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RESUMEN 

Los accidentes vehiculares son ocasionados por errores humanos, puesto que son 

susceptibles a distracciones que restan milisegundos valiosos para realizar maniobras 

de evasión. Para dar solución a ello, se desarrollan los sistemas avanzados de 

asistencia al conductor (ADAS, por sus siglas en inglés) que delegan tareas como 

navegación, dirección, alerta y frenado a sistemas que integran algoritmos de 

aprendizaje de máquinas y profundo. En este proyecto de tesis se presenta el 

desarrollo de un sistema ADAS de alerta al frenado de emergencia basado en 

cámaras digitales comerciales, utilizando técnicas de procesamiento de imágenes y 

de señales, para obtener la base de datos que entrena el algoritmo de aprendizaje 

profundo (Deep Learning), la cual es capturada en un vehículo eléctrico con un 

ambiente controlado en un espacio de estacionamiento vehicular acondicionado para 

las pruebas necesarias bajo distintas condiciones. Se utilizan objetivos dinámicos 

como dummies de adulto, objetos estáticos como un bote de seguridad y vehículos de 

prueba. Con los datos obtenidos se entrena el algoritmo de Deep Learning y así 

clasifica la posible colisión y con qué objetivo está siendo detectado, y así generando 

una alarma visual que genera una colisión realizando 160 pruebas en condiciones 

controladas, además de una prueba en entorno no controlado, obteniendo un 91.25% 

de precisión en la alerta oportuna de una posible colisión. 

Palabras clave: Asistencia de frenado de emergencia, ADAS, EWB, Deep Learning, 

procesamiento de imágenes, cámara, seguridad, sistemas autónomos.  
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SUMMARY 

Traffic accidents are primarily caused by human error, as drivers are susceptible to 

distractions that reduce the valuable milliseconds needed to perform evasive 

maneuvers. To address this problem, Advanced Driver Assistance Systems (ADAS) 

have been developed, delegating tasks such as navigation, steering, warning, and 

braking to systems that integrate machine learning and deep learning algorithms. This 

Thesis Project presents the development of an ADAS emergency braking alert system 

based on commercial digital cameras, using image and signal processing techniques 

to build the database that trains the deep learning algorithm. The dataset is captured 

using an electric vehicle operating in a controlled environment in a parking area 

specially conditioned for the required tests under various conditions. Dynamic targets 

such as adult-sized dummies, static obstacles such as a safety cone, and test vehicles 

are used. Based on the collected data, the deep learning algorithm is trained to classify 

potential collisions and identify the type of detected object, generating a visual alarm 

when a collision risk is present. A total of 160 tests were conducted under controlled 

conditions, along with an additional test in an uncontrolled environment, achieving 

91.25% accuracy in providing timely alerts of a possible collision. 

Keywords: Emergency braking assistance, ADAS, EWB, Deep Learning, image 

processing, camera, safety, autonomous systems.  
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CAPÍTULO I: INTRODUCCIÓN 

Los Sistemas Avanzados de Asistencia al Conductor (ADAS, por sus siglas en inglés) 

son, hoy en día, una línea de investigación en auge, debido a la necesidad de dotar a los 

vehículos modernos con sistemas que ayuden a minimizar la posibilidad de sufrir un accidente 

vial, que ponen en peligro tanto a los bienes materiales (los propios vehículos, infraestructura 

vial, entre otros), y a las vidas humanas involucradas (peatones, conductores, pasajeros, etc.), 

que es lo más importante. Estos sistemas que se implementan adquieren información del 

entorno con sensores como ultrasonido, visión artificial, radares o LiDAR ("Light Detection 

and Ranging”, por sus siglas en inglés), que junto con algoritmos de Aprendizaje Profundo 

(mejor conocido por sus siglas en inglés como “Deep Learning” (DL)), pueden desarrollarse 

tecnologías como la detección de puntos ciegos, mantenimientos de carril, control de crucero 

adaptativo, evasión de colisiones en las intersecciones, y la asistencia al frenado de emergencia. 

Debido a esta necesidad, el presente trabajo de tesis presenta el desarrollo de un sistema de 

alerta al frenado de emergencia con la integración de cámaras comerciales, procesamiento de 

imágenes y señales, así como una tarjeta de para integrar un sistema embebido. Se implementa 

en un vehículo eléctrico con un ambiente controlado en un espacio de estacionamiento vehicular 

acondicionado para las pruebas necesarias bajo distintas condiciones, con una serie de 

escenarios que se pueden presentar en la vida diaria, para probar y validar el funcionamiento de 

asistencia de frenado de emergencia. 

1.1 Antecedentes 

 En esta sección, se describen los trabajos más relevantes de los últimos años 

relacionados al presente trabajo de tesis. 

1.1.1  Sistemas Avanzados de Asistencia al Conductor 

Los ADAS ayudan a atacar la problemática de los accidentes viales; si bien no a 

erradicarla, disminuyen en gran medida las posibilidades de accidentes vehiculares ocasionados 

por factores humanos. Estos sistemas tienen la función de auxiliar al conductor mientras navega 

en el vehículo, dotando de información del medio para la toma de decisiones (Ziebinski et al., 

2017). Los ADAS analizan el entorno por medio de sensores y cámaras, implementan 

algoritmos avanzados con software para analizar la información recabada y generan alertas, 
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activar un asistente de conducción o de frenado, o tomar acciones autónomas para prevenir 

accidentes que pongan en riesgo a peatones o tripulantes de vehículos. Los ADAS pueden 

contener diferente cantidad de sensores dependiendo del modelo del vehículo, nivel de 

equipamiento o versión (Neumann, 2024), algunos sensores utilizados son:  

Radares: Dispositivos que usan ondas electromagnéticas para detectar la presencia de 

objetos en el espacio, enviando una serie de ondas de microondas y detectándola cuando es 

reflejada por un objeto. Las ondas son reflejadas de manera no uniforme dependiendo del 

material, la forma, y su predisposición para reflejar ondas electromagnéticas.  

Detección y medición de distancia por luz: LiDAR por sus siglas en inglés, tiene un 

principio de funcionamiento simular al radar, con la diferencia que utilizan un haz de luz con 

longitud de onda específica, en lugar de ondas de micro ondas. Este principio de funcionamiento 

permite una mejor precisión; reconociendo detalles desde centímetros hasta 100 m. Aunque su 

resolución se ve afectada dependiendo de la cantidad de LiDAR utilizados, el incorporar una 

mayor cantidad de LiDAR.  

Ultrasonido: Son ondas de sonido de alta frecuencia imperceptibles para los humanos 

(de 20 kHz a 1 GHz). Utiliza el mismo principio lanzando ondas ultrasónicas y recibidas 

después de una reflexión con un objeto, calculando así la distancia a la que se encuentra. Los 

sensores ultrasónicos tienen un rango limitado de medición limitado, desde centímetros hasta 

varios metros. Esta limitante se compensa colocando varios sensores alrededor del vehículo. 

Estos sensores se usan en sistemas de asistencia al estacionarse, detección de puntos ciegos 

(BSD, por sus siglas en inglés), y asistencia en maniobras en bajas velocidades. 

Cámaras o arreglos de cámaras: Es la solución más popular, barata y simple que se 

utilizan en los ADAS, y se pueden utilizar varias cámaras para obtener una vista de 360° 

alrededor del vehículo. La posibilidad que brindan las cámaras de adquirirlas e instalarlas por 

los usuarios, y de implementar algoritmos de procesamiento de imágenes, ha contribuido al uso 

de cámaras para el desarrollo de los ADAS. Las cámaras pueden detectar patrones para 

identificar vehículos como peatones o amenazas, y realizar acciones que respondan a este 

riesgo. Las cámaras son utilizadas en sistemas de asistencia al estacionamiento, monitoreo del 

comportamiento del conductor, y en funciones de velocidad de crucero adaptativo. o ACC por 

sus siglas en inglés. 
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 1.1.2  Sistemas ADAS desarrollados en vehículos modernos. 

Los vehículos modernos son equipados con estos sistemas que permiten mejorar la 

seguridad, confort, y eficiencia al conducir. Su desarrollo ha mejorado conforme la tecnología 

avanza y se realizan avances software como algoritmos de clasificación, como en hardware en 

el desarrollo de sistemas embebidos y de sensores (Neumann, 2024). A continuación, se 

mencionan las funciones relevantes, tecnologías implementadas cómo se utilizan dichos 

sensores para la implementación de dichas funciones ADAS. 

1.1.3  Velocidad de Crucero Adaptativo (ACC) 

El ACC es un sistema de control longitudinal que modifica la velocidad del vehículo 

hospedador, aumentándola o disminuyéndola en función de la proximidad que se encuentren 

en frente de él o en su parte posterior. En la Figura 1 se muestra un ejemplo gráfico de esta 

función. 

 

 

Figura 1. Ejemplo de ACC (Neuman, 2024). 

 

Los métodos utilizados son los basados en modelos de control predictivo (MPC) como 

el desarrollado por Wei et al. (2025), que utiliza pesos dinámicos que se modifican en función 

del estado del tráfico y la velocidad del hospedador mejorando el confort y la predicción 
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dinámica para mayor estabilidad en entornos variables a costa de un mayor costo 

computacional. Manolis et al. (2020) desarrollan una estrategia de ACC en tiempo real que 

ajusta la velocidad mediante control jerárquico mejorando el tiempo de respuesta y estabilidad 

del vehículo en maniobras rápidas en entornos reales aplicable en autopistas, con eficiencia 

energética y confort. K. Lee & Lee (2025) utilizan un PD de tiempo constante, estableciendo 

condiciones necesarias para selección de sus ganancias y logrando estabilidad individual y de 

cadena, validado en simulación. Z. Yang et al. (2021) Utilizan un control jerárquico con MPC 

y un control activo de rechazo de perturbaciones, mejorando así el seguimiento con menos 

oscilaciones. Yu et al. (2025) utilizan un MPC con un Predictor Smith para compensar retardos 

para un modelo longitudinal en simulación, reduciendo oscilaciones y mejorando estabilidad. 

En los desarrollos de estos sistemas se encuentran que la mayoría de ellos dependen de radares 

y sensores LiDAR, además de uso de MPC para la implementación en simulaciones. 

1.1.4  Mantenimientos de Carril  

Esta función (Figura 2) tiene como objetivo incrementar la seguridad para ayudar a 

mantener el vehículo en el carril, corrigiendo la dirección.  

 

 

Figura 2. Ejemplo gráfico de sistema LK (Neuman, 2024).  
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Investigaciones como el desarrollado por Cheng et al. (2025), donde utilizan 

aprendizaje por refuerzo profundo con enfoque fin a fin para decidir el ángulo de dirección a 

partir de imágenes de cámara, implementándolo en simulación y entornos reales a escala, 

adquiriendo una base de datos propia, obteniendo una detección LK eliminando la dependencia 

de modelos cinemáticos complejos. Xie et al. (2023), utiliza el filtrado adaptativo y detección 

online que actualiza parámetros dinámicamente, adquiriendo imágenes con visión monocular y 

fusión de datos para ajustar coeficientes de líneas de carril en tiempo real, identificando los 

carriles en zonas urbanas y autopistas. Y. Jeong, (2022) utiliza una red neuronal recurrente con 

celdas de aprendizaje de tiempo corto y largo, recolectando imágenes en autopistas. Redujo 

desviaciones laterales y mejora la respuesta en presencia de vehículos adyacentes e 

introduciendo un enfoque interactivo que imita las decisiones humanas. También Na et al. 

(2025) muestran su metodología que realizan detección de carriles con librerías como YOLOv5 

y adquisición de imágenes con cámaras internas, externas frontales y traseras, junto con 

aumento de datos. Como se muestra en esta tecnología, las cámaras brindan una solución 

económica y fiable en entornos de realidad virtual para implementación a escala o en entornos 

reales como carreteras, con la desventaja de que todavía dependen de sensores LiDAR para su 

implementación, encareciendo la implementación de estos sistemas.  

1.1.5  Detección de punto ciego  

Otro sistema de asistencia avanzado es el sistema de detección de punto ciego (BSD, 

por sus siglas en inglés). Esos sistemas son designados para minimizar el riesgo de colisión 

vehículos estándar, pequeños o peatones en puntos difíciles de detectar por el conductor, 

conocidos como puntos ciegos (Figura 3).  
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Figura 3. Ejemplo representativo de BSD (Neuman, 2024). 

