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Resumen

En los ultimos afios, la prediccion de la calidad del aire se ha convertido en un area de
investigacion critica, particularmente en entornos urbanos donde la contaminacién del aire
representa riesgos significativos para la salud. Este estudio presenta una investigacion sobre
la prediccion de excedencias de particulas PM2.5 en la Ciudad de México utilizando una
arquitectura innovadora de red neuronal conocida como Informer, una variante del modelo
Transformer. El modelo Informer se compara con una red LSTM, una eleccién popular para
tareas de prediccion de datos secuenciales.

A través de una extensa experimentacion y rigurosa evaluacion, nuestros hallazgos desta-
can la efectividad del modelo Informer para capturar dependencias temporales y predecir con
precision las excedencias de PM2.5. Al aprovechar su mecanismo de autoatencién y capa-
cidades de procesamiento paralelo, el modelo Informer supera consistentemente a las redes
LSTM tradicionales. Esta superioridad es particularmente evidente en escenarios caracteri-
zados por patrones temporales complejos y dependencias a largo plazo. A lo largo de varios
experimentos, en los que variamos tanto el tipo de prediccion (univariada y multivariada) co-
mo los intervalos de prediccion (24, 48 y 72 horas), el modelo Informer ofreci6 consistente-
mente mejores resultados en comparacion con el LSTM. Especificamente, logramos mejoras
del 29.59 % en MAE y del 22.97 % en MSE.

Esta investigacion contribuye al avance de las metodologias de prediccion de la calidad
del aire, ofreciendo valiosas ideas sobre el potencial de las arquitecturas de redes neuronales
de ultima generacion para el monitoreo ambiental y la gestion de la salud publica en areas

urbanas. Los resultados subrayan la importancia de aprovechar técnicas avanzadas de apren-

XI



dizaje profundo para realizar predicciones mds precisas y confiables de los parametros de
calidad del aire, facilitando asi medidas proactivas para mitigar los efectos adversos de la

contaminacion del aire en la salud humana.
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Abstract

In recent years, air quality forecasting has become a critical area of research, particularly
in urban environments where air pollution poses significant health risks. This study presents
an investigation into the prediction of PM2.5 particle exceedances in Mexico City using an
innovative neural network architecture known as the Informer, a variant of the Transformer
model. The Informer model is compared against a Long Short-Term Memory (LSTM) net-
work, a popular choice for sequential data prediction tasks.

Through extensive experimentation and rigorous evaluation, our findings underscore the
effectiveness of the Informer model in capturing temporal dependencies and accurately fo-
recasting PM2.5 exceedances. By leveraging its self-attention mechanism and parallel pro-
cessing capabilities, the Informer consistently outperforms traditional LSTM networks. This
superiority is particularly evident in scenarios characterized by complex temporal patterns
and long-range dependencies. Across various experiments, where we varied both the type of
prediction (univariate and multivariate) and the prediction intervals (24, 48, and 72 hours), the
Informer model consistently delivered superior results compared to the LSTM. Specifically,
we achieved improvements of 29.59 % in MAE and 22.97 % in MSE.

This research contributes to the advancement of air quality prediction methodologies,
offering valuable insights into the potential of state-of-the-art neural network architectures
for environmental monitoring and public health management in urban areas. The results un-
derscore the importance of leveraging advanced deep learning techniques for more accurate
and reliable predictions of air quality parameters, thereby facilitating proactive measures to

mitigate the adverse effects of air pollution on human health.
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Capitulo 1

Introduccion

La calidad del aire en la Ciudad de México ha sido un tema de creciente preocupacion en
las ultimas décadas. Cada afio, los niveles de contaminacion del aire, particularmente de par-
ticulas PM2.5, han mostrado una tendencia alarmante al alza, afectando la salud de millones
de habitantes y contribuyendo a problemas ambientales graves. Las particulas PM2.5, debido
a su tamafio diminuto, pueden penetrar profundamente en los pulmones y entrar en el torrente
sanguineo, causando enfermedades respiratorias y cardiovasculares. Este deterioro continuo
de la calidad del aire exige métodos innovadores y precisos para la prediccién de estos con-
taminantes, lo cual es esencial para implementar medidas preventivas y de mitigacion.

Este trabajo es de vital importancia por la urgente necesidad de mejorar las predicciones
de la calidad del aire en la Ciudad de México. Aunque existen diversos modelos y técnicas
para la prediccion de contaminantes atmosféricos, muchos de estos modelos no han logrado
captar con precision las complejas dependencias temporales y espaciales que caracterizan la
dindmica de los contaminantes como las particulas PM2.5.

En este contexto, la investigacion se centra en la aplicacién del modelo Informer, una
variante avanzada del Transformer, conocida por su capacidad para manejar secuencias lar-
gas y complejas de datos. Esta arquitectura de inteligencia artificial ha mostrado resultados
prometedores en diversas dreas, pero su aplicacion en la prediccion de pardmetros climaticos

y medioambientales sigue siendo limitada. Este trabajo busca llenar este vacio, explorando el
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potencial del Informer para mejorar las predicciones de PM2.5 en un entorno tan desafiante

como el de la Ciudad de México.



Capitulo 2

Antecedentes

2.1. Contaminacion del aire

La contaminacién del aire se puede definir como condiciones atmosféricas en las que
ciertas sustancias estdn presentes en concentraciones que pueden llevar a efectos no desea-
dos tanto en los seres humanos como en el medio ambiente. Estas sustancias incluyen gases
como SOx, NOx, CO y compuestos orgédnicos volatiles (COVs), asi como material particu-
lado como humo, polvo, gases y aerosoles, junto con otros elementos, incluidos materiales
radiactivos. Si bien muchas de estas sustancias existen naturalmente en la atmodsfera a con-
centraciones bajas (niveles de fondo) y generalmente se consideran inofensivas, una sustancia
se considera un contaminante del aire solo cuando su concentracién supera significativamen-
te el valor de fondo, lo que produce efectos adversos. Es decir, para que una sustancia en
particular sea considerada contaminacién, debe superar los niveles de fondo y causar efectos
adversos (Admassu & Wubeshet, 2011).

La contaminacidn del aire urbano es una preocupacién global con implicaciones signifi-
cativas. El aumento en la utilizacion de combustibles, la creciente demanda de electricidad
y las actividades mineras intensificadas desde la Revolucion Industrial han surgido como los
principales contribuyentes a la contaminacion atmosférica. Las particulas ultrafinas pueden

viajar al torrente sanguineo y depositarse en 6érganos como el higado, el bazo o el cerebro,
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con la posibilidad de penetrar a través de mecanismos transindpticos (Falcon-Rodriguez et

al., 2016).

2.2. Material particulado

La materia particulada consiste en particulas de diversos origenes, que varian en tamafio
y composicion. Estas particulas generalmente se clasifican en tres grupos principales segin

su tamano:

» Particulas gruesas: Estas tienen un didmetro que va desde los 10 micrometros hasta

menos de 2.5 micrometros.
= Particulas finas: Estas tienen un tamafo entre 2.5 micrémetros y 0.1 micrémetros.

= Particulas ultrafinas: Estas son mds pequefias que 0.1 micrémetros.

La mayoria de los sistemas de monitoreo miden las particulas por su concentracion de
masa, centrandose en aquellas mas pequefias que 2.5 micrémetros (conocidas como PM2.5)
y aquellas mds pequefias que 10 micrémetros (conocidas como PM10). PM10 incluye tan-
to particulas finas como gruesas, siendo que PM2.5 representa generalmente alrededor del
50-70 % de la masa total de PM10. Las particulas ultrafinas también se incluyen en las me-
diciones de PM2.5 y PM10. Las principales fuentes de PM2.5 son el trifico vehicular, la
generacion de energia y la quema industrial y doméstica de petréleo, carbén o madera. Estas
particulas finas estdn compuestas por carbono elemental, metales de transicion, compuestos
orgdnicos complejos, sulfatos y nitratos (Newby et al., 2015).

Como se mencioné antes, las particulas PM2.5 consisten en particulas inhalables que
son lo suficientemente pequefias como para ingresar al sistema respiratorio, como se puede
observar en la figura 2.1. Tanto la exposicion a corto plazo como a largo plazo pueden resultar

en diversos efectos en la salud, incluyendo:

m Exacerbacion del asma
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= Aumento de la mortalidad por enfermedades cardiovasculares

= Tasas elevadas de mortalidad por enfermedades respiratorias y cancer de pulmoén

La exposicion a PM2.5 estd asociada con una reduccién promedio en la esperanza de vida
de la poblacion de la region de aproximadamente 8.6 meses. No hay evidencia que respalde
un nivel de exposicion seguro o un umbral por debajo del cual no ocurran efectos adversos

para la salud (World Health Organization, 2013).

Trans-synaptic
Blood
circulation

Sedimentation
Impactation

Impactation
Sedimentation
Brownian
diffusion

Pulmonary
circulation
Systemic

circulation

Figura 2.1: Tamafio de las particulas en comparacién con el sistema respiratorio, tomado de

(Falcon-Rodriguez et al., 2016).

