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á
li
si
s
té
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maestŕıa, y por brindarme la oportunidad de formar parte de su equipo.
A mis sinodales, el Dr. Primo, el Dr. Emmanuel y el Dr. Mart́ın, por su tiempo y sus valiosos
comentarios durante la revisión de este trabajo.
A mis amigos, quienes con el paso del tiempo hicieron que la experiencia de la maestŕıa fuera
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Ingenieŕıa y a la Dirección de Investigación y Posgrado, por proporcionarme las herramientas
necesarias para mi desarrollo académico y profesional.
Y al SECIHTI, por la beca de manutención (CVU: 1345043) otorgada durante mis estudios
de posgrado.



Abreviaturas y siglas
AI: Inteligencia Artificial (del inglés, Artificial Intelligence).
CLAHE: Ecualización Adaptativa de Histograma Limitada por Contraste (del inglés, Con-
trast Limited Adaptive Histogram Equalization).
CNN: Red Neuronal Convolucional (del inglés, Convolutional Neural Network).
DNN: Red Neuronal Profunda (del inglés, Deep Neural Network).
HTTP: Protocolo de Transferencia de Hipertexto (del inglés, Hypertext Transfer Protocol).
IoMT: Internet de las Cosas Médicas (del inglés, Internet of Medical Things).
IoT: Internet de las Cosas (del inglés, Internet of Things).
IRT: Termograf́ıa Infrarroja (del inglés, Infrared Thermography).
JSON:Notación de Bbjeto de JavaScript (del inglés, JavaScript Object Notation).
PAaS: Plataforma como servicio (del inglés, Platform as a Service).
PRONAII: Proyecto Nacional de Investigación e Incidencia.
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Resumen
El presente trabajo de investigación desarrolla un sistema de visión artificial basado en el
Internet de las Cosas Médicas (IoMT), aśı como termograf́ıa infrarroja, orientado al proce-
samiento y análisis térmico del rostro, además de las manos, en aplicaciones de salud. El
problema abordado radica en la falta de sistemas automatizados, estandarizados y accesibles
que permitan procesar imágenes termográficas con precisión y bajo condiciones controladas.
En este contexto, se propone un modelo capaz de detectar, segmentar regiones espećıficas
del rostro y las manos, seleccionadas por su alta irrigación sangúınea, sensibilidad térmica,
aśı como la respuesta fisiológica inmediata ante est́ımulos, caracteŕısticas que las convier-
ten en zonas ideales para estudios psicofisiológicos o médicos. La metodoloǵıa implementada
comprende tres etapas principales: procesamiento de imágenes termográficas, detección de
puntos de referencia anatómicos mediante MediaPipe y segmentación automática de regiones
de interés. A partir de los puntos detectados se diseñó un algoritmo que delimita las zonas
faciales de frente, mejillas, nariz y mentón, mientras que las zonas de las manos son las fa-
langes, palma y mano completa. Para garantizar la homogeneidad de los datos, se desarrolló
un protocolo de adquisición de imágenes. El sistema se complementa con una plataforma
web conectada a un servidor en la nube, que permite procesar imágenes de manera remota
y generar automáticamente un informe en formato PDF con los valores promedio, máximo
y mı́nimo de temperatura por zona segmentada. Como caso de aplicación, se empleó una
base de datos obtenida antes y después de una sesión de yoga guiada, con el fin de evaluar
la variación térmica asociada a la relajación. Los resultados experimentales mostraron una
segmentación correcta del 96% en manos y del 85% en el rostro, demostrando la efectividad,
además de una precisión del sistema propuesto. En conclusión, el sistema integra de mane-
ra efectiva técnicas de visión artificial, procesamiento de imágenes, termograf́ıa infrarroja e
IoMT, aportando un protocolo de adquisición de imágenes reproducible y una herramienta
versátil para el análisis térmico automatizado en el ámbito de la salud.
Palabras clave: visión artificial, IoMT, termograf́ıa infrarroja, segmentación, MediaPipe.



Abstract
The present research work develops a computer vision system based on the Internet of Medi-
cal Things (IoMT) and infrared thermography, aimed at the processing and thermal analysis
of the face and hands for health-related applications. The addressed problem lies in the lack
of automated, standardized, and accessible systems capable of accurately processing thermo-
graphic images under controlled conditions. In this context, a model is proposed that can
detect and segment specific regions of the face and hands, selected for their high blood per-
fusion, thermal sensitivity, and immediate physiological response to stimuli—characteristics
that make them ideal areas for psychophysiological or medical studies. The implemented
methodology comprises three main stages: thermographic image processing, detection of ana-
tomical landmarks using MediaPipe, and automatic segmentation of regions of interest. Based
on the detected points, an algorithm was designed to delimit facial areas including the fo-
rehead, cheeks, nose, and chin, while the hand regions include the phalanges, palm, and entire
hand. To ensure data homogeneity, an image acquisition protocol was developed. The system
is complemented by a web platform connected to a cloud server, allowing remote image pro-
cessing and the automatic generation of PDF reports containing the average, maximum, and
minimum temperature values for each segmented region. As an application case, a database
obtained before and after a guided yoga session was used to evaluate thermal variations asso-
ciated with relaxation. Experimental results showed a correct segmentation rate of 96% for
hands and 85% for the face, demonstrating the effectiveness and precision of the proposed
system. In conclusion, the system effectively integrates computer vision techniques, image
processing, infrared thermography, and IoMT, providing a reproducible image acquisition
protocol and a versatile tool for automated thermal analysis in the health domain.
keywords : computer vision, IoMT, infrared thermography, segmentation, MediaPipe.
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1. Introducción

En los últimos años, la integración de tecnoloǵıas como la visión artificial, la termograf́ıa
infrarroja y el Internet de las Cosas Médicas (IoMT) ha permitido desarrollar herramientas
innovadoras orientadas al monitoreo y análisis de parámetros fisiológicos. Estas tecnoloǵıas
ya se consideran dentro del área de la salud, ya que nos ofrecen la posibilidad de obtener y
procesar información térmica sin necesidad de contacto f́ısico.

Cabe mencionar, pese al avance de estas tecnoloǵıas, todav́ıa hay limitaciones importan-
tes en la disponibilidad de sistemas que permitan procesar imágenes termográficas de forma
automatizada y estandarizada. Muchos trabajos actuales siguen dependiendo de interven-
ciones manuales o de condiciones altamente controladas, lo que reduce su aplicabilidad en
escenarios reales. A ello se suma la ausencia de protocolos unificados de captura y la falta de
plataformas accesibles que integren, en un mismo flujo, la detección, segmentación y elabo-
ración del informe térmico de manera completamente automática.

En este escenario, el trabajo de tesis plantea el diseño y la implementación de un sistema
de visión artificial apoyado en tecnoloǵıas IoMT y en termograf́ıa infrarroja para analizar y
procesar imágenes térmicas del rostro y de las manos. La elección de estas dos zonas se debe
a que presentan una alta irrigación sangúınea, capilares muy superficiales y una respuesta
térmica rápida frente a cambios fisiológicos o emocionales. Estas caracteŕısticas las convierten
en áreas especialmente adecuadas para estudiar variaciones de temperatura relacionadas con
procesos psicofisiológicos o con condiciones de interés cĺınico, además de mencionar que hay
muy pocos trabajos que engloben las secciones de las manos.

La importancia del proyecto se fundamenta en la necesidad de contar con herramientas
que permitan realizar análisis térmicos a distancia de manera eficiente, uniforme y confiable.
Visto desde el campo cient́ıfico, el trabajo aporta al procesamiento de imágenes biomédicas
mediante la aplicación de algoritmos de segmentación en zonas anatómicas espećıficas, lo que
facilita una caracterización más detallada de los patrones térmicos del rostro y las manos.
En el ámbito social, la propuesta responde a la creciente demanda de soluciones digitales
que apoyen la atención en salud dentro de esquemas de telemedicina, monitoreo remoto e in-
vestigación psicofisiológica, ofreciendo alternativas accesibles y no invasivas. La metodoloǵıa
integra tres componentes principales: el preprocesamiento de imágenes termográficas, la de-
tección automática de puntos de referencia con MediaPipe y la segmentación de las regiones
de interés; todo ello acompañado de un protocolo de adquisición que garantiza condiciones
controladas de captura y una plataforma web en la nube que automatiza el flujo completo,
desde la carga de imágenes hasta la generación del reporte final.

La tesis se divide en cinco caṕıtulos, el primero ofrece una visión general del proyecto e
incluye el contexto, el problema, la justificación y los objetivos que guiaron el desarrollo del
trabajo. En el segundo se revisan los conceptos teóricos y los antecedentes más relevantes,
abarcando temas como visión artificial, termograf́ıa e IoMT, además de trabajos previos rela-

2



cionados con el análisis térmico del rostro y las manos. El Caṕıtulo 3 describe la metodoloǵıa
seguida, donde se explica cómo se diseñó el sistema de visión artificial, el protocolo para la
toma de imágenes, el proceso de segmentación y la forma en que se integró el procesamiento
en la nube. En el cuarto caṕıtulo se muestran los resultados junto con el análisis de desem-
peño y una discusión sobre su posible aplicación en el ámbito de la salud. Finalmente, el
Caṕıtulo 5 reúne las conclusiones y las ĺıneas futuras de trabajo, resaltando las principales
aportaciones y el potencial de evolución del sistema.

1.1. Antecedentes

Este caṕıtulo se enfoca en los avances recientes en visión artificial, un área que ha trans-
formado la manera de realizar tareas tanto en la industria como en entornos cĺınicos. Dentro
de estas tecnoloǵıas, la termograf́ıa infrarroja se ha convertido en una herramienta accesible y
no invasiva para registrar la radiación emitida por el cuerpo, tal como lo reportan Cardone et
al. (2023). De manera similar, el uso de imágenes térmicas enfocadas en regiones anatómicas
espećıficas (ROI, por sus siglas en inglés) ha crecido notablemente en los últimos años, par-
ticularmente en el rostro y las manos (Jaramillo-Quintanar et al., 2022). Esta información es
bastante útil en disciplinas como dermatoloǵıa, oncoloǵıa y psicoloǵıa; en este último caso, la
psicofisioloǵıa hace uso de imágenes infrarrojas del rostro para estudiar cambios relacionados
con distintos estados emocionales (Cardone et al., 2023).

Además, la inteligencia artificial ha logrado un papel central en este tipo de investigacio-
nes, ya que facilita el manejo de grandes cantidades de datos y la detección de patrones com-
plejos que anteriormente pasaban desapercibidos. De forma complementaria, la incorporación
del Internet de las Cosas Médicas (IoMT) posibilita el desarrollo de sistemas conectados y
eficientes, en los que dispositivos inteligentes capturan y env́ıan información en tiempo real.
Esto contribuye a obtener diagnósticos más oportunos, precisos y con un flujo de trabajo
optimizado.

A nivel internacional, abundan los estudios sobre termograf́ıa, lo que se debe al interés
en desarrollar sistemas sin contacto utilizando cámaras termográficas. Muniz et al. (2022)
estudian el uso de la termograf́ıa para el análisis febril en el rostro, eligiendo regiones es-
pećıficas para su análisis. Gómez-Arteaga et al. (2023) desarrollaron una herramienta para
diagnosticar enfermedades reumáticas, calculando el ı́ndice termográfico (del inglés Heat In-
dex, TI) en una serie de termogramas, evaluando el dolor e hinchazón de distintas partes del
cuerpo, como el hombro, esternón, espalda, codo y rodilla, entre otras. Este método emplea
técnicas de ROI y termograf́ıa, justo como se ve en el trabajo realizado por Stokholm et al.
(2021), en donde evaluaron factores en la temperatura de la piel facial de pacientes con ictus
agudo, centrándose principalmente en personas con y sin delirio. De las zonas analizadas, al
final fue de interés la comisura palpebral medial, ya que se identificó una asociación entre la
temperatura medible y la aparición de delirio.

Otra aplicación relevante es el uso de termograf́ıa en el diagnóstico de cáncer, especial-
mente en el cáncer de mama, como se menciona en el trabajo de Pokharel et al. (2024). Por su
parte, Livada et al. (2023) destacan un aspecto crucial: la creencia popular de que una imagen
termográfica representa mapas de temperatura, cuando en realidad representa la radiación
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térmica convertida en imagen. Si hay una mala calibración, se mostrarán resultados incorrec-
tos, por lo que este trabajo analizó técnicas relacionadas con el procesamiento de imágenes
comúnmente utilizadas y el impacto que tienen los datos radiométricos en termograf́ıa.

La literatura también recoge diversos estudios que relacionan los indicadores fisiológicos
con el uso de termograf́ıa. Un ejemplo de ello es el trabajo de Fernández et al. (2023), quienes
observaron que las personas con niveles bajos de ansiedad social presentan una disminución
notable de la temperatura en la zona nasal, sin que se evidenciaran variaciones relevantes
en otras áreas de interés como la frente o las mejillas. A ráız de problemáticas globales
—incluyendo pandemias y situaciones económicas y sociales adversas— ha surgido un mayor
interés por utilizar herramientas tecnológicas para atender distintos retos en salud. En este
contexto, Baran (2021) mostró que es viable estimar niveles de estrés usando una cámara
termográfica móvil de bajo costo, extrayendo rasgos asociados a señales psicofisiológicas.

