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Resumen

En los últimos años, la predicción de la calidad del aire se ha convertido en un área de

investigación crítica, particularmente en entornos urbanos donde la contaminación del aire

representa riesgos significativos para la salud. Este estudio presenta una investigación sobre

la predicción de excedencias de partículas PM2.5 en la Ciudad de México utilizando una

arquitectura innovadora de red neuronal conocida como Informer, una variante del modelo

Transformer. El modelo Informer se compara con una red LSTM, una elección popular para

tareas de predicción de datos secuenciales.

A través de una extensa experimentación y rigurosa evaluación, nuestros hallazgos desta-

can la efectividad del modelo Informer para capturar dependencias temporales y predecir con

precisión las excedencias de PM2.5. Al aprovechar su mecanismo de autoatención y capa-

cidades de procesamiento paralelo, el modelo Informer supera consistentemente a las redes

LSTM tradicionales. Esta superioridad es particularmente evidente en escenarios caracteri-

zados por patrones temporales complejos y dependencias a largo plazo. A lo largo de varios

experimentos, en los que variamos tanto el tipo de predicción (univariada y multivariada) co-

mo los intervalos de predicción (24, 48 y 72 horas), el modelo Informer ofreció consistente-

mente mejores resultados en comparación con el LSTM. Específicamente, logramos mejoras

del 29.59 % en MAE y del 22.97 % en MSE.

Esta investigación contribuye al avance de las metodologías de predicción de la calidad

del aire, ofreciendo valiosas ideas sobre el potencial de las arquitecturas de redes neuronales

de última generación para el monitoreo ambiental y la gestión de la salud pública en áreas

urbanas. Los resultados subrayan la importancia de aprovechar técnicas avanzadas de apren-
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dizaje profundo para realizar predicciones más precisas y confiables de los parámetros de

calidad del aire, facilitando así medidas proactivas para mitigar los efectos adversos de la

contaminación del aire en la salud humana.
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Abstract

In recent years, air quality forecasting has become a critical area of research, particularly

in urban environments where air pollution poses significant health risks. This study presents

an investigation into the prediction of PM2.5 particle exceedances in Mexico City using an

innovative neural network architecture known as the Informer, a variant of the Transformer

model. The Informer model is compared against a Long Short-Term Memory (LSTM) net-

work, a popular choice for sequential data prediction tasks.

Through extensive experimentation and rigorous evaluation, our findings underscore the

effectiveness of the Informer model in capturing temporal dependencies and accurately fo-

recasting PM2.5 exceedances. By leveraging its self-attention mechanism and parallel pro-

cessing capabilities, the Informer consistently outperforms traditional LSTM networks. This

superiority is particularly evident in scenarios characterized by complex temporal patterns

and long-range dependencies. Across various experiments, where we varied both the type of

prediction (univariate and multivariate) and the prediction intervals (24, 48, and 72 hours), the

Informer model consistently delivered superior results compared to the LSTM. Specifically,

we achieved improvements of 29.59 % in MAE and 22.97 % in MSE.

This research contributes to the advancement of air quality prediction methodologies,

offering valuable insights into the potential of state-of-the-art neural network architectures

for environmental monitoring and public health management in urban areas. The results un-

derscore the importance of leveraging advanced deep learning techniques for more accurate

and reliable predictions of air quality parameters, thereby facilitating proactive measures to

mitigate the adverse effects of air pollution on human health.
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Capítulo 1

Introducción

La calidad del aire en la Ciudad de México ha sido un tema de creciente preocupación en

las últimas décadas. Cada año, los niveles de contaminación del aire, particularmente de par-

tículas PM2.5, han mostrado una tendencia alarmante al alza, afectando la salud de millones

de habitantes y contribuyendo a problemas ambientales graves. Las partículas PM2.5, debido

a su tamaño diminuto, pueden penetrar profundamente en los pulmones y entrar en el torrente

sanguíneo, causando enfermedades respiratorias y cardiovasculares. Este deterioro continuo

de la calidad del aire exige métodos innovadores y precisos para la predicción de estos con-

taminantes, lo cual es esencial para implementar medidas preventivas y de mitigación.

Este trabajo es de vital importancia por la urgente necesidad de mejorar las predicciones

de la calidad del aire en la Ciudad de México. Aunque existen diversos modelos y técnicas

para la predicción de contaminantes atmosféricos, muchos de estos modelos no han logrado

captar con precisión las complejas dependencias temporales y espaciales que caracterizan la

dinámica de los contaminantes como las partículas PM2.5.

En este contexto, la investigación se centra en la aplicación del modelo Informer, una

variante avanzada del Transformer, conocida por su capacidad para manejar secuencias lar-

gas y complejas de datos. Esta arquitectura de inteligencia artificial ha mostrado resultados

prometedores en diversas áreas, pero su aplicación en la predicción de parámetros climáticos

y medioambientales sigue siendo limitada. Este trabajo busca llenar este vacío, explorando el

1
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potencial del Informer para mejorar las predicciones de PM2.5 en un entorno tan desafiante

como el de la Ciudad de México.
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Capítulo 2

Antecedentes

2.1. Contaminación del aire

La contaminación del aire se puede definir como condiciones atmosféricas en las que

ciertas sustancias están presentes en concentraciones que pueden llevar a efectos no desea-

dos tanto en los seres humanos como en el medio ambiente. Estas sustancias incluyen gases

como SOx, NOx, CO y compuestos orgánicos volátiles (COVs), así como material particu-

lado como humo, polvo, gases y aerosoles, junto con otros elementos, incluidos materiales

radiactivos. Si bien muchas de estas sustancias existen naturalmente en la atmósfera a con-

centraciones bajas (niveles de fondo) y generalmente se consideran inofensivas, una sustancia

se considera un contaminante del aire solo cuando su concentración supera significativamen-

te el valor de fondo, lo que produce efectos adversos. Es decir, para que una sustancia en

particular sea considerada contaminación, debe superar los niveles de fondo y causar efectos

adversos (Admassu & Wubeshet, 2011).

La contaminación del aire urbano es una preocupación global con implicaciones signifi-

cativas. El aumento en la utilización de combustibles, la creciente demanda de electricidad

y las actividades mineras intensificadas desde la Revolución Industrial han surgido como los

principales contribuyentes a la contaminación atmosférica. Las partículas ultrafinas pueden

viajar al torrente sanguíneo y depositarse en órganos como el hígado, el bazo o el cerebro,

3
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con la posibilidad de penetrar a través de mecanismos transinápticos (Falcon-Rodriguez et

al., 2016).

2.2. Material particulado

La materia particulada consiste en partículas de diversos orígenes, que varían en tamaño

y composición. Estas partículas generalmente se clasifican en tres grupos principales según

su tamaño:

Partículas gruesas: Estas tienen un diámetro que va desde los 10 micrómetros hasta

menos de 2.5 micrómetros.

Partículas finas: Estas tienen un tamaño entre 2.5 micrómetros y 0.1 micrómetros.

Partículas ultrafinas: Estas son más pequeñas que 0.1 micrómetros.

La mayoría de los sistemas de monitoreo miden las partículas por su concentración de

masa, centrándose en aquellas más pequeñas que 2.5 micrómetros (conocidas como PM2.5)

y aquellas más pequeñas que 10 micrómetros (conocidas como PM10). PM10 incluye tan-

to partículas finas como gruesas, siendo que PM2.5 representa generalmente alrededor del

50-70 % de la masa total de PM10. Las partículas ultrafinas también se incluyen en las me-

diciones de PM2.5 y PM10. Las principales fuentes de PM2.5 son el tráfico vehicular, la

generación de energía y la quema industrial y doméstica de petróleo, carbón o madera. Estas

partículas finas están compuestas por carbono elemental, metales de transición, compuestos

orgánicos complejos, sulfatos y nitratos (Newby et al., 2015).

Como se mencionó antes, las partículas PM2.5 consisten en partículas inhalables que

son lo suficientemente pequeñas como para ingresar al sistema respiratorio, como se puede

observar en la figura 2.1. Tanto la exposición a corto plazo como a largo plazo pueden resultar

en diversos efectos en la salud, incluyendo:

Exacerbación del asma
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Aumento de la mortalidad por enfermedades cardiovasculares

Tasas elevadas de mortalidad por enfermedades respiratorias y cáncer de pulmón

La exposición a PM2.5 está asociada con una reducción promedio en la esperanza de vida

de la población de la región de aproximadamente 8.6 meses. No hay evidencia que respalde

un nivel de exposición seguro o un umbral por debajo del cual no ocurran efectos adversos

para la salud (World Health Organization, 2013).

