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RESUMEN

Los accidentes vehiculares son ocasionados por errores humanos, puesto que son
susceptibles a distracciones que restan milisegundos valiosos para realizar maniobras
de evasion. Para dar solucion a ello, se desarrollan los sistemas avanzados de
asistencia al conductor (ADAS, por sus siglas en inglés) que delegan tareas como
navegacion, direccion, alerta y frenado a sistemas que integran algoritmos de
aprendizaje de maquinas y profundo. En este proyecto de tesis se presenta el
desarrollo de un sistema ADAS de alerta al frenado de emergencia basado en
camaras digitales comerciales, utilizando técnicas de procesamiento de imagenes y
de sefnales, para obtener la base de datos que entrena el algoritmo de aprendizaje
profundo (Deep Learning), la cual es capturada en un vehiculo eléctrico con un
ambiente controlado en un espacio de estacionamiento vehicular acondicionado para
las pruebas necesarias bajo distintas condiciones. Se utilizan objetivos dindmicos
como dummies de adulto, objetos estaticos como un bote de seguridad y vehiculos de
prueba. Con los datos obtenidos se entrena el algoritmo de Deep Learning y asi
clasifica la posible colision y con qué objetivo esta siendo detectado, y asi generando
una alarma visual que genera una colision realizando 160 pruebas en condiciones
controladas, ademas de una prueba en entorno no controlado, obteniendo un 91.25%

de precision en la alerta oportuna de una posible colisién.

Palabras clave: Asistencia de frenado de emergencia, ADAS, EWB, Deep Learning,

procesamiento de imagenes, camara, seguridad, sistemas autbnomos.



SUMMARY

Traffic accidents are primarily caused by human error, as drivers are susceptible to
distractions that reduce the valuable milliseconds needed to perform evasive
maneuvers. To address this problem, Advanced Driver Assistance Systems (ADAS)
have been developed, delegating tasks such as navigation, steering, warning, and
braking to systems that integrate machine learning and deep learning algorithms. This
Thesis Project presents the development of an ADAS emergency braking alert system
based on commercial digital cameras, using image and signal processing techniques
to build the database that trains the deep learning algorithm. The dataset is captured
using an electric vehicle operating in a controlled environment in a parking area
specially conditioned for the required tests under various conditions. Dynamic targets
such as adult-sized dummies, static obstacles such as a safety cone, and test vehicles
are used. Based on the collected data, the deep learning algorithm is trained to classify
potential collisions and identify the type of detected object, generating a visual alarm
when a collision risk is present. A total of 160 tests were conducted under controlled
conditions, along with an additional test in an uncontrolled environment, achieving

91.25% accuracy in providing timely alerts of a possible collision.

Keywords: Emergency braking assistance, ADAS, EWB, Deep Learning, image

processing, camera, safety, autonomous systems.
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CAPITULO I: INTRODUCCION

Los Sistemas Avanzados de Asistencia al Conductor (ADAS, por sus siglas en inglés)
son, hoy en dia, una linea de investigacion en auge, debido a la necesidad de dotar a los
vehiculos modernos con sistemas que ayuden a minimizar la posibilidad de sufrir un accidente
vial, que ponen en peligro tanto a los bienes materiales (los propios vehiculos, infraestructura
vial, entre otros), y a las vidas humanas involucradas (peatones, conductores, pasajeros, etc.),
que es lo mas importante. Estos sistemas que se implementan adquieren informacion del
entorno con sensores como ultrasonido, vision artificial, radares o LIDAR ("Light Detection
and Ranging”, por sus siglas en inglés), que junto con algoritmos de Aprendizaje Profundo
(mejor conocido por sus siglas en inglés como “Deep Learning” (DL)), pueden desarrollarse
tecnologias como la deteccién de puntos ciegos, mantenimientos de carril, control de crucero
adaptativo, evasion de colisiones en las intersecciones, y la asistencia al frenado de emergencia.
Debido a esta necesidad, el presente trabajo de tesis presenta el desarrollo de un sistema de
alerta al frenado de emergencia con la integracion de camaras comerciales, procesamiento de
imagenes y sefiales, asi como una tarjeta de para integrar un sistema embebido. Se implementa
en un vehiculo eléctrico con un ambiente controlado en un espacio de estacionamiento vehicular
acondicionado para las pruebas necesarias bajo distintas condiciones, con una serie de
escenarios que se pueden presentar en la vida diaria, para probar y validar el funcionamiento de

asistencia de frenado de emergencia.

1.1 Antecedentes

En esta seccion, se describen los trabajos mas relevantes de los ultimos afios

relacionados al presente trabajo de tesis.

1.1.1 Sistemas Avanzados de Asistencia al Conductor

Los ADAS ayudan a atacar la problematica de los accidentes viales; si bien no a
erradicarla, disminuyen en gran medida las posibilidades de accidentes vehiculares ocasionados
por factores humanos. Estos sistemas tienen la funcion de auxiliar al conductor mientras navega
en el vehiculo, dotando de informacion del medio para la toma de decisiones (Ziebinski et al.,
2017). Los ADAS analizan el entorno por medio de sensores y camaras, implementan

algoritmos avanzados con software para analizar la informacion recabada y generan alertas,

15



activar un asistente de conduccion o de frenado, o tomar acciones autbnomas para prevenir
accidentes que pongan en riesgo a peatones o tripulantes de vehiculos. Los ADAS pueden
contener diferente cantidad de sensores dependiendo del modelo del vehiculo, nivel de

equipamiento o version (Neumann, 2024), algunos sensores utilizados son:

Radares: Dispositivos que usan ondas electromagnéticas para detectar la presencia de
objetos en el espacio, enviando una serie de ondas de microondas y detectandola cuando es
reflejada por un objeto. Las ondas son reflejadas de manera no uniforme dependiendo del

material, la forma, y su predisposicion para reflejar ondas electromagnéticas.

Deteccion y medicion de distancia por luz: LiDAR por sus siglas en inglés, tiene un
principio de funcionamiento simular al radar, con la diferencia que utilizan un haz de luz con
longitud de onda especifica, en lugar de ondas de micro ondas. Este principio de funcionamiento
permite una mejor precision; reconociendo detalles desde centimetros hasta 100 m. Aunque su
resolucion se ve afectada dependiendo de la cantidad de LiDAR utilizados, el incorporar una
mayor cantidad de LiDAR.

Ultrasonido: Son ondas de sonido de alta frecuencia imperceptibles para los humanos
(de 20 kHz a 1 GHz). Utiliza el mismo principio lanzando ondas ultrasonicas y recibidas
después de una reflexion con un objeto, calculando asi la distancia a la que se encuentra. Los
sensores ultrasonicos tienen un rango limitado de medicién limitado, desde centimetros hasta
varios metros. Esta limitante se compensa colocando varios sensores alrededor del vehiculo.
Estos sensores se usan en sistemas de asistencia al estacionarse, deteccion de puntos ciegos

(BSD, por sus siglas en inglés), y asistencia en maniobras en bajas velocidades.

Camaras o arreglos de camaras: Es la solucién mas popular, barata y simple que se
utilizan en los ADAS, y se pueden utilizar varias camaras para obtener una vista de 360°
alrededor del vehiculo. La posibilidad que brindan las camaras de adquirirlas e instalarlas por
los usuarios, y de implementar algoritmos de procesamiento de imagenes, ha contribuido al uso
de camaras para el desarrollo de los ADAS. Las camaras pueden detectar patrones para
identificar vehiculos como peatones 0 amenazas, y realizar acciones que respondan a este
riesgo. Las camaras son utilizadas en sistemas de asistencia al estacionamiento, monitoreo del
comportamiento del conductor, y en funciones de velocidad de crucero adaptativo. o ACC por

sus siglas en inglés.
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1.1.2  Sistemas ADAS desarrollados en vehiculos modernos.

Los vehiculos modernos son equipados con estos sistemas que permiten mejorar la
seguridad, confort, y eficiencia al conducir. Su desarrollo ha mejorado conforme la tecnologia
avanza y se realizan avances software como algoritmos de clasificacion, como en hardware en
el desarrollo de sistemas embebidos y de sensores (Neumann, 2024). A continuacion, se
mencionan las funciones relevantes, tecnologias implementadas como se utilizan dichos

sensores para la implementacién de dichas funciones ADAS.

1.1.3  Velocidad de Crucero Adaptativo (ACC)

El ACC es un sistema de control longitudinal que modifica la velocidad del vehiculo
hospedador, aumentandola o disminuyéndola en funcién de la proximidad que se encuentren
en frente de él o en su parte posterior. En la Figura 1 se muestra un ejemplo grafico de esta

funcién.

Figura 1. Ejemplo de ACC (Neuman, 2024).

Los métodos utilizados son los basados en modelos de control predictivo (MPC) como
el desarrollado por Wei et al. (2025), que utiliza pesos dinamicos que se modifican en funcion
del estado del trafico y la velocidad del hospedador mejorando el confort y la prediccion
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dindmica para mayor estabilidad en entornos variables a costa de un mayor costo
computacional. Manolis et al. (2020) desarrollan una estrategia de ACC en tiempo real que
ajusta la velocidad mediante control jerarquico mejorando el tiempo de respuesta y estabilidad
del vehiculo en maniobras rapidas en entornos reales aplicable en autopistas, con eficiencia
energética y confort. K. Lee & Lee (2025) utilizan un PD de tiempo constante, estableciendo
condiciones necesarias para seleccion de sus ganancias y logrando estabilidad individual y de
cadena, validado en simulacion. Z. Yang et al. (2021) Utilizan un control jerarquico con MPC
y un control activo de rechazo de perturbaciones, mejorando asi el seguimiento con menos
oscilaciones. Yu et al. (2025) utilizan un MPC con un Predictor Smith para compensar retardos
para un modelo longitudinal en simulacion, reduciendo oscilaciones y mejorando estabilidad.
En los desarrollos de estos sistemas se encuentran que la mayoria de ellos dependen de radares

y sensores LIDAR, ademas de uso de MPC para la implementacion en simulaciones.

1.1.4 Mantenimientos de Carril

Esta funcion (Figura 2) tiene como objetivo incrementar la seguridad para ayudar a

mantener el vehiculo en el carril, corrigiendo la direccion.

Figura 2. Ejemplo grafico de sistema LK (Neuman, 2024).
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Investigaciones como el desarrollado por Cheng et al. (2025), donde utilizan
aprendizaje por refuerzo profundo con enfoque fin a fin para decidir el angulo de direccion a
partir de imégenes de camara, implementandolo en simulacion y entornos reales a escala,
adquiriendo una base de datos propia, obteniendo una detecciéon LK eliminando la dependencia
de modelos cinematicos complejos. Xie et al. (2023), utiliza el filtrado adaptativo y deteccion
online que actualiza parametros dinamicamente, adquiriendo imégenes con vision monocular y
fusion de datos para ajustar coeficientes de lineas de carril en tiempo real, identificando los
carriles en zonas urbanas y autopistas. Y. Jeong, (2022) utiliza una red neuronal recurrente con
celdas de aprendizaje de tiempo corto y largo, recolectando imégenes en autopistas. Redujo
desviaciones laterales y mejora la respuesta en presencia de vehiculos adyacentes e
introduciendo un enfoque interactivo que imita las decisiones humanas. También Na et al.
(2025) muestran su metodologia que realizan deteccidn de carriles con librerias como YOLOv5
y adquisicion de imagenes con camaras internas, externas frontales y traseras, junto con
aumento de datos. Como se muestra en esta tecnologia, las camaras brindan una solucion
economica y fiable en entornos de realidad virtual para implementacion a escala o en entornos
reales como carreteras, con la desventaja de que todavia dependen de sensores LIDAR para su

implementacidn, encareciendo la implementacion de estos sistemas.

1.15 Deteccién de punto ciego

Otro sistema de asistencia avanzado es el sistema de deteccion de punto ciego (BSD,
por sus siglas en inglés). Esos sistemas son designados para minimizar el riesgo de colision
vehiculos estandar, pequefios o peatones en puntos dificiles de detectar por el conductor,
conocidos como puntos ciegos (Figura 3).
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Figura 3. Ejemplo representativo de BSD (Neuman, 2024).