De igual manera, el uso de tecnoloǵıas biométricas ha tomado un papel relevante en múlti-
ples aplicaciones. Ali et al. (2023) desarrollaron un método eficiente de reconocimiento facial,
demostrando que las imágenes térmicas pueden capturar una firma térmica distintiva para
cada individuo. No obstante, gran parte de la literatura no profundiza en cómo la selección de
caracteŕısticas influye en la precisión del sistema ni en su demanda computacional, elementos
especialmente cŕıticos en escenarios con recursos limitados, como los del IoMT.

A nivel nacional, varios estudios coinciden en el uso de inteligencia artificial y procesa-
miento de imágenes termográficas para la identificación temprana de emociones y enfermeda-
des. Briones (2023) utilizó inteligencia artificial para detectar emociones, aunque no realizó
segmentación facial, logrando un rendimiento del 70-80%. Hernández (2022) desarrolló un al-
goritmo de aprendizaje automático para reconocer emociones faciales, utilizando un modelo
preentrenado para extraer 17 puntos de referencia faciales y calcular distancias geométri-
cas, alcanzando una precisión del 84.52%. Ávila (2023) desarrolló una metodoloǵıa para la
evaluación y calibración de equipos termográficos. Hernández (2017) implementó una me-
todoloǵıa que clasifica casos de artritis reumatoide usando inteligencia artificial, obteniendo
una precisión superior al 90% con tres algoritmos.

Por último, en la Universidad Autónoma de Querétaro se han realizado trabajos diversos
relacionados con el uso de termograf́ıa, inteligencia artificial y temas de salud. Jaramillo-
Quintanar et al. (2022) investigaron la variación térmica en el rostro de la población mexicana.
Trejo-Chávez et al. (2022) desarrollaron una metodoloǵıa basada en termograf́ıa infrarroja
y redes neuronales convolucionales (del inglés Convolutional Neural Network, CNN) para
detectar de manera automática una rodilla sana y lesionada, obteniendo una precisión del
98.72%. Asimismo, existen trabajos relacionados con IoT y sistemas no invasivos, como el
desarrollado por Sánchez-Callejas (2023), quien creó un dispositivo que facilita el monitoreo
de la temperatura de la piel en los dedos de la mano, compartiendo la información a una
aplicación móvil mediante Bluetooth para su análisis. Por otra parte, Jaramillo-Quintanar
et al. (2024) utilizaron aprendizaje automático para la detección de estrés, segmentando
distintas partes de interés del rostro a través de imágenes térmicas para su análisis, logrando
una precisión del 95.4%.

A partir de los estudios previamente referidos, se puede observar que se han desarrolla-
do metodoloǵıas que permiten la segmentación manual de regiones de interés. No obstante,
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aún no se han implementado técnicas para la segmentación automática ni para el manejo
de información en un entorno más accesible. Por ello, este trabajo de investigación propone
hacer una integración novedosa de herramientas tecnológicas como la termograf́ıa, inteligen-
cia artificial, IoMT y la segmentación de zonas de interés para la detección automática de
temperatura en rostro y manos. El procesamiento se realizará en la nube, lo que abre nuevas
oportunidades para su uso en el ámbito de la salud.

1.2. Objetivos

1.2.1. Objetivo general

Desarrollar un sistema de visión artificial basado en el Internet de las Cosas Médicas
(IoMT) que permita la captura, procesamiento y análisis de imágenes termográficas del rostro,
además de las manos, integrando la segmentación automática de regiones de interés y la
generación de reportes térmicos estructurados por zona. El sistema se implementará mediante
algoritmos de procesamiento de imágenes basados en inteligencia artificial, con ejecución y
gestión en la nube, garantizando condiciones estandarizadas, alta precisión en la segmentación
de las zonas y accesibilidad para aplicaciones en el ámbito psicofisiológico y de la salud.

1.2.2. Objetivos particulares

• Definir el protocolo de adquisición de imágenes termográficas, estableciendo las condi-
ciones adecuadas para garantizar la reproducibilidad y calidad térmica de las capturas
faciales y de manos.

• Implementar la captura de imágenes termográficas conforme al protocolo establecido,
generando una base de datos controlada que sirva como fundamento para el entrena-
miento y validación del modelo.

• Diseñar e implementar un algoritmo de segmentación automática de regiones de interés
mediante técnicas de visión artificial e inteligencia artificial, aplicado a zonas anatómicas
seleccionadas por su alta irrigación sangúınea y sensibilidad térmica.

• Desarrollar e integrar el sistema de análisis térmico que calcule y reporte las teme-
praturas promedio, la mı́nima y máxima de cada región segmentada, favoreciendo la
interpretación psicofisiológica de los resultados.

• Desarrollar e implementar una plataforma web en la nube, que permita al usuario cargar
sus imágenes termográficas, procesarlas mediante el sistema de visión, y descargar un
reporte con el análisis correspondiente.

• Configurar e implementar la infraestructura en la nube para garantizar la escalabilidad,
seguridad y disponibilidad del sistema.
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1.3. Hipótesis

La implementación de un sistema de visión artificial e IoMT para la adquisición de imáge-
nes termográficas, junto con un protocolo de adquisición estandarizado, permitirá obtener una
segmentación automática más detallada de las regiones faciales y de las manos, aśı como un
análisis térmico completo y preciso. Dicho sistema, al facilitar la consulta y generación de
reportes térmicos mediante servicios en la nube, ofrecerá un acceso ágil y centralizado a los
resultados. Además, su diseño de libre acceso favorecerá el desarrollo de nuevas aplicaciones
psicofisiológicas, impulsando la investigación en la comunidad cient́ıfica y médica.

1.4. Planteamiento del Problema

En México, muchas personas con trastornos mentales no reciben tratamiento oportuno,
tardando en promedio 14 años en acceder a atención. Esto se debe, en gran parte, a que
solo el 2% del presupuesto de salud se asigna a estas condiciones, lo que limita los recursos
y el personal capacitado en los servicios de salud primaria (Molina, 2024). En el contexto
del uso de cámaras termográficas en sistemas de visión artificial, se han identificado varias
limitaciones en los enfoques actuales, particularmente en la segmentación de áreas del rostro
y manos. La mayoŕıa de los sistemas existentes se concentran en segmentar áreas limitadas
del rostro como la frente y las mejillas, lo que disminuye la precisión en la medición de la
temperatura en otras regiones del rostro, en el caso de las manos, son pocos los estudios
que abordan esta región. Esta limitación repercute de manera directa en el trabajo de los
especialistas, quienes pueden encontrar dificultades para obtener diagnósticos precisos en
áreas como la psicofisioloǵıa, donde resulta indispensable contar con una medición detallada
de la temperatura para interpretar adecuadamente las respuestas emocionales y los estados
fisiológicos de los pacientes. Ante la ausencia de herramientas apropiadas, se refleja una
reducción en la calidad de las evaluaciones, además de la restricción en la capacidad de los
profesionales para atender de forma efectiva los problemas asociados a la salud mental y
emocional. Como consecuencia, hay un aumento en el impacto de estas problemáticas al no
contar con tecnoloǵıas accesibles que respalden su labor.

Desde el lado económico, el uso de termograf́ıa suele implicar un gasto considerable, ya
que no solo requiere cámaras especializadas, sino también software de pago para procesar las
imágenes. A ello se suma que, en muchos casos, es necesario contar con personal capacitado
en visión por computadora, lo que aumenta aún más los costos para las instituciones de
salud. Estas barreras financieras limitan el acceso a la tecnoloǵıa, especialmente en lugares
con recursos reducidos, y hacen más dif́ıcil que este tipo de herramientas pueda adoptarse de
forma amplia.

En el ámbito tecnológico y cient́ıfico, aún existen desaf́ıos importantes, como la falta de
protocolos claros y uniformes para capturar y procesar imágenes térmicas. Muchas de las
técnicas actuales necesitan equipos costosos, tiempos largos de procesamiento o computado-
res con mucha capacidad. Además, algunos algoritmos, aunque precisos, requieren muchos
recursos, lo que dificulta su uso en sistemas con hardware limitado y reduce la rapidez del
análisis.
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1.5. Justificación

Este proyecto busca superar las limitaciones de los sistemas actuales para segmentar
imágenes termográficas de rostro y manos, haciendo uso de inteligencia artificial y procesa-
miento en la nube. La propuesta se enfoca en aumentar la precisión al segmentar diversas
regiones faciales y de las manos, un aspecto que ha sido poco abordado en los estudios pre-
vios, principalmente la parte de las manos.

El objetivo de este trabajo es crear una herramienta accesible que permita un análisis
térmico de rostro y manos. Aunque la finalidad no es la parte del diagnóstico, el sistema
brinda información confiable que puede apoyar a los especialistas en el estudio de indicadores
psicofisiológicos y la interpretación de respuestas fisiológicas.

El proyecto también busca disminuir los costos de implementación mediante un protocolo
estandarizado para la adquisición de imágenes y el uso de procesamiento en la nube. Esto
reduce la dependencia de software especializado y de personal capacitado, reduciendo gastos
asociados a las soluciones tradicionales. De esta manera, se busca que la tecnoloǵıa sea más
accesible, promoviendo la equidad y facilitando el uso de herramientas innovadoras para el
análisis térmico automatizado.

Los métodos tradicionales para segmentar y analizar imágenes térmicas tienden a necesi-
tar muchos recursos computacionales y tiempos de procesamiento largos, lo que limita su uso
en situaciones en donde se requieren resultados rápidos. En cambio, la metodoloǵıa propues-
ta, basada en inteligencia artificial y procesamiento en la nube, busca reducir los tiempos de
respuesta y aliviar la carga computacional.

Este trabajo se alinea con los objetivos de los Programas Nacionales Estratégicos del
SECIHTI (PRONACES), especialmente con los Proyectos Nacionales de Investigación e In-
cidencia (PRONAII). Se encuentra dentro de los ejes de ciencia de datos y salud, áreas
dedicadas a mejorar la salud de la población combinando la medicina con conocimientos de
las ciencias sociales y biomédicas. Desde el enfoque de datos e inteligencia artificial, este
proyecto explora cómo la visión artificial puede generar indicadores útiles para evaluar, mo-
nitorear y apoyar los procesos de atención en salud.

Desde la perspectiva de la Maestŕıa en Ciencias en Mecatrónica y del área de visión artifi-
cial, este trabajo contribuye al desarrollo de sistemas inteligentes para el análisis de imágenes,
abordando la captura, preprocesamiento y segmentación automática de rostro y manos, todo
integrado en un entorno en la nube con IoMT para optimizar precisión y eficiencia.

1.6. Ética del Estudio

Se aseguró que todas las actividades del estudio respeten las normas vigentes para pro-
teger la seguridad, el bienestar y la dignidad de los participantes, basándose en regulaciones
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nacionales e internacionales y siguiendo los principios éticos que rigen la investigación cient́ıfi-
ca.

El proyecto se desarrolla siguiendo la Declaración de Helsinki, que establece los princi-
pios éticos para investigaciones con seres humanos, y cumple con las recomendaciones para
estudios biomédicos, aśı como con la Norma Oficial Mexicana PROY-NOM-012-SSA3-2012,
que regula la investigación en salud en México.

También se integran los lineamientos del Informe Belmont, que destacan la importancia
del respeto a las personas, la búsqueda del beneficio y la justicia. De igual forma, se atienden
los principios del Código de Núremberg, que recalca la necesidad del consentimiento volunta-
rio, la protección de los derechos de los participantes y la reducción de riesgos innecesarios. A
lo largo de todo el proceso, la seguridad y el bienestar de quienes participen se mantendrán
como prioridades, implementando medidas que aseguren su protección y procurando maximi-
zar los beneficios sin ocasionar daño alguno. La convocatoria para participar será difundida
dentro de la Facultad de Ingenieŕıa. Las personas interesadas firmarán un formato de con-
sentimiento informado (Anexo 7.2). Todas las pruebas se realizarán con apoyo de personal
capacitado en el uso de los equipos tecnológicos involucrados, por lo que no se prevé ningún
riesgo para los participantes.

Los datos generados durante el estudio permanecerán resguardados en la Universidad
Autónoma de Querétaro, garantizando su confidencialidad mediante una carta espećıfica
para tal fin (Anexo 7.3). La información será utilizada únicamente para los objetivos esta-
blecidos en esta investigación y no se compartirá con terceros. Si se llega a buscar publicar
o divulgar resultados en medios cient́ıficos, se tomarán las medidas para asegurar el anoni-
mato de los participantes. Los datos se almacenarán en una computadora ubicada dentro de
la universidad, protegida mediante contraseñas y accesible solo para personal autorizado, lo
que asegura la integridad y seguridad de la información.
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2. Fundamentación Teórica

Este proyecto integra los fundamentos teóricos necesarios para alcanzar sus objetivos,
centrándose en la visión por computadora y la termograf́ıa apoyada en inteligencia artifi-
cial. Se busca procesar de manera automática las imágenes térmicas y segmentar las zonas
de interés, para obtener estimaciones de temperatura precisas. La visión por computadora
permite identificar y analizar caracteŕısticas relevantes en estudios psicofisiológicos, mientras
que los algoritmos de inteligencia artificial facilitan la segmentación y el reconocimiento de
patrones complejos. Además, la incorporación del IoMT centraliza el procesamiento en la
nube, de manera que el usuario solo necesita subir las imágenes y recibir los resultados listos
para su interpretación, asegurando eficiencia, precisión y accesibilidad.

2.1. Termograf́ıa infrarroja

Los avances en tecnoloǵıa han permitido desarrollar herramientas que facilitan la detec-
ción y el diagnóstico en salud, destacando la medición de la temperatura corporal como un
parámetro clave (Kumar et al., 2021). Entre estas herramientas, la termograf́ıa infrarroja
(IRT) se distingue por ser una técnica no invasiva que evalúa la temperatura de la piel me-
diante imágenes que muestran las variaciones térmicas de la radiación emitida (Guzaitis et
al., 2021).

