el espacio vectorial generado por los embeddings con un algoritmo PCA. Por último,
se validó la coherencia de los embeddings calculando, para cada acorde, las similitudes
de coseno con sus cinco vecinos más cercanos.

Visualización y análisis estructural: Para estudiar las relaciones aprendidas
entre acordes, se aplicó un algoritmo de reducción de dimensionalidad PCA (Análisis de
Componentes Principales) sobre los embeddings obtenidos. El resultado fue proyectado
en un plano bidimensional.

La figura 21 muestra el espacio vectorial que comparten los embeddings de los
acordes (representados por un punto en dicho espacio). Los vectores presentan un patrón
en su organización en el espacio, pues se puede observar como están distribuidos de
manera circular.

La disposición que se observa en la gráfica sugiere que el modelo capturar par-
cialmente las relaciones tonales entre acordes vecinos, reflejando de manera notable el
círculo de quintas, un principio en la teoría musical que agrupa los acordes por su si-
militud estructural. No obstante, el modelo no captura la relación estructural, pues no
tiene acceso a dicha información, lo que captura es la coocurrencia de un acorde en el
mismo contexto que otro. Ahora bien, en la música esta coocurrencia no es aleatoria,
sino que está implícita en la estructura armónica, pues el contexto de un acorde está
determinado por su tonalidad.

De este modo, el modelo Word2Vec, a base de aprender el contexto en el que un
acorde suele aparecer, logra representar la relación musical existente entre acordes.
El modelo no es perfecto, pues existe un ligero desfase entre el espacio de los acordes
mayores y menores, lo cual podría indicar que en las progresiones analizadas los relativos
mayores y menores suelen coexistir poco.



Figura 21: Representación vectorial de las relaciones capturadas por los embeddings de
los acordes únicos. El circulo exterior esta formado por los acordes menores y el circulo
interior por los acordes menores.

Similitud coseno Skip-gram vs CBOW: Para comprobar si existe alguna dife-
rencia sustancial entre los dos algoritmos de entrenamiento de Word2Vec, la figura 22
compara lado a lado, cada tonalidad (Amin, Cmaj, Bmin y Dmaj), los cinco acordes más
similares obtenidos con Skip-gram (barras en color azul) y con CBOW (barras en color
rojo). Los valores numéricos sobre cada barra indican la similitud coseno obtenida por
cada enfoque.

Gracias a esta figura, se puede observar como tanto Skip-gram como CBOW son
capaces de capturar la cercanía entre acordes tal como dicta la teoría musical y el circulo
de quintas, tomando como ejemplo el caso de Amin, cuya escala armonizada seria:

Amin, Bdim, Cmaj, Dmin, Emin, Fmaj, Gmaj.

La gráfica muestra que los acordes similares a Amin serían: Cmaj (su relativo mayor),
Dmin (el cuarto grado de la escala), Fmaj (sexto grado de la escala), Gmaj (séptimo
grado de la escala) y Emin (quinto grado de la escala), es decir, todas las notas se
encuentran dentro de la escala de Amin. De forma similar, al ser Cmaj el relativo mayor
de Amin, la gráfica refleja que la mayoría de acordes similares a Amin se encuentran
en Cmaj. Esta similitud la logran capturar ambos modelos, aunque Skip-gram tiende a
mantener valores de la similitud coseno levemente superiores a CBOW.



Figura 22: Comparación de similitud coseno entre Skip-gram (azul) y CBOW (rojo)
para los cinco acordes más cercanos a cada tonalidad de referencia.

7.1.2. Embeddings estructurados

Para la evaluación de los embeddings estructurados, los cuales contemplan los acor-
des y su función de acuerdo a su grado y tonalidad, se entrenaron modelos Word2Vec
(Skip-gram y CBOW). Con el modelo generado, y dado que la relación entre estos to-
kens es más compleja, se generó el gráfico del espacio generado por medio del algoritmo
t-SNE. Además, se calculó la similitud coseno. A partir de ello, se identificaron los seis
tokens más similares a cada token de tonalidad.

Finalmente, sobre los embeddings estructurados se muestra como la dimensión del
embedding y el tamaño de la ventana contextual impactan en la tarea de la predicción
(ver Tablas 9 y 10), además las tablas 12 y 11 ofrecen una comparativa de las métricas
para el valence y arousal por modelo.

Visualización Y análisis estructural: Para visualizar las relaciones que los
embeddings capturaron sobre los acordes y sus funciones de acuerdo con su grado
y tonalidad, se aplicó un algoritmo de reducción de dimensionalidad t-SNE sobre los
embeddings obtenidos. La elección de t-SNE sobre PCA en estos embeddings fue debido
a que las relaciones de acordes, grados y su función de acuerdo con la tonalidad no son
lineales. El resultado fue proyectado en un plano bidimensional en la figura 23. El
resultado muestra cómo los embeddings logran agrupar en el mismo espacio vectorial
las tonalidades junto con sus grados. Es posible observar cómo en el gráfico los datos
se agrupan en 24 conjuntos que corresponden a las 12 tonalidades disponibles en los
modos mayor y menor, mientras que las disonancias se concentran en el centro del



espacio vectorial.

Figura 23: Representación vectorial de las relaciones capturadas por los embeddings de
los tokens estructurados.

En este caso, a diferencia de los embeddings base, este modelo sí posee información
estructural de una tonalidad, pues cada token está formado no solo por el acorde, sino
por el grado al que pertenece de acuerdo con la tonalidad de la progresión. Es por ello
que en el gráfico 23 cada tonalidad está agrupada en un sector del espacio vectorial.
Además, cada clúster o grupo que se forma en el espacio se conforma por un token de
tonalidad y varios tokens de grado.

Esto demuestra que, a diferencia del modelo anterior que solo infería relaciones
de contexto, este enfoque construye un mapa musical coherente que captura tanto la
pertenencia a una tonalidad como la función específica de cada acorde dentro de ella.

Grados más similares a cada tonalidad:
La Figura 24 muestra, para cuatro tonalidades de referencia (Amin_T_, Cmaj_T_,

Bmin_T_ y Dmaj_T_), los seis grados con mayor similitud coseno respecto a su vector
de tonalidad. En cada uno de los cuatro subgráficos:

• El eje vertical enumera los token correspondientes a cada grado (por ejemplo,
Amin_i (nat), Emaj_V (arm), Gmaj_VII(nat), etc.).