Figura 2.1: Tamaño de las partículas en comparación con el sistema respiratorio, tomado de

(Falcon-Rodriguez et al., 2016).

2.3. Inteligencia artificial

La inteligencia artificial o IA, como se le conoce más ampliamente, engloba una amplia

gama de áreas, desde aspectos generales como el aprendizaje y la percepción, hasta aplica-

ciones específicas como la demostración de teoremas matemáticos, el pronóstico de cambios

climáticos, el diagnóstico médico y más recientemente la creación de arte. Y esta puede ser

descrita como el área de la informática que se enfoca en automatizar acciones inteligentes.
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Pero, esta definición tiene limitaciones ya que nos hace falta una definición más precisa y

completa de lo que realmente constituye ‘ser inteligente’. Aunque para nosotros los huma-

nos es bastante fácil identificar un comportamiento inteligente cuando estamos frente a él,

es bastante complicado llegar a una definición concreta de inteligencia que sea eficiente para

comprobar la inteligencia de un algoritmo y que además abarque complejidad y profundidad

del cerebro humano. Se puede decir con seguridad que la IA tiene relevancia en práctica-

mente cualquier tarea intelectual y se considera como uno de los campos más versátiles de la

ciencia en la actualidad (Khorasani, 2008; Russell, 2010).

Como mencionamos anteriormente, definir ‘inteligencia’ no es una tarea sencilla, y para

complicarla aún más, debemos tener en cuenta que la inteligencia humana no aparece de una

forma única, por ejemplo: hay personas que son bastante hábiles para las artes mientras que

otras muestran una inclinación más clara por las matemáticas, política o deportes. Esto par-

ticularmente se hace aparente cuando hay personas que sobresalen demasiado en el ámbito

académico, mientras que otras destacan más en inteligencia emocional. Pese a la complejidad

de esta tarea, como humanos siempre hemos intentado establecer un único umbral para medir

la inteligencia, tal es el caso del coeficiente intelectual (CI), pero muchas veces dichas prue-

bas o umbrales no están libres de subjetividad, por ejemplo, en una prueba de CI se evalúa

mayoritariamente la memoria a corto plazo, el pensamiento analítico y la habilidad matemá-

tica, teniendo en cuenta lo antes mencionado, es bastante obvio que como no tenemos un

estándar fiable y sin sesgos para medir la inteligencia de una persona, mucho menos tenemos

un estándar fiable para hacerlo con un algoritmo o computadora (Rose, 2020).

Los inicios del reconocimiento de la IA como disciplina se remontan a los años cuarenta,

al trabajo pionero realizado por Warren McCulloch y Walter Pitts en el año de 1943. Para

lograr esto, se basaron en tres fuentes clave: su conocimiento sobre la fisiología y funcio-

namiento básico de las neuronas en el cerebro, un análisis formal de la lógica proposicional

desarrollada por Russell y Whitehead, y la teoría de la computación propuesta por Alan Tu-

ring. Su propuesta describió modelos matemáticos llamados perceptrones que representaban

las neuronas del cerebro (esto lo lograron haciendo un análisis exhaustivo de las neuronas

biológicas originales) en el que cada neurona puede estar ’activada’ o ’desactivada’ (de ma-
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nera binaria), dependiendo si la estimulación de neuronas vecinas era suficiente. Concebían

el estado de una neurona como ’equivalente a una proposición que planteaba su estímulo

adecuado’. Demostraron que cualquier función podía ser computada por una red de neuronas

conectadas, y que se podían recrear las compuertas lógicas como ‘AND’, ‘OR’ y ‘NOT’ con

estructuras bastante sencillas. Además, McCulloch y Pitts sugirieron que estas redes defini-

das de manera adecuada podrían aprender y, por lo tanto, modificar su comportamiento con

el tiempo (Russell, 2010: Warwick, 2013).

2.4. Aprendizaje automático

El aprendizaje automático se refiere a un conjunto de algoritmos para adquirir conoci-

miento a partir de datos y hacer predicciones, como en tareas de pronósticos, diagnóstico de

enfermedades, o la detección de anomalías. Utilizando el aprendizaje automático, obtenemos

conocimiento del conjunto de datos, básicamente la computadora distingue patrones de estos,

se basa en la ‘programación indirecta’ que se logra mediante la provisión de los datos a nues-

tro algoritmo, en contraste, la programación ‘tradicional’ necesita explícitamente todas las

reglas e instrucciones para poder funcionar de manera óptima, por lo antes mencionado, se

puede decir que el aprendizaje automático se encuentra en el cruce de la informática, la inge-

niería y la estadística, y se aplica en otros campos académicos y profesionales. Un algoritmo

de aprendizaje automático es el software utilizado para aprender un modelo de aprendiza-

je automático a partir de los datos. En cambio, un modelo de aprendizaje automático es el

programa resultante de aplicar un algoritmo de machine learning, que mapea las entradas a

predicciones, como por ejemplo, Chat GPT, que en este caso es el modelo y el algoritmo es

el transformer (Molnar, 2020; Harrington, 2012).

Por eso en la actualidad los datos son tan valiosos, ya que en tiempos pasados, la úni-

ca manera de desarrollar software era creando algoritmos meticulosamente ajustados. Como

mencionamos anteriormente, la programación convencional asume que para cada entrada

hay una salida predecible. Sin embargo, el aprendizaje automático aborda problemas para los

cuales las relaciones entre las entradas y salidas no son completamente comprendidas. De tal
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forma que en aprendizaje automático adquirimos conocimiento a partir de experiencias pre-

vias, y con ‘experiencias previas’ nos referimos a los datos que ingresamos al modelo. Estos

datos pueden incluir bases de datos que han sido etiquetadas por seres humanos (por ejemplo,

imágenes con la etiqueta apropiada) o bases de datos obtenidas a través de la interacción con

el entorno (por ejemplo, los datos obtenidos de las condiciones climáticas). Los modelos de

aprendizaje automático mejoran su desempeño a medida que aumentamos tanto la calidad y

cantidad de los datos. La expectativa en general de esta subrama de la informática, es que

al proporcionar suficientes datos a este sistema, aprenderá patrones y será capaz de generar

resultados inteligentes para nuevas entradas (Shukla & Fricklas, 2018; Mohri et al., 2018).

2.5. Aprendizaje profundo

Como se puede observar en la figura 2.2, el aprendizaje profundo está dentro del ámbito

del aprendizaje automático, el aprendizaje profundo se emplea para abordar tareas prácticas

en diversos campos, emplea grandes conjuntos de datos para modelar funciones comple-

jas, cuyas entradas y salidas se encuentran considerablemente distantes, como la visión por

computadora (imágenes), el procesamiento del lenguaje natural (texto) y el reconocimiento

automático del habla (audio). Por ejemplo, puede asociar una imagen de entrada con una

línea de texto que describe la misma. Incluso de manera más simple, puede establecer una

conexión entre una imagen de un gato y una etiqueta que señala ’Sí, hay un gato en la ima-

gen’ (normalmente señalado con un número, por ejemplo, 1). En resumen, el aprendizaje

profundo representa un conjunto de métodos dentro del repertorio del aprendizaje automáti-

co, utilizando principalmente redes neuronales artificiales, que se inspiran de manera general

en la estructura del cerebro humano, esto nos posibilita desarrollar programas con funciona-

lidades que, hasta hace poco, eran exclusivas de los seres humanos (Trask, 2019; Stevens et

al., 2020).

Los significativos avances en la tecnología de la computación han permitido que los sis-

temas actuales de inteligencia artificial (IA) se doten de billones de componentes básicos.