2.3. Inteligencia artificial

La inteligencia artificial o IA, como se le conoce mds ampliamente, engloba una amplia
gama de areas, desde aspectos generales como el aprendizaje y la percepcion, hasta aplica-
ciones especificas como la demostracion de teoremas matematicos, el prondstico de cambios
climdticos, el diagnéstico médico y mds recientemente la creacion de arte. Y esta puede ser

descrita como el drea de la informatica que se enfoca en automatizar acciones inteligentes.



2.3. INTELIGENCIA ARTIFICIAL CAPITULO 2. ANTECEDENTES

Pero, esta definicion tiene limitaciones ya que nos hace falta una definicién mds precisa y
completa de lo que realmente constituye ‘ser inteligente’. Aunque para nosotros los huma-
nos es bastante fécil identificar un comportamiento inteligente cuando estamos frente a él,
es bastante complicado llegar a una definicién concreta de inteligencia que sea eficiente para
comprobar la inteligencia de un algoritmo y que ademds abarque complejidad y profundidad
del cerebro humano. Se puede decir con seguridad que la IA tiene relevancia en practica-
mente cualquier tarea intelectual y se considera como uno de los campos mds versétiles de la
ciencia en la actualidad (Khorasani, 2008; Russell, 2010).

Como mencionamos anteriormente, definir ‘inteligencia’ no es una tarea sencilla, y para
complicarla atin mds, debemos tener en cuenta que la inteligencia humana no aparece de una
forma unica, por ejemplo: hay personas que son bastante habiles para las artes mientras que
otras muestran una inclinacién més clara por las matematicas, politica o deportes. Esto par-
ticularmente se hace aparente cuando hay personas que sobresalen demasiado en el dmbito
académico, mientras que otras destacan mas en inteligencia emocional. Pese a la complejidad
de esta tarea, como humanos siempre hemos intentado establecer un tinico umbral para medir
la inteligencia, tal es el caso del coeficiente intelectual (CI), pero muchas veces dichas prue-
bas o umbrales no estan libres de subjetividad, por ejemplo, en una prueba de CI se evalia
mayoritariamente la memoria a corto plazo, el pensamiento analitico y la habilidad matem4a-
tica, teniendo en cuenta lo antes mencionado, es bastante obvio que como no tenemos un
estandar fiable y sin sesgos para medir la inteligencia de una persona, mucho menos tenemos
un estandar fiable para hacerlo con un algoritmo o computadora (Rose, 2020).

Los inicios del reconocimiento de la IA como disciplina se remontan a los afos cuarenta,
al trabajo pionero realizado por Warren McCulloch y Walter Pitts en el afio de 1943. Para
lograr esto, se basaron en tres fuentes clave: su conocimiento sobre la fisiologia y funcio-
namiento basico de las neuronas en el cerebro, un analisis formal de la 16gica proposicional
desarrollada por Russell y Whitehead, y la teoria de la computacién propuesta por Alan Tu-
ring. Su propuesta describi6 modelos matematicos llamados perceptrones que representaban
las neuronas del cerebro (esto lo lograron haciendo un andlisis exhaustivo de las neuronas

bioldgicas originales) en el que cada neurona puede estar "activada’ o ’desactivada’ (de ma-
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nera binaria), dependiendo si la estimulacion de neuronas vecinas era suficiente. Concebian
el estado de una neurona como ’equivalente a una proposiciéon que planteaba su estimulo
adecuado’. Demostraron que cualquier funcion podia ser computada por una red de neuronas
conectadas, y que se podian recrear las compuertas 16gicas como ‘AND’, ‘OR’ y ‘NOT’ con
estructuras bastante sencillas. Ademds, McCulloch y Pitts sugirieron que estas redes defini-
das de manera adecuada podrian aprender y, por lo tanto, modificar su comportamiento con

el tiempo (Russell, 2010: Warwick, 2013).

2.4. Aprendizaje automatico

El aprendizaje automético se refiere a un conjunto de algoritmos para adquirir conoci-
miento a partir de datos y hacer predicciones, como en tareas de prondsticos, diagndstico de
enfermedades, o la deteccion de anomalias. Utilizando el aprendizaje automatico, obtenemos
conocimiento del conjunto de datos, basicamente la computadora distingue patrones de estos,
se basa en la ‘programacién indirecta’ que se logra mediante la provision de los datos a nues-
tro algoritmo, en contraste, la programacion ‘tradicional’ necesita explicitamente todas las
reglas e instrucciones para poder funcionar de manera 6ptima, por lo antes mencionado, se
puede decir que el aprendizaje automético se encuentra en el cruce de la informética, la inge-
nieria y la estadistica, y se aplica en otros campos académicos y profesionales. Un algoritmo
de aprendizaje automadtico es el software utilizado para aprender un modelo de aprendiza-
je automdtico a partir de los datos. En cambio, un modelo de aprendizaje automdtico es el
programa resultante de aplicar un algoritmo de machine learning, que mapea las entradas a
predicciones, como por ejemplo, Chat GPT, que en este caso es el modelo y el algoritmo es
el transformer (Molnar, 2020; Harrington, 2012).

Por eso en la actualidad los datos son tan valiosos, ya que en tiempos pasados, la tni-
ca manera de desarrollar software era creando algoritmos meticulosamente ajustados. Como
mencionamos anteriormente, la programaciéon convencional asume que para cada entrada
hay una salida predecible. Sin embargo, el aprendizaje automatico aborda problemas para los

cuales las relaciones entre las entradas y salidas no son completamente comprendidas. De tal
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forma que en aprendizaje automatico adquirimos conocimiento a partir de experiencias pre-
vias, y con ‘experiencias previas’ nos referimos a los datos que ingresamos al modelo. Estos
datos pueden incluir bases de datos que han sido etiquetadas por seres humanos (por ejemplo,
imégenes con la etiqueta apropiada) o bases de datos obtenidas a través de la interaccién con
el entorno (por ejemplo, los datos obtenidos de las condiciones climéticas). Los modelos de
aprendizaje automatico mejoran su desempefio a medida que aumentamos tanto la calidad y
cantidad de los datos. La expectativa en general de esta subrama de la informatica, es que
al proporcionar suficientes datos a este sistema, aprenderd patrones y serd capaz de generar

resultados inteligentes para nuevas entradas (Shukla & Fricklas, 2018; Mohri et al., 2018).

2.5. Aprendizaje profundo

Como se puede observar en la figura 2.2, el aprendizaje profundo estd dentro del ambito
del aprendizaje automético, el aprendizaje profundo se emplea para abordar tareas précticas
en diversos campos, emplea grandes conjuntos de datos para modelar funciones comple-
jas, cuyas entradas y salidas se encuentran considerablemente distantes, como la vision por
computadora (imagenes), el procesamiento del lenguaje natural (texto) y el reconocimiento
automdtico del habla (audio). Por ejemplo, puede asociar una imagen de entrada con una
linea de texto que describe la misma. Incluso de manera mas simple, puede establecer una
conexion entre una imagen de un gato y una etiqueta que senala ’Si, hay un gato en la ima-
gen’ (normalmente sefialado con un ndmero, por ejemplo, 1). En resumen, el aprendizaje
profundo representa un conjunto de métodos dentro del repertorio del aprendizaje automati-
co, utilizando principalmente redes neuronales artificiales, que se inspiran de manera general
en la estructura del cerebro humano, esto nos posibilita desarrollar programas con funciona-
lidades que, hasta hace poco, eran exclusivas de los seres humanos (Trask, 2019; Stevens et
al., 2020).

Los significativos avances en la tecnologia de la computacién han permitido que los sis-
temas actuales de inteligencia artificial (IA) se doten de billones de componentes basicos.

Después del correcto entrenamiento, estos componentes basicos, permiten ejecutar tareas an-
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Inteligencia artificial

Aprendizaje automatico

Aprendizaje
profundo

Figura 2.2: Diagrama de Venn de inteligencia artificial, aprendizaje automético y aprendizaje

profundo, adaptado de (Stevens et al., 2020).

teriormente vistas como extraordinariamente complejas de programar, a tal grado que como
mencionamos anteriormente se pensaba que solo seres con inteligencia natural, como los hu-
manos, podian realizarlas. Un factor clave en muchos de estos avances en IA es el aprendizaje
profundo, mas especificamente las redes neuronales artificiales: las cuales permiten aprender
diferentes formas de representar los datos a través de multiples capas, estas capas facilitan
la extraccion automadtica de caracteristicas relevantes de los datos. De manera simplificada,
el enfoque del aprendizaje profundo busca desarrollar algoritmos de inteligencia artificial es-
tructurando los datos en una jerarquia de conceptos organizados en capas, donde cada nivel
se construye sobre la base de capas mas simples. La estructura en capas es un elemento fun-
damental en los algoritmos de aprendizaje profundo, si bien las redes neuronales artificiales
estdn inspiradas en cierta medida en las redes neuronales bioldgicas del cerebro humano, en
realidad pueden considerarse mejor como un método sofisticado para definir una amplia ga-
ma de funciones flexibles, formadas por numerosos componentes computacionales basicos
conocidos como neuronas. El aprendizaje profundo destaca por su alto rendimiento y capa-
cidad de escalar eficientemente con grandes volimenes de datos, superando a los algoritmos
de aprendizaje automatico tradicionales, esto quiere decir que mientras mas datos tengamos a
nuestro alcance mejor funcionard nuestro algoritmo de aprendizaje profundo en comparacion

con el aprendizaje automadtico, para ilustrar esto mas claramente, se muestra una grafica en
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la Figura 2.3, con la cantidad de datos en el eje horizontal y el desempefio en el eje vertical

(Roberts et al., 2022; Sarkar et al., 2018).