Y. Lee & Park (2025) implementan una combinacion de funciones de BSD y LK,
incorporando una cdmara trasera con YOLOV9 con un filtro de Kalman para identificacion de
carriles y de objetos, adquieren una base de datos de 12,537 imagenes en carreteras urbanas y
autopistas con una camara gran angular estandar. Muzammel et al. (2022) fusionan
arquitecturas de redes neuronales convolucionales (CNN, por sus siglas en inglés) ResNet50 +
ResNet101 y redes CNN de su autoria integradas a una red neuronal recurrente rapida. Utilizan
una base de datos de 3,000 imagenes propias ubicadas en espejos laterales de buses y una base
de datos Ilamada LISA de vehiculos. Kim et al. (2023) desarrollan un sistema BSD basado en
radar de onda continia modulada en frecuencia con antenas de microstrip para cubrir la
desventaja de las camaras cuando se utilizan en climas de niebla/lluvia en entornos de realidad
virtual y escenarios reales basicos. H.-S. Jeong & Kim (2025) utilizan un anillo de 8 sensores
ultrasénicos junto con algoritmos de filtrado y compensacién ambiental en entornos de lluvia'y
niebla, alertando en lluvia intensa a 1 my en niebla a 2 m. Zhao et al. (2019) implementan una
CNN ligera bloque tipo Sep-Res-SE de clasificacion binaria con una base de datos propia de
10,000 iméagenes en un vehiculo lateral, dando solucion a la dependencia de sensores costosos
como radares o LIDAR. Se puede apreciar que las cdmaras son una opcién viable, para el
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desarrollo de deteccion de objetivos, ademas de dotar de escenarios especificos con la

adquisicién de bases de datos para diferentes entornos.

1.1.6  Asistente para Frenado de Emergencia:

EBA (por sus siglas en inglés) es un sistema que reacciona automaticamente en
situaciones de frenado repentino si una amenaza por colision es detectada, reduciendo los
tiempos de reaccion del conductor o del mismo sistema como las cifras registradas en paises
como el Reino Unido se estima que la implementacion de estos sistemas reduciria en un 23.8%
sus accidentes de transito (Masello et al., 2022), y un 13.2% en China (Tan et al., 2020). L.
Yang et al. (2022) plantean los procesos que involucran como una etapa normal, advertencia
temprana (alerta visual y auditiva), y frenado automatico. Identifican los factores que afectan
el desempefio de los EBA como la tecnologia y forma del vehiculo (sensores, angulo de vision,
errores del sistema, retardos de frenado, capacidad de deceleracion y algoritmos
implementados), el estado del conductor (estilo de conduccion, confort, destreza) y factores del
entorno (clima, iluminacion, tipo de terreno, pendientes). En la literatura reciente se abarcan
distintos enfoques que abarcan desde arquitecturas predictivas hasta modelos hibridos de
control. En la literatura reciente se cubren distintos enfoques que abarcan desde arquitecturas
predictivas hasta modelos hibridos de control. Shaout & Castaneda-Trejo (2025), utilizan un
control difuso adaptativo modelado en escenarios y validado por simulacién, como alternativa
mas flexible que los PID tradicionales, logrando frenados mas estables y reduccion de distancia
de detencion y menor bloqueo de ruedas tedricamente, también Gunjate & Khot (2023) utilizan
el control difuso y modulacion por ancho de pulso (PWM) para la integracion de EBA a
Sistemas de Antibloqueo de Frenos (ABS, por sus siglas en inglés), recabando informacion y
haciendo simulaciones comparativas encontrando una reduccion en distancia de frenado con
mayor estabilidad reduciendo una distancia de frenado a 26 m con una velocidad de 80 km/h.
Hu et al. (2025) realizan un trabajo en un entorno con multiples escenarios de trafico simulados
de evasion de colision en el cual desarrollan un modelo de evasion de colisiones proactivo
basado en reglas implementado en un modelo de distancia de seguridad para vehiculos
frontales, con un control de velocidad de crucero adaptativo y aprendizaje por aprendizaje de
refuerzo profundo, logrando tasa de éxito en evitacion de colisiones frente a modelos
tradicionales. Deo et al. (2021) realizan una comparacion en las arquitecturas de fusion de

sensores centralizada (OCSF) y descentralizada (ODSF) con camaras y LIDAR, utilizaron el
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algoritmo YOLOv3 para detectar objetos en imagenes, y DBSCAN para identificar objetos 3D
en cajas y un filtro de Kalman no lineal, usando una base de datos KITTI y validando su
funcionamiento en el entorno virtual ROS, generando una alerta ante la presencia de un objeto
enfrente del vehiculo a 5 m. Teniendo como resultado una precision del 64% de precision
promedio media (mAp) con OCSF y un tiempo de latencia de 32.5 ms, y una precision de 70%
mAp con ODSF y una latencia de 48.5 ms. Esta investigacion genera un aporte a la combinacion
de sensores como cdmaras y LiDAR pero no toman a consideracién la velocidad del vehiculo,
ademas de dejar su investigacion solo en simulacion. Losada et al. (2023) proponen un sistema
combinado llamado OPREVU-AES que integra un frenado autébnomo de emergencia y una
direccion automatica de emergencia (AES) para maniobras evasivas, y se integran estos para
tomar decisiones como frenar o esquivar segun sea la situacion. Se simula un Hyundai loniq
2020 en Carsim calibrando su respuesta de frenado dinamico y direccion, definiendo toma de
decisiones a velocidades de 40-70 km/h y distancias de 12-24 m segun la velocidad, integran
un arbol de decision basado en datos de Realidad Virtual (VR) de peatones que permitia al
sistema decidir entre frenar o esquivar segln la reaccion del peatdn, utilizando sensores como
camaras y radares para detectar carriles, puntos ciegos y obstaculos laterales en su entorno
virtual. Usaron escenarios que se presentaron en 40 accidentes peatonales reales en Madrid y
se recrearon estos en una herramienta de reconstruccion de accidentes reales llamada PCCrash
considerando 3 casos: sin ADAS, con frenado automatico y su sistema OPREVI-AES. En el
caso sin ADAS tuvo una efectividad de 0% (por ser el control), con el AEB comercial tuvo un
53% de efectividad, y con su sistema OPREVI-AES lograron una disminucién de accidentes
hasta el 77.8%. Por su parte, Dai et al. (2024) enfatizan lo importante que es la deteccion de
objetos para vehiculos autébnomos, proponen deteccion de objetos con sensores LiDAR y
camaras digitales. Realizan la deteccion con YOLOV5 para imagenes y PointPillars para nubes
de puntos, interseccion de union, teoria de Dempster—Shafer mejorada, y finalmente
seguimiento con un DeepSORT mejorado con Filtro de Kalman sin estela. Utilizan una base de
datos con imagenes propias de alrededor 700 iméagenes de un recorrido en un campus
universitario, ademas de utilizar la base de datos KITTI, obteniendo un 93% de efectividad en
deteccidn de vehiculos y 95.4% de peatones de dia, y de noche 94.1% de autos y 92.5% peatones
de noche. Si bien se obtuvieron métricas prometedoras, no mencionan si se piensa aplicar en

algun sistema ADAS. Gulino et al. (2023) analizan un sistema ADAS adaptativo que combina
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frenado y direccion para minimizar el riesgo de lesiones en escenarios criticos de “salida de
carril” con colision inminente en un entorno virtual. La simulacion consta de dos vehiculos
desplazandose a 50 km/h, se realiza el monitoreo de sensores LIDAR y cdmaras de un vehiculo
“Ego” con un algoritmo denominado “Software en el lazo” el cual monitorea tres casos: Sin
intervencion, frenado automatico de emergencia (AEB, por sus siglas en inglés) y Légica
adaptativa para disminuir el riesgo de lesién, reudiendo un riesgo de lesion hasta 40%
comparado con el AEB. Aoki et al. (2024) atacan la problemaética de los accidentes ocasionados
en intersecciones debido a los giros a la derecha (cerca de un 40% de los accidentes en cruces),
e identifican que el problema ocurre cuando otro vehiculo aparece repentinamente. Proponen
un sistema de asistencia al conductor proactivo, que predice el riesgo de colision en una curva
triclothoidal (Un giro continuo del vehiculo sin cambios bruscos de curvatura) implementado
en un vehiculo hospedador que tiene un sensor LIDAR montado en la esquina delantera
derecha, El sistema proactivo modifica la velocidad del vehiculo de manera gradual, calculando
velocidades criticas como la velocidad de seguridad y la velocidad de escape en funcion de si
el vehiculo se encuentra en la zona de riesgo que ellos definen, realizan las pruebas en
simulacion 441 veces en el software IPG CarMaker® con escenarios distintos, variando la
velocidad que un vehiculo irrumpe el trayecto del hospedador (30-50 km/h) y su posicién inicial
(0 - 40m), logrando evitar un 100% de las colisiones en el escenario propuesto. Lai & Yang
(2023) detectan el problema que tienen los sistemas automaticos de frenado de emergencia
(AEB) actuales pueden evitar colisiones frontales, pero en carreteras curvas ven comprometida
la pérdida de estabilidad lateral, debido a esto desarrollan un sistema de control integrado
longitudinal y lateral para vehiculos inteligentes, el cual combina un AEB con un asistente de
mantenimiento de LK. EI AEB utiliza el pardmetro de tiempo estimado a colision (TTC) para
determinar un frenado 6ptimo y decidir si emitir una alarma audible si es menor a 2.6 s 0 mayor
a 1.6 s, o si es menor que 1.6 s, activar gradualmente el freno. Mientras que el LK utiliza la
desviacion lateral y el angulo de guifiada (yaw, por su nomenclatura en inglés). Realizan
pruebas del sistema AEB en solitario, AEB y LK por separado, e integrados con simulaciones
en Matlab/Simulink—PreScan—CarSim®, a velocidades de 50 y 60 Km/h, con radios de
curvatura de 60, 90 y 120 m, teniendo un total de 18 pruebas, teniendo como resultado la
evasion de colisiones frontales en todos los escenarios analizados, pero con el AEB en solitario

teniendo un desplazamiento lateral maximo de 1.72 m, el AEB y LK independientes obtuvieron
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un desplazamiento lateral de 0.29 m y el AEB-LK integrados logré una desviacion lateral de
0.21 m. Wang et al. (2025) desarrollaron un sistema de deteccién tridimensional orientado a
vehiculos autonomos mediante la fusion de sensores LiDAR y camaras, para mejorar la
precision en la identificacion y localizacion de objetos al combinar imagenes 3D obtenidas con
LiDAR e imagenes 2D capturada por la cAmara. Para lograrlo, implementaron una arquitectura
de aprendizaje profundo que integra dos redes especializadas: PointNet++, para extraer
caracteristicas espaciales de las nubes de puntos, y ResNet-18, para obtener caracteristicas
visuales de las imagenes. Ambas salidas se combinaron a través de un modulo de atencién
SENet, que pondera los canales mas relevantes antes de ingresar a una red de deteccidn basada
en puntos centrales, capaz de estimar el centro, orientacion y dimensiones de cada objeto. El
modelo fue validado en el conjunto de datos nuScenes y posteriormente probado en un vehiculo
real equipado con un LiDAR RoboSense RS-Helios y una camara SONY IMX264, alcanzando
una precision promedio (mAP) del 64.5 % y un puntaje de deteccion de nuScenes (NDS) de
63.7, con un tiempo de inferencia de 147 ms por prediccion. En su trabajo de Liu et al. (2025)
se aborda la necesidad de contar con métodos de evaluacion mas precisos y adaptativos para
los sistemas de AEB en vehiculos inteligentes conectados, ya que enfoques tradicionales se
basan en ponderaciones estaticas que no toman en cuenta la variacion del entorno (como la
velocidad del vehiculo o la adherencia del pavimento), ni vinculan los modelos teéricos con
pruebas experimentales reales. Por ello, los autores proponen un método integral de evaluacién
basado en el Proceso Analitico Jerarquico de Peso Dinamico (DWAHP) acoplado a una
plataforma de Vehiculo-en-el-lazo (VIL) que permite ajustar los pesos de los indicadores de
seguridad, fiabilidad y confort segun las condiciones dindmicas de conduccién. Realizaron una
co-simulacion entre MATLAB/Simulink y CarSim, modelando escenarios de trafico tipo E-
NCAP, realizan una validacion experimental en una estacion de pruebas VIL como en pruebas
reales con un Volvo S90L, equipado con el sistema denominado “City Safety” de fusion
camara-radar y sensores opticos Kistler para medir velocidad, aceleracion y distancia al
obstaculo. En las pruebas, se utiliz6 un maniqui movil que simulaba el cruce de un peaton en
una intersecciéon, mientras el vehiculo circulaba a velocidades de 20, 30 y 40 km/h sobre
pavimento seco. Los resultados mostraron que el sistema AEB evitdé completamente la colision
a 20y 30 km/h con tiempos de intervencion de 1.79 sy 1.88 s, pero a 40 km/h impacté al peatén

con una velocidad residual de 20.7 km/h, mostrando la influencia de la velocidad en la
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capacidad de respuesta del sistema. En conjunto, el método DWAHP-VIL logr6 una
consistencia del 99.5% entre simulacion y prueba real (desviacion global del 0.51%),
demostrando su eficacia para evaluar el desempefio del AEB bajo condiciones dinamicas de
conduccion. Una vez revisado el estado del arte de las tecnologias en sistemas ADAS, ademas
de los sensores, funciones como EBA que es una parte objeto de estudio de este Trabajo de
Tesis. Se identifica la necesidad de desarrollar un sistema EWA que identifique y alerte sobre
posibles situaciones de riesgo como la presencia de objetivos que puedan presentar una posible

colisién frontal para, en un futuro, poder realizar un sistema un sistema activo como el EBA.