• El eje horizontal indica el valor de similarity (coseno).

• El color de cada barra refleja la categoría de grado (tónica, dominante, etc.), tal
como se detalla en la leyenda.

Figura 24: Similitud coseno de los top 5 acordes similares a las tonalidades de Amin,
Bmin, Cmaj y Dmaj.

De acuerdo con la figura, se puede observar que para Amin_T_, los grados con mayor
similitud (≃ 0.79-0.81) corresponden a Amin_i (nat) (grado tónica), Emaj_V (arm)
(dominante), Gmaj_VII (nat) (submediante), etc. Este resultado concuerda con la fun-
ción armónica esperada en la tonalidad de La menor.

En Cmaj_T_, los grados más cercanos (≃ 0.80-0.82) incluyen Fmaj_IV (subdominan-
te), Cmaj_I (tónica), Gmaj_V (dominante), demostrando que el embedding ha capturado
correctamente las relaciones funcionales.

De forma similar, tanto para Bmin_T_ como para Dmaj_T_, se observa que los gra-
dos similares a su tonalidad corresponden con su estructura armónica correspondiente,
evidenciando nuevamente la coherencia armónica.

Impacto de los embeddings en la predicción de emociones: Para verificar el
efecto de los embeddings entrenados en un escenario práctico, utilizamos ambos modelos
(Skip-gram y CBOW) como capa de entrada para un regresor que estima la dimensión
de arousal a partir de los vectores resultantes.



En las tablas 9 y 10 se muestran los resultados obtenidos agrupados por la dimensión
del embedding y el tamaño de ventana de contexto con el que se experimento. Se
muestran los errores MAE, RMSE y el R2 score obtenido.

Cuadro 9: Resultados Skip-gram (Valence vs Arousal) agrupados por Dimensión
Valence Arousal

MAE RMSE R2 MAE RMSE R2

Dim: 150
Win: 9 0.1243 0.1515 0.0370 0.1453 0.1771 0.0387
Win: 18 0.1249 0.1536 0.0101 0.1457 0.1790 0.0175
Win: 32 0.1247 0.1525 0.0251 0.1467 0.1801 0.0052

Dim: 250
Win: 9 0.1266 0.1568 -0.0306 0.1479 0.1793 0.0143
Win: 18 0.1253 0.1537 0.0088 0.1453 0.1782 0.0267
Win: 32 0.1251 0.1540 0.0057 0.1456 0.1787 0.0207

Dim: 350
Win: 9 0.1243 0.1535 0.0115 0.1455 0.1777 0.0313
Win: 18 0.1245 0.1532 0.0151 0.1463 0.1790 0.0171
Win: 32 0.1248 0.1529 0.0202 0.1461 0.1787 0.0207

Mientras que en las tablas 12 y 11 se muestran las métricas promedio (mean) y
desviación estándar (std) de MAE, RMSE y R2 obtenidas, el entrenamiento se realizó
sobre el 60 % de los datos con un conjunto de validación del 20 % y el conjunto de
pruebas igual de 20 %.

Dado los resultados obtenidos, ni la dimensión del embedding ni el tamaño de la
ventana del contexto representan una mejora sustancial en los resultados de la pre-
dicción de la emoción, pues tanto los errores como el R2 no varían mucho, lo cual se
evidencia en las tablas con la información promedio y la desviación estándar.

En los modelos Skip-gram, el valor más bajo en la dimensión de valence para el
error MAE es de 0,1243, mientras que el RMSE es de 0,1515. Este valor corresponde a
la configuración con un embedding de tamaño de 150 y una ventana contextual de 9.
Por el contrario, el valor más alto corresponde a la configuración de tamaño 250 en la
dimensión del embedding y una ventana de 9, alcanzando un valor de 0,1266 (MAE ) y
0,1568 en el RMSE. Este mismo comportamiento se refleja en la dimensión del arousal,
pues tanto el mejor valor como el peor valor en los errores se alcanzan en las mismas
configuraciones. De este modo, para la dimensión arousal, el mejor valor de MAE es de
0,1445 y el RMSE es de 0,1773.

Sin embargo, al analizar las métricas promedio, se puede observar que el valor para
MAE en la dimensión del valence es de 0,1249 con una desviación estándar de 0,000707.
Esto hace evidente que, a pesar de la diferencia entre el mejor y el peor valor en esta



Cuadro 10: Resultados CBOW (Valence vs Arousal) agrupados por Dimensión
Valence Arousal

MAE RMSE R2 MAE RMSE R2

Dim: 150
Win: 9 0.1221 0.1500 0.0563 0.1445 0.1773 0.0357
Win: 18 0.1222 0.1501 0.0555 0.1458 0.1783 0.0257
Win: 32 0.1242 0.1528 0.0211 0.1463 0.1799 0.0076

Dim: 250
Win: 9 0.1259 0.1531 0.0169 0.1458 0.1790 0.0179
Win: 18 0.1241 0.1512 0.0416 0.1454 0.1787 0.0203
Win: 32 0.1226 0.1499 0.0576 0.1469 0.1782 0.0259

Dim: 350
Win: 9 0.1224 0.1508 0.0458 0.1474 0.1794 0.0126
Win: 18 0.1227 0.1514 0.0393 0.1462 0.1786 0.0214
Win: 32 0.1233 0.1519 0.0323 0.1454 0.1779 0.0297

Cuadro 11: Comparativa de estadísticas (mean & std) para Valence
Modelo MAE RMSE R2

mean std mean std mean std

Skip-gram 0.124944 0.000707 0.153522 0.001442 0.011433 0.018504
CBOW 0.123278 0.001251 0.151244 0.001182 0.040711 0.014991

métrica, en general los valores se mantienen muy cerca. Lo mismo pasa con los valores
de la métrica de RMSE, pues el valor medio, sin importar la configuración, es de 0,1535
con una desviación estándar de 0,001442. En esta métrica, los valores sí difieren un poco
más que en el error MAE. No obstante, la diferencia en el rango sigue siendo mínima.
Para el R2, los valores presentan una mayor desviación, lo cual indica que hay una
mayor desigualdad entre las diferentes configuraciones, aunque en general los valores se
mantienen en un rango muy bajo, menor a 0,037, con un valor promedio de 0,011.