Aprendizaje profundo

Desempeio Aprendizaje automatico

Cantidad de datos

Figura 2.3: Comparacién de desempefio con respecto a cantidad de datos entre aprendizaje

automadtico y aprendizaje profundo, adaptado de (Sarkar et al., 2018).

2.6. Redes neuronales

Como mencionamos anteriormente, en 1943 Warren McCulloch y Walter Pitts introdu-
jeron el concepto pionero de una version simplista de la célula cerebral, conocida como la
neurona McCulloch-Pitts (MCP) (McCulloch & Pitts, 1943). Este concepto plantea que las
neuronas bioldgicas, pueden ser representadas de manera simplificada. Estas neuronas bio-
l6gicas son la pieza mas importante del cerebro humano, se estima que en una seccién del
cerebro comparable a un grano de arroz caben mas de 10,000 de estas células y como ca-
da neurona tiene alrededor de 6,000 conexiones con otras neuronas, se podria decir que en
esta diminuta parte del cerebro hay mas 60 millones de conexiones, las cuales forman una
red que nos permite percibir y entender nuestro entorno. Estas neuronas estan disefiadas para
aceptar datos de otras células similares, procesarlos y transmitir los resultados procesados a
otras células. Segiin McCulloch y Pitts, estas neuronas funcionan como compuertas logicas

binarias. Las sefiales ingresan a través de las dendritas, se suman en el cuerpo celular y, en
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caso de que la suma supere un umbral especifico, se emite una sefial de salida a través del
axoén, como se muestra en la figura 2.4. Como sabemos el cerebro humano es muy bueno para
procesar informacion, esté caracterizado por su complejidad, capacidad de procesamiento no
lineal y en paralelo, es capaz de organizar las neuronas, para ejecutar diversas operaciones,
como el reconocimiento de patrones y el control de movimientos, que supera facilmente a
cualquier computadora de la actualidad. En este 6rgano extraordinario, las neuronas biol6gi-
cas estdn dispuestas en distintas capas, especificamente, la corteza cerebral, se compone de
seis capas. En este sistema, la informacién se transmite progresivamente de una capa a otra,
transformando los datos sensoriales en entendimiento conceptual. Tomando como referencia
el concepto de estos 2 cientificos y las células bioldgicas, se ha desarrollado el concepto de
las redes neuronales artificiales. Estas redes se forman al interconectar neuronas artificiales
entre si, asi como con los datos de entrada y los nodos de salida, que representan las respues-
tas de la red a problemas especificos de aprendizaje. En la Figura 2.5 se presenta un modelo
basico de como se estructura una red neuronal artificial (Raschka & Mirjalili, 2019; Buduma

et al., 2022; Haykin, 2009).

Arborizacion axonal

AN

Axon de otra célula

\

Sinapsis

Dendrita

Nucleo

\/

Sinapsis

Cuerpo de la célula o Soma

Figura 2.4: Partes de una neurona bioldgica (Russell, 2010).

En términos practicos, cada algoritmo de aprendizaje profundo se basa en el uso de redes

neuronales, con algunos conceptos basicas en comun, como estar formadas de neuronas que
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0, 0, 0y

@ @)
Wis

Figura 2.5: Ejemplo simple de una red neuronal de 3 capas (Buduma et al., 2022).

se conectan entre si, distribuidas en capas, pero con diferentes formas entrenamiento, diversas
configuraciones de datos de entrada (incluyendo vectores y matrices de distintas dimensiones)
y como estdn acomodadas las neuronas dentro de la red, mds adelante veremos distintas

arquitecturas de estas redes, como lo son las LSTM (Vasilev et al., 2019).

2.7. Meétricas de evaluacion

Para medir el desempefio de un sistema de inteligencia artificial y verificar qué tan cer-
ca se esta del objetivo propuesto, es necesario utilizar una funcién que evalde el resulta-
do. Habitualmente, se emplean distintas funciones de evaluacidn para manejar problemas
de clasificacion binaria, clasificacion multi etiqueta, regresion o clustering, a veces, incluso

se desarrollan métricas especificas para resolver problemas empresariales particulares. Para

12
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problemas de clasificacion, las métricas mds frecuentemente utilizadas incluyen:

Exactitud (Accuracy)
Precision (P)
Recuperacion (R) o Recall

Puntaje F1 (F1)

En tareas que implican la prediccion de nimeros reales o regresion, muchas métricas de

error se derivan del dlgebra euclidiana:

Error absoluto medio (MAE): Representa la media de 1la norma L1 del vector de dife-

rencias entre los valores predichos y los valores reales.

1 & R
MAE =~ [y; — Ui @.1)

i=1
MAE: Error Absoluto Medio.

n: Namero total de observaciones.

y;: Valor real de la -ésima observacion.

;- Valor predicho de la i-ésima observacion.

|y; — U;|: Error absoluto de la i-ésima observacion.

Error cuadritico medio (MSE): Representa la media de la norma L2 del vector de

diferencias entre los valores predichos y los valores reales

n

1
MSE = — > (y: — §)° (2.2)

i=1

MSE: Error Cuadratico Medio.
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n: Namero total de observaciones.

y;: Valor real de la i-ésima observacion.

;- Valor predicho de la i-ésima observacion.

(y; — Qi)Q: Error cuadratico de la i-ésima observacion (Boschetti & Massaron, 2015;

Thakur, 2020).

2.8. Sobreentrenamiento

El problema del sobreentrenamiento se refiere al hecho de que ajustar un modelo a un
conjunto de datos de entrenamiento particular no garantiza que proporcionara un buen rendi-
miento de prediccion en datos de prueba no vistos, incluso si el modelo predice perfectamente
los objetivos en los datos de entrenamiento. En otras palabras, siempre existe una brecha entre
el rendimiento en los datos de entrenamiento y en los datos de prueba, que es particularmente
grande cuando los modelos son complejos y el conjunto de datos es pequefio. Aumentar el
nimero de instancias de entrenamiento mejora la capacidad de generalizacion del modelo,
mientras que aumentar la complejidad del modelo reduce su capacidad de generalizacion. Al
desarrollar un modelo muy complejo, es bastante sencillo ajustar perfectamente nuestro con-
junto de datos de entrenamiento, ya que le otorgamos al modelo suficientes grados de libertad
para adaptarse a las observaciones en dicho conjunto. Sin embargo, al evaluar un modelo tan
complejo con nuevos datos, su rendimiento suele ser deficiente. En otras palabras, el modelo
no generaliza adecuadamente. Este fendmeno, conocido como sobreentrenamiento, s uno
de los mayores retos que enfrenta un ingeniero de aprendizaje automatico. Este problema es
aun mds grave en el aprendizaje profundo, donde las redes neuronales cuentan con un gran
nimero de capas y numerosos neuronas. La cantidad de conexiones en estos modelos es as-
trondmica, alcanzando millones. Como resultado, el sobreentrenamiento es algo comun. Al
mismo tiempo, cuando se dispone de una gran cantidad de datos de entrenamiento, es poco
probable que un modelo excesivamente simple capture relaciones complejas entre las carac-

teristicas y el objetivo. Una buena regla general es que el nimero total de puntos de datos
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de entrenamiento debe ser al menos 2 o 3 veces mayor que el nimero de pardmetros en la
red neuronal, aunque el nimero preciso de instancias de datos depende del modelo especi-
fico en cuestion. En general, se dice que los modelos con un mayor nimero de pardmetros
tienen una alta capacidad y requieren una mayor cantidad de datos para adquirir capacidad
de generalizacion en datos de prueba no vistos. Como mencionamos anteriormente la mayor
disponibilidad de datos ha revelado las ventajas de las redes neuronales sobre el aprendizaje
automético tradicional. En general, las redes neuronales requieren un disefio cuidadoso para
minimizar los efectos perjudiciales del sobreentrenamiento, incluso cuando se dispone de una
gran cantidad de datos (Aggarwal, 2018; Buduma et al., 2022).