Después del correcto entrenamiento, estos componentes básicos, permiten ejecutar tareas an-
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Figura 2.2: Diagrama de Venn de inteligencia artificial, aprendizaje automático y aprendizaje

profundo, adaptado de (Stevens et al., 2020).

teriormente vistas como extraordinariamente complejas de programar, a tal grado que como

mencionamos anteriormente se pensaba que solo seres con inteligencia natural, como los hu-

manos, podían realizarlas. Un factor clave en muchos de estos avances en IA es el aprendizaje

profundo, más específicamente las redes neuronales artificiales: las cuales permiten aprender

diferentes formas de representar los datos a través de múltiples capas, estas capas facilitan

la extracción automática de características relevantes de los datos. De manera simplificada,

el enfoque del aprendizaje profundo busca desarrollar algoritmos de inteligencia artificial es-

tructurando los datos en una jerarquía de conceptos organizados en capas, donde cada nivel

se construye sobre la base de capas más simples. La estructura en capas es un elemento fun-

damental en los algoritmos de aprendizaje profundo, si bien las redes neuronales artificiales

están inspiradas en cierta medida en las redes neuronales biológicas del cerebro humano, en

realidad pueden considerarse mejor como un método sofisticado para definir una amplia ga-

ma de funciones flexibles, formadas por numerosos componentes computacionales básicos

conocidos como neuronas. El aprendizaje profundo destaca por su alto rendimiento y capa-

cidad de escalar eficientemente con grandes volúmenes de datos, superando a los algoritmos

de aprendizaje automático tradicionales, esto quiere decir que mientras más datos tengamos a

nuestro alcance mejor funcionará nuestro algoritmo de aprendizaje profundo en comparación

con el aprendizaje automático, para ilustrar esto más claramente, se muestra una gráfica en
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la Figura 2.3, con la cantidad de datos en el eje horizontal y el desempeño en el eje vertical

(Roberts et al., 2022; Sarkar et al., 2018).

Figura 2.3: Comparación de desempeño con respecto a cantidad de datos entre aprendizaje

automático y aprendizaje profundo, adaptado de (Sarkar et al., 2018).

2.6. Redes neuronales

Como mencionamos anteriormente, en 1943 Warren McCulloch y Walter Pitts introdu-

jeron el concepto pionero de una versión simplista de la célula cerebral, conocida como la

neurona McCulloch-Pitts (MCP) (McCulloch & Pitts, 1943). Este concepto plantea que las

neuronas biológicas, pueden ser representadas de manera simplificada. Estas neuronas bio-

lógicas son la pieza más importante del cerebro humano, se estima que en una sección del

cerebro comparable a un grano de arroz caben más de 10,000 de estas células y como ca-

da neurona tiene alrededor de 6,000 conexiones con otras neuronas, se podría decir que en

esta diminuta parte del cerebro hay más 60 millones de conexiones, las cuales forman una

red que nos permite percibir y entender nuestro entorno. Estas neuronas están diseñadas para

aceptar datos de otras células similares, procesarlos y transmitir los resultados procesados a

otras células. Según McCulloch y Pitts, estas neuronas funcionan como compuertas lógicas

binarias. Las señales ingresan a través de las dendritas, se suman en el cuerpo celular y, en
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caso de que la suma supere un umbral específico, se emite una señal de salida a través del

axón, como se muestra en la figura 2.4. Como sabemos el cerebro humano es muy bueno para

procesar información, está caracterizado por su complejidad, capacidad de procesamiento no

lineal y en paralelo, es capaz de organizar las neuronas, para ejecutar diversas operaciones,

como el reconocimiento de patrones y el control de movimientos, que supera fácilmente a

cualquier computadora de la actualidad. En este órgano extraordinario, las neuronas biológi-

cas están dispuestas en distintas capas, específicamente, la corteza cerebral, se compone de

seis capas. En este sistema, la información se transmite progresivamente de una capa a otra,

transformando los datos sensoriales en entendimiento conceptual. Tomando como referencia

el concepto de estos 2 científicos y las células biológicas, se ha desarrollado el concepto de

las redes neuronales artificiales. Estas redes se forman al interconectar neuronas artificiales

entre sí, así como con los datos de entrada y los nodos de salida, que representan las respues-

tas de la red a problemas específicos de aprendizaje. En la Figura 2.5 se presenta un modelo

básico de cómo se estructura una red neuronal artificial (Raschka & Mirjalili, 2019; Buduma

et al., 2022; Haykin, 2009).

Figura 2.4: Partes de una neurona biológica (Russell, 2010).

En términos prácticos, cada algoritmo de aprendizaje profundo se basa en el uso de redes

neuronales, con algunos conceptos básicas en común, como estar formadas de neuronas que
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Figura 2.5: Ejemplo simple de una red neuronal de 3 capas (Buduma et al., 2022).

se conectan entre sí, distribuidas en capas, pero con diferentes formas entrenamiento, diversas

configuraciones de datos de entrada (incluyendo vectores y matrices de distintas dimensiones)

y cómo están acomodadas las neuronas dentro de la red, más adelante veremos distintas

arquitecturas de estas redes, como lo son las LSTM (Vasilev et al., 2019).

2.7. Métricas de evaluación

Para medir el desempeño de un sistema de inteligencia artificial y verificar qué tan cer-

ca se está del objetivo propuesto, es necesario utilizar una función que evalúe el resulta-

do. Habitualmente, se emplean distintas funciones de evaluación para manejar problemas

de clasificación binaria, clasificación multi etiqueta, regresión o clustering, a veces, incluso

se desarrollan métricas específicas para resolver problemas empresariales particulares. Para
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problemas de clasificación, las métricas más frecuentemente utilizadas incluyen:

Exactitud (Accuracy)

Precisión (P)

Recuperación (R) o Recall

Puntaje F1 (F1)

En tareas que implican la predicción de números reales o regresión, muchas métricas de

error se derivan del álgebra euclidiana:

Error absoluto medio (MAE): Representa la media de la norma L1 del vector de dife-

rencias entre los valores predichos y los valores reales.

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.1)

MAE: Error Absoluto Medio.

n: Número total de observaciones.

yi: Valor real de la i-ésima observación.

ŷi: Valor predicho de la i-ésima observación.

|yi − ŷi|: Error absoluto de la i-ésima observación.

Error cuadrático medio (MSE): Representa la media de la norma L2 del vector de

diferencias entre los valores predichos y los valores reales

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2.2)

MSE: Error Cuadrático Medio.
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n: Número total de observaciones.

yi: Valor real de la i-ésima observación.

ŷi: Valor predicho de la i-ésima observación.

(yi − ŷi)
2: Error cuadrático de la i-ésima observación (Boschetti & Massaron, 2015;

Thakur, 2020).

2.8. Sobreentrenamiento

El problema del sobreentrenamiento se refiere al hecho de que ajustar un modelo a un

conjunto de datos de entrenamiento particular no garantiza que proporcionará un buen rendi-

miento de predicción en datos de prueba no vistos, incluso si el modelo predice perfectamente

los objetivos en los datos de entrenamiento. En otras palabras, siempre existe una brecha entre

el rendimiento en los datos de entrenamiento y en los datos de prueba, que es particularmente

grande cuando los modelos son complejos y el conjunto de datos es pequeño. Aumentar el

número de instancias de entrenamiento mejora la capacidad de generalización del modelo,

mientras que aumentar la complejidad del modelo reduce su capacidad de generalización. Al

desarrollar un modelo muy complejo, es bastante sencillo ajustar perfectamente nuestro con-

junto de datos de entrenamiento, ya que le otorgamos al modelo suficientes grados de libertad

para adaptarse a las observaciones en dicho conjunto. Sin embargo, al evaluar un modelo tan

complejo con nuevos datos, su rendimiento suele ser deficiente. En otras palabras, el modelo

no generaliza adecuadamente. Este fenómeno, conocido como sobreentrenamiento, es uno

de los mayores retos que enfrenta un ingeniero de aprendizaje automático. Este problema es

aún más grave en el aprendizaje profundo, donde las redes neuronales cuentan con un gran

número de capas y numerosos neuronas. La cantidad de conexiones en estos modelos es as-

tronómica, alcanzando millones. Como resultado, el sobreentrenamiento es algo común. Al

mismo tiempo, cuando se dispone de una gran cantidad de datos de entrenamiento, es poco

probable que un modelo excesivamente simple capture relaciones complejas entre las carac-

terísticas y el objetivo. Una buena regla general es que el número total de puntos de datos
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de entrenamiento debe ser al menos 2 o 3 veces mayor que el número de parámetros en la

red neuronal, aunque el número preciso de instancias de datos depende del modelo especí-

fico en cuestión. En general, se dice que los modelos con un mayor número de parámetros

tienen una alta capacidad y requieren una mayor cantidad de datos para adquirir capacidad

de generalización en datos de prueba no vistos. Como mencionamos anteriormente la mayor

disponibilidad de datos ha revelado las ventajas de las redes neuronales sobre el aprendizaje

automático tradicional. En general, las redes neuronales requieren un diseño cuidadoso para

minimizar los efectos perjudiciales del sobreentrenamiento, incluso cuando se dispone de una

gran cantidad de datos (Aggarwal, 2018; Buduma et al., 2022).