Una cámara termográfica permite registrar la radiación infrarroja emitida por un obje-
to o una persona sin necesidad de contacto f́ısico, mostrando su mapa de distribución de
temperatura. Sin embargo, capturar la imagen no es suficiente; interpretar correctamente los
valores térmicos es fundamental, ya que incluso pequeñas variaciones de un par de grados
pueden señalar alteraciones fisiológicas que requieran atención o reposo.

La exactitud en la medición de la temperatura es clave. Según De Madrid (2011), la
relevancia de una desviación, ya sea de décimas o de varios grados, depende del contexto y
del material analizado, pudiendo ser significativa o casi insignificante según la situación.

Para interpretar adecuadamente las imágenes termográficas, es necesario tener en cuenta
tres principios fundamentales: la emisividad, la cual nos indica cuánta radiación puede emitir
un material; la reflexión, que representa la radiación proveniente de otras fuentes que incide
sobre el objeto; y la transmisión, que señala la porción de radiación que atraviesa un material.
Todos estos factores influyen directamente en la exactitud de la medición.

De los tres principios previamente mencionados, la emisividad es el más importante, ya
que indica cuánta radiación térmica emite un objeto. Cada material tiene un valor entre 0
y 1, que debe ajustarse correctamente en la cámara para obtener mediciones precisas. Un
valor incorrecto genera errores en la temperatura registrada, mientras que la reflexión y la
transmisión también afectan, pero en menor medida.

En la Figura 1 se aprecia una imagen termográfica en escala de grises.
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Figura 1: Imagen termográfica (autoria propia).

2.2. Procesamiento de imágenes

El procesamiento de imágenes es una parte clave de la visión por computadora, pues agru-
pa diversas técnicas para modificar, mejorar y analizar imágenes digitales. Estas herramien-
tas simplifican tareas posteriores, como la segmentación, el reconocimiento y la clasificación
automática. Entre los métodos más utilizados se encuentran el filtrado, las transformadas,
las transformaciones geométricas y técnicas de optimización global, que resultan útiles para
abordar problemas complejos relacionados con la estructura de la imagen (Szeliski, 2010).

En el procesamiento digital, el objetivo principal es mejorar la calidad de las imágenes
para que los sistemas automáticos puedan interpretarlas mejor. Para ello, hacen uso de filtros
que reducen el ruido, suavizan transiciones o resaltan detalles relevantes.

Los filtros lineales hacen uso de operaciones matemáticas mediante la convolución de la
imagen con un kernel de valores predefinidos. Un ejemplo común es el filtro gaussiano, que
suaviza la imagen y reduce el ruido de alta frecuencia al ponderar los ṕıxeles vecinos según
una distribución gaussiana, conservando variaciones suaves y atenuando cambios bruscos. La
ecuación correspondiente se presenta en la Ec. 1.

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (1)

Donde:

• G(x, y) es el valor del núcleo gaussiano en la posición (x, y),

• σ es la desviación estándar, que controla el grado de suavizado,

• x y y son las coordenadas respecto al centro del filtro.
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Por otro lado, los filtros no lineales alteran los valores de los ṕıxeles a partir de criterios
estad́ısticos o lógicos, en lugar de emplear combinaciones lineales. Entre ellos, el filtro de
mediana es uno de los más utilizados, especialmente por su eficacia para suprimir ruido
impulsivo (tipo sal y pimienta) sin deteriorar los bordes. Este método sustituye el valor
de cada ṕıxel por la mediana de los valores presentes en su vecindario, lo que permite una
atenuación del ruido más robusta en imágenes térmicas o con patrones de textura irregulares.
La ecuación que describe este procedimiento se presenta en la Ec. 2.

Imed(x, y) = median{I(s, t) | (s, t) ∈ N(x, y)} (2)

Donde:

• Imed(x, y) es el valor del ṕıxel filtrado,

• I(s, t) representa el valor de intensidad de los ṕıxeles en la vecindad,

• N(x, y) es el conjunto de ṕıxeles vecinos, t́ıpicamente en una ventana de 3× 3,

• median{} es el operador de mediana.

Además de los métodos de filtrado, se aplican técnicas orientadas al realce del contraste,
entre las cuales sobresale CLAHE (Contrast Limited Adaptive Histogram Equalization). Esta
técnica efectúa una ecualización adaptativa del histograma dividiendo la imagen en pequeñas
secciones y controlando la intensificación del contraste en zonas uniformes, con el fin de evitar
que el ruido se acentúe. Debido a su naturaleza adaptativa, CLAHE permite resaltar detalles
locales y mejorar la percepción visual, lo que resulta particularmente ventajoso en imágenes
termográficas caracterizadas por bajo contraste y variaciones térmicas mı́nimas. La ecuación
que formaliza este procedimiento se presenta en la Ec. 3.

I ′(x, y) = CDFlocal

(
I(x, y)

)
× (L− 1) (3)

Donde:

• I(x, y) es la intensidad original del ṕıxel,

• I ′(x, y) es la intensidad ecualizada resultante,

• CDFlocal representa la función de distribución acumulativa calculada en una región
local,

• L es el número total de niveles de gris posibles en la imagen.

En los sistemas actuales de visión por computadora, el procesamiento de imágenes integra
algoritmos clásicos con métodos de inteligencia artificial. Para este proyecto se emplearon las
bibliotecas OpenCV y MediaPipe, reconocidas por su uso en análisis visual y aprendizaje
automático. OpenCV permite aplicar filtrados, detectar caracteŕısticas y analizar la estruc-
tura de las imágenes, mientras que MediaPipe, apoyado en redes neuronales convolucionales
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(CNN), identifica puntos clave (landmarks) en el rostro y las manos. Juntas, estas herramien-
tas convierten imágenes crudas en información estructurada, facilitando la segmentación y la
automatización de la toma de decisiones.

En la Figura 2, se presenta de manera general un esquema de las etapas que componen
el procesamiento de imágenes.

Figura 2: Diagrama de las etapas de procesamiento de imágenes (autoria propia).

2.2.1. Imagen

Una imagen digital se genera a partir de la integración y muestreo de datos analógicos
continuos dentro de un espacio definido. Está formada por un arreglo matricial rectangular
de ṕıxeles (x, y, u), donde cada ṕıxel se ubica en una posición espećıfica (x, y) ∈ Z2, y tiene
un valor u correspondiente al dato muestreado en ese punto. Los puntos (x, y) conforman
una cuadŕıcula regular. De manera formal, una imagen está delimitada por un conjunto
rectangular que incluye las posiciones de los ṕıxeles distribuidos en N renglones y N columnas
(Klette, 2015).

En la Figura 3 podemos apreciar el sistema de coordenadas y su orientación.
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Figura 3: Del lado derecho se ve el sistema de coordenadas y en la izquierda el arreglo de la
matriz de pixeles (autoria propia).

2.2.2. Imagen RGB

La percepción del color no es una caracteŕıstica objetiva, ya que vaŕıa entre individuos y
depende de la fuente de iluminación. Sin luz, el color no puede percibirse, como ocurre en el
interior de un objeto opaco. En la Figura 3 se presenta una imagen en color RGB junto con
su descomposición en tres canales: rojo, verde y azul.

El modelo RGB es aditivo, lo que significa que al aumentar los valores de los componentes
de color, la tonalidad se aproxima al blanco. Este modelo es ampliamente utilizado en la
representación de colores en pantallas. En contraste, los modelos empleados en la impresión
son sustractivos, donde añadir color implica la incorporación de tinta, lo que produce un
acercamiento al negro (Klette, 2015). En la Figura 4 se puede apreciar los canales RGB
separados de una imagen.
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Figura 4: Se muestra la imagen original y las respectivas imágenes una vez separadas en los
canales RGB (autoria propia).

En el espacio RGB, si consideramos 0 ≤ R,G,B ≤ Gmax y una imagen con múltiples
canales de ṕıxeles con valores u = (R,G,B), donde Gmax = 255, podemos generar hasta
16, 777, 216 colores distintos. Todos los valores posibles de RGB conforman lo que se conoce
como el cubo RGB, una representación gráfica común del espacio de color RGB, la cual se
puede visualizar de manera más efectiva en la Figura 5.

Figura 5: Espacio de color RGB (autoria propia).
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2.2.3. Escala de grises

Una imagen en escala de grises está compuesta únicamente por diferentes tonos de gris,
que vaŕıan entre el negro y el blanco. Cada ṕıxel tiene un valor de intensidad que representa
su nivel de luminosidad, sin incluir información de color. Trabajar con imágenes en escala de
grises resulta beneficioso porque simplifica el procesamiento, al emplear un único canal de
datos en lugar de los tres canales (rojo, verde y azul) del formato RGB.

Además, en muchas aplicaciones de análisis de imágenes, el enfoque está en el contraste
y las formas, por lo que el uso del color no es necesario, lo que optimiza el proceso. Una
técnica comúnmente empleada es la transformación logaŕıtmica, que se utiliza para realzar
los niveles bajos de gris y atenuar los niveles altos. Esto tiene como objetivo resaltar los
detalles en regiones de baja intensidad en una imagen en escala de grises, mejorando aśı su
calidad visual (Jiazheng et al., 2011). La ecuación que define este proceso se muestra en la
Ec. 4.

Sreal = C · log(1 + r) (4)

En donde Stotal es el valor de intensidad resultante para el ṕıxel, C es un escalar, y r
es el valor de intensidad del ṕıxel original. Esta transformación mejora la observación de
detalles en regiones de la imagen con baja intensidad, haciendo visibles aspectos que de otro
modo quedaŕıan ocultos. Otra manera de obtener los valores de la imagen a escala de grises,
proveniente de una imagen a color, es formando una suma ponderada de los componentes
RGB, tal como se explica en la recomendación UIT-R BT.601-7, realizada por la Unión
Internacional de Telecomunicaciones (Sector de Radiocomunicaciones de la UIT, 2011). La
Ec. (5) muestra la manera de hacerlo, que consiste en multiplicar un escalar por cada canal
RGB:

Ey = 0.299 ·R + 0.587 ·G+ 0.114 ·B (5)

En donde Ey es el valor de intensidad resultante, R,G,B son los respectivos canales.

2.3. Espectro electromagnético

El espectro electromagnético abarca todas las formas de radiación electromagnética, desde
las ondas de radio, que tienen la mayor longitud de onda, hasta los rayos gamma, que poseen
la menor. La luz visible representa solo una pequeña fracción de este espectro, correspondiente
a los colores que nuestros ojos pueden percibir. En un extremo, las ondas de radio pueden ser
miles de millones de veces más largas que la luz visible. En el extremo opuesto se encuentran
los rayos gamma, cuya longitud de onda es millones de veces más pequeña. Esto se puede
apreciar de mejor manera en la Figura 6, la cual está detallada en el libro Procesamiento de
imágenes digitales de Gonzalez & Woods (2018).
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Figura 6: Espectro electromagnético, la parte visible se muestra ampliado. Gonzalez &
Woods, (2018).

La termograf́ıa infrarroja se sitúa dentro del espectro electromagnético, en una región
más allá de la luz visible, en el rango de la radiación infrarroja. A diferencia de la luz
visible, que detecta colores, la termograf́ıa capta el calor emitido por los objetos, permitiendo
visualizar las distribuciones térmicas. Esto la convierte en una herramienta eficaz para medir
temperaturas de manera no invasiva y sin contacto.

2.4. Matriz térmica

Una matriz térmica es un arreglo que muestra la distribución de temperaturas en una
superficie. En cámaras termográficas, se utiliza para generar imágenes térmicas, donde cada
ṕıxel refleja la cantidad de radiación infrarroja detectada, transformada en temperaturas, lo
que permite observar y analizar las variaciones térmicas con detalle. Cuando las imágenes
térmicas se representan utilizando una escala de niveles de gris, los valores en esta esca-
la oscilan entre [0, 255]. Estos valores no corresponden a las temperaturas reales (Chou &
Yao, 2009), es por ello que necesitamos calcular el valor real. Para ello, debemos conocer la
temperatura más alta y más baja, a fin de realizar el cálculo mediante la Ec. 6.

Treal = Tmin +

(
Tgris

255

)
(Tmax − Tmin) (6)

En donde Treal es la temperatura a calcular, Tmin es la temperatura mı́nima, Tmax es la
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temperatura máxima, y Tgris es el nivel de gris del ṕıxel a tratar. Hay dos formas de tomar
una medición de temperatura. La primera es cuantitativa, que consiste en tomar los valores
exactos de temperatura de los objetos. Este método no suele ser tan importante durante la
inspección térmica, ya que la precisión de estos valores suele verse influenciada por factores
ambientales como la temperatura ambiental actual, la humedad, la emisividad, entre otros
(Snell & Renowden, 2002). El segundo enfoque es el análisis cualitativo, que compara la
temperatura de un punto con otras áreas del mismo equipo en condiciones similares. Este
método se utiliza frecuentemente en entornos operativos por su practicidad.

2.5. Visión artificial

La visión artificial pretende que las máquinas puedan “ver” e interpretar su entorno de
manera similar a la percepción humana. Para lograrlo, primero se capturan imágenes con
cámaras, luego se mejoran para reducir el ruido y destacar caracteŕısticas importantes, y
finalmente se analizan mediante técnicas de detección, segmentación y reconocimiento de
objetos, con el objetivo de extraer información relevante del entorno.