Una de las formas mas comunes para evitar el sobreentrenamiento es dividir nuestros
datos , se fragmentan en tres segmentos: entrenamiento, validacion y prueba. Durante el en-
trenamiento, el conjunto de entrenamiento se emplea para calcular gradientes y determinar
las actualizaciones de pesos. El conjunto de validacidn se utiliza para interrumpir el entre-
namiento antes de que se produzca el sobreajuste. El conjunto de prueba se emplea para
predecir el rendimiento futuro de la red, siendo el indicador de calidad de la misma. Si, des-
pués del entrenamiento de la red, el rendimiento en el conjunto de prueba no es satisfactorio,

generalmente hay cuatro posibles escenarios:

La red ha alcanzado un minimo local.

La red no cuenta con suficientes neuronas para adaptarse a los datos.

La red estd experimentando sobreajuste.

La red estd extrapolando (Demuth et al., 2014; Thakur, 2020).

El problema del minimo local puede arreglarse mediante el reentrenamiento de la red con
conjuntos aleatorios de pesos iniciales. La red con el minimo error de entrenamiento suele
representar un minimo global. Los otros tres problemas se pueden identificar analizando los
errores en los conjuntos de entrenamiento, validacion y prueba. Por ejemplo, si el error de va-

lidacién es considerablemente mayor que el error de entrenamiento, es probable que se haya
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producido sobreajuste, incluso con el uso de la detencidn temprana. En tal caso, se puede apli-
car un algoritmo de entrenamiento mds lento para volver a entrenar la red. Si los errores en los
conjuntos de validacién, entrenamiento y prueba son similares en magnitud pero demasiado
grandes, es probable que la red no sea lo suficientemente potente para ajustarse a los datos.
En esta situacidn, se deberia aumentar el niimero de neuronas en la capa oculta y proceder al
reentrenamiento de la red. Cuando los errores en los conjuntos de validacion y entrenamiento
son comparables, pero los errores en el conjunto de prueba son considerablemente mayores,
es posible que la red esté extrapolando. Esto indica que los datos de prueba estdn fuera del
rango de los datos de entrenamiento y validacidn. En este caso, se requiere la obtencion de
mas datos, pudiendo fusionar los datos de prueba con los datos de entrenamiento/validacion y
recopilar nuevos datos de prueba. Debera continuar con este proceso hasta que los resultados
en los tres conjuntos de datos sean similares. Si los errores en los conjuntos de entrenamien-
to, validacion y prueba son semejantes y los errores son suficientemente pequefios, la red
multicapa puede implementarse. No obstante, se debe tener precaucién con la posibilidad de
extrapolacion, especialmente si las entradas de la red multicapa estdn fuera del rango de los
datos con los que fue entrenada. Es dificil garantizar que los datos de entrenamiento cubrirdn
todas las aplicaciones futuras de la red neuronal. Cada vez que entrenamos una red neuronal,
es crucial supervisar la pérdida tanto en el conjunto de entrenamiento como en el conjunto
de prueba. Si el modelo es muy grande en comparacién con el conjunto de datos (es decir,
con muy pocas muestras), veremos que la pérdida en ambos conjuntos disminuye mientras
continuamos entrenando. No obstante, llegard un punto en el que la pérdida en el conjunto de
prueba alcanzard su minimo y luego comenzard a aumentar, incluso si la pérdida en el con-
junto de entrenamiento sigue disminuyendo, como se muestra en la figura 2.6. Es importante
detener el entrenamiento en el momento en que la pérdida de validacién alcanza su valor mds

bajo (Demuth et al., 2014; Thakur, 2020).
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validaciéon/prueba
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sobreentrenamiento
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- Epocas ————g»

Figura 2.6: Ejemplificacion de sobreentrenamiento, adaptado de (Thakur, 2020).
2.9. Hiperparametros

Los pardmetros que son ajustables pero no se actualizan durante el entrenamiento, se de-
nominan hiperpardmetros, y son diferentes de los pardmetros fundamentales que representan
los pesos de las conexiones en la red neuronal. la mayoria de los algoritmos de aprendizaje
automético ofrecen multiples hiperparametros para ajustar, como la tasa de aprendizaje, la
longitud de secuencia, las épocas, entre otros. Ajustar los hiperpardmetros es el proceso de
seleccionarlos. Es importante no ajustar los hiperpardmetros utilizando los mismos datos que
se usan para el entrenamiento del modelo. En su lugar, se reserva una parte de los datos como
conjunto de validacidn, y se evalia el rendimiento del modelo en este conjunto con diferentes
opciones de hiperparametros. Este enfoque evita el sobreajuste al conjunto de entrenamiento
y proporciona una evaluacién mads realista del rendimiento del modelo. La técnica mas comun
para ajustar los hiperparametros es la busqueda en cuadricula, donde se selecciona un con-
junto de valores para cada hiperpardmetro. En la bisqueda en cuadricula, se prueban todas
las combinaciones posibles de valores de hiperparametros para determinar la mejor eleccion.

Sin embargo, este enfoque puede ser computacionalmente costoso, especialmente cuando el
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nimero de hiperpardmetros es grande. Para mitigar esto, se suelen utilizar cuadriculas mas
gruesas en una primera etapa y luego refinar la busqueda en regiones especificas de interés.
Es importante tener cuidado cuando el valor 6ptimo de un hiperpardmetro estd en el limite
de un rango de busqueda, ya que puede ser necesario explorar mds alld de ese rango para

encontrar valores atin mejores (Goodfellow et al., 2016; Zhang et al., 2023; Aggarwal, 2018)

2.10. Series de tiempo

Las series de tiempo estan presentes en diversos dmbitos, abarcando meteorologia, finan-
zas, econometria y marketing. A través del registro y andlisis de datos, podemos sumergirnos
en series de tiempo para analizar procesos industriales o monitorear métricas comerciales
como las ventas o el compromiso. Ademds, con la abundancia de datos, los cientificos de
datos pueden aprovechar sus conocimientos en la aplicacion de técnicas para la prediccion
de series temporales. El primer paso para comprender y ejecutar la prediccion de este tipo de
datos implica entender su naturaleza. Basicamente, una serie temporal son datos medidos a
intervalos de tiempo regulares, conocidos como el intervalo de muestreo. En pocas palabras,
los datos podrian registrarse por hora, mensualmente o anualmente. Ejemplos de series tem-
porales incluyen el valor de cierre de una accién especifica, el consumo de electricidad de un

hogar o la temperatura exterior. Se puede representar una serie temporal de longitud n como:

{ze:t=1,...,n} ={21,29,...,2,} (2.3)

Donde:
= 7 es el nimero de valores muestreados en momentos discretos.
= 7, son los valores medidos (Peixeiro, 2022; Cowpertwait & Metcalfe, 2009).

Una caracteristica clave de los datos de series temporales es que las observaciones vecinas
a menudo dependen entre si. Descifrar como estdn relacionadas estas observaciones en una

serie temporal es realmente importante para usos practicos. El andlisis de series temporales
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se centra en métodos para analizar esta interdependencia. Hacerlo bien significa que necesi-
tamos desarrollar y utilizar modelos estocésticos y dindmicos para datos de series temporales
en dreas donde realmente importan (Box et al., 2015).

Antes de dividir nuestras series temporales en subconjuntos de entrenamiento, validacion
y prueba, debemos realizar la segmentacién de datos o ventaneo de datos, que es un proce-
dimiento donde establecemos una serie de puntos de datos dentro de nuestra serie temporal,
designando ciertos puntos como entradas (también llamadas X) y otros como etiquetas (tam-
bién llamadas Y). Esto permite que el modelo de aprendizaje profundo se entrene en las
entradas, genere predicciones, las compare con las etiquetas y repita este ciclo hasta que no
sea posible lograr una mejora adicional en la precision de la prediccion. También nos permite
mezclar nuestros subconjuntos sin perder el orden original, se puede observar como funciona

el ventaneo de datos en la figura 2.7 (Peixeiro, 2022).

