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1. SOME BASIC MECANICS

1.1. Introduction

This is a reference chapter rather than one for general reading. It is useful as a reminder about the
physical properties of water and for those who want to re-visit some basic physics which is directly
relevant to the behavior of water.

1.2. Units and Dimensions

To understand hydraulics properly it is essential to be able to put numerical values on such things
as pressure, velocity and discharge in order for them to have meaning. It is not enough to say the
pressure is high or the discharge is large; some specific value needs to be given to quantify it. Also,
just providing a number is quite meaningless. To say that a pipeline is 6 long is not enough. It might
be 6 centimeters, 6 meters or 6 kilometers. So the numbers must have dimensions to give them
some useful meaning.

Different units of measurement are used in different parts of the world. The foot, pounds and
second system (known as fps) is still used extensively in the USA and to some extent in the UK. The
metric system, which relies on centimeters, grams and seconds (known as <CGS=), is widely used in
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continental Europe. But in engineering and hydraulics the most common units are those in the SI
system and it is this system which is used throughout this book.

SI Units

The System International of Unites, usually abbreviated to SI, is not difficult to grasp and it has
many advantages over the other systems. It is based on metric measurement and is slowly
replacing the old fps system and the European <CGS= system. All length measurements are in
meters, mass is in kilograms and time is in seconds (Table 1.1). SI units are simple to use and their
big advantage is they can help to avoid much of the confusion which surrounds the use of other
units. For example, it is quite easy to confuse mass and weight in both fps and =CGS= units as they
are both measured in pounds in fps and in kilograms in <CGS=. Any mix-up between them can have
serious consequences for the design of engineering works. In the SI system the difference is clear
because they have different dimensions 3 mass is in kilograms whereas weight is in Newtons. This
is discussed later in Section 1.7.

Table 1.1 Basic SI units of measurement.

Measurement Unit Symbol
Length Meter M
Mass Kilogram Kg
Time Second S

Table 1.2 Some useful derived units.

Measurement Dimension Measurement Dimension
Area m2 Force N
Volume m3 Mass Density kg/m3
Velocity m/s Specific weight N/m3
Aceleration m/s2 Pressure N/m2
Viscosity Kg/ms Momentum Kgm/s
Kinematic Viscosity m2/s Energy for solids Nm/N

Energy for fluids Nm/N

Note there is no mention of centimeters in Table 1.1.

Centimeters are part of the <CGS= units and not SI and so play no part in hydraulics or in this text.
Millimeters are acceptable for very small measurements and kilometers for long lengths 3 but not
centimeters.

Dimensions
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Every measurement must have a dimension so that it has meaning. The units chosen for
measurement do not affect the quantities measured and so, for example, 1.0 meter is exactly the
same as 3.28 feet. However, when solving problems, all the measurements used must be in the
same system of units. If they are mixed up (e.g. centimeters or inches instead of meters, or
minutes instead of seconds) and added together, the answer will be meaningless. Some useful
dimensions which come from the SI system of units in Table 1.1 are included in Table 1.2.

Velocity and Acceleration

In everyday language velocity is often used in place of speed. But they are different. Speed is the
rate at which some object is travelling and is measured in meters/second (m/s) but there is no
indication of the direction of travel. Velocity is speed plus direction. It defines movement in a
particular direction and is also measured in meters/second (m/s). In hydraulics, it is useful to know
which direction water is moving and so the term velocity is used instead of speed. When an object
travels a known distance and the time taken to do this is also known, then the velocity can be
Calculated as follows:

Velocity (m/s)=

Acceleration describes change in velocity. When an object's velocity is increasing then it is
accelerating; when it is slowing down it is decelerating. Acceleration is measured in
meters/second/ second (m/s). If the initial and final velocities are known as well as the time taken
for the velocity to change then the acceleration can be calculated as follows:

Aceleration (m/s) =

EXAMPLE: CALCULATING VELOCITY AND ACCELERATION
An object is moving along at a steady velocity and it takes 150 s to travel 100 m. Calculate the
velocity.

Velocity = = = 0.67 m/s

If the object starts from rest, calculate the acceleration if its final velocity of 1.5 m/s is reached in
50 s:

Acceleration = = = 0.03 m/

1.3. Friction
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Friction is the name given to the force which resists movement and so causes objects to slow down
(Figure 1.1a). It is an important aspect of all our daily lives. Without friction between our feet and
the ground surface it would be difficult to walk and we are reminded of this each time we step
onto ice or some smooth oily surface. We would not be able to swim if water was frictionless. Our
arms would just slide through the water and we would not make any headway 3 just like children
trying to 'swim' in a sea of plastic balls in the playground (Figure 1.1b).

Friction is an essential part of our existence but sometimes it can be a nuisance. In car engines, for
example, friction between the moving parts would cause them to quickly heat up and the engine
would seize up. But oil lubricates the surfaces and reduces the friction.

Friction also occurs in pipes and channels between flowing water and the internal surface of a pipe
or the bed and sides of a channel. Indeed, much of pipe and channel hydraulics is concerned with
predicting this friction force so that the right size of pipe or channel can be chosen to carry a given
flow (see Chapter 4 Pipes and Chapter 5 Channels).

Cha 1 Fig 1 - Friction
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Cha 1 Fig 2 (a) Friction resists movement and (b) Trying to 'swim in a frictionless fluid'.

Friction is not only confined to boundaries, there is also friction inside fluids (internal friction)
which makes some fluids flow more easily than others. The term viscosity is used to describe this
internal friction (see Section 1.13.3).

1.4. Mass and Weight

There is often confusion between mass and weight and this has not been helped by the system of
units used in the past. It is also not helped by our common use of the terms in everyday language.
Mass and weight have very specific scientific meanings and for any study of water it is essential to
have a clear understanding of the difference between them.

Mass refers to an amount of matter or material. It is a constant value and is measured in kilograms
(kg). A specific quantity of matter is often referred to as an object. Hence the use of this term in
the earlier description of Newton's laws.

Weight is a force. Weight is a measure of the force of gravity on an object and this will be
different from place to place depending on the gravity. On the earth there are only slight variations
in gravity, but the gravity on the moon is much less than it is on the earth. So the mass of an object
on the moon would be the same as it is on the earth but its weight would be much less. As weight
is a force, it is measured in Newtons. This clearly distinguishes it from mass which is measured in
kilograms.

Newton's second law also links mass and weight and in this case the acceleration term is the
acceleration resulting from gravity. This is the acceleration that any object experiences when
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dropped and allowed to fall to the earth's surface. Objects dropped in the atmosphere do, in fact,
experience different rates of acceleration because of the resistance of the air 3 hence the reason
why a feather falls more slowly than a coin. But if both were dropped at the same time in a vacuum
they would fall (accelerate) at the same rate. There are also minor variations over the earth's
surface and this is the reason why athletes can sometimes run faster or throw the javelin further in
some parts of the world. However, for engineering purposes, acceleration due to gravity is
assumed to have a constant value of 9.81 m/s2 3 usually called the gravity constant and denoted
by the letter g. The following equation based on Newton's second law provides the link between
weight and mass:

Weight (N) = Mass (kg) X Gravity constant (m/s2)

EXAMPLE: CALCULATING THE WEIGHT OF AN OBJECT
Calculate the weight of an object when its mass is 5 kg.
Using Newton's second law:
Weight = Mass X Gravity constant
Weight = 5 X 9.81 X 49.05 N
Sometimes engineers assume that the gravity constant is 10 m/s2 because it is easier to
multiply by 10 and the error involved in this is not significant in engineering terms.
In this case:
Weight = 5 X 10 = 50 N

Confusion between mass and weight occurs in our everyday lives. When visiting a shop and asking
for 5 kg of potatoes these are duly weighed out on a weigh balance. To be strictly correct we
should ask for 50 N of potatoes, as the balance is measuring the weight of the potatoes (i.e. the
force of gravity) and not their mass. But because gravity acceleration is constant all over the world
(or nearly so for most engineering purposes) the conversion factor between mass and weight is a
constant value. So the shopkeeper's balance will most likely show kilograms and not Newtons. If
shopkeepers were to change their balances to read in Newtons to resolve a scientific confusion,
engineers and scientists might be happy but no doubt a lot of shoppers would not be so happy!

1.5. Scalar and Vector Quantities

Measurements in hydraulics are either called scalar or vector quantities. Scalar measurements only
indicate magnitude. Examples of this are mass, volume, area and length. So if there are 120 boxes
in a room and they each have a volume of 2 m3 both the number of boxes and the volume of each
are scalar quantities.

Vectors have direction as well as magnitude. Examples of vectors include force and velocity.
It is just as important to know which direction forces are pushing and water is moving as well as
their magnitude.
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Dealing with vectors

Scalar quantities can be added together by following the rules of arithmetic. Thus, 5 boxes and 4

boxes can be added to make 9 boxes and 3 m and 7 m can be added to make 10 m.

Vectors can also be added together provided their direction is taken into account. The addition (or
subtraction) of two or more vectors results in another single vector called the resultant and the
vectors that make up the resultant are called the components. If two forces, 25 N and 15 N, are
pushing in the same direction then their resultant is found simply by adding the two together, that
is, 40 N (Figure 1.3a). If they are pushing in opposite directions then their resultant is found by
subtracting them, that is, 10 N. So one direction is considered positive and the opposite direction
negative for the purposes of combining vectors.

But forces can also be at an angle to each other and in such cases a different way of adding or
subtracting them is needed 3 a vector diagram is used for this purpose. This is a diagram drawn to
a chosen scale to show both the magnitude and the direction of the vectors and hence the
magnitude of the resultant vector. An example of how this is done is shown in the box.

Vectors can also be added and subtracted mathematically but a knowledge of trigonometry is
needed. For those interested in this approach, it is described in most basic books on maths and
mechanics.

EXAMPLE: CALCULATING THE RESULTANT FORCE USING A VECTOR DIAGRAM

Two tug boats A and B are pulling a large ferry boat into a harbour. Tug A is pulling with a force of

12 kN, tug B with a force of 15 kN and the angle between the two tow ropes is 40_ (Figure 1.3b).

Calculate the resultant force and show the direction in which the ferry boat will move.

First draw a diagram of the ferry and the two tugs. Then, assuming a scale of 40 mm equals 10 kN
(this is chosen so that the diagram fits conveniently onto a sheet of paper) draw the 12 kN force to
scale, that is, the line LA. Next, draw the second force, 15 kN, to the same scale but starting the
line at A and drawing it at an angle of 40_ to the first line.

This 'adds' the second force to the first one. The resultant force is found by joining the points L and
B, measuring this in mm and converting this to a value in kN using the scale.

Its value is 24 kN. The line of the resultant is shown by the positioning of the line LB in the diagram.
To summarise, the ferry boat will move in a direction LB as a result of the pull exerted by the two
tugs and the resultant force pulling on the ferry in that direction is 24 kN.
The triangle drawn in Figure 1.3b is the vector diagram and shows how two forces can be added.
As there are three forces in this problem it is sometimes called a triangle of forces. It is possible to
add together many forces using the same technique. In such cases the diagram is referred to as a
polygon of forces.
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Cha1 Fig 3 Adding and subtracting vectors

1.6. Work, Energy and Power

Work, energy and power are all words commonly used in everyday language, but in engineering
and hydraulics they have very specific meanings and so it is important to clarify what each means.

Work

Work refers to almost any kind of physical activity but in engineering it has a very specific meaning.
Work is done when a force produces movement. A crane does work when it lifts a load against the
force of gravity and a train does work when it pulls trucks. But if you hold a large weight for a long
period of time you will undoubtedly get very tired and feel that you have done a lot of work but
you will not have done any work at all in an engineering sense because nothing moved.
Work done on an object can be calculated as follows:

Work done (Nm) = Force (N) X Distance moved by the object (m)

Work done is the product of force (N) and distance (m) so it is measured in Newton-metres
(Nm).

Energy

Energy enables useful work to be done. People and animals require energy to do work. They get
this by eating food and converting it into useful energy for work through the muscles of the body.
Energy is also needed to make water flow and this is why reservoirs are built in mountainous areas
so that the natural energy of water can be used to make it flow downhill to a town or to a
hydro-electric power station. In many cases energy must be added to water to lift it from a well or

15



a river. This can be supplied by a pumping device driven by a motor using energy from fossil fuels
such as diesel or petrol. Solar and wind energy are alternatives and so is energy provided by
human hands or animals.

The amount of energy needed to do a job is determined by the amount of work to be done.
So that:

Energy Required = Work Done

so:

Energy Required (Nm) = Force (N) X Distance (m)

Energy, like work, is measured in Newton-meters (Nm) but the more conventional measurement of
energy is watt-seconds (Ws) where:

1 Ws = 1 Nm

But this is a very small quantity for engineers to use and so rather than calculate energy in large
numbers of Newton-meters or watt-seconds they prefer to use watt-hours (Wh) or kilowatt- hours
(kWh). So multiply both sides of this equation by 3600 to change seconds to hours:

1 Wh = 3600 Nm

Now multiply both sides by 1000 to change watts-hours to kilowatt-hours (Wh to kWh):

1 kWh = 3 600 000 Nm
1 kWh = 3600 kNm

Just to add to the confusion some scientists measure energy in joules (J). This is in recognition of
the contribution made by the English physicist, James Joule (181831889) to our understanding of
energy, in particular, the conversion of mechanical energy to heat energy (see next section).
So for the record:

1 joule = 1 Nm

To avoid confusion the term joule is not used in this text. Some everyday examples of energy use
include:

+ A farmer working in the field uses 0.230.3 kWh every day.
+ An electric desk fan uses 0.3 kWh every hour.
+ An air-conditioner uses 1 kWh every hour.

Notice how it is important to specify the time period (e.g. every hour, every day) over which the
energy is used. Energy used for pumping water is discussed more fully in Chapter 8.
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Power

Power is often confused with the term energy. They are related but they have different meanings.
Whilst energy is the capacity to do useful work, power is the rate at which the energy is used.

And so:

Power=

Examples of power requirements, a typical room air-conditioner has a power rating of 3 kW.
This means that it consumes 3 kWh of energy every hour it is working. A small electric radiator has
a rating of 132 kW and the average person walking up and down stairs has a power requirement of
about 70 W.
Energy requirements are sometimes calculated from knowing the equipment power rating and the
time over which it is used rather than trying to calculate it from the work done.
In this case:

Energy (kWh) = Power (kW) X Time (h)

Horse Power (HP) is still a very commonly used measure of power but it is not used in this book, as
it is not an SI unit. However, for the record:

1 kW =1.36 HP

Power used for pumping water is discussed more fully in Chapter 8.

1.7. Momentum

Applying a force to a mass causes it to accelerate (Newton's second law) and the effect of this is to
cause a change in velocity. This means there is a link between mass and velocity and this is called
momentum. Momentum is another scientific term that is used in everyday language to describe
something that is moving 3 we say that some object or a football game has momentum if it is
moving along and making good progress. In engineering terms it has a specific meaning and it can
be calculated by multiplying the mass and the velocity together:

Momentum (kgm/s) = Mass (kg) X Velocity (m/s)

Note the dimensions of momentum are a combination of those of velocity and mass.

The following example demonstrates the links between force, mass and velocity. Figure 1.6 shows
two blocks that are to be pushed along by applying a force to them. Imagine that the sliding
surface is very smooth and so there is no friction.
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Cha 1 Fig 4 Understanding momentum.
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The first block of mass 2 kg is pushed by a force of 15 N for 4 s. Using Newton's second law the
acceleration and the resulting velocity after a period of 4 s can be calculated:

Force = Mass X Acceleration
15 = 2 X f

f = 7.5 m/s2

So for every second the force is applied the block will move faster by 7.5 m/s. After 4 s it will have
reached a velocity of:

4 X 7.5 = 30 m/s

Calculate the momentum of the block:

Momentum = Mass X Velocity
Momentum =2 X 30

Momentum = 60 kgm/s

Now hold this information for a moment. Suppose a larger block of mass 10 kg is pushed by the
same force of 15 N for the same time of 4 s. Use the same calculations as before to calculate the
acceleration and the velocity of the block after 4 s:

15 = 10 X f
And so:

f = 1.5 m/s2

So when the same force is applied to this larger block it accelerates more slowly at 1.5 m/s
for every second the force is applied. After 4 s it will have a velocity of:

4 X 1.5 = 6 m/s

Now calculate momentum of this block:

Momentum = 10 X 6
= 60 kgm/s

Although the masses and the resulting accelerations are very different the momentum produced in
each case when the same force is applied for the same time period is the same.
Now multiply the force by the time:

Force X Time = 15 X 4
Force X Time = 60 Ns

But the dimension for Newtons can also be written as kgm/s2. And so:

Force X Time = 60 kgm/s
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This is equal to the momentum and has the same dimensions. It is called the impulse and it is
equal to the momentum it creates. So:

Impulse = Momentum

And:

Force X Time = Mass X Velocity

This is more commonly written as:

Impulse = Change of Momentum

Writing 'change in momentum' is more appropriate because an object need not be starting from
rest 3 it may already be moving. In such cases the object will have some momentum and an
impulse would be increasing (changing) it. A momentum change need not be just a change in
velocity but also a change in mass. If a lorry loses some of its load when travelling at speed its mass
will change. In this case the lorry would gain speed as a result of being smaller in mass, the
momentum before being equal to the momentum after the loss of load.