El progreso en visión artificial está alineado al procesamiento digital de imágenes y al
aprendizaje automático, cuya integración incrementa la exactitud del análisis. Gracias a es-
to, es posible reconocer o predecir caracteŕısticas de objetos aun cuando cambien de tamaño,
escala o color, y también facilita el estudio de objetos translúcidos o con mezclas complejas de
colores. Entre las aplicaciones más relevantes se encuentran el reconocimiento de objetos en
imágenes y v́ıdeos, lo cual es útil en procesos de inventariado y seguridad, el reconocimiento
facial para sistemas de vigilancia, el análisis de imágenes médicas que mejora la exactitud
diagnóstica y su papel determinante en los veh́ıculos autónomos, donde contribuye a la nave-
gación en tiempo real. Asimismo, tecnoloǵıas como la realidad aumentada, la realidad virtual
y la robótica emplean técnicas de visión artificial para interactuar eficientemente con entornos
f́ısicos y humanos (Shreya et al., 2023).

2.6. Composición de manos y rostro

2.6.1. Manos

Las manos constituyen una parte fundamental del cuerpo humano, tanto por su función
operativa como por su papel en la expresión personal. Situadas al término de los brazos, no
solo son estructuras ampliamente visibles, sino que también intervienen de manera decisiva
en actividades cotidianas, en la interacción con el entorno y en la comunicación no verbal.
Cada mano está compuesta por cinco dedos, y su estructura incluye huesos y músculos, que
permiten el movimiento; venas y arterias, muchas de las cuales son visibles bajo la piel y se
encargan de transportar sangre oxigenada y no oxigenada; nervios, que facilitan el sentido
del tacto y el control de los movimientos; y la piel y las uñas, que son visibles externamente
y protegen las estructuras internas (Rocha Salinas et al., 2012). Las zonas que abarcan la
mano se pueden dividir en lo siguiente:

• Falanges distales (color rojo).
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• Falanges medias (color azul).

• Falanges proximales(color verde).

• Palma (color amarillo).

Las zonas previamente mencionadas se pueden apreciar en la Figura 7.

Figura 7: Zonas de la mano (autoria propia).

2.6.2. Rostro

El rostro humano es una de las zonas más significativas del cuerpo para el diagnóstico
médico mediante imágenes termográficas, ya que refleja variaciones de temperatura relacio-
nadas con procesos fisiológicos y patológicos. La termograf́ıa permite identificar anomaĺıas
de temperatura en zonas faciales clave, lo que puede ayudar en la detección de enfermedades,
inflamaciones o problemas circulatorios. La correcta segmentación del rostro en las imágenes
termográficas es crucial para un análisis preciso, ya que permite aislar regiones espećıficas.
En el estado del arte se han encontrado distintos métodos para segmentar zonas de interés
del rostro; un claro ejemplo es el trabajo de Antonaci et al., (2019), donde se escoge un punto
de interés, que puede ser una zona como la frente o los ojos, y a partir de ah́ı se traza un
radio a otra zona para posteriormente trazar un punto equidistante con la misma coordenada
vertical. También se encuentra el trabajo de Fracasso et al., (2023), donde hacen uso de 15
regiones de interés con una medición de 1,13 cm2 (6 mm de radio). En la Figura 8 se pueden
apreciar algunas zonas del rostro que pueden ser de interés a la hora de medir la temperatura.
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Figura 8: Regiones comúnes del rostro, adaptada de Richmond et al., (2018).

En el presente trabajo se trabajará con las regiones de la frente, mejillas, nariz y mentón
para la segmentación y análisis térmico debido a que dichas zonas presentan una alta estabili-
dad térmica, buena exposición al sensor y una estrecha relación con la actividad psicofisiológi-
ca. Estas áreas concentran una buena irrigación sangúınea superficial y muestran variaciones
de temperatura asociadas a procesos emocionales, de estrés o de regulación autonómica, lo
que las convierte en indicadores útiles para el estudio de respuestas psicofisiológicas. Además,
su ubicación frontal y su escasa obstrucción por el cabello o movimientos faciales permiten
una captura térmica más precisa y consistente.

2.7. Inteligencia artificial

La inteligencia artificial (del inglés Artificial Intelligence, AI) se ha definido como “la
capacidad de las computadoras u otras máquinas para mostrar o simular un comportamiento
inteligente” (Inouye, 2022). Se basa en algoritmos que pueden realizar tareas que, tradicio-
nalmente, solo los humanos pod́ıan llevar a cabo. Los primeros algoritmos requeŕıan que los
humanos codificaran las reglas de operación, sin la habilidad de aprender de los datos por
śı mismos, lo que limitaba su eficacia en el análisis de datos médicos complejos (Chan &
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Auffermann, 2022). Las versiones posteriores, conocidas como algoritmos de aprendizaje au-
tomático, pudieron aprender por śı mismos, aunque solo a partir de subconjuntos de datos.
En esos algoritmos, los humanos aún teńıan que definir caracteŕısticas espećıficas en los datos
para que pudieran analizarlos.

Los algoritmos de inteligencia artificial, especialmente aquellos basados en aprendizaje
profundo, resultan altamente eficaces para detectar enfermedades o lesiones, lo cual representa
una de las fases más cŕıticas en el diagnóstico mediante imágenes. Un método es la clasificación
de imágenes, que implica entrenar un algoritmo de aprendizaje profundo para reconocer
patrones espećıficos en un conjunto de imágenes y luego utilizar ese conocimiento para emitir
un diagnóstico preciso (Keles Gulnerman et al., 2022).

2.7.1. Puntos de referencia faciales

La detección de puntos de referencia facial (facial landmark detection) es una técnica
de visión por computadora que identifica coordenadas clave en el rostro dentro de imágenes
o videos. Estos puntos, llamados landmarks, marcan rasgos anatómicos importantes como
mand́ıbula, mejillas, ojos, nariz y boca, y se utilizan en aplicaciones como reconstrucción
3D del rostro, reconocimiento facial, estimación de expresiones y segmentación de regiones
térmicas o fisiológicas (Zhu et al., 2021).

El proceso de detección de landmarks faciales suele dividirse en tres fases principales. En
primer lugar, se identifica la región del rostro dentro de la imagen mediante un detector,
como los basados en Histogram of Oriented Gradients (HOG) o modelos de redes neuronales
convolucionales (CNN). Posteriormente, la imagen es alineada o normalizada con el fin de
corregir variaciones en escala, rotación o iluminación. Finalmente, un modelo previamente
entrenado estima las coordenadas de cada punto caracteŕıstico, tomando en cuenta tanto la
información local, como la intensidad de los ṕıxeles y la estructura global del rostro. Uno de
los modelos más comunes es el de 68 puntos de referencia, el cual se puede ver en la Figura 9,
propuesto en el marco dlib, el cual se basa en un Ensamblado de Regresores en Cascada
(Ensemble of Regression Trees). Este tipo de modelos se entrena utilizando amplios conjun-
tos de imágenes faciales con puntos marcados manualmente, a partir de los cuales aprende
a ajustar de manera iterativa la ubicación de cada landmark. El proceso se basa en analizar
caracteŕısticas locales para ir refinando las predicciones hasta alcanzar un alto nivel de exac-
titud (Kopaczka et al., 2019). En enfoques modernos, este procedimiento se ha potenciado
mediante redes neuronales convolucionales profundas que producen heatmaps, donde cada
mapa indica la probabilidad de ubicación de un punto espećıfico. Entre las arquitecturas más
destacadas se encuentran HRNet y MediaPipe Face Mesh, reconocidas por su capacidad para
operar con fiabilidad incluso ante oclusiones parciales, variaciones en las expresiones faciales
o cambios en las condiciones de iluminación.
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Figura 9: Esquema de anotación de 68 puntos con las coordenadas (Kopaczka et al., 2019).

2.7.2. MediaPipe

MediaPipe es un framework de código abierto creado por Google que facilita el desarrollo
de soluciones de visión por computadora apoyadas en técnicas de aprendizaje automático.
Está diseñado para procesar información en tiempo real y se utiliza en tareas como la de-
tección de objetos, el reconocimiento del rostro, el seguimiento de manos y la estimación de
poses corporales. Al estar construido sobre avances recientes en investigación, logra ofrecer
resultados robustos y precisos incluso cuando existen variaciones en la iluminación o posturas
poco convencionales. Sumado a ello, su capacidad para funcionar en diversas plataformas lo
vuelve una herramienta flexible para dispositivos móviles y otros entornos computacionales.

En el presente estudio, se utilizaron MediaPipe Face Mesh y MediaPipe Hands para la
estimación de puntos de referencia faciales y de las manos. Face Mesh detecta 468 puntos
clave faciales mediante un modelo de regresión aplicado después de la detección del rostro con
BlazeFace, mientras que MediaPipe Hands estima 21 puntos de referencia por mano a través
de una canalización de dos etapas que combina la detección de la palma con la regresión de
puntos clave (Ko et al., 2024).

Aunque estas herramientas fueron originalmente diseñadas y entrenadas para procesar
imágenes en formato RGB, su uso en este trabajo fue de carácter exploratorio, con el ob-
jetivo de evaluar su rendimiento base al aplicarlas directamente sobre datos térmicos. Es
importante destacar que las imágenes termográficas difieren significativamente de las imáge-
nes RGB en cuanto a textura, contraste y caracteŕısticas visuales. Por lo tanto, la aplicación
directa de MediaPipe sin un proceso de reentrenamiento o adaptación de dominio puede dis-
minuir la precisión en la localización de puntos de referencia o generar fallos en la detección,
especialmente en regiones con gradientes de temperatura sutiles.
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2.7.3. Red neuronal profunda: Single Shot Detector

Este modelo pertenece a la familia de detectores de una sola etapa (single shot), capaces
de identificar múltiples objetos en una única pasada de la red, lo que garantiza una detección
rápida y precisa sin necesidad de generar propuestas de regiones intermedias. Su funcio-
namiento es similar al del algoritmo YOLO (You Only Look Once), permitiendo realizar
detección en tiempo real pero con un menor consumo de recursos computacionales (Nagrath
et al., 2021).

La implementación se realiza usando el módulo Deep Neural Network (DNN) de OpenCV,
con un modelo entrenado bajo la arquitectura Caffe de Berkeley AI Research (BAIR). Esta in-
tegración facilita la incorporación de una red neuronal eficiente para visión por computadora,
equilibrando rapidez y precisión.

Frente a técnicas más complejas como las basadas en Region-based CNN (R-CNN), el
modelo DNN-SSD sobresale por su rapidez y menor demanda de recursos, caracteŕısticas
esenciales para aplicaciones en tiempo real o en dispositivos con capacidad limitada. Por
estas razones, se seleccionó este modelo para la detección inicial del rostro en el sistema
de análisis térmico, garantizando una identificación confiable que sirviera de base para la
segmentación y el análisis psicofisiológico posterior.

2.8. IoMT

El IoMT es una rama del Internet de las Cosas (IoT) centrada en la conexión y el inter-
cambio continuo de datos entre dispositivos. Aplicado al ámbito de la salud, se conoce como
IoMT (Rahmani et al., 2022) e integra tecnoloǵıa móvil, sensores médicos y computación en
la nube para monitorear en tiempo real los signos vitales de los pacientes. Además, utiliza
herramientas de comunicación para enviar estos datos a una plataforma en la nube, lo que
posibilita a los médicos acceder a la información para monitorear, diagnosticar y tratar a los
pacientes de manera más eficiente. Esta tecnoloǵıa integra la confiabilidad y seguridad de los
equipos médicos tradicionales, siendo lo suficientemente versátil para atender diversas enfer-
medades que requieren monitoreo especializado. Asimismo, permite la gestión simultánea de
múltiples dispositivos para varios pacientes (Wal et al., 2022).

2.8.1. Protocolo de transmisión de datos seguros

La transmisión de datos en IoMT requiere el uso de protocolos de seguridad robustos para
garantizar que la información médica esté adecuadamente protegida mientras se transmite
entre dispositivos médicos, servidores y la nube.

El proyecto se desarrollará con base en las siguientes herramientas y tecnoloǵıas: para la
parte de frontend se hará uso de Streamlit o Dash, debido a su fácil integración con Flask,
además de que son compatibles con Python. Para el backend, que involucra el procesamiento
en la nube con Python, se utilizará Flask, ya que es compatible con servicios de Google Cloud
y cuenta con muchas extensiones útiles para agregar funcionalidad, especialmente en el pro-
cesamiento de imágenes, donde se hará uso de OpenCV para procesar y TensorFlow/Keras
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al incorporar la parte de inteligencia artificial. También se contempla la parte de escalabi-
lidad, por lo que se utilizarán Google Cloud Functions, lo cual es ideal porque se ajusta
automáticamente al volumen de usuarios.

Para la infraestructura, se empleará la plataforma de Google Cloud, que incluye Storage
para almacenar archivos, Google Cloud Functions para la parte de escalabilidad e incluso
Google AI para modelos de inteligencia artificial. Todo esto se contempló para poder acatar
puntos importantes que mencionan Chaudhari & Umamaheswari (2021), como la transmisión
eficiente de la información utilizando HTTPS y la reducción del tamaño de los archivos
mediante preprocesamiento, garantizando que la información viaje de manera rápida y segura.
También se destaca la importancia de minimizar la intervención manual al hacer uso de
plataformas y tecnoloǵıas que puedan interactuar. En lo referente a la seguridad, el sistema
incorpora el Web Application Firewall de Google Cloud, el cual brinda protección frente
a intentos de ataque. Por otro lado, el riesgo de pérdida de información por fallas en la
comunicación se mitiga mediante el uso de la infraestructura de Google Cloud, que permite
disponer de copias de respaldo y garantiza la conservación de los datos incluso si la conexión
se interrumpe.
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2.9. Sofwtare-Hardware utilizado

2.9.1. FLIR E80 Pro

Para este proyecto, la captura de imágenes termográficas se realizó con la cámara FLIR
E80 Pro, un dispositivo reconocido por su precisión en la medición de temperatura. Gracias a
sus sensores infrarrojos, es posible registrar los patrones térmicos de manera no invasiva y en
tiempo real. Esto permite obtener información detallada sobre las variaciones de temperatura
superficial, lo que resulta fundamental para tareas de análisis y detección térmica. En la
Figura 10 se presenta el modelo de cámara empleado.