Una de las formas más comunes para evitar el sobreentrenamiento es dividir nuestros

datos , se fragmentan en tres segmentos: entrenamiento, validación y prueba. Durante el en-

trenamiento, el conjunto de entrenamiento se emplea para calcular gradientes y determinar

las actualizaciones de pesos. El conjunto de validación se utiliza para interrumpir el entre-

namiento antes de que se produzca el sobreajuste. El conjunto de prueba se emplea para

predecir el rendimiento futuro de la red, siendo el indicador de calidad de la misma. Si, des-

pués del entrenamiento de la red, el rendimiento en el conjunto de prueba no es satisfactorio,

generalmente hay cuatro posibles escenarios:

La red ha alcanzado un mínimo local.

La red no cuenta con suficientes neuronas para adaptarse a los datos.

La red está experimentando sobreajuste.

La red está extrapolando (Demuth et al., 2014; Thakur, 2020).

El problema del mínimo local puede arreglarse mediante el reentrenamiento de la red con

conjuntos aleatorios de pesos iniciales. La red con el mínimo error de entrenamiento suele

representar un mínimo global. Los otros tres problemas se pueden identificar analizando los

errores en los conjuntos de entrenamiento, validación y prueba. Por ejemplo, si el error de va-

lidación es considerablemente mayor que el error de entrenamiento, es probable que se haya
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producido sobreajuste, incluso con el uso de la detención temprana. En tal caso, se puede apli-

car un algoritmo de entrenamiento más lento para volver a entrenar la red. Si los errores en los

conjuntos de validación, entrenamiento y prueba son similares en magnitud pero demasiado

grandes, es probable que la red no sea lo suficientemente potente para ajustarse a los datos.

En esta situación, se debería aumentar el número de neuronas en la capa oculta y proceder al

reentrenamiento de la red. Cuando los errores en los conjuntos de validación y entrenamiento

son comparables, pero los errores en el conjunto de prueba son considerablemente mayores,

es posible que la red esté extrapolando. Esto indica que los datos de prueba están fuera del

rango de los datos de entrenamiento y validación. En este caso, se requiere la obtención de

más datos, pudiendo fusionar los datos de prueba con los datos de entrenamiento/validación y

recopilar nuevos datos de prueba. Deberá continuar con este proceso hasta que los resultados

en los tres conjuntos de datos sean similares. Si los errores en los conjuntos de entrenamien-

to, validación y prueba son semejantes y los errores son suficientemente pequeños, la red

multicapa puede implementarse. No obstante, se debe tener precaución con la posibilidad de

extrapolación, especialmente si las entradas de la red multicapa están fuera del rango de los

datos con los que fue entrenada. Es difícil garantizar que los datos de entrenamiento cubrirán

todas las aplicaciones futuras de la red neuronal. Cada vez que entrenamos una red neuronal,

es crucial supervisar la pérdida tanto en el conjunto de entrenamiento como en el conjunto

de prueba. Si el modelo es muy grande en comparación con el conjunto de datos (es decir,

con muy pocas muestras), veremos que la pérdida en ambos conjuntos disminuye mientras

continuamos entrenando. No obstante, llegará un punto en el que la pérdida en el conjunto de

prueba alcanzará su mínimo y luego comenzará a aumentar, incluso si la pérdida en el con-

junto de entrenamiento sigue disminuyendo, como se muestra en la figura 2.6. Es importante

detener el entrenamiento en el momento en que la pérdida de validación alcanza su valor más

bajo (Demuth et al., 2014; Thakur, 2020).
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Figura 2.6: Ejemplificación de sobreentrenamiento, adaptado de (Thakur, 2020).

2.9. Hiperparámetros

Los parámetros que son ajustables pero no se actualizan durante el entrenamiento, se de-

nominan hiperparámetros, y son diferentes de los parámetros fundamentales que representan

los pesos de las conexiones en la red neuronal. la mayoría de los algoritmos de aprendizaje

automático ofrecen múltiples hiperparámetros para ajustar, como la tasa de aprendizaje, la

longitud de secuencia, las épocas, entre otros. Ajustar los hiperparámetros es el proceso de

seleccionarlos. Es importante no ajustar los hiperparámetros utilizando los mismos datos que

se usan para el entrenamiento del modelo. En su lugar, se reserva una parte de los datos como

conjunto de validación, y se evalúa el rendimiento del modelo en este conjunto con diferentes

opciones de hiperparámetros. Este enfoque evita el sobreajuste al conjunto de entrenamiento

y proporciona una evaluación más realista del rendimiento del modelo. La técnica más común

para ajustar los hiperparámetros es la búsqueda en cuadrícula, donde se selecciona un con-

junto de valores para cada hiperparámetro. En la búsqueda en cuadrícula, se prueban todas

las combinaciones posibles de valores de hiperparámetros para determinar la mejor elección.

Sin embargo, este enfoque puede ser computacionalmente costoso, especialmente cuando el
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número de hiperparámetros es grande. Para mitigar esto, se suelen utilizar cuadrículas más

gruesas en una primera etapa y luego refinar la búsqueda en regiones específicas de interés.

Es importante tener cuidado cuando el valor óptimo de un hiperparámetro está en el límite

de un rango de búsqueda, ya que puede ser necesario explorar más allá de ese rango para

encontrar valores aún mejores (Goodfellow et al., 2016; Zhang et al., 2023; Aggarwal, 2018)

2.10. Series de tiempo

Las series de tiempo están presentes en diversos ámbitos, abarcando meteorología, finan-

zas, econometría y marketing. A través del registro y análisis de datos, podemos sumergirnos

en series de tiempo para analizar procesos industriales o monitorear métricas comerciales

como las ventas o el compromiso. Además, con la abundancia de datos, los científicos de

datos pueden aprovechar sus conocimientos en la aplicación de técnicas para la predicción

de series temporales. El primer paso para comprender y ejecutar la predicción de este tipo de

datos implica entender su naturaleza. Básicamente, una serie temporal son datos medidos a

intervalos de tiempo regulares, conocidos como el intervalo de muestreo. En pocas palabras,

los datos podrían registrarse por hora, mensualmente o anualmente. Ejemplos de series tem-

porales incluyen el valor de cierre de una acción específica, el consumo de electricidad de un

hogar o la temperatura exterior. Se puede representar una serie temporal de longitud n como:

{xt : t = 1, . . . , n} = {x1, x2, . . . , xn} (2.3)

Donde:

n es el número de valores muestreados en momentos discretos.

xt son los valores medidos (Peixeiro, 2022; Cowpertwait & Metcalfe, 2009).

Una característica clave de los datos de series temporales es que las observaciones vecinas

a menudo dependen entre sí. Descifrar cómo están relacionadas estas observaciones en una

serie temporal es realmente importante para usos prácticos. El análisis de series temporales
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se centra en métodos para analizar esta interdependencia. Hacerlo bien significa que necesi-

tamos desarrollar y utilizar modelos estocásticos y dinámicos para datos de series temporales

en áreas donde realmente importan (Box et al., 2015).

Antes de dividir nuestras series temporales en subconjuntos de entrenamiento, validación

y prueba, debemos realizar la segmentación de datos o ventaneo de datos, que es un proce-

dimiento donde establecemos una serie de puntos de datos dentro de nuestra serie temporal,

designando ciertos puntos como entradas (también llamadas X) y otros como etiquetas (tam-

bién llamadas Y). Esto permite que el modelo de aprendizaje profundo se entrene en las

entradas, genere predicciones, las compare con las etiquetas y repita este ciclo hasta que no

sea posible lograr una mejora adicional en la precisión de la predicción. También nos permite

mezclar nuestros subconjuntos sin perder el orden original, se puede observar cómo funciona

el ventaneo de datos en la figura 2.7 (Peixeiro, 2022).