The equation for momentum change becomes:

Force X Time = Mass X Change in Velocity

This equation works well for solid blocks which are forced to move but it is not easily applied to
flowing water in its present form. For water it is better to look at the rate at which the water mass
is flowing rather than thinking of the flow as a series of discrete solid blocks of water. This is done
by dividing both sides of the equation by time:

Force= X Change in velocity

Mass divided by time is the mass flow in kg/s and so the equation becomes:

Force (N) = Mass flow (kg/s) X Change in velocity (m/s)

So when flowing water undergoes a change of momentum either by a change in velocity or a
change in mass flow (e.g. water flowing around a pipe bend or through a reducer) then a force is
produced by that change (Figure 1.6b). Equally if a force is applied to water (e.g. in a pump or
turbine) then the water will experience a change in momentum.

As momentum is about forces and velocities the direction in which momentum changes is also
important. In the simple force example, the forces are pushing from left to right and so the
movement is from left to right. This is assumed to be the positive direction. Any force or
movement from right to left would be considered negative. So if several forces are involved they
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can be added or subtracted to find a single resultant force. Another important point to note is that
Newton's third law also applies to momentum. The force on the reducer (Figure 1.6b) could be
drawn in either direction. In the diagram the force is shown in the negative direction (right to left)
and this is the force that the reducer exerts on the water. Equally it could be drawn in the opposite
direction, that is, the positive direction (left to right) when it would be the force of the water on
the reducer.

Either way the two forces are equal and opposite as Newton9s third law states.
The application of this idea to water flow is developed further in Section 4.1.3.

Those not so familiar with Newton's laws might find momentum more difficult to deal with than
other aspects of hydraulics. To help understand the concept here are two interesting examples of
momentum change which may help.

1.8. Properties of Water

The following are some of the physical properties of water. This will be a useful reference for work
in later chapters.

1.8.1. Density

When dealing with solid objects their mass and weight are important, but when dealing with fluids
it is much more useful to know about their density. There are two ways of expressing density; mass
density and weight density. Mass density of any material is the mass of one cubic meter of the
material and is a fixed value for the material concerned. For example, the mass density of air is
1.29 kg/m3, steel is 7800 kg/m3 and gold is 19 300 kg/m3.

Mass density is determined by dividing the mass of some object by its volume:

Density (kg/ ) =

Mass density is usually denoted by the Greek letter (rho).

For water the mass of one cubic meter of water is 1000 kg and so:

r= 1000 kg/m3

Density can also be written in terms of weight as well as mass. This is referred to as weight density
but engineers often use the term specific weight (w). This is the weight of one cubic meter of
water.

Newton's second law is used to link mass and weight:

Weight Density (kN/m3) = Mass Density (kg/m3) X Gravity Constant (m/s2)
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For Water:
Weight Density = 1000 X 9.81
Weight Density = 9810 N/m3 (or 9.81 kN/m3)
Weight Density = 10 kN/m3 (approximately)

Sometimes weight density for water is rounded off by engineers to 10 kN/m3. Usually this makes
very little difference to the design of most hydraulic works. Note the equation for weight density is
applicable to all fluids and not just water. It can be used to find the weight density of any fluid
provided the mass density is known.

Engineers generally use the term specific weight in their calculations whereas scientists tend to use
the term _g to describe the weight density. They are in effect the same but for clarity, “rg” is used
throughout this book.

1.8.2. Relative density or Specific gravity

Sometimes it is more convenient to use relative density rather than just density. It is more
commonly referred to as specific gravity and is the ratio of the density of a material or fluid to that
of some standard density 3 usually water. It can be written both in terms of the mass density and
the weight density.

Specific Gravity (SG)=

Note that specific gravity has no dimensions. As the volume is the same for both the object and the
water, another way of writing this formula is in terms of weight:

Specific Gravity =

Some useful specific gravity values are included in Table 1.3.

The density of any other fluid (or any solid object) can be calculated by knowing the specific
gravity. The mass density of mercury, for example, can be calculated from its specific gravity:

Specific gravity of mercury (SG) =

Table 1.3 Some values of specific gravity.

Material/fluid Specific gravity Comments

Material Specific Gravity Comments
Water 1.0 All other specific gravity

measurements are made
relative to that of eater
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Oil 0.9 Less than 1.0 and so it floats
on water

Sand/ silt 2.65 Important in sediment
transport problems

Mercury 13.6 Fluid used in manometer for
measuring pressure

So:

Mass density of mercury = SG of mercury X mass density of water
Mass density of mercury = 13.6 X 1000
Mass density of mercury = 13 600 kg/m3

The mass density of mercury is 13.6 times greater than that of water.

Archimedes used this concept of specific gravity in his famous principle (Table 1.3), which is
discussed in Section 2.12.

1.8.3. Viscosity

This is the friction force which exists inside a fluid as it flows. It is sometimes referred to as the
dynamic viscosity. To understand the influence of viscosity imagine a fluid flowing along a pipe as a
set of thin layers (Figure 1.7a). Although it cannot be seen and it is not very obvious, the layer
nearest to the boundary actually sticks to it and does not slide along as the other layers do.

The next layer away from the boundary is moving but is slowed down by friction between it and
the first layer. The third layer moves faster but is slowed by the second. This effect continues until
the entire flow is affected. It is similar to the sliding effect of a pack of playing cards (Figure 1.7b).

This internal friction between the layers of fluid is known as the viscosity. Some fluids, such as
water, have a low viscosity and this means the friction between the layers of fluid is low and its
influence is not so evident when water is flowing. In contrast engine oils have a much higher
viscosity and they seem to flow more slowly. This is because the internal friction is much greater.

One way to see viscosity at work is to try and pull out a spoon from a jar of honey. Some of the
honey sticks to the spoon and some sticks to the jar, demonstrating that fluid sticks to the
boundaries as referred to above. There is also a resistance to pulling out the spoon and this is the
influence of viscosity. This effect is the same for all fluids including water but it cannot be so clearly
demonstrated as in the honey jar. In fact, viscous resistance in water is ignored in many hydraulic
designs. To take account of it not only complicates the problem but also has little or no effect on
the outcome because the forces of viscosity are usually very small relative to other forces involved.
When forces of viscosity are ignored the fluid is described as an ideal fluid.

Another interesting feature of the honey jar is that the resistance changes depending on how
quickly the spoon is pulled out. The faster it is pulled the more resistance there is to the pulling.
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Newton related this rate of movement (the velocity) to the resistance and found they were
proportional. This means the resistance increases directly as the velocity of the fluid increases. In
other words the faster you try to pull the spoon out of the honey jar the greater will be the force
required to do it. Most common fluids conform to this relationship and are still known today as
Newtonian fluids.

Cha 1 Fig 5 Underestanding Viscosity

Some modern fluids however, have different viscous properties and are called non-Newtonian
fluids. One good example is tomato ketchup. When left on the shelf it is a highly viscous fluid which
does not flow easily from the bottle. Sometimes you can turn a full bottle upside down and
nothing comes out. But shake it vigorously (in scientific terms this means applying a shear force) its
viscosity suddenly changes and the ketchup flows easily from the bottle. In other words, applying a
force to a fluid can change its viscous properties often to our advantage.

Although viscosity is often ignored in hydraulics, life would be difficult without it. The spoon in the
honey jar would come out clean and it would be difficult to get the honey out of the jar.
Rivers rely on viscosity to slow down flows otherwise they would continue to accelerate to very
high speeds. The Mississippi river would reach a speed of over 300 km/h as its flow gradually
descends 450 m towards the sea if water had no viscosity. Pumps would not work because
impellers would not be able to grip the water and swimmers would not be able to propel
themselves through the water for the same reason.

Viscosity is usually denoted by the Greek letter (mu).
For water:

= 0.00114 kg/ms at a temperature of 15°C

= 1.14 X kg/ms

The viscosity of all fluids is influenced by temperature. Viscosity decreases with increasing
temperature.

1.8.3.1. Kinematic viscosity
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In many hydraulic calculations viscosity and mass density go together and so they are often
combined into a term known as the kinematic viscosity. It is denoted by the Greek letter (nu) and is
calculated as follows:

Kinematic viscosity ( ) =

For water:

n= 1.14 X m2/s at a temperature of 15°C

Sometimes kinematic viscosity is measured in Stokes in recognition of the work of Sir George
Stokes who helped to develop a fuller understanding of the role of viscosity in fluids.

Stokes = 1 m2/s
For water:

n= 1.14 X Stokes

1.8.3.2. Dinamic Viscosity

The usual symbol for dynamic viscosity used by mechanical and chemical engineers (as well as

fluid dynamicists) is the Greek letter mu (μ), The symbol <η= is also used by chemists, physicists,

and the IUPAC.

The SI physical unit of dynamic viscosity is the pascal-second (Pa·s), (equivalent to N·s/m2, or

kg/(m·s)). If a fluid with a viscosity of one Pa·s is placed between two plates, and one plate is

pushed sideways with a shear stress of one pascal, it moves a distance equal to the thickness of

the layer between the plates in one second.

The <cgs= physical unit for dynamic viscosity is the poise[8] (P), named after Jean Louis Marie

Poiseuille. It is more commonly expressed, particularly in ASTM standards, as centipoise (cP).

Water at 20 °C has a viscosity of 1.0020 cP or 0.001002 kg/(m·s).

1 P = 1 g·cm−1·s−1.

1 Pa·s = 1 kg·m−1·s−1 = 10 P.

The relation to the SI unit is

1 P = 0.1 Pa·s,
1 cP = 1 mPa·s = 0.001 Pa·s

1.8.4. Surface Tension
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An ordinary steel sewing needle can be made to float on water if it is placed there very carefully.

A close examination of the water surface around the needle shows that it appears to be sitting in a
slight depression and the water behaves as if it is covered with an elastic skin. This property is
known as surface tension. The force of surface tension is very small and is normally expressed in
terms of force per unit length.

For water:

Surface tension = 0.51 N/m at a temperature of 20°C

This force is ignored in most hydraulic calculations but in hydraulic modelling, where small-scale
models are constructed in a laboratory to try and work out forces and flows in large, complex
problems, surface tension may influence the outcome because of the small water depths and flows
involved.

1.8.5. Compressibility

It is easy to imagine a gas being compressible and to some extent some solid materials such as
rubber. In fact all materials are compressible to some degree including water which is 100 times
more compressible than steel! The compressibility of water is important in many aspects of
hydraulics. Take for example the task of closing a sluice valve to stop water flowing along a
pipeline. If the water was incompressible it would be like trying to stop a solid 40 ton truck. The
water column would be a solid mass running into the valve and the force of impact could be
significant. Fortunately water is compressible and as it impacts on the valve it compresses like a
spring and this absorbs the energy of the impact. Returning to the road analogy, it is similar to
what happens when cars crash on the road because of some sudden stoppage. Each car collapses
on impact and this absorbs much of the energy of the collision. However, this is not the end of the
story. As the water compresses the energy that is absorbed causes the water pressure to suddenly
rise and this leads to another problem known as water hammer. This is discussed more fully in
Section 4.16.
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2. HIDROSTATICS (WATER AT REST)

2.1. Introduction

Hydrostatics is the study of water which is not moving, that is, it is at rest. It is important to civil
engineers for the design of water storage tanks and dams. What are the forces created by water
and how strong must a tank or a dam be to resist them? It is also important to naval architects who
design ships and submarines. How deep can a submarine go before the pressures become too
great and damage it? The answers to these questions can be found from studying hydrostatics.

The theory is quite simple both in concept and in use. It is also a well-established theory that was
set down by Archimedes (2873212BC) over 2000 years ago and is still used in much the same way
today.

2.2. Pressure

The term pressure is used to describe the force exerted by water on each square meter of some
object submerged in water, that is, force per unit area. It may be the bottom of a tank, the side of a
dam, a ship or a submerged submarine. It is calculated as follows:

Pressure =

Introducing the units of measurement:

Pressure (kN/ ) =

Force is in kilo-Newton9s (kN), area is in square meters (m2) and so pressure is measured in kN/m2.
Sometimes pressure is measured in Pascal’s (Pa) in recognition of Blaise Pascal (162031662) who
clarified much of modern-day thinking about pressure and barometers for measuring atmospheric
pressure.

1 Pa = 1 N/m2

One Pascal is a very small quantity and so kilo-Pascal9s are often used so that:

1 kPa = 1 kN/m2

Although it is in order to use Pascal9s, kilo-Newton9s per square meter is used throughout this text
for the dimensions of pressure.
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EXAMPLE: CALCULATING PRESSURE IN A TANK OF WATER
Calculate the pressure on a flat plate 3 m by 2 m when a mass of 50 kg rests on it.
Calculate the pressure when the plate is reduced to 1.5 m by 2 m (Figure 2.1).
First calculate the weight on the plate. Remember weight is a force.
Mass on plate = 50 kg
Weight on the Plate = Mass X Gravity constant
Weight on the Plate = 50 X 9.81 = 490.5 N
Plate Area = 3 X 2 = 6 m2

Pressure on Plate = =
Pressure on Plate = 81.75 N/m2
When the Plate is reduced to 1.5 m by 2 m:
Plate Area = 1.5 X 2 = 3 m2

Pressure on Plate =
Pressure on Plate =163.5 N/m2
Note that the mass and the weight remain the same in each case. But the areas of the
plate are different and so the pressures are also different.

Cha 2 Fig 1 Different areas produce different pressures for the smane forces

2.2.1. Force and Pressure are different

Force and pressure are terms that are often confused. The difference between them is best
illustrated by an example. If you had to choose between an elephant standing on your foot or a
woman in a high-heel (stiletto) shoe, which would you choose? The sensible answer would be the
elephant, as it is less likely to do damage to your foot than the high-heel shoe. To understand this is
to appreciate the important difference between force and pressure.

The weight of the elephant is obviously greater than that of the woman but the pressure under the
elephant9s foot is much less than that under the high-heel shoe (see calculations in the box).
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The woman9s weight (force) is small in comparison to that of the elephant, but the area of the shoe
heel is very small and so the pressure is extremely high. So the high-heel shoe is likely to cause you
more pain than the elephant. This is why high-heel shoes, particularly those with a very fine heel,
are sometimes banned indoors as they can so easily punch holes in flooring and furniture!

There are many other examples which highlight the difference. Agricultural tractors often use wide
(floatation) tires to spread their load and reduce soil compaction. Military tanks use caterpillar
tracks to spread the load to avoid getting bogged down in muddy conditions. Eskimos use shoes
like tennis rackets to avoid sinking into the soft snow.

EXAMPLE: THE ELEPHANT’S FOOT AND THE WOMAN’S SHOE
An elephant has a mass of 5000 kg and its feet are 0.3 m in diameter. A woman has a mass of 60 kg
and her shoe heel has a diameter of 0.01 m. Which produces the greater pressure 3 the elephant9s
foot or woman9s shoe heel (Figure 2.2)?
First calculate the pressure under the elephant9s foot:
Elephant9s mass = 5000 kg
Elephant9s weight = 5000 X 9.81

= 49 050 N = 49 kN

Weight on each foot = = 12.25 kN

2.2 Which produces the greater pressure?

Foot area = = =
= 0.07 m2

Pressure under foot = =
= 175 kN/m2

Now calculate the pressure under the woman9s shoe heel:
Woman9s mass = 60 kg
Woman9s weight = 589 N = 0.59 kN

Weight on each foot = = 0.29 kN
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Area of shoe heel= = =
= 0.0001 m2

Pressure under heel = =
= 2900 kN/m2

The pressure under the woman9s heel is 16 times greater than under the elephant9s foot.
So which would you rather have standing on your foot.

2.2.2. Pressure and Depth

The pressure on some object under water is determined by the depth of water above it. So the
deeper the object is below the surface, the higher will be the pressure. The pressure can be
calculated using the pressure-head equation:

p = rgh

Where p is pressure (kN/m2); _ is mass density of water (kN/m3); g is gravity constant (m/s2); h is
depth of water (m).

This equation works for all fluids and not just water, provided of course that the correct value of
density is used for the fluid concerned.

To see how the pressure-head equation is derived look in the box below.

DERIVATION: PRESSURE-HEAD EQUATION

Imagine a tank of water of depth h and a cross-sectional area of a. The weight of water on the
bottom of the tank (remember that weight is a force and is acting downwards) is balanced by an
upward force from the bottom of the tank supporting the water (Newton9s third law). The
pressure-head equation is derived by calculating these two forces and putting them equal to each
other (Figure 2.3).
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Cha 2 Fig 2 Calculating the forces on the bottom of a tank.

First calculate the downward force. This is the weight of water. To do this first calculate the volume
and then the weight using the density:

Volume of water = cross-sectional area X depth
Volume of water = a X h

And so:

Weight of water in tank = volume X density X gravity constant
Weight of water in tank = a X h X r X g

This is the downward force of the water ↓. Next calculate the supporting (upward) force from the
base:

Supporting force = pressure X area
Supporting force = p X a

Now put these two forces equal to each other:
p X a = a X h X r X g

The area a cancels out from both sides of the equation and so:

p = rgh

Pressure = mass density X gravity constant X depth of water

This is the pressure-head equation and it links pressure with the depth of water. It shows that
pressure increases directly as the depth increases. Note that it is completely independent of the
shape of the tank or the area of base.

EXAMPLE: CALCULATING PRESSURE AND FORCE ON THE BASE OF A WATER TANK
A rectangular tank of water is 3 m deep. If the base measures 3 m by 2 m, calculate the pressure
and force on the base of the tank (Figure 2.4).
Use the pressure-head equation:
p = rgh

= 1000 X 9.81 X 3.0
= 29 430 N/m2
= 29.43 kN/m2

Calculate the force on the tank base using the pressure and the area:
Force = pressure X area
Base area = 3 X 2 = 6 m2
Force = 29.43 X 6
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= 176.6 kN

Cha 2 Fig. 3 Calculating force and pressure on tank base.