Este comportamiento, de mínima diferencia entre configuraciones, se replica en la
dimensión de arousal, pues tanto en los errores MAE y RMSE, cuyos valores respectivos
son 0,1460 promedio y 0,1786 promedio con una desviación estándar pequeña de 0,00084
y 0,00088 respectivamente. El R2 igual se mantiene en rangos cercanos con un promedio
de 0,021. La diferencia radica en la desviación, pues en este caso, el valor mínimo
registrado no tiene tanta diferencia con el valor máximo alcanzado.

En los resultados con el modelo CBOW, los resultados reflejan un patrón similar,
pues en general, los valores alcanzados en cada métrica no varían mucho de configuración
en configuración, sin embargo si hay un R2 mayor cuando se emplea el modelo CBOW.



Cuadro 12: Comparativa de estadísticas (mean & std) para Arousal
Modelo MAE RMSE R2

mean std mean std mean std

Skip-gram 0.146044 0.000841 0.178644 0.000886 0.021356 0.009829
CBOW 0.145967 0.000862 0.178589 0.000785 0.021867 0.008599

• La diferencia en MAE, para la dimensión arousal, es mínima: Skip-gram alcanza
un promedio de 0.1460 (std 0.00084) frente a 0.1459 (std 0.00086) de CBOW.

• Esto mismo se refleja en la dimensión valence, pues en Skip-gram se alcanza un
valor promedio de 0,1249 (std 0,0007) frente a 0,123278 (std 0,0012) de CBOW.

• En la dimensión de aruosal en la métrica RMSE los promedios son 0.1786 (std
0.0008) para Skip-gram y 0.1785 (std 0.0007) para CBOW, una variación muy
pequeña.

• En la dimensión valence, el comportamiento es parecido, pues los promedios de
RMSE son 0.1535 (std 0.0014) para Skip-gram y 0.1512 (std 0.0011) para CBOW,
una variación muy pequeña.

• El coeficiente de determinación (R2) también presenta valores cercanos a cero (≃
0.02), indicando que la predicción de arousal resulta en gran medida una tarea de
regresión difícil para ambas representaciones, si bien CBOW muestra ligeramente
mejor R2 promedio (0.0213 vs. 0.0218).

En este sentido, para ambos modelos, las diferencias en los errores son mínimas:
en MAE, la brecha entre CBOW y Skip-gram es de aproximadamente 0,001, mientras
que en RMSE apenas alcanza 0,0002. Esto sugiere que ni el modelo, ni el tamaño del
embedding, ni la ventana de contexto influyen de manera significativa en la reducción
del error entre la predicción y el valor real de valence y arousal.

Por el contrario, la diferencia más significativa entre ambos métodos aparece en el
R2: CBOW obtiene un valor superior al de Skip-gram. Esto indica que, para nuestra
tarea de regresión de valence y arousal, lo que más impacta en el rendimiento es la
elección del modelo de Word2Vec, mientras que el tamaño de la ventana de contexto
tiene un efecto marginal. Una explicación sencilla podría ser que CBOW, al prever
la palabra objetivo a partir del conjunto de palabras vecinas, tiende a promediar y
suavizar mejor las relaciones semánticas globales. Por ello, sus vectores capturan con
mayor coherencia la información relevante para predecir las dimensiones emocionales.

7.2. Características acustcias

En esta sección se presentan los resultados obtenidos al entrenar dos tipos de modelos
(una red totalmente conectada, FC, y una red BiLSTM) utilizando distintos espectro-



gramas como entrada. Primero examinamos el desempeño de la arquitectura FC por
separado para cada tipo de espectrograma (Tabla 13) al igual que con la arquitectura
BiLSTM 14. Después, comparamos los resultados de la misma FC con los de BiLSTM
cuando se entrenan usando la fusión de todos los espectrogramas disponibles (Tabla 15).
Para la evaluación se utilizaron tres métricas para cada dimensión emocional (valence y
arousal): Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) y coeficiente
de determinación (R2). Para realizar los entrenamientos se realizó una separación de
datos estratificada dejando el 60 % para datos de entrenamiento, 20 % para datos de
validación y 20 % para datos de prueba.

Desempeño de la red FC según tipo de espectrograma: La Tabla 13 re-
copila, para cada tipo de espectrograma (Chromagramas, CQT, Mel-spectrogramas y
Tempogramas), el MAE, RMSE y R2 promedio a lo largo de un entrenamiento, valida-
ción y pruebas sobre los conjuntos divididos en 60 %, 20 % y 20 %, tanto en la dimensión
de valence como en la de arousal.

Cuadro 13: Resultados FC (Valence vs Arousal) agrupados por Espectrograma
Valence Arousal

MAE RMSE R2 MAE RMSE R2

Chromagramas 0,1303 0,1578 0,0004 0,1486 0,1800 −0,0003
CQT 0.1165 0.1436 0.1729 0.1304 0.1648 0.1625
Mel-Spectrogram 0.1065 0.1311 0.2949 0.1071 0.1325 0.4052
Tempograma 0,1362 0,1643 −0,0834 0,1536 0,1851 −0,0573

A partir de los resultados de la tabla, se puede observar que, en los crhomagramas
para valence, el valor promedio de R2 es significativamente bajo (0,0004), lo cual indica
que el modelo FC con Chromagramas apenas captura relaciones útiles para predecir la
dimensión de valence, obteniendo un desempeño ligeramente mejor que una regresión
constante. En arousal sucede algo similar (R2 = −0,0003), lo que sugiere que los Chro-
magramas, en este caso, no contienen suficiente información discriminativa para ambas
dimensiones emocionales en la configuración dada.

Para los CQT, la CQT produce un mejor desempeño para ambas dimensiones que
los cromagramas. Con respecto a valence, el FC alcanza MAE = 0,1165, RMSE =
0,1436 y R2 = 0,1729, mientras que en arousal logra MAE = 0,1304, RMSE = 0,1648
y R2 = 0,1625. Estos valores positivos de R2 indican que el modelo está ajustando
relaciones útiles entre la representación espectral y las etiquetas de emoción. Además,
con estas características, el modelo presenta predicciones más apegadas a los valores
reales, pues el error es menor en comparación con los espectrogramas previos.

Por otra parte, en los Mel-spectrogramas se obtiene un mejor desempeño, con
R2 = 0,2949 para valence y R2 = 0,4052 para arousal. El error (MAE y RMSE) es
mejor que en Chromagramas y CQT. Esto sugiere que los Mel-spectrogramas contienen
más información relevante que los Chromagramas y CQT.