Figura 10: Cámara termográfica FLIR E80 Pro (FLIR System, 2014).

2.9.2. Lenguajes de programación

En este proyecto, Python se utilizó como lenguaje principal para desarrollar el sistema
de visión artificial encargado de procesar y segmentar las imágenes termográficas. Python es
un lenguaje de alto nivel, interpretado y de propósito general, conocido por su sintaxis clara
y fácil de entender, lo que lo hace ideal tanto para principiantes como para desarrolladores
experimentados. Su compatibilidad con múltiples sistemas operativos permite ejecutar los
programas sin necesidad de compilación, y la disponibilidad de bibliotecas como OpenCV,
NumPy y TensorFlow simplifica enormemente tareas de procesamiento de imágenes, visión
artificial y aprendizaje automático.

Por su parte, la interfaz web del sistema se construyó usando HTML, CSS y JavaScript.
HTML define la estructura del contenido, CSS se encarga de la apariencia y el diseño adap-
table a distintos dispositivos, mientras que JavaScript gestiona la interacción con el usuario y
la comunicación con el servidor. Esta combinación permite ofrecer una plataforma funcional
y accesible, donde los usuarios pueden cargar, visualizar y analizar las imágenes térmicas de
manera sencilla y directa.
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2.9.3. Entorno y plataforma de despliegue

Render es una plataforma en la nube que permite alojar y ejecutar aplicaciones web de
manera sencilla y automatizada, simplificando tareas como el despliegue, la actualización
y la administración del entorno de ejecución. Gracias a esto, es posible integrar el sistema
desarrollado en Python con la interfaz web, permitiendo procesar las imágenes termográficas
de forma remota y casi en tiempo real. Entre sus principales ventajas se encuentran la facilidad
de uso, la comunicación segura mediante certificados SSL y la posibilidad de acceder al sistema
desde cualquier lugar, garantizando su disponibilidad sin depender de un equipo local.

En el Cuadro 1 se muestra una comparación de las plataformas más utilizadas para el
despliegue de aplicaciones web, destacando sus ventajas, desventajas y los escenarios para
los que cada opción resulta más adecuada.

Plataforma Ventajas Desventajas Ideal para...

Render Buen soporte bac-
kend, tareas progra-
madas, persistencia

Servicios pueden “dor-
mirse” en plan gratis

Apps full-stack

Railway Despliegue rápido, do-
minio público, mane-
jo simple de varia-
bles, integración con
GitHub

Limitaciones en pla-
nes gratuitos, pausas
por uso excesivo

Prototipos, pro-
yectos medianos

Vercel Ideal para frontend,
edge functions rápidas

No apto para procesos
pesados o largos

Páginas web
estáticas o fron-
tends

Heroku Amplio ecosistema Sin plan gratis, menos
flexible

Aplicaciones ya
establecidas

Fly.io Distribución geográfi-
ca, baja latencia

Configuración avanza-
da, más compleja

Apps globales
con contenedo-
res

Cuadro 1: Comparativa de plataformas de despliegue web utilizadas para decidir la imple-
mentación del servidor.
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3. Metodoloǵıa

En la Figura 11 se muestran los pasos llevados a cabo en la metodoloǵıa del proyecto,
donde el objetivo es implementar un sistema de visión artificial capaz de procesar imágenes
termográficas en la nube y detectar-segmentar zonas de interés en el rostro y las manos.

La metodoloǵıa se pensó siguiendo un enfoque que abarque desde un protocolo de adqui-
sición de imágenes hasta la segmentación de zonas de interés con su análisis de temperatura,
con la finalidad de garantizar la correcta ejecución de cada etapa del sistema propuesto. Este
proceso se divide en cinco bloques principales: protocolo de adquisición de imágenes, proce-
samiento, detección y segmentación, análisis térmico y por último el servidor y página en la
nube.

Figura 11: Metodoloǵıa del proyecto (autoria propia).
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3.1. Protocolo de adquisición de imágenes

3.1.1. Condiciones del lugar

Las imágenes termográficas se obtuvieron bajo condiciones ambientales controladas, con
el objetivo de minimizar la influencia de factores externos que pudieran alterar la distribución
térmica superficial. En el Cuadro 2 se presentan los parámetros ambientales considerados,
junto con su justificación técnica.

Cuadro 2: Condiciones ambientales durante la adquisición de imágenes termográficas.

Parámetro Valor Justificación

Temperatura ambiental 18–23 ◦C Evitar variaciones térmicas por el ambiente
Humedad relativa 40–60% Controlar evaporación y sudoración
Iluminación Natural difusa Evitar fuentes externas de calor
Corriente del aire Mı́nima Mantener estabilidad térmica durante la captura

El control de temperatura, humedad e iluminación garantiza que las diferencias térmicas
registradas se deban a cambios fisiológicos reales y no a variaciones del entorno (Fernández-
Cuevas et al., 2015). Las capturas se realizaron en las instalaciones de la Universidad Autóno-
ma de Querétaro, campus Corregidora, con la participación de estudiantes antes y después
de una sesión de yoga.

3.1.2. Condiciones previas del participante

Antes de la adquisición, los participantes debieron cumplir un periodo de aclimatación
para estabilizar su temperatura corporal superficial. Además, se establecieron criterios de
control que aseguran la validez térmica de las imágenes. En el Cuadro 3 se detallan las
condiciones previas consideradas:

Cuadro 3: Condiciones previas del participante antes de la adquisición termográfica.

Condición Requisito

Aclimatación previa 10–15 minutos en sala controlada
Actividad f́ısica Evitar al menos 30 minutos antes
Exposición solar Evitar antes de la medición
Consumo de bebidas calientes o fŕıas Evitar 15 minutos previos
Śıntomas febriles o inflamatorios No presentar
Uso de cremas o maquillaje Evitar antes de la toma
Accesorios metálicos o lentes Retirar durante la captura
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Estas condiciones garantizan que las imágenes obtenidas reflejen únicamente variacio-
nes fisiológicas naturales, permitiendo una comparación precisa entre los estados previos y
posteriores a la actividad f́ısica (sesión de yoga).

3.1.3. Configuración del equipo termográfico

Para la adquisición de las imágenes se utilizó una cámara termográfica FLIR E80 Pro,
seleccionada por su precisión y resolución adecuadas para estudios de termograf́ıa facial y
palmar. Las caracteŕısticas principales del equipo se muestran en el Cuadro 4.

Cuadro 4: Configuración técnica de la cámara termográfica FLIR E80 Pro utilizada.

Parámetro Valor

Resolución 320 × 240 ṕıxeles
Emisividad 0.98
Rango térmico 15–40 ◦C
Formato de imagen JPG, escala de grises
Sensibilidad térmica < 0.05 ◦C a 30 ◦C

Esta configuración permite captar detalles finos en la variación térmica, necesarios para
la segmentación precisa de zonas faciales y palmares.

Durante el proceso de adquisición, los participantes permanecieron sentados, con el rostro
completamente descubierto, las manos a la altura de las orejas, palmas orientadas al frente
y dedos separados, justo como se observa en la Figura 12.
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Figura 12: Posición del participante y protocolo de captura (autoria propia).

La cámara se ubicó a una distancia fija determinada experimentalmente para garantizar
que tanto el rostro como las manos quedaran completamente dentro del encuadre.

Si bien la cámara termográfica FLIR E80 Pro fue la utilizada en este estudio debido
a su precisión y sensibilidad térmica adecuadas, el protocolo de adquisición propuesto no
depende exclusivamente de este modelo. Cualquier cámara termográfica puede emplearse
para replicar el procedimiento, siempre y cuando se respeten las condiciones ambientales y
de preparación del participante establecidas. En este sentido, la calidad y reproducibilidad de
las imágenes dependen más del cumplimiento estricto del protocolo que del modelo espećıfico
del dispositivo, garantizando aśı la validez del análisis térmico independientemente del equipo
utilizado.

3.2. Procesamiento

La Figura 13 muestra el flujo completo del algoritmo implementado, el cual integra las
etapas de procesamiento, detección y segmentación.
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Figura 13: Diagrama para el procesamiento y detección-segmentación (autoria propia).

En el presente trabajo, el procesamiento se realizó sobre imágenes en escala de grises ob-
tenidas con una cámara termográfica FLIR E80 Pro. Esta etapa tuvo como finalidad mejorar
la calidad visual y estructural de las imágenes, eliminar ruido y preparar los datos para la
detección automática de puntos clave en rostro y manos mediante el uso de MediaPipe, una
biblioteca de aprendizaje automático optimizada para la estimación de poses y geometŕıas
corporales.

3.2.1. Preprocesamiento de imágenes termográficas

El preprocesamiento consistió en la lectura, validación y conversión de las imágenes adqui-
ridas. Cada imagen fue redimensionada a un formato estándar de 320×240 ṕıxeles, asegurando
uniformidad en la resolución espacial. Se verificó que las imágenes no presentaran artefactos,
saturación térmica o pérdidas de información debidas a la emisividad del material, la cual se
configura en 0.98 durante la captura, debido a que se ha establecido que la emisividad de la
piel humana está entre 0.97 y 0.99, por lo que universalmente se utiliza 0.98, ya que represen-
ta un valor estándar para piel humana seca, limpia y sin maquillaje o lociones, condiciones
ideales para la medición biomédica. Además, las imágenes fueron convertidas a formato de
escala de grises para facilitar el análisis y reducir la carga computacional del modelo. En la
Figura 14 se puede apreciar el preprocesamiento en las imágenes
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Figura 14: Redimensión al formato estándar 320x240 ṕıxeles (autoria propia).

3.2.2. Conversión de color y normalización

Aunque las imágenes termográficas ya se encontraban en escala de grises, se aplicó un
proceso de normalización que ajustó los valores de intensidad térmica dentro de un rango
uniforme entre 0 y 255. Este paso permitió minimizar las diferencias entre imágenes tomadas
en momentos distintos o bajo ligeras variaciones ambientales. La normalización también
garantizó una mejor respuesta de los algoritmos de segmentación, al reducir el sesgo producido
por regiones con distinta emisividad o reflectancia.

3.2.3. Filtrado y reducción de ruido

En las imágenes termográficas adquiridas, uno de los principales desaf́ıos es la presencia
de ruido térmico inherente al sensor de captura, el cual puede manifestarse como variaciones
aleatorias en los niveles de temperatura registrados. Este tipo de ruido afecta la homogeneidad
térmica de la imagen y, por consiguiente, la precisión de los algoritmos de segmentación.

Para mitigar este efecto, se incorporó una etapa de preprocesamiento basada en filtrado
y reducción de ruido, cuyo objetivo fue suavizar la imagen sin eliminar detalles anatómicos
relevantes. En esta etapa se aplicó un filtrado ligero de tipo gaussiano, con un tamaño de
máscara ajustado experimentalmente (3x3), seguido de un filtro de mediana para eliminar
picos térmicos aislados (ruido impulsivo). Esta combinación permitió conservar los bordes
que delimitan las regiones anatómicas como contornos faciales y de las manos, mejorando la
estabilidad térmica local sin comprometer la resolución espacial.

El resultado de este proceso es una imagen suavizada y homogénea, con reducción signi-
ficativa de ruido y mantenimiento de estructuras clave, que sirve como entrada óptima para
las etapas subsiguientes de realce de contraste, ecualización y segmentación automática.

En la Figura 15 se puede apreciar el ejemplo de una imagen con los filtros aplicados,
además de mostrar en el Cuadro 5 una explicación de los efectos que estos tienen.
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(a) (b)

Figura 15: Se muestra en la Figura a) la imagen una vez aplicado el filtro Gaussiano,
mientras que en la Figura b) se muestra con el filtro de Mediana. (autoria propia).

Cuadro 5: Comparación de los efectos de los Filtros Gaussiano (Lineal) y Mediana (No Lineal)
en las imágenes térmicas.

Caracteŕıstica Filtro Gaussiano (Lineal) Filtro de Mediana (No Lineal)

Propósito principal Suavizado general y reducción de
ruido.

Reducción de ruido impulsivo y pre-
servación de bordes.

Operación Promedio ponderado de ṕıxeles ve-
cinos (Convolución).

Sustitución del valor del ṕıxel por
la mediana de la vecindad.

Efecto sobre bordes Bordes y detalles finos se vuelven
difusos y se pierden.

Los bordes y detalles se preservan
mejor que con el Gaussiano.

Efecto visual La imagen se ve más borrosa y sua-
ve.

La imagen se ve suave pero ńıtida
en las transiciones.

Uso en termo-imágenes Efectivo en ruido aleatorio (ruido
Gaussiano).

Preferible para imágenes con textu-
ras uniformes y ruido granulado.