 

Y. Lee & Park (2025) implementan una combinación de funciones de BSD y LK, 

incorporando una cámara trasera con YOLOv9 con un filtro de Kalman para identificación de 

carriles y de objetos, adquieren una base de datos de 12,537 imágenes en carreteras urbanas y 

autopistas con una cámara gran angular estándar. Muzammel et al. (2022) fusionan 

arquitecturas de redes neuronales convolucionales (CNN, por sus siglas en inglés) ResNet50 + 

ResNet101 y redes CNN de su autoría integradas a una red neuronal recurrente rápida. Utilizan 

una base de datos de 3,000 imágenes propias ubicadas en espejos laterales de buses y una base 

de datos llamada LISA de vehículos. Kim et al. (2023) desarrollan un sistema BSD basado en 

radar de onda continúa modulada en frecuencia con antenas de microstrip para cubrir la 

desventaja de las cámaras cuando se utilizan en climas de niebla/lluvia en entornos de realidad 

virtual y escenarios reales básicos. H.-S. Jeong & Kim (2025) utilizan un anillo de 8 sensores 

ultrasónicos junto con algoritmos de filtrado y compensación ambiental en entornos de lluvia y 

niebla, alertando en lluvia intensa a 1 m y en niebla a 2 m. Zhao et al. (2019) implementan una 

CNN ligera bloque tipo Sep-Res-SE de clasificación binaria con una base de datos propia de 

10,000 imágenes en un vehículo lateral, dando solución a la dependencia de sensores costosos 

como radares o LiDAR. Se puede apreciar que las cámaras son una opción viable, para el 

Punto 

Ciego 

Punto 

Ciego 
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desarrollo de detección de objetivos, además de dotar de escenarios específicos con la 

adquisición de bases de datos para diferentes entornos.  

1.1.6  Asistente para Frenado de Emergencia:  

EBA (por sus siglas en inglés) es un sistema que reacciona automáticamente en 

situaciones de frenado repentino si una amenaza por colisión es detectada, reduciendo los 

tiempos de reacción del conductor o del mismo sistema como las cifras registradas en países 

como el Reino Unido se estima que la implementación de estos sistemas reduciría en un 23.8% 

sus accidentes de tránsito (Masello et al., 2022), y un 13.2% en China (Tan et al., 2020). L. 

Yang et al. (2022) plantean los procesos que involucran como una etapa normal, advertencia 

temprana (alerta visual y auditiva), y frenado automático. Identifican los factores que afectan 

el desempeño de los EBA como la tecnología y forma del vehículo (sensores, ángulo de visión, 

errores del sistema, retardos de frenado, capacidad de deceleración y algoritmos 

implementados), el estado del conductor (estilo de conducción, confort, destreza) y factores del 

entorno (clima, iluminación, tipo de terreno, pendientes). En la literatura reciente se abarcan 

distintos enfoques que abarcan desde arquitecturas predictivas hasta modelos híbridos de 

control. En la literatura reciente se cubren distintos enfoques que abarcan desde arquitecturas 

predictivas hasta modelos híbridos de control. Shaout & Castaneda-Trejo (2025), utilizan un 

control difuso adaptativo modelado en escenarios y validado por simulación, como alternativa 

más flexible que los PID tradicionales, logrando frenados más estables y reducción de distancia 

de detención y menor bloqueo de ruedas teóricamente, también Gunjate & Khot (2023) utilizan 

el control difuso y modulación por ancho de pulso (PWM) para la integración de EBA a 

Sistemas de Antibloqueo de Frenos (ABS, por sus siglas en inglés), recabando información y 

haciendo simulaciones comparativas encontrando una reducción en distancia de frenado con 

mayor estabilidad reduciendo una distancia de frenado a 26 m con una velocidad de 80 km/h. 

Hu et al. (2025) realizan un trabajo en un entorno con múltiples escenarios de tráfico simulados 

de evasión de colisión en el cual desarrollan un modelo de evasión de colisiones proactivo 

basado en reglas implementado en un modelo de distancia de seguridad para vehículos 

frontales, con un control de velocidad de crucero adaptativo y aprendizaje por aprendizaje de 

refuerzo profundo, logrando tasa de éxito en evitación de colisiones frente a modelos 

tradicionales. Deo et al. (2021) realizan una comparación en las arquitecturas de fusión de 

sensores centralizada (OCSF) y descentralizada (ODSF) con cámaras y LiDAR, utilizaron el 
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algoritmo YOLOv3 para detectar objetos en imágenes, y DBSCAN para identificar objetos 3D 

en cajas y un filtro de Kalman no lineal, usando una base de datos KITTI y validando su 

funcionamiento en el entorno virtual ROS, generando una alerta ante la presencia de un objeto 

enfrente del vehículo a 5 m. Teniendo como resultado una precisión del 64% de precisión 

promedio media (mAp) con OCSF y un tiempo de latencia de 32.5 ms, y una precisión de 70% 

mAp con ODSF y una latencia de 48.5 ms. Esta investigación genera un aporte a la combinación 

de sensores como cámaras y LiDAR pero no toman a consideración la velocidad del vehículo, 

además de dejar su investigación solo en simulación. Losada et al. (2023) proponen un sistema 

combinado llamado OPREVU-AES que integra un frenado autónomo de emergencia y una 

dirección automática de emergencia (AES) para maniobras evasivas, y se integran estos para 

tomar decisiones como frenar o esquivar según sea la situación. Se simula un Hyundai Ioniq 

2020 en Carsim calibrando su respuesta de frenado dinámico y dirección, definiendo toma de 

decisiones a velocidades de 40-70 km/h y distancias de 12-24 m según la velocidad, integran 

un árbol de decisión basado en datos de Realidad Virtual (VR) de peatones que permitía al 

sistema decidir entre frenar o esquivar según la reacción del peatón, utilizando sensores como 

cámaras y radares para detectar carriles, puntos ciegos y obstáculos laterales en su entorno 

virtual. Usaron escenarios que se presentaron en 40 accidentes peatonales reales en Madrid y 

se recrearon estos en una herramienta de reconstrucción de accidentes reales llamada PCCrash 

considerando 3 casos: sin ADAS, con frenado automático y su sistema OPREVI-AES. En el 

caso sin ADAS tuvo una efectividad de 0% (por ser el control), con el AEB comercial tuvo un 

53% de efectividad, y con su sistema OPREVI-AES lograron una disminución de accidentes 

hasta el 77.8%. Por su parte, Dai et al. (2024) enfatizan lo importante que es la detección de 

objetos para vehículos autónomos, proponen detección de objetos con sensores LiDAR y 

cámaras digitales. Realizan la detección con YOLOv5 para imágenes y PointPillars para nubes 

de puntos, intersección de unión, teoría de Dempster–Shafer mejorada, y finalmente 

seguimiento con un DeepSORT mejorado con Filtro de Kalman sin estela. Utilizan una base de 

datos con imágenes propias de alrededor 700 imágenes de un recorrido en un campus 

universitario, además de utilizar la base de datos KITTI, obteniendo un 93% de efectividad en 

detección de vehículos y 95.4% de peatones de día, y de noche 94.1% de autos y 92.5% peatones 

de noche. Si bien se obtuvieron métricas prometedoras, no mencionan si se piensa aplicar en 

algún sistema ADAS. Gulino et al. (2023) analizan un sistema ADAS adaptativo que combina 
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frenado y dirección para minimizar el riesgo de lesiones en escenarios críticos de “salida de 

carril” con colisión inminente en un entorno virtual. La simulación consta de dos vehículos 

desplazándose a 50 km/h, se realiza el monitoreo de sensores LiDAR y cámaras de un vehículo 

“Ego” con un algoritmo denominado “Software en el lazo” el cual monitorea tres casos: Sin 

intervención, frenado automático de emergencia (AEB, por sus siglas en inglés) y Lógica 

adaptativa para disminuir el riesgo de lesión, reudiendo un riesgo de lesión hasta 40% 

comparado con el AEB. Aoki et al. (2024) atacan la problemática de los accidentes ocasionados 

en intersecciones debido a los giros a la derecha (cerca de un 40% de los accidentes en cruces), 

e identifican que el problema ocurre cuando otro vehículo aparece repentinamente. Proponen 

un sistema de asistencia al conductor proactivo, que predice el riesgo de colisión en una curva 

triclothoidal (Un giro continuo del vehículo sin cambios bruscos de curvatura) implementado 

en un vehículo hospedador que tiene un sensor LiDAR montado en la esquina delantera 

derecha, El sistema proactivo modifica la velocidad del vehículo de manera gradual, calculando 

velocidades críticas como la velocidad de seguridad y la velocidad de escape en función de si 

el vehículo se encuentra en la zona de riesgo que ellos definen, realizan las pruebas en 

simulación 441 veces en el software IPG CarMaker® con escenarios distintos, variando la 

velocidad que un vehículo irrumpe el trayecto del hospedador (30-50 km/h) y su posición inicial 

(0 - 40m), logrando evitar un 100% de las colisiones en el escenario propuesto. Lai & Yang 

(2023) detectan el problema que tienen los sistemas automáticos de frenado de emergencia 

(AEB) actuales pueden evitar colisiones frontales, pero en carreteras curvas ven comprometida 

la pérdida de estabilidad lateral, debido a esto desarrollan un sistema de control integrado 

longitudinal y lateral para vehículos inteligentes, el cual combina un AEB con un asistente de 

mantenimiento de LK. El AEB utiliza el parámetro de tiempo estimado a colisión (TTC) para 

determinar un frenado óptimo y decidir si emitir una alarma audible si es menor a 2.6 s o mayor 

a 1.6 s, o si es menor que 1.6 s, activar gradualmente el freno. Mientras que el LK utiliza la 

desviación lateral y el ángulo de guiñada (yaw, por su nomenclatura en inglés). Realizan 

pruebas del sistema AEB en solitario, AEB y LK por separado, e integrados con simulaciones 

en Matlab/Simulink–PreScan–CarSim®, a velocidades de 50 y 60 Km/h, con radios de 

curvatura de 60, 90 y 120 m, teniendo un total de 18 pruebas, teniendo como resultado la 

evasión de colisiones frontales en todos los escenarios analizados, pero con el AEB en solitario 

teniendo un desplazamiento lateral máximo de 1.72 m, el AEB y LK independientes obtuvieron 
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un desplazamiento lateral de 0.29 m y el AEB-LK integrados logró una desviación lateral de 

0.21 m. Wang et al. (2025) desarrollaron un sistema de detección tridimensional orientado a 

vehículos autónomos mediante la fusión de sensores LiDAR y cámaras, para mejorar la 

precisión en la identificación y localización de objetos al combinar imágenes 3D obtenidas con 

LiDAR e imágenes 2D capturada por la cámara. Para lograrlo, implementaron una arquitectura 

de aprendizaje profundo que integra dos redes especializadas: PointNet++, para extraer 

características espaciales de las nubes de puntos, y ResNet-18, para obtener características 

visuales de las imágenes. Ambas salidas se combinaron a través de un módulo de atención 

SENet, que pondera los canales más relevantes antes de ingresar a una red de detección basada 

en puntos centrales, capaz de estimar el centro, orientación y dimensiones de cada objeto. El 

modelo fue validado en el conjunto de datos nuScenes y posteriormente probado en un vehículo 

real equipado con un LiDAR RoboSense RS-Helios y una cámara SONY IMX264, alcanzando 

una precisión promedio (mAP) del 64.5 % y un puntaje de detección de nuScenes (NDS) de 

63.7, con un tiempo de inferencia de 147 ms por predicción. En su trabajo de Liu et al. (2025) 

se aborda la necesidad de contar con métodos de evaluación más precisos y adaptativos para 

los sistemas de AEB en vehículos inteligentes conectados, ya que enfoques tradicionales se 

basan en ponderaciones estáticas que no toman en cuenta la variación del entorno (como la 

velocidad del vehículo o la adherencia del pavimento), ni vinculan los modelos teóricos con 

pruebas experimentales reales. Por ello, los autores proponen un método integral de evaluación 

basado en el Proceso Analítico Jerárquico de Peso Dinámico (DWAHP) acoplado a una 

plataforma de Vehículo-en-el-lazo (VIL) que permite ajustar los pesos de los indicadores de 

seguridad, fiabilidad y confort según las condiciones dinámicas de conducción. Realizaron una 

co-simulación entre MATLAB/Simulink y CarSim, modelando escenarios de tráfico tipo E-

NCAP, realizan una validación experimental en una estación de pruebas VIL como en pruebas 

reales con un Volvo S90L, equipado con el sistema denominado “City Safety” de fusión 

cámara-radar y sensores ópticos Kistler para medir velocidad, aceleración y distancia al 

obstáculo. En las pruebas, se utilizó un maniquí móvil que simulaba el cruce de un peatón en 

una intersección, mientras el vehículo circulaba a velocidades de 20, 30 y 40 km/h sobre 

pavimento seco. Los resultados mostraron que el sistema AEB evitó completamente la colisión 

a 20 y 30 km/h con tiempos de intervención de 1.79 s y 1.88 s, pero a 40 km/h impactó al peatón 

con una velocidad residual de 20.7 km/h, mostrando la influencia de la velocidad en la 
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capacidad de respuesta del sistema. En conjunto, el método DWAHP-VIL logró una 

consistencia del 99.5% entre simulación y prueba real (desviación global del 0.51%), 

demostrando su eficacia para evaluar el desempeño del AEB bajo condiciones dinámicas de 

conducción. Una vez revisado el estado del arte de las tecnologías en sistemas ADAS, además 

de los sensores, funciones como EBA que es una parte objeto de estudio de este Trabajo de 

Tesis. Se identifica la necesidad de desarrollar un sistema EWA que identifique y alerte sobre 

posibles situaciones de riesgo como la presencia de objetivos que puedan presentar una posible 

colisión frontal para, en un futuro, poder realizar un sistema un sistema activo como el EBA.  