Serie de tiempo original
A

55 | 71 82 85 | 98 | 113 | 111

Primer vector divididoen Xy Y
A

55 71 82 85 98 | 113 | 111

1

Tamarno de secuencia=5 Tamano de prediccion = 1

Segundo vector divididoen Xy Y

A

55 71 82 85 98 | 113 | 111

T

Tamarno de secuencia=5 Tamarnio de prediccion =1

Figura 2.7: Ejemplificacion gréfica de segmentacion de datos temporales (Autoria propia).
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2.11. Transformer

Desde 2017, una nueva arquitectura llamada ‘Transformer’ ha revolucionado la inteli-
gencia artificial, este modelo ha estado superando a las redes neuronales recurrentes en la
mayoria de las tareas de procesamiento del lenguaje natural, como la traduccion de textos.
Este modelo fue presentado en el articulo innovador ’Attention is all you need’ por Vaswani
et al. La esencia del articulo se resume en el titulo: resulté que un mecanismo simple llamado
“atencion neuronal’ podria ser utilizado para construir modelos de secuencia poderosos sin
necesidad de usar las arquitecturas principales en ese momento, como capas recurrentes o de
convolucién. El objetivo del transformer es reemplazar completamente los componentes re-
currentes y convolucionales con atencidn, esta arquitectura se ha convertido rdpidamente en
una de las ideas mds influyentes en el aprendizaje profundo, se muestra el diagrama original

de la arquitectura de este modelo en la figura 2.8 (Chollet, 2021; Azunre, 2021).
Output
Probabilities

Add & Norm
Feed
Forward
| Add & Norm I:
—EEEEE) Muti-Head
Feed Attention
Forward ) Nx
h— =
Nix Add & Norm _Je~
f—>| Add & Norm | TEdR
Multi-Head Multi-Head
Attention Attention
At At
— J — )
Positional & @ Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figura 2.8: Arquitectura original del transformer (Vaswani et al., 2017).
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Aunque inicialmente concebidos para el aprendizaje secuencia a secuencia en datos de
texto, los transformers se han vuelto omnipresentes en una amplia variedad de aplicaciones
modernas de aprendizaje profundo, abarcando dreas como el procesamiento del lenguaje na-
tural, la visién por computadora y la prediccion de series de tiempo. Esta arquitectura fue
desarrollada en Google, se basé en el hecho de que los mejores modelos de traduccién hasta
ese momento utilizaban componentes convolucionales y recurrentes junto con un mecanismo
de atencion. Estos modelos emplean una arquitectura codificador-decodificador, donde el co-
dificador convierte el texto de entrada en una representacion vectorial numérica intermedia,
llamada vector de contexto, y un decodificador que convierte este vector en texto de salida. El
mecanismo de atencion habilita a que el decodificador examine cualquier parte del historial
de salidas del codificador y utilice esa informacién para producir la salida también. Sin em-
bargo, los modelos LSTM y GRU siguen siendo bastante restrictivos, ya que solo pueden ver
una salida en la secuencia en un momento dado y necesitan depender de un vector de estado
limitado (es decir, memoria) para recordar lo que han visto. La atencién permite un mejor
rendimiento al modelar las dependencias entre partes de la salida y la entrada. Anteriormen-
te, la atencidn se asociaba principalmente con componentes recurrentes, pero el transformer
reemplaza toda la funcionalidad con atencidn, especificamente con una variante llamada au-
toatencion. La autoatencion se aplica a la misma secuencia tanto como entrada como salida,
lo que le permite aprender las dependencias entre cada parte de la secuencia y todas las demas
partes de la misma secuencia. Los embeddings de las secuencias de entrada (fuente) y salida
(objetivo) se combinan con codificacion posicional antes de ser introducidos en el codifica-
dor y el decodificador, que apilan médulos basados en la auto-atencidn. En contraste con los
modelos LSTM, que tienen que mirar un paso de tiempo a la vez, los modelos Transformer
pueden ver toda la secuencia simultineamente. Esto les permite comprender el lenguaje de
manera més efectiva que otros modelos. Ademds, los modelos Transformer disfrutan de una
alta paralelizacién debido a la minimizacion de célculos longitudinales (es decir, temporales)
que requieren procesamiento secuencial de texto (Zhang et al., 2023; Azunre, 2021; Ganege-
dara, 2022).

En la figura 2.9, se observa que los codificadores idénticos estdn apilados en el lado
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Output probabilities

Identical decoder stacked

([ oococer
h

69 Sum 6
Input embedding I Qutput embedding

Identical encoders stacked

These encode the position of
each token within the sequence

N

Positional
encoding

Positional
encoding

Figura 2.9: Arquitectura del transformer, mostrando las apilaciones de codificadores y deco-

dificadores (Azunre, 2021).

de codificacion de la arquitectura, y en el lado de decodificacion, se apilan decodificadores
idénticos. Ademas, tanto la entrada como la salida se convierten en vectores utilizando un al-
goritmo de incrustacion. Se utilizan codificaciones posicionales para mantener la conciencia
secuencial, lo que permite descartar los componentes recurrentes. En la figura 2.10 se puede
observar como el codificador del transformer se compone de multiples capas idénticas, cada
una con dos subcapas. La primera subcapa es una agrupacién de autoatencién multi-cabeza
que genera una representacion latente para cada token de entrada en la secuencia, examinando
toda la secuencia de entrada y seleccionando otros tokens que enriquecen la seméntica de la
salida oculta generada para ese token. y la segunda es una red neuronal feed-forward basada
en la posicion que genera una representacion oculta elemento a elemento de la representacion
atendida. Especificamente, en la auto-atencion del codificador, las consultas, claves y valores

provienen de las salidas de la capa de codificador anterior y cada decodificador se descompo-
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ne de manera similar, pero con la adicién de una capa de atencion codificador-decodificador.
En la autoatencion del decodificador, los tokens futuros estdn ’enmascarados’ (lo que quiere
decir, que se examinan todos los tokens a la izquierda de cada token de entrada y enmascara
las palabras a la derecha para evitar que el modelo vea palabras en el futuro) asegurando
que la prediccion dependa tinicamente de los tokens de salida generados hasta ese momento.
La atencién codificador-decodificador aprende dependencias similares entre las entradas al

codificador y al decodificador (Zhang et al., 2023; Azunre, 2021; Ganegedara, 2022).

Feedforward network

Self-attention

Feedforward network

Encoder-decoder
attention

Masked self-attention

Figura 2.10: Arquitectura del transformer, mostrando la estructura interna de los codificado-

res y decodificadores (Azunre, 2021).
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2.12. Informer

La arquitectura Informer, introducida por Zhou et al. (2020), es un modelo de aprendizaje
profundo basado en el Transformer original desarrollado por Vaswani et al. (2017), donde
las principales modificaciones respecto al original incluyen el mecanismo de autoatencién
ProbSparse. Este mecanismo tiene como objetivo mejorar la eficiencia computacional y re-
ducir el consumo de memoria en comparacion con la arquitectura estdndar del Transformer.
Ademads, Zhou et al. (2020) también integraron un proceso de destilacion de autoatencién que

reduce significativamente la complejidad espacial total del modelo (Ahmed et al., 2023).

............. J----------_-, Outputs
¢ Concatenated Feature Map JiEEENENEEEEEE
ST il-l-l-c:)-(i;-r ----------- N | Fully Connected Layer |

i Multi-head E :' Decoder “.
' ProbSparse : ' . '
' Self-attention i L1 | Multi-head ;
' / \ ' : Attention '
; Multi-head 5 t  /Masked Multi-head\ i
' ProbSparse : ' ProbSparse ;
\ Self-attention J ] Self-attention :
L —— ‘ ............... L4 [ Y ‘ .......... o
ofofojolojojo
Inputs: X, Inputs:  Xge={ Xioken, Xo}

Figura 2.11: Arquitectura del Informer (Zhou et al., 2020).

El modelo del algoritmo Informer mejora la arquitectura del Transformer mediante el uso
de una estructura multicapa similar compuesta por bloques Informer. Estos médulos cuentan
con un mecanismo de autoatencién multi-cabezal ProbSparse unico dentro de una configu-
racion codificador-decodificador. La figura 2.11 ilustra el disefio fundamental del modelo In-

former. En el lado izquierdo de la figura, el codificador procesa un gran niimero de entradas
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de secuencia extendida utilizando la autoatencion ProbSparse especializada, reemplazando el
método estdndar de autoatencion. La robustez del modelo se ve reforzada por las mdltiples
capas de estos bloques. En el lado derecho de la figura, el decodificador gestiona la entra-
da de secuencia larga, anula el elemento objetivo, calcula la mezcla ponderada de atencién
del mapa de caracteristicas y luego genera directamente el elemento de salida. Este modelo
muestra una mejora en las capacidades predictivas para problemas de Prondstico de Series
Temporales de Secuencia Larga (LSTF), destacando la capacidad de la familia de modelos
transformadores para capturar las intrincadas dependencias a largo plazo entre la entrada y la

salida en datos de series temporales extensas (Zhu et al., 2023).
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Capitulo 3
Hipotesis

Es posible predecir con éxito las excedencias de particulas PM2.5 con varias horas de

anticipacion utilizando mecanismos de atencion en modelos de aprendizaje automatico.
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Capitulo 4

Objetivos

4.1. Objetivo General

Generar un modelo de aprendizaje profundo que sea capaz de predecir satisfactoriamente

las excedencias de contaminantes PM2.5 en el medio ambiente con horas de anticipacion.