Figura 2.7: Ejemplificación gráfica de segmentación de datos temporales (Autoría propia).
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2.11. Transformer

Desde 2017, una nueva arquitectura llamada ‘Transformer’ ha revolucionado la inteli-

gencia artificial, este modelo ha estado superando a las redes neuronales recurrentes en la

mayoría de las tareas de procesamiento del lenguaje natural, como la traducción de textos.

Este modelo fue presentado en el artículo innovador ’Attention is all you need’ por Vaswani

et al. La esencia del artículo se resume en el título: resultó que un mecanismo simple llamado

’atención neuronal’ podría ser utilizado para construir modelos de secuencia poderosos sin

necesidad de usar las arquitecturas principales en ese momento, como capas recurrentes o de

convolución. El objetivo del transformer es reemplazar completamente los componentes re-

currentes y convolucionales con atención, esta arquitectura se ha convertido rápidamente en

una de las ideas más influyentes en el aprendizaje profundo, se muestra el diagrama original

de la arquitectura de este modelo en la figura 2.8 (Chollet, 2021; Azunre, 2021).

Figura 2.8: Arquitectura original del transformer (Vaswani et al., 2017).
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Aunque inicialmente concebidos para el aprendizaje secuencia a secuencia en datos de

texto, los transformers se han vuelto omnipresentes en una amplia variedad de aplicaciones

modernas de aprendizaje profundo, abarcando áreas como el procesamiento del lenguaje na-

tural, la visión por computadora y la predicción de series de tiempo. Esta arquitectura fue

desarrollada en Google, se basó en el hecho de que los mejores modelos de traducción hasta

ese momento utilizaban componentes convolucionales y recurrentes junto con un mecanismo

de atención. Estos modelos emplean una arquitectura codificador-decodificador, donde el co-

dificador convierte el texto de entrada en una representación vectorial numérica intermedia,

llamada vector de contexto, y un decodificador que convierte este vector en texto de salida. El

mecanismo de atención habilita a que el decodificador examine cualquier parte del historial

de salidas del codificador y utilice esa información para producir la salida también. Sin em-

bargo, los modelos LSTM y GRU siguen siendo bastante restrictivos, ya que solo pueden ver

una salida en la secuencia en un momento dado y necesitan depender de un vector de estado

limitado (es decir, memoria) para recordar lo que han visto. La atención permite un mejor

rendimiento al modelar las dependencias entre partes de la salida y la entrada. Anteriormen-

te, la atención se asociaba principalmente con componentes recurrentes, pero el transformer

reemplaza toda la funcionalidad con atención, específicamente con una variante llamada au-

toatención. La autoatención se aplica a la misma secuencia tanto como entrada como salida,

lo que le permite aprender las dependencias entre cada parte de la secuencia y todas las demás

partes de la misma secuencia. Los embeddings de las secuencias de entrada (fuente) y salida

(objetivo) se combinan con codificación posicional antes de ser introducidos en el codifica-

dor y el decodificador, que apilan módulos basados en la auto-atención. En contraste con los

modelos LSTM, que tienen que mirar un paso de tiempo a la vez, los modelos Transformer

pueden ver toda la secuencia simultáneamente. Esto les permite comprender el lenguaje de

manera más efectiva que otros modelos. Además, los modelos Transformer disfrutan de una

alta paralelización debido a la minimización de cálculos longitudinales (es decir, temporales)

que requieren procesamiento secuencial de texto (Zhang et al., 2023; Azunre, 2021; Ganege-

dara, 2022).

En la figura 2.9, se observa que los codificadores idénticos están apilados en el lado
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Figura 2.9: Arquitectura del transformer, mostrando las apilaciones de codificadores y deco-

dificadores (Azunre, 2021).

de codificación de la arquitectura, y en el lado de decodificación, se apilan decodificadores

idénticos. Además, tanto la entrada como la salida se convierten en vectores utilizando un al-

goritmo de incrustación. Se utilizan codificaciones posicionales para mantener la conciencia

secuencial, lo que permite descartar los componentes recurrentes. En la figura 2.10 se puede

observar como el codificador del transformer se compone de múltiples capas idénticas, cada

una con dos subcapas. La primera subcapa es una agrupación de autoatención multi-cabeza

que genera una representación latente para cada token de entrada en la secuencia, examinando

toda la secuencia de entrada y seleccionando otros tokens que enriquecen la semántica de la

salida oculta generada para ese token. y la segunda es una red neuronal feed-forward basada

en la posición que genera una representación oculta elemento a elemento de la representación

atendida. Específicamente, en la auto-atención del codificador, las consultas, claves y valores

provienen de las salidas de la capa de codificador anterior y cada decodificador se descompo-
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ne de manera similar, pero con la adición de una capa de atención codificador-decodificador.

En la autoatención del decodificador, los tokens futuros están ’enmascarados’ (lo que quiere

decir, que se examinan todos los tokens a la izquierda de cada token de entrada y enmascara

las palabras a la derecha para evitar que el modelo vea palabras en el futuro) asegurando

que la predicción dependa únicamente de los tokens de salida generados hasta ese momento.

La atención codificador-decodificador aprende dependencias similares entre las entradas al

codificador y al decodificador (Zhang et al., 2023; Azunre, 2021; Ganegedara, 2022).

Figura 2.10: Arquitectura del transformer, mostrando la estructura interna de los codificado-

res y decodificadores (Azunre, 2021).
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2.12. Informer

La arquitectura Informer, introducida por Zhou et al. (2020), es un modelo de aprendizaje

profundo basado en el Transformer original desarrollado por Vaswani et al. (2017), donde

las principales modificaciones respecto al original incluyen el mecanismo de autoatención

ProbSparse. Este mecanismo tiene como objetivo mejorar la eficiencia computacional y re-

ducir el consumo de memoria en comparación con la arquitectura estándar del Transformer.

Además, Zhou et al. (2020) también integraron un proceso de destilación de autoatención que

reduce significativamente la complejidad espacial total del modelo (Ahmed et al., 2023).

Figura 2.11: Arquitectura del Informer (Zhou et al., 2020).

El modelo del algoritmo Informer mejora la arquitectura del Transformer mediante el uso

de una estructura multicapa similar compuesta por bloques Informer. Estos módulos cuentan

con un mecanismo de autoatención multi-cabezal ProbSparse único dentro de una configu-

ración codificador-decodificador. La figura 2.11 ilustra el diseño fundamental del modelo In-

former. En el lado izquierdo de la figura, el codificador procesa un gran número de entradas
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de secuencia extendida utilizando la autoatención ProbSparse especializada, reemplazando el

método estándar de autoatención. La robustez del modelo se ve reforzada por las múltiples

capas de estos bloques. En el lado derecho de la figura, el decodificador gestiona la entra-

da de secuencia larga, anula el elemento objetivo, calcula la mezcla ponderada de atención

del mapa de características y luego genera directamente el elemento de salida. Este modelo

muestra una mejora en las capacidades predictivas para problemas de Pronóstico de Series

Temporales de Secuencia Larga (LSTF), destacando la capacidad de la familia de modelos

transformadores para capturar las intrincadas dependencias a largo plazo entre la entrada y la

salida en datos de series temporales extensas (Zhu et al., 2023).
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Capítulo 3

Hipótesis

Es posible predecir con éxito las excedencias de partículas PM2.5 con varias horas de

anticipación utilizando mecanismos de atención en modelos de aprendizaje automático.
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Capítulo 4

Objetivos

4.1. Objetivo General

Generar un modelo de aprendizaje profundo que sea capaz de predecir satisfactoriamente

las excedencias de contaminantes PM2.5 en el medio ambiente con horas de anticipación.