1.2 Justificacion

De acuerdo con la Organizacion Mundial de la Salud (OMS), se estima que hubieron
1.19 millones de muertes a causa de accidentes de transito en 2021; alrededor de 15 accidentes
por cada 100,000 habitantes Segun datos del 2019 de la OMS, los accidentes de transito siguen
siendo la principal causa de muerte en personas jovenes de entre 5 a 29 afios, y la doceava causa
de muerte considerando todo el espectro de edades (World Healt Organization, 2023). Por su
parte, en México, en el periodo de 2015-2020 (Salud, 2021), presenta un numero de 13,630
siniestros, donde los peatones muestran ser los mas afectados con mayor porcentaje de
fallecimientos, 2,536 atropellamientos fatales (18.6 %), seguidos por ciclistas con 111 (0.8%)
y otras con 27 (0.2%). Ademas, se considera que muchos de estos accidentes son causados por
los propios errores humanos, ya sea por falta de concentracion en la conduccién, la alteracion
de sus sentidos debido al cansancio o la ingesta de sustancias, o por la ocurrencia de eventos
imprevistos. En consecuencia, los conductores no logran tomar acciones correctivas a tiempo
cuando reciben un estimulo visual, teniendo en cuenta que el tiempo promedio de reaccion en
humanos es de aproximadamente 250 a 300 ms, tomando en cuenta que tienen su total atencion
en la conduccion (Jain et al., 2015). Con estos datos y el estado del arte, se muestra que el
desarrollo de los sistemas ADAS, en especial los sistemas de que generen alertas ante posibles
impactos o eviten colisiones, es una necesidad para crear vehiculos mas seguros y salvaguardar
la vida de los usuarios (conductores) y de los peatones, delegando las tareas de control o toma
de decisiones a dichos sistemas inteligentes. Estos sistemas integran tecnologia de vanguardia
como lo son los algoritmos de clasificacion, redes neuronales, sistemas embebidos, sensores de
vision, proximidad, radares, etc. Por esto, el presente proyecto de Tesis se centra en el desarrollo

de un método para un sistema ADAS de Alerta de Frenado de Emergencia (“EWB: Emergency
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Warning Breaking”, por sus siglas en inglés), incorporado al vehiculo eléctrico de la Facultad
de Ingenieria, de la Universidad Autonoma de Querétaro, campus, San Juan del Rio, para
detectar obstaculos estaticos (conos y vehiculo falso ) y dindmicos (dummies de peatones), el
cual robustecera los sistemas del vehiculo dotandolo de cierto nivel de autonomia y ademas de
realizarlo en una plataforma de codigo abierto y accesible econGmicamente en comparacion
con los sistemas desarrollados actualmente, cabe mencionar que la etapa de pruebas del sistema
mayormente se realizaran en un vehiculo de pruebas bajo condiciones controlada antes de
realizar una implementacion en el vehiculo eléctrico. Mediante la validacion del sistema se
abrira una nueva linea de investigacion en la institucion que permita promover el desarrollo de
tecnologias innovadoras en esta area, y contribuir a la investigacion para disminuir la tasa de
accidentes y siniestros que afectan a la sociedad. También, el proyecto de Tesis aporta a los
programas nacionales estratégicos (PRONACES) en el apartado de Salud y Seguridad Humana,

al generar un sistema de asistencia de alerta para el frenado de emergencia.

1.3 Descripcion del problema

En México, la mayoria de los accidentes son ocasionados por errores humanos, basado
en datos del informe de seguridad vial de la secretaria de salud (Salud, 2021). Los sistemas de
frenado de emergencia autébnomos han demostrado que, en efecto, han reducido la cantidad de
incidentes con peatones (Tan et al., 2020b). A pesar de esto y de la literatura revisada, se
identifican que las principales problematicas que se presentan para el desarrollo de este
proyecto de Tesis es el tiempo de computo al utilizar algoritmos de DL en investigaciones
similares es un factor importante para considerar, como también lo es el tiempo de respuesta
desde que el sistema envia la alerta visual hasta la accion humana. También, que el desarrollo
de los sistemas ADAS se concentran mayoritariamente fuera de México, debido a que muchos
de estos requieren una gran cantidad de inversion econémica, factor que, en la region de
Latinoamérica, y en México, merma la posibilidad de que la investigacion pueda desarrollarse,
en su mayoria son las industrias privadas las que invierten en la investigacion de estos, ademas
gue esa investigacion permanece restringida como capital intelectual. Entonces, para resolver
esta problematica, se han identificado los siguientes desafios: 1) Contar con un tiempo de
respuesta oportuno del sistema EWB, siendo este el TTC, que es el tiempo desde que se genera
la alerta, hasta que se realiza la accion de frenado determinado en un valor igual o mayor a

1.2 s (ENCAP, 2023) para pruebas definidas por el Programa Europeo de Evaluacion de Autos
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Nuevos (ENCAP, por sus siglas en inglés). 2) Construir un sistema con elementos de bajo costo
econdmico, en comparacion con los sistemas desarrollados por la industria privada. 3) Crear un
sistema de arquitectura abierta para futuros desarrollos, y que la comunidad cientifica pueda
ampliar el desarrollo y el conocimiento de esta area de investigacion, también contribuyendo la
solucion de la confidencialidad de sistemas desarrollados por el sector privado. 4) Crear una
puesta experimental segura que no ponga en riesgo a los colaboradores, a terceros ni a objetos

materiales.
1.4 Hipotesis

Es posible desarrollar un sistema de alerta al conductor ante una colision frontal para
frenado de emergencia en vehiculo automotor basado en un clasificador CNN con imégenes
digitales como entrada capaz de diferenciar entre 4 clases distintas; ruta libre, peaton, vehiculo
e infraestructura. Asi como, realizar pruebas en campo para medir su desempefio y verificar el

tiempo de anticipacion oportuno para evitar la colisién que sea igual o mayor a 1.33 s.
1.5 Objetivos

En esta seccidn, se revisa el propdésito de la presente investigacion, y se delimitan los
alcances de este proyecto.

151  Objetivo General

Desarrollar y validar mediante pruebas en campo un clasificador de iméagenes basado
en redes neuronales convolucionales (CNN) para identificar cuatro tipos de obstaculos en la
via: peatdn, vehiculo, infraestructura y camino libre, mediante una base de datos propia,
capturada en un entorno controlado con una pista y un vehiculo de prueba, para proveer alertas

al conductor ante posibles colisiones y formar parte de un sistema ADAS del tipo EWA.

1.5.2  Objetivos especificos

1. Desarrollar la puesta experimental que consiste en; una pista de pruebas en el
estacionamiento de la Facultad de Ingenieria campus San Juan del Rio, objetivos a
detectar como; dummies de adultos, objetos estaticos o infraestructura y vehiculos

falsos para obtener la base de datos y realizar las pruebas del sistema.
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Adquisicién de la base de datos usando un sensor de vision, como la camara digital, en
el campo de pruebas para la etapa de entrenamiento del algoritmo de DL y también una
parte de la base de datos para la validacion de este.

Desarrollar un algoritmo de procesamiento de imagenes y DL, en software de codigo
abierto, para segmentacion de areas de interés, la obtencion de caracteristicas,
clasificacion y deteccion de los objetivos.

Integrar los algoritmos de DL y de procesamiento de imagenes, junto con el sistema de
visién y la alerta visual, montandolo en el vehiculo eléctrico, y poder realizar pruebas

de validacién en campo.

Realizar la validacion del sistema EWB en la pista de pruebas, conduciendo el vehiculo
hacia la zona de deteccion de objetivos a velocidades definidas, para validar la deteccion
tomando en cuenta los parametros de tiempo de deteccion, tiempo estimado de colision,

tipo de objetivo, la velocidad de crucero, distancia recorrida y distancia de deteccion.
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153 Planteamiento General

Para el desarrollo de este trabajo, se toma como base el diagrama de flujo mostrado

en la Figura 4.
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En esta, se detallan los pasos requeridos para la identificacion de posibles colisiones
con los objetivos para generar una alerta de emergencia para el frenado. Este sistema se
implementara en el vehiculo eléctrico desarrollado por la Universidad Autonoma de Querétaro.
La validacion del de la metodologia propuesta se realizard en un ambiente con condiciones
controladas, con luz de dia clara, puesto a que en la industria es un criterio para la captura de

datos y las pruebas.

Se comenzara por acondicionar el vehiculo con un sensor de vision y un ordenador,
que se encargaran de adquirir la base de datos para entrenar el algoritmo de reconocimiento de
objetos. Ademas, se revisa el estado del arte para identificar las areas de oportunidad que son
consideradas en este proyecto de Tesis.

Después, se adaptara un estacionamiento como una pista de pruebas, la cual se
encontrara dentro de las instalaciones de la Universidad Autonoma de Querétaro, en el
estacionamiento que se encuentra en la Facultad de Ingenieria, campus San Juan del Rio. En
esta, se situara el vehiculo eléctrico con el sistema de vision; para realizar tareas de recopilacion

de datos para el post procesamiento y entrenamiento del algoritmo de DL.

Después, para obtener la base de datos, se realizan pruebas con 4 casos: enviando un
dummy de adulto y de nifio como prueba dindmica, también colocando cilindros de seguridad
y un vehiculo falso de manera estatica. Se realizan al menos 10 pruebas por cada caso de
estudio, con velocidades de 5, 10, 15y 20 km/h, dando como resultado un total de 160 pruebas.
Cabe mencionar que las pruebas se realizaran primero en un vehiculo de pruebas para validar
el sistema y después se integrara en el vehiculo eléctrico EFACI, en horario que no ponga en

riesgo a los peatones dentro de la Universidad Auténoma de Querétaro.

Una vez adquirida la base de datos, se procede a acondicionar el material recabado,
con el algoritmo de procesamiento de imagenes desarrollado para extraer informacion que

pueda ser de interés al momento de entrenar el algoritmo de DL.

Posteriormente, se procede al entrenamiento del algoritmo de DL desarrollado para la
deteccidn de los objetivos, con los datos preprocesados por el algoritmo de procesamiento de
imagenes de la etapa anterior. Con una parte de los datos destinados para el entrenamiento, y
otra para la validacion.
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La validacion del sistema EWB se realizara repitiendo los casos de estudio que la
obtencidn de la base de datos, integrando el sistema EWB, el sistema de vision y los algoritmos
de DL desarrollados en el vehiculo eléctrico, se tomara en cuenta el tiempo de procesamiento
en el que le toma detectar el objetivo y el tiempo estimado de colision; siendo que el sistema
tiene que haber generado la alerta en un tiempo estimado de colision superior a 1.5 s, ademas

de considerar la distancia en el que frena el vehiculo.

Finalmente, se procede a reportar los resultados obtenidos durante el desarrollo este
proyecto de Tesis. Cabe mencionar que la metodologia que se desarrollara buscara abrir una
linea nueva de investigacion, donde se podria realizar investigaciones de mas ADAS como
BSD, ACC, EBA, entre otros, para asi, aportar a la problemética planteada.
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CAPITULO Il: FUNDAMENTACION
TEORICA

En este capitulo se realizé una recopilacién de aspectos técnicos y tedricos que deben
ser tomados en cuenta con el objetivo de generar el sistema de procesamiento de imagenes, y
el algoritmo de DL, ademéas de la implementacion en el vehiculo eléctrico EFACI y del
acondicionamiento del estacionamiento para realizar las pruebas y la validacion del sistema
ADAS.

2.1 Hardware

Para poder interactuar con el entorno, se requieren elementos fisicos los cuales se
encargan de efectuar fisicamente las instrucciones requeridas por el sistema ADAS, por ello, se

mencionan los dispositivos de Hardware que se emplearan en este proyecto de Tesis.
2.1.1  Vehiculo Eléctrico

El vehiculo eléctrico (Figura 5) fue una iniciativa de estudiantes y alumnos de las
carreras de ingenieria Electromecénica (IE) en conjunto con la Ingenieria Mecanica y
Automotriz (IMA) de la Facultad de Ingenieria (UAQ, 2024) de la Universidad Autonoma de
Querétaro, en la cual se adapt6 un vehiculo de combustion a un banco de baterias, haciendo asi
un vehiculo eléctrico. Con este proyecto, se busca dar solucion a la problematica de transporte,
ambiental y tecnoldgica, implementando aplicaciones del area de electronica, eléctrica, control,

automatizacion y disefio mecanico.
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Figura 5. Vehiculo eléctrico de la facultad de ingenieria de la Universidad Auténoma de Querétaro
(FI, 2024).

Si bien ya tiene integrado varios sistemas que ayudan a su funcionamiento, ain quedan
varias areas de oportunidad para desarrollarse, especialmente en el campo de vehiculos
autébnomos. Este proyecto de tesis pretende ser el primer sistema ADAS implementado en el
EFACI, aplicando técnicas de Aprendizaje de Maquina (“ML: Machine Learning”, por sus
siglas en inglés) y reconocimiento de patrones, se lograria un gran avance en campo del

desarrollo de sistemas autonomos.