Finalmente, los Tempogramas tienen el peor desempeño de los cuatro espectrogra-
mas. Aunque en el error MAE y RMSE es ligeramente menor que los Chromagramas,
por su parte, para el R2 solo supera a los Chromagramas en la dimensión del valence,
mientras que en la del arousal es la peor.

Desempeño de la red BiLSTM según tipo de espectrograma: La Tabla 14
recoge, para cada tipo de espectrograma (Chromagramas, CQT y Mel-spectrogramas),
la configuración del experimento es igual que la implementada con la arquitectura de
FC.

Cuadro 14: Resultados BiLSTM (Valence vs Arousal) agrupados por Espectrograma
Valence Arousal

MAE RMSE R2 MAE RMSE R2

Chromagramas 0,1320 0,1594 −0,0199 0,1500 0,1811 −0,0118
CQT 0.1107 0.1375 0.2408 0.1266 0.1569 0.2407
Mel-Spectrogram 0.1090 0.1333 0.2713 0.1125 0.1384 0.3516
Tempograma 0,1307 0,1581 −0,0037 0,1490 0,1802 −0,0020

De estos resultados destacan los siguientes puntos:

• Chromagramas: en valence, R2 = −0,0199, y en arousal, R2 = −0,0118. Es-
to indica que la BiLSTM con Chromagramas no obtiene mejoras significativas
respecto a una regresión constante, arrojando un desempeño muy pobre.

• CQT: la BiLSTM logra MAE = 0,1107, RMSE = 0,1375, R2 = 0,2408 en
valence. Mientras que, las métricas MAE = 0,1266, RMSE = 0,1569, R2 =
0,2407 en arousal. Estos valores positivos de R2 reflejan que la red aprovecha las
características espectrales de la CQT para modelar relaciones relevantes.

• Mel-spectrogram: esta configuración alcanza el mejor rendimiento dentro de la
BiLSTM. En valence, MAE = 0,1090, RMSE = 0,1333, R2 = 0,2713. En arousal,
MAE = 0,1125, RMSE = 0,1384, R2 = 0,3516. Los valores de R2 sugieren que la
BiLSTM, al procesar Mel-spectrogramas, extrae patrones temporales más útiles
que con otros espectrogramas.

• Tempograma: en ambas dimensiones, los coeficientes R2 son prácticamente cero
o negativos (−0,0037 en valence, −0,0020 en arousal), lo que indica que este
tipo de representación no aporta información suficiente para esa arquitectura en
nuestro contexto.

En general, tanto los mel-spectrogramas como los espectrogramas de Transformada
Q Constante (CQT) presentan resultados notablemente superiores a las otras repre-
sentaciones. Esto se debe, en parte, a que ambos se basan en escalas perceptuales,
diseñadas para imitar la forma en que el oído humano procesa el sonido. Es por ello



que, si bien tanto la CQT como los Chromagramas buscan capturar las frecuencias de
las notas, la CQT conserva una riqueza de información mucho mayor. Mientras que el
Chromagrama colapsa todo en las 12 notas de la escala cromática, la CQT preserva la
información en varias octavas. Esta distinción representa una gran diferencia, ya que el
registro de una melodía es un elemento potente en cuestión del contenido emocional.

Por otro lado, resulta sorprendente que los tempogramas obtengan los peores resul-
tados, especialmente cuando el ritmo es un factor clave en la percepción de emociones.
La razón de esta aparente contradicción no es que el ritmo no sea importante, sino que
el tempograma es una representación demasiado simplificada de la complejidad rítmica
que transmite emociones.

Por último, en las cuatro representaciones de espectrogramas, el error en la pre-
dicción es similar, es evidente que hay representaciones que tienden a tener un error
menor, pero en los 4 casos el error es considerablemente aceptable en este tipo de ta-
reas donde el reconocimiento de emociones presenta cierto grado de subjetividad. No
obstante la mayor diferencia entre tipos de características se encuentra en la métrica
de R2, demostrando que tanto tempogramas como cromagramas están teniendo peores
resultados que simplemente calcular la media. Este desempeño se puede atribuir a dos
aspectos importantes:

• Características poco informativas: Como se ha discutido, tanto tempogramas co-
mo cromagramas carecen de la riqueza tímbrica, dinámica y rítmica necesaria
para esta tarea.

• Baja varianza en los datos: La predicción se ve dificultada por la alta concentración
de las etiquetas de valence y arousal en los rangos medios de la escala. Cuando
la mayoría de los datos se agrupan en torno al promedio, un modelo tiene muy
poca varianza que .explicar", lo que la métrica R2 penaliza severamente.

Comparación entre modelos FC y BiLSTM usando todos los espectrogra-
mas: Para determinar el beneficio de emplear una arquitectura recurrente en lugar de
una completamente conectada, entrenamos simultáneamente los modelos FC y BiLSTM
utilizando como entrada la concatenación de todos los espectrogramas (Chromagramas
+ CQT + Mel-spectrogramas + Tempogramas). Los resultados se muestran en la Ta-
bla 15, nuevamente con validación cruzada de 10 folds y las mismas métricas de MAE,
RMSE y R2.

Cuadro 15: Comparación de modelos entrenados con todos los espectrogramas (Valence
vs Arousal)

Valence Arousal

MAE RMSE R2 MAE RMSE R2

BiLSTM 0.1003 0.1258 0,3647 0.1108 0.1380 0,4129
FC 0.1009 0.1262 0,3607 0.1125 0.1402 0,3939



De acuerdo con estos datos, podemos resaltar que, en la predicción de valence, la
BiLSTM reduce ligeramente el error promedio (MAE = 0,1003 vs. 0,1009) y mejora
el coeficiente de determinación (R2 = 0,3647 vs. 0,3607) frente a la FC. El RMSE
también es algo menor para la BiLSTM (0,1258 vs. 0,1262).

En la predicción de arousal, la ventaja de la BiLSTM es más evidente: logra MAE =
0,1108 frente a 0,1125 de FC, y reduce el RMSE a 0,1380 (por 0,1402 de FC). El R2 pasa
de 0,3939 en FC a 0,4129 en BiLSTM, lo que indica una mejor capacidad explicativa
sobre la varianza de los datos.

En términos generales, la red BiLSTM obtiene un desempeño ligeramente superior
al FC cuando se utilizan las tres representaciones espectrales simultáneamente. Esto
sugiere que la capacidad de la BiLSTM para capturar dependencias temporales a lo largo
de las tramas (frames) del espectrograma resulta útil para la predicción de emociones
en audio. Sin embargo, la diferencia es muy baja, por lo que no es posible declarar que
arquitectura es categóricamente mejor.