1.2 Justificación 

De acuerdo con la Organización Mundial de la Salud (OMS), se estima que hubieron 

1.19 millones de muertes a causa de accidentes de tránsito en 2021; alrededor de 15 accidentes 

por cada 100,000 habitantes Según datos del 2019 de la OMS, los accidentes de tránsito siguen 

siendo la principal causa de muerte en personas jóvenes de entre 5 a 29 años, y la doceava causa 

de muerte considerando todo el espectro de edades (World Healt Organization, 2023). Por su 

parte, en México, en el periodo de 2015-2020 (Salud, 2021), presenta un número de 13,630 

siniestros, donde los peatones muestran ser los más afectados con mayor porcentaje de 

fallecimientos, 2,536 atropellamientos fatales (18.6 %), seguidos por ciclistas con 111 (0.8%) 

y otras con 27 (0.2%). Además, se considera que muchos de estos accidentes son causados por 

los propios errores humanos, ya sea por falta de concentración en la conducción, la alteración 

de sus sentidos debido al cansancio o la ingesta de sustancias, o por la ocurrencia de eventos 

imprevistos. En consecuencia, los conductores no logran tomar acciones correctivas a tiempo 

cuando reciben un estímulo visual, teniendo en cuenta que el tiempo promedio de reacción en 

humanos es de aproximadamente 250 a 300 ms, tomando en cuenta que tienen su total atención 

en la conducción (Jain et al., 2015). Con estos datos y el estado del arte, se muestra que el 

desarrollo de los sistemas ADAS, en especial los sistemas de que generen alertas ante posibles 

impactos o eviten colisiones, es una necesidad para crear vehículos más seguros y salvaguardar 

la vida de los usuarios (conductores) y de los peatones, delegando las tareas de control o toma 

de decisiones a dichos sistemas inteligentes. Estos sistemas integran tecnología de vanguardia 

como lo son los algoritmos de clasificación, redes neuronales, sistemas embebidos, sensores de 

visión, proximidad, radares, etc. Por esto, el presente proyecto de Tesis se centra en el desarrollo 

de un método para un sistema ADAS de Alerta de Frenado de Emergencia (“EWB: Emergency 
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Warning Breaking”, por sus siglas en inglés), incorporado al vehículo eléctrico de la Facultad 

de Ingeniería, de la Universidad Autónoma de Querétaro, campus, San Juan del Río, para 

detectar obstáculos estáticos (conos y vehículo falso ) y dinámicos (dummies de peatones), el 

cual robustecerá los sistemas del vehículo dotándolo de cierto nivel de autonomía y además de 

realizarlo en una plataforma de código abierto y accesible económicamente en comparación 

con los sistemas desarrollados actualmente, cabe mencionar que la etapa de pruebas del sistema 

mayormente se realizaran en un vehículo de pruebas bajo condiciones controlada antes de 

realizar una implementación en el vehículo eléctrico. Mediante la validación del sistema se 

abrirá una nueva línea de investigación en la institución que permita promover el desarrollo de 

tecnologías innovadoras en esta área, y contribuir a la investigación para disminuir la tasa de 

accidentes y siniestros que afectan a la sociedad. También, el proyecto de Tesis aporta a los 

programas nacionales estratégicos (PRONACES) en el apartado de Salud y Seguridad Humana, 

al generar un sistema de asistencia de alerta para el frenado de emergencia. 

1.3 Descripción del problema 

En México, la mayoría de los accidentes son ocasionados por errores humanos, basado 

en datos del informe de seguridad vial de la secretaría de salud (Salud, 2021). Los sistemas de 

frenado de emergencia autónomos han demostrado que, en efecto, han reducido la cantidad de 

incidentes con peatones (Tan et al., 2020b). A pesar de esto y de la literatura revisada, se 

identifican que las principales problemáticas que se presentan para el desarrollo de este 

proyecto de Tesis es el tiempo de cómputo al utilizar algoritmos de DL en investigaciones 

similares es un factor importante para considerar, como también lo es el tiempo de respuesta 

desde que el sistema envía la alerta visual hasta la acción humana. También, que el desarrollo 

de los sistemas ADAS se concentran mayoritariamente fuera de México, debido a que muchos 

de estos requieren una gran cantidad de inversión económica, factor que, en la región de 

Latinoamérica, y en México, merma la posibilidad de que la investigación pueda desarrollarse, 

en su mayoría son las industrias privadas las que invierten en la investigación de estos, además 

que esa investigación permanece restringida como capital intelectual. Entonces, para resolver 

esta problemática, se han identificado los siguientes desafíos: 1) Contar con un tiempo de 

respuesta oportuno del sistema EWB, siendo este el TTC, que es el tiempo desde que se genera 

la alerta, hasta que se realiza la acción de frenado determinado en un valor igual o mayor a  

1.2 s (ENCAP, 2023) para pruebas definidas por el Programa Europeo de Evaluación de Autos 
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Nuevos (ENCAP, por sus siglas en inglés). 2) Construir un sistema con elementos de bajo costo 

económico, en comparación con los sistemas desarrollados por la industria privada. 3) Crear un 

sistema de arquitectura abierta para futuros desarrollos, y que la comunidad científica pueda 

ampliar el desarrollo y el conocimiento de esta área de investigación, también contribuyendo la 

solución de la confidencialidad de sistemas desarrollados por el sector privado. 4) Crear una 

puesta experimental segura que no ponga en riesgo a los colaboradores, a terceros ni a objetos 

materiales. 

1.4 Hipótesis 

Es posible desarrollar un sistema de alerta al conductor ante una colisión frontal para 

frenado de emergencia en vehículo automotor basado en un clasificador CNN con imágenes 

digitales como entrada capaz de diferenciar entre 4 clases distintas; ruta libre, peatón, vehículo 

e infraestructura. Así como, realizar pruebas en campo para medir su desempeño y verificar el 

tiempo de anticipación oportuno para evitar la colisión que sea igual o mayor a 1.33 s. 

1. 5 Objetivos 

 En esta sección, se revisa el propósito de la presente investigación, y se delimitan los 

alcances de este proyecto. 

1.5.1 Objetivo General 

Desarrollar y validar mediante pruebas en campo un clasificador de imágenes basado 

en redes neuronales convolucionales (CNN) para identificar cuatro tipos de obstáculos en la 

vía: peatón, vehículo, infraestructura y camino libre, mediante una base de datos propia, 

capturada en un entorno controlado con una pista y un vehículo de prueba, para proveer alertas 

al conductor ante posibles colisiones y formar parte de un sistema ADAS del tipo EWA. 

1.5.2 Objetivos específicos 

1. Desarrollar la puesta experimental que consiste en; una pista de pruebas en el 

estacionamiento de la Facultad de Ingeniería campus San Juan del Río, objetivos a 

detectar como; dummies de adultos, objetos estáticos o infraestructura y vehículos 

falsos para obtener la base de datos y realizar las pruebas del sistema. 
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2. Adquisición de la base de datos usando un sensor de visión, como la cámara digital, en 

el campo de pruebas para la etapa de entrenamiento del algoritmo de DL y también una 

parte de la base de datos para la validación de este. 

 

3. Desarrollar un algoritmo de procesamiento de imágenes y DL, en software de código 

abierto, para segmentación de áreas de interés, la obtención de características, 

clasificación y detección de los objetivos. 

 

4. Integrar los algoritmos de DL y de procesamiento de imágenes, junto con el sistema de 

visión y la alerta visual, montándolo en el vehículo eléctrico, y poder realizar pruebas 

de validación en campo. 

 

5. Realizar la validación del sistema EWB en la pista de pruebas, conduciendo el vehículo 

hacia la zona de detección de objetivos a velocidades definidas, para validar la detección 

tomando en cuenta los parámetros de tiempo de detección, tiempo estimado de colisión, 

tipo de objetivo, la velocidad de crucero, distancia recorrida y distancia de detección. 
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1.5.3 Planteamiento General 

 Para el desarrollo de este trabajo, se toma como base el diagrama de flujo mostrado 

en la Figura 4. 

 

Figura 4. Diagrama del planteamiento general de la metodología a implementar. 



30 

 

En esta, se detallan los pasos requeridos para la identificación de posibles colisiones 

con los objetivos para generar una alerta de emergencia para el frenado. Este sistema se 

implementará en el vehículo eléctrico desarrollado por la Universidad Autónoma de Querétaro. 

La validación del de la metodología propuesta se realizará en un ambiente con condiciones 

controladas, con luz de día clara, puesto a que en la industria es un criterio para la captura de 

datos y las pruebas. 

Se comenzará por acondicionar el vehículo con un sensor de visión y un ordenador, 

que se encargarán de adquirir la base de datos para entrenar el algoritmo de reconocimiento de 

objetos. Además, se revisa el estado del arte para identificar las áreas de oportunidad que son 

consideradas en este proyecto de Tesis. 

Después, se adaptará un estacionamiento como una pista de pruebas, la cual se 

encontrará dentro de las instalaciones de la Universidad Autónoma de Querétaro, en el 

estacionamiento que se encuentra en la Facultad de Ingeniería, campus San Juan del Río. En 

esta, se situará el vehículo eléctrico con el sistema de visión; para realizar tareas de recopilación 

de datos para el post procesamiento y entrenamiento del algoritmo de DL.  

Después, para obtener la base de datos, se realizan pruebas con 4 casos: enviando un 

dummy de adulto y de niño como prueba dinámica, también colocando cilindros de seguridad 

y un vehículo falso de manera estática. Se realizan al menos 10 pruebas por cada caso de 

estudio, con velocidades de 5, 10, 15 y 20 km/h, dando como resultado un total de 160 pruebas. 

Cabe mencionar que las pruebas se realizarán primero en un vehículo de pruebas para validar 

el sistema y después se integrará en el vehículo eléctrico EFACI, en horario que no ponga en 

riesgo a los peatones dentro de la Universidad Autónoma de Querétaro. 

Una vez adquirida la base de datos, se procede a acondicionar el material recabado, 

con el algoritmo de procesamiento de imágenes desarrollado para extraer información que 

pueda ser de interés al momento de entrenar el algoritmo de DL. 

Posteriormente, se procede al entrenamiento del algoritmo de DL desarrollado para la 

detección de los objetivos, con los datos preprocesados por el algoritmo de procesamiento de 

imágenes de la etapa anterior. Con una parte de los datos destinados para el entrenamiento, y 

otra para la validación. 
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La validación del sistema EWB se realizará repitiendo los casos de estudio que la 

obtención de la base de datos, integrando el sistema EWB, el sistema de visión y los algoritmos 

de DL desarrollados en el vehículo eléctrico, se tomará en cuenta el tiempo de procesamiento 

en el que le toma detectar el objetivo y el tiempo estimado de colisión; siendo que el sistema 

tiene que haber generado la alerta en un tiempo estimado de colisión superior a 1.5 s, además 

de considerar la distancia en el que frena el vehículo. 

Finalmente, se procede a reportar los resultados obtenidos durante el desarrollo este 

proyecto de Tesis. Cabe mencionar que la metodología que se desarrollará buscará abrir una 

línea nueva de investigación, donde se podría realizar investigaciones de más ADAS como 

BSD, ACC, EBA, entre otros, para así, aportar a la problemática planteada. 
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CAPITULO II: FUNDAMENTACIÓN 

TEÓRICA 

 En este capítulo se realizó una recopilación de aspectos técnicos y teóricos que deben 

ser tomados en cuenta con el objetivo de generar el sistema de procesamiento de imágenes, y 

el algoritmo de DL, además de la implementación en el vehículo eléctrico EFACI y del 

acondicionamiento del estacionamiento para realizar las pruebas y la validación del sistema 

ADAS. 

2.1 Hardware 

Para poder interactuar con el entorno, se requieren elementos físicos los cuales se 

encargan de efectuar físicamente las instrucciones requeridas por el sistema ADAS, por ello, se 

mencionan los dispositivos de Hardware que se emplearán en este proyecto de Tesis.  

2.1.1 Vehículo Eléctrico 

El vehículo eléctrico (Figura 5) fue una iniciativa de estudiantes y alumnos de las 

carreras de ingeniería Electromecánica (IE) en conjunto con la Ingeniería Mecánica y 

Automotriz (IMA) de la Facultad de Ingeniería (UAQ, 2024) de la Universidad Autónoma de 

Querétaro, en la cual se adaptó un vehículo de combustión a un banco de baterías, haciendo así 

un vehículo eléctrico. Con este proyecto, se busca dar solución a la problemática de transporte, 

ambiental y tecnológica, implementando aplicaciones del área de electrónica, eléctrica, control, 

automatización y diseño mecánico.  
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Figura 5. Vehículo eléctrico de la facultad de ingeniería de la Universidad Autónoma de Querétaro 

(FI, 2024). 