2.1.2 Camara Web Logitech© HD Pro C920s

La cdmara Web Logitech© HD Pro C920s (Figura 6) captura imagenes con una
claridad, nitidez y detalle excepcionales, resaltando colores vibrantes ya que cuenta con una
resolucion maxima de 1080p/30 fps a 720p/30 fps y un enfoque automatico. Su enfoque
automatico y correccion de iluminacion en alta definicion se adaptan al entorno para mantener

una calidad constante. Cuenta con dos micr6fonos ubicados a los lados de la lente de cristal, los
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cuales registran la voz de manera natural. Su campo de vision de 78 grados permite incluir a

dos personas en el encuadre.

Figura 6. Web Logitech© HD Pro C920s
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Para este proyecto, se utilizara esta tarjeta para envia la sefial de alerta visual del

sistema EWB, para alertar al conductor de una posible colision.

2.1.3 Dispositivos de Alerta

Como se menciond en secciones anteriores, los vehiculos modernos cuentan con
sistemas ADAS con distintas funciones, estas pueden ser tan complejas como el evaluar el
entorno para identificar riesgos teniendo de ejemplo vehiculos que estén muy cerca del
hospedador, y asi mantener o cambiar la direccidn, conservar una distancia de seguridad, o
evadir obstaculos repentinos. También pueden ser sistemas un poco menos robustos como una
alerta visual (como un Led o pantalla), una alerta sonora (un pitido constante) o ambas. Un
ejemplo de estos son los implementados en los vehiculos BMW® serie 3 Berlina y Touring
(Figura 7), el cual cuenta con un sistema ACC, y el sistema Driving Assistant que realiza la

funcién de avisar la posible salida de un trayecto o de una posible colision (BMW, 2024).

Figura 7: a) Control de crucero adaptativo y b) sistema Driving Assistant implementados en los
vehiculos BMWO serie 3 Berlina 'y Touring (BMW, 2024).

En este proyecto de tesis, se busca generar una alerta para el frenado de emergencia
ante la presencia de un obstaculo, y también busca implementarse en un sistema EWB en el

vehiculo eléctrico.

2.14  Pista de pruebas

Las pistas de pruebas (Figura 8) son ambientes controlados en las cuales se

instrumentan los vehiculos de pruebas junto con los dummies, y con estos se ponen a prueba
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tanto la estructura del vehiculo, los materiales con los que esta hecho, o algun sistema como
puede ser de frenado, transmisidn, suspension, tecnologias de materiales, bolsas de aire y, hoy
en dia, reconocimiento y evasion de obstaculos, frenado automatico, control y cambios de

direccién, entre otros (Blyuk et al., 2018).

Figura 8: Pista de pruebas para sistemas automotrices (Shutterstock, 2024).

Para este proyecto de Tesis se planea acondicionar una pista de pruebas para realizar
adquisicién de imagenes y pruebas del sistema EWB.

2.14 Maniquis de pruebas (Dummies)

Estos maniquis (Figura 9), también conocidos en la industria como “Crash test dummies” (o
simplemente “dummies”), son un tipo de mufiecos especiales que asemejan a la morfologia
humana, tanto como en forma adulta o infante con caracteristicas de peso y articulaciones

similares. Actualmente estos cuentan con diferentes sensores para medir distintas variables que
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puedan influir en la seguridad del ser humano, como fuerza, velocidad y aceleracion de impacto,
fuerzas de torsion, velocidad, presiones de impacto, para poder recabar la mayor cantidad de
informacion posible. Estos son utilizados ampliamente en la industria del transporte para
desarrollar vehiculos y aeronaves, para realizar pruebas de choque y evaluar los posibles dafios
que podria sufrir un ser humano al momento de una colision en el caso de que es piloto, copiloto
0 pasajeros, para evaluar el desempefio de los sistemas de seguridad, o el nivel de seguridad del

chasis de un vehiculo (Jaskiewicz et al., 2021).

Figura 9. Dummies en prueba de choque (Jaskiewicz et al., 2021).

Para este proyecto de tesis, se plantea el uso de un dummie de forma adulta para ser

parte de los objetivos a identificar por el sistema EWB.

2.2 Software

Para poder procesar la informacion, e implementar los algoritmos de identificacion de
patrones, ML, DL, o procesamiento de imagenes, ademas de generar las instrucciones
requeridas por el sistema ADAS, se mencionan los dispositivos de Hardware que se emplean

en este proyecto de Tesis.
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2.2.1 Matlab©

Es un entorno de programacion y un lenguaje de programacion de alto nivel basado
en C/C++, lo que ofrece un lenguaje de programacion facil de aprender y expresivo, lo que
permite a los usuarios realizar disefio e implementacion de sistemas de control, entrenar
modelos de machine learning, procesamiento de sefiales, implementacion de algoritmos de
Deep learning, procesamiento de imagenes y vision artificial, creacion de aplicaciones, entre
otros gracias a sus extensa cantidad de funciones herramientas. Ademas, con sus herramientas
para crear graficos de alta calidad se puede organizar y visualizar de mejor manera informacion,
visualizar datos, obtener informacion, e identificar patrones y tendencias. También se puede
generar y ejecutar codigo en C, C++, CUDA, Verilog, VHDL y texto estructurado, e
implementarlo en hardware, ademas de poder interactuar con dispositivos de adquisicién de
datos y controladores de instrumentos (MATLAB, 2024).

2.2.2 Lenguaje Python©

Python®© (Figura 10) es un lenguaje de programacion de alto nivel facil de entender
para programadores principiantes o experimentados en otros lenguajes por su sintaxis limpia y
legible, con una comunidad activa y actualizada para el desarrollo proyectos junto con
documentacién de este lenguaje. Ademas de ser cddigo abierto al ser desarrollado bajo una
licencia aprbada por la Open Source Iniciative (OSI, por sus siglas en inglés), lo cual permite
su uso y distribucion para usos comerciales, como el desarrollo web y de internet, acceso y

analisis de bases de datos, desarrollo de interfaces gréaficas, hasta ML y DL.
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Figura 10: interfaz de sitio oficial de Python©

Por las caracteristicas vistas anteriormente, se opta por utilizar este lenguaje para fines
de codigo abierto, validacion de resultados en entrenamiento de algoritmos de DL e

implementaciones fisicas del sistema EWB.

2.3 Técnicas de procesamiento de datos

Para poder delegar la tarea de identificacion de patrones, se utilizan técnicas de
procesamientos de datos obtenidos en imagenes, sefiales, o datos. A continuacion, se mencionan

las utilizadas en este Proyecto de Tesis.

2.3.1  Sistemas de procesamiento de imagenes

Son un conjunto de elementos como camaras digitales (Figura 11), iluminacién y
unidades de procesamiento, que analizan datos otorgados por fotografias y videos, para adquirir
informacién y extraer caracteristicas como la identificacion de personas, objetos, patrones,

colores, formas, texturas, entre otros aspectos, con técnicas de procesamiento de imagenes.
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Figura 11. Diagrama a bloques de un sistema de visién (Gonzazel & Woods, 2018).

En la Figura 11 se muestra el diagrama a bloques que conforman un sistema de
procesamiento de imagenes el cual consta de una serie de elementos. El primero es el sensor de
imagenes, que es sensible a la energia radiada por el objeto de interés, y el segundo es el
digitalizador, que convierte la sefial generada por el sensor en una imagen digital, que, en
conjunto con el hardware especializado, pueden realizarlo a una alta velocidad. La computadora

es un sistema de procesamiento de manera general, puesto que esta recibe la informacion en
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forma de imagenes y video, y por medio de softwares de procesamiento de imagenes dedicados
a tareas especificas y analizar la informacion obtenida para la toma de decisiones. El
almacenamiento masivo es requerido para almacenar imagenes puesto la gran cantidad de
informacién que puede contenerse en una sola imagen. Para visualizar la informacién se
requiere desplegarlas en pantallas, regularmente utilizadas a color. Los dispositivos de copia
impresa son los que pueden ser impresoras laser, cAmaras de pelicula, dispositivos sensibles al
calor, unidades de inyeccion de tinta y unidades digitales, cada una utilizada para distintos
propdsitos. Finalmente, la red y la nube son indispensables para el procesamiento de iméagenes
y acceder a la informacion no importa la distancia del objeto de andlisis (Gonzazel & Woods,
2018).

2.3.2 Deep Learning (DL)

El aprendizaje automatico es clave en muchas aplicaciones modernas, desde
basquedas web hasta reconocimiento de imagenes y voz. Sin embargo, los métodos
tradicionales requerian disefiar manualmente algoritmos para la extraccion de caracteristicas
para transformar los datos en un formato adecuado para su analisis. EI DL resuelve este
problema al permitir que los sistemas aprendan representaciones directamente de los datos
crudos, mediante mdaltiples capas de transformacion no lineales. Estas capas aprenden
caracteristicas cada vez mas abstractas, lo que permite reconocer patrones complejos sin
intervencion humana. Gracias a su capacidad para descubrir estructuras en datos de alta
dimensidn, el DL ha logrado avances significativos en diversas areas, como reconocimiento de
imagenes y voz, prediccidon de actividad molecular, anélisis de datos cientificos y comprension
del lenguaje natural. Su éxito se debe a su capacidad de escalar con mas datos y potencia
computacional, y se espera que continle mejorando con nuevos algoritmos y arquitecturas
(Lecun et al., 2015).

2.3.3  Aprendizaje supervisado

El aprendizaje supervisado es la forma en que funcionan la mayoria de los algoritmos
de ML y DL para la tarea de clasificacion. Para modelos entrenados por optimizacion, se toma
una cantidad de datos etiquetados y clasificados para adquirir caracteristicas relevantes y asi
obtener un modelo de clasificacion para las clases, una vez que se adquieren los rasgos

representativos estas, se utiliza el modelo con un conjunto de datos de prueba y se obtiene la
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precision del modelo calculando el error como la diferencia entre el valor real y el valor arrojado
por la prediccion, cominmente se usa el error cuadratico medio (MSE, por sus siglas en inglés)
(1) o la entropia cruzada (2). En el DL, se realiza este proceso entrenando un modelo con un
gran conjunto de datos etiquetados, ajustando sus parametros (pesos) para minimizar el error
entre sus predicciones y las etiquetas correctas mediante el descenso de gradiente estocastico
(SGD, por sus siglas en inglés) aplicado a la funcién error z mostrado en (3) (Lecun et al.,
2015).

1 N
7= NZ(yi - 92 (Ec. 1
1 N
7 = _NZ yilog(9)) (Ec. 2
NEFL ot 0z Ec. 3
((x) ) - ((x) ) - nax(wi)t ( C. )

Donde z; y z, son funciones de pérdida, z es la funcién pérdida a minimizar, y; es el

valor real de la muestra i, y; es el valor predicho por el modelo, N es el nUmero de muestras, n
es el coeficiente de aprendizaje, (w‘) es el valor actual del pardmetro (peso) en la época t,

()" es el valor actualizado por el SGD.

2.3.3 Redes Neuronales Artificiales

A diferencia de los clasificadores lineales tradicionales utilizados en ML que solo
pueden separar datos con regiones simples, dificultando tareas como el reconocimiento de
imagenes y voz, el DL utiliza redes neuronales profundas (DNN, por sus siglas en inglés) que
aprenden automaticamente representaciones jerarquicas de los datos. Estas estan formadas por
nodos o unidades de procesamiento (también denominados perceptrones), dichas unidades
estan organizadas en capas de entrada, ocultas y de salida (Shrestha & Mahmood, 2019), en la
Figura 12a se muestra una representacion grafica y matematica de un perceptrén, y en la

Figura 12b se muestra una imagen demostrativa de una arquitectura para DNN.
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Figura 12. a) Perceptrén simple y b) arquitectura de una DNN.

Cada nodo (o perceptron) en cada capa recibe un estimulo (o entrada), que es
multiplicada por su respectivo peso que pondera la relevancia de dicha entrada, después es
sumada en el nodo en cuestion para someterse a una transformacion basada en una funcion de
activacion, como la sigmoide (4), tangente hiperbolica (5), unidad lineal rectificada (ReLU, por

sus siglas en inglés) (6) y softmax (7).

f(z) = T +1e‘Z (Ec. 4)
f(2) = Z;—Z: (Ec. 5)
f(z;) = max(0,z) (Ec. 6)
f(z) = Zjeizf (Ec.7)

Donde z es la suma ponderada de los estimulos que entraron a la neurona (Figura 8a).
La (Ec. 4), denominada sigmoidal, tiene la caracteristica de que abarca valores de [0,1] y es
diferenciable en todo su dominio, haciéndola Util para el uso de probabilidades, aunque se
desvanece el gradiente en valores grandes de z. La tangente hiperbdlica (Ec. 5) obtiene valores
de [—1,1] y acelera la convergencia, pero tiene la misma desventaja de desvanecimiento del
gradiente. La ReLU (Ec. 6) obtiene valores [0, +o] es computacionalmente eficiente y reduce

la el problema del desvanecimiento, su desventaja es que pueden surgir neuronas muertas y el
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modelo puede dejar de aprender al tener valor en el peso que pueda hacer la entrada siempre
cero. En cuando a la Softmax (Ec. 7), obtiene valores de [0,1], y se utiliza en la salida de las
redes neuronales para una clasificacion multiclase. Transforma un vector de valores reales (las

salidas de la Ultima capa de la red) en un vector de probabilidades normalizadas.