2.2.3. Pressure is Same in all Directions

Although in the box example the pressure is used to calculate the downward force on the tank

base, pressure does not in fact have a specific direction 3 it pushes in all directions. To understand

this, imagine a cube immersed in water (Figure 2.5). The water pressure pushes on all sides of the

cube and not just on the top. If the cube was very small then the pressure on all six faces would be

almost the same. If the cube gets smaller and smaller until it almost disappears, it becomes clear

that the pressure at any point in the water is the same in all directions.

So the pressure pushes in all directions and not just vertically. This idea is important for designing

dams because it is the horizontal action of pressure which pushes on a dam and which must
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Cha 2 Fig 3 Pressure is the same in all directions.

Cha 2 Fig 4 Pressure is the same at the base of all the containers.

be resisted if the dam is not to fail. Note also that the 8pressures9 in Figure 2.5 are drawn pushing

inwards. But they could equally have been drawn pushing outwards to make the same argument 3

remember Newton9s third law.

2.2.4. The Hydrostatic Paradox

It is often assumed that the size of a water tank or its shape influences pressure but this is not the
case (Figure 2.6). It does not matter if the water is in a large tank or in a narrow tube. The
pressure-head equation tells us that water depth is the only variable that determines the pressure.
So the base area has no effect on the pressure nor does the amount of water in the tank.

What is different of course is the force on the base of different containers. The force on the base of
each tank is equal to weight of water in each of the containers. But if the depth of water in each is
the same then the pressure will also be the same.

2.2.5. Pressure Head

Engineers often refer to pressure in terms of meters of water rather than as a pressure in kN/m2.

So, referring to the pressure calculation in the box, instead of saying the pressure is 29.43 kN/m2
they will say the pressure is 3 m head of water. They can do this because of the unique relationship
between pressure and water depth (p gh). It is called the pressure head or just head and is
measured in meters. It is the water depth h referred to in the pressure-head equation.

Both ways of stating the pressure are correct and one can easily be converted to the other using
the pressure-head equation.
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Engineers prefer to use head measurements because, as will be seen later, differences in ground
level can affect the pressure in a pipeline. It is then an easy matter to add (or subtract) changes in
ground level to pressure values because they both have the same dimensions.

A word of warning though. When head is measured in meters it is important to say what the liquid
is 3 3 m head of water will be a very different pressure from 3 m head of mercury. This is because
the density term _ is different. So the rule is 3 say what liquid is being measured, for example, 3
meters head of water or 3 meters head of mercury etc. See the worked example in the box.

EXAMPLE: CALCULATING PRESSURE HEAD IN MERCURY
Building on the previous example, calculate the depth of mercury needed in the tank to produce
the same pressure as 3 m depth of water (29.43 kN/m2). Specific gravity (SG) of mercury is 13.6.

First calculate the density of mercury:

ρ (mercury) = ρ (water) X SG (mercury)
ρ (mercury)= 1000 X 13.6
ρ (mercury)= 13 600 kg/m3

Use the pressure-head equation to calculate the head of mercury:
p = ρgh

Where ρ is now the density and h is the depth of mercury:
29 430 = 13 600 X 9.81 X h
h = 0.22 m of mercury

So the depth of mercury required to create the same pressure as 3 m of water is only
0.22 m. This is because mercury is much denser than water.

2.2.6. Atmospheric Pressure

The pressure of the atmosphere is all around us pressing on our bodies. Although we often talk
about things being 8as light as air9 when there is a large depth of air, as on the earth9s surface, it
creates a very high pressure of approximately 100 kN/m2. The average person has a skin area of 2
m2 so the force acting on each of us from the air around us is approximately 200 kN (the
equivalent of 200 000 apples or approximately 20 tons). A very large force indeed! Fortunately
there is an equal and opposite pressure from within our bodies that balances the air pressure and
so we feel no effect (Newton9s third law).

At high altitudes where atmospheric pressure is less than at the earth9s surface, some people suffer
from nose bleeds due to their blood pressure being much higher than that of the surrounding
atmosphere. We also notice slight, sudden changes in air pressure. For instance, when we fly in an
airplane, even though the cabin is pressurized, our ears pop as our bodies adjust to changes in the
cabin pressure. But if for some reason the cabin pressure system failed suddenly removing one side
of this pressure balance then the result could be catastrophic. Inert gases such as nitrogen, which
are normally dissolved in our body fluids and tissues, would rapidly start to form gas bubbles which
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can result in sensory failure, paralysis and death. Deep sea divers are well aware of this rapid
pressure change problem and so make sure that they return to the surface slowly so that their
bodies have enough time to adjust to the changing pressure. It is known as 8the bends9. A good
practical demonstration of what happens can be seen when you open a fizzy drink bottle. When
the cap is removed from the bottle, gas is heard escaping, and bubbles can be seen forming in the
drink. This is carbon dioxide gas coming out of solution as a result of the sudden pressure drop
inside the bottle as it equalizes with the pressure of the atmosphere.

It was in the 17th century that scientists such as Evangelista Torricelli (160831647), a pupil of

Galileo Galilee (156431642), began to understand about atmospheric pressure and to study the

importance of vacuums 3 the empty space when all the air is removed. Scientists previously

explained atmospheric effects by saying that nature abhors a vacuum. By this they meant that if

the air is sucked out of a bottle it will immediately fill by sucking air back in again when it is opened

to the atmosphere. But Galileo commented that a suction pump could not lift water more than 10

m so there appeared to be a limit to this abhorrence. Today we know that it is not the vacuum in

the bottle that sucks in the air but the outside air pressure that pushes the air in.

The end result is the same (i.e. the bottle is filled with air), but the mechanism is quite different.

Galileo realized that this had important consequences for suction pumps. Suction pumps do not
8suck9 up water as was commonly thought. It is atmospheric pressure on the surface of the water
that pushes water into the pump and to do this the air must first be removed from the pump to
create a vacuum 3 a process known as 8priming9. The implication of this is that atmospheric
pressure (10 m of water) puts an absolute limit on how high a pump can be located above the
water surface and still work. In practice the limit is a lot lower than this but more about this in
Section 8.4. Siphons too rely on atmospheric pressure in a similar way (Section 7.11).

Atmospheric pressure does vary over the surface of the earth. It is lower in mountainous regions
and also varies as a result of the earth9s rotation and temperature changes in the atmosphere
which both cause large air movements. They create high and low pressure areas that create winds
as air flows from high pressure to low pressure areas in an attempt to try and equalize the air
pressure. This may be important in meteorology but in hydraulics such differences are relatively
small and have little effect on solving problems 3 except of course if you happen to be building a
pumping station for a community in the Andes or the Alps. So for all intents and purposes
atmospheric pressure close to sea level can be assumed constant at 100 kN/m2 3 or approximately
10 m head of water.

EXAMPLE: EXPERIENCING ATMOSPHERIC PRESSURE
One way of experiencing atmospheric pressure is to place a large sheet of paper on a table over a
thin piece of wood. If you hit the wood sharply it is possible to strike a considerable blow without
disturbing the paper. You may even break the wood. This because the paper is being held down by
the pressure of the atmosphere.

If the paper is 1.0 m2 then the force holding down the paper can be calculated as follows:

Force = Pressure X Area
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In this case:
Pressure = atmospheric pressure
Pressure = 100 kN/m2
And so:
Force = 100 X 1 = 100 kN
In terms of apples this is about 100 000, which is a large force. It is little wonder that the wood
breaks before the paper lifts.

Cha 2 Fig 5 Measuring atmospheric pressure.

2.2.7. Mercury Barometer

One of the instruments used to measure atmospheric pressure is the mercury barometer. It was
developed by Evangelista Torricelli in 1643, and has largely remained unchanged since except for
the introduction of a vernier measuring scale to measure accurately the small changes in
atmospheric pressure. This was done by Fortin in 1810 and so the instrument is now referred to as
the Fortin barometer.

Torricelli9s barometer consists of a vertical glass tube closed at one end, filled with mercury and
inverted with the open end immersed in a cistern of mercury (Figure 2.10). The cistern surface is
exposed to atmospheric pressure and this supports the mercury column, the height of which is a
measure of atmospheric pressure. It is normally measured in mm and the long-term average value
at sea level is 760 mm.

Torricelli could have used water for the barometer instead of mercury, but he would have needed a
tube over 10 m high to do it 3 not a very practical proposition for the laboratory or for taking
measurements
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EXAMPLE: MEASURING ATMOSPHERIC PRESSURE USING
A MERCURY BAROMETER
Calculate atmospheric pressure when the reading on a mercury barometer is 760 mm of mercury.
What would be the height of the column if the same air pressure was measured using water
instead of mercury?
The pressure-head equation links together atmospheric pressure and the height of the mercury
column, but remember the fluid is now mercury and not water:
Atmospheric pressure = rgh
h is 760 mm and r for mercury is 13 600 kg/m3 (13.6 times denser than water)
So:

Atmospheric pressure = 13 600 X 9.81 X 0.76
Atmospheric pressure = 101 400 N/m2 or 101.4 kN/m2

Calculate the height of the water column to measure atmospheric pressure using the
pressure-head equation again:

Atmospheric pressure = rgh
This time the fluid is water and so:

101 400 = 1000 X 9.81 X h
h = 10.32 m

This is a very tall water column and there would be practical difficulties if it was used for routine
measurement of atmospheric pressure. Hence the reason why a very dense liquid like mercury is
used to make measurement more manageable.
Atmospheric pressure is also used as a unit of measurement for pressure both for meteorological

Purposes and in hydraulics. This unit is known as the bar. For convenience I bar pressure is
rounded off to 100 kN/m2.

A more commonly used term in meteorology is the millibar.

So:

1 millibar = 0.1 kN/m2 = 100 N/m2
To summaries 3 there are several ways of expressing atmospheric pressure:

Atmospheric pressure = 1 bar
or = 100 kN/m2
or = 10 m of water
or = 760 mm of mercury
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EXAMPLE: CALCULATING PRESSURE HEAD
A pipeline is operating at a pressure of 3.5 bar. Calculate the pressure in meters head of
water.
1 bar = 100 kN/m2 = 100 000 N/m2
And so:
3.5 bar = 350 kN/m2 = 350 000 N/m2
Use the pressure-head equation:
p = rgh
350 000 = 1000 X 9.81 X h
Calculate head h:
h = 35.67 m
Round this off: 3.5 bar = 36 m of water (approximately)

Cha 2 Fig 6 Gauge and absolute pressures

2.3. Measuring Pressure

A barometer is a device that uses a liquid in a tube to measure the atmospheric pressure. A glass
tube is filled with the liquid and inverted with its open end in a dish of the same liquid. The liquid
that is used in real barometers is mercury (Hg), however we will be discussing a "Water Barometer"
physlet (see the illustration on the right) to explain the principle of operation

There are two pressure sensors (small red rectangles, one in the middle and one on the left) in the
physlet which can be moved to show the pressure at a given point. Move these pressure sensors to
measure the pressures at various points. You will find (using the middle sensor) that the pressure
at point V (interface between the 'vacuum' and the water), is equal to zero. And as you move
the sensor down, the pressure at points A , B and C increases linearly with depth according to the
formula we derived in the last section for fluid at rest:
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Where is the depth below the point V.

Within the same (continuous) liquid, the pressure is the same at the same depth (level). Check the
pressures at Po with that at Pi and at D with that at C (pressures at O and D are measured using the

right side sensor). This tells us the height of the column of the liquid measures

the atmospheric pressure as . Approximate average pressure at sea level is
given as 1.01 x 105 Pa, which corresponds to 10.3 m of water column in the water barometer!

When mercury is used as the liquid we have the real Barometer and for mercury is 760
mm (76.0 cm). Therefore the atmospheric pressure is given as 760 torr (1 torr = 1 mm Hg
(millimeter of mercury)).

Cha 2 Fig 7 Mercury Barometer

2.3.1. Gauge and Absolute Pressures

Pressure measuring devices work in the atmosphere with normal atmospheric pressure all around
them. Rather than add atmospheric pressure each time a measurement is made it is common
practice to assume that atmospheric pressure is equal to zero and so it becomes the base line (or
zero point) from which all pressure measurements are made. It is rather like setting sea level as the
zero from which all ground elevations are measured (Figure 2.11). Pressures measured in this way
are called gauge pressures. They can either be positive (above atmospheric pressure) or negative
(below atmospheric pressure).
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Most pressure measurements in hydraulics are gauge pressures but some mechanical engineers,

working with gas systems occasionally measure pressure using a vacuum as the datum. In such

cases the pressures are referred to as absolute pressures. It is not possible to have a pressure lower

than vacuum pressure and so all absolute pressures have positive values.

To summaries:

Gauge pressures are pressures measured above or below atmospheric pressure. Absolute pressures
are pressures measured above a vacuum.

To change from one to the other:

Absolute pressure = gauge pressure + atmospheric pressure

Note: if only the word pressure is used, it is reasonable to assume that this means gauge pressure.

2.3.2. Bourdon Gauges

Pressure can be measured in several ways. The most common instrument used is the Bourdon
Gauge (Figure 2.12a). This is located at some convenient point on a pipeline or pump to record
pressure, usually in kN/m2 or bar. It is a simple device and works on the same principle as a party
toy. When you blow into it, the coil of paper unfolds and the feather rotates. Inside a Bourdon
gauge there is a similar curved tube which tries to straighten out under pressure and causes a
pointer to move through a gearing system across a scale of pressure values.

2.3.3. Piezometers

This is another device for measuring pressure. A vertical tube is connected to a pipe so that water
can rise up the tube because of the pressure in the pipe (Figure 2.12a). This is called a piezometer
or standpipe. The height of the water column in the tube is a measure of the pressure in the pipe,
that is, the pressure head. The pressure in kN/m2 can be calculated using the pressure-head
equation.

EXAMPLE: MEASURING PRESSURE USING A STANDPIPE
Calculate the height of a standpipe needed to measure a pressure of 200 kN/m2 in a water pipe.
Using the pressure-head equation:

p = rgh
200 000 = 1000 X 9.81 X h

Note in the equation pressure and density are both in N 3 not kN.
h = 20.4 m
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A very high tube would be needed to measure this pressure and it would be a rather impracticable
measuring device! For this reason high pressures are normally measured using a Bourdon gauge or
a manometer.

Cha 2 Fig 8 Piezometer
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2.3.4. Manometers

Vertical standpipes are not very practical for measuring high pressures (see example in box). An
alternative is to use a U-tube manometer (Figure 2.12b).

The bottom of the U-tube is filled with a different liquid which does not mix with that in the pipe.
When measuring pressures in a water system, oil or mercury is used. Mercury is very useful
because high pressures can be measured with a relatively small tube (see atmospheric pressure).

To measure pressure, a manometer is connected to a pipeline and mercury is placed in the bottom
of the U-bend. The basic assumption is that as the mercury in the manometer is not moving the
pressures in the two limbs must be the same. If a horizontal line X3X is drawn through the mercury
surface in the first limb and extended to the second limb then it can be assumed that:

Pressure at point A = Pressure at point B

This is the fundamental assumption on which all manometer calculations are based. It is then a
matter of adding up all the components which make up the pressures at A and B to work out a
value for the pressure in the pipe.

First calculate the pressure at A:

Pressure at A = Water pressure at centre of pipe (p)
+ pressure due to water column h1

Pressure at A = p + r(water)g
Pressure at A = p + (1000 X 9.81 x h1)
Pressure at A = p + 9810 X h1

Now calculate the pressure at B:

Pressure at B = Pressure due to mercury column h2
+ Atmospheric pressure

Normally atmospheric pressure is assumed to be zero. So:

Pressure at B = r(mercury) g h2 + 0
Pressure at B = 1000 X 13.6 X 9.81 X h2
Pressure at B = 133 430 h2

Putting the pressure at A equal to the pressure at B:
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p + 9810 h1 = 133 430 h2

Rearrange this to determine the pressure in the pipe p:

p = 133 430 h2 - 9810 h1

Note that p is in N/m2.

So the pressure in this pipeline can be calculated by measuring h1 and h2 and using the above
equation.

Some manometers are used to measure pressure differences rather than actual values of pressure.
One example of this is the measurement of the pressure difference in a venturi meter used for
measuring water flow in pipes (Figure 2.12c). In this case it is the drop (difference) in pressure as
water passes through a narrow section of pipe that is important. By connecting one limb of the
manometer to the main pipe and the other limb to the narrow section, the difference in pressure
can be determined. Note that the pressure difference is not just the difference in the mercury
readings on the two columns as is often thought. The pressure difference must be calculated using
the principle described above for the simple manometer. More about venture meters and using
manometers in Section 4.10.

The best way to deal with manometer measurements is to remember the principle on which all
manometer calculations are based and not the formula for p. There are many different ways of
arranging manometers with different fluids in them and so there will be too many formulae to
remember. So just remember and apply the principle 3 pressure on each side of the manometer is
the same across a horizontal line AB 3 then the pressure can be easily determined.

See the worked example in the box.