 

Si bien ya tiene integrado varios sistemas que ayudan a su funcionamiento, aún quedan 

varias áreas de oportunidad para desarrollarse, especialmente en el campo de vehículos 

autónomos. Este proyecto de tesis pretende ser el primer sistema ADAS implementado en el 

EFACI, aplicando técnicas de Aprendizaje de Maquina (“ML: Machine Learning”, por sus 

siglas en inglés) y reconocimiento de patrones, se lograría un gran avance en campo del 

desarrollo de sistemas autónomos. 

2.1.2 Cámara Web Logitech© HD Pro C920s 

La cámara Web Logitech© HD Pro C920s (Figura 6) captura imágenes con una 

claridad, nitidez y detalle excepcionales, resaltando colores vibrantes ya que cuenta con una 

resolución máxima de 1080p/30 fps a 720p/30 fps y un enfoque automático. Su enfoque 

automático y corrección de iluminación en alta definición se adaptan al entorno para mantener 

una calidad constante. Cuenta con dos micrófonos ubicados a los lados de la lente de cristal, los 
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cuales registran la voz de manera natural. Su campo de visión de 78 grados permite incluir a 

dos personas en el encuadre. 

 

 

Figura 6. Web Logitech© HD Pro C920s 
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Para este proyecto, se utilizará esta tarjeta para envía la señal de alerta visual del 

sistema EWB, para alertar al conductor de una posible colisión. 

2.1.3 Dispositivos de Alerta 

Como se mencionó en secciones anteriores, los vehículos modernos cuentan con 

sistemas ADAS con distintas funciones, estas pueden ser tan complejas como el evaluar el 

entorno para identificar riesgos teniendo de ejemplo vehículos que estén muy cerca del 

hospedador, y así mantener o cambiar la dirección, conservar una distancia de seguridad, o 

evadir obstáculos repentinos. También pueden ser sistemas un poco menos robustos como una 

alerta visual (como un Led o pantalla), una alerta sonora (un pitido constante) o ambas. Un 

ejemplo de estos son los implementados en los vehículos BMW© serie 3 Berlina y Touring 

(Figura 7), el cual cuenta con un sistema ACC, y el sistema Driving Assistant que realiza la 

función de avisar la posible salida de un trayecto o de una posible colisión (BMW, 2024). 

 

  

a) b) 

Figura 7: a) Control de crucero adaptativo y b) sistema Driving Assistant implementados en los 

vehículos BMW© serie 3 Berlina y Touring (BMW, 2024). 

 

En este proyecto de tesis, se busca generar una alerta para el frenado de emergencia 

ante la presencia de un obstáculo, y también busca implementarse en un sistema EWB en el 

vehículo eléctrico. 

2.1.4 Pista de pruebas 

Las pistas de pruebas (Figura 8) son ambientes controlados en las cuales se 

instrumentan los vehículos de pruebas junto con los dummies, y con estos se ponen a prueba 
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tanto la estructura del vehículo, los materiales con los que está hecho, o algún sistema como 

puede ser de frenado, transmisión, suspensión, tecnologías de materiales, bolsas de aire y, hoy 

en día, reconocimiento y evasión de obstáculos, frenado automático, control y cambios de 

dirección, entre otros (Büyük et al., 2018). 

 

 

Figura 8: Pista de pruebas para sistemas automotrices (Shutterstock, 2024). 

  

Para este proyecto de Tesis se planea acondicionar una pista de pruebas para realizar 

adquisición de imágenes y pruebas del sistema EWB. 

2.1.4 Maniquís de pruebas (Dummies) 

Estos maniquís (Figura 9), también conocidos en la industria como “Crash test dummies” (o 

simplemente “dummies”), son un tipo de muñecos especiales que asemejan a la morfología 

humana, tanto como en forma adulta o infante con características de peso y articulaciones 

similares. Actualmente estos cuentan con diferentes sensores para medir distintas variables que 
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puedan influir en la seguridad del ser humano, como fuerza, velocidad y aceleración de impacto, 

fuerzas de torsión, velocidad, presiones de impacto, para poder recabar la mayor cantidad de 

información posible. Estos son utilizados ampliamente en la industria del transporte para 

desarrollar vehículos y aeronaves, para realizar pruebas de choque y evaluar los posibles daños 

que podría sufrir un ser humano al momento de una colisión en el caso de que es piloto, copiloto 

o pasajeros, para evaluar el desempeño de los sistemas de seguridad, o el nivel de seguridad del 

chasis de un vehículo (Jaśkiewicz et al., 2021). 

 

 

Figura 9. Dummies en prueba de choque (Jaśkiewicz et al., 2021). 

 

Para este proyecto de tesis, se plantea el uso de un dummie de forma adulta para ser 

parte de los objetivos a identificar por el sistema EWB. 

2.2 Software 

Para poder procesar la información, e implementar los algoritmos de identificación de 

patrones, ML, DL, o procesamiento de imágenes, además de generar las instrucciones 

requeridas por el sistema ADAS, se mencionan los dispositivos de Hardware que se emplean 

en este proyecto de Tesis. 
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2.2.1 Matlab© 

Es un entorno de programación y un lenguaje de programación de alto nivel basado 

en C/C++, lo que ofrece un lenguaje de programación fácil de aprender y expresivo, lo que 

permite a los usuarios realizar diseño e implementación de sistemas de control, entrenar 

modelos de machine learning, procesamiento de señales, implementación de algoritmos de 

Deep learning, procesamiento de imágenes y visión artificial, creación de aplicaciones, entre 

otros gracias a sus extensa cantidad de funciones  herramientas. Además, con sus herramientas 

para crear gráficos de alta calidad se puede organizar y visualizar de mejor manera información, 

visualizar datos, obtener información, e identificar patrones y tendencias. También se puede 

generar y ejecutar código en C, C++, CUDA, Verilog, VHDL y texto estructurado, e 

implementarlo en hardware, además de poder interactuar con dispositivos de adquisición de 

datos y controladores de instrumentos (MATLAB, 2024). 

2.2.2 Lenguaje Python© 

 Python© (Figura 10) es un lenguaje de programación de alto nivel fácil de entender 

para programadores principiantes o experimentados en otros lenguajes por su sintaxis limpia y 

legible, con una comunidad activa y actualizada para el desarrollo proyectos junto con 

documentación de este lenguaje. Además de ser código abierto al ser desarrollado bajo una 

licencia aprbada por la Open Source Iniciative (OSI, por sus siglas en inglés), lo cual permite 

su uso y distribución para usos comerciales, como el desarrollo web y de internet, acceso y 

análisis de bases de datos, desarrollo de interfaces gráficas, hasta ML y DL. 
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Figura 10: interfaz de sitio oficial de Python© 

  

Por las características vistas anteriormente, se opta por utilizar este lenguaje para fines 

de código abierto, validación de resultados en entrenamiento de algoritmos de DL e 

implementaciones físicas del sistema EWB. 

2.3 Técnicas de procesamiento de datos 

Para poder delegar la tarea de identificación de patrones, se utilizan técnicas de 

procesamientos de datos obtenidos en imágenes, señales, o datos. A continuación, se mencionan 

las utilizadas en este Proyecto de Tesis. 

2.3.1 Sistemas de procesamiento de imágenes 

Son un conjunto de elementos como cámaras digitales (Figura 11), iluminación y 

unidades de procesamiento, que analizan datos otorgados por fotografías y videos, para adquirir 

información y extraer características como la identificación de personas, objetos, patrones, 

colores, formas, texturas, entre otros aspectos, con técnicas de procesamiento de imágenes.  
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Figura 11. Diagrama a bloques de un sistema de visión (Gonzazel & Woods, 2018). 

En la Figura 11 se muestra el diagrama a bloques que conforman un sistema de 

procesamiento de imágenes el cual consta de una serie de elementos. El primero es el sensor de 

imágenes, que es sensible a la energía radiada por el objeto de interés, y el segundo es el 

digitalizador, que convierte la señal generada por el sensor en una imagen digital, que, en 

conjunto con el hardware especializado, pueden realizarlo a una alta velocidad. La computadora 

es un sistema de procesamiento de manera general, puesto que esta recibe la información en 
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forma de imágenes y video, y por medio de softwares de procesamiento de imágenes dedicados 

a tareas específicas y analizar la información obtenida para la toma de decisiones. El 

almacenamiento masivo es requerido para almacenar imágenes puesto la gran cantidad de 

información que puede contenerse en una sola imagen. Para visualizar la información se 

requiere desplegarlas en pantallas, regularmente utilizadas a color. Los dispositivos de copia 

impresa son los que pueden ser impresoras láser, cámaras de película, dispositivos sensibles al 

calor, unidades de inyección de tinta y unidades digitales, cada una utilizada para distintos 

propósitos. Finalmente, la red y la nube son indispensables para el procesamiento de imágenes 

y acceder a la información no importa la distancia del objeto de análisis (Gonzazel & Woods, 

2018). 

2.3.2 Deep Learning (DL) 

El aprendizaje automático es clave en muchas aplicaciones modernas, desde 

búsquedas web hasta reconocimiento de imágenes y voz. Sin embargo, los métodos 

tradicionales requerían diseñar manualmente algoritmos para la extracción de características 

para transformar los datos en un formato adecuado para su análisis. El DL resuelve este 

problema al permitir que los sistemas aprendan representaciones directamente de los datos 

crudos, mediante múltiples capas de transformación no lineales. Estas capas aprenden 

características cada vez más abstractas, lo que permite reconocer patrones complejos sin 

intervención humana. Gracias a su capacidad para descubrir estructuras en datos de alta 

dimensión, el DL ha logrado avances significativos en diversas áreas, como reconocimiento de 

imágenes y voz, predicción de actividad molecular, análisis de datos científicos y comprensión 

del lenguaje natural. Su éxito se debe a su capacidad de escalar con más datos y potencia 

computacional, y se espera que continúe mejorando con nuevos algoritmos y arquitecturas 

(Lecun et al., 2015).  

2.3.3 Aprendizaje supervisado 

El aprendizaje supervisado es la forma en que funcionan la mayoría de los algoritmos 

de ML y DL para la tarea de clasificación. Para modelos entrenados por optimización, se toma 

una cantidad de datos etiquetados y clasificados para adquirir características relevantes y así 

obtener un modelo de clasificación para las clases, una vez que se adquieren los rasgos 

representativos estas, se utiliza el modelo con un conjunto de datos de prueba y se obtiene la 
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precisión del modelo calculando el error como la diferencia entre el valor real y el valor arrojado 

por la predicción, comúnmente se usa el error cuadrático medio (MSE, por sus siglas en inglés) 

(1) o la entropía cruzada (2). En el DL, se realiza este proceso entrenando un modelo con un 

gran conjunto de datos etiquetados, ajustando sus parámetros (pesos) para minimizar el error 

entre sus predicciones y las etiquetas correctas mediante el descenso de gradiente estocástico 

(SGD, por sus siglas en inglés) aplicado a la función error 𝑧 mostrado en (3) (Lecun et al., 

2015). 

𝑧1 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 (Ec. 1) 

𝑧2 = −
1

𝑁
∑ 𝑦𝑖 log(𝑦̂𝑖)

𝑁

𝑖=1

 (Ec. 2) 

(𝜔𝑖)
𝑡+1

= (𝜔𝑖)
𝑡

− 𝜂
𝜕𝑧

𝜕𝑥(𝜔𝑖)𝑡
 (Ec. 3) 

Donde 𝑧1 y 𝑧2 son funciones de pérdida, 𝑧 es la función pérdida a minimizar, 𝑦𝑖 es el 

valor real de la muestra i, 𝑦̂𝑖 es el valor predicho por el modelo, N es el número de muestras, 𝜂 

es el coeficiente de aprendizaje, (𝜔𝑖)
𝑡
 es el valor actual del parámetro (peso) en la época t, 

(𝜔𝑖)
𝑡+1

 es el valor actualizado por el SGD.  

2.3.3 Redes Neuronales Artificiales 

A diferencia de los clasificadores lineales tradicionales utilizados en ML que solo 

pueden separar datos con regiones simples, dificultando tareas como el reconocimiento de 

imágenes y voz, el DL utiliza redes neuronales profundas (DNN, por sus siglas en inglés) que 

aprenden automáticamente representaciones jerárquicas de los datos. Estas están formadas por 

nodos o unidades de procesamiento (también denominados perceptrones), dichas unidades 

están organizadas en capas de entrada, ocultas y de salida (Shrestha & Mahmood, 2019), en la 

Figura 12a se muestra una representación gráfica y matemática de un perceptrón, y en la 

Figura 12b se muestra una imagen demostrativa de una arquitectura para DNN. 
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a)      b) 

Figura 12. a) Perceptrón simple y b) arquitectura de una DNN. 

 

Cada nodo (o perceptrón) en cada capa recibe un estímulo (o entrada), que es 

multiplicada por su respectivo peso que pondera la relevancia de dicha entrada, después es 

sumada en el nodo en cuestión para someterse a una transformación basada en una función de 

activación, como la sigmoide (4), tangente hiperbólica (5), unidad lineal rectificada (ReLU, por 

sus siglas en inglés) (6) y softmax (7). 