2.3.4 Redes Neuronales de Convolucionales

Las Redes Neuronales Convolucionales (CNN, por sus siglas en inglés) estan basadas
en la corteza visual humana y empleada en aplicaciones de vision por computadora,
reconocimiento de video y otras aplicaciones. Pueden identificar, reconocer y clasificar objetos,
asi como segmentar elementos dentro de iméagenes. Para entender cémo funcionan las
arquitecturas CNN es necesario analizar sus componentes y sus aplicaciones. En la Figura 9 se
muestran los componentes de una CNN (Taye, 2023). En la Figura 13 se muestra una imagen

representativa de las etapas de una CNN.
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Figura 13. Componentes de una CNN
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Como se puede observar, una CNN esta compuesta tipicamente de 4 tipos de capas:

Convolucional, Pooling, Funcién de activacion y Completamente conectada.

44



2.3.4.1 Imagen de entrada

Es representada matematicamente como un arreglo rectangular en el cual tiene
dimension largo por ancho, cada casilla en este arreglo es denominado pixel y tiene un valor de
0-255, y pueden ser 3 arreglos en una sola imagen si es de 3 canales (rojo, verde y azul, en la
mayoria de los casos). El conjunto de los valores que corresponden a cada casilla en el arreglo
rectangular da como resultado una imagen que puede ser interpretada por la CNN vy clasificar

objetos con la informacion almacenada en el arreglo rectangular, o imagen.

2.3.4.2 Capa de convolucion

Funamental en la arquitectura de una CNN. Esta compuesta de un conjunto de filtros
(o kernels). Un kernel es un arreglo rectangular de mucho menor dimensién, con valores
enteros. A cada namero se le asigna un peso (o valor) dentro del kernel. Los pesos iniciales en
una CNN son un conjunto de enteros elegidos aleatoriamente, y con el proceso de
entrenamiento, el kernel puede identificar caracteristicas especificas desde bajo nivel (como
bordes y contornos, esquinas y cruces, texturas finas, gradientes de color), mediano nivel
(“mofits”, regiones de interés o texturas compuestas), y alto nivel (relaciones espaciales, objetos
completos y sus partes). En la Figura 14 se muestra la operacion de Kernel y su interpretacion

mas intuitiva.
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Figura 14. Representacion visual de calculos primarios de un Kernel (Taye, 2023).

La convolucion toma una ventana de pixeles de la imagen de tamafio igual al del
Kernel que se fija (en el caso de la Figura 14, es una ventana de 2x2). Utiliza esta ventana para
multiplicar el valor correspondiente a su ubicacion en el kernel y sumar los valores para obtener
un valor final, repitiendo estas operaciones a lo largo de la imagen se obtendra una imagen con
las caracteristicas obtenidas por el kernel. En este caso el kernel tiene un salto (Stride), o avance,

de una casilla para realizar otra operacion, esto se puede cambiar para obtener un resultado
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diferente en la salida, pero podria disminuir la dimension de la caracteristica que se esta
analizando, ademas de perder informacion que podria ser valiosa. Para ello, se puede agregar
un relleno (Padding) para conservar la dimension de las caracteristicas. En la Figura 15 se

muestran ejemplos de filtros similares a los obtenidos por una CNN con Kernels de dimension
3x3.
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Figura 15: Efectos de diferentes Kernels en una imagen (Taye, 2023).

Cada filtro puede representar una caracteristica especifica. Si un filtro se desplaza
sobre una imagen y no encuentra coincidencias, no se activa. La CNN utiliza este mecanismo
para identificar los filtros mas efectivos para describir los objetos.
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2.3.4.3 Funciones de activacion (No linealidad)

Seguida de la convolucion, una vez realizada la operacion de convolucion y se calcula
el mapa de caracteristicas, la funcion de activacion actla pixel a pixel para acotar o evitar la
sobresaturacion de los valores de salida. Estas funciones pueden ser la sigmoidal (Ec. 4),
tangente hiperbdlica (Ec. 5) o ReLU (Ec. 6).

2.3.4.4 Pulido (Pooling)

A veces se puede La capa de Pooling se utiliza para reducir la dimensionalidad de los
mapas de caracteristicas obtenidos por los Kernels, estos de igual manera toman un tamarfio de
ventana y toman la muestra mas significante que decida tomar el usuario, estas pueden ser

maximo, minimo o promedio. En la Figura 16 se muestra un ejemplo de dicha operacion.
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Figura 16: Ejemplos de operaciones de pulido.

Asi, se logran discriminar valores que no resulten ser relevantes en los mapas de
caracteristicas, disminuyendo asi la carga computacional antes de que pasen a la clasificacion

en la capa completamente conectada.
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2.3.4.5 Capa completamente conectada (FCL)

Similares a las ya mencionadas en secciones anteriores, se encargan de analizar las
caracteristicas mas importantes que han conformado los mapas de caracteristicas resultantes.
Se emplea una Red Neuronal Artificial para la clasificacion de las clases en cuestion, teniendo
como capa de entrada un vector resultante de “aplanar” los mapas de caracteristicas, seguido
de capas intermedias para realizar tareas de clasificacion y como capa de salida la clase
correspondiente a la que pertenece ese mapa de caracteristicas.
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CAPITULO IIl: DESARROLLO DE
SISTEMA ADAS PARA ALERTA DE
FRENADO EWA

Tomando como referencia la Figura 3 para desglosar la metodologia empleada para
este proyecto de tesis. Se comenzara por acondicionar el sistema de visién al vehiculo
hospedador para la adquisicion de imagenes de los objetivos (peaton, infraestructura, vehiculo,
camino libre). Posteriormente se acondicionara la pista de pruebas para y capturar las imagenes
con el sistema de vision desde la perspectiva del vehiculo hospedador para entrenar la CNN
que se encargara de identificar el tipo de objetivo, modificando el nmero de kernels, capas de
convolucion, numero de neuronas, épocas para el entrenamiento. Luego, se procedera a realizar
la prueba de sistema EWA que conjunta el sistema de adquisicion de muestras y la CNN
entrenada para su clasificacion y alerta, estas pruebas consistiran en una puesta experimental
basada en reglamentos viales, velocidades permitidas en espacios urbanos, tiempos estimados
de frenado y del estado del arte revisado. Finalmente, se registran los resultados de las pruebas
para verificar la vialidad de este sistema.

3.1 Captura de base de datos

En este apartado se desglosa la metodologia empleada para adquirir una base de datos
gue requieran imagenes en escenarios en entornos de vialidades desde la perspectiva de un
vehiculo. La base de datos consta de 4 clases: Infraestructura, Peaton, Vehiculo y Camino Libre,
cada clase contiene 2000 imagenes redimensionadas y en escala de grises para disminuir la
carga computacional del sistema final. La obtencion de esta base de datos y una descripcion

mas detallada se muestra en las siguientes secciones.

3.1.1  Configuracion de Vehiculo Hospedador

Se utiliza la camara Logitech® C920 instalada en el tablero del vehiculo hospedador

para obtener la perspectiva del vehiculo en su navegacion, con la finalidad de obtener imagenes
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lo més cercano a los que se pueden presentar en la vida real. También, se agrega un ordenador
que se encargara de ejecutar el codigo de captura de imagenes durante la conduccion hacia los
objetivos, este vehiculo se muestra en la Figura 17.

Figura 17: Acondicionamiento de vehiculo hospedador con sistema de adquisicién de imagenes.

Con el vehiculo acondicionado, se obtienen imagenes que se asemejan a escenarios
reales vistos desde la perspectiva del conductor, a velocidades establecidas con base en el

reglamento de transito.
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3.1.2  Adecuacion de pista de pruebas para captura

Para tener un ambiente controlado, y no poner en riesgo a personas o infraestructura,
se acondiciona el estacionamiento ubicado en la Universidad Auténoma de Querétaro, plantel
San Juan del Rio. Esta se divide en zonas como se muestra en la

Figura 18.

. Vehiculo
acondicionado -
v <

L1 Zona de captura de “Peatén” e “Infraestructura”
B Zona de captura de “Vehiculo”
M Zona de conduccion para captura

a) b)
Figura 18: a) Acondicionamiento de la pista de pruebas con las regiones de captura de imagenes en el
estacionamiento de la Facultad de Ingenieria y b) ejemplificacién de escenario de peaton caminando

para la captura de imégenes

El escenario de las imagenes correspondientes a la clase de Peaton e Infraestructura
se toma en cuenta a una persona desplazandose por la zona de captura de peatén y un dummie
adulto estatico, variando el angulo de captura mostrados con los puntos B a F y conduciendo el
vehiculo hospedador en hasta desde estos puntos acercandose al punto A con velocidades
variables de 0 a 10 km/h, tomando en cuenta que la velocidad relativa es la misma del vehiculo
hospedador dado que ningln objetivo se mueve en direccion al vehiculo hospedador. En cuanto
la deteccion de Vehiculo, se colocan estos objetivos en el punto G y se conducen el hospedador
desde los puntos H, Iy J, hasta el punto G. Cada imagen en formato “crudo” tiene un tamano
de 640 x 480 pixeles.
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3.1.3  Captura de clase “peatdn”

Para capturar la clase de peaton, se considera el area correspondiente en amarillo de
la Figura 18, donde se desplazan una persona individual y un grupo de 5, 3 'y 2 personas, en
esta area, ademas de un dummie de adulto estatico puesto en el punto A para su captura. Se
conduce el hospedador de los puntos B a F al punto A capturando imagenes de los peatones en
movimiento y del dummie estatico, en un horario diurno con luz natural clara y despejada. En

la Figura 19 se muestra un ejemplo de como se realiza este proceso
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e)

Figura 19. Captura de imagenes de clase “peaton” a) una persona desplazandose, grupo de b) 2

personas, c) 3 personas, d) 5 personas desplazandose y €) dummie estatico.

Asi, se contemplan distintos escenarios que se pudieran presentar en la identificacion

de la presencia de un peaton mientras se conduce en una vialidad urbana.

3.14  Captura de clase “Infraestructura”

La clase infraestructura consta de un bote de transito con reflejante que se coloca en
el punto A de la pista de pruebas mostrada en la Figura 18. Para la captura de imagenes se
conduce el hospedador desde los puntos B a F hacia el punto A. En la Figura 20 se muestra un
ejemplo de la captura de infraestructura con un angulo de captura.
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Figura 20: Clase de infraestructura capturada variando angulo de captura

De esta manera, se toman en cuenta distintos escenarios para la captura del objetivo

que se podrian presentar en un escenario real.

3.15 Captura de clase “Vehiculo”

La clase de Vehiculo consta de dos vehiculos colocados en la zona G de la Figura 18
para ser capturados por el hospedador, desplazandose desde el punto H a j hasta el punto G a
una velocidad constante. En la Figura 21 se muestra un ejemplo de imagenes capturadas por el
Hospedador.
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Figura 21: Vehiculos capturados para la clase “Vehiculo”.

Asi, se contempla un ultimo objetivo para las pruebas para el sistema EWA.

3.1.6  Captura de “Ruta Libre”

Para identificar cuando el vehiculo pueda conducir de manera segura sin que el
sistema EWA se active, se realiza una adquisicién de imagenes que no contendran ninguno de
los objetivos presentes, para esto, se utiliza una pequefia modificacion a la forma de conducir
el vehiculo en la pista de pruebas. En la Figura 22 se muestra el escenario para la captura de la

clase de “Camino Libre”.

3

.;-thlll_

\
f

e
RN

B Zona de adquisicion de “Ruta Libre”

Figura 22. Zona de adquisicion de imagenes para clase ruta libre
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Para esta clase, se contempla en movimiento al vehiculo desplazandose a velocidad
constante del punto A al punto B, adquiriendo imagenes con un tiempo de muestreo de 100 ms
entre muestra. En posteriores secciones se mostrara el proceso del algoritmo de captura para las
iméagenes de la base de datos.

3.1.7  Algoritmo de captura automatizada de imagenes

Para la captura de las imagenes de los objetivos que formaran parte de la base de datos de
manera automatica se desarrolla un algoritmo el cual tiene como argumentos: el nimero de

imagenes a obtener y el intervalo de tiempo en el que ocurre cada captura, este proceso se
muestra en la Figura 23.