7.3. Fusión de Características

Para evaluar el desempeño de la estrategia de fusión de características, se entre-
naron dos modelos (FC y BiLSTM) utilizando un reparto de los datos en 60 % para
entrenamiento, 20 % para validación y 20 % para prueba. En esta configuración, se
integraron las representaciones espectrales (Chromagrama, CQT, Mel-spectrograma y
Tempograma) junto con las características simbólicas (embeddings). En la tabla 16
se comparan las métricas de desempeño de dos arquitecturas distintas BiLSTM y FC
sobre las dimensiones Valence y Arousal.

Cuadro 16: Comparación de métricas por arquitectura de modelo (BiLSTM vs FC)
características acústicas y simbólicas

BiLSTM FC

Métrica Valence Arousal Valence Arousal

MAE 0.10305 0.10470 0.1026 0.1079
RMSE 0.12797 0.13115 0.1281 0.1339
MSE 0.01638 0.01720 0.0164 0.0179
R2 0.32839 0.41735 0.3266 0.3924

A partir de la tabla 16, se puede observar que:

• Error Absoluto Medio (MAE): El modelo FC alcanza un MAE ligeramente
inferior en Valence (0.1026 vs. 0.10305), lo que indica una precisión marginalmente
mejor al predecir la dimensión afectiva del valence. Sin embargo, en Arousal,
el BiLSTM supera al FC (0.10470 vs. 0.10790), sugiriendo que la arquitectura
recurrente captura mejor la variabilidad temporal asociada al arousal.



• Raíz del Error Cuadrático Medio (RMSE) y Error Cuadrático Medio
(MSE): Las diferencias en RMSE son mínimas: 0.12797 vs. 0.12810 para Valence
y 0.13115 vs. 0.13390 para Arousal. Del mismo modo, las variaciones en MSE
son reducidas (0.01638 vs. 0.01640 y 0.01720 vs. 0.01790). Esto indica que, en
términos de penalización de errores más grandes, ambas arquitecturas ofrecen un
desempeño equivalente, con una ligera ventaja del BiLSTM en la dimensión de
arousal.

• Coeficiente de Determinación (R2): El R2 del BiLSTM es superior en ambas
dimensiones, destacando especialmente en Arousal (0.41735 vs. 0.39240). Esto
sugiere que el modelo recurrente explica una mayor proporción de la varianza en
las predicciones de arousal, probablemente gracias a su capacidad para modelar
dependencias secuenciales en los espectrogramas.

• Balance entre complejidad y rendimiento: Aunque la arquitectura FC mues-
tra un desempeño competitivo en valence, la ventaja global del BiLSTM en arousal
y R2 indica que la incorporación de estructura temporal mediante LSTM aporta
un beneficio significativo para la tarea de predicción de emociones musicales. No
obstante, la diferencia en MAE y RMSE es pequeña, por lo que el modelo FC
podría considerarse una alternativa más eficiente computacionalmente cuando el
recurso de cómputo es una limitación.

En conjunto, estos resultados apuntan a que la arquitectura BiLSTM ofrece una
mejor capacidad de generalización, especialmente en la dimensión de arousal, mientras
que la arquitectura FC puede ser adecuada para escenarios donde la simplicidad y
velocidad de entrenamiento sean prioritarias.

Los resultados obtenidos por el modelo de fusión, que integra el conjunto completo
de espectrogramas (Mel, CQT, Cromagrama y Tempograma) con los embeddings ar-
mónicos, demuestran de manera contundente el principio de sinergia en el aprendizaje
automático. Al alcanzar un rendimiento superior a cualquiera de los modelos basados
en características individuales, se confirma que la clave para una predicción más precisa
reside en proporcionar al modelo una visión holística y multifacética de la pieza musical.

7.4. Ajuste de hiperparámetros

Sobre el modelo BiLSTM y FC se implemento el ajuste de hiperparámetros por me-
dio de la herramienta de optuna. Optuna seleccionó la combinación de hiperparámetros
que minimiza la suma de RMSEs en validación y máximiza la suma de la puntuación
R2 también en validación. En la tabla se muestran los mejores 5 resultados.

Los resultados de la optimización de hiperparámetros confirman y refuerzan el análi-
sis previo: la arquitectura BiLSTM supera de manera consistente al modelo FC cuando
se ajustan sus parámetros.

En el mejor trial del modelo FC (n.º 41) se obtuvo una suma de RMSE de 0.272272
y una suma de R2 de 0.840231, mientras que en el mejor trial de la BiLSTM (n.º 29) se



Cuadro 17: Comparación de los 5 mejores trials de ajuste de hiperparámetros para
los modelos FC y BiLSTM

FC BiLSTM

Posición Trial # Objetivo Trial # Objetivo

#1 41 [0.272272, 0.840231] 29 [0.253768, 0.991941]
#2 40 [0.272834, 0.834869] 38 [0.257297, 0.963327]
#3 14 [0.272973, 0.833601] 12 [0.262492, 0.921630]
#4 38 [0.273435, 0.830433] 14 [0.264304, 0.906078]
#5 29 [0.273461, 0.829801] 48 [0.269539, 0.863136]

Nota: El vector objetivo se define como [0, 1], donde el elemento 0 corresponde a la suma de
RMSE (a minimizar) y el elemento 1 a la suma de R2 (a maximizar).

alcanzó una suma de RMSE de 0.253768 y una suma de R2 de 0.991941. Esto representa
una reducción de aproximadamente un 6.8 % en la suma de RMSE y un incremento de
alrededor de un 18.1 % en la suma de R2.

Además, en las cinco mejores configuraciones de cada arquitectura, todas las posi-
ciones del modelo BiLSTM muestran valores de suma de RMSE inferiores y de suma
de R2 superiores frente a sus homólogas del modelo FC. Esta ventaja es indicativa de
la mayor capacidad de la BiLSTM para capturar dependencias temporales en los es-
pectrogramas y, por ende, de su mejor capacidad de generalización en la predicción de
las dimensiones afectivas (valence y arousal).