EXAMPLE: MEASURING PRESSURE USING A MANOMETER
A mercury manometer is used to measure the pressure in a water pipe (Figure 2.12c).
Calculate the pressure in the pipe when h1 = 1.5 m and h2 = 0.8 m.
To solve this problem start with the principle on which all manometers are based:

Pressure at A = Pressure at B
Calculate the pressures at A and B:
Pressure at A = water pressure in pipe (p)

+ pressure due to water column h1
Pressure at A = p + r(water)gh1
Pressure at A = p + 1000 X 9.81 X 1.5
Pressure at B = pressure due to mercury column h2

+ atmospheric pressure
Pressure at B =r(mercury)gh2 + 0
Pressure at B = 1000 X 13.6 X 9.81 X 0.8
Note that as all the pressures are gauge pressures, atmospheric pressure is assumed to be zero.
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Putting the pressure at A equal to the pressure at B:
p + 1000 X 9.81 X 1.5 = 1000 X 13.6 X 9.81 X 0.8
Rearrange this to determine p:
p = (1000 x 13.6 x 9.81 X 0.8) - (1000 X 9.81 X 1.5)
p = 106 732 - 14 715
p = 92 017 N/m2
p = 92 kN/m2

2.4. Forces on Sluice Gates

Sluice gates are used to control the flow of water from dams into pipes and channels. They may be
circular or rectangular in shape and are raised and lowered by turning a wheel on a threaded shaft.

Gates must be made strong enough to withstand the forces created by hydrostatic pressure.

The pressure also forces the gate against the face of the dam which can make it difficult to lift
easily because of the friction it creates. So the greater the pressure the greater will be the force
required to lift the gate. This is the reason why some gates have gears and hand-wheels fitted to
make lifting easier.
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Cha 2 Fig 9 Forces on Sluice Gates.

The force on a gate and its location can be calculated in the same way as for a dam. The force on
any gate can be calculated using the same formula as was used for the dam:

F=rgay

In this case the area is of the gate and is the depth from the water surface to the centre of the
gate. The formula for calculating D, the depth to the force, depends on the shape of the gate.

For rectangular gates:

D= + y

Where d is depth of gate (m), is depth from water surface to centre of the gate (m). Note: in this
case d is the depth of the gate (m) and not the depth of water behind the dam.

D= y

For circular gates:

Where <r= is radius of the gate (m).
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The depth D from the water surface to the force F must not be confused with. D is the depth to the
point where the force acts on the gate. It is always greater than. The force and its location can also
be obtained from the pressure diagram but in this case it is only that part of the diagram in line
with the gate that is of interest. The force on the gate can be calculated from the area of the
trapezium and its location is at the centre of the trapezium.

This can be found by using the principle of moments. But if you are not so familiar with moments,
the centre can be found by cutting out a paper shape of the trapezium and freely suspending it
from each corner in turn and drawing a vertical line across the shape. The point where all the lines
cross is the centre. A common mistake is to assume that depth D is two-thirds of the depth from
the water surface. It is true for a simple dam but not for a sluice gate.

The above equations cover most hydraulic sluice gate problems, but occasionally gates of different
shapes may be encountered and they may also be at an angle rather than vertical. It is possible to
work out the forces on such gates, but more difficult. Other hydraulic text books will show you how
if you are curious enough. An example of calculating the force and its location on a hydraulic gate is
shown in the box.

EXAMPLE: CALCULATING THE FORCE ON A SLUICE GATE
A rectangular sluice gate controls the release of water from a reservoir. If the gate is 0.5 m X 0.5 m
and located 3.5 m below the water surface calculate the force on the gate and its location below
the water surface (Figure 2.15b).

First calculate the force F on the gate
F=rgay

Here:
a = area of the gate = 0.5 X 0.5 = 0.25 m2
y = depth from water surface to the centre of the gate
y = 3.5 + 0.25 = 3.75 m

F = 1000 X 9.81 X 0.25 X 3.75

F = 8580 N or 8.58 kN
Next calculate depth from water surface to where force F is acting:

D =

= + 3.75
D = 3.76 m

2.5. Buoyancy (Flotation)

In physics, buoyancy upward acting force exerted by a fluid, that opposes an object's weight. If the

object is either less dense than the liquid or is shaped appropriately (as in a boat), the force can

keep the object afloat. This can occur only in a reference frame which either has a gravitational

field or is accelerating due to a force other than gravity defining a "downward" direction (that is, a
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non-inertial reference frame). In a situation of fluid statics, the net upward buoyancy force is equal

to the magnitude of the weight of fluid displaced by the body [1] This is the force that enables the

object to float.

For example if one places a copper ball in a pail of water it will sink, whereas a wooden ball will

float. Whether or not a given object will sink or float in a fluid is determined by the buoyant force

on the object. The buoyant force is essentially caused by the difference between the pressure at

the top of the object, which pushes it downward, and the pressure at the bottom, which pushes it

upward. Since the pressure at the bottom is always greater than at the top, every object

submerged in a fluid necessarily feels an upward buoyant force. Of course, objects also feel a

downward force due to gravity, and the difference between the gravitational force and buoyant

force on a submerged object determines whether that object will sink, or rise to the surface. If the

weight is greater than the buoyant force, the object sinks, and vice versa. It was Archimedes

(supposedly while in his bath), who realized that submerged objects always displace fluid upwards

(the level of water in the bathtub rose when Archimedes got in). Thus, he reasoned that the

buoyant force on an object must be equal to the weight of fluid that object displaces. If the weight

of an object is greater than the weight of displaced fluid, it will sink, whereas if the weight of the

object is less than the weight of displaced fluid, it will rise. Moreover, it is evident that the volume

of displaced fluid is precisely equal to the volume of the submerged part of the object, so that the

difference between the buoyant force and the weight is determined by the relative density of the

object and the fluid

2.5.1. Archimedes9s Principle

Returning now to Archimedes who first set down the basic rules of hydrostatics. His most famous
venture seems to have been in the public baths in Greece around the year 250BC. He allegedly ran
naked into the street shouting 8Eureka!9 3 he had discovered an experimental method of detecting
the gold content of the crown of the King of Syracuse. He realized that when he got into his bath,
the water level rose around him because his body was displacing the water and that this was linked
to the feeling of weight loss 3 that uplifting feeling everyone experiences in the bath. As the baths
were usually public places he probably noticed as well that smaller people displaced less water
than larger ones. It is at this point that many people draw the wrong conclusion. They assume that
this has something to do with a person9s weight. This is quite wrong 3 it is all about their volume.
To explain this, let us return to the king9s crown.

Perhaps the king had two crowns that looked the same in every way but one was made of gold and
he suspected that someone had short-changed him by making the other of a mixture of gold and
some cheaper metal. The problem that he set Archimedes was to tell him which was the gold one.
Weighing them on a normal balance in air would not have provided the answer because a clever
forger would make sure that both crowns were the same weight. If, however, he could measure
their densities he would then know which was gold because the density of gold has a fixed value
(19 300 kg/m3) and this would be different from that of the crown of mixed metals.
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But to determine their densities their volumes must first be known. If the crowns were simple
shapes such as cubes then it would be easy to calculate their volume. But crowns are not simple
shapes and it would have been almost impossible to measure them accurately enough for
calculation purposes. This is where immersing them in water helps.

The crowns may have weighed the same in air but when Archimedes weighed the crowns
immersed in water he observed that they had different weights. Putting this another way, each
crown experienced a different loss in weight due to the buoyancy effect of the water. It is this loss
in weight that was the key to solving the mystery. By measuring the loss in weight of the crowns,
Archimedes was indirectly measuring their volumes.

To understand this, imagine a crown is immersed in a container full of water up to the overflow
pipe (Figure 2.16a). The crown displaces the water, spilling it down the overflow where it is caught
in another container. The volume of the spillage water can easily be measured and it has exactly
the same volume as the crown. But the most interesting point is that the weight of the spillage
water (water displaced) is equal to the loss in weight of the crown. So by measuring the loss in
weight Archimedes was in fact measuring the weight of displaced water, that is, the weight of an
equal volume of water. As the density of water is a fixed value (9810 N/m3) it is a simple matter to
convert this weight of water into a volume and so determine the density of the crown.

This is the principle that Archimedes discovered: when an object is immersed in water it
experiences a loss in weight and this is equal to the weight of water it displaces.

Cha 2 Fig 10 Archimedes9 Principle
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What Archimedes measured was not actually the density of gold but its relative density or specific
gravity as it is more commonly known. This is the density of gold relative to that of water and he
calculated this using the formula:

Specific gravity=

This may not look like the formula for specific gravity in Section 1.13.2 but it is the same.
From Section 1.13.2:

Specific gravity=

But Archimedes9 principle states that:

Weight loss when immersed in water = Weight of an equal volume of water

So the two formulae are in fact identical and Archimedes was able to tell whether the crown was
made of gold or not by some ingenious thinking and some simple calculations. The method works
for all materials and not just gold, also for all fluids and not just water. Indeed, this immersion
technique is now a standard laboratory method for measuring the volume of irregular-shaped
objects and for determining their specific gravity.

Still not convinced? Try this example with numbers. A block of material has a volume of 0.2 m3 and
is suspended on a spring balance (Figure 2.16b) and weighs 3000 N. When the block is lowered
into the water it displaces 0.2 m3 of water. As water weighs 10 000 N/m3 (approximately) the
displaced water weighs 2000 N (i.e. 0.2 m3 X 10 000 N/m3). Now according to Archimedes the
weight of this water should be equal to the weight loss by the block and so the spring balance
should now be reading only 1000 N (i.e. 3000 N - 2000 N).

To explain this, think about the space that the block (0.2 m3) will occupy when it is lowered into
the water (Figure 2.16b). The 8space9 is currently occupied by 0.2 m3 of water weighing 2000 N.
Suppose that the water directly above the block weighs 1500 N (note that any number will do for
this argument). These two weights of water added together are 3500 N and this is supported by
the underlying water and so there is an upward balancing force of 3500 N. The block is now
lowered into the water and it displaces 0.2 m3 of water. The water under the block takes no
account of this change and continues to push upwards with a force of 3500 N and the downward
force of the water above it continues to exert a downward force of 1500 N. The block thus
experiences a net upward force or a loss in weight of 2000 N (i.e. 3500 N_1500 N).

This is exactly the same value as the weight of water that was displaced by the block. The reading
on the spring balance is reduced by this amount from 3000 N down to 1000 N.

A simple but striking example of this apparent weight loss is to tie a length of cotton thread around
a brick and try to suspend it first in air and then in water. If you try to lift the brick in air the thread
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will very likely break. But the uplift force when the brick is in water means that the brick can now
be lifted easily. It is this same apparent loss in weight that enables rivers to move great boulders
during floods and the sea to move shingle along the beach.

51



3. HYDRODYNAMICS: WHEN WATER STARTS TO FLOW

3.1. Introduction

Hydrodynamics is the study of water flow. It helps us to understand how water behaves when it
flows in pipes and channels and to answer such questions as 3 what diameter of pipe is needed to
supply a village or a town with water? How wide and deep must a channel be to carry water from a
dam to an irrigation scheme? What kind of pumps may be required and how big must they be?
These are the practical problems of hydrodynamics.

Hydrodynamics is more complex than hydrostatics because it must take account of more factors,
particularly the direction and velocity in which the water is flowing and the influence of viscosity.

In early times hydrodynamics, like many other developments, moved forward on a trial and error
basis. If the flow was not enough then a larger diameter pipe was used, if a pipe burst under the
water pressure then a stronger one was put in its place. But during the past 250 years or so
scientists have found new ways of answering the questions about size, shape and strength.

They experimented in laboratories and came up with mathematical theories that have now
replaced trial and error methods for the most common hydraulic problems.

3.2. Experimentation and Theory

Experimentation was a logical next step from trial and error. Scientists built physical models of
hydraulic systems in the laboratory and tested them before building the real thing. Much of our
current knowledge of water flow in pipes and open channels has come from this kind of
experimentation; empirical formulae were derived from the data collected to link water flow with
the size of pipes and channels. Today we use formulae for most design problems, but there are still
some problems which are not easily solved in this way. Practical laboratory experiments are still
used to find solutions for the design of complex works such as harbours, tidal power stations, river
flood control schemes and dam spillways. Small-scale models are built to test new designs and to
investigate the impact of new engineering works both locally and in the surrounding area (Figure
3.1).

Formulae that link water flow with pipe and channel sizes have also been developed analytically
from our understanding of the basic principles of physics 3 the properties of water and Newton9s
laws of motion. The rules of hydrostatics were developed analytically and have proved to work
very well. But when water starts to move it is difficult to take account of all the new factors
involved, in particular viscosity. The engineering approach, rather than the scientific one, is to try
and simplify a problem by ignoring those aspects which do not have a great bearing on the
outcome. In the case of water, viscosity is usually ignored because its effects are very small.

This greatly simplifies problems. For example, ignoring the forces of viscosity makes pipeline design
much simpler and it makes no difference to the final choice of pipe size. Other more important
factors dominate the design process such as velocity, pressure and the forces of friction.
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These do have significant influence on the choice of pipe size and so it is important to focus
attention on them. This is why engineering is often regarded as much an art as a science.

The science is about knowing what physical factors must be taken into account but the art of
engineering is knowing which of the factors can be safely ignored in order to simplify a problem
without it seriously affecting the accuracy of the outcome.

Remember that engineers are not always looking for high levels of accuracy. There are inherent
errors in all data and so there is little point in calculating the diameter of a pipe to several decimal
places when the data being used have not been recorded with the same precision. Electronic
calculators and computers have created much of this problem and many students still continue to
quote answers to many decimal places simply because the computer says so. The answer is only as
good as the data going into the calculation and so another skill of the engineer is to know how
accurate an answer needs to be. Unfortunately this is a skill which can only be learned through
practice and experience. This is the reason why a vital part of training young engineers always
involves working with older, more experienced engineers to acquire this skill. Just knowing the
right formula is just not enough.

The practical issues of cost and availability also impose limitations on hydraulic designs. For
example, commercially available pipes come in a limited range of sizes, for example, 50 mm, 75
mm, 100 mm diameter. If an engineer calculates that a 78 mm diameter pipe is needed he is likely
to choose the next size of pipe to make sure it will do the job properly, that is, 100 mm.
So there is nothing to be gained in spending a lot of time refining the design process in such
circumstances.

Simplifying problems so that they can be solved more easily, without loss of accuracy, is at the
heart of hydrodynamics 3 the study of water movement

Cha 3 fig 1 Laboratory model of a dam spillway
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3.3. Hydraulic Toolbox

The development of hydraulic theory has produced three important basic tools (equations)
which are fundamental to solving most hydrodynamic problems:
+ Discharge and continuity
+ Energy
+ Momentum.
They are not difficult to master and you will need to understand them well.

3.4. Discharge and Continuity

Discharge refers to the volume of water flowing along a pipe or channel each second. Volume is
measured in cubic meters (m3) and so discharge is measured in cubic meters per second (m3/s).
Alternative units are liters per second (l/s) and cubic meters per hour (m3/h).

There are two ways of determining discharge. The first involves measuring the volume of water
flowing in a system over a given time period. For example, water flowing from a pipe can be caught
in a bucket of known volume (Figure 3.2a). If the time to fill the bucket is recorded then the
discharge from the pipe can be determined using the following formula:

Discharge (m3/s)=

Discharge can also be determined by multiplying the velocity of the water by the area of the flow.
To understand this, imagine water flowing along a pipeline (Figure 3.2b). In one second the volume
of water flowing past - will be the shaded volume. This volume can be calculated by multiplying the
area of the pipe by the length of the shaded portion. But the shaded length is numerically equal to
the velocity v and so the volume flowing each second (i.e. the discharge) is equal to the pipe area
multiplied by the velocity. Writing this as an equation:

Discharge (Q) = Velocity (v)X Area (a)
Q = va

The continuity equation builds on the discharge equation and simply means that the amount of
water flowing into a system must be equal to the amount of water flowing out of it (Figure 3.2c).

Inflow = Outflow

And so:

Q1 = Q2

But from the discharge equation:
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Q = va

And so:

v1a1 = v2a2

So the continuity equation not only links discharges it also links areas and velocities as well. This is
a very simple but powerful equation and is fundamental to solving many hydraulic problems. An
example in the box shows how this works in practice for a pipeline which changes diameter.

Cha 3 Fig 2 Discharge and Continuity.
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EXAMPLE: CALCULATING VELOCITY USING THE
CONTINUITY EQUATION
A pipeline changes area from 0.5 to 0.25 m2 (Figure 3.2d). If the velocity in the larger pipe is 1.0
m/s calculate the velocity in the smaller pipe.
Use the continuity equation:
Inflow = Outflow

And so:

v1a1 = v2a2

1 X 0.5 = v2 X 0.25
v2 = 2 m/s
Note how water moves much faster in the smaller pipe.

Cha 3 Fig 3Continuity when there is water storage.

The simple equation of inflow equals outflow is only true when the flow is steady. This means the
flow remains the same over time. But there are cases when inflow does not equal outflow.

An example of this is a domestic storage tank found in most houses (Figure 3.3). The release of
water from the tank may be quite different from the inflow. Dams are built on rivers to perform a
similar function so that water supply can be more easily matched with water demand. In this case
an additional term is added to the continuity equation to allow for the change in storage in the
reservoir and so the continuity equation becomes:

Inflow = Outflow = Rate of Increase (or decrease) in storage

Hydrologists use this equation when studying rainfall and runoff from catchments and refer to it as
the water balance equation.
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3.5. Energy

The second of the basic tools uses energy to make the link between pressure and velocity in pipes
and channels. Energy is described in some detail in Section 1.10 and in Chapter 8 on pumping.
Suffice here to say that energy is the capacity of water to do useful work and water can possess
energy in three ways:

+ Pressure energy
+ Kinetic energy
+ Potential energy.