ImiCee

|

N = Numero de imdpens
Ly = Inlermlo de lismpa
1t = Numnero de imagen caplurada

'

accede ala cdmara
dr viden

¥
Mo

— e —_— Cinrra todas las ventanas

A |

Captura y guarda la
Imagen i Libera la cArmara

M u=ilia la imapen i l

l' Fin

Espera f, scgunidns

4

F—it1l

{5 presiona la

letra @?
Mo 5l

Figura 23: Diagrama de flujo para captura de iméagenes de manera automatica.
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La captura de las imagenes comienza definiendo el nimero de imagenes que se
requieren y el tiempo entre captura. Se accede a la cdAmara de video colocada en el tablero del
vehiculo para comenzar a tomar captura de imagenes, comienza con el indicador i=0 que
representa la imagen actual que se esta tomando, y si el indicador i es el menor que el nimero
de imagenes toma una captura y la almacena como “imagen_i”, e incrementa el indice hasta
conseguir la N imagenes. Durante este proceso, existe una bandera de control g que si se
presiona interrumpe el proceso y libera la camara y termina la tarea. Este codigo se configura
para adquirir las 2,000 imagenes desde el punto de vista del vehiculo, con un intervalo entre
captura de 100 ms. En la Figura 24 se muestra una secuencia de 1.2 segundos donde se

obtuvieron 12 imégenes con dicho tiempo de captura.
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Figura 24: Secuencia de imagenes capturadas desde el punto de vista del vehiculo hospedador.

De esta forma, se consigue obtener un gran nimero de imagenes que se requieren para

el entrenamiento de algoritmos de clasificacion, adecuandolos al contexto especifico de su
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aplicacion y de su entorno. Y en la Figura 25 se muestran las imagenes capturadas de todas las
clases.

| uiase 1

W B Clase 2
i o W d
! { I\
Feutoe Lr 3 5 P LI g - - = ) & .
= ~. ~ — - -

M Clase3
B Clase 4
A(h'e‘lm ( GWH gt 'n;mu e (W« L Qcmv ma)e cwu e

) captared_evuge ) hptured mage ) taptured mige ) captures image ) toptired image
= SN M e Y
Jcaptored brage ) captured wuge ) captures image  (Z upnnd mage O captures image  C) captuced image
K10 A K1 Je M
= ot - -
. . .
(Deaptend_muge D captured image () Captured_mage ) Captined_inmge Captured_image | Ghptured_image ) Laptaxed image

Figura 25: Imégenes capturadas en la etapa de adquisicion de datos.

Estas imagenes se utilizan como clases para el entrenamiento de un clasificador de

DL, modificando el tamafio y aplicando una escala de grises a estas para su clasificacion.
3.2 Topologia de CNN para clasificacion

Para validar si el proceso de umbralizacion es funcional para la etapa de clasificacion,
es entrenando una CNN, la cual tiene como entradas las 4 clases analizadas en este trabajo de

Tesis. En la Figura 26 se muestra el proceso a seguir para su validacion.
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Infraestructura

Peaton

Vehiculo

Camino libre

Red Neuronal

Validacion

convolucional

Imagenes

Figura 26: Validacion de acondicionamiento de imagenes por medio de una red Neuronal

Convolucional.

Para esta CNN, se utiliza una red con una etapa de convolucion que tiene como entrada
una imagen de 28 x 28 pixeles de un solo canal con valores de 0 a 255 (Escala de grises),
seguido de una capa de convolucion con 15 filtros de tamafio 3 x 3, con funcidn de activacion
‘ReLU’ y un padding de ‘same’, después entra a una capa de pulido maximo con un tamafio de
ventana de 3 X 3 y un salto (0 “Stride”) de 2. Después transforma (aplana) el modelo para
convertir el resultado de las capas de convolucion 2D a un vector 1D de tamafio 1 x 196.
Posteriormente, entra a una etapa de neuronas completamente conectadas con 128 neuronas y
una funcién de activacién ReL.U. Luego pasa por una tasa de apagado (“Drop Out”) del 50%
que inhabilita aleatoriamente la mitad de las neuronas para reducir el sobreajuste y evitar que
el modelo dependa de ciertas conexiones especificas. Finalmente, en la capa de salida se
encuentran 4 neuronas de salida con funcion de activacion ‘softmax’. En la Figura 27 se

muestra la topologia de la CNN propuesta.
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Convolucion + ReLU
28 x 28 Pixeles
15 Filtros
Aplanado
1x196

Max Pooling
14 X 14 Pixeles

15 Filtros 50% Drop Out
Capade salida
4 Clases

Capa Completamente conectada
128 Neuronas + RelU

Imagen de entrada
28 x 28 Pixeles

Figura 27: Arquitectura de CNN para deteccion de 4 clases.

Como se observa en la Figura 27, se aprecia que es una arquitectura con poca carga

computacional en cuanto a complejidad de capas para esta aplicacion.

3.3 Histograma para filtrado de sefal de salida

Por cuestiones de interferencia de diversos factores como luz o interferencias, puede
que la salida del clasificador sea una clase que no es la esperada cuando se incorpora al sistema
de monitoreo EWA. Es por ello que se realiza un programa que monitoree la salida que arroja
el clasificador, y acumule cada una durante un nimero de veces especifico y arrojando como
salida el mayor numero de veces de la clase que registré en el acumulador. Este proceso se

muestra en la Figura 28.
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Figura 28: Diagrama de flujo de funcion “Histograma” para el filtrado de sefial.

El programa tiene como entradas el nimero “n” de muestras a contemplar antes de

objetivos propuestos en esta investigacion.
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arrojar una salida, una bandera “conteo habilitado” que activa el proceso de histograma, un
contador que controla el nimero de veces que toma una muestra e histograma, el acumulado de
la clase registrado como “Cuentas” y la “clase detectada” por la CNN. Si se habilita el
histograma, se monitorea la clase que se detecta y se acumula durante “n” veces, al completar
el periodo de monitoreo, se verifica qué clase tiene el mayor numero de apariciones en el
clasificador, y arroja como salida esta clase. Si es diferente a la clase “Ruta Libre” se genera
una alerta de posible colision, arroja el tiempo empleado en generar toda la clasificacién desde

la activacion del histograma, hasta encontrar una clase que pueda ser una colisién con los



34 Algoritmo de EWA

Una vez desarrollados todos los elementos del codigo utilizado para la clasificacion,
se implementa en conjunto con el algoritmo de captura y clasificacién de imégenes por
histograma, utilizando imagenes en blanco y negro, escaladas a un tamarfio de 28 x 28 pixeles
para identificar los posibles objetivos que puedan cruzarse en el camino del vehiculo
hospedador (Figura 29).
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Inicio
v

Modelo = load_model{CNN_EWA. keras)

conteo_habilitado = False

contador = 0
Cuentas = [0,0,0,0]
Clase_detectada (puede tomer valores de 0, 1, 2, 3)
Clases = {0: "Infraestructura”, 1: "Peaton”, 2: "Ruta Libre’, 3: "Vehiculo"}

ID camara=0

Tamaio_imagen = 28 x 28
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Figura 29: Diagrama de flujo de sistema EWA.

El algoritmo de EWA consiste en el modelo de DL entrenado para identificar 4 clases

en cuestion previamente entrenado, este utiliza una cdmara digital “ID camara” que se encarga
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de capturar activamente muestras del entorno desde el punto de vista del vehiculo, una bandera
de control Q que interrumpe todo el programa, un comando “w” que habilita el monitoreo por
histograma para realizar las pruebas en la puesta experimental. Una vez habilitado el conteo
haya sido activado cuando se alcanza la velocidad crucero en el punto de inicio, comienza a
capturar imagenes del trayecto que sigue el vehiculo en la pista de pruebas y las clasifica en
tiempo real, las clasifica y si la bandera de conteo habilitado estd activada, realiza la
clasificacion de histograma hasta detectar un objetivo diferente a ruta libre y arroja una alerta

sonora.

35 Puesta experimental

Para validar el desempefio del sistema propuesto, se propone una puesta experimental
gue consiste en realizar una conduccién del sistema en un entorno controlado a velocidades
especificas en escenarios definidos, en la Figura 30 se muestra las variables a considerar en

esta puesta experimental.
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Figura 30: Puesta experimental propuesta para el sistema EWA

Las pruebas consisten en delimitar la distancia total d,,.,; €n la pista de pruebas para
el trayecto del hospedador a una velocidad vy, definidas con base en el reglamento de
transito para entornos urbanos las cuales son 5, 10, 15y 20 Km/h, el hospedador ejecutara todo
este tiempo el algoritmo de EWA para monitorear la presencia de un posible objetivo, se
calculara la distancia d,,epq que recorrio el hospedador en funcion del tiempo el que detecto
el objetivo en el camino, también, se considera la distancia que restaba para colisionar con el

objetivo ddeteccién-
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ddeteccién = dtotal — tgeteccion * Uprueba

Uprueba

ttotal =
d
total

Leotision = Lrotal — Ldeteccion

tcolision = 133s

Cabe mencionar que, aunque el reglamento de transito permite un limite de velocidad
de 40 km/h se decidié acotar la velocidad del vehiculo hasta 20 km/h debido a que: 1) Se
prefiere evitar el riesgo que puede ocasionar velocidades superiores a esta. 2) La pista permite
conducir de manera segura solo a 20 km/h, y 3) La distancia que se requiere para alcanzar esa
velocidad supera longitud de la pista de pruebas. En la Ec. 11 se calcula la distancia de deteccién
en funcion de la velocidad de prueba y el tiempo de deteccidn arrojado por el sistema EWA.
Ec. 12 calcula el tiempo que tardaria el vehiculo en recorrer la distancia de total a la velocidad
de prueba. Y en Ec. 13 calcula el tiempo estimado de colision, y si es menor que 1.33s (Ec. 14),
se considera como una colision inminente, teniendo asi un pardmetro para validar la efectividad
del sistema. Se toma como valor de TTC igual a 1.33s como propuesta sin superar el valor

minimo de 1.2s dado por la ENCAP. EWA. En la Figura 31 se muestra la pista de pruebas

adecuada para las pruebas.

Zona de deteccion de objetivos

[ |
B Zona de conduccion

a)

Figura 31: a) Pista de pruebas acondicionada para validacion del sistema EWA y b) ejemplo real de

escenario de prueba con clase “Peaton”.
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En Figura 31a se muestra la pista de pruebas donde se llevara a cabo los experimentos
de prueba del sistema EWA como se describid en la Figura 30, y en Figura 31b se muestra un
ejemplo de una prueba preparada para identificar la clase “peaton”, cabe mencionar que en la
zona de deteccion de objetivos se cambian dependiendo de la clase en cuestion analizada. El
tiempo de procesamiento se considera desde el momento en que la camara obtiene una imagen,
cuando realiza las operaciones que se requiere para ajustar la imagen de 640 x 480 pixeles al
tamafo de 28 x 28 pixeles y escala de grises necesaria para ser clasificada por la CNN. El
tiempo total de procesamiento se ve influenciado en cuantas muestras se consideran para el

filtrado por histograma, teniendo asi la siguiente ecuacion para el tiempo total.

n
tprediccion = Z t; (Ec. 15)
i=1
torueba = Z torediccion (EC- 16)

Donde t,,caiccion €S €l tiempo acumulado entre predicciones t; que el histograma
tarda en realizar n predicciones (Ec. 15) para realizar una deteccion. Y el tiempo de deteccion
en las pruebas t,,epq (EC. 16) es el tiempo que tardo en realizar una deteccion de la clase en

cuestion.

3.5.1  Casos de pruebas: Objetivos

Para las pruebas para deteccion de objetivos, se considera el escenario cuando se lleva
a cabo la puesta experimental descrita, conduciendo el vehiculo hospedador a las velocidades
de prueba constantes durante la distancia de conduccidn, ejecutando el algoritmo de captura de
imagenes, clasificacion y filtrado por Histograma que integran el sistema EWA, generando una
salida en cada periodo de tiempo hasta detectar un objetivo y emitir una alerta ante una posible
colision con el objetivo de prueba. En la Figura 32 se muestran los escenarios contemplados

para que las pruebas sean exitosas o fallidas.
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Clase: Clase: Clase: Clase: Clase: Clase: Clase: Clase: Clase:

Ruta Libre  Ruta Libre Ruta Libre  Ruta Libre  Ruta Libre  Ruta Libre  Ruta Libre  Ruta Libre Peattn

a)

Clase: Clase: Clase: Clase: Clase: Clase:

Clase: Clase: Clase:
Ruta Libre  Ruta libre Ruta libre  Ruta libre Ruta Libre Ruta Libre  Ruta Libre  Ruta Libre  Vehiculo

b)

Clase: Clase: Clase: Clase: Clase: Clase:

Clase: Clase: Clase:
Ruta Libre  Ruta Libre Ruta Libre  Ruta Libre  Ruta Libre RutaLibre  Ruta Libre  Ruta Libre Ruta Libre

c)

Figura 32: Consideraciones adicionales para que una prueba sea a) exitosa o b) fallida por

clasificacion incorrecta de objetivo o c) fallida por no alertar en el caso de prueba con “objetivos”.