4.2. Objetivos Especificos

= Obtener y procesar los datos de manera adecuada para el entrenamiento de nuestro

modelo

= Implementar un modelo de inteligencia artificial con médulos de atencién capaz de

predecir las excedencias de particulas
= Predecir con dicho modelo las excedencias de particulas con horas de anticipacion

= Comparar resultados con el estado del arte
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Capitulo 5

Metodologia

5.1. Software y hardware

En esta investigacion se utilizé una estacion de trabajo con las siguientes caracteristicas:

CPU: AMD Ryzen 5 2600

* 3.4 GHz de frecuencia
* 6 nucleos de procesamiento

* 12 hilos de procesamiento

GPU: NVIDIA GeForce GTX 1660 SUPER

e 1530 MHz de frecuencia
* 6 GB de memoria grafica GDDR6

¢ 1408 nucleos CUDA

RAM: DDR4

e 1331 MHz de frecuencia

¢ 64 GB de memoria

Sistema Operativo: Windows 10 Pro
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5.2. METODOLOGIA GENERAL CAPITULO 5. METODOLOGIA

Se utilizaron distintas herramientas de software para la ejecucién adecuada de cada una
de las etapas de la investigacion, en todos los siguientes programas siempre se utilizé Python

como lenguaje de programacion:

Intelli] IDEA

PyCharm

Visual Studio Code

Google Colab

Jupyter Notebook

5.2. Metodologia general

Para asegurar la consistencia y la comparabilidad entre los experimentos realizados con
el modelo LSTM vy el modelo Informer, se adopté una metodologia estandarizada que guid
el desarrollo de la experimentacion en ambos modelos de manera idéntica, para asi eliminar
cualquier variacién y poder comparar directamente las 2 arquitecturas. La metodologia se
detalla en la figura 5.1 ofreciendo una representacion visual del proceso seguido.

De manera mds especifica, la metodologia consta de 6 etapas principales:

1. Adquisicion de datos

2. Preparacion de datos

3. Experimentacion inicial

4. Comparacién de resultados
5. Experimentacion final

6. Analisis de resultados
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Adquisicién de
datos

) 4

Seleccion de datos

Resultados
6ptimos

a utilizar
Seleccion .,
) Comparacion de
estaciones de
. resultados
monitoreo
Imputacion de Andlisis de
datos resultados
Promediado de Experimentos
datos a 24 horas finales
Codificacion Eliminacion de
binaria a hiperparametros
excedencias menos favorables
Segmentacién de Experimentos
datos iniciales
L Seleccidn inicial
Division de . de
datos . .
hiperparametros

Figura 5.1: Diagrama de metodologia general (Autoria propia).
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5.3. ADQUISICION DE DATOS CAPITULO 5. METODOLOGIA

5.3. Adquisicion de datos

Naturalmente, el primer paso fue adquirir los datos, la base de datos que se utilizé en
esta investigacion es de la Red Automatica de Monitoreo Atmosférico (RAMA) de la Ciudad
de México, que se encuentra disponible de manera gratuita en la pagina oficial de RAMA:
http://www.aire.cdmx.gob.mx/

Dicha base de datos se ha obtenido monitoreando el aire en 24 puntos estratégicos de la
CDMX desde el afio 2003 (para PM2.5), como se puede observar en la tabla 5.1 la base de

datos esté estructurada de la siguiente manera:

= Primera columna: Fecha de monitoreo (dia/mes/afo).
= Segunda columna: Hora de monitoreo (1 a 24 horas).

= A partir de la tercera columna: Concentracion del contaminante por estacion de monito-
reo (representado en microgramos/metro cubico, pg/m?). Las estaciones se identifican

con la clave de la estacion, tal como se muestra en la tabla 5.2.

Tabla 5.1: Muestra de la base de datos
FECHA HORA BJU UAX MER TLA

01-01-22 1 55 -99 59 48
01-01-22 2 71 -99 67 58

01-01-22 3 82 -99 84 69
01-01-22 4 85 -99 82 53
01-01-22 5 98 -99 101 41
01-01-22 6 113 -99 103 47
01-01-22 7 111 -99 114 36
01-01-22 8 110 -99 132 33
01-01-22 9 125 -99 167 43
01-01-22 10 141 -99 186 89
01-01-22 11 140  -99 158 93
01-01-22 12 121 -99 111 96

01-01-22 13 77 -99 79 92
01-01-22 14 65 -99 69 26
01-01-22 15 60 -99 57 20
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Tabla 5.2: Los 24 puntos estratégicos de la ZM VM monitoreadas para deteccion de particulas

PM2.5

Clave Nombre Alcaldia o Municipio Entidad
AJU Ajusco Tlalpan CDMX
AIM Ajusco Medio Tlalpan CDMX

BJU Benito Juarez Benito Juarez CDMX
CAM Camarones Azcapotzalco CDMX
CCA  Centro de Ciencias de la Atmosfera Coyoacan CDMX
COoy Coyoacédn Coyoacédn CDMX
FAR FES Aragén Nezahualcdyotl Estado de México
GAM Gustavo A. Madero Gustavo A. Madero CDMX
HGM Hospital General de México Cuauhtémoc CDMX

INN Investigaciones Nucleares Ocoyoacac Estado de México
MER Merced Venustiano Carranza CDMX
MGH Miguel Hidalgo Miguel Hidalgo CDMX
MPA Milpa Alta Milpa Alta CDMX
MON Montecillo Texcoco Estado de México
NEZ Nezahualcoyotl Nezahualcoyotl Estado de México
PED Pedregal Alvaro Obregén CDMX
SAG San Agustin Ecatepec de Morelos  Estado de México
SFE Santa Fe Cuajimalpa de Morelos CDMX

SAC Santiago Acahualtepec Iztapalapa CDMX

SJIA San Juan de Aragén Gustavo A. Madero CDMX
TLA Tlalnepantla Tlalnepantla de Baz ~ Estado de México
Ulz UAM Iztapalapa Iztapalapa CDMX
UAX UAM Xochimilco Coyoacan CDMX
XAL Xalostoc Ecatepec de Morelos  Estado de México

5.4. Seleccion de datos a utilizar

La base de datos original estd dividida en afos y dado que se tienen datos disponibles
desde el afio de 2003, se definieron varios criterios para seleccionar de manera 6ptima los

aflos a utilizar para esta investigacion.

Anos sin ningtin mes faltante

Afios mas recientes

Afios sin cuarentena total por la pandemia

Afios con menos de el 30 % de datos faltantes
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Considerando estos pardmetros y la disponibilidad parcial de los datos del afio 2023 al
momento de la experimentacion, se optd por excluir dicho afo del andlisis para preservar la
integridad de los datos utilizados en el estudio, los afios seleccionados fueron 2021 y 2022,
ya que son los aios mds recientes, no se vieron afectados o sesgados por la cuarentena total
de la pandemia de 2020 y estaban disponibles en su totalidad al momento de hacer la experi-
mentacion, en la tabla 5.3 se puede observar el razonamiento detrds del proceso de seleccion

de afos.

Tabla 5.3: Afios seleccionados para la investigacion con la explicacion pertinente

Ano Veredicto Razon

2019 Omitido Puede sesgar nuestros experimentos por su antiguedad
2020 Omitido Puede sesgar nuestros experimentos por la pandemia
2021 Incluido Menos del 30 % de datos faltantes y es reciente
2022 Incluido Menos del 30 % de datos faltantes y es reciente
2023 Omitido Disponible s6lo de manera parcial

5.5. Seleccion estaciones de monitoreo

Siendo los afios elegidos 2021 y 2022 para esta investigacion, el siguiente paso fue con-
catenar estas dos bases de datos para asi poder tener una vision clara del porcentaje de datos
faltantes para cada estacion en estos 2 afios, para seleccionar nuestras estaciones se descarta-
ron todas las que tienen mds del 30 % de datos faltantes, esto dejo un total de 13 estaciones
utilizables. El andlisis detallado se presenta en la Tabla 5.4.

Teniendo nuestras estaciones seleccionadas y sus porcentajes exactos de valores faltantes,
el siguiente paso fue elegir una tnica estacion a usar para ambos tipos de prediccion (univa-
riada y univarada), para asi dar uniformidad a nuestros resultados, naturalmente se eligio la
estacién con menos datos faltantes, como se puede observar en la tabla 5.5 y en la figura 5.2,

tanto para la prediccién univariada como multivariada se utiliz6 la estacion BJU.
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Tabla 5.4: Porcentaje de valores faltantes para cada estacion en los afios 2021 y 2022

Estacion Porcentaje de valores faltantes Veredicto

BJU 4.19 % Incluida

UAX 8.34 % Incluida

MER 7.52 % Incluida

TLA 13.91 % Incluida

FAR 14.89 % Incluida

PED 20.10 % Incluida

UlZ 22.11 % Incluida

SAG 22.71 % Incluida

NEZ 23.34 % Incluida

INN 25.78 % Incluida

SFE 26.39 % Incluida

SAC 27.45 % Incluida

MON 29.87 % Incluida

CCA 34.14 % Omitida

CAM 36.14 % Omitida

MPA 42.90 % Omitida

AJU 47.08 % Omitida

GAM 74.87 % Omitida

SJA 100 % Omitida

COoy 100 % Omitida

XAL 100 % Omitida

HGM 100 % Omitida

AIM 100 % Omitida

MGH 100 % Omitida

Estaciones usadas en prediccion univariada
_,’-‘l\_
BJU UAX | MER | TLA | FAR  PED | UIZ SAG | NEZ | INN | SFE = SAC | MON
382 | 181 | 223 | 124 | 387 | 289 | 382 | 181 | 386 | 124 | 187 | 289 | 228
105 | 239 | 7.4 | 372 | 301 | 153 | 105 | 239 | 124 | 37.2 | 62 | 153 | 415
246 | 84 | 110 | 96 | 546 | 331 | 246 | 84 | 300 | 96 | 31 | 331 | 126
N
v
Estaciones usadas en prediccion multivariada