En conjunto, la búsqueda bayesiana de Optuna consolida la elección de la arquitec-
tura BiLSTM como la más adecuada para la tarea de predicción de emociones musicales,
favoreciendo tanto la precisión (menor RMSE) como la explicabilidad (mayor R2). Im-
portancia de hiperparámetros para el modelo BiLSTM: Para el modelo de
BiLSTM se graficó la importancia de cada hiperparámetro para alcanzar los objetivos.
A partir de las gráficas de importancia generadas con Optuna para los dos objetivos
(suma de RMSE y suma de R2), se identificaron los siguientes patrones:

• Dropout en la capa final acústica (audio_fc3_dropout_rate): Con un peso
relativo cercano al 0.23-0.24 en ambos objetivos, es el hiperparámetro más decisivo
para mejorar tanto la precisión (bajar RMSE) como la capacidad explicativa
(aumentar R2).

• Tasa de aprendizaje (lr): Ocupa el segundo lugar (≈ 0,19− 0,20). Un ajuste
fino del learning rate acelera la convergencia y evita tanto el sobreajuste como el
subajuste.

• Dropout en la rama acústica (audio_dropout_rate): Con valores entre 0.14
y 0.19, confirma que la regularización interna de las LSTM es crítica para la
estabilidad de las predicciones.



Figura 25: Importancia de hiperparámetros según la suma de R2.

• Otros dropouts intermedios: Su importancia (≈ 0,06−0,09) indica que la ubi-
cación del dropout en distintas capas impacta moderadamente en el rendimiento.

• Weight decay y optimizador: Con valores alrededor de 0.05-0.09, la regulari-
zación L2 y la elección del algoritmo de optimización juegan un papel secundario
pero significativo.

• Dimensiones de capas y función de activación: las capas ocultas para ca-
racterísticas de audio, las capas ocultas en la fusión y la función de activación
presentan importancias muy bajas (<0.03), lo que sugiere que la complejidad
arquitectónica (número de neuronas) aporta poco al ajuste final.

Los resultados indican que, para optimizar la BiLSTM en tareas de predicción de
valence y arousal, conviene concentrar el esfuerzo de afinado en los parámetros de
regularización (especialmente los dropouts) y en la tasa de aprendizaje. En cambio,
modificar el tamaño de las capas o cambiar la función de activación tiene un impacto
marginal. Este hallazgo orienta a priorizar la exploración de rangos finos de dropout y
learning rate antes que aumentar la complejidad de la red.

La Tabla 18 presenta los valores óptimos de cada hiperparámetro obtenidos en el
mejor trial. Se observa que la red LSTM utiliza un tamaño de 64 unidades con un
dropout intermedio moderado en las capas acústicas, mientras que la capa de fusión es
más amplia (256 neuronas) con un dropout cercano al 0.24. La tasa de aprendizaje (lr)
se ajustó a 0.00168, junto con una mínima penalización L2 (weight decay). Finalmente,
se emplea la función de activación leaky_relu y el optimizador Adam para lograr el
mejor compromiso entre convergencia y generalización.



Figura 26: Importancia de hiperparámetros según la suma de RMSE.

7.5. Validación cruzada

Finalmente, con el objetivo de validar el modelo ya ajustado, se realizó un proceso
de validación cruzada con un total de 10 folds. El conjunto de datos se dividió en un
primer instante en 80 % y 20 %. El 20 % serán los datos de prueba para cada uno de
los folds, mientras que el resto de datos se irá dividiendo para probar con diferentes
conjuntos de entrenamiento y validación.

La Tabla 19 muestra la consistencia del modelo BiLSTM a lo largo de los 10 plie-
gues de validación con 50 épocas de entrenamiento. Para la dimensión Valence, el MAE
varió entre 0.0875 y 0.1065, y el R2 osciló entre 0.3809 y 0.5087, reflejando una preci-
sión estable y una capacidad explicativa moderada. En Arousal, el MAE se mantuvo
entre 0.0976 y 0.1139, mientras que el R2 alcanzó un máximo de 0.5620, lo cual indi-
ca un rendimiento ligeramente superior en la predicción de Arousal. Estos resultados
subrayan la robustez del modelo: las variaciones inter-pliegues son pequeñas y ambos
objetivos (error y varianza explicada) se mantienen en rangos estrechos, confirmando
que la configuración optimizada generaliza bien sobre distintas particiones del conjunto
de datos.

La validación cruzada a 10 pliegues (Tabla 19) muestra que el modelo BiLSTM
mantiene un desempeño estable y robusto en ambas dimensiones afectivas:

• Valence:

• El MAE promedio es 0.0942 con una desviación estándar de 0.0057, indicando
que la mayoría de los pliegues se sitúan en un rango muy estrecho (0.0875-
0.1065).



Cuadro 18: Mejor configuración de hiperparámetros (BiLSTM)
Parámetro Valor

audio_lstm_hidden 64
audio_dropout_rate 0.1753
audio_fc_hidden 64
audio_fc1_dropout_rate 0.4406
audio_fc2_dropout_rate 0.3445
audio_fc3_dropout_rate 0.0151
fusion_hidden 256
fusion_dropout_rate 0.2379
lr 0.001679
weight_decay 1.2791e-06
activation leaky_relu
optimizer Adam

• El RMSE promedio es 0.1183 (std = 0.0063), confirmando que los errores
grandes permanecen controlados y casi idénticos entre los distintos subsets.

• El MSE medio (0.0140, std = 0.0015) refuerza la baja varianza del error
cuadrático.

• El R2 medio es 0.4516 con std = 0.0424, lo que sugiere una capacidad expli-
cativa moderada pero consistente (rango 0.3809-0.5087).

• Arousal:

• El MAE promedio es 0.1032 (std = 0.0042), con valores por fold entre 0.0976
y 0.1139, lo que indica predicciones ligeramente menos precisas que para
Valence, pero igual de estables.

• El RMSE promedio es 0.1287 (std = 0.0050), mostrando una dispersión
reducida de los errores más significativos.

• El MSE medio de 0.0166 (std = 0.0013) también refleja baja variabilidad en
la magnitud de los errores.

• El R2 promedio alcanza 0.5007 (std = 0.0422), superior al de Valence, y llega
a picos de 0.5620 en ciertos pliegues.

Las desviaciones estándar reducidas en todas las métricas indican que el modelo
generaliza consistentemente a lo largo de diferentes particiones de los datos. Aunque la
predicción de Arousal presenta un MAE ligeramente superior al de Valence, compensa
con un R2 medio mayor, lo que sugiere una mejor capacidad para capturar la varianza
emocional en esta dimensión. En conjunto, estos resultados validan la configuración
optimizada y confirman la robustez del BiLSTM para la tarea de predicción de valence
y arousal en música.