 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
 (Ec. 4) 

𝑓(𝑧) =
𝑒𝑧 − 𝑒−𝑧

𝑒𝑧 + 𝑒−𝑧
 (Ec. 5) 

𝑓(𝑧𝑖) = max(0, 𝑧)  (Ec. 6) 

𝑓(𝑧𝑖) =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗
𝑗

 (Ec. 7) 

Donde z es la suma ponderada de los estímulos que entraron a la neurona (Figura 8a). 

La (Ec. 4), denominada sigmoidal, tiene la característica de que abarca valores de [0,1] y es 

diferenciable en todo su dominio, haciéndola útil para el uso de probabilidades, aunque se 

desvanece el gradiente en valores grandes de z. La tangente hiperbólica (Ec. 5) obtiene valores 

de [−1,1] y acelera la convergencia, pero tiene la misma desventaja de desvanecimiento del 

gradiente. La ReLU (Ec. 6) obtiene valores [0, +∞] es computacionalmente eficiente y reduce 

la el problema del desvanecimiento, su desventaja es que pueden surgir neuronas muertas y el 
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modelo puede dejar de aprender al tener valor en el peso que pueda hacer la entrada siempre 

cero. En cuando a la Softmax (Ec. 7), obtiene valores de [0,1], y se utiliza en la salida de las 

redes neuronales para una clasificación multiclase. Transforma un vector de valores reales (las 

salidas de la última capa de la red) en un vector de probabilidades normalizadas. 

2.3.4 Redes Neuronales de Convolucionales 

Las Redes Neuronales Convolucionales (CNN, por sus siglas en inglés) están basadas 

en la corteza visual humana y empleada en aplicaciones de visión por computadora, 

reconocimiento de video y otras aplicaciones. Pueden identificar, reconocer y clasificar objetos, 

así como segmentar elementos dentro de imágenes. Para entender cómo funcionan las 

arquitecturas CNN es necesario analizar sus componentes y sus aplicaciones. En la Figura 9 se 

muestran los componentes de una CNN (Taye, 2023). En la Figura 13 se muestra una imagen 

representativa de las etapas de una CNN. 

 

 

Figura 13. Componentes de una CNN  

 

Como se puede observar, una CNN está compuesta típicamente de 4 tipos de capas: 

Convolucional, Pooling, Función de activación y Completamente conectada.  
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2.3.4.1  Imagen de entrada 

 Es representada matemáticamente como un arreglo rectangular en el cual tiene 

dimensión largo por ancho, cada casilla en este arreglo es denominado pixel y tiene un valor de 

0-255, y pueden ser 3 arreglos en una sola imagen si es de 3 canales (rojo, verde y azul, en la 

mayoría de los casos). El conjunto de los valores que corresponden a cada casilla en el arreglo 

rectangular da como resultado una imagen que puede ser interpretada por la CNN y clasificar 

objetos con la información almacenada en el arreglo rectangular, o imagen. 

2.3.4.2 Capa de convolución 

Funamental en la arquitectura de una CNN. Está compuesta de un conjunto de filtros 

(o kernels). Un kernel es un arreglo rectangular de mucho menor dimensión, con valores 

enteros. A cada número se le asigna un peso (o valor) dentro del kernel. Los pesos iniciales en 

una CNN son un conjunto de enteros elegidos aleatoriamente, y con el proceso de 

entrenamiento, el kernel puede identificar características específicas desde bajo nivel (como 

bordes y contornos, esquinas y cruces, texturas finas, gradientes de color), mediano nivel 

(“mofits”, regiones de interés o texturas compuestas), y alto nivel (relaciones espaciales, objetos 

completos y sus partes). En la Figura 14 se muestra la operación de Kernel y su interpretación 

más intuitiva. 
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Figura 14. Representación visual de cálculos primarios de un Kernel (Taye, 2023). 

 

La convolución toma una ventana de pixeles de la imagen de tamaño igual al del 

Kernel que se fija (en el caso de la Figura 14, es una ventana de 2x2). Utiliza esta ventana para 

multiplicar el valor correspondiente a su ubicación en el kernel y sumar los valores para obtener 

un valor final, repitiendo estas operaciones a lo largo de la imagen se obtendrá una imagen con 

las características obtenidas por el kernel. En este caso el kernel tiene un salto (Stride), o avance, 

de una casilla para realizar otra operación, esto se puede cambiar para obtener un resultado 
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diferente en la salida, pero podría disminuir la dimensión de la característica que se está 

analizando, además de perder información que podría ser valiosa. Para ello, se puede agregar 

un relleno (Padding) para conservar la dimensión de las características. En la Figura 15 se 

muestran ejemplos de filtros similares a los obtenidos por una CNN con Kernels de dimensión 

3x3. 

 

 

Figura 15: Efectos de diferentes Kernels en una imagen (Taye, 2023). 

 

Cada filtro puede representar una característica específica. Si un filtro se desplaza 

sobre una imagen y no encuentra coincidencias, no se activa. La CNN utiliza este mecanismo 

para identificar los filtros más efectivos para describir los objetos.  
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2.3.4.3  Funciones de activación (No linealidad) 

Seguida de la convolución, una vez realizada la operación de convolución y se calcula 

el mapa de características, la función de activación actúa pixel a pixel para acotar o evitar la 

sobresaturación de los valores de salida. Estas funciones pueden ser la sigmoidal (Ec. 4), 

tangente hiperbólica (Ec. 5) o ReLU (Ec. 6).  

2.3.4.4  Pulido (Pooling) 

A veces se puede La capa de Pooling se utiliza para reducir la dimensionalidad de los 

mapas de características obtenidos por los Kernels, estos de igual manera toman un tamaño de 

ventana y toman la muestra más significante que decida tomar el usuario, estas pueden ser 

máximo, mínimo o promedio. En la Figura 16 se muestra un ejemplo de dicha operación.  

 

 

Figura 16: Ejemplos de operaciones de pulido. 

 

Así, se logran discriminar valores que no resulten ser relevantes en los mapas de 

características, disminuyendo así la carga computacional antes de que pasen a la clasificación 

en la capa completamente conectada. 
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2.3.4.5  Capa completamente conectada (FCL) 

Similares a las ya mencionadas en secciones anteriores, se encargan de analizar las 

características más importantes que han conformado los mapas de características resultantes. 

Se emplea una Red Neuronal Artificial para la clasificación de las clases en cuestión, teniendo 

como capa de entrada un vector resultante de “aplanar” los mapas de características, seguido 

de capas intermedias para realizar tareas de clasificación y como capa de salida la clase 

correspondiente a la que pertenece ese mapa de características. 
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CAPÍTULO III: DESARROLLO DE 

SISTEMA ADAS PARA ALERTA DE 

FRENADO EWA 

 

Tomando como referencia la Figura 3 para desglosar la metodología empleada para 

este proyecto de tesis. Se comenzará por acondicionar el sistema de visión al vehículo 

hospedador para la adquisición de imágenes de los objetivos (peatón, infraestructura, vehículo, 

camino libre). Posteriormente se acondicionará la pista de pruebas para y capturar las imágenes 

con el sistema de visión desde la perspectiva del vehículo hospedador para entrenar la CNN 

que se encargará de identificar el tipo de objetivo, modificando el número de kernels, capas de 

convolución, numero de neuronas, épocas para el entrenamiento. Luego, se procederá a realizar 

la prueba de sistema EWA que conjunta el sistema de adquisición de muestras y la CNN 

entrenada para su clasificación y alerta, estas pruebas consistirán en una puesta experimental 

basada en reglamentos viales, velocidades permitidas en espacios urbanos, tiempos estimados 

de frenado y del estado del arte revisado. Finalmente, se registran los resultados de las pruebas 

para verificar la vialidad de este sistema. 

3.1  Captura de base de datos 

En este apartado se desglosa la metodología empleada para adquirir una base de datos 

que requieran imágenes en escenarios en entornos de vialidades desde la perspectiva de un 

vehículo. La base de datos consta de 4 clases: Infraestructura, Peatón, Vehículo y Camino Libre, 

cada clase contiene 2000 imágenes redimensionadas y en escala de grises para disminuir la 

carga computacional del sistema final. La obtención de esta base de datos y una descripción 

más detallada se muestra en las siguientes secciones.  

3.1.1  Configuración de Vehículo Hospedador 

Se utiliza la cámara Logitech© C920 instalada en el tablero del vehículo hospedador 

para obtener la perspectiva del vehículo en su navegación, con la finalidad de obtener imágenes 
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lo más cercano a los que se pueden presentar en la vida real. También, se agrega un ordenador 

que se encargará de ejecutar el código de captura de imágenes durante la conducción hacia los 

objetivos, este vehículo se muestra en la Figura 17. 

 

 

Figura 17: Acondicionamiento de vehículo hospedador con sistema de adquisición de imágenes. 

 

Con el vehículo acondicionado, se obtienen imágenes que se asemejan a escenarios 

reales vistos desde la perspectiva del conductor, a velocidades establecidas con base en el 

reglamento de tránsito. 
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3.1.2  Adecuación de pista de pruebas para captura 

Para tener un ambiente controlado, y no poner en riesgo a personas o infraestructura, 

se acondiciona el estacionamiento ubicado en la Universidad Autónoma de Querétaro, plantel 

San Juan del Río. Esta se divide en zonas como se muestra en la  

Figura 18. 

 

 

 

a) b) 

Figura 18: a) Acondicionamiento de la pista de pruebas con las regiones de captura de imágenes en el 

estacionamiento de la Facultad de Ingeniería y b) ejemplificación de escenario de peatón caminando 

para la captura de imágenes 

 

El escenario de las imágenes correspondientes a la clase de Peatón e Infraestructura 

se toma en cuenta a una persona desplazándose por la zona de captura de peatón y un dummie 

adulto estático, variando el ángulo de captura mostrados con los puntos B a F y conduciendo el 

vehículo hospedador en hasta desde estos puntos acercándose al punto A con velocidades 

variables de 0 a 10 km/h, tomando en cuenta que la velocidad relativa es la misma del vehículo 

hospedador dado que ningún objetivo se mueve en dirección al vehículo hospedador. En cuanto 

la detección de Vehículo, se colocan estos objetivos en el punto G y se conducen el hospedador 

desde los puntos H, I y J, hasta el punto G. Cada imagen en formato “crudo” tiene un tamaño 

de 640 × 480 pixeles. 
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3.1.3  Captura de clase “peatón” 

Para capturar la clase de peatón, se considera el área correspondiente en amarillo de 

la Figura 18, donde se desplazan una persona individual y un grupo de 5, 3 y 2 personas, en 

esta área, además de un dummie de adulto estático puesto en el punto A para su captura. Se 

conduce el hospedador de los puntos B a F al punto A capturando imágenes de los peatones en 

movimiento y del dummie estático, en un horario diurno con luz natural clara y despejada. En 

la Figura 19 se muestra un ejemplo de cómo se realiza este proceso 
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a) 

 

b) 

c) 

 

d) 

 

e) 

Figura 19. Captura de imágenes de clase “peatón” a) una persona desplazándose, grupo de b) 2 

personas, c) 3 personas, d) 5 personas desplazándose y e) dummie estático. 

 

Así, se contemplan distintos escenarios que se pudieran presentar en la identificación 

de la presencia de un peatón mientras se conduce en una vialidad urbana. 

3.1.4  Captura de clase “Infraestructura” 

La clase infraestructura consta de un bote de tránsito con reflejante que se coloca en 

el punto A de la pista de pruebas mostrada en la Figura 18. Para la captura de imágenes se 

conduce el hospedador desde los puntos B a F hacia el punto A. En la Figura 20 se muestra un 

ejemplo de la captura de infraestructura con un ángulo de captura. 
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Figura 20: Clase de infraestructura capturada variando ángulo de captura 

 

De esta manera, se toman en cuenta distintos escenarios para la captura del objetivo 

que se podrían presentar en un escenario real. 

3.1.5 Captura de clase “Vehículo” 

La clase de Vehículo consta de dos vehículos colocados en la zona G de la Figura 18 

para ser capturados por el hospedador, desplazándose desde el punto H a j hasta el punto G a 

una velocidad constante. En la Figura 21 se muestra un ejemplo de imágenes capturadas por el 

Hospedador. 
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a) 

 

b) 

Figura 21: Vehículos capturados para la clase “Vehículo”. 

 

Así, se contempla un último objetivo para las pruebas para el sistema EWA. 

3.1.6  Captura de “Ruta Libre” 

Para identificar cuando el vehículo pueda conducir de manera segura sin que el 

sistema EWA se active, se realiza una adquisición de imágenes que no contendrán ninguno de 

los objetivos presentes, para esto, se utiliza una pequeña modificación a la forma de conducir 

el vehículo en la pista de pruebas. En la Figura 22 se muestra el escenario para la captura de la 

clase de “Camino Libre”. 

 

Figura 22. Zona de adquisición de imágenes para clase ruta libre 
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Para esta clase, se contempla en movimiento al vehículo desplazándose a velocidad 

constante del punto A al punto B, adquiriendo imágenes con un tiempo de muestreo de 100 ms 

entre muestra. En posteriores secciones se mostrará el proceso del algoritmo de captura para las 

imágenes de la base de datos. 