3.2.4. Realce de contraste (CLAHE)

Una vez reducidas las variaciones de ruido térmico, se aplicó un proceso de ecualización
de histograma adaptativa con ĺımite de contraste (CLAHE) con el fin de mejorar el contraste
local en las imágenes termográficas. Este procedimiento permitió realzar los detalles anatómi-
cos relevantes tanto en el rostro como en las manos, favoreciendo la posterior detección de
puntos clave. Para ello, las imágenes fueron divididas en regiones (tiles) donde se ajustó
el histograma de forma independiente, limitando la amplificación del contraste mediante el
parámetro clip limit para evitar la sobreexposición o amplificación del ruido residual. Esta
configuración permitió conservar la información térmica útil sin alterar las caracteŕısticas
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generales de la imagen. El resultado de la ecualización mediante CLAHE fue una mejor de-
finición de los bordes y variaciones térmicas locales, lo que incrementó la capacidad de los
modelos de detección de MediaPipe para localizar con mayor precisión las regiones faciales
y de las manos, justo como se puede apreciar en la Figura 16.

(a) (b)

Figura 16: Se aprecia la diferencia en la Figura a) que es la imagen original y en la Figura
b) que es después de aplicar CLAHE, lo que ayudo a detectar los puntos de MediaPipe

(autoria propia).

3.2.5. Consideraciones sobre técnicas empleadas

El procesamiento se diseñó para ejecutarse de manera totalmente automática, minimi-
zando la intervención humana y garantizando la reproducibilidad de los resultados. De igual
forma, se dio prioridad a la eficiencia computacional, considerando que el sistema deb́ıa fun-
cionar dentro de un entorno en la nube. El uso combinado de MediaPipe y OpenCV permitió
crear una plataforma sólida y escalable para el análisis de imágenes termográficas, demos-
trando que el procesamiento térmico automatizado puede integrarse de manera efectiva en
sistemas basados en IoMT.

3.3. Detección y segmentación

La fase de detección y segmentación es clave para identificar con precisión las zonas del
rostro y las manos. Para ello, se emplearon modelos de MediaPipe basados en redes neuro-
nales convolucionales optimizadas para tiempo real. Primero se detectan puntos anatómicos
principales, que luego se utilizan para crear máscaras y regiones de interés (ROIs), delimi-
tando áreas espećıficas y garantizando la extracción confiable de las caracteŕısticas térmicas
necesarias para el análisis psicofisiológico.
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3.3.1. Detección de puntos faciales

Para la detección del rostro dentro de las imágenes térmicas se empleó un proceso en
dos etapas. En primer lugar, se utilizó una red neuronal profunda del tipo Single Shot Mul-
tibox Detector (SSD), implementada mediante el módulo Deep Neural Network (DNN) de
OpenCV. El modelo SSD utilizado corresponde a la arquitectura SSD con base Mobile-
Net, preentrenada sobre el conjunto de datos WIDER FACE para tareas de detección facial
general. Se cargó mediante los archivos estándar de configuración (deploy.prototxt) y pe-
sos (res10 300x300 ssd iter 140000.caffemodel), disponibles dentro de la distribución
de OpenCV. No se requirieron modificaciones de arquitectura ni reentrenamiento, dado que
el modelo mostró un desempeño adecuado al ser aplicado sobre imágenes térmicas, tras un
proceso previo de normalización del rango dinámico y ecualización adaptativa de histograma
(CLAHE) para resaltar contrastes relevantes. Este modelo permitió identificar de manera
rápida y precisa la región que contiene el rostro, delimitando el área de interés (ROI) para el
análisis posterior. Una vez localizado el rostro, la región correspondiente fue procesada me-
diante el modelo MediaPipe Face Mesh. Este modelo emplea una red neuronal convolucional
ligera (CNN) optimizada para dispositivos en tiempo real, la cual estima la posición tridimen-
sional de 468 puntos faciales en coordenadas normalizadas. El modelo se carga directamente
mediante la API de MediaPipe sin requerir configuración adicional, ya que su arquitectura
y pesos vienen preentrenados. Durante su inicialización se mantuvieron los parámetros por
defecto recomendados, con detección continua y umbrales de confianza de 0.5 tanto para la
detección inicial como para el seguimiento. La precisión de los puntos estimados permitió
identificar con exactitud las regiones térmicas de interés para el análisis psicofisiológico, tales
como:

• Frente

• Nariz

• Mejillas

• Mentón

Durante la implementación, se verificó que la detección fuera robusta ante variaciones térmi-
cas moderadas, manteniendo la correspondencia anatómica incluso bajo diferentes condicio-
nes de iluminación o distancia a la cámara. En los casos donde el modelo no lograba detectar
la totalidad de los puntos, por ejemplo, si el sujeto presentaba movimiento o la temperatu-
ra superficial era irregular, se aplicó nuevamente el procesamiento previo con CLAHE para
mejorar el contraste y facilitar la identificación. El flujo de procesamiento siguió la siguiente
lógica:

1. Intento de detección de puntos faciales en la imagen original.

2. Si la detección era parcial o fallida, se aplicaba CLAHE sobre la imagen térmica.

3. Se reintentaba la detección sobre la versión ecualizada.
34



3.3.2. Detección de puntos en las manos

Para las manos se utilizó el modelo MediaPipe Hands, en donde los puntos detectados
son fundamentales para definir la estructura y orientación de la mano, lo cual permite pos-
teriormente segmentar regiones térmicas espećıficas, como:

• Palma

• Nudillos

• Falanges proximal, media y distal

La detección se realiza mediante un modelo CNN que estima primero la posición general
de la mano y luego ajusta la malla de puntos en función de la pose.

3.3.3. Segmentación de regiones térmicas

Con los puntos de referencia obtenidos, el sistema procede a la segmentación térmica,
la cual consiste en delimitar áreas espećıficas del rostro y las manos a partir de los vértices
definidos por los puntos anatómicos. En el caso del rostro, se generan poĺıgonos cerrados que
delimitan regiones como:

• Frente (puntos: 9, 336, 296, 334, 293, 301, 251, 284, 332, 297, 338, 10, 109, 67, 103, 54,
21, 71, 63, 105, 66, 107)

• Nariz (puntos: 2, 326, 328, 290, 392, 439, 278, 279, 420, 399, 419, 351, 168, 122, 196,
174, 198, 49, 48, 219, 64, 98, 97)

• Mejillas (puntos mejilla izquierda: 138, 215, 177, 137, 227, 111, 31, 228, 229, 230, 120,
47, 126, 209, 129, 203, 206, 216; puntos mejilla derecha: 367, 435, 401, 366, 447, 340,
261, 448, 449, 450, 349, 277, 355, 429, 358, 423, 426, 436])

• Mentón (puntos: 17, 314, 405, 321, 375, 287, 432, 434, 364, 394, 395, 369, 175, 171, 140,
170, 169, 135, 214, 212, 57, 61, 146, 91, 181, 84)

Mientras que en las manos, la segmentación se basa en la agrupación de los 21 puntos
para formar poĺıgonos correspondientes a:

• Palma central

• Falanges proximal, media y distal de cada dedo

El proceso de segmentación se apoya en técnicas de indexación geométrica para garantizar
que las regiones sean consistentes entre diferentes cuadros o sujetos.

Sin embargo, la mera detección de los puntos clave no resulta suficiente para realizar un
análisis térmico funcional, tal como lo es para la parte del rostro al tener un mayor control
de los puntos en el mallado. Por ello, se desarrolló un proceso de segmentación anatómica
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que permite delimitar regiones correspondientes a las falanges y a la palma de la mano, a
partir de los puntos detectados.

El procedimiento se divide en tres etapas principales: ajuste geométrico, proyección vec-
torial y generación de máscaras.

1. Ajuste geométrico de puntos: Una vez obtenidos los 21 puntos clave, se realiza
una corrección de su posición mediante un vector de dirección que compensa posibles
desviaciones generadas por la perspectiva o pequeñas rotaciones de la mano. Este ajuste
garantiza que los puntos correspondientes a los nudillos, articulaciones intermedias y
extremos de los dedos mantengan una alineación coherente entre śı, preservando la
morfoloǵıa natural de la mano.

Figura 17: Ajuste de los puntos de la mano 5-9-13-17 (autoria propia).

2. Proyección vectorial y delimitación de falanges: Posteriormente, se calculan vec-
tores de proyección entre los puntos consecutivos de cada dedo, generando ĺıneas que
representan los segmentos óseos (falanges). Cada dedo se define a partir de tres ĺıneas
principales que conectan cuatro puntos sucesivos del modelo (base, articulación interme-
dia, articulación distal y punta). A partir de estas ĺıneas se generan poĺıgonos cerrados
mediante operaciones geométricas de expansión (offset), delimitando aśı la superficie
de cada falange.
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Figura 18: Trazado de las lineas para separar las falanges de los dedos (autoria propia).

3. Segmentación de la palma: La región correspondiente a la palma se obtiene trazando
un poĺıgono que conecta los puntos base de los cinco dedos junto con el punto central
de la muñeca. Esta área se rellena para formar una máscara binaria que representa la
superficie de la palma. Dicha máscara se utiliza posteriormente para realizar análisis
térmicos promedio por zona.

Figura 19: Mano segmentada (autoria propia).

Para mejorar la precisión visual de la segmentación, se aplicaron operaciones bitwise entre
la imagen original y las máscaras generadas, de modo que únicamente se mantuvieran visibles
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las zonas térmicamente relevantes. Esto facilita la interpretación por parte de especialistas y
mejora la entrada a algoritmos posteriores de análisis térmico o clasificación.

Es importante destacar que, aunque el modelo de MediaPipe Hands proporciona única-
mente 21 puntos de referencia, la delimitación completa de cada dedo se logra mediante la
construcción geométrica de poĺıgonos. Para ello, se traza el eje central de cada dedo a partir
de los puntos consecutivos y se calculan vectores perpendiculares en cada segmento, generan-
do aśı bordes laterales que definen el ancho de la falange. La unión de estos bordes permite
formar un contorno cerrado que encierra la totalidad del dedo. Finalmente, las regiones se
rellenan para obtener máscaras binarias independientes por dedo y por palma. Este procedi-
miento garantiza que la segmentación térmica cubra toda el área anatómica relevante, y no
únicamente los puntos articulares detectados.

3.3.4. Manejo de detecciones incompletas

Una parte importante del sistema es el manejo de escenarios donde no se detectan todos
los puntos esperados. Esto puede ocurrir por diversas razones:

• Pérdida de contraste térmico en áreas espećıficas.

• Ocultamiento parcial del rostro o manos.

En estos casos, el algoritmo adopta dos estrategias:

1. Reprocesamiento adaptativo: se reaplica la etapa de procesamiento (CLAHE y filtrado)
para intentar recuperar la información faltante.

2. Interpolación estructural: cuando no es posible recuperar los puntos, se estiman sus
posiciones a partir de los puntos vecinos y la geometŕıa promedio del modelo (usando
distancias euclidianas y vectores dirección).

Esto garantiza la continuidad de las regiones segmentadas, evitando errores de cálculo en
las zonas térmicas, esto siempre y cuando alcance a detectar puntos en rostro y manos, de
no ser el caso, no se segmenta ninguna zona.

3.3.5. Resultado final de detección y segmentación

El resultado de esta etapa es un conjunto de imágenes donde las regiones anatómicas
del rostro y las manos están correctamente identificadas y segmentadas, cada una con sus
respectivos contornos y etiquetas. Estas imágenes sirven como base para el análisis térmico
posterior, donde se calculan indicadores de temperatura superficial asociados a respuestas
psicofisiológicas.
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3.4. Análisis térmico

Una vez finalizada la segmentación de las regiones de interés en el rostro y las manos, se
realizó el análisis térmico básico, orientado a obtener parámetros estad́ısticos representativos
de cada zona delimitada. Esta etapa tuvo como propósito demostrar la funcionalidad del
sistema propuesto, más que efectuar un estudio fisiológico exhaustivo, puesto que el enfo-
que principal del trabajo se centra en el desarrollo del modelo de detección y segmentación
automatizada.

El análisis térmico se efectuó sobre las imágenes termográficas en escala de grises, donde
la intensidad de cada ṕıxel corresponde de manera proporcional a la temperatura superficial
registrada. Para cada región segmentada se aplicó una máscara binaria que delimitó los ṕıxeles
pertenecientes exclusivamente a dicha zona, permitiendo calcular de forma independiente los
valores de temperatura promedio, máxima y mı́nima. Por lo que hay que dejar en claro que
se utilizó una evaluación térmica cuantitativa, ya que se basa en el análisis numérico de la
temperatura en cada zona segmentada, no solo en la observación visual de patrones térmicos.

Los resultados de este análisis se integraron automáticamente en el sistema web desarro-
llado, de modo que, tras el procesamiento en la nube, se genera un informe en formato PDF
con los valores de Tprom, Tmax y Tmin para cada región segmentada. El informe proporciona
una salida demostrativa del sistema, evidenciando la capacidad del sistema para procesar
imágenes termográficas de manera automatizada y reproducible.

Aunque aqúı las métricas térmicas se emplean como complemento, el sistema es flexible y
puede adaptarse a análisis más espećıficos según la aplicación. Por ejemplo, permite estudiar
simetŕıas térmicas, seguir variaciones relacionadas con emociones o evaluar procesos fisiológi-
cos asociados a estrés, fatiga o relajación, manteniendo su utilidad en distintos contextos de
salud e investigación biomédica.