4.2. Objetivos Específicos

Obtener y procesar los datos de manera adecuada para el entrenamiento de nuestro

modelo

Implementar un modelo de inteligencia artificial con módulos de atención capaz de

predecir las excedencias de partículas

Predecir con dicho modelo las excedencias de partículas con horas de anticipación

Comparar resultados con el estado del arte
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Capítulo 5

Metodología

5.1. Software y hardware

En esta investigación se utilizó una estación de trabajo con las siguientes características:

CPU: AMD Ryzen 5 2600

• 3.4 GHz de frecuencia

• 6 núcleos de procesamiento

• 12 hilos de procesamiento

GPU: NVIDIA GeForce GTX 1660 SUPER

• 1530 MHz de frecuencia

• 6 GB de memoria gráfica GDDR6

• 1408 núcleos CUDA

RAM: DDR4

• 1331 MHz de frecuencia

• 64 GB de memoria

Sistema Operativo: Windows 10 Pro
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Se utilizaron distintas herramientas de software para la ejecución adecuada de cada una

de las etapas de la investigación, en todos los siguientes programas siempre se utilizó Python

como lenguaje de programación:

IntelliJ IDEA

PyCharm

Visual Studio Code

Google Colab

Jupyter Notebook

5.2. Metodología general

Para asegurar la consistencia y la comparabilidad entre los experimentos realizados con

el modelo LSTM y el modelo Informer, se adoptó una metodología estandarizada que guió

el desarrollo de la experimentación en ambos modelos de manera idéntica, para así eliminar

cualquier variación y poder comparar directamente las 2 arquitecturas. La metodología se

detalla en la figura 5.1 ofreciendo una representación visual del proceso seguido.

De manera más específica, la metodología consta de 6 etapas principales:

1. Adquisición de datos

2. Preparación de datos

3. Experimentación inicial

4. Comparación de resultados

5. Experimentación final

6. Análisis de resultados
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Figura 5.1: Diagrama de metodología general (Autoría propia).
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5.3. Adquisición de datos

Naturalmente, el primer paso fue adquirir los datos, la base de datos que se utilizó en

esta investigación es de la Red Automática de Monitoreo Atmosférico (RAMA) de la Ciudad

de México, que se encuentra disponible de manera gratuita en la página oficial de RAMA:

http://www.aire.cdmx.gob.mx/

Dicha base de datos se ha obtenido monitoreando el aire en 24 puntos estratégicos de la

CDMX desde el año 2003 (para PM2.5), como se puede observar en la tabla 5.1 la base de

datos está estructurada de la siguiente manera:

Primera columna: Fecha de monitoreo (día/mes/año).

Segunda columna: Hora de monitoreo (1 a 24 horas).

A partir de la tercera columna: Concentración del contaminante por estación de monito-

reo (representado en microgramos/metro cúbico, µg/m3). Las estaciones se identifican

con la clave de la estación, tal como se muestra en la tabla 5.2.

Tabla 5.1: Muestra de la base de datos
FECHA HORA BJU UAX MER TLA
01-01-22 1 55 -99 59 48
01-01-22 2 71 -99 67 58
01-01-22 3 82 -99 84 69
01-01-22 4 85 -99 82 53
01-01-22 5 98 -99 101 41
01-01-22 6 113 -99 103 47
01-01-22 7 111 -99 114 36
01-01-22 8 110 -99 132 33
01-01-22 9 125 -99 167 43
01-01-22 10 141 -99 186 89
01-01-22 11 140 -99 158 93
01-01-22 12 121 -99 111 96
01-01-22 13 77 -99 79 92
01-01-22 14 65 -99 69 26
01-01-22 15 60 -99 57 20
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Tabla 5.2: Los 24 puntos estratégicos de la ZMVM monitoreadas para detección de partículas

PM2.5
Clave Nombre Alcaldía o Municipio Entidad
AJU Ajusco Tlalpan CDMX
AJM Ajusco Medio Tlalpan CDMX
BJU Benito Juárez Benito Juárez CDMX
CAM Camarones Azcapotzalco CDMX
CCA Centro de Ciencias de la Atmósfera Coyoacán CDMX
COY Coyoacán Coyoacán CDMX
FAR FES Aragón Nezahualcóyotl Estado de México
GAM Gustavo A. Madero Gustavo A. Madero CDMX
HGM Hospital General de México Cuauhtémoc CDMX
INN Investigaciones Nucleares Ocoyoacac Estado de México
MER Merced Venustiano Carranza CDMX
MGH Miguel Hidalgo Miguel Hidalgo CDMX
MPA Milpa Alta Milpa Alta CDMX
MON Montecillo Texcoco Estado de México
NEZ Nezahualcóyotl Nezahualcóyotl Estado de México
PED Pedregal Álvaro Obregón CDMX
SAG San Agustín Ecatepec de Morelos Estado de México
SFE Santa Fe Cuajimalpa de Morelos CDMX
SAC Santiago Acahualtepec Iztapalapa CDMX
SJA San Juan de Aragón Gustavo A. Madero CDMX
TLA Tlalnepantla Tlalnepantla de Baz Estado de México
UIZ UAM Iztapalapa Iztapalapa CDMX
UAX UAM Xochimilco Coyoacán CDMX
XAL Xalostoc Ecatepec de Morelos Estado de México

5.4. Selección de datos a utilizar

La base de datos original está dividida en años y dado que se tienen datos disponibles

desde el año de 2003, se definieron varios criterios para seleccionar de manera óptima los

años a utilizar para esta investigación.

Años sin ningún mes faltante

Años más recientes

Años sin cuarentena total por la pandemia

Años con menos de el 30 % de datos faltantes
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Considerando estos parámetros y la disponibilidad parcial de los datos del año 2023 al

momento de la experimentación, se optó por excluir dicho año del análisis para preservar la

integridad de los datos utilizados en el estudio, los años seleccionados fueron 2021 y 2022,

ya que son los años más recientes, no se vieron afectados o sesgados por la cuarentena total

de la pandemia de 2020 y estaban disponibles en su totalidad al momento de hacer la experi-

mentación, en la tabla 5.3 se puede observar el razonamiento detrás del proceso de selección

de años.

Tabla 5.3: Años seleccionados para la investigación con la explicación pertinente
Año Veredicto Razón

2019 Omitido Puede sesgar nuestros experimentos por su antiguedad
2020 Omitido Puede sesgar nuestros experimentos por la pandemia
2021 Incluido Menos del 30 % de datos faltantes y es reciente
2022 Incluido Menos del 30 % de datos faltantes y es reciente
2023 Omitido Disponible sólo de manera parcial

5.5. Selección estaciones de monitoreo

Siendo los años elegidos 2021 y 2022 para esta investigación, el siguiente paso fue con-

catenar estas dos bases de datos para así poder tener una visión clara del porcentaje de datos

faltantes para cada estación en estos 2 años, para seleccionar nuestras estaciones se descarta-

ron todas las que tienen más del 30 % de datos faltantes, esto dejó un total de 13 estaciones

utilizables. El análisis detallado se presenta en la Tabla 5.4.

Teniendo nuestras estaciones seleccionadas y sus porcentajes exactos de valores faltantes,

el siguiente paso fue elegir una única estación a usar para ambos tipos de predicción (univa-

riada y univarada), para así dar uniformidad a nuestros resultados, naturalmente se eligió la

estación con menos datos faltantes, como se puede observar en la tabla 5.5 y en la figura 5.2,

tanto para la predicción univariada como multivariada se utilizó la estación BJU.
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Tabla 5.4: Porcentaje de valores faltantes para cada estación en los años 2021 y 2022
Estación Porcentaje de valores faltantes Veredicto
BJU 4.19 % Incluida
UAX 8.34 % Incluida
MER 7.52 % Incluida
TLA 13.91 % Incluida
FAR 14.89 % Incluida
PED 20.10 % Incluida
UIZ 22.11 % Incluida
SAG 22.71 % Incluida
NEZ 23.34 % Incluida
INN 25.78 % Incluida
SFE 26.39 % Incluida
SAC 27.45 % Incluida
MON 29.87 % Incluida
CCA 34.14 % Omitida
CAM 36.14 % Omitida
MPA 42.90 % Omitida
AJU 47.08 % Omitida
GAM 74.87 % Omitida
SJA 100 % Omitida
COY 100 % Omitida
XAL 100 % Omitida
HGM 100 % Omitida
AJM 100 % Omitida
MGH 100 % Omitida

Figura 5.2: Estaciones a utilizar en cada tipo de experimento (Autoría propia).
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Tabla 5.5: Estaciones utilizadas para cada experimento
Predicción Estaciones que entran al modelo como contexto Estaciones a predecir
Univariada BJU BJU

Multivariada BJU, UAX, MER, TLA, FAR, PED, UIZ, SAG, NEZ, INN,
SFE, SAC, MON

BJU

5.6. Imputación de datos

Como pasa de manera usual en cualquier base de datos, se tenían datos faltantes, esto

puede ocurrir por varias razones, como malfuncionamiento del equipo, fallas en los servido-

res o error humano, estos datos faltantes están representados con el número -99, para poder

utilizar la base de datos de manera efectiva con nuestros modelos de inteligencia artificial se

tuvo que efectuar imputación de datos, para nuestra imputación de datos se utilizó el algorit-

mo de Imputación Múltiple con Ecuaciones Encadenadas (o MICE por sus siglas en Inglés:

Multiple Imputation by Chained Equations), esto se puede visualizar en las figuras 5.3 y 5.4.