Figura 5.2: Estaciones a utilizar en cada tipo de experimento (Autoria propia).
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Tabla 5.5: Estaciones utilizadas para cada experimento

Prediccion Estaciones que entran al modelo como contexto Estaciones a predecir
Univariada BJU BJU
Multivariada BJU, UAX, MER, TLA, FAR, PED, UIZ, SAG, NEZ, INN, BJU

SFE, SAC, MON

5.6. Imputacion de datos

Como pasa de manera usual en cualquier base de datos, se tenian datos faltantes, esto
puede ocurrir por varias razones, como malfuncionamiento del equipo, fallas en los servido-
res o error humano, estos datos faltantes estdn representados con el nimero -99, para poder
utilizar la base de datos de manera efectiva con nuestros modelos de inteligencia artificial se
tuvo que efectuar imputacion de datos, para nuestra imputacion de datos se utilizé el algorit-
mo de Imputacién Multiple con Ecuaciones Encadenadas (o MICE por sus siglas en Inglés:

Multiple Imputation by Chained Equations), esto se puede visualizar en las figuras 5.3 y 5.4.

==e= Antes de imputar
—s— Después de imputacion MICE
150

100

Medicion PM.25

-50

-100

indice

Figura 5.3: Muestra de la base de datos antes y después de imputar (Autoria propia).
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BJU BJU
-99 |=———b | 24.8
36.2 | =——p | 36.2

99 |=—>| 175

Figura 5.4: Muestra de la base de datos antes y después de imputar (Autoria propia).
5.7. Promediado de datos

Teniendo los datos imputados el siguiente paso es sacar el promedio por dia de concentra-
cion de PM2.5, la base de datos original contiene una medicién de concentracién de PM2.5
cada hora, por lo tanto, se sacé el promedio a intervalos de 24 valores, esto se hizo, con
la finalidad de determinar si nuestra medicién promedio del dia esta considerada como una

excedencia o no de acuerdo a la normativa NOM-025-SSA1-2021.

BJU
255 |
128 '

17.1 v BJU

33.6 ’
20.4 ‘

169 | +

Figura 5.5: Muestra de la base de datos antes y después de promediado por dia (Autoria

propia).
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5.8. Codificacion a excedencias

Teniendo los datos promediados cada 24 horas, se convirtieron a ceros y unos, dependien-
do si la concentracion de PM2.5 es igual o estd por encima a lo permitido por la normativa
mexicana NOM-025-SSA1-2021 que establece que el promedio por dia (24 horas) no debe
exceder los 41 pg/m3.

BJU BJU

78.2 | =—p | 1]

Excede la norma
Promedio por dia—< 105 | ——p 0 >—{}=N0
1=85i

246 | =—p 0
N L/

Figura 5.6: Ejemplo de valores codificados a excedencias (Autoria propia).

Tabla 5.6: Base de datos después de codificacion
Date BJU UAX MER TLA FAR

2021-01-01 1
2021-01-02
2021-01-03
2021-01-04
2021-01-05
2021-01-06
2021-01-07
2021-01-08
2021-01-09
2021-01-10
2021-01-11
2021-01-12
2021-01-13
2021-01-14
2021-01-15

[eNeleNeleloNoleNoleNollaNeo el
sNeleNeleloNeloNoleNoll e iNa i
— OO OO OO, PP, O—~,O R~
— O OO OO O, R,ROOOoOOoOOoO
— OO OO OoOOo—~,OOO
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5.9. Division de datos

Para los experimentos, se dividieron los datos en tres subconjuntos: entrenamiento, vali-
dacién y prueba, con proporciones del 70 %, 10 % y 20 % como se muestra en la figura 5.7.
Esta division se realiza con el propodsito de evitar el sobreajuste, un problema comtn en el

entrenamiento de redes neuronales.

Base de datos original

§ 70%

Entrenamiento Validacion Prueba

Figura 5.7: Division de datos (Autoria propia).
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Capitulo 6

Resultados y discusion

6.1. Experimentacion

Los experimentos principales se clasifican en dos categorias: LSTM e Informer. Dentro
de cada una de estas categorias, se distinguen dos subcategorias: experimentos multivariados
y experimentos univariados. Ademds, cada subcategoria incluye experimentos realizados con
horizontes de prediccion de 24, 48 y 72 horas. En total, se llevaron a cabo 12 experimentos
diferentes, distribuidos equitativamente entre las dos categorias principales y sus respectivas

subcategorias, como se muestra en la tabla 6.1.

Tabla 6.1: Experimentos realizados de Informer y LSTM

Informer LSTM
Univariada Multivariada Univariada Multivariada
24 h 24 h 24 h 24 h
48 h 48 h 48 h 48 h
72 h 72 h 72 h 72 h

Para cada una de estas 12 variantes se hicieron 1000 experimentos, dando un total de
6,000 experimentos por modelo, es decir, un total 12,000 experimentos para el andlisis final
de resultados para este trabajo. Dentro de estos 12,000 experimentos, se fueron variando

diferentes hiperpardmetros tanto en el modelo del Informer como en el modelo LSTM, a
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continuacion se muestran todos los hiperpardmetros que se probaron de manera heuristica en

cada modelo.

Tabla 6.2: Hiperparametros usados en modelo LSTM

Hiperparametro Valores
Tamaifio del batch 10, 15, 20, 25, 30, 35, 40, 45, 50
Longitud de secuencia 2,5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
Funcidn de activacion elu, gelu, relu, sigmoid, swish, tanh
Arquitectura [10], [10, 10, 10], [100, 100, 100], [15, 15, 15], [20], [20, 20, 20], [30]

Tabla 6.3: Hiperparametros usados en modelo Informer

Hiperparametro Valores
Tamaifio del batch 8, 16, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50
Longitud de secuencia 20, 30, 40, 50, 60, 70
Funcién de activacion sigmoid, gelu, swish, tanh
Dimensién red totalmente conectada 128, 256, 512, 1024
Capas decodificador 1,2, 4
Dimensién modelo 256, 512
Dropout 0.05,0.1,0.15,0.2
Capas codificador 1,2, 4
Longitud etiquetas 5,10
Numero de cabezas de atencion 4, 8,10, 12, 14, 18, 20
Taza de aprendizaje 0.01, 0.001, 0.0001

Como se puede observar en el diagrama de la metodologia general (figura 5.1), el proceso
comenzd con la realizacidn de experimentos iniciales utilizando una amplia gama de hiperpa-
rametros propuestos. En total, se llevaron a cabo 500 pruebas iniciales para evaluar el desem-
peino de los modelos con diferentes configuraciones de hiperparametros. Estos experimentos
fueron fundamentales para entender como cada hiperparametro afectaba el rendimiento de
los modelos en términos de errores MAE y MSE en el conjunto de prueba.

Al finalizar estas pruebas iniciales, se llevé a cabo un anélisis exhaustivo de los resulta-
dos. Este andlisis permitio identificar cudles hiperparametros arrojaban los resultados menos
favorables, es decir, aquellos que resultaron en los mayores errores MAE y MSE. La identifi-
cacion de estos hiperpardmetros fue crucial para mejorar la eficiencia de los modelos, ya que

su eliminacién permitié centrarse en las configuraciones mas prometedoras.

40



6.1. EXPERIMENTACION  CAPITULO 6. RESULTADOS Y DISCUSION

En consecuencia, los hiperpardmetros que no contribuyeron positivamente al rendimiento
de los modelos fueron eliminados del conjunto de pardmetros considerados para los experi-
mentos posteriores. Este enfoque iterativo y basado en la evidencia garantiz6 que los modelos
finales se construyeran utilizando Gnicamente los hiperparametros més efectivos.

A continuacidn, en las tablas 6.4 y 6.5, se presentan los hiperpardmetros que propor-
cionaron los mejores resultados para nuestros modelos. Los hiperpardmetros mostrados en
estas tablas son el producto de un riguroso proceso de seleccion y optimizacion, destacando
los valores de hiperpardmetros que minimizaron los errores MAE y MSE, mejorando asf la

precision y la eficiencia de los modelos propuestos.