3.4.1. Generación del informe

Al concluir el análisis térmico, el sistema genera automáticamente un informe que organi-
za los resultados de manera clara y fácil de entender, sin que el usuario necesite conocimientos
técnicos. Antes de crear el reporte, se definió un esquema de numeración y etiquetado para las
regiones del rostro y las manos, de manera que cada zona segmentada se vincule correctamen-
te con los valores de temperatura obtenidos. Por ejemplo, en el rostro se identifican la frente
(zona 1), las mejillas (zonas 2 y 3), la nariz (zona 4) y el mentón (zona 5), mientras que en las
manos se aplica un criterio similar para las falanges, la palma y el dorso. Este procedimiento
asegura que los datos sean consistentes y facilita la interpretación, incluso cuando se procesan
muchas imágenes. Siguiendo esta numeración, el sistema recopila automáticamente los datos
térmicos y genera un informe en PDF, que incluye una tabla con las métricas organizadas
según las regiones establecidas. La creación del documento se realiza mediante una biblio-
teca de Python que combina los resultados numéricos con su presentación textual. Una vez
completado el procesamiento en la nube, el usuario puede descargar el informe directamente
desde la plataforma web, cerrando aśı el ciclo del análisis desde la captura de la imagen hasta
la obtención del resultado final.
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3.5. Servidor y página en la nube

La plataforma web creada actúa como la interfaz principal del sistema, permitiendo que
el usuario interactúe directamente y de una manera fácil de usar. Su función principal es
facilitar la carga de imágenes termográficas y ejecutar automáticamente la segmentación y el
análisis térmico. Al finalizar, el sistema genera la visualización de la segmentación y brindará
la posibilidad de descargar el informe en PDF con los resultados, todo esto sin requerir la
instalación de software adicional en el dispositivo del usuario.

3.5.1. Estructura general

La interfaz consta de dos partes principales:

1. Carga de imagen: el usuario puede seleccionar o arrastrar una imagen termográfica que
siga el protocolo de adquisición de imágenes en formato JPG o PNG.

• Una vez cargada, se muestra una vista previa de su imagen y se habilita el botón
“Procesar Imagen”. Este proceso se gestiona completamente en la nube.

2. Tras el procesamiento, el sistema despliega dos secciones de análisis:

• Análisis de rostro, donde se muestran los resultados de segmentación y el enlace
al informe PDF correspondiente.

• Análisis de manos, con sus resultados equivalentes.

La interfaz incluye un sistema de pestañas (tabs) que permite alternar entre ambas vi-
sualizaciones, sin recargar la página.

3.5.2. Comunicación cliente-servidor

Una vez que se cargue la imagen, el navegador la empaqueta y la env́ıa al servidor a
través de una comunicación ligera y segura con el backend. El servidor, desplegado en la
nube, recibe la imagen y ejecuta el modelo de detección y segmentación correspondiente.
Con base al procesamiento, el sistema genera los siguientes resultados:

• Imágenes procesadas del rostro y las manos con las regiones de interés correctamente
delimitadas.

• Reportes térmicos en formato PDF, que incluyen las métricas de temperatura
promedio, máxima y mı́nima para cada zona segmentada.

Una vez completado el análisis, el servidor devuelve al cliente un objeto JSON con las
rutas de acceso a cada resultado. Con esta información, la aplicación actualiza dinámicamente
el contenido mostrado en el navegador, evitando recargas completas de página y mejorando
la fluidez del uso.
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Durante el procesamiento, se activa un overlay de carga (“Procesando imagen...”) que
bloquea temporalmente la interfaz y muestra una animación de progreso. Esto no solo brinda
una mejor experiencia de usuario, sino que también evita múltiples solicitudes simultáneas
al servidor.

3.5.3. Entorno de despliegue

El sistema desarrollado fue desplegado en un entorno PaaS (Platform as a Service) pro-
porcionado por Render, el cual permite la ejecución de aplicaciones web mediante instancias
contenerizadas bajo Docker. Esta plataforma fue seleccionada por su facilidad de integración
con repositorios GitHub y por ofrecer un flujo automatizado de Integración y Despliegue
Continuo (CI/CD), lo que garantiza la actualización inmediata del sistema tras cada modi-
ficación en el código fuente. La instancia utilizada corresponde a un servicio web con CPU
compartida, 512 MB de memoria RAM y 1 GB de almacenamiento SSD, alojada en la región
de Oregon, Estados Unidos. Render asigna un subdominio bajo la extensión .onrender.com,
administrando automáticamente los certificados SSL/TLS mediante Let’s Encrypt para man-
tener una comunicación segura entre el cliente y el servidor. Además, soporta los protoco-
los HTTP/1.1, HTTP/2 y WebSockets, e implementa una protección básica contra ataques
DDoS, junto con un sistema de gestión de variables de entorno para almacenar credenciales
y claves de acceso de forma segura. El proceso de despliegue se realiza directamente desde el
repositorio de GitHub, donde cada push en la rama principal desencadena la construcción y
publicación automática del contenedor Docker. En el plan gratuito, los builds se ejecutan en
runners compartidos sin almacenamiento en caché, lo que implica una descarga completa de
dependencias en cada compilación. El entorno utiliza un sistema de archivos ef́ımero, por lo
que los datos locales no son persistentes entre reinicios o actualizaciones. Por sus caracteŕısti-
cas, Render ofrece una infraestructura eficiente y de bajo costo, adecuada para la etapa de
desarrollo y validación del sistema propuesto. Su facilidad de integración con herramientas
de visión artificial, su soporte nativo para contenedores Docker y su despliegue rápido en la
nube justifican su elección frente a alternativas más complejas como AWS, Azure o Google
Cloud, las cuales, aunque ofrecen mayor escalabilidad, implican costos y configuraciones más
elevados para un entorno experimental.
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4. Resultados y discusión

4.1. Evaluación del sistema propuesto

Se recopilaron 448 imágenes termográficas, de las cuales 220 corresponden a capturas
realizadas antes de la sesión de yoga y 228 a capturas posteriores. La elección de la actividad
f́ısica de yoga se fundamenta en que esta práctica induce cambios medibles posterior a la
actividad, entre ellos variaciones en la temperatura del rostro y las manos asociadas con la
relajación y la modulación del sistema nervioso autónomo.

Estas imágenes resultaron siendo la base de datos experimental para validar el modelo
de segmentación y análisis térmico propuesto, pudiendo de esta manera observar diferencias
reales entre distintos estados fisiológicos.

Cuadro 6: Distribución de imágenes capturadas en el estudio.

Condición Cantidad de imágenes Porcentaje

Antes de la sesión de yoga 220 49.1%
Después de la sesión de yoga 228 50.9%

Total 448 100%

4.2. Resultados de segmentación en manos

En la Figura 20 se muestran dos ejemplos de imágenes capturadas antes de la sesión
de yoga. Se puede apreciar que la detección de las manos fue algo más complicada debido
a la baja temperatura superficial, pero gracias al protocolo de adquisición implementado,
se lograron mantener condiciones de captura estables, lo que permitió al sistema identificar
correctamente las zonas de interés y realizar una segmentación precisa, que bajo otro escenario
hubiera complicado la detección de las manos.
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(a) (b)

Figura 20: Se puede apreciar en la Figura a) y b) ejemplos de una correcta segmentación de
manos antes de actividad f́ısica (autoria propia).

En la figura 21 se observan ejemplos de segmentación correcta de las manos una vez
realizada la práctica de yoga. Se observa un aumento notable en la temperatura, lo que
facilitó la detección precisa de los contornos y las falanges.

(a) (b)

Figura 21: En la Figura a) y b) se muestran ejemplos de correcta segmentación de manos
después de actividad f́ısica (autoria propia).

4.3. Resultados de segmentación en rostro

En la Figura 22 se aprecian los resultados de la segmentación facial antes de la actividad
f́ısica. El sistema logró identificar correctamente las zonas, incluso en imágenes donde el rostro
no estaba totalmente frontal.

Estos resultados demuestran la capacidad del modelo MediaPipe Face Mesh para mante-
ner un desempeño estable, ya que, pese a haber sido entrenado originalmente con imágenes
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RGB, mostró una adaptación aceptable al trabajar con imágenes termográficas en escala de
grises.

(a) (b)

Figura 22: Se muestra en la Figura a) que a pesar de no estar mirando de frente la persona,
el modelo logra identificar y segmentar correctamente, en cambio en la Figura b) el

resultado es correcto al haber seguido el protocolo (autoria propia).

En la Figura 23, que muestra las imágenes capturadas después de la sesión de yoga, el
sistema logró conservar una segmentación estable y precisa, evidenciando su fiabilidad incluso
cuando las diferencias térmicas entre condiciones fueron mı́nimas.

(a) (b)

Figura 23: En la Figura a) y b) se logra identificar y segmentar correctamente las zonas
después de hacer la actividad f́ısica. (autoria propia)
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4.4. Casos de segmentación incorrecta

En la Figura 24, se muestran ejemplos de detección incorrecta en manos. En la Figura 24a,
la mano derecha no fue detectada debido a una temperatura superficial baja, similar a la del
fondo, lo que impidió la identificación de puntos caracteŕısticos. En la Figura 24b, una de las
manos aparece parcialmente fuera del encuadre y la otra cubierta parcialmente por la ropa,
provocando una segmentación imprecisa.

(a) (b)

Figura 24: Imágenes que muestran la incorrecta segmentación de las manos.

Aun aśı, estos casos confirman que el sistema evita procesamientos erróneos y que su
desempeño depende directamente del cumplimiento del protocolo de adquisición.

En la Figura 25 se presentan ejemplos de segmentación errónea en la detección del rostro,
donde se observó un claro ejemplo de mayor error en comparación con las manos. A pesar
de que en la mayoŕıa de los casos se cumplió correctamente con el protocolo de adquisición
de imágenes, existen situaciones particulares que afectaron el rendimiento del modelo.

En la Figura 25a se observa que el sistema no logró generar el mallado facial, incluso
después del procesamiento de imagen mediante CLAHE, lo cual se atribuye principalmente
a limitaciones en el contraste térmico de la imagen. Dado que las imágenes empleadas son
termográficas en escala de grises, las diferencias de intensidad entre las distintas zonas del
rostro pueden ser demasiado sutiles, dificultando que el modelo MediaPipe Face Mesh (en-
trenado originalmente con imágenes RGB) identifique con precisión los puntos de referencia
faciales. Como resultado, el sistema no logra trazar las zonas correspondientes, generando
una segmentación incompleta o ausente.

En la Figura 25b se observa un incumplimiento parcial del protocolo de adquisición, dado
que el participante mantiene una mano cubriendo parcialmente el rostro. Esta obstrucción
impidió que el modelo identificara todos los puntos faciales necesarios para la segmentación.
Frente a esta situación, el sistema está diseñado para saltar el procesamiento de la imagen,
evitando aśı generar resultados incompletos o incorrectos en el informe final. Los resultados
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obtenidos evidencian que, aunque el sistema presenta una alta efectividad global, su desem-
peño en la segmentación del rostro depende de manera significativa de la calidad térmica
de la imagen, del contraste entre las regiones anatómicas y del cumplimiento estricto del
protocolo de adquisición. Estos factores terminan siendo fundamentales para asegurar una
detección precisa de las zonas faciales y constituyen elementos clave a considerar en futuras
mejoras del modelo o en la optimización del algoritmo para su uso en imágenes térmicas.

(a) (b)

Figura 25: Imágenes que muestran la incorrecta segmentación del rostro.

4.5. Interfaz de la página web

La plataforma web actúa como la interfaz principal del sistema, facilitando la interacción
directa del usuario con el modelo de procesamiento alojado en la nube. Se desarrolló utilizando
HTML, CSS y JavaScript, priorizando la ligereza, la compatibilidad multiplataforma y la
usabilidad.

La interfaz posee un diseño responsive, lo que garantiza su correcta visualización en diver-
sos dispositivos (computadoras o móviles). Su estructura se basa en componentes funcionales,
donde cada sección está diseñada para un paso espećıfico dentro del flujo de análisis (Figu-
ra 26).

46



Figura 26: Interfaz principal de la página web desarrollada (autoŕıa propia).

La interfaz consta de dos bloques principales:

1. Carga de imagen: el usuario puede seleccionar o arrastrar una imagen termográfica
en formato JPG o PNG. Una vez cargada, se muestra una vista previa y se habilita el
botón “Procesar Imagen”.

2. Visualización de resultados: tras el procesamiento, se presentan los resultados de
segmentación y el enlace al informe térmico correspondiente en formato PDF. La nave-
gación entre secciones se realiza mediante un sistema de pestañas dinámicas sin recargar
la página.

Durante el procesamiento se activa un mensaje de estado (*overlay*) con el texto “Pro-
cesando imagen...”, el cual bloquea temporalmente la interfaz para prevenir solicitudes si-
multáneas y comunicar al usuario el progreso del análisis.

—

4.6. Funcionamiento del sistema en la nube

La Figura 27 muestra el funcionamiento del sistema completo desplegado en la nube, el
cual permite procesar imágenes termográficas directamente desde la plataforma web desa-
rrollada. A través de esta interfaz, el usuario puede cargar una imagen, iniciar el proceso de
detección y segmentación automática de las zonas de interés (rostro y manos) y descargar
el reporte térmico generado en formato PDF. El sistema fue implementado en un servidor
Render, una plataforma en la nube que aloja y ejecuta aplicaciones web contenerizadas bajo
Docker, permitiendo la integración directa con el repositorio del proyecto mediante un flujo
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de Integración y Despliegue Continuo (CI/CD). Esta infraestructura permite que el procesa-
miento y la generación de informes se lleven a cabo de forma remota y segura, eliminando la
dependencia de un equipo o software local.