Energy for solid objects has the dimensions of Nm. For fluids the dimensions are a little different. It
is common practice to measure energy in terms of energy per unit weight and so energy for fluids
has dimensions of Nm/N. The Newton terms cancel each other out and we are left with meters
(m). This make energy look similar to pressure head as both are measured in meters.

Indeed we shall see that the terms energy and pressure head are in fact interchangeable.

So let9s explore these three types of energy.

3.5.1. Pressure Energy

When water is under pressure it can do useful work for us. Water released from a tank could be
used to drive a small turbine which in turn drives a generator to produce electrical energy (Figure
3.4a). So the pressure available in the tank is a measure of the energy available to do that work. It
is calculated as follows:

Pressure Energy = where: r=r

Where p is pressure (kN/m2); is mass density (kg/m3); g is gravity constant (9.81 m/s2).

Notice that the equation for pressure energy is actually the same as the familiar pressure head
equation (remember). It is just presented in a different way. So pressure energy is in fact the same
as the pressure head and is measured in meters (m).

3.5.2. Kinetic Energy

When water flows it possesses energy because of this movement; this is known as kinetic energy 3
or sometimes velocity energy. The faster water flows the greater is its kinetic energy (Figure 3.4b).
It is calculated as follows:

Kinetic Energy =
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Where v is velocity (m/s); g is gravity constant (9.81 m/s2).

Kinetic energy is also measured in meters (m) and for this reason it is sometimes referred to as
velocity head. An example of how to calculate kinetic energy is shown in the box.

Cha 3 Fig. 4 Pressure, kinetic and potential energy.

EXAMPLE: CALCULATING KINETIC ENERGY
Calculate the kinetic energy in a pipeline when the flow velocity is 3.7 m/s.

Kinetic Energy =

= = 0.7 m

This can also be thought of as a velocity head so calculate the equivalent pressure in kN/m2 that
would produce this kinetic energy.

To calculate velocity head as a pressure in kN/m2 use:

Pressure =rgh
= 1000 X 9.81 X 0.7
= 6867 N/m2 = 6.87 kN/m2

3.5.3. Potential Energy
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Water also has energy because of its location. Water stored in the mountains can do useful work
by generating hydro-power whereas water stored on a flood plain has little or no potential for
work (Figure 3.4c). So the higher the water source the more energy water has. This is called
potential energy. It is determined by the height of the water in meters above some fixed datum
point:

Potential Energy = z

Where <z= is the height of the water in meters (m) above a fixed datum.

When measuring potential energy it is important to relate it to a fixed datum. It is similar to using
sea level as the fixed datum for measuring changes in land elevation.

3.5.4. Total Energy

The really interesting point of all this is that all the different forms of energy interchangeable
(pressure energy can be changed to velocity energy and so on) and they can be added together to
help us solve a whole range of hydraulic problems. The Swiss mathematician Daniel Bernoulli
(170031782) made this most important discovery. Indeed it was Bernoulli who is said to have put
forward the name of hydrodynamics to describe water flow. It led to one of the best known
equations in hydraulics 3 total energy equation. It is often referred to as the Bernoulli equation in
recognition of his contribution to the study of fluid behaviour.

Cha 3 Fig 5 Total energy is the same throughout the system

The total energy in a system is the sum of all the different energies:

Total energy = + + z
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On its own, simply knowing the total energy in a system is of limited value. But the fact that the
total energy will be the same throughout a system, even though the various components of energy
may be different, makes it much more useful.
Take, for example, water flowing in a pipe from point 1 to point 2 (Figure 3.5). The total energy at
point 1 will be the same as the total energy at point 2. So we can rewrite the total energy equation
in a different and more useful way:

Total energy at point 1 = Total energy at point 2

And so:

+ + = + + where r = r

The velocity, pressure and height at 1 are all different to those at point 2 but when they are added
together at each point the total is the same. This means that if we know some of the values at say
point 1 we can now predict values at point 2. There are examples of this in the next section.

Note that the energy equation only works for flows where there is little or no energy loss.

However, it is a reasonable assumption to make in many situations although not so reasonable for
long pipelines where energy losses can be significant and so cannot be ignored. But for now,
assume that water is an ideal fluid and that no energy is lost. Later, in Chapter 5, we will see how to
incorporate energy losses into the equation.

3.5.5. Bernoulli's Equation

The Bernoulli equation states that:

P + + gh = constant

Where:

Pressure Density V = Velocity h = Elevation g = Gravitational acceleration

Where:

+Points 1 and 2 lie on a streamline,
+ The fluid has constant density,
+ The flow is steady, and
+ There is no friction.
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In fluid dynamics, Bernoulli's principle states that for an inviscid flow, an increase in the speed of
the fluid occurs simultaneously with a decrease in pressure or a decrease in the fluid's potential
energy. Bernoulli's principle is named after the Dutch-Swiss mathematician Daniel Bernoulli who
published his principle in his book Hydrodynamica in 1738.

Bernoulli's principle can be applied to various types of fluid flow, resulting in what is loosely
denoted as Bernoulli's equation. In fact, there are different forms of the Bernoulli equation for
different types of flow. The simple form of Bernoulli's principle is valid for incompressible flows and
also for compressible flows (e.g. gases) moving at low Mach numbers. More advanced forms may
in some cases be applied to compressible flows at higher March numbers (see the derivations of
the Bernoulli equation).

Bernoulli's principle can be derived from the principle of conservation of energy. This states that, in
a steady flow, the sum of all forms of mechanical energy in a fluid along a streamline is the same at
all points on that streamline. This requires that the sum of kinetic energy and potential energy
remain constant. If the fluid is flowing out of a reservoir the sum of all forms of energy is the same
on all streamlines because in a reservoir the energy per unit mass (the sum of pressure and
gravitational potential ρ g h) is the same everywhere.

Fluid particles are subject only to pressure and their own weight. If a fluid is flowing horizontally
and along a section of a streamline, where the speed increases it can only be because the fluid on
that section has moved from a region of higher pressure to a region of lower pressure; and if its
speed decreases, it can only be because it has moved from a region of lower pressure to a region
of higher pressure. Consequently, within a fluid flowing horizontally, the highest speed occurs
where the pressure is lowest, and the lowest speed occurs where the pressure is highest

Cha 3 Fig 6 A flow of air into a venturi meter. The kinetic energy increases at the expense of the fluid pressure, as shown

by the difference in height of the two columns of water

3.5.6. Some Useful Applications of the Energy Equation
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The usefulness of the energy equation is well demonstrated in the following examples.

3.5.6.1. Pressure and Elevation Changes

Pipelines tend to follow the natural ground contours up and down the hills. As a result, pressure
changes simply because of differences in ground levels. For example, a pipeline running up the side
of a hill will experience a drop in pressure of 10 m head for every 10 m rise in ground level.
Similarly the pressure in a pipe running downhill will increase by 10 m for every 10 m fall in ground
level.

The energy equation explains why this is so.

Consider total energy at two points 1 and 2 along a pipeline some distance apart and at different
elevations.

Assuming no energy losses between these two points, the total energy in the pipeline at point 1 is
equal to the total energy at point 2.

Total energy at 1 = Total energy at 2

+ + = + + where r = r

<z1=and <z2= are measured from some chosen horizontal datum.

Normally pipelines would have the same diameter and so the velocity at point 1 is the same as the
velocity at point 2. This means that the kinetic energy at points 1 and 2 are also the same.
The above equation then simplifies to:

+ = + where r = r

Rearranging this to bring the pressure terms and the potential terms together:

- = - where r = r
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Cha 3 Fig 7Pressure changes with elevation.

Putting this into words:

Changes in pressure (m) = Changes in ground level (m)

Here p1 and p2 represent a pressure change between points 1 and 2 (measured in meters) which is
a direct result of the change in ground level from z1 to z2. Note that this has nothing to do with
pressure loss due to friction as is often thought 3 just ground elevation changes.

A numerical example of how to calculate changes in pressure due to changes in ground elevation is
shown in the box.

EXAMPLE: CALCULATING PRESSURE CHANGES DUE TO ELEVATION CHANGES
A pipeline is constructed across undulating ground (Figure 3.6). Calculate the pressure at point 2
when the pressure at point 1 is 150 kN/m2 and point 2 is 7.5 m above point 1.

Assuming no energy loss along the pipeline this problem can be solved using the energy equation:

Total energy at 1 = Total energy at 2

+ + = + + where r = r As the pipe diameter is the same

throughout, the velocity will also be the same as will the kinetic energy. So the kinetic energy

terms on each side of the equation cancel each other out.

The equation simplifies to:
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+ = + where r = r

Rearranging this gives:

- = - where r = r

All elevation measurements are made from the same datum level and so:
z2 - z1 = 7.5 m

This means that:

= 7.5 m

And so:

p1 - p2 = 1000 X 9.81 X 7.5 = 73 575 N/m2 = 73.6 kN/m2

Known pressure at point 1 = 150 kN/m2

And so:
Pressure at point 2 = 150 - 73.6 = 76.4 kN/m2

So there is a drop in pressure at point 2 which is directly attributed to the elevation rise in the
pipeline.

3.5.6.2. Measuring Velocity

Another very useful application of the energy equation is for measuring velocity. This is done by
stopping a small part of the flow and measuring the pressure change that results from this.

Airline pilots use this principle to measure their air speed.

When water (or air) flows around an object (Figure 3.7a) most of it is deflected around it but there
is one small part of the flow which hits the object head-on and stops. Stopping the water in this
way is called stagnation and the point at which this occurs is the stagnation point.

Applying the energy equation to the main stream and the stagnation point:

+ + = + + where r = r

Assuming the flow is horizontal:

z1 = zs
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As the water stops:

= 0

And so:

+ = Where r = r

Rearranging this equation to bring all the velocity and pressure terms together:

= - Where r = r

Rearranging it again for an equation for velocity v1:

So it is possible to calculate the main stream velocity by creating a stagnation point and measuring
p1 and ps. This idea is used extensively for measuring water velocity in pipes using a device known
as a pitot tube (Figure 3.7b). The stagnation pressure ps on the end of the tube is measured
together with the general pressure in the pipe p1. The velocity is then calculated using the energy
equation. One disadvantage of this device is that it does not measure the average velocity in a pipe
but only the velocity at the particular point where the pitot tube is located. However, this can be
very useful for experimental work that explores the changes in velocity across the diameter of a
pipe to produce velocity profiles. Pitot tubes are also used on.
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Cha 3 Fig 8 Measuring Velocity

Aircraft to measure their velocity. Usually the air is moving as well as the aircraft and so the pilot
will adjust the velocity reading to take account of this.
Stagnation points also occur in channels. One example occurs at a bridge pier.

Notice how the water level rises a little just in front of the pier as the kinetic energy in the river
changes to pressure energy as the flow stops. In this case the pressure rise is seen as a rise in water
level. Although this change in water level could be used to determine the velocity of the river, it is
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rather small and difficult to measure accurately. So it is not a very reliable way of measuring
velocity in channels.

EXAMPLE: CALCULATING THE VELOCITY IN A PIPE USING A PITOT TUBE
Calculate the velocity in a pipe using a pitot tube when the normal pipe operating pressure is 120
kN/m2 and the pitot pressure is 125 kN/m2 (Figure 3.7b).

Although there is an equation for velocity given in the text it is a good idea at first to work from
basic principles to build up your confidence in its use. The problem is solved using the energy
equation. Point 1 describes the main flow and point s describes the stagnation point on the end of
the pitot tube:

+ + = + + where r= r
At the stagnation point:

= 0

And as the system is horizontal:

= = 0

This reduces the energy equation to:

+ = where r= r

All the values in the equation are known except for v1 so calculate v1:

+

12.23 + = 12.74

= 12.74

3.16 m/s

3.5.6.3. Orifices

Orifices are usually gated openings at the bottom of tanks and reservoirs used to control the
release of water flow into a channel or some other collecting basin (Figure 3.8a). They are mostly
rectangular or circular openings. The energy equation makes it possible to calculate the discharge
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released through an orifice by first calculating the flow velocity from the orifice and then
multiplying it by the area of the opening. One important proviso at this stage is that the orifice
must discharge freely and unhindered into the atmosphere, otherwise this approach will not work.
Some orifices do operate in submerged conditions and this does affect the flow. But this is
described later in Section 7.2.

The energy equation for a tank with an orifice (Figure 3.8a) is written as:

+ + = + + where r= r

Note the careful choice of the points for writing the energy terms. Point 1 is chosen at the water
surface in the tank and point 0 is at the centre of the orifice.

At the water surface the pressure is atmospheric and so is assumed to be zero (remember all
pressures are measured relative to atmospheric pressure which is taken as the zero point). Also the
downward velocity in the tank is very small and so the kinetic energy is also zero. All the initial
energy is potential. At the orifice the jet comes out into the atmosphere; as the jet does not burst
open it is assumed that the pressure in and around the jet is atmospheric pressure, that is, zero. So
the equation reduces to:

=

Rearranging this equation:

=

Put:

_ h

Now rearrange again to obtain an equation for v0:

=

Evangelista Torricelli (160831647) first made this connection between the pressure head
available in the tank and the velocity of the emerging jet some considerable time before
Bernoulli developed his energy equation. As a pupil of Galileo he was greatly influenced by him
and applied his concepts of mechanics to water falling under the influence of gravity. Although the
above equation is now referred to as Torricelli9s law he did not include the 2 g term. This was
introduced much later by other investigators.
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Torricelli sought to verify this law by directing a water jet from an orifice vertically upwards. He
showed that the jet rose to almost the same height as the free water surface in the tank showing
that the potential energy in the tank and the velocity energy at the orifice were equal. So knowing
the pressure head available in a pipe, it is possible to calculate the height to which a water jet
would rise if a nozzle was attached to it 3 very useful for designing fountains!

The velocity of a jet can also be used to calculate the jet discharge using the discharge equation:

Q = a v

So:

Q = a

The area of the orifice is used in the equation because it is easy to measure, but this means the
end result is not so accurate because the area of the jet of water is not the same as the area of the
orifice. As the jet emerges and flows around the edge of the orifice it follows a curved path and so
the jet ends up smaller in diameter than the orifice (Figure 3.8c). The contraction of the jet is taken
into account by introducing a coefficient of contraction Cc. This has a value of approximately 0.6. So
the discharge formula now becomes:

Q = a

Although it might be interesting to work out the discharge from holes in tanks, a more useful
application of Torricelli9s law is the design of underflow gates for both measuring and controlling
discharges in open channels.
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Cha 3 Fig 9 Flow through orifices.

3.5.6.4 Pressure and Velocity Changes in a Pipe

A more general and very practical application of the energy equation is to predict pressures and
velocities in pipelines as a result of changes in ground elevation and pipe sizes. An example in the
box shows just how versatile this equation can be.

EXAMPLE: CALCULATING PRESSURE CHANGES USING THE ENERGY EQUATION

A pipeline carrying a discharge of 0.12 m3/s changes from 150 mm diameter to 300 mm diameter
and rises through 7 m. Calculate the pressure in the 300 mm pipe when the pressure in the 150
mm pipe is 350 kN/m2.
This problem involves changes in pressure, kinetic and potential energy and its solution requires
both the energy and continuity equations. The first step is to write down the energy equation for
the two points in the systems 1 and 2:
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+ + = + + where r= r

Calculating changes in pressure in a pipeline.

The next step is to put all the known values into the equation, identify the unknowns, and then
determine their values. Here p1, z1 and z2 are known values but p2 is unknown and so are v1 and
v2. First determine v1 and v2, use the continuity equation:

Q = va

Rearranging this to calculate v:

v =

And so:

= and =

The pipe areas are not known but their diameters are known, so next calculate their
cross-sectional areas:

a1= = 0.018 m2
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a2= = 0.07 m2

Now calculate the velocities:

v1= = = 6.67 m / s

v2= = = 1.71 m / s

Putting all the known values into the energy equation:

+ + 0 = + + 7 Where
r= r

Note although pressures are quoted in kN/m2 it is less confusing to work all calculations in N/m2
and then convert back to kN/m2. The equation simplifies to:

35.68 + 2.26 = + 0.15 + 7 Where r= r
Rearranging this equation for p2:

  = 35.68 + 2.26 - 0.15 - 7 Where r= r
= 30.8 m head of water

To determine this head as a pressure in kN/m2 use the pressure-head equation:
Pressure :

Presión = rgh Where r= r

p2= 1000 X 9.81 X 30.8

p2= 302,000 N/m2 = 302 kN/m2

3.5.6.5 Meters Venturi

The Venturi effect is the reduction in fluid pressure that results when a fluid flows through a
constricted section of pipe. The Venturi effect is named after Giovanni Battista Venturi (1746
1822), an Italian physicist.

According to the laws governing fluid dynamics, a fluid's velocity must increase as it passes through
a constriction to satisfy the conservation of mass, while its pressure must decrease to satisfy the
conservation of energy. Thus any gain in kinetic energy a fluid may accrue due to its increased
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velocity through a constriction is negated by a drop in pressure. An equation for the drop in
pressure due to the Venturi effect may be derived from a combination of Bernoulli's principle and
the continuity equation.

The limiting case of the Venturi effect is when a fluid reaches the state of choked flow, where the
fluid velocity approaches the local speed of sound. In choked flow the mass flow rate will not
increase with a further decrease in the downstream pressure environment. However, mass flow
rate for a compressible fluid can increase with increased upstream pressure, which will increase
the velocity of the fluid through the constriction (though the density will remain constant). This is
the principle of operation of a de Laval nozzle. Referring to the diagram to the right, using
Bernoulli's equation in the special case of incompressible flows (such as the flow of water or other

liquid, or low speed flow of gas), the theoretical pressure drop (p1 − p2) at the constriction would

be given by:

Where is the density of the fluid, v1 is the (slower) fluid velocity where the pipe is wider, v2 is the
(faster) fluid velocity where the pipe is narrower (as seen in the figure). This assumes the flowing
fluid (or other substance) is not significantly compressible - even though pressure varies, the
density is assumed to remain approximately constant.