En la Figura 32a se considera como prueba exitosa en la cual detecta la clase
analizada en cuestion (Peaton, en este caso) con un tiempo estimado de colision (Ec. 14)
superior a 1.33s y, en consecuencia, fallida es este tiempo es menor, en la Figura 32b se
considera como una prueba fallida si el tiempo estimado de colision cumple, pero la clase
identificada es diferente a la del caso de prueba, y en la Figura 32c se contempla como una

prueba fallida si el sistema no alerta de una posible colision.
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3.5.2  Casos de pruebas: Ruta Libre

Para garantizar el funcionamiento del sistema en una navegacion segura sin presencia
de objetivos en la pista de pruebas muestra en la Figura 33, se considera una prueba en el

escenario mostrado en la Figura 29.

Clase: Clase: Clase: Clase:
uta Libre  Huta Libre  Ruta Libre  Ruta Libre

b)

Figura 33: a) Prueba exitosa de conduccién segura o ruta libre y b) prueba fallida al detectar un

objetivo en una ruta libre.

En esta prueba, se considera como prueba exitosa si durante todo el trayecto se el
sistema EWA no detecta ningun objetivo (Figura 33a), y si llega detectar algin objetivo por
alguna interferencia se considera como una prueba fallida (Figura 33b). Para medir la fiabilidad
del sistema se realiza un total de 40 pruebas de cada clase bajo condiciones controladas. Ademas

de realizar un registro de la latencia y tiempos que tarda en realizar una alerta ante una colision.
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CAPITULO IV: PRUEBAS Y
RESULTADOS

En este capitulo, se muestran los resultados de la implementacion del algoritmo de
adquisicién, procesamiento, entrenamiento y clasificacion de imagenes mediante la arquitectura
propuesta de CNN vy filtrado por histograma que conjuntan el sistema EWA en las pruebas

descritas.

4.1 Resultados del entrenamiento y validacion de la CNN

Al realizar el entrenamiento de la arquitectura de la CNN mostrada, cambiando el
tamano de las imagenes de entrada a 28 x 28 pixeles a un solo canal de color (Gris), se entrena
un modelo de CNN en Matlab® para validar que el procesamiento de las imagenes es viable
para la clasificacion del sistema EWA en tiempo real. En la Figura 34 se muestra el progreso
del entrenamiento realizado y de la gréfica de la perdida con 4 épocas, optimizador con

reduccion del gradiente estocastico.

Precision (%)

20 0 50 100 150 200 250 300 350 400
Epocal Epoca2 Epoca3 Epoca4d Iteracion
0 50 100 150 200 250 300 350 400

Iteracion

a) b)
Figura 34: a) Precision de la CNN implementada con las imagenes adquiridas y b) pérdida durante el

entrenamiento

Como se puede apreciar, el utilizar imagenes en escala de grises y escaladas se logra

obtener una precision del 98.91%, con una pérdida de 5.35% final con 4 épocas y 400
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iteraciones, ademas de la disminucion de la perdida mientras aumenta la precision, lo que indica
que no existen problemas de sobreajuste. Al utilizar un 20% de las imagenes (400 por clase)
para prueba, se sintetizan los resultados en la siguiente matriz de confusion de las imagenes al

utilizarlas con la CNN entrenada (Figura 35).

Matriz de confusion

400

Infraestructura 350
300
Peaton 250
- 200

Libra - 150

Etigueta Verdadera

Vehiculo

Peaton Libre Vehiculo
Etigueta Predicha

Infraestructura

Figura 35. Matriz de confusion con 20% de iméagenes por clase para prueba de CNN.

Se puede observar que la matriz de confusién tiene un 97.31% de efectividad en
identificar las imagenes y esto es debido a que las imagenes contienen patrones muy diferentes
lo que facilita a la CNN identificarlos con alta precision. Sin embargo, todavia no es posible
predecir una posible colision en un entorno real, en consecuencia, es necesario integrar la CNN
al sistema EWA para la identificacion oportuna de los entornos descritos en la puesta

experimental y medir asi su efectividad.
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4.2 Resultados del desemperio del sistema en pista de pruebas

En esta seccion se presenta la interfaz usada para cada una de las pruebas, asi como,
los resultados obtenidos por cada clase. Al implementar el sistema EWA en el vehiculo
hospedador, se realiza la puesta experimental para ver la precisién al momento de detectar la
presencia o ausencia de algun objetivo. En la Figura 36 se muestra un ejemplo de la interfaz

usada para las pruebas del sistema, en este caso corresponde a una prueba de la clase “vehiculo”.
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Figura 36. Interfaz usada para las pruebas del sistema a) inicio de la prueba a 40 m de distancia del
objetivo y b) Parte final de la prueba en zona de deteccion con el vehiculo hospedador moviéndose a

una velocidad de 15 m/s.
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En la Figura 36a se muestra que el sistema clasifica la entrada como “ruta libre”
mientras se encuentra en el inicio de la pista a 40 m del objetivo, lo cual es correcto dado que
no hay una situacion de colision inminente. experimentalmente, se obtuvo un tiempo promedio
de 50 a 100 ms para capturar una imagen y realizar su clasificacion. Y con un numero de
muestras n = 25 para realizar el histograma se obtuvo un tiempo de deteccion entre 1.6s. En
la Figura 36b se muestra el momento en que el vehiculo es detectado y genera la alerta de
manera visual en la interfaz y también de manera sonora. En este ejemplo en particular, el
tiempo total de la prueba es de 6.97s que representa el tiempo desde que el vehiculo hospedador
empieza a moverse hasta que se levanta la alerta, esta prueba se repite 40 veces por cada clase
con las velocidades descritas en la seccion 3.5, el criterio para definir una prueba como pasada
o fallida esta basado en un umbral de tiempo para colision mayor o igual a 1.33 s, como se

explica en la seccion 3.5.
4.2.1 Resultados de desemperio del sistema en la clase Peaton.

En esta seccidn, se muestra los resultados obtenidos en la puesta experimental descrita
en la seccion 3.5.1.

En la Figura 37 se muestra de manera grafica una comparacion del TTC contra el
namero de prueba realizada. En la Figura 40 se muestran las comparaciones del nimero de
pruebas contra el tiempo estimado de colision, ademas de contemplar el criterio de alerta
oportuna siendo el tiempo ante una colision inminente, representado con una linea horizontal
con el valor de 1.33s. Siendo los tiempos menores a este los que no son detectados a tiempo por
el sistema EWA, ademas de resaltar con un ovalo rojo aquellos que a pesar de cumplir con el
criterio de TTC, no cumple con el criterio de deteccién de la clase en cuestion a analizar y

tomandolo asi como una prueba fallada.
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Figura 37. TTC obtenido por el sistema EWA en la clase “Peaton”.

Como se puede observar en la Figura 37 que los TTC en las pruebas con todas las
velocidades son superiores al umbral establecido. Sin embargo, en la prueba 10 correspondiente
a 15 Km/h se cataloga como una prueba fallida, ya que a pesar de haber cumplido con el criterio
de TTC, el sistema identificé a la clase como “Vehiculo”, como se esperaba Si Se toma en cuenta
los resultados de la matriz de confusion en la Figura 35, esto debido a la similitud de patrones
que existen en la captura de estas imagenes. En la Tabla 1 se muestran los resultados numéricos

obtenidos la prueba.
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Tabla 1: Resultados de tiempo de deteccion en clase “peatdon” con una distancia inicia de 40m a
velocidades definidas

Velocidad  Tiempo de Tiempo de Distancia de Tiempo a
Prueba Alerta Resultado
km/h (m/s) prueba (s) deteccion (s)  deteccion (m)  colision (s)

1 Si 3.81 34.708 24.99 Aprobado
2 Si 8.01 28.875 20.79 Aprobado
3 Si 5.62 32.194 23.18 Aprobado
4 Si 12.5 22.639 16.3 Aprobado
5 Si 10.65 25.208 18.15 Aprobado
6 5(1.39) 288 Si 11.45 24.097 17.35 Aprobado
7 Si 11.93 23.431 16.87 Aprobado
8 Si 11.55 23.958 17.25 Aprobado
9 Si 12.07 23.236 16.73 Aprobado
10 Si 7.16 30.056 21.64 Aprobado
11 Si 8.23 17.139 6.17 Aprobado
12 Si 5.65 24.306 8.75 Aprobado
13 Si 9.79 12.806 4.61 Aprobado
14 Si 4.15 28.472 10.25 Aprobado
15 Si 12.82 4.389 1.58 Aprobado
16 10(2.78) 14.4 Si 8.23 17.139 6.17 Aprobado
17 Si 7.28 19.778 7.12 Aprobado
18 Si 8.51 16.361 5.89 Aprobado
19 Si 2.97 31.750 11.43 Aprobado
20 Si 11.68 7.556 2.72 Aprobado
21 Si 5.55 16.875 4.05 Aprobado
22 Si 5.4 17.500 4.2 Aprobado
23 Si 5.29 17.958 431 Aprobado
24 Si 4.56 21.000 5.04 Aprobado
25 Si 3.91 23.708 5.69 Aprobado
26 15(4.16) 9.6 Si 4.16 22.667 5.44 Aprobado
27 Si 3.54 25.250 6.06 Aprobado
28 Si 461 20.792 4.99 Aprobado
29 Si 413 22.792 5.47 Aprobado
30 No 4.13 22.792 5.47 Fall6
31 Si 4.14 17.000 3.06 Aprobado
32 Si 3.57 20.167 3.63 Aprobado
33 Si 4.04 17.556 3.16 Aprobado
34 Si 3.83 18.722 3.37 Aprobado
35 Si 4.37 15.722 2.83 Aprobado
36 20 (5.16) 72 Si 4.18 16.778 3.02 Aprobado
37 Si 3.49 20.611 3.71 Aprobado
38 Si 3.59 20.056 3.61 Aprobado
39 Si 3.69 19.500 3.51 Aprobado
40 Si 4.35 15.833 2.85 Aprobado

J4

Cabe mencionar que el Sistema en la clase “Peaton” detectd correctamente 39 veces

y solamente 1 prueba fue fallida segun los casos tomados en cuenta.
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4.2.2 Resultados de desempefio del sistema en la clase Infraestructura

En este apartado se discuten los resultados obtenidos del sistema EWA con la clase
“infraestructura”. En la Figura 38 se muestra de manera gréafica una comparacion del TTC
contra el numero de prueba realizada.

Al - b Km‘h
B 10 Kmjh

B 15 Kb
10,0 20 Kmfh

7151

Tiempo (5)

3.0

2.5 1

0.0 -

1 2 3 4 5 6 7 8 3 10
Figura 38. TTC obtenido por el sistema EWA en la clase “Peaton”.

La Figura 38 muestra que el escenario de la clase “infraestructura” tiene dos errores
en cuanto a la clasificacion detectando la clase “Vehiculo” correspondientes a la velocidad de
10 km/h en las pruebas 1y 2, esto debido a que en la matriz de confusion (Figura 35) muestra
gue con los conjuntos de prueba tiene una efectividad del 100%, se observa también que se
clasifica la clase de “vehiculo” en la clase de “infraestructura”, de igual forma se deduce que es
por el parecido de los patrones similares que comparten estas clases. Otro resultado muestra en
la prueba 4 a la velocidad de 20 Km/h no cumple con el criterio del TTC siendo este menor al
umbral de 1.33 s. En la tabla 2 se muestra el resultado numérico obtenido de las 40 pruebas

realizadas del sistema EWA con la clase “Infraestructura”.
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Tabla 2: Resultados de tiempo de deteccion en clase infraestructura con una distancia inicia de 40m a
velocidades definidas
Velocidad  Tiempo de Tiempo de Distancia de Tiempo a

Prueba Alerta Resultado
km/h (m/s) prueba (s) deteccion (s)  deteccion (m)  colision (s)

1 Si 18.45 14.375 10.35 Aprobado
2 Si 19.17 13.375 9.63 Aprobado
3 Si 18.77 13.931 10.03 Aprobado
4 Si 18.66 14.083 10.14 Aprobado
5 Si 17.764 15.328 11.036 Aprobado
6 5(1.39) 288 Si 18.56 14.222 10.24 Aprobado
7 Si 20.32 11.778 8.48 Aprobado
8 Si 20.95 10.903 7.85 Aprobado
9 Si 18.37 14.486 10.43 Aprobado
10 Si 19.97 12.264 8.83 Aprobado
11 Si 12.32 5.778 2.08 Aprobado
12 Si 9.5 13.611 4.9 Aprobado
13 Si 12.05 6.528 2.35 Aprobado
14 Si 12.27 5.917 2.13 Aprobado
15 Si 11.9 6.944 25 Aprobado
16 0@78 14.4 Si 11.39 8.361 301 Aprobado
17 Si 6.9 20.833 7.5 Aprobado
18 Si 11.9 6.944 25 Aprobado
19 Si 8.43 16.583 5.97 Aprobado
20 Si 8.95 15.139 5.45 Aprobado
21 No 7.5 8.750 2.1 Fallé
22 No 7.5 8.750 2.1 Fallé
23 Si 4.9 19.583 4.7 Aprobado
24 Si 6.46 13.083 3.14 Aprobado
25 Si 6.64 12.333 2.96 Aprobado
26 15(416) 9.6 Si 6.53 12.792 307 Aprobado
27 Si 5.21 18.292 4.39 Aprobado
28 Si 4.9 19.583 4.7 Aprobado
29 Si 6.53 12.792 3.07 Aprobado
30 Si 6.7 12.083 2.9 Aprobado
31 Si 4.9 12.778 2.3 Aprobado
32 Si 5.16 11.333 2.04 Aprobado
33 Si 5.1 11.667 2.1 Aprobado
34 Si 6.76 2.444 0.44 Fallé
35 Si 4.5 15.000 2.7 Aprobado
36 20 (5.16) 72 Si 5 12.222 2.2 Aprobado
37 Si 5.61 8.833 1.59 Aprobado
38 Si 5.33 10.389 1.87 Aprobado
39 Si 4.9 12.778 2.3 Aprobado
40 Si 5.73 8.167 1.47 Aprobado

Con base en la Tabla 2 se muestra que da como resultado un total de 3 pruebas fallidas

y 37 pruebas exitosas.
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4.2.3 Resultados de desemperio del sistema en la clase Vehiculo

Finalmente, se analizan los resultados de la Figura 39 de la clase “Vehiculo”.