En pruebas reales, el sistema demostró ser eficiente, obteniendo el informe final en un
tiempo promedio de 1.5 minutos. Este intervalo cubre desde la carga de la imagen hasta la
ejecución de los modelos y la generación del reporte, confirmando su adecuación para análisis
en tiempo casi real.

El servidor (Render, plan gratuito) mantiene un funcionamiento estable en sesiones ac-
tivas, con un uso moderado de recursos (512 MB de RAM). La única limitación observada
es la entrada a modo de suspensión tras 15 minutos de inactividad, lo cual no impactó la
operatividad durante las pruebas.

La plataforma resultó intuitiva y fácil de usar, requiriendo únicamente que el usuario
seleccione una imagen y active el procesamiento para obtener los resultados. La información
se presenta de manera organizada y el informe generado puede descargarse con un solo clic.
En conjunto, el sistema demuestra tanto la viabilidad técnica del modelo de segmentación y
análisis térmico como su aplicabilidad práctica, ofreciendo una herramienta funcional, acce-
sible y reproducible para el procesamiento de imágenes termográficas en entornos biomédicos
y de investigación.

Figura 27: Resultado mostrado tras el env́ıo de una imagen para su segmentación y análisis
térmico (autoŕıa propia).

4.7. Validación de la segmentación

La validación de la segmentación se llevó a cabo mediante un análisis visual de cada ima-
gen, comprobando que las áreas detectadas correspondieran correctamente con las regiones
anatómicas previstas. Se consideró como segmentación correcta aquella en la que los poĺıgonos

48



generados abarcaban con precisión las zonas definidas (por ejemplo, contorno facial, falanges
y palma de ambas manos).

La efectividad total del proceso de segmentación (E) se calculó mediante la siguiente
expresión:

E =
NCorrectas

NTotal

× 100

(Ec. 5)

donde NCorrectas representa el número de imágenes correctamente segmentadas y NTotal el
total de imágenes analizadas.

Aplicando esta ecuación a los resultados obtenidos:

Erostro =
383

448
× 100 = 85%

Emanos =
430

448
× 100 = 96%

Los resultados obtenidos mostraron un desempeño satisfactorio en ambas regiones anali-
zadas:

• Precisión de segmentación en rostro: 85%

• Precisión de segmentación en manos: 96%

Las diferencias de rendimiento se atribuyen principalmente a la variabilidad en las pos-
turas faciales, la presencia de oclusiones parciales (como cabello o inclinación del rostro), el
enfoque de la cámara y ligeros cambios en la iluminación térmica.

En contraste, las manos presentaron mayor uniformidad posicional, lo que permitió una
segmentación más estable y precisa.
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5. Conclusiones

Se logró establecer un protocolo de adquisición de imágenes que garantiza la reproduci-
bilidad y consistencia térmica entre sesiones. Este protocolo permitió mantener condiciones
controladas del lugar, de la cámara y del sujeto, asegurando una base confiable para el pro-
cesamiento posterior.

La implementación del protocolo posibilitó la construcción de una base de datos estructu-
rada y de alta calidad, con capturas térmicas faciales y de manos que cumplieron los criterios
de uniformidad establecidos. Esta base fue indispensable para la evaluación del rendimiento
del modelo de segmentación y para validar la coherencia del procesamiento automatizado
bajo distintas condiciones térmicas.

El sistema de segmentación basado en MediaPipe Face Mesh y MediaPipe Hands alcanzó
una detección precisa del 85% en rostro y 96% en manos, demostrando la viabilidad de adap-
tar modelos entrenados con imágenes RGB al dominio térmico. A pesar de las particularidades
de textura y contraste inherentes a la termograf́ıa infrarroja, la etapa de preprocesamiento,
la cual esta basada en filtros y en la aplicación del algoritmo CLAHE, permitió realzar los
rasgos térmicos y favorecer la detección de landmarks faciales y de manos.

Además, se implementó un módulo de análisis térmico completamente automatizado, en-
cargado de calcular la temperatura promedio de cada región detectada y generar un informe
en formato PDF. Este documento presenta de manera clara los datos térmicos de cada zo-
na anatómica, permitiendo interpretar los resultados de forma rápida y sin necesidad de
conocimientos técnicos avanzados.

La plataforma web, desarrollada con HTML, CSS y JavaScript, funcionó como el acceso
principal al sistema de visión artificial, permitiendo al usuario cargar imágenes térmicas,
procesarlas directamente en ĺınea y descargar el informe generado. La interfaz demostró ser
simple, funcional y fácil de usar, facilitando el manejo del sistema desde cualquier dispositivo
con conexión a Internet. Gracias a la integración con Render, el sistema se desplegó en la
nube, asegurando su ejecución remota y su disponibilidad como servicio web. Aunque el plan
gratuito presenta limitaciones, como suspensión por inactividad y tiempos de cold start, el
rendimiento obtenido resultó adecuado para análisis casi en tiempo real, validando la eficacia
del enfoque adoptado.

El desarrollo del sistema de análisis térmico con visión artificial evidenció que es posible
combinar procesamiento de imágenes, aprendizaje automático y servicios en la nube para la
detección, segmentación y evaluación de regiones anatómicas. Se estableció un flujo completo
que abarca desde la adquisición controlada de imágenes hasta la generación del informe final,
dando lugar a un sistema integral, reproducible y funcional.

Los resultados muestran que MediaPipe se adapta de manera eficiente al análisis de imáge-
nes térmicas cuando se aplican técnicas de preprocesamiento apropiadas. De igual manera,
la integración de visión artificial con plataformas IoMT facilita el desarrollo de herramientas
accesibles, escalables y útiles para investigación biomédica y el monitoreo psicofisiológico.
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5.1. Prospectivas

De cara al futuro, se busca optimizar el sistema para disminuir los tiempos de procesa-
miento, aprovechando técnicas de paralelización y mejoras en los modelos, con el objetivo de
lograr un funcionamiento en tiempo real. Además, se planea desarrollar una interfaz web más
sólida y flexible, capaz de mantener un rendimiento estable en distintos dispositivos y bajo
diversas condiciones de conectividad. También se contempla incluir un módulo que permita
almacenar las imágenes procesadas junto con los resultados generados, facilitando su consulta
y análisis posterior.

Otro punto relevante consiste en la integración del sistema con plataformas del Internet
de las Cosas Médicas (IoMT) y con bases de datos cĺınicas, permitiendo un análisis remoto
y su consulta por parte de personal especializado. Finalmente, se plantea la incorporación
de modelos avanzados de aprendizaje profundo que combinen información térmica, visual
y fisiológica, con el fin de dotar al sistema de capacidades multimodales que favorezcan
investigaciones más completas y contribuyan al estudio no invasivo del estado psicofisiológico
humano.
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Molina López, A. (2021). La importancia de la Salud Mental [VCI-21].
Muniz, P. R., Simão, J., Nunes, R. B., Campos, H. L. M., Santos, N. Q., Ninke, A., &

Lemos, J. T. (2022). Temperature thresholds and screening of febrile people by non-
contact measurement of the face using infrared thermography – A methodology propo-
sal [https://doi.org/10.1016/j.sbsr.2022.100513]. Sensing and Bio-Sensing Research,
37, 100513.

Nagrath, P., Jain, R., Madan, A., Arora, R., Kataria, P., & Hemanth, J. (2021). Corrigendum
to “SSDMNV2: A real time DNN-based face mask detection system using single shot
multibox detector and MobileNetV2” [https://doi.org/10.1016/j.scs.2021.102964]. Sus-
tainable Cities and Society, 71, 102964.

Pokharel, A., Luitel, N., Khatri, A., Khadka, S., & Shrestha, R. (2024). Review on the
evolving role of infrared thermography in oncological applications. Infrared Physics &
Technology, 140, 105399. https://doi.org/10.1016/j.infrared.2024.105399

Rahmani, A., Niknafs, B., Naseri, M., Nouri, M., & Tarighat-Esfanjani, A. (2022). Effect of
Nigella Sativa Oil on Oxidative Stress, Inflammatory, and Glycemic Control Indices
in Diabetic Hemodialysis Patients: A Randomized Double-Blind, Controlled Trial.
https://doi.org/10.1155/2022/2753294

Richmond, S., Howe, L. J., Lewis, S., Stergiakouli, E., & Zhurov, A. (2018). Facial Genetics:
A Brief Overview. Frontiers in Genetics, 9. https://doi.org/10.3389/fgene.2018.00462

Rocha Salinas, E., Lara Castellano, J. P., & Gomez Garcia, P. (2012). ESTÉTICA DE MA-
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7. Anexos

7.1. a) Producto obtenido
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UNIVERSIDAD AUTÓNOMA DE 
QUERÉTARO 

FACULTAD DE INGENIERÍA 

CARTA DE CONSENTIMIENTO 
INFORMADO 

 

 

San Juan del Río, Querétaro, a ___ de ________del año 20___ 

 

Antes de manifestar su interés y, en su caso, aceptar participar, le pedimos que lea este consentimiento 
detenidamente. No dude en realizar todas las preguntas y aclaraciones que necesite para asegurarse de 
comprender los objetivos, procedimientos y resultados del estudio, así como los posibles riesgos y beneficios. 

Propósito Principal del estudio: Desarrollar un sistema de visión artificial e IoMT que permita la captura de 
imágenes termográficas, la segmentación automática de regiones de interés faciales y en manos, así como 
el análisis térmico.  

Participantes: La participación en el estudio es completamente voluntaria, y usted tiene la libertad de 
continuar o retirarse en cualquier momento. Los datos e información que proporcione, así como los 
obtenidos durante las mediciones, son de su propiedad. Al firmar el consentimiento informado, usted otorga 
autorización para que esta información sea utilizada con el proposito de contribuir al avance de la 
investigación. 

Tiempo requerido: Aproximadamente 15 minutos por persona para completar la toma de las imágenes 
termográficas, durante la jornada programada para el día ______ del mes _______ en un horario de las 
_____ hasta las __________. 

Beneficios: Esta investigación no tiene como finalidad generar ningún tipo de beneficio económico, ni para 
el investigador ni para los colaboradores. Al participar, usted tiene el derecho de solicitar toda la información 
relacionada con los resultados obtenidos y los análisis derivados de los datos registrados durante el estudio. 

Derecho a retirarse del estudio de investigación:	Usted puede abandonar el estudio en cualquier momento. 
Sin embargo, los datos recolectados hasta ese momento seguirán formando parte del estudio, a menos que 
solicite explícitamente que su información y su identificación sean eliminadas de la base de datos. 

Procedimiento: La toma de imágenes termográficas se llevará a cabo bajo la supervisión directa y 
acompañamiento de un profesional acreditado, en los horarios que se le asignaron de acuerdo con la agenda 
de actividades del día ____ y año _______.  

Todos los procedimientos, equipos y materiales utilizados para la evaluación son de tipo no invasiva lo que 
significa que en ningún caso tendrá que ingerir, recibir o sentir ningún dolor.  

7.2. b) Carta de consentimiento informado
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• Este consentimiento informado se adhiere a las directrices establecidas en el Reglamento de la Ley 
General de Salud en Materia de Investigación para la Salud, la Declaración de Helsinki y las Buenas 
Prácticas Clínicas emitidas por la Comisión Nacional de Bioética. 

Investigadores principales durante la aplicación del protocolo:  

      Ing. Carlos Eugenio Garduño Ramón, Facultad de ingeniería UAQ 

Dr. Irving Armando Cruz Albarrán, Facultad de ingeniería UAQ 

Dr. Luis Alberto Morales Hernández, Facultad de ingeniería UAQ 

 

Yo, __________________________________________ he leído el procedimiento expuesto en este 
documento. El equipo de investigadores a cargo me ha explicado el estudio y ha respondido a mis preguntas. 
De manera voluntaria, doy mi consentimiento para participar en el proyecto titulado “Sistema de visión 
artificial basado en IoMT y termografía para análisis térmicos faciales y de manos en aplicaciones de salud.”. 

 

 

_____________________________________ 

Firma del participante 

Preguntas o dudas sobre los derechos como participante en este proyecto, pueden ser dirigidas a: Ing. Carlos 
Eugenio Garduño Ramón (cgarduno08@alumnos.uaq.mx). 

 

 

 

 

 

 

 

 

 

 



   
 

 

 

UNIVERSIDAD AUTÓNOMA DE 
QUERÉTARO 

FACULTAD DE INGENIERÍA 

CARTA DE CONFIDENCIALIDAD DE 
DATOS 

 

 

San Juan del Río, Querétaro, a ___ de ________del año 20___ 

 

A QUIEN CORRESPONDA  

PRESENTE.  

 

Yo, __________________________________________ me comprometo a aceptar íntegramente el presente 
acuerdo de confidencialidad de datos. La información recabada será obtenida bajo el proyecto denominado 
“Sistema de visión artificial basado en IoMT y termografía para análisis térmicos faciales y de manos en 
aplicaciones de salud”. 

Los acuerdos de confidencialidad a los que me comprometo son:  

● Resguardar la información obtenida en el presente proyecto de investigación.  

● No divulgar ninguna información confidencial.  

● La información obtenida sólo será para fines académicos y de investigación.  

Así mismo, aceptó los compromisos, exigencias y penalidades que implica la presente carta de 
confidencialidad de datos.  

______________________________________________ 

Firma del responsable 

Preguntas o dudas sobre los derechos como participante en este proyecto, pueden ser dirigidas a: Ing. Carlos 
Eugenio Garduño Ramón (cgarduno08@alumnos.uaq.mx). 

Facultad de ingeniería, UAQ. 

 

7.3. c) Carta de confidencialidad de datos
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