3.5.6.6 Siphons

Siphon is the name given to sections of pipe that rise above the hydraulic gradient. Normally pipes
are located well below the hydraulic gradient and this ensures that the pressure is always positive
and so well above atmospheric pressure. Under these conditions water flows freely under gravity
provided the outlet is lower than the inlet . But when part of a pipeline is located above the
hydraulic gradient, even though the outlet is located below the inlet, water will not flow without
some help. This is because the pressure in the section of pipe above the hydraulic gradient is
negative.
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Cha. 3 Fig. 10 Siphons

How they work

Before water will flow, all the air must be taken out of the pipe to create a vacuum. When this
happens atmospheric pressure on the open water surface pushes water into the pipe to fill the
vacuum and once it is full of water it will begin to flow. Under these conditions the pipe is working
as a siphon. Taking the air out of a pipeline is known as priming. Sometimes a pump is needed to
extract the air but if the pipeline can be temporarily brought below the hydraulic gradient the
resulting positive pressure will push the air out and it will prime itself. This can be done by closing
the main valve at the end of the pipeline so that the hydraulic gradient rises to a horizontal line at
the same level as the reservoir surface. An air valve on top of the siphon then releases the air.
Once the pipe is full of water, the main valve can then be opened and the pipeline flows normally.
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Cha 3 Fig 11 Siphons.

Even pipelines that normally operate under positive pressures have air valves. These release air
which accumulates at high spots along the line. So it is good practice to include an air valve at such
locations. They can be automatic valves or just simple gate valves that are opened manually
occasionally to release air.

It can sometimes be difficult to spot an air valve that is above the hydraulic gradient and this can
lead to problems. An engineer visiting a remote farm saw what he thought was a simple gated air
valve on a high spot on a pipeline supplying the farm with water. Air does tend to accumulate over
time and can restrict the flow. So he thought he would do the farmer a favour and open the valve
to bleed off any air that had accumulated. After a while he realised that the hissing sound was not
air escaping from the pipe but air rushing in. The pipe was in fact above the hydraulic gradient and
was working as a siphon at that point and the valve was only there to let air out during the priming
process. The pressure inside the pipe was in fact negative and so when he opened the valve air was
sucked and this de-primed the siphon. Realising his mistake he quickly closed the valve and went
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on down to the farmhouse. The farmer was most upset. What a coincidence 3 just as a water
engineer had arrived, his water supply had suddenly stopped and an engineer was on hand to fix it
for him!

If your car ever runs out of petrol a siphon can be a useful means of taking some fuel from a
neighbour9s tank. Insert a flexible small diameter tube into the tank and suck out all the air
(making sure not to get a mouthful of petrol). When the petrol begins to flow catch it in a
container and then transfer it to your car. Make sure that the outlet is lower than the liquid level in
the tank otherwise the siphon will not work.

Another very practical use for siphons is to detect leakage in domestic water mains (sometimes
called rising mains) from the supply outside in the street to a house (Figure 4.5b).

This can be important for those on a water meter who pay high prices for their water. A leaky pipe
in this situation would be very costly. The main valve to the house must first be closed. Then seal
the cold water tap inside the house by immersing the outlet in a pan of water and opening the tap.
If there is any leakage in the main pipe then water will be siphoned back out of the pan into the
main. The rate of flow will indicate the extent of the leakage.

Siphons can be very useful in situations where the land topography is undulating between a
reservoir and the water users. It is always preferable to locate a pipe below the hydraulic gradient
by putting it in a deep trench but this may not always be practicable. In situations where siphoning
is unavoidable the pipeline must not be more than 7 m above the hydraulic grade line. Remember
atmospheric pressure drives a siphon and the absolute limit is 10 m head of water. So 7 m is a safe
practical limit. When pipelines are located in mountainous regions the limit needs to be lower than
this due to the reduced atmospheric pressure.

The pressure inside a working siphon is less than atmospheric pressure and so it is negative when
referred to as a gauge pressure (measured above or below atmospheric pressure as the datum), for
example, a -7 m head. Sometimes siphon pressures are quoted as absolute pressures (measured
above vacuum pressure as the datum). So -7 m gauge pressure is the same as +3 m absolute
pressure. This is calculated as follows:

Gauge pressure = 7 m head
Absolute pressure = atmospheric pressure - gauge pressure

= 10 - 7 = 3 m head absolute

3.5.6.7 Cavitation

Real fluids suffer from cavitation and it can cause lots of problems, particularly in pumps and
control valves. It occurs when a fluid is moving very fast; as a consequence, the pressure can drop
to very low values approaching zero (vacuum pressure).

The control valve on a pipeline provides a good example (Figure 3.14a). When the valve is almost
closed the water velocity under the gate can be very high. This also means high kinetic energy and
this is gained at the expense of the pressure energy. If the pressure drops below the vapour
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pressure of water (this is approximately 0.3 m absolute) bubbles, called cavities, start to form in
the water. They are very small (less than 0.5 mm in diameter) but there are many thousands of
them and give the water a milky appearance. The bubbles are filled with water vapour and the
pressure inside them is very low. But as the bubbles move under the gate and into the pipe
downstream, the velocity slows, the pressure rises and the bubbles begin to collapse. It is at this
point that the danger arises. If the bubbles collapse in the main flow they do no harm, but if they
are close to the pipe wall they can do a great deal of damage. Notice the way in which the bubbles
collapse (Figure 3.14b). As the bubble becomes unstable a tiny needle jet of water rushes across
the cavity and it is this which can do great damage even to steel and concrete because the
pressure under the jet can be as high as 4000 bar! See Section 8.4.4 for more details of cavitation
in pumps.

Some people confuse cavitation with air entrainment, but it is a very different phenomenon.

Air entrainment occurs when there is turbulence at hydraulic structures and air bubbles are drawn
into the flow. The milky appearance of the water is similar but the bubbles are air filled and will do
no harm to pumps and valves.

3.6 Momentum

In classical mechanics, momentum is the product of the mass and velocity of an object (p = mv).
Like velocity, momentum is a vector quantity, possessing a direction as well as a magnitude.
Momentum is a conserved quantity (law of conservation of linear momentum), meaning that if a
closed system is not affected by external forces, its total momentum cannot change. Momentum is
sometimes referred to as linear momentum to distinguish it from the related subject of angular
momentum.

Although originally expressed in Newton's Second Law, the conservation of momentum also holds
in special relativity and, with appropriate definitions, a (generalized) momentum conservation law
holds in electrodynamics, quantum mechanics, quantum field theory, and general relativity. In
relativistic mechanics, non-relativistic momentum is further multiplied by the Lorentz factor.

Linear momentum of a particle

Newton's apple in Einstein's elevator. In person A's frame of reference, the apple has non-zero

velocity and momentum. In the elevator's and person B's frames of reference, it has zero velocity

and momentum.

If an object is moving in any reference frame, then it has momentum in that frame. It is important
to note that momentum is frame dependent. That is, the same object may have a certain
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momentum in one frame of reference, but a different amount in another frame. For example, a
moving object has momentum in a reference frame fixed to a spot on the ground, while at the
same time having 0 momentum in a reference frame attached to the object's center of mass.

The amount of momentum that an object has depends on two physical quantities: the mass and
the velocity of the moving object in the frame of reference. In physics, the usual symbol for
momentum is a bold p (bold because it is a vector); so this can be written

P = mv

Where p is the momentum, m is the mass and v is the velocity.

Example: a model airplane of 1 kg traveling due north at 1 m/s in straight and level flight has a
momentum of 1 kg·m/s due north measured from the ground. To the dummy pilot in the cockpit it
has a velocity and momentum of zero.

According to Newton's second law, the rate of change of the momentum of a particle is
proportional to the resultant force acting on the particle and is in the direction of that force. The
derivation of force from momentum is given below.

∑F= = m = v

Given that mass is constant, the second term of the derivative is zero ( ). We can therefore
write the following:

∑F = ma

Or just simply

F= ma

Where <F= is understood to be the net force.

Example: a model airplane of 1 kg accelerates from rest to a velocity of 1 m/s due north in 1 s. The
thrust required to produce this acceleration is 1 newton. The change in momentum is 1 kg·m/s. To
the dummy pilot in the cockpit there is no change of momentum. Its pressing backward in the seat
is a reaction to the unbalanced thrust, shortly to be balanced by the drag.

3.7 Real Fluids

The assumption made so far in this chapter is that water is an ideal fluid. This means it has no
viscosity and there is no friction between the flow and the boundaries. Real fluids have internal
friction (viscosity) and also friction forces that exist between the fluid and the flow boundary such
as the inside of a pipe. Water is a real fluid but its viscosity is low and so ignoring this has little or
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no effect on the design of pipes and channels. However the friction between the flow and the
boundary is important and cannot be ignored for design purposes. We use a modified version of
the energy equation to take account of this

3.7.1. Boundary layers

Friction between water flow and its boundaries and the internal friction (viscosity) within the
water gives rise to an effect known as the boundary layer. Water flowing in a pipe moves faster in
the middle of the pipe than near the pipe wall. This is because friction between the water and

Cha 3 Fig 12Dangers of cavitation.

the pipe wall slows down the flow. Very near to the pipe wall water actually sticks to it and the
velocity is zero, although it is not possible to see this with the naked eye. Gradually the velocity
increases further away from the wall until it reaches its maximum velocity in the centre of the pipe.
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To understand how this happens. imagine the flow is like a set of thin plates that can slide over
each other. The plate nearest the wall is not moving and so it tries to slow down the plate next to it
3 the friction between the plates comes from the viscosity of the water (see Section 1.12.3 for
more on viscosity). Plates further away from the wall are less affected by the boundary wall and so
they move faster until the ones in the middle of the flow are moving fastest. All the flow affected
by the pipe wall in this way is called the boundary layer. The use of the word layer can be
misleading here as it is often confused with the layer of water closest to the pipe wall. This is not
the case. It refers to all the flow which is slowed down as a result of the friction from the boundary.
In the case of a pipe it can affect the entire flow across the pipe.

A graphical representation of the changes in velocity near a boundary is called the velocity profile
(Figure 3.15a). The velocity varies from zero near the boundary to a maximum in the centre of a
pipe or channel where the boundary has least effect. Compare this with the velocity profile for an
ideal fluid. Here there is no viscosity and no friction from the boundary and so the velocity is the
same across the entire flow.

Boundary layers grow as water enters a pipeline (Figure 3.15b). It quickly develops over the first
few meters until it meets in the middle. From this point onwards the pipe boundary
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Cha 3 Fig 13 Boundary effects.

influences the entire flow in the pipe. In channels the boundary effects of the bed and sides
similarly grow over a few meters of channel and soon influence the entire flow. When the
boundary layer fills the entire flow it is said to be fully developed. This fully developed state is the
basis on which all the pipe and channel formulae are based in Chapters 4 and 5.

3.8. Drag Forces

Boundary layers occur around all kinds of objects, for example, water flow around ships and
submarines, air flow around aircraft and balls thrown through the air. Friction between the object
and the fluid slows them down and it is referred to as a drag force. You can feel this force by
putting your hand through the window of a moving car or in a stream of flowing water.
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Sir George Stokes (181931903), an eminent physicist in his day, was one of the first people to
investigate drag by examining the forces on spheres falling through different fluids. He noticed that
the spheres fell at different rates, not just because of the viscosity of the fluids but also because of
the size of the spheres. He also found that the falling spheres eventually reach a constant velocity
which he called the terminal velocity. This occurred when the force of gravity causing the balls to
accelerate was balanced by the resistance resulting from the fluid viscosity and the size of the
balls.

Stokes also demonstrated that for any object dropped in a fluid (or a stationary object placed in a
flowing fluid which is essentially the same) there were two types of drag: surface drag or skin
friction which resulted from friction between the fluid and the object, and form drag which
resulted from the shape and size of the object.

Water flowing around a bridge pier in a river provides a good example of the two types of drag.

When the velocity is very low, the flow moves around the pier as shown in the next figures.

The water clings to the pier and in this situation there is only surface drag and the shape of the pier
has no effect. The flow pattern behind the pier is the same as the pattern upstream. But as the
velocity increases, the boundary layer grows and the flow can no longer cling to the pier and so it
separates. It behaves like a car that is travelling too fast to get around a tight bend. It spins away
from the pier and creates several small whirlpools which are swept downstream.

These are called vortices or eddies and together they form what is known as the wake. The flow
pattern behind the pier is now quite different from that in front and in the wake the pressure is
much lower than in front. It is this difference in pressure that results in the form drag. It is
additional to the surface drag and its magnitude depends on the shape of the pier. Going back to
your hand through the car window. Notice how the force changes when
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Cha 3 Fig 14

you place the back or side of your hand in the direction of the flow. The shape of your hand in the
flow determines the form drag.

Form drag is usually more important than surface drag and it can be reduced by shaping a bridge
pier so that the water flows around it more easily and separation is delayed or avoided. Indeed, if
separation could be avoided completely then form drag would be eliminated and the only concern
would be surface drag. Shaping piers to produce a narrow wake and reduce form drag is often
called streamlining. This is the basis of design not just for bridge piers but also for aircraft, ships
and cars to reduce drag and so increase speed or reduce energy requirements.

Swimmers too can benefit from reducing drag. This is particularly important at competitive levels
when a few hundredths of a second can mean the difference between a gold and a silver medal.
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Approximately 90% of the drag on a swimmer is form drag and only 10% is surface drag. Some
female swimmers try to reduce form drag by squeezing into a swim suit two or three sizes too
small for them in order to improve their shape in the water.

Although women swimmers may seem to have an advantage in having a more streamline shape
than bulky males, their shape does present some hydraulic problems. A woman9s breasts cause
early flow separation which increases turbulence and form drag. One swimwear manufacturer has
found a solution to this by using a technique used by the aircraft industry to solve similar problem.
Aircraft wings often have small vertical spikes on their upper surface and these stop the flow from
separating too early by creating small vortices, that is, zones of low pressure, close to the wing
surface. This not only reduces form drag significantly but helps to avoid stalling (very early
separation) which can be disastrous for an aircraft. The new swimsuit has tiny vortex generators
located just below the breasts, which cause the boundary layer to cling to the swimmer and not
separate, thus reducing form drag. The same manufacturer has also developed a ribbed swimsuit
which creates similar vortices along the swimmer9s body to try and stop the flow from separating.
The manufacturer claims a 9% reduction in drag for the average female swimmer over a
conventional swim suit.

Dolphins probably have the best known natural shape and skin for swimming. Both their form and
surface drag are very low and this enables them to move through the water with incredible ease
and speed 3 something that human beings have been trying to emulate for many years!

There is a way of calculating drag force:

Drag Force = Cra

Where is fluid density (kg/m3), a is the cross-sectional area (m2), v is velocity (m/s) and C is drag
coefficient. The coefficient C is dependent on the shape of the body, the velocity of the flow and
the density of the fluid.
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4. PIPES

4.1. Introduction

Pipes are a common feature of water supply systems and have many advantages over open
channels. They are completely enclosed, usually circular in section and always flow full of water.

This is in contrast to channels which are open to the atmosphere and can have many different
shapes and sizes 3 but more about channels in Chapter 5. One big advantage of pipes is that water
can flow uphill as well as downhill so land topography is not such a constraint when taking water
from one location to another.

There are occasions when pipes do not flow full 3 one example is gravity flow sewers. They take
sewage away from homes and factories and often only flow partially full under the force of gravity
in order to avoid pumping. They look like pipes and are indeed pipes but hydraulically they behave
like open channels. The reason pipes are used for this purpose is that sewers are usually buried
below ground to avoid public health problems and it would be difficult to bury an open channel!

4.1.1. A Typical Pipe Flow Problem

Pipe flow problems usually involve calculating the right size of pipe to use for a given discharge.

A typical example is a water supply to a village (Figure 4.1). A pipeline connects a main storage
reservoir to a small service (storage) tank just outside the village which then supplies water to
individual houses. The required discharge (Q m3/s) for the village is determined by the water
demand of each user and the number of users being supplied. We now need to determine the
right size of pipe to use to ensure that this discharge is supplied from the main storage reservoir to
the service tank.

A formula to calculate pipe size would be ideal. However, to get there we first need to look at the
energy available to 8push9 water through the system, so the place to start is the energy equation.

But this is a real fluid problem and so energy losses due to friction must be taken into account.

So writing the energy equation for two points in this system 3 point 1 is at the main reservoir and
point 2 at the service tank 3 and allowing for the energy loss as water flows between the two:

+ + = + + + where =r

Points 1 and 2 are carefully chosen in order to simplify the equation and also the solution.
Point 1 is at the surface of the main reservoir where the pressure p1 is atmospheric pressure and
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Cha 4 fig 1 A typical pipe flow problem.

so equal to zero (remember we are working in gauge pressures). Point 2 is also at the water surface
in the service tank so p2 is zero as well. The water velocities v1 and v2 in the reservoir and the tank
are very small and so the kinetic energy terms are also very small and can be assumed to be zero.
This leaves just the potential energy terms z1 and z2 and the energy loss term hf. So the energy
equation simplifies down to:

hf = z1 - z2

z1 - z2 is the difference in water levels between the reservoir and the storage tank and this
represents the energy available to 8push9 water through the system. <hf= is the energy loss due to
friction in the pipe. The energy available is usually known and so this means we also know the
amount of energy that can be lost through friction. The question now is there a formula that links
this energy loss <hf= with the pipe diameter? The short answer is yes 3 but it has taken some 150
years of research to sort this out. So let us first step through this bit of history and see what it tells
us about pipe flow.