15.0
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15 kriyh
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Figura 39: Resultados de tiempo estimado a colision en pruebas.

La clase de vehiculo tiene 6 errores debido al criterio de TTC y en contraste con lo
que se esperaria en la matriz de confusion, este fue la principal razon de que el sistema fallara,
y siempre alert6 por la presencia de la clase “vehiculo”. El motivo por lo que tuvo més error en
esta clase es debido a que la iluminacion del vehiculo cambia por su material metalico reflectivo
del que esta hecho, ademaés de afectar su perspectiva. En la Tabla 3 se muestran los resultados
generales en los cuales el sistema EWA logré pasar las pruebas y los datos recabados durante

la puesta experimental de la clase “Vehiculo”.
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Tabla 3: Resultados de tiempo de deteccion en clase infraestructura con una distancia inicia de 40m a
velocidades definidas
Velocidad  Tiempo de Tiempo de Distancia de Tiempo a

Prueba Alerta Resultado
km/h (m/s) prueba (s) deteccion (s)  deteccion (m)  colision (s)
1 Si 14.47 19.903 14.33 Aprobado
2 Si 15.13 18.986 13.67 Aprobado
3 Si 18.97 13.653 9.83 Aprobado
4 Si 18.76 13.944 10.04 Aprobado
5 Si 19.05 13.542 9.75 Aprobado
6 5(1.39) 288 Si 16.46 17.139 12.34 Aprobado
7 Si 17.95 15.069 10.85 Aprobado
8 Si 18.63 14.125 10.17 Aprobado
9 Si 18.58 14.194 10.22 Aprobado
10 Si 16.73 16.764 12.07 Aprobado
11 Si 11.93 6.861 2.47 Aprobado
12 Si 12.65 4.861 1.75 Aprobado
13 Si 12.95 4.028 1.45 Aprobado
14 Si 13 3.889 1.4 Aprobado
15 Si 12.23 6.028 2.17 Aprobado
16 10(2.78) 14.4 Si 12.43 5.472 1.97 Aprobado
17 Si 13.68 2.000 0.72 Fallo
18 Si 12.29 5.861 2.11 Aprobado
19 Si 13.21 3.306 1.19 Fallo
20 Si 11.51 8.028 2.89 Aprobado
21 Si 9.5 0.417 0.1 Fallé
22 Si 6.97 10.958 2.63 Aprobado
23 Si 3.59 25.042 6.01 Aprobado
24 Si 3.59 25.042 6.01 Aprobado
25 Si 8.22 5.750 1.38 Aprobado
26 15(416) 9.6 Si 7.66 8.083 194  Aprobado
27 Si 8.14 6.083 1.46 Aprobado
28 Si 8.05 6.458 1.55 Aprobado
29 Si 7.43 9.042 2.17 Aprobado
30 Si 7.62 8.250 1.98 Aprobado
31 Si 6.42 4.333 0.78 Fallo
32 Si 5.92 7.111 1.28 Fallo
33 Si 5.97 6.833 1.23 Fallo
34 Si 5.68 8.444 1.52 Aprobado
35 Si 5.63 8.722 1.57 Aprobado
36 20(516) 72 Si 5.33 10.389 187  Aprobado
37 Si 5.25 10.833 1.95 Aprobado
38 Si 6.54 3.667 0.66 Fallo
39 Si 6.53 3.722 0.67 Fallo
40 Si 5.62 8.778 1.58 Aprobado

Con estas pruebas, el sistema con la clase “vehiculo” tuvo 8 pruebas fallidas y 32
pruebas exitosas. Para la clase de “ruta libre” se realizaron las 40 pruebas como se describieron

en la seccion 3.5.2 y todas resultaron exitosas al no detectar nada mientras se conducia a las
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velocidades establecidas, dando un total global de 160 pruebas del sistema y un total de 14

pruebas fallidas contando todos los casos, teniendo una efectividad de 91.25% en la prediccion

de colisiones frontales con la puesta experimental planteada.

4.3 Comparacion del sistema con trabajos similares

En la Tabla 4 se muestra una comparativa de los sistemas similares encontrado en la

literatura con el sistema EWA propuesto.

Tabla 4. Comparativa de sistema EWB con trabajos similares

. Simulacion Velocidad(es) Probado en
Sensor(es) Tiempo de Numero Pruebas . L
Autor . . 0 entorno de prueba ) vehiculo Precision
Utilizado(s) | latencia (s) de clases | Realizadas o
real (km/h) eléctrico
Deo et al. Camaray . y
_ 0.0485 Simulacién 30-70 1 3 X 67-70%
(2021) LiDAR
LiDAR/
Gulino et RaDAR / . »
) 0.3 Simulacién 50 1 5000> X 100%
al. (2023) Céamaras /
GNSS / IMU
] Radar frontal
Lai & )
(del modulo No . »
Yang _ Simulacién 50y 60 1 18 X 100%
PreScan) y registrado
(2023) )
camaras
LiDAR
RoboSense
Dai et al. RS-16y No ] ] No
_ Simulacién <30 2 ) X 94%
(2024) Camara registrado registrado
monocular
Q20
Shaout &
Castaneda- | Ultrasonido 0.0011 — . y )
] Simulacion No registrado 1 10 X 95%
Trejo (HC-SR04) 0.0015
(2025)
Fusion de
Liu et al. camara +
. 1.79 Ambos 20-40 2 10 X 100%
(2025) radar (City
Safety)
Camara
Propuesta diaital 1.66 Ambos 5,10,15y 20 4 160 v 91.25%
igita
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De la Tabla 4 se muestran trabajos similares y mas relevantes que abordan sistemas
similares al desarrollado en este Trabajo de Tesis. Como se puede observar, en 5 de ellos fueron
llevados a cabo en simulacion, y si bien sus tiempos de latencia muy rapidos, estos toman en
cuenta los tiempos entre captura o el tiempo que tarda en actualizarse su simulacion y realizar
una prediccion de los datos obtenidos en entornos reales y después analizados en “offline”. En
cuanto al trabajo realizado por Liu et al. Fue similar en cuestion de puesta experimental, ademas
de enfocarse en la dinamica del vehiculo y tomando en cuenta tiempos de monitoreo con
sensores de proximidad y cémaras, analisis e intervencion del sistema, lo que tiene
concordancia con el tiempo obtenido en sus pruebas reales. Ademas, se observa que el sistema

propuesto mejord en un tiempo de 13 ms con 2 objetivos méas que el trabajo en cuestion.

4.4 Pruebas realizadas en vehiculo eléctrico.

Una vez que el sistema EWA fue probado en condiciones controladas, se realiza una
serie de pruebas finales donde se instala el sistema en el vehiculo eléctrico de la Facultad de
Ingenieria EFACI. Las pruebas en esta seccion consisten en conducir el vehiculo dentro de las
instalaciones de la Universidad Autonoma de Querétaro, Campus San Juan del Rio. En la

Figura 40 se muestra el vehiculo eléctrico acondicionado.

Figura 40. a) Vehiculo Eléctrico Acondicionado para pruebas en escenarios reales.

En la Figura 40 a) se muestra el vehiculo eléctrico que se utiliza en la prueba y en la
Figura 35b se muestra el sistema EWA montado en el vehiculo. Se realiza una Unica prueba

que consiste en iniciar el sistema EWA en el circuito universitario donde hay trafico concurrente
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de peatones y vehiculos, bajo condiciones no controladas. Se realiza solamente un Unico
recorrido para no sobrepasar el limite de uso de la bateria del vehiculo, y ademas de realizar
esta prueba puesto que se espera registrar el desempefio del sistema EWA en situaciones no
controladas en el vehiculo eléctrico, ya que el sistema fue probado en situaciones controladas.

En la Figura 36 se muestra el circuito que sigue el vehiculo eléctrico para esta de prueba.

Bt "“‘MUllldlSClpllnnO ‘

-\4\_‘
| Facultad de'

Tl Deteccion: Veh‘culo il
- Clase real: Vehiculo [

"‘] -u

Figura 41. Circuito donde se conduce el vehiculo eléctrico dentro de las instalaciones de la
Universidad Auténoma de Querétaro, Campus San Juan del Rio.

En la Figura 41 se muestra el recorrido que sigue el vehiculo hospedador, asi como,
se muestra mediante puntos el instante en que el sistema detecta algin obstaculo. Al realizar la
conduccion del vehiculo eléctrico con el sistema EWA se registraron 6 detecciones: dos de ellas
fueron detecciones acertadas (color verde) mientras que en los 4 restantes alerté cuando no se
presentaba ningln objetivo, también se contempla el hecho que las veces que no detectd un
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obstaculo se contaron como pruebas exitosas. Es importante resaltar que, aunque parezca que
tenga un bajo desempefio en situaciones reales, el sistema fue acertado en detectar la ausencia
de obstaculos, es decir, en detectar una “ruta libre” cuando no habia objetivos cerca, esto es el
90% del tiempo. Otra cosa que hay que tener en cuenta es que la prueba se realizd con
condiciones de iluminacion distinta a en la que se adquirieron las imagenes de los objetivos,

ademas de mostrar una gran densidad diferente de peatones y vehiculos de la esperada.
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CAPITULO V: CONCLUSIONES

En este proyecto de tesis, se realizd un sistema de alerta al conductor EWA, ante
posibles colisiones frontales con imagenes y DL, acondicionando un vehiculo para pruebas
controladas y después un vehiculo eléctrico para realizar pruebas en capo, para alertar sobre
posibles colisiones frontales. Se comenzd por definir la puesta experimental, en la cual se
delimito en el estacionamiento de la Facultad de Ingenieria, ademas se acondiciond un vehiculo
con un sistema de visidn para adquirir imagenes para entrenar un algoritmo de clasificacion que
integra el sistema EWA, y probarlo antes de ser puesto a prueba en un entorno escolar. Para
esto, se cred un programa de adquisicion de imagenes para capturar 2,000 imagenes por cada
uno de los 4 objetivos: Vehiculo, Peatdn, Vehiculo y Ruta libre que serian los casos que se
tomarian en cuenta para el sistema EWA y se ejecutd dicho programa con el sistema de
adquisicion de imagenes. Posteriormente, se realizd un post-procesamiento de imagenes que
reducia las iméagenes obtenidas a un tamafio de 2828 pixeles en escala de grises para disminuir
la carga computacional a la hora de implementar en tiempo real la clasificacion. Se implement6
una topologia CNN propuesta para la clasificacion de las iméagenes de los objetivos obteniendo
un 97.1% de precision en la etapa de validacion y un tiempo promedio de 50 ms entre
clasificacion. Se integro la CNN al sistema EWA, junto con la adquisicion de imagenes y un
filtrado propuesto por histograma, obteniendo una latencia entre prediccion de 1.6 s sobre la
presencia alguno de los objetivos en el camino. Las pruebas en campo para el sistema EWA en
el vehiculo de pruebas consisten en; se conduce el vehiculo con el sistema EWA ejecutandose
y se realizaron 40 pruebas en una pista de 40 m ubicando al final del recorrido uno de los 4
objetivos, a velocidades de 5, 10, 15 y 20 m/s, habiendo probado el sistema un total de 160
veces, logrando un TTC superior al umbral de 1.33s y teniendo una precision del 91.25% en
condiciones controladas. Finalmente, se realiz6 una prueba en condiciones no controladas en la
cual el sistema realizdé 2 detecciones correctas y 4 detecciones erréneas. En cuanto a las
detecciones erréneas, se mostraba desde las pruebas en condiciones controladas que las
variaciones de luz, enfoque, vibraciones afectaban la precision del sistema, en investigaciones
futuras se pretende analizar mas casos para crear un sistema mas robusto con una topologia de
CNN mas completa y optimizacion en tiempo de detecciones, ademas de realizar una prueba
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con fusidn de sensores, ademas de integrar un actuador que permita crear la funcion de EBA'y

frenar de manera activa.
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