Figura 5.3: Muestra de la base de datos antes y después de imputar (Autoría propia).
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Figura 5.4: Muestra de la base de datos antes y después de imputar (Autoría propia).

5.7. Promediado de datos

Teniendo los datos imputados el siguiente paso es sacar el promedio por día de concentra-

ción de PM2.5, la base de datos original contiene una medición de concentración de PM2.5

cada hora, por lo tanto, se sacó el promedio a intervalos de 24 valores, esto se hizo, con

la finalidad de determinar si nuestra medición promedio del día esta considerada como una

excedencia o no de acuerdo a la normativa NOM-025-SSA1-2021.

Figura 5.5: Muestra de la base de datos antes y después de promediado por día (Autoría

propia).
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5.8. Codificación a excedencias

Teniendo los datos promediados cada 24 horas, se convirtieron a ceros y unos, dependien-

do si la concentración de PM2.5 es igual o está por encima a lo permitido por la normativa

mexicana NOM-025-SSA1-2021 que establece que el promedio por día (24 horas) no debe

exceder los 41 µg/m3.

Figura 5.6: Ejemplo de valores codificados a excedencias (Autoría propia).

Tabla 5.6: Base de datos después de codificación
Date BJU UAX MER TLA FAR

2021-01-01 1 1 1 1 1
2021-01-02 0 0 1 0 0
2021-01-03 0 0 0 0 0
2021-01-04 0 1 1 0 0
2021-01-05 0 0 0 0 1
2021-01-06 0 0 1 0 0
2021-01-07 0 0 1 1 0
2021-01-08 0 0 1 1 0
2021-01-09 0 0 0 0 0
2021-01-10 0 0 0 0 0
2021-01-11 0 0 0 0 0
2021-01-12 0 0 0 0 0
2021-01-13 0 0 1 0 0
2021-01-14 0 0 0 0 0
2021-01-15 0 0 1 1 1
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5.9. División de datos

Para los experimentos, se dividieron los datos en tres subconjuntos: entrenamiento, vali-

dación y prueba, con proporciones del 70 %, 10 % y 20 % como se muestra en la figura 5.7.

Esta división se realiza con el propósito de evitar el sobreajuste, un problema común en el

entrenamiento de redes neuronales.

Figura 5.7: División de datos (Autoría propia).
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Capítulo 6

Resultados y discusión

6.1. Experimentación

Los experimentos principales se clasifican en dos categorías: LSTM e Informer. Dentro

de cada una de estas categorías, se distinguen dos subcategorías: experimentos multivariados

y experimentos univariados. Además, cada subcategoría incluye experimentos realizados con

horizontes de predicción de 24, 48 y 72 horas. En total, se llevaron a cabo 12 experimentos

diferentes, distribuidos equitativamente entre las dos categorías principales y sus respectivas

subcategorías, como se muestra en la tabla 6.1.

Tabla 6.1: Experimentos realizados de Informer y LSTM
Informer LSTM

Univariada Multivariada Univariada Multivariada

24 h 24 h 24 h 24 h
48 h 48 h 48 h 48 h
72 h 72 h 72 h 72 h

Para cada una de estas 12 variantes se hicieron 1000 experimentos, dando un total de

6,000 experimentos por modelo, es decir, un total 12,000 experimentos para el análisis final

de resultados para este trabajo. Dentro de estos 12,000 experimentos, se fueron variando

diferentes hiperparámetros tanto en el modelo del Informer como en el modelo LSTM, a
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continuación se muestran todos los hiperparámetros que se probaron de manera heurística en

cada modelo.

Tabla 6.2: Hiperparámetros usados en modelo LSTM
Hiperparámetro Valores

Tamaño del batch 10, 15, 20, 25, 30, 35, 40, 45, 50
Longitud de secuencia 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60
Función de activación elu, gelu, relu, sigmoid, swish, tanh

Arquitectura [10], [10, 10, 10], [100, 100, 100], [15, 15, 15], [20], [20, 20, 20], [30]

Tabla 6.3: Hiperparámetros usados en modelo Informer
Hiperparámetro Valores

Tamaño del batch 8, 16, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50
Longitud de secuencia 20, 30, 40, 50, 60, 70
Función de activación sigmoid, gelu, swish, tanh
Dimensión red totalmente conectada 128, 256, 512, 1024
Capas decodificador 1, 2, 4
Dimensión modelo 256, 512
Dropout 0.05, 0.1, 0.15, 0.2
Capas codificador 1, 2, 4
Longitud etiquetas 5, 10
Número de cabezas de atención 4, 8, 10, 12, 14, 18, 20
Taza de aprendizaje 0.01, 0.001, 0.0001

Como se puede observar en el diagrama de la metodología general (figura 5.1), el proceso

comenzó con la realización de experimentos iniciales utilizando una amplia gama de hiperpa-

rámetros propuestos. En total, se llevaron a cabo 500 pruebas iniciales para evaluar el desem-

peño de los modelos con diferentes configuraciones de hiperparámetros. Estos experimentos

fueron fundamentales para entender cómo cada hiperparámetro afectaba el rendimiento de

los modelos en términos de errores MAE y MSE en el conjunto de prueba.

Al finalizar estas pruebas iniciales, se llevó a cabo un análisis exhaustivo de los resulta-

dos. Este análisis permitió identificar cuáles hiperparámetros arrojaban los resultados menos

favorables, es decir, aquellos que resultaron en los mayores errores MAE y MSE. La identifi-

cación de estos hiperparámetros fue crucial para mejorar la eficiencia de los modelos, ya que

su eliminación permitió centrarse en las configuraciones más prometedoras.
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En consecuencia, los hiperparámetros que no contribuyeron positivamente al rendimiento

de los modelos fueron eliminados del conjunto de parámetros considerados para los experi-

mentos posteriores. Este enfoque iterativo y basado en la evidencia garantizó que los modelos

finales se construyeran utilizando únicamente los hiperparámetros más efectivos.

A continuación, en las tablas 6.4 y 6.5, se presentan los hiperparámetros que propor-

cionaron los mejores resultados para nuestros modelos. Los hiperparámetros mostrados en

estas tablas son el producto de un riguroso proceso de selección y optimización, destacando

los valores de hiperparámetros que minimizaron los errores MAE y MSE, mejorando así la

precisión y la eficiencia de los modelos propuestos.

Tabla 6.4: Hiperparámetros con mejores resultados en modelo LSTM
Hiperparámetro Valores

Tamaño del batch 10, 15, 20, 25, 30, 35, 40, 45, 50
Longitud de secuencia 2, 5, 10, 15, 20, 25, 35
Función de activación elu, gelu, relu, sigmoid, swish, tanh

Arquitectura [10], [15, 15, 15], [20], [20, 20, 20], [30]

Tabla 6.5: Hiperparámetros con mejores resultados en modelo Informer
Hiperparámetro Valores

Tamaño del batch 32, 34
Longitud de secuencia 40, 50, 60, 70
Función de activación gelu, swish, tanh
Dimensión red totalmente conectada 128, 256, 512, 1024
Capas decodificador 1, 2, 4
Dimensión modelo 256, 512
Dropout 0.05, 0.1
Capas codificador 1, 2, 4
Longitud etiquetas 5, 10
Número de cabezas de atención 12, 14, 18, 20
Taza de aprendizaje 0.0001

En las tablas 6.6 y 6.7 se puede observar de manera detallada los resultados obtenidos

en ambos modelos con las métricas de MAE y MSE respectivamente, estos resultados son

producto de la utilización de los hiperparámetros que no fueron eliminados dentro de las

primeras 500 pruebas, ya que mostraban los errores menores, tanto para MAE como para
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MSE, para cada modelo, estas tablas están ordenadas de menor a mayor por el promedio de

los errores, cabe destacar que el informer siempre está en las primeras posiciones, lo cual

hace claro que este modelo tiene un mejor desempeño.