3.1.7  Algoritmo de captura automatizada de imágenes 

Para la captura de las imágenes de los objetivos que formarán parte de la base de datos de 

manera automática se desarrolla un algoritmo el cual tiene como argumentos: el número de 

imágenes a obtener y el intervalo de tiempo en el que ocurre cada captura, este proceso se 

muestra en la Figura 23. 

 

 

Figura 23: Diagrama de flujo para captura de imágenes de manera automática. 
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La captura de las imágenes comienza definiendo el número de imágenes que se 

requieren y el tiempo entre captura. Se accede a la cámara de video colocada en el tablero del 

vehículo para comenzar a tomar captura de imágenes, comienza con el indicador i=0 que 

representa la imagen actual que se está tomando, y si el indicador i es el menor que el número 

de imágenes toma una captura y la almacena como “imagen_i”, e incrementa el índice hasta 

conseguir la N imágenes. Durante este proceso, existe una bandera de control q que si se 

presiona interrumpe el proceso y libera la cámara y termina la tarea. Este código se configura 

para adquirir las 2,000 imágenes desde el punto de vista del vehículo, con un intervalo entre 

captura de 100 ms. En la Figura 24 se muestra una secuencia de 1.2 segundos donde se 

obtuvieron 12 imágenes con dicho tiempo de captura. 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

g) 

 

h) 

 

i) 

 

j) 

 

k) 

 

l) 

Figura 24: Secuencia de imágenes capturadas desde el punto de vista del vehículo hospedador. 

 

De esta forma, se consigue obtener un gran número de imágenes que se requieren para 

el entrenamiento de algoritmos de clasificación, adecuándolos al contexto específico de su 
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aplicación y de su entorno. Y en la Figura 25 se muestran las imágenes capturadas de todas las 

clases. 

 

Figura 25: Imágenes capturadas en la etapa de adquisición de datos. 

 

Estas imágenes se utilizan como clases para el entrenamiento de un clasificador de 

DL, modificando el tamaño y aplicando una escala de grises a estas para su clasificación.  

3.2  Topología de CNN para clasificación 

Para validar si el proceso de umbralización es funcional para la etapa de clasificación, 

es entrenando una CNN, la cual tiene como entradas las 4 clases analizadas en este trabajo de 

Tesis. En la Figura 26 se muestra el proceso a seguir para su validación. 
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Figura 26: Validación de acondicionamiento de imágenes por medio de una red Neuronal 

Convolucional. 

 

Para esta CNN, se utiliza una red con una etapa de convolución que tiene como entrada 

una imagen de 28 × 28 pixeles de un solo canal con valores de 0 a 255 (Escala de grises), 

seguido de una capa de convolución con 15 filtros de tamaño 3 × 3, con función de activación 

‘ReLU’ y un padding de ‘same’, después entra a una capa de pulido máximo con un tamaño de 

ventana de 3 × 3 y un salto (o “Stride”) de 2. Después transforma (aplana) el modelo para 

convertir el resultado de las capas de convolución 2D a un vector 1D de tamaño 1 × 196. 

Posteriormente, entra a una etapa de neuronas completamente conectadas con 128 neuronas y 

una función de activación ReLU. Luego pasa por una tasa de apagado (“Drop Out”) del 50% 

que inhabilita aleatoriamente la mitad de las neuronas para reducir el sobreajuste y evitar que 

el modelo dependa de ciertas conexiones específicas. Finalmente, en la capa de salida se 

encuentran 4 neuronas de salida con función de activación ‘softmax’. En la Figura 27 se 

muestra la topología de la CNN propuesta. 
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Figura 27: Arquitectura de CNN para detección de 4 clases. 

 

Como se observa en la Figura 27, se aprecia que es una arquitectura con poca carga 

computacional en cuanto a complejidad de capas para esta aplicación.  

3.3  Histograma para filtrado de señal de salida 

Por cuestiones de interferencia de diversos factores como luz o interferencias, puede 

que la salida del clasificador sea una clase que no es la esperada cuando se incorpora al sistema 

de monitoreo EWA. Es por ello que se realiza un programa que monitoree la salida que arroja 

el clasificador, y acumule cada una durante un número de veces específico y arrojando como 

salida el mayor número de veces de la clase que registró en el acumulador. Este proceso se 

muestra en la Figura 28. 
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Figura 28: Diagrama de flujo de función “Histograma” para el filtrado de señal. 

 

El programa tiene como entradas el número “n” de muestras a contemplar antes de 

arrojar una salida, una bandera “conteo habilitado” que activa el proceso de histograma, un 

contador que controla el número de veces que toma una muestra e histograma, el acumulado de 

la clase registrado como “Cuentas” y la “clase detectada” por la CNN. Si se habilita el 

histograma, se monitorea la clase que se detecta y se acumula durante “n” veces, al completar 

el periodo de monitoreo, se verifica qué clase tiene el mayor número de apariciones en el 

clasificador, y arroja como salida esta clase. Si es diferente a la clase “Ruta Libre” se genera 

una alerta de posible colisión, arroja el tiempo empleado en generar toda la clasificación desde 

la activación del histograma, hasta encontrar una clase que pueda ser una colisión con los 

objetivos propuestos en esta investigación.  
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3.4 Algoritmo de EWA 

Una vez desarrollados todos los elementos del código utilizado para la clasificación, 

se implementa en conjunto con el algoritmo de captura y clasificación de imágenes por 

histograma, utilizando imágenes en blanco y negro, escaladas a un tamaño de 28 × 28 pixeles 

para identificar los posibles objetivos que puedan cruzarse en el camino del vehículo 

hospedador (Figura 29). 
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Figura 29: Diagrama de flujo de sistema EWA.  

 

El algoritmo de EWA consiste en el modelo de DL entrenado para identificar 4 clases 

en cuestión previamente entrenado, este utiliza una cámara digital “ID_camara” que se encarga 
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de capturar activamente muestras del entorno desde el punto de vista del vehículo, una bandera 

de control Q que interrumpe todo el programa, un comando “w” que habilita el monitoreo por 

histograma para realizar las pruebas en la puesta experimental. Una vez habilitado el conteo 

haya sido activado cuando se alcanza la velocidad crucero en el punto de inicio, comienza a 

capturar imágenes del trayecto que sigue el vehículo en la pista de pruebas y las clasifica en 

tiempo real, las clasifica y si la bandera de conteo habilitado está activada, realiza la 

clasificación de histograma hasta detectar un objetivo diferente a ruta libre y arroja una alerta 

sonora. 

3.5 Puesta experimental 

Para validar el desempeño del sistema propuesto, se propone una puesta experimental 

que consiste en realizar una conducción del sistema en un entorno controlado a velocidades 

específicas en escenarios definidos, en la Figura 30 se muestra las variables a considerar en 

esta puesta experimental. 

 

Figura 30: Puesta experimental propuesta para el sistema EWA 

 

Las pruebas consisten en delimitar la distancia total 𝑑𝑡𝑜𝑡𝑎𝑙 en la pista de pruebas para 

el trayecto del hospedador a una velocidad 𝑣𝑝𝑟𝑢𝑒𝑏𝑎 definidas con base en el reglamento de 

tránsito para entornos urbanos las cuales son 5, 10, 15 y 20 Km/h, el hospedador ejecutará todo 

este tiempo el algoritmo de EWA para monitorear la presencia de un posible objetivo, se 

calculará la distancia 𝑑𝑝𝑟𝑢𝑒𝑏𝑎 que recorrió el hospedador en función del tiempo el que detectó 

el objetivo en el camino, también, se considera la distancia que restaba para colisionar con el 

objetivo 𝑑𝑑𝑒𝑡𝑒𝑐𝑐𝑖ó𝑛.  
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𝑑𝑑𝑒𝑡𝑒𝑐𝑐𝑖ó𝑛 = 𝑑𝑡𝑜𝑡𝑎𝑙 − 𝑡𝑑𝑒𝑡𝑒𝑐𝑐𝑖ó𝑛 ∙ 𝑣𝑝𝑟𝑢𝑒𝑏𝑎 (Ec. 11) 

𝑡𝑡𝑜𝑡𝑎𝑙 =
𝑣𝑝𝑟𝑢𝑒𝑏𝑎

𝑑𝑡𝑜𝑡𝑎𝑙
 (Ec. 12) 

𝑡𝑐𝑜𝑙𝑖𝑠𝑖𝑜𝑛 = 𝑡𝑡𝑜𝑡𝑎𝑙 − 𝑡𝑑𝑒𝑡𝑒𝑐𝑐𝑖ó𝑛 (Ec. 13) 

𝑡𝑐𝑜𝑙𝑖𝑠𝑖𝑜𝑛 ≥ 1.33 𝑠 (Ec. 14) 

 

Cabe mencionar que, aunque el reglamento de tránsito permite un límite de velocidad 

de 40 km/h se decidió acotar la velocidad del vehículo hasta 20 km/h debido a que: 1) Se 

prefiere evitar el riesgo que puede ocasionar velocidades superiores a esta. 2) La pista permite 

conducir de manera segura solo a 20 km/h, y 3) La distancia que se requiere para alcanzar esa 

velocidad supera longitud de la pista de pruebas. En la Ec. 11 se calcula la distancia de detección 

en función de la velocidad de prueba y el tiempo de detección arrojado por el sistema EWA. 

Ec. 12 calcula el tiempo que tardaría el vehículo en recorrer la distancia de total a la velocidad 

de prueba. Y en Ec. 13 calcula el tiempo estimado de colisión, y si es menor que 1.33s (Ec. 14), 

se considera como una colisión inminente, teniendo así un parámetro para validar la efectividad 

del sistema. Se toma como valor de TTC igual a 1.33s como propuesta sin superar el valor 

mínimo de 1.2s dado por la ENCAP. EWA. En la Figura 31 se muestra la pista de pruebas 

adecuada para las pruebas. 

 

 

 

 

 

Figura 31: a) Pista de pruebas acondicionada para validación del sistema EWA y b) ejemplo real de 

escenario de prueba con clase “Peatón”. 

 

 

 

 

 

a) b) 
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En Figura 31a se muestra la pista de pruebas donde se llevará a cabo los experimentos 

de prueba del sistema EWA como se describió en la Figura 30, y en Figura 31b se muestra un 

ejemplo de una prueba preparada para identificar la clase “peatón”, cabe mencionar que en la 

zona de detección de objetivos se cambian dependiendo de la clase en cuestión analizada. El 

tiempo de procesamiento se considera desde el momento en que la cámara obtiene una imagen, 

cuando realiza las operaciones que se requiere para ajustar la imagen de 640 × 480 pixeles al 

tamaño de 28 × 28 pixeles y escala de grises necesaria para ser clasificada por la CNN. El 

tiempo total de procesamiento se ve influenciado en cuantas muestras se consideran para el 

filtrado por histograma, teniendo así la siguiente ecuación para el tiempo total. 

𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛 = ∑ 𝑡𝑖

𝑛

𝑖=1

 (Ec. 15) 

𝑡𝑝𝑟𝑢𝑒𝑏𝑎 = ∑ 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛 (Ec. 16) 

 

Donde 𝑡𝑝𝑟𝑒𝑑𝑖𝑐𝑐𝑖𝑜𝑛 es el tiempo acumulado entre predicciones 𝑡𝑖 que el histograma 

tarda en realizar n predicciones (Ec. 15) para realizar una detección. Y el tiempo de detección 

en las pruebas 𝑡𝑝𝑟𝑢𝑒𝑏𝑎 (Ec. 16) es el tiempo que tardó en realizar una detección de la clase en 

cuestión. 

3.5.1 Casos de pruebas: Objetivos 

Para las pruebas para detección de objetivos, se considera el escenario cuando se lleva 

a cabo la puesta experimental descrita, conduciendo el vehículo hospedador a las velocidades 

de prueba constantes durante la distancia de conducción, ejecutando el algoritmo de captura de 

imágenes, clasificación y filtrado por Histograma que integran el sistema EWA, generando una 

salida en cada periodo de tiempo hasta detectar un objetivo y emitir una alerta ante una posible 

colisión con el objetivo de prueba. En la Figura 32 se muestran los escenarios contemplados 

para que las pruebas sean exitosas o fallidas. 
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a) 

 

b) 

 

c) 

Figura 32: Consideraciones adicionales para que una prueba sea a) exitosa o b) fallida por 

clasificación incorrecta de objetivo o c) fallida por no alertar en el caso de prueba con “objetivos”. 

En la Figura 32a se considera como prueba exitosa en la cual detecta la clase 

analizada en cuestión (Peatón, en este caso) con un tiempo estimado de colisión (Ec. 14) 

superior a 1.33s y, en consecuencia, fallida es este tiempo es menor, en la Figura 32b se 

considera como una prueba fallida si el tiempo estimado de colisión cumple, pero la clase 

identificada es diferente a la del caso de prueba, y en la Figura 32c se contempla como una 

prueba fallida si el sistema no alerta de una posible colisión. 
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3.5.2 Casos de pruebas: Ruta Libre 

 Para garantizar el funcionamiento del sistema en una navegación segura sin presencia 

de objetivos en la pista de pruebas muestra en la Figura 33, se considera una prueba en el 

escenario mostrado en la Figura 29. 