Cuadro 19: Resultados de validación cruzada (10 folds) para el modelo BiLSTM
Valence Arousal

Fold MAE RMSE MSE R2 MAE RMSE MSE R2

1 0.0912 0.1169 0.01367 0.4687 0.1001 0.1263 0.01595 0.4426
2 0.1065 0.1312 0.01720 0.3809 0.1139 0.1385 0.01917 0.4520
3 0.0925 0.1183 0.01398 0.4033 0.1020 0.1255 0.01574 0.4412
4 0.0969 0.1233 0.01521 0.4416 0.1031 0.1321 0.01745 0.5143
5 0.0907 0.1141 0.01302 0.4549 0.1032 0.1260 0.01587 0.5570
6 0.0898 0.1113 0.01239 0.4974 0.1059 0.1317 0.01735 0.5058
7 0.0939 0.1198 0.01436 0.4729 0.1009 0.1267 0.01606 0.5256
8 0.0875 0.1087 0.01182 0.5087 0.1017 0.1271 0.01616 0.5232
9 0.1023 0.1243 0.01546 0.3975 0.1036 0.1334 0.01780 0.4835
10 0.0911 0.1153 0.01329 0.4905 0.0976 0.1196 0.01431 0.5620

Media 0.0942 0.1183 0.0140 0.4516 0.1032 0.1287 0.0166 0.5007
std 0.0057 0.0063 0.0015 0.0424 0.0042 0.0050 0.0013 0.0422

Note: std = desviación estándar.

Las curvas de la Figura 27 muestran que la pérdida Huber (etiquetada como MSE
en la leyenda) desciende de forma pronunciada durante las primeras 10-15 épocas y
luego se estabiliza alrededor de 0.007. El RMSE también cae rápidamente al comienzo
y alcanza valores cercanos a 0.12 tras unas 20-25 épocas, con un sobreajuste mínimo
observable (las curvas de validación siguen muy de cerca a las de entrenamiento). En
conjunto, esto indica una convergencia rápida y estable del modelo bajo la configuración
óptima.

7.6. Comparativa

A continuación presentamos una comparación cuantitativa entre nuestro mejor mo-
delo de fusión (obtenido en el fold 6 de la validación cruzada) y tres enfoques represen-
tativos del estado del arte en Music Emotion Recognition.

Métodos de referencia:

• [21] “Optimización de modelos clásicos con técnicas de metaheurística” (MEMD,
1744 canciones).

• Características de entrada: Bajo nivel (LLDs, descriptores acústicos).

• Modelo: Red neuronal back-propagation optimizada con ABC (Artificial Bee
Colony).

• Resultados en prueba:

• Valence: RMSE = 0.1066, R2 = 0,4606.



Figura 27: Curvas de entrenamiento y validación del modelo BiLSTM (pérdida Huber
y RMSE) para el mejor fold.

• Arousal: RMSE = 0.1322, R2 = 0,6687.

• [52] “Arquitectura MER end-to-end con atención SE y fusión jerárquica espacio-
temporal” (PMEMO, 767 canciones).

• Características de entrada: Espectrogramas log-mel (nivel medio).
• Modelo: VGG16 adaptado + Squeeze-and-Excitation attention + BiLSTM.
• Resultados en prueba:

• Valence: RMSE = 0.2379, R2 = 0,4575.
• Arousal: RMSE = 0.2213, R2 = 0,6393.

• [53] “Predicción de emociones a partir de acordes” (conjunto de acordes).

• Características de entrada: Solo acordes (embedding CBOW).
• Resultados en prueba:

• Valence: RMSE = 1.22, R2 = 0,65.
• Arousal: RMSE = 1.104, R2 = 0,806.

Nuestro modelo de fusión (mejor fold)

• Características de entrada: Fusión de representaciones espectrales (Chromagrama,
CQT, Mel-spectrograma, Tempograma) y embeddings de acordes (CBOW).

• Modelo: BiLSTM que recibe en paralelo los espectrogramas concatenados y el
embedding estructurado de acordes.



• Resultados en el fold 6 de validación cruzada:

• Valence: RMSE = 0.1238, R2 = 0,3711.

• Arousal: RMSE = 0.1224, R2 = 0,4928.

Cuadro 20: Comparación de nuestro modelo con enfoques del estado del arte.
Método Valence Arousal

RMSE R2 Fuente RMSE R2 Fuente

[21] 0.1066 0.4606 MEMD (1744) 0.1322 0.6687 MEMD (1744)
[52] 0.2379 0.4575 PMEMO (767) 0.2213 0.6393 PMEMO (767)
[53] 1.22 0.65 Solo acordes 1.104 0.806 Solo acordes
[2] 0.2466 0.4143 PMEMO (767) 0.2285 0.6100 PMEMO (767)

Nuestro modelo 0.1087 0.5087 Fusión† 0.1271 0.5232 Fusión†

† Conjunto de datos propio (fusión de espectrogramas y acordes) resultados del mejor fold: (fusión,
fold 8).

Análisis de la comparación

• Valence:

• El enfoque de [21] (RMSE = 0.1066, R2 = 0,4606) supera a nuestro modelo
(RMSE = 0.1238, R2 = 0,3711) en ambas métricas, gracias a la optimización
metaheurística de descriptores acústicos de bajo nivel.

• [52] (RMSE = 0.2379, R2 = 0,4575) obtiene un RMSE mayor y un R2 similar
al de Yang et al. lo que indica que, a pesar de su arquitectura compleja, no
alcanza la precisión ni la capacidad explicativa de Yang et al.

• [53] (RMSE = 1.22, R2 = 0,65) presenta un error absoluto muy alto (escala
distinta) pero un R2 relativamente grande, lo que sugiere que el modelo
captura tendencias generales aunque sus predicciones individuales resulten
imprecisas en valor absoluto.

• Nuestro modelo (RMSE = 0.1238, R2 = 0,3711) mejora ampliamente a [52]
en RMSE y se ubica en segundo lugar respecto a [21]. La discrepancia en R2

con Cho radica en la diferencia de escalas: Cho emplea una escala de acordes
distinta a la métrica acústica, por lo que su R2 elevado no se traduce en un
RMSE bajo.