Tabla 6.6: Resultados de los modelos propuestos (métrica MAE)
Modelo Tipo Horas MAE min MAE max MAE avg MAE std

Informer

MS 24 0.1730 0.3862 0.2487 0.0312
S 24 0.1721 0.4031 0.2532 0.0339

MS 48 0.1976 0.3974 0.2705 0.0309
S 48 0.2004 0.3823 0.2713 0.0326

MS 72 0.2127 0.3863 0.2816 0.0305
S 72 0.2079 0.3886 0.2829 0.0314

LSTM

MS 24 0.2738 0.5386 0.3641 0.0419
MS 48 0.2927 0.4583 0.3733 0.0378
MS 72 0.3063 0.4607 0.3807 0.0356
S 24 0.3035 0.4605 0.3823 0.0345
S 48 0.3074 0.5254 0.3879 0.0336
S 72 0.3171 0.4745 0.3958 0.0302

Tabla 6.7: Resultados de los modelos propuestos (métrica MSE)
Modelo Tipo Horas MSE min MSE max MSE avg MSE std

Informer

S 24 0.1019 0.2485 0.1458 0.0222
MS 24 0.1025 0.2466 0.1516 0.0200
S 48 0.1113 0.2368 0.1550 0.0215
S 72 0.1178 0.2399 0.1618 0.0199

MS 48 0.1222 0.2526 0.1715 0.0210
MS 72 0.1274 0.2975 0.1829 0.0218

LSTM

S 24 0.1674 0.2723 0.2019 0.0216
MS 24 0.1588 0.3435 0.2023 0.0245
S 48 0.1707 0.2855 0.2066 0.0209
S 72 0.1803 0.2865 0.2130 0.0194

MS 48 0.1717 0.3527 0.2130 0.0279
MS 72 0.1788 0.3694 0.2190 0.0285

Para facilitar una comparación más rigurosa y detallada entre los modelos, se añadieron

las tablas 6.8 y 6.9. En estas tablas, se presentan en la misma fila los resultados de los experi-

mentos equivalentes realizados con ambos modelos, lo que permite una evaluación directa de

su desempeño. Esta disposición permite calcular la mejora porcentual en cada experimento,
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proporcionando una visión más clara y precisa de las ventajas del modelo Informer sobre el

modelo LSTM.

Es importante destacar que los resultados muestran consistentemente que el modelo In-

former supera al modelo LSTM en los 12 experimentos realizados en este estudio. Estos

experimentos abarcan tanto análisis multivariados como univariados y consideran periodos

de predicción de 24, 48 y 72 horas. La comparación detallada y sistemática en las tablas 6.8

y 6.9 demuestra de manera inequívoca que el Informer ofrece un mejor rendimiento en tér-

minos de precisión y eficiencia en comparación con el LSTM, independientemente del tipo y

la duración de la predicción.

Tabla 6.8: Comparación de promedio de MAE entre Informer y LSTM
Tipo Horas MAE AVG LSTM MAE AVG Informer Mejora ( %)
MS 24 0.3641 0.2487 31.69
S 24 0.3823 0.2532 33.77

MS 48 0.3733 0.2705 27.54
S 48 0.3879 0.2713 30.06

MS 72 0.3807 0.2816 26.03
S 72 0.3958 0.2829 28.52

Promedio total 0.3807 0.2680 29.59

Tabla 6.9: Comparación de promedio de MSE entre Informer y LSTM
Tipo Horas MSE AVG LSTM MSE AVG Informer Mejora ( %)
MS 24 0.2023 0.1516 25.06
S 24 0.2019 0.1458 27.79

MS 48 0.2130 0.1715 19.48
S 48 0.2066 0.1550 24.98

MS 72 0.2190 0.1829 16.48
S 72 0.2130 0.1618 24.04

Promedio total 0.2093 0.1614 22.97

En la figura 6.1, se presenta una visualización gráfica que ilustra la mejora porcentual ob-

tenida con el Informer en comparación con la LSTM de cada experimento realizado, tal como

se detalla en las tablas anteriores. En esta figura, la métrica MAE se representa con barras de

color azul ubicadas a la izquierda, mientras que la métrica MSE se representa con barras de
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color verde situadas a la derecha. Es notable que las barras se mantienen consistentemente

por arriba del 20 % en la mayoría de experimentos.

Figura 6.1: Comparación de mejora del error entre Informer y LSTM

De manera más específica, en las figuras 6.2, 6.3, 6.4 y 6.5 se presentan gráficos de caja

que proporcionan una visualización detallada de los resultados de los experimentos. La figura

6.2 muestra los gráficos de caja para el MAE univariado, mientras que la figura 6.3 presenta

los gráficos de caja para el MSE univariado. Por otro lado, la figura 6.4 ilustra los gráficos de

caja para el MAE multivariado y la figura 6.5 se enfoca en los gráficos de caja para el MSE

multivariado.

Estos gráficos permiten observar la distribución de los datos, destacando la mediana, los

cuartiles y la presencia de posibles valores atípicos (outliers). La inclusión de estos gráficos

de caja facilita la identificación de la variabilidad y la dispersión de los datos para cada

modelo, proporcionando una comprensión más profunda de su desempeño en los distintos

experimentos.
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Figura 6.2: Diagrama de caja para MAE en predicción univariada

Figura 6.3: Diagrama de caja para MSE en predicción univariada
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Figura 6.4: Diagrama de caja para MAE en predicción multivariada

Figura 6.5: Diagrama de caja para MSE en predicción multivariada
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6.2. Discusión

El modelo Informer supera consistentemente a la red LSTM en términos de desempeño,

tanto en términos de Error Absoluto Medio (MAE) como de Error Cuadrático Medio (MSE),

en todos los experimentos, incluidas las predicciones multivariadas y univariadas. La mejora

promedio en los errores fue del 29.59 % para MAE y del 22.97 % para MSE. Esto se eviden-

cia claramente en la Figura 6.1, donde se muestra la comparación directa de la mejora del

error, tanto en MAE (en azul) como en MSE (en verde), para cada uno de los experimentos

realizados. Además, se observa que la mejora del error es siempre más significativa en el caso

de las predicciones univariadas.

Es evidente que el modelo Informer supera a la red LSTM en ambos tipos de predic-

ciones, multivariadas y univariadas. Específicamente, el Informer se beneficia de tener más

información disponible, lo que se refleja en los resultados obtenidos para los valores de lon-

gitud de secuencia de ambos modelos, esto se puede observar en las Tablas 6.4 y 6.5 donde

los valores más pequeños de longitud de secuencia, como 20 y 30, no proporcionaron los

mejores resultados para el modelo Informer, a diferencia de la LSTM, que obtuvo buenos

resultados con longitudes más cortas, como 2, 5 y 10.

Asimismo, las Tablas 6.8 y 6.9 evidencian una mejora significativa en las métricas de

predicción univariada al utilizar el modelo Informer. Estos resultados sugieren que la efecti-

vidad del modelo Informer no está limitado a escenarios de predicción multivariada, donde

se dispone de un contexto más amplio, por la información extra que se ingresa al modelo,

sino que también se extiende a predicciones univariadas basadas únicamente en los datos de

la columna objetivo. Este hallazgo respalda la versatilidad y robustez del modelo Informer en

diversas aplicaciones de predicción.
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Conclusiones

Se puede concluir de manera definitiva que el modelo Informer muestra una ventaja sig-

nificativa en comparación con la arquitectura LSTM para predicciones de series de tiempo,

tanto univariadas como multivariadas. Esta investigación demostró que esta innovadora ar-

quitectura, basada en transformers y modelos de atención, es capaz de mejorar el error de

manera consistente, incluso en predicciones con varias horas de anticipación, en este caso

específico de 24, 48 y 72 horas.
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