 

a) 

 

b) 

Figura 33: a) Prueba exitosa de conducción segura o ruta libre y b) prueba fallida al detectar un 

objetivo en una ruta libre. 

En esta prueba, se considera como prueba exitosa si durante todo el trayecto se el 

sistema EWA no detecta ningún objetivo (Figura 33a), y si llega detectar algún objetivo por 

alguna interferencia se considera como una prueba fallida (Figura 33b). Para medir la fiabilidad 

del sistema se realiza un total de 40 pruebas de cada clase bajo condiciones controladas. Además 

de realizar un registro de la latencia y tiempos que tarda en realizar una alerta ante una colisión.   
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CAPÍTULO IV: PRUEBAS Y 

RESULTADOS 

En este capítulo, se muestran los resultados de la implementación del algoritmo de 

adquisición, procesamiento, entrenamiento y clasificación de imágenes mediante la arquitectura 

propuesta de CNN y filtrado por histograma que conjuntan el sistema EWA en las pruebas 

descritas. 

4.1 Resultados del entrenamiento y validación de la CNN 

Al realizar el entrenamiento de la arquitectura de la CNN mostrada, cambiando el 

tamaño de las imágenes de entrada a 28 × 28 pixeles a un solo canal de color (Gris), se entrena 

un modelo de CNN en Matlab© para validar que el procesamiento de las imágenes es viable 

para la clasificación del sistema EWA en tiempo real. En la Figura 34 se muestra el progreso 

del entrenamiento realizado y de la gráfica de la perdida con 4 épocas, optimizador con 

reducción del gradiente estocástico. 

 

 

 

a) b) 

Figura 34: a) Precisión de la CNN implementada con las imágenes adquiridas y b) pérdida durante el 

entrenamiento 

 

Como se puede apreciar, el utilizar imágenes en escala de grises y escaladas se logra 

obtener una precisión del 98.91%, con una pérdida de 5.35% final con 4 épocas y 400 
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iteraciones, además de la disminución de la perdida mientras aumenta la precisión, lo que indica 

que no existen problemas de sobreajuste. Al utilizar un 20% de las imágenes (400 por clase) 

para prueba, se sintetizan los resultados en la siguiente matriz de confusión de las imágenes al 

utilizarlas con la CNN entrenada (Figura 35). 

 

 

Figura 35. Matriz de confusión con 20% de imágenes por clase para prueba de CNN. 

 

Se puede observar que la matriz de confusión tiene un 97.31% de efectividad en 

identificar las imágenes y esto es debido a que las imágenes contienen patrones muy diferentes 

lo que facilita a la CNN identificarlos con alta precisión. Sin embargo, todavía no es posible 

predecir una posible colisión en un entorno real, en consecuencia, es necesario integrar la CNN 

al sistema EWA para la identificación oportuna de los entornos descritos en la puesta 

experimental y medir así su efectividad. 
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4.2 Resultados del desempeño del sistema en pista de pruebas 

En esta sección se presenta la interfaz usada para cada una de las pruebas, así como, 

los resultados obtenidos por cada clase. Al implementar el sistema EWA en el vehículo 

hospedador, se realiza la puesta experimental para ver la precisión al momento de detectar la 

presencia o ausencia de algún objetivo. En la Figura 36 se muestra un ejemplo de la interfaz 

usada para las pruebas del sistema, en este caso corresponde a una prueba de la clase “vehículo”. 
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a) 

 
b) 

Figura 36. Interfaz usada para las pruebas del sistema a) inicio de la prueba a 40 m de distancia del 

objetivo y b) Parte final de la prueba en zona de detección con el vehículo hospedador moviéndose a 

una velocidad de 15 m/s. 

Numero de muestras 
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En la Figura 36a se muestra que el sistema clasifica la entrada como “ruta libre” 

mientras se encuentra en el inicio de la pista a 40 m del objetivo, lo cual es correcto dado que 

no hay una situación de colisión inminente. experimentalmente, se obtuvo un tiempo promedio 

de 50 a 100 ms para capturar una imagen y realizar su clasificación. Y con un numero de 

muestras 𝑛 = 25  para realizar el histograma se obtuvo un tiempo de detección entre 1.6s. En 

la Figura 36b se muestra el momento en que el vehículo es detectado y genera la alerta de 

manera visual en la interfaz y también de manera sonora. En este ejemplo en particular, el 

tiempo total de la prueba es de 6.97s que representa el tiempo desde que el vehículo hospedador 

empieza a moverse hasta que se levanta la alerta, esta prueba se repite 40 veces por cada clase 

con las velocidades descritas en la sección 3.5, el criterio para definir una prueba como pasada 

o fallida está basado en un umbral de tiempo para colisión mayor o igual a 1.33 s, como se 

explica en la sección 3.5. 

4.2.1  Resultados de desempeño del sistema en la clase Peatón. 

En esta sección, se muestra los resultados obtenidos en la puesta experimental descrita 

en la sección 3.5.1.  

En la Figura 37 se muestra de manera gráfica una comparación del TTC contra el 

número de prueba realizada. En la Figura 40 se muestran las comparaciones del número de 

pruebas contra el tiempo estimado de colisión, además de contemplar el criterio de alerta 

oportuna siendo el tiempo ante una colisión inminente, representado con una línea horizontal 

con el valor de 1.33s. Siendo los tiempos menores a este los que no son detectados a tiempo por 

el sistema EWA, además de resaltar con un ovalo rojo aquellos que a pesar de cumplir con el 

criterio de TTC, no cumple con el criterio de detección de la clase en cuestión a analizar y 

tomándolo así como una prueba fallada. 
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Figura 37. TTC obtenido por el sistema EWA en la clase “Peatón”. 

 

Como se puede observar en la Figura 37 que los TTC en las pruebas con todas las 

velocidades son superiores al umbral establecido. Sin embargo, en la prueba 10 correspondiente 

a 15 Km/h se cataloga como una prueba fallida, ya que a pesar de haber cumplido con el criterio 

de TTC, el sistema identificó a la clase como “Vehículo”, como se esperaba si se toma en cuenta 

los resultados de la matriz de confusión en la Figura 35, esto debido a la similitud de patrones 

que existen en la captura de estas imágenes. En la Tabla 1 se muestran los resultados numéricos 

obtenidos la prueba. 
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Tabla 1: Resultados de tiempo de detección en clase “peatón” con una distancia inicia de 40m a 

velocidades definidas 

Prueba 
Velocidad 

km/h (m/s) 

Tiempo de 

prueba (s) 
Alerta 

Tiempo de 

detección (s) 

Distancia de 

detección (m) 

Tiempo a 

colisión (s) 
Resultado 

1 

5 (1.39) 28.8 

Sí 3.81 34.708 24.99 Aprobado 

2 Sí 8.01 28.875 20.79 Aprobado 

3 Sí 5.62 32.194 23.18 Aprobado 

4 Sí 12.5 22.639 16.3 Aprobado 

5 Sí 10.65 25.208 18.15 Aprobado 

6 Sí 11.45 24.097 17.35 Aprobado 

7 Sí 11.93 23.431 16.87 Aprobado 

8 Sí 11.55 23.958 17.25 Aprobado 

9 Sí 12.07 23.236 16.73 Aprobado 

10 Sí 7.16 30.056 21.64 Aprobado 

11 

10 (2.78) 14.4 

Sí 8.23 17.139 6.17 Aprobado 

12 Sí 5.65 24.306 8.75 Aprobado 

13 Sí 9.79 12.806 4.61 Aprobado 

14 Sí 4.15 28.472 10.25 Aprobado 

15 Sí 12.82 4.389 1.58 Aprobado 

16 Sí 8.23 17.139 6.17 Aprobado 

17 Sí 7.28 19.778 7.12 Aprobado 

18 Sí 8.51 16.361 5.89 Aprobado 

19 Sí 2.97 31.750 11.43 Aprobado 

20 Sí 11.68 7.556 2.72 Aprobado 

21 

15 (4.16) 9.6 

Sí 5.55 16.875 4.05 Aprobado 

22 Sí 5.4 17.500 4.2 Aprobado 

23 Sí 5.29 17.958 4.31 Aprobado 

24 Sí 4.56 21.000 5.04 Aprobado 

25 Sí 3.91 23.708 5.69 Aprobado 

26 Sí 4.16 22.667 5.44 Aprobado 

27 Sí 3.54 25.250 6.06 Aprobado 

28 Sí 4.61 20.792 4.99 Aprobado 

29 Sí 4.13 22.792 5.47 Aprobado 

30 No 4.13 22.792 5.47 Falló 

31 

20 (5.16) 7.2 

Sí 4.14 17.000 3.06 Aprobado 

32 Sí 3.57 20.167 3.63 Aprobado 

33 Sí 4.04 17.556 3.16 Aprobado 

34 Sí 3.83 18.722 3.37 Aprobado 

35 Sí 4.37 15.722 2.83 Aprobado 

36 Sí 4.18 16.778 3.02 Aprobado 

37 Sí 3.49 20.611 3.71 Aprobado 

38 Sí 3.59 20.056 3.61 Aprobado 

39 Sí 3.69 19.500 3.51 Aprobado 

40 Sí 4.35 15.833 2.85 Aprobado 

 

Cabe mencionar que el Sistema en la clase “Peatón” detectó correctamente 39 veces 

y solamente 1 prueba fue fallida según los casos tomados en cuenta. 
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4.2.2 Resultados de desempeño del sistema en la clase Infraestructura 

En este apartado se discuten los resultados obtenidos del sistema EWA con la clase 

“infraestructura”. En la Figura 38 se muestra de manera gráfica una comparación del TTC 

contra el número de prueba realizada. 

 

 
Figura 38. TTC obtenido por el sistema EWA en la clase “Peatón”. 

 

 La Figura 38 muestra que el escenario de la clase “infraestructura” tiene dos errores 

en cuanto a la clasificación detectando la clase “Vehículo” correspondientes a la velocidad de 

10 km/h en las pruebas 1 y 2, esto debido a que en la matriz de confusión (Figura 35) muestra 

que con los conjuntos de prueba tiene una efectividad del 100%, se observa también que se 

clasifica la clase de “vehículo” en la clase de “infraestructura”, de igual forma se deduce que es 

por el parecido de los patrones similares que comparten estas clases. Otro resultado muestra en 

la prueba 4 a la velocidad de 20 Km/h no cumple con el criterio del TTC siendo este menor al 

umbral de 1.33 s. En la tabla 2 se muestra el resultado numérico obtenido de las 40 pruebas 

realizadas del sistema EWA con la clase “Infraestructura”. 
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Tabla 2: Resultados de tiempo de detección en clase infraestructura con una distancia inicia de 40m a 

velocidades definidas 

Prueba 
Velocidad 

km/h (m/s) 

Tiempo de 

prueba (s) 
Alerta 

Tiempo de 

detección (s) 

Distancia de 

detección (m) 

Tiempo a 

colisión (s) 
Resultado 

1 

5 (1.39) 28.8 

Sí 18.45 14.375 10.35 Aprobado 

2 Sí 19.17 13.375 9.63 Aprobado 

3 Sí 18.77 13.931 10.03 Aprobado 

4 Sí 18.66 14.083 10.14 Aprobado 

5 Sí 17.764 15.328 11.036 Aprobado 

6 Sí 18.56 14.222 10.24 Aprobado 

7 Sí 20.32 11.778 8.48 Aprobado 

8 Sí 20.95 10.903 7.85 Aprobado 

9 Sí 18.37 14.486 10.43 Aprobado 

10 Sí 19.97 12.264 8.83 Aprobado 

11 

10 (2.78) 14.4 

Sí 12.32 5.778 2.08 Aprobado 

12 Sí 9.5 13.611 4.9 Aprobado 

13 Sí 12.05 6.528 2.35 Aprobado 

14 Sí 12.27 5.917 2.13 Aprobado 

15 Sí 11.9 6.944 2.5 Aprobado 

16 Sí 11.39 8.361 3.01 Aprobado 

17 Sí 6.9 20.833 7.5 Aprobado 

18 Sí 11.9 6.944 2.5 Aprobado 

19 Sí 8.43 16.583 5.97 Aprobado 

20 Sí 8.95 15.139 5.45 Aprobado 

21 

15 (4.16) 9.6 

No 7.5 8.750 2.1 Falló 

22 No 7.5 8.750 2.1 Falló 

23 Sí 4.9 19.583 4.7 Aprobado 

24 Sí 6.46 13.083 3.14 Aprobado 

25 Sí 6.64 12.333 2.96 Aprobado 

26 Sí 6.53 12.792 3.07 Aprobado 

27 Sí 5.21 18.292 4.39 Aprobado 

28 Sí 4.9 19.583 4.7 Aprobado 

29 Sí 6.53 12.792 3.07 Aprobado 

30 Sí 6.7 12.083 2.9 Aprobado 

31 

20 (5.16) 7.2 

Sí 4.9 12.778 2.3 Aprobado 

32 Sí 5.16 11.333 2.04 Aprobado 

33 Sí 5.1 11.667 2.1 Aprobado 

34 Sí 6.76 2.444 0.44 Falló 

35 Sí 4.5 15.000 2.7 Aprobado 

36 Sí 5 12.222 2.2 Aprobado 

37 Sí 5.61 8.833 1.59 Aprobado 

38 Sí 5.33 10.389 1.87 Aprobado 

39 Sí 4.9 12.778 2.3 Aprobado 

40 Sí 5.73 8.167 1.47 Aprobado 

 

Con base en la Tabla 2 se muestra que da como resultado un total de 3 pruebas fallidas 

y 37 pruebas exitosas. 
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4.2.3 Resultados de desempeño del sistema en la clase Vehículo 

 Finalmente, se analizan los resultados de la Figura 39 de la clase “Vehículo”. 