4.2. A Formula to Link Energy Loss and Pipe Size

Some of the early research work on pipe friction was done by Osborne Reynolds (184231912), a
mathematician and engineer working at the University in Manchester in UK. He measured the
pressure loss in pipes of different lengths and diameters at different discharges with some
interesting results. At low flows he found that the energy loss varied directly with the velocity. So
when the velocity was doubled the energy loss also doubled. But at high flows the energy loss
varied as the square of the velocity. So when the velocity was doubled the energy loss increased
four-fold. Clearly, Reynolds was observing two quite different types of flow. This thinking led to
Reynolds classic experiment that established the difference between what is now referred to as
laminar and turbulent flow and formulae which would enable the energy loss to be calculated for
each flow type from a knowledge of the pipes themselves.
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4.2.1. Laminar and Turbulent Flow

Reynolds experiment involved setting up a glass tube through which he could pass water at
different velocities (Figure 4.2). A thin jet of colored dye was injected into the flow so that the flow
patterns were visible.

Cha 4 fig 2 Laminar and turbulent flow.

When the water moved slowly the dye remained in a thin line as it followed the flow path of the
water down the pipe. This was described as laminar flow. It was as though the water was moving
as a series of very thin layers 3 like a pack of cards 3 each one sliding over the other, and the dye
had been injected between two of the layers. This type of flow rarely exists in nature and so is not
of great practical concern in hydraulics. However, you can see it occasionally under very special
conditions. Examples include smoke rising in a thin column from a chimney on a very still day or a
slow flow of water from a tap that looks so much like a glass rod that you feel you could get hold of
it. Blood flow in our bodies is usually laminar.

The second and more common type of flow he identified was turbulent flow. This occurred when
water was moving faster. The dye was broken up as the water whirled around in a random manner
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and was dissipated throughout the flow. Turbulence was a word introduced by Lord Kelvin
(182431907) to describe this kind of flow behaviour.

There are very clear visual differences between laminar and turbulent flow but what was not clear
was how to predict which one would occur in any given set of circumstances. Velocity was
obviously important. As velocity increased so the flow would change from laminar to turbulent
flow. But it was obvious that from the experiments that velocity was not the only factor. It was
Reynolds who first suggested that the type of flow depended not just on velocity (v) but also on
mass density, viscosity and pipe diameter (d). He put these factors together in a way which is now
called the Reynolds Number in recognition of his work.

Reynolds No. =

Note that Reynolds Number has no dimensions. All the dimensions cancel out. Reynolds found that
he could use this number to reliably predict when laminar and turbulent flow would occur.

R < 2000 flow would always be laminar
R > 4000 flow would always be turbulent

Between R = 2000 and 4000 he observed a very unstable zone as the flow seemed to jump from
laminar to turbulent and back again as if the flow could not decide which of the two conditions it
preferred. This is a zone to avoid as both the pressure and flow fluctuate widely in an uncontrolled
manner.

Reynolds Number also shows just how important is viscosity in pipe flow. Low Reynolds Number (R

< 2000) means that viscosity ( ) is large compared with the term vd. So viscosity is
important in laminar flow and cannot be ignored. High Reynolds Number (R > 4000) means

viscosity is small compared with the vd term and so it follows that viscosity is less important in
turbulent flow. This is the reason why engineers ignore the viscosity of water when designing pipes
and channels as it has no material effect on the solution. Ignoring viscosity also greatly simplifies
pipeline design.

It has since been found that Reynolds Number is very useful in other ways besides telling us the
difference between laminar and turbulent flow. It is used extensively in hydraulic modeling
(physical models 3 not mathematical models) for solving complex hydraulic problems. When a
problem cannot be solved using some formula, another approach is to construct a small-scale
model in a laboratory and test it to see how it performs. The guideline for modeling pipe systems
(or indeed any fully enclosed system) is to ensure that the Reynolds Number in the model is similar
to the Reynolds Number in the real situation. This ensures that the forces and velocities are similar
so that the model, as near as possible, produces similar results to those in the real pipe systems.

Although it is useful to know that laminar flow exists it is not important in practical hydraulics for
designing pipes and channels and so only turbulent flow is considered in this text.
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Turbulent flow is very important to us in our daily lives. Indeed it would be difficult for us to live if
it was not for the mixing that takes place in turbulent flow which dilutes fluids. When we breathe
out, the carbon dioxide from our lungs is dissipated into the surrounding air through turbulent
mixing. If it did not disperse in this way we would have to move our heads to avoid breathing in the
same gases as we had just breathed out. Car exhaust fumes are dispersed in a similar way,
otherwise we could be quickly poisoned by the intake of concentrated carbon monoxide.

4.2.1.1. Reynolds Experiment

Reynolds's experiment is to determine the factors that affect the movement of a fluid and how

they affect it.

The fluid movement may be serpentine (turbulent) or direct (laminar) depending on:

+ The viscosity

+ Speed

+The characteristic length

Reynolds makes the following analogy:

"The circumstances which determine whether the movement of troops will be a march or

confusion are very similar to those that determine whether the motion will be direct or sinuous. In

both cases there is some influence to the order, with the troops is the discipline with water, its

viscosity or clumping. The better the discipline of the troops, or more sticky fluid is less likely that

the regular movement is altered on occasion. On the other hand, speed and size are both favorable

to instability, the greater is the army and its movements faster the greater the chance of disorder,

as well as the fluid, the wider the channel, the faster the speed the greater the chance of swirls=.

This Reynolds concludes that the natural condition of a fluid is not the order but disorder. In a

given length of horizontal pipe of constant diameter through which a fluid under pressure, energy

loss occurs as the pressure head difference between the two points of interest.

Loss of Energy (hf) = h1 - h2

Where the pressure head at a point is given as the pressure at that point on the specific gravity (g)

of the fluid
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4.2.2. Chezy Equation and Darcy Weisbach

The flow of liquid through a pipe is resisted by viscous shear stresses within the liquid and the
turbulence that occurs along the internal walls of the pipe, created by the roughness of the pipe
material. This resistance is usually known as pipe friction and is measured is feet or meters head of
the fluid, thus the term head loss is also used to express the resistance to flow.

Many factors affect the head loss in pipes, the viscosity of the fluid being handled, the size of the
pipes, the roughness of the internal surface of the pipes, the changes in elevations within the
system and the length of travel of the fluid.

The resistance through various valves and fittings will also contribute to the overall head loss. A
method to model the resistances for valves and fittings is described elsewhere.

In a well designed system the resistance through valves and fittings will be of minor significance to
the overall head loss, many designers choose to ignore the head loss for valves and fittings at least
in the initial stages of a design.

Much research has been carried out over many years and various formulae to calculate head loss
have been developed based on experimental data.

Among these is the Chézy formula which dealt with water flow in open channels. Using the
concept of 8wetted perimeter9 and the internal diameter of a pipe the Chézy formula could be
adapted to estimate the head loss in a pipe, although the constant 8C9 had to be determined
experimentally.

Weisbach first proposed the equation we now know as the Darcy-Weisbach formula or
Darcy-Weisbach equation:

hf = f (L/D) x (v2/2g)

Where:

hf = head loss (m)
f = friction factor
L = length of pipe work (m)
d = inner diameter of pipe work (m)
v = velocity of fluid (m/s)
g = acceleration due to gravity (m/s²)

Or:

hf = head loss (ft)
f = friction factor
L = length of pipe work (ft)
d = inner diameter of pipe work (ft)
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v = velocity of fluid (ft/s)
g = acceleration due to gravity (ft/s²)

4.3. Friction Factor

Fanning did much experimentation to provide data for friction factors, however the head loss
calculation using the Fanning Friction factors has to be applied using the hydraulic radius equation
(not the pipe diameter). The hydraulic radius calculation involves dividing the cross sectional area
of flow by the wetted perimeter. For a round pipe with full flow the hydraulic radius is equal to ¼ of
the pipe diameter, so the head loss equation becomes:

hf= (L/ ) X ( )

Where:
hf = f f(L/Rh) x (v2/2g)
Where
Rh = hydraulic radius
f f = Fanning friction factor

Darcy introduced the concept of relative roughness, where the ratio of the internal roughness of a
pipe to the internal diameter of a pipe, will affect the friction factor for turbulent flow. In a
relatively smoother pipe the turbulence along the pipe walls has less overall effect, hence a lower
friction factor is applied.

The work of many others including Poiseuille, Hagen, Reynolds, Prandtl, Colebrook and White have
contributed to the development of formulae for calculation of friction factors and head loss due to
friction.

The Darcy Friction factor (which is 4 times greater than the Fanning Friction factor):

Used with Weisbach equation has now become the standard head loss equation for calculating
head loss in pipes where the flow is turbulent. Initially the Darcy-Weisbach equation was difficult
apply, since no electronic calculators were available and many calculations had to be carried out by
hand.

The Colebrook-White equation which provides a mathematical method for calculation of the
friction factor (for pipes that are neither totally smooth nor wholly rough) has the friction factor
term f on both sides of the formula and is difficult to solve without trial and error (i.e.
mathematical iteration is normally required to find f).

1 / = 1.14 3 2 ( ) for Re > 4000

Where:
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f = friction factor
e = internal roughness of the pipe
D = inner diameter of pipe work

Due to the difficulty of solving the Colebrook-White equation to find f, the use of the empirical
8Hazen-Williams9 formulae for flow of water at 60º F (15.5º C) has persisted for many years. To use
the Hazen-Williams formula a head loss coefficient must be used.

Unfortunately the value of the head loss coefficient can vary from around 80 up to 130 and beyond
and this can make the 8Hazen-Williams9 formulae unsuitable for accurate prediction of head loss.

4.3.1. Moody´s diagram

The Moody diagram is a graphical representation in doubly logarithmic scale of the friction factor

as a function of Reynolds number and the relative roughness of a pipe.

On the Darcy-Weisbach equation appears the term λ that represents the Darcy friction factor, also

known as the coefficient of friction. The calculation of this ratio is not immediate and there is no

single formula to calculate it in all situations.

We can distinguish two different situations, the case where the flow is laminar and the case where

the flow is turbulent. In the case of using a laminar flow of expressions of the Poiseuille equation,

in the case of turbulent flow can use the Colebrook-White equation plus a few others how Barr

equation, equation of Miller, Haaland equation.

For laminar flow the friction factor depends only on the Reynolds number. For turbulent flow, the

friction factor depends on both Reynolds number and the relative roughness of the pipe, so in this

case is represented by a family of curves, one for each value of the parameter k / D, where k is the

absolute value of the roughness, the length (usually in millimeters) of roughness in the pipe

directly measurable.

The following image shows the appearance of the Moody diagram
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Cha 4 Fig. 3 Moody Diagram

4.4. Smooth and Rough Pipes

We now know that both investigators were right but they were looking at different aspects of the
same problem. Blazius was looking at flows with relatively low Reynolds Numbers (4000 to 100
000) and his results refer to what are now called smooth pipes. Nikuradse9s experiments dealt with
high Reynolds Number flows (greater than 100 000) and his results refer to what are now called
rough pipes. Both Blazius and Nikuradse results are shown graphically in Figure 4.3a. This is a graph
with a special logarithmic scale for Reynolds Number so that a wide range of values can be shown
on the same graph. It shows how _ varies with both Reynolds Number and pipe roughness which is
expressed as the height of the sand grains (k) divided by the pipe diameter (d). The Blazius formula
produces a single line on this graph and is almost a straight line.

The terms rough and smooth refer as much to the flow conditions in pipes as to the pipes
themselves and so, paradoxically, it is possible for the same pipe to be described as both rough and
smooth. Roughness and smoothness are also relative terms. How the inside of a pipe feels to touch
is not a good guide to its smoothness in hydraulic terms. Pipes which are smooth to the touch can
still be quite rough hydraulically. However, a pipe that feels rough to touch will be very rough
hydraulically and very high energy losses can be expected.

As there are two distinct types of flow it implies that there must be some point or zone where the
flow changes from one to the other. This is indeed the case. It is not a specific point but a zone
known as the transition zone when l depends on both Reynolds Number and pipe roughness. This
zone was successfully investigated by C.F. Colebrook and C.M. White working at Imperial College in
London in the 1930s and they developed a formula to cover this flow range.
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This is not quoted here as it is quite a complex formula and in practice there is no need to use it
because it has now been simplified to design charts. These can be used to select pipe sizes for a
wide range of hydraulic conditions.

The transition zone between smooth and rough pipe flow should not be confused with the
transition zone from laminar to turbulent flow, as is often done. The flow is fully turbulent forall
smooth and rough pipes and the transition is from smooth to rough pipe flow.

Cha 4 Fig 4 The l story.
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To summaries the different flows in pipes:

Laminar flow
↓

Transition from laminar to turbulent flow
(This zone is very unstable and should be avoided)

↓
Turbulent flow

Smooth pipe flow
↓

Transition from smooth to rough pipe flow
↓

Rough pipe flow

4.5. Hydraulic Gradient

One way of showing energy losses in a pipeline is to use a diagram. The total energy is shown as a
line drawn along the pipe length and marked e4e4e. This line always slopes downwards in the
direction of the flow and demonstrates that energy is continually being lost through friction. It
connects the water surfaces in the two tanks. There is a small step at the downstream tank to
represent the energy loss at the outlet from the pipeline into the tank. Note that the energy line is
not necessarily parallel to the pipeline. The pipeline usually just follows the natural ground surface
profile.

Although total energy is of interest, pressure is more important because this determines how
strong the pipes must be to avoid bursts. For this reason a second line is drawn below the energy
line, but parallel to it, to represent the pressure (pressure energy) and is marked h4h4h. This
shows the pressure change along the pipeline. Imagine standpipes are attached to the pipe.

Water would rise up to this line to represent the pressure head (Figure 4.4a). The difference
between the two lines is the kinetic energy. Notice how both the energy line and the hydraulic
gradient are straight lines. This shows that the rate of energy loss and the pressure loss are uniform
(at the same rate). The slope of the pressure line is called the hydraulic gradient. It is calculated as
follows:

Hydraulic gradient =

There hf is change in pressure (m); l is the pipe length over which the pressure change takes place
(m).

The hydraulic gradient has no dimensions as it comes from dividing a length in meters by a head
difference in meters. However, it is often expressed in terms of meters head per meter length of
pipeline. As an example a hydraulic gradient of 0.02 means for every one meter of pipeline there
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will be a pressure loss of 0.02 m. This may also be written as 0.02 m/m or as 2 m/100 m of
pipeline. This reduces the number of decimal places that must be dealt with and means that for
every 100 m of pipeline 2 m of head is lost through friction. So if a pipeline is 500 m long (there are
five 100 m lengths) the pressure loss over 500 m will be 5 X 2 = 10 m head.

Cha 4 Fig. 5 Hydraulic Gradient.

The hydraulic gradient is not a fixed line for a pipe; it depends on the flow.

When there is no flow the gradient is horizontal but when there is full flow the gradient is at its
steepest. Adjusting the outlet valve will produce a range of gradients between these two extremes.

The energy gradient can only slope downwards in the direction of flow to show how energy is lost,
but the hydraulic gradient can slope upwards as well as downwards. An example of this is a pipe
junction when water flows from a smaller pipe into a larger one. As water enters the larger pipe
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the velocity reduces and so does the kinetic energy. Although there is some energy loss when the
flow expands (this causes the energy line to drop suddenly) most of the loss of kinetic energy is
recovered as pressure energy and so the pressure rises slightly.

Two more points of detail about the energy and hydraulic gradients. At the first reservoir, the
energy gradient starts at the water surface but the hydraulic gradient starts just below it. This is
because the kinetic energy increases as water enters the pipe so there is a corresponding drop in
the pressure energy. As the flow enters the second reservoir the energy line is just above the water
surface. This is because there is a small loss in energy as the flow expands from the pipe into the
reservoir. The hydraulic gradient is located just below the water level because there is still some
kinetic energy in the flow. When it enters the reservoir this changes back to pressure energy. The
downstream water level represents the final energy condition in the system. These changes close
to the reservoirs are really very small incomparison to the friction losses along the pipe and so they
play little or no part in the design of the pipeline.

Normally pipelines are located well below the hydraulic gradient. This means that the pressure in

the pipe is always positive. Even though it may rise and fall as it follows the natural ground profile,

water will flow as long as it is always below the hydraulic gradient and provided the outlet is below

the inlet. There are limits to how far below the hydraulic gradient a pipeline can be located. The

further below the higher will be the pressure in the pipe and the risk of a burst if the pressure

exceeds the limits set by the pipe manufacturer.

4.6. Local Losses or Lower

In addition to the frictional energy losses, other losses "minor" problems associated with pipelines.