• Arousal:

• Yang et al. ([21]) obtiene RMSE = 0.1322 y R2 = 0,6687, situándose como
el mejor en R2.



• Huang et al. ([52]) logra RMSE = 0.2213 y R2 = 0,6393, mostrando buen
R2 pero un RMSE considerablemente mayor que Yang et al.

• Cho ([53]) reporta RMSE = 1.104 y R2 = 0,806. El R2 más alto entre todos
indica que el modelo de acordes captura la varianza de arousal en su propia
escala; sin embargo, el RMSE elevado revela que, en términos absolutos, las
predicciones están lejos de los valores reales.

• Nuestro modelo (RMSE = 0.1224, R2 = 0,4928) presenta el RMSE más
bajo de los cuatro métodos, pero un R2 inferior a Yang y Cho debido a
la combinación de diferentes fuentes de datos y escalas. Esto sugiere que,
aunque nuestra fusión reduce el error absoluto, la varianza explicada en la
escala del conjunto propio resulta menor.

8. Conclusiones

En el presente trabajo, se abordó la tarea de reconocimiento de emociones en obras
musicales bajo un enfoque integral, combinando tanto características acústicas como
características simbólicas representadas por la estructura armónica de una canción. Para
ello, se unificó la información de los conjuntos de datos de PMEmo y DEAM. Al observar
la dispersión de los datos, tanto unificados como por separado, es evidente cómo estos
tienden a concentrarse en el rango de los valores medios del plano, además de seguir
una distribución cuasi-lineal. Esto se debe a dos cuestiones importantes: la primera
viene de lo postulado por Russell [19], pues la dupla valence y arousal no son valores
independientes y siguen una distribución simétrica. Lo segundo es el problema de la
subjetividad, pues la percepción varía de persona en persona. Aunque existen elementos
y conceptos base que son percibidos de igual forma sin importar contextos sociales y
culturales [6], sigue existiendo una pequeña discrepancia entre las observaciones de cada
persona. Si bien esta discrepancia no es extrema, las ligeras variaciones en la percepción
de las emociones regresan a la media. De este modo, la concentración de la mayoría de las
anotaciones en los rangos medios ocasiona que los modelos tengan un gran desempeño
prediciendo emociones neutras que se encuentran en el rango medio del plano, pero
fallen significativamente al enfrentarse a los extremos emocionales.

Por otra parte, al observar los resultados de la codificación del contexto armónico de
una obra musical por medio de embeddings, se puede notar que los modelos de embed-
dings predictivos basados en coocurrencia, como Word2Vec, son capaces de aprender y
reconstruir conceptos de la teoría musical de manera implícita. A pesar de no tener in-
formación sobre la estructura de notas, el espacio vectorial resultante imita con notable
fidelidad el Círculo de Quintas. Esto demuestra que el modelo interpreta correctamente
que la proximidad espacial entre acordes denota una fuerte similitud funcional, la cual,
en la teoría, significa que pertenecen al mismo contexto armónico.

Al proponer estructuras más complejas, se comprueba que al enriquecer el modelo
con conocimiento explícito de la estructura tonal (mediante tokens Acorde_Grado), se



obtienen representaciones superiores. El espacio vectorial resultante no solo es más or-
ganizado, sino también jerárquico e interpretable, donde el grado tónico (I) se establece
como el centro de cada clúster tonal. Esto valida que la incorporación de conocimiento
de dominio en el preprocesamiento de los datos resulta en un espacio latente de mayor
calidad y más fiel a la teoría musical.

En lo que respecta a las características acústicas analizadas de forma individual, se
concluye de manera clara que las representaciones basadas en la percepción humana son
las más eficaces. Características como los mel-spectrogramas y CQT, que modelan el
sonido de forma análoga al sistema auditivo, demostraron capturar con mayor fidelidad
la información tímbrica y textural que resulta crucial para el reconocimiento emocional.

Finalmente, se establece que abordar este problema desde un enfoque multimodal
es la estrategia más robusta y completa. Este método simula de manera más fiel el
proceso de análisis humano, donde la percepción emocional no depende de un único
componente, sino de la interacción de múltiples factores como el timbre, la dinámica,
el ritmo y las estructuras armónicas. Se confirma así que la emoción en la música es
una propiedad emergente. Por ello, es necesario analizar cada componente por separado
para luego sintetizar la información y comprender la obra en su conjunto. De esta forma,
se logra un análisis integral capaz de realizar el reconocimiento de emociones a partir
de la combinación de múltiples representaciones, alcanzando una comprensión holística
que supera las limitaciones de cada perspectiva individual.
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Anexos
A. Documentos



Figura 28: Constancia de comprensión de textos en inglés



Figura 29: Constancia de manejo de la lengua inglesa
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Abstract. Music emotion recognition (M.E.R.) is a multidisciplinary
field that integrates computer science, affective computing, and
neuroscience elements to analyze musical features to detect emotions.
Most research in this field has focused on low and mid-level features,
often ignoring theoretical and harmonic aspects of music. In this work,
we propose using regression-based machine learning models applied to
word embeddings in harmonic structures (chords). The results indicate
an RMSE of 0.0252 and an R2 score of 0.9751 for the valence dimension,
in comparison with the arousal, an RMSE of 0.1319 and an R2

score of 0.4676. These findings indicate that incorporating theoretical
and harmonic concepts enhances the performance of M.E.R models,
particularly in the valence dimension, reflecting improved detection of
the positivity of emotions.
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1 Introduction

Music has remarkably impacted social, cultural, and political aspects. For this
reason, it has been the target of many studies, one of them being the relationship
between emotions and music [13] since music is a means of expression capable
of evoking emotions [6].

Music Emotion Recognition (M.E.R.) has incorporated knowledge from
several fields, such as computer science, affective computing, and neuroscience. It
aims to analyze musical features extracted from audio signals (low and mid-level)
and abstract features such as song lyrics (high-level) [13, 9, 15, 7].

Within M.E.R.’s works, two approaches for linking emotions and songs
predominate. The first one attaches a general emotion to the whole work
(song-level), a static approach. The second, dynamic approach, focuses on
detecting the music emotion variations that occur through the song, namely
MEDV (music emotion variation) [9, 6].

Emotional perception is complex because it involves multiple variables, such
as the song or external information, such as the listener’s social, cultural, and
emotional context [17, 7].

Selecting the appropriate taxonomy is crucial for clearly delineating the
problem as either a multi-class classification or a regression task [9]. In this
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