 

 
Figura 39: Resultados de tiempo estimado a colisión en pruebas. 

 

La clase de vehículo tiene 6 errores debido al criterio de TTC y en contraste con lo 

que se esperaría en la matriz de confusión, este fue la principal razón de que el sistema fallara, 

y siempre alertó por la presencia de la clase “vehículo”. El motivo por lo que tuvo más error en 

esta clase es debido a que la iluminación del vehículo cambia por su material metálico reflectivo 

del que está hecho, además de afectar su perspectiva. En la Tabla 3 se muestran los resultados 

generales en los cuales el sistema EWA logró pasar las pruebas y los datos recabados durante 

la puesta experimental de la clase “Vehículo”. 
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Tabla 3: Resultados de tiempo de detección en clase infraestructura con una distancia inicia de 40m a 

velocidades definidas 

Prueba 
Velocidad 

km/h (m/s) 

Tiempo de 

prueba (s) 
Alerta 

Tiempo de 

detección (s) 

Distancia de 

detección (m) 

Tiempo a 

colisión (s) 
Resultado 

1 

5 (1.39) 28.8 

Sí 14.47 19.903 14.33 Aprobado 

2 Sí 15.13 18.986 13.67 Aprobado 

3 Sí 18.97 13.653 9.83 Aprobado 

4 Sí 18.76 13.944 10.04 Aprobado 

5 Sí 19.05 13.542 9.75 Aprobado 

6 Sí 16.46 17.139 12.34 Aprobado 

7 Sí 17.95 15.069 10.85 Aprobado 

8 Sí 18.63 14.125 10.17 Aprobado 

9 Sí 18.58 14.194 10.22 Aprobado 

10 Sí 16.73 16.764 12.07 Aprobado 

11 

10 (2.78) 14.4 

Sí 11.93 6.861 2.47 Aprobado 

12 Sí 12.65 4.861 1.75 Aprobado 

13 Sí 12.95 4.028 1.45 Aprobado 

14 Sí 13 3.889 1.4 Aprobado 

15 Sí 12.23 6.028 2.17 Aprobado 

16 Sí 12.43 5.472 1.97 Aprobado 

17 Sí 13.68 2.000 0.72 Falló 

18 Sí 12.29 5.861 2.11 Aprobado 

19 Sí 13.21 3.306 1.19 Falló 

20 Sí 11.51 8.028 2.89 Aprobado 

21 

15 (4.16) 9.6 

Sí 9.5 0.417 0.1 Falló 

22 Sí 6.97 10.958 2.63 Aprobado 

23 Sí 3.59 25.042 6.01 Aprobado 

24 Sí 3.59 25.042 6.01 Aprobado 

25 Sí 8.22 5.750 1.38 Aprobado 

26 Sí 7.66 8.083 1.94 Aprobado 

27 Sí 8.14 6.083 1.46 Aprobado 

28 Sí 8.05 6.458 1.55 Aprobado 

29 Sí 7.43 9.042 2.17 Aprobado 

30 Sí 7.62 8.250 1.98 Aprobado 

31 

20 (5.16) 7.2 

Sí 6.42 4.333 0.78 Falló 

32 Sí 5.92 7.111 1.28 Falló 

33 Sí 5.97 6.833 1.23 Falló 

34 Sí 5.68 8.444 1.52 Aprobado 

35 Sí 5.63 8.722 1.57 Aprobado 

36 Sí 5.33 10.389 1.87 Aprobado 

37 Sí 5.25 10.833 1.95 Aprobado 

38 Sí 6.54 3.667 0.66 Falló 

39 Sí 6.53 3.722 0.67 Falló 

40 Sí 5.62 8.778 1.58 Aprobado 

 

Con estas pruebas, el sistema con la clase “vehículo” tuvo 8 pruebas fallidas y 32 

pruebas exitosas. Para la clase de “ruta libre” se realizaron las 40 pruebas como se describieron 

en la sección 3.5.2 y todas resultaron exitosas al no detectar nada mientras se conducía a las 
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velocidades establecidas, dando un total global de 160 pruebas del sistema y un total de 14 

pruebas fallidas contando todos los casos, teniendo una efectividad de 91.25% en la predicción 

de colisiones frontales con la puesta experimental planteada.  

4.3  Comparación del sistema con trabajos similares 

En la Tabla 4 se muestra una comparativa de los sistemas similares encontrado en la 

literatura con el sistema EWA propuesto. 

Tabla 4. Comparativa de sistema EWB con trabajos similares  

Autor 
Sensor(es) 

Utilizado(s) 

Tiempo de 

latencia (s) 

Simulación 

o entorno 

real 

Velocidad(es) 

de prueba 

(km/h) 

Número 

de clases 

Pruebas 

Realizadas 

Probado en 

vehículo 

eléctrico 

Precisión 

Deo et al. 

(2021) 

Cámara y 

LiDAR 
0.0485 Simulación 30 – 70 1 3 ✘ 67–70% 

Gulino et 

al. (2023) 

LiDAR / 

RaDAR / 

Cámaras / 

GNSS / IMU 

0.3 Simulación 50 1 5000> ✘ 100% 

Lai & 

Yang 

(2023)  

Radar frontal 

(del módulo 

PreScan) y 

cámaras 

No 

registrado 
Simulación 50 y 60 1 18 ✘ 100% 

Dai et al. 

(2024) 

LiDAR 

RoboSense 

RS-16 y 

Cámara 

monocular 

Q20 

No 

registrado 
Simulación < 30 2 

No 

registrado 
✘ 94% 

Shaout & 

Castaneda-

Trejo 

(2025) 

Ultrasonido 

(HC-SR04) 

0.0011 – 

0.0015 
Simulación No registrado 1 10 ✘ 95% 

Liu et al. 

(2025) 

Fusión de 

cámara + 

radar (City 

Safety) 

1.79 Ambos 20 – 40 2 10 ✘ 100% 

Propuesta 
Cámara 

digital 
1.66 Ambos 5, 10, 15 y 20 4 160 ✓ 91.25 % 
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De la Tabla 4 se muestran trabajos similares y más relevantes que abordan sistemas 

similares al desarrollado en este Trabajo de Tesis. Como se puede observar, en 5 de ellos fueron 

llevados a cabo en simulación, y si bien sus tiempos de latencia muy rápidos, estos toman en 

cuenta los tiempos entre captura o el tiempo que tarda en actualizarse su simulación y realizar 

una predicción de los datos obtenidos en entornos reales y después analizados en “offline”. En 

cuanto al trabajo realizado por Liu et al. Fue similar en cuestión de puesta experimental, además 

de enfocarse en la dinámica del vehículo y tomando en cuenta tiempos de monitoreo con 

sensores de proximidad y cámaras, análisis e intervención del sistema, lo que tiene 

concordancia con el tiempo obtenido en sus pruebas reales. Además, se observa que el sistema 

propuesto mejoró en un tiempo de 13 ms con 2 objetivos más que el trabajo en cuestión. 

4.4  Pruebas realizadas en vehículo eléctrico. 

Una vez que el sistema EWA fue probado en condiciones controladas, se realiza una 

serie de pruebas finales donde se instala el sistema en el vehículo eléctrico de la Facultad de 

Ingeniería EFACI. Las pruebas en esta sección consisten en conducir el vehículo dentro de las 

instalaciones de la Universidad Autónoma de Querétaro, Campus San Juan del Río. En la 

Figura 40 se muestra el vehículo eléctrico acondicionado. 

 

   

a)      b) 

Figura 40. a) Vehículo Eléctrico Acondicionado para pruebas en escenarios reales. 

En la Figura 40 a) se muestra el vehículo eléctrico que se utiliza en la prueba y en la 

Figura 35b se muestra el sistema EWA montado en el vehículo. Se realiza una única prueba 

que consiste en iniciar el sistema EWA en el circuito universitario donde hay tráfico concurrente 
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de peatones y vehículos, bajo condiciones no controladas. Se realiza solamente un único 

recorrido para no sobrepasar el límite de uso de la batería del vehículo, y además de realizar 

esta prueba puesto que se espera registrar el desempeño del sistema EWA en situaciones no 

controladas en el vehículo eléctrico, ya que el sistema fue probado en situaciones controladas. 

En la Figura 36 se muestra el circuito que sigue el vehículo eléctrico para esta de prueba. 

 

 

Figura 41. Circuito donde se conduce el vehículo eléctrico dentro de las instalaciones de la 

Universidad Autónoma de Querétaro, Campus San Juan del Río. 

 

En la Figura 41 se muestra el recorrido que sigue el vehículo hospedador, así como, 

se muestra mediante puntos el instante en que el sistema detecta algún obstáculo. Al realizar la 

conducción del vehículo eléctrico con el sistema EWA se registraron 6 detecciones: dos de ellas 

fueron detecciones acertadas (color verde) mientras que en los 4 restantes alertó cuando no se 

presentaba ningún objetivo, también se contempla el hecho que las veces que no detectó un 
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obstáculo se contaron como pruebas exitosas. Es importante resaltar que, aunque parezca que 

tenga un bajo desempeño en situaciones reales, el sistema fue acertado en detectar la ausencia 

de obstáculos, es decir, en detectar una “ruta libre” cuando no había objetivos cerca, esto es el 

90% del tiempo. Otra cosa que hay que tener en cuenta es que la prueba se realizó con 

condiciones de iluminación distinta a en la que se adquirieron las imágenes de los objetivos, 

además de mostrar una gran densidad diferente de peatones y vehículos de la esperada. 
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CAPÍTULO V: CONCLUSIONES 

 

En este proyecto de tesis, se realizó un sistema de alerta al conductor EWA, ante 

posibles colisiones frontales con imágenes y DL, acondicionando un vehículo para pruebas 

controladas y después un vehículo eléctrico para realizar pruebas en capo, para alertar sobre 

posibles colisiones frontales. Se comenzó por definir la puesta experimental, en la cual se 

delimitó en el estacionamiento de la Facultad de Ingeniería, además se acondicionó un vehículo 

con un sistema de visión para adquirir imágenes para entrenar un algoritmo de clasificación que 

integra el sistema EWA, y probarlo antes de ser puesto a prueba en un entorno escolar. Para 

esto, se creó un programa de adquisición de imágenes para capturar 2,000 imágenes por cada 

uno de los 4 objetivos: Vehículo, Peatón, Vehículo y Ruta libre que serían los casos que se 

tomarían en cuenta para el sistema EWA y se ejecutó dicho programa con el sistema de 

adquisición de imágenes. Posteriormente, se realizó un post-procesamiento de imágenes que 

reducía las imágenes obtenidas a un tamaño de 28×28 pixeles en escala de grises para disminuir 

la carga computacional a la hora de implementar en tiempo real la clasificación. Se implementó 

una topología CNN propuesta para la clasificación de las imágenes de los objetivos obteniendo 

un 97.1% de precisión en la etapa de validación y un tiempo promedio de 50 ms entre 

clasificación. Se integro la CNN al sistema EWA, junto con la adquisición de imágenes y un 

filtrado propuesto por histograma, obteniendo una latencia entre predicción de 1.6 s sobre la 

presencia alguno de los objetivos en el camino. Las pruebas en campo para el sistema EWA en 

el vehículo de pruebas consisten en; se conduce el vehículo con el sistema EWA ejecutándose 

y se realizaron 40 pruebas en una pista de 40 m ubicando al final del recorrido uno de los 4 

objetivos, a velocidades de 5, 10, 15 y 20 m/s, habiendo probado el sistema un total de 160 

veces, logrando un TTC superior al umbral de 1.33s y teniendo una precisión del 91.25% en 

condiciones controladas. Finalmente, se realizó una prueba en condiciones no controladas en la 

cual el sistema realizó 2 detecciones correctas y 4 detecciones erróneas. En cuanto a las 

detecciones erróneas, se mostraba desde las pruebas en condiciones controladas que las 

variaciones de luz, enfoque, vibraciones afectaban la precisión del sistema, en investigaciones 

futuras se pretende analizar más casos para crear un sistema más robusto con una topología de 

CNN más completa y optimización en tiempo de detecciones, además de realizar una prueba 
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con fusión de sensores, además de integrar un actuador que permita crear la función de EBA y 

frenar de manera activa. 
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