It is considered that such losses occur locally in the disturbance of flow. They occur due to any flow
disturbance caused by curvature or changes in the section. They are called minor losses because
they can often be neglected, particularly in long pipes where friction losses are high compared to
local losses. However, in short pipes and a considerable number of accessories, the effect of local
losses will be large and should be taken into account.
Minor losses are usually caused by changes in speed, whether magnitude or direction. Has been
shown experimentally that the magnitude of losses is roughly proportional to the square of speed.
It is common to express the minor losses as a function of head velocity in the tube, V2/2g:

K

With the loss <hL= minor loss coefficient K. K values for all types of accessories, are found in texts
and hydraulic fluid.
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4.7. Selecting Pipe Sizes in Practice

The development of l as a pipe roughness coefficient is an interesting story and this nicely leads
into the use of the Darcy3Weisbach formula for linking energy loss with the various pipe
parameters. There are several examples using this formula in the boxes and they demonstrate well
the effects of pipe length, diameter and velocity on energy loss. So it is a useful learning tool.

Engineers in different industries and in different countries have also used other formulae often
developed empirically to fit their particular circumstances. But these are gradually being
abandoned and replaced by the Colebrook-White formula which accurately deals with most
commercially available pipes. The task of using the formula, which is a rather complicated one, is
made simple by the fact that it is now available as a set of design charts (Figure 4.6). The charts
are also easier to use because discharge can be related directly to pipe diameter whereas
Darcy3Weisbach formula only links to velocity and so requires an extra step (continuity equation)
to get to discharge.

The boxes provide examples of the use of Darcy3Weisbach formula and design charts based on
Colebrook-White formula.

EXAMPLE: CALCULATING PIPE DIAMETER USING DARCY–WEISBACH FORMULA
A 2.5 km long pipeline connects a reservoir to a smaller storage tank outside a town which then
supplies water to individual houses. Determine the pipe diameter when the discharge required
between the reservoir and the tank is 0.35 m3/s and the difference in their water levels is 30 m.
Assume the value of is 0.03.
This problem can be solved using the energy equation. The first step is to write down the equation
for two points in the system. Point 1 is at the water surface of the main reservoir and point 2 is at
the surface of the tank. Friction losses are important in this example and so these must also be
included:

+ + = + + +

This equation can be greatly simplified. p1 and p2 are both at atmospheric pressure and are zero.

The water velocities v1 and v2 in the two tanks are very small and so the kinetic energy terms are
also very small and can be assumed to be zero. This leaves just the potential energy terms z1 and
z2 and the energy loss term hf so the equation simplifies to:

= –

Using the Darcy3Weisbach formula for hf:

=
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And so:

Diameter d is unknown but so is the velocity in the pipe. So first calculate velocity v using the
continuity equation:

Q = va

v =

Cha 5 Fig 6 Calculating the pipe diameter.

Calculate area a:

a=

And use this value to calculate v:

V= = =

Note that as d is not known it is not yet possible to calculate a value for v and so this must remain
as an algebraic expression for the moment.

Put all the known values into the Darcy3Weisbach equation:

= 0.35

Rearrange this to calculate d:
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= 0.025

Calculate the fifth root of 0.025 to find d:

d = 0.47 m = 470 mm

The nearest pipe size to this would be 500 mm. So this is the size of pipe needed to carry this flow
between the reservoir and the tank. This may seem rather involved mathematically but another
approach, and perhaps a simpler one, is to guess the size of pipe and then put this into the
equation and see if it gives the right value of discharge. This 8trial and error9 approach is the way
most engineers approach the problem. The outcome will show if the chosen size is too small or too
large.

A second or third guess will usually produce the right answer. If you are designing pipeson a regular
basis you soon learn to 8guess9 the right size for a particular installation. The design then becomes
one of checking that your guess was the right one.

4.8. Other Friction Formulas
4.8.1. Manning

Manning's formula is an evolution of the Chezy formula for calculating the water velocity in open

channels and pipes, given by the Irish engineer Robert Manning, in 1889:

V=

For some it is an expression of what is known Chezy coefficient C used in the Chezy formula:

V(h)= C

4.8.2. Hazen - Williams

The Hazen3Williams equation is an empirical formula which relates the flow of water in a pipe with
the physical properties of the pipe and the pressure drop caused by friction. It is used in the design
of water pipe systems[1] such as fire sprinkler systems[2], water supply networks, and irrigation
systems. It is named after Allen Hazen and Gardner Stewart Williams.

The Hazen3Williams equation has the advantage that the coefficient C is not a function of the
Reynolds number, but it has the disadvantage that it is only valid for water. Also, it does not
account for the temperature or viscosity of the water

The general form of the equation relates the mean velocity of water in a pipe with the geometric
properties of the pipe and slope of the energy line.
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V= C

Where:

● V is velocity
● k is a conversion factor for the unit system (k = 1.318 for US customary units, k = 0.849 for

SI units)
● C is a roughness coefficient
● R is the hydraulic radius
● S is the slope of the energy line (head loss per length of pipe or hf/L)

Typical C factors used in design, which take into account some increase in roughness as pipe ages
are as follows:

MATERIAL FACTOR LOW FACTOR HIGH REFERENCE

ASBESTOS 3 CEMENT 140 140 -

CAST IRON 100 140 -

CEMENT-MORTAR
LINED DUCTILE IRON

PIPE

140 140 -

CONCRETE 100 140 -

COPPER 130 140 -

STEEL 90 110

GALVANIZED IRON 120 120

POLYETHYLENE 140 140

POLYVINYL
CHLORIDE(PVC)

130 130 -

FIBR-REINFORCED
PLASTIC (FRP)

150 150 -

4.8.3. Chezy

The Chezy formula can be used to calculate mean flow velocity in conduits and is expressed as

v = c (R S)1/2
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Where:

v = Mean velocity (m/s, ft/s)

c = The Chezy roughness and conduit coefficient

R = Hydraulic radius of the conduit (m, ft)

S = slope of the conduit (m/m, ft/ft)

In general the Chezy coefficient - c - is a function of the flow Reynolds Number - Re - and the

relative roughness - ε/R - of the channel.

4.9. Piping Systems

Whether you are pumping water to fill a pond or to aerate, it pays to do it as economically as
possible. A key to economical operation is to minimize the work you have to do and to match your
pump to the requirements. Both depend upon the piping system you move your water through. A
suitable piping system for your operation can be determined by considering the three components
that make up the total resistance to water movement in the pipe. This resistance, called the total
dynamic head, determines the amount of work required to move each gallon of water. The total
dynamic head is the sum of the lift, the velocity head and the friction head.

Lift

Lift is the vertical distance between the level of supply water9s surface and point of discharge at
the end of the pipe while the pump is running. It is the only component of the total dynamic head
which is not directly affected by the piping system.

Velocity Head

The energy contained in a stream of water due to its velocity. This energy is lost when the water is
discharged. The amount of work required to produce this velocity is equivalent to picking up the
water high enough so that it would obtain the required velocity in falling. This height is called a
<head= and is commonly measured in feet of water (the height the water has to be picked up).
Numerically, it is equal to the square of the velocity (in feet per second) divided by 64.

Velocity Head = (V in feet

Most losses, and the work required to move the water in the pipe, vary with the velocity head. For
a given flow rate, the velocity head is very sensitive to the size of the pipe. The velocity head
depends upon the fourth power of the pipe diameter. For example, if the pipe diameter is halved,
the velocity head is 16 times greater. Mathematically this relationship can be expressed as:
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=

Example: Determine the velocity and velocity head for 1,200 gallons per minute (gpm) of water
flowing in a 1-inch diameter pipe. The velocity is calculated by dividing the flow rate by the
cross-sectional area of the pipe. Since there are 7.48 gallons in 1 cubic foot and 60 seconds in a
minute, the flow rate in cubic feet per second (CFS) is obtained by dividing 1,200 gpm by 60
seconds per minute and 7.48 gallons per cubic foot. The flowrate is:

= 2.67 CFS

The cross-sectional area, A, is equal to pi times the diameter squared divided by 4. Realizing that
there are 144 square inches in 1 square foot, the area is calculated as:

= 0.20 SQUARE FEET

The velocity, V, is:

V = = = 13.35 FT / SEC

And the velocity head is:

= = 2.78 FEET

As a rule of thumb, the velocity head should be less than 0.4 foot. The velocity head in feet for
various diameter pipes and flow rates :
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4.9.1. Parallel Pipe

A parallel pipeline system consists of a set of pipes that are born and come together in one place.

For a generic system of n parallel lines is verified that:

The total flow is the sum of the individual capacities of each pipe (continuity equation)

4.9.2. Cha 4 Fig 7 Parallel Pipe

The total pressure loss is equal to the loss in each of the piping system:

=

and Where are the primary and secondary losses in each of the system piping.

Set of 3 parallel lines between A and B
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Cha 4 Fig 7 Parallel Pipe

4.9.2 Pipe Networks

In fluid dynamics, pipe network analysis is the analysis of the fluid flow through a hydraulics
network, containing several or many interconnected branches. The aim is to determine the flow
rates and pressure drops in the individual sections of the network. This is a common problem in
hydraulic design.

In order to direct water to many individuals in a municipal water supply, many times the water is

routed through a water supply network. A major part of this network may consist of

interconnected pipes. This network creates a special class of problems in hydraulic design typically

referred to as pipe network analysis. The modern solution for this is to use specialized software in

order to automatically solve the problems. However, the problems can also be addressed with

simpler methods like a spreadsheet equipped with a solver, or a modern graphing calculator.

Network Analysis

Once the friction factors are solved for, then we can start considering the network problem. We
can solve the network by satisfying two conditions.

1.-At any junction, the flow into a junction equals the flow out of the junction.

2.-Between any two junctions, the head loss is independent of the path taken.

The classical approach for solving these networks is to use the Hardy Cross algorithm. In this
formulation, first you go through and create guess values for the flows in the network. That is, if Q7
enters a junction and Q6 and Q4 leave the same junction, then the initial guess must satisfy Q7 =
Q6 + Q4. After the initial guess is made, then, a loop is considered so that we can evaluate our
second condition. Given a starting node, we work our way around the loop in a clockwise fashion,
as illustrated by Loop 1. We add up the head losses according to the Darcy3Weisbach equation for
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each pipe if Q is in the same direction as our loop like Q1, and subtract the head loss if the flow is
in the reverse direction, like Q4. In order to satisfy the second condition, we should end up with 0
about the loop if the network is completely solved. If the actual sum of our head loss is not equal
to 0, then we will adjust all the flows in the loop by an amount given by the following formula,
where a positive adjustment is in the clockwise direction.

Where:

● n is 1.85 for Hazen-Williams and
● n is 2 for Darcy3Weisbach.

The clockwise specified (c) means only the flows that are moving clockwise in our loop, while the
counter-clockwise specified (cc) is only the flows that are moving counter-clockwise.

This adjustment won't solve the problem, since with most networks we will have several loops. It is
ok to do this adjustment, however, because our flow changes won't alter condition 1, and
therefore, our other loops will still satisfy condition 1. However, we should use the results from the
first loop if we progress to any other loops.

The more modern method is simply to create a set of conditions from your junctions and head-loss
criteria. Then, use a Root-finding algorithm to find Q values that satisfy all the equations. The literal
friction loss equations will use a term called Q2, but we want to preserve any changes in direction.
Create a separate equation for each loop where the head losses are added up, but instead of
squaring Q, use |Q|·Q instead (with |Q| the absolute value of Q) for the formulation so that any
sign changes will reflect appropriately in the resulting head-loss calculation

Cha 4 fig 8 Network Analysis
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5. PHYSICAL MODELING THEORY

Definition: the physical hydraulic model

A physical model is a scaled representation of a hydraulic flow situation. Both the boundary
conditions (e.g. channel bed, sidewalls), the upstream flow conditions and the flow field must be
scaled in an appropriate manner.

Physical hydraulic models are commonly used during design stages to optimize a structure and to
ensure a safe operation of the structure. They have an important further role to assist
non-engineering people during the `decision-making' process.

A hydraulic model may help the decision-makers to visualize and to picture the flow field, before
selecting a `suitable' design.

In civil engineering applications, a physical hydraulic model is usually a smaller- size representation
of the prototype (i.e. the full-scale structure).

Other applications of model studies (e.g. water treatment plant, flotation column) may require the
use of models larger than the prototype. In any case the model is investigated in a laboratory
under controlled condition
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5.1. Dimensional Analysis

Taking into account all basic parameters, dimensional analysis yields:

There are eight basic parameters and the dimensions of these can be grouped into three
categories: mass (M), length (L) and time (T). The Buckingham 3theorem (Buckingham 1915)
implies that the quantities can be grouped into five (5 . 8 ÿ 3) independent dimensionless
parameters:

Fr; Eu; Re; We; Ma)

The first ratio is the Froude number Fr, characterizing the ratio of the inertial force to gravity force.
Eu is the Euler number, proportional to the ratio of inertial force to pressure force. The third
dimensionless parameter is the Reynolds number Re which characterizes the ratio of inertial force
to viscous force. The Weber number.

We is proportional to the ratio of inertial force to capillary force (i.e. surface tension).

The last parameter is the Sarrau - Mach number, characterizing the ratio of inertial
force to elasticity force.

5.2. Similarity Dinamic

Traditionally model studies are performed using geometrically similar models. In a geometrically
similar model, true dynamic similarity is achieved if and only if each dimensionless parameter (or
II-terms) has the same value in both model and proto- type:

Frp . Frm; Eup . Eum; Rep . Rem; Wep . Wem; Map . Mam

Scale effects will exist when one or more II - terms have different values in the model and
prototype.

In practice, hydraulic model tests are performed under controlled flow conditions.

The pressure difference P may usually be controlled. This enables P to be treated as a

dependent parameter. Further compressibility effects are small in clear-water ows2 and the
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Sarrau-Mach number is usually very small in both model and proto- type. Hence, dynamic

similarity in most hydraulic models is governed by:

=

Eu= (Fr; Re; We) Hydraulics Model Test

There are a multitude of phenomena that might be important in hydraulic flow situations: e.g.
viscous effects, surface tension, gravity effect. The use of the same fluid on both prototype and
model prohibits simultaneously satisfying the Froude, Reynolds and Weber number scaling criteria

because the Froude number similarity requires Vr= , the Reynolds number scaling

implies that Vr=. 1 / Lr and the Weber number similarity requires: Vr = 1 /

In most cases, only the most dominant mechanism is modeled. Hydraulic models commonly use
water and/or air as flowing fluid(s). In fully-enclosed flows (e.g. pipe flows), the pressure losses are
basically related to the Reynolds number Re. Hence, a Reynolds number scaling is used: i.e. the
Reynolds number is the same in both model and prototype. In free-surface flows (i.e. flows with a
free surface), gravity effects are always important and a Froude number modeling is used (i.e.
Frm . Frp)

In a physical model, the flow conditions are said to be similar to those in the prototype
if the model displays similarity of form (geometric similarity), similarity of motion
(kinematic similarity) and similarity of forces (dynamic similarity)
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Cha 5 Fig 1 Basic flow parameters.

5.3. Reynold´s Law

In fluid mechanics, the Reynolds number Re is a dimensionless number that gives a measure of the
ratio of inertial forces ρv2/L to viscous forces μv/L2 and consequently quantifies the relative
importance of these two types of forces for given flow conditions. The concept was introduced by
George Gabriel Stokes in 1851,[1] but the Reynolds number is named after Osborne Reynolds
(184231912), who popularized its use in 1883.

Reynolds numbers frequently arise when performing dimensional analysis of fluid dynamics
problems, and as such can be used to determine dynamic similitude between different
experimental cases. They are also used to characterize different flow regimes, such as laminar or
turbulent flow: laminar flow occurs at low Reynolds numbers, where viscous forces are dominant,
and is characterized by smooth, constant fluid motion, while turbulent flow occurs at high
Reynolds numbers and is dominated by inertial forces, which tend to produce chaotic eddies,
vortices and other flow instabilities

Definition

Reynolds number can be defined for a number of different situations where a fluid is in relative
motion to a surface (the definition of the Reynolds number is not to be confused with the Reynolds
Equation or lubrication equation). These definitions generally include the fluid properties of
density and viscosity, plus a velocity and a characteristic length or characteristic dimension. This
dimension is a matter of convention - for example a radius or diameter are equally valid for
spheres or circles, but one is chosen by convention. For aircraft or ships, the length or width can be
used. For flow in a pipe or a sphere moving in a fluid the internal diameter is generally used today.
Other shapes (such as rectangular pipes or non-spherical objects) have an equivalent diameter
defined. For fluids of variable density (e.g. compressible gases) or variable viscosity
(non-Newtonian fluids) special rules apply. The velocity may also be a matter of convention in
some circumstances, notably stirred vessels.

Re= =

Where:

● is the mean velocity of the object relative to the fluid (SI units: m/s)
● L is a characteristic linear dimension, (travelled length of the fluid hydraulic diameter when

dealing with river systems) (m)
● μ is the dynamic viscosity of the fluid (Pa·s or N·s/m² or kg/(m·s))
● ν is the kinematic viscosity (ν = μ / ρ) (m²/s)
● is the density of the fluid (kg/m³)
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Note that this is equal to the ratio between , which is the drag (up to a numerical factor, half

the drag coefficient), and , which is the force due to viscosity (up to a numerical factor

depending on the form of the flow).

Significance

RE=

Flow in Pipe

For flow in a pipe or tube, the Reynolds number is generally defined as:

Re= = =

Where:

● DH is the hydraulic diameter of the pipe (m).
● Q is the volumetric flow rate (m3/s)
● A is the pipe cross-sectional area (m²).

5.4. Froude Law

The Froude number is a dimensionless number defined as the ratio of a characteristic velocity to a
gravitational wave velocity. It may equivalently be defined as the ratio of a body's inertia to
gravitational forces. In fluid mechanics, the Froude number is used to determine the resistance of
an object moving through water, and permits the comparison of objects of different sizes