Tabla 6.4: Hiperparametros con mejores resultados en modelo LSTM

Hiperparametro Valores
Tamafio del batch 10, 15, 20, 25, 30, 35, 40, 45, 50
Longitud de secuencia 2,5, 10, 15, 20, 25, 35
Funcidn de activacion elu, gelu, relu, sigmoid, swish, tanh
Arquitectura [10], [15, 15, 15], [20], [20, 20, 20], [30]

Tabla 6.5: Hiperparametros con mejores resultados en modelo Informer

Hiperparametro Valores
Tamano del batch 32,34
Longitud de secuencia 40, 50, 60, 70
Funcién de activacion gelu, swish, tanh
Dimension red totalmente conectada 128, 256, 512, 1024
Capas decodificador 1,2,4
Dimension modelo 256, 512
Dropout 0.05, 0.1
Capas codificador 1,2, 4
Longitud etiquetas 5,10
Numero de cabezas de atencion 12, 14, 18, 20
Taza de aprendizaje 0.0001

En las tablas 6.6 y 6.7 se puede observar de manera detallada los resultados obtenidos
en ambos modelos con las métricas de MAE y MSE respectivamente, estos resultados son
producto de la utilizacién de los hiperpardmetros que no fueron eliminados dentro de las

primeras 500 pruebas, ya que mostraban los errores menores, tanto para MAE como para
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MSE, para cada modelo, estas tablas estdn ordenadas de menor a mayor por el promedio de
los errores, cabe destacar que el informer siempre estd en las primeras posiciones, lo cual

hace claro que este modelo tiene un mejor desempefio.

Tabla 6.6: Resultados de los modelos propuestos (métrica MAE)
Modelo Tipo Horas MAE min MAE max MAE avg MAE std

MS 24 0.1730 0.3862 0.2487 0.0312

S 24 0.1721 0.4031 0.2532 0.0339

MS 48 0.1976 0.3974 0.2705 0.0309

Informer g 48 0.2004 0.3823 0.2713 0.0326
MS 72 0.2127 0.3863 0.2816 0.0305

S 72 0.2079 0.3886 0.2829 0.0314

MS 24 0.2738 0.5386 0.3641  0.0419

MS 48 0.2927 0.4583 0.3733  0.0378

MS 72 0.3063 0.4607 0.3807  0.0356

LSTM ¢ 24 0.3035 0.4605 0.3823  0.0345
S 48 0.3074 0.5254 0.3879  0.0336

S 7 03171 0.4745 0.3958  0.0302

Tabla 6.7: Resultados de los modelos propuestos (métrica MSE)
Modelo Tipo Horas MSE min MSE max MSE avg MSE std

S 24 0.1019 0.2485 0.1458 0.0222

MS 24 0.1025 0.2466 0.1516 0.0200

S 48 0.1113 0.2368 0.1550 0.0215

Informer g 72 0.1178 0.2399 0.1618 0.0199
MS 48 0.1222 0.2526 0.1715 0.0210

MS 72 0.1274 0.2975 0.1829 0.0218

S 24 0.1674 02723 02019  0.0216
MS 24 0.1588 03435 02023  0.0245

S 48 0.1707 02855  0.2066  0.0209

LSTM ¢ 72 0.1803 02865 02130  0.0194
MS 48 0.1717 03527 02130  0.0279

MS 72 0.1788 03694 02190  0.0285

Para facilitar una comparacién mads rigurosa y detallada entre los modelos, se afiadieron
las tablas 6.8 y 6.9. En estas tablas, se presentan en la misma fila los resultados de los experi-
mentos equivalentes realizados con ambos modelos, lo que permite una evaluacién directa de

su desempefio. Esta disposicion permite calcular la mejora porcentual en cada experimento,
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proporcionando una visién mds clara y precisa de las ventajas del modelo Informer sobre el
modelo LSTM.

Es importante destacar que los resultados muestran consistentemente que el modelo In-
former supera al modelo LSTM en los 12 experimentos realizados en este estudio. Estos
experimentos abarcan tanto andlisis multivariados como univariados y consideran periodos
de prediccion de 24, 48 y 72 horas. La comparacion detallada y sistemadtica en las tablas 6.8
y 6.9 demuestra de manera inequivoca que el Informer ofrece un mejor rendimiento en tér-
minos de precision y eficiencia en comparacion con el LSTM, independientemente del tipo y

la duracién de la prediccion.

Tabla 6.8: Comparacion de promedio de MAE entre Informer y LSTM

Tipo Horas MAE AVG LSTM MAE AVG Informer Mejora ( %)
MS 24 0.3641 0.2487 31.69
S 24 0.3823 0.2532 33.77
MS 48 0.3733 0.2705 27.54
S 48 0.3879 0.2713 30.06
MS 72 0.3807 0.2816 26.03
S 72 0.3958 0.2829 28.52
Promedio total 0.3807 0.2680 29.59

Tabla 6.9: Comparacién de promedio de MSE entre Informer y LSTM

Tipo Horas MSE AVG LSTM MSE AVG Informer Mejora ( %)
MS 24 0.2023 0.1516 25.06
S 24 0.2019 0.1458 27.79
MS 48 0.2130 0.1715 19.48
S 48 0.2066 0.1550 24.98
MS 72 0.2190 0.1829 16.48
S 72 0.2130 0.1618 24.04
Promedio total 0.2093 0.1614 22.97

En la figura 6.1, se presenta una visualizacién grafica que ilustra la mejora porcentual ob-
tenida con el Informer en comparacion con la LSTM de cada experimento realizado, tal como
se detalla en las tablas anteriores. En esta figura, la métrica MAE se representa con barras de

color azul ubicadas a la izquierda, mientras que la métrica MSE se representa con barras de
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color verde situadas a la derecha. Es notable que las barras se mantienen consistentemente

por arriba del 20 % en la mayoria de experimentos.

35
mm Mejora MAE
= Mejora MSE
30
25
g‘ 20
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L
@
=15
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0
Multivariada 24h Univariada 24h Multivariada 48h Univariada 48h Multivariada 72h Univariada 72h
Tipo y Horas

Figura 6.1: Comparacion de mejora del error entre Informer y LSTM

De manera més especifica, en las figuras 6.2, 6.3, 6.4 y 6.5 se presentan graficos de caja
que proporcionan una visualizacién detallada de los resultados de los experimentos. La figura
6.2 muestra los gréaficos de caja para el MAE univariado, mientras que la figura 6.3 presenta
los gréficos de caja para el MSE univariado. Por otro lado, la figura 6.4 ilustra los graficos de
caja para el MAE multivariado y la figura 6.5 se enfoca en los grificos de caja para el MSE
multivariado.

Estos gréficos permiten observar la distribucion de los datos, destacando la mediana, los
cuartiles y la presencia de posibles valores atipicos (outliers). La inclusion de estos graficos
de caja facilita la identificacién de la variabilidad y la dispersién de los datos para cada
modelo, proporcionando una comprensiéon mds profunda de su desempefio en los distintos

experimentos.
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6.2. Discusion

El modelo Informer supera consistentemente a la red LSTM en términos de desempeiio,
tanto en términos de Error Absoluto Medio (MAE) como de Error Cuadratico Medio (MSE),
en todos los experimentos, incluidas las predicciones multivariadas y univariadas. La mejora
promedio en los errores fue del 29.59 % para MAE y del 22.97 % para MSE. Esto se eviden-
cia claramente en la Figura 6.1, donde se muestra la comparacién directa de la mejora del
error, tanto en MAE (en azul) como en MSE (en verde), para cada uno de los experimentos
realizados. Ademads, se observa que la mejora del error es siempre mds significativa en el caso
de las predicciones univariadas.

Es evidente que el modelo Informer supera a la red LSTM en ambos tipos de predic-
ciones, multivariadas y univariadas. Especificamente, el Informer se beneficia de tener mds
informacién disponible, lo que se refleja en los resultados obtenidos para los valores de lon-
gitud de secuencia de ambos modelos, esto se puede observar en las Tablas 6.4 y 6.5 donde
los valores méas pequefios de longitud de secuencia, como 20 y 30, no proporcionaron los
mejores resultados para el modelo Informer, a diferencia de la LSTM, que obtuvo buenos
resultados con longitudes mds cortas, como 2, 5y 10.

Asimismo, las Tablas 6.8 y 6.9 evidencian una mejora significativa en las métricas de
prediccién univariada al utilizar el modelo Informer. Estos resultados sugieren que la efecti-
vidad del modelo Informer no estd limitado a escenarios de predicciéon multivariada, donde
se dispone de un contexto mds amplio, por la informacién extra que se ingresa al modelo,
sino que también se extiende a predicciones univariadas basadas unicamente en los datos de
la columna objetivo. Este hallazgo respalda la versatilidad y robustez del modelo Informer en

diversas aplicaciones de prediccion.
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Conclusiones

Se puede concluir de manera definitiva que el modelo Informer muestra una ventaja sig-
nificativa en comparacion con la arquitectura LSTM para predicciones de series de tiempo,
tanto univariadas como multivariadas. Esta investigacién demostré que esta innovadora ar-
quitectura, basada en transformers y modelos de atencidn, es capaz de mejorar el error de
manera consistente, incluso en predicciones con varias horas de anticipacion, en este caso

especifico de 24, 48 y 72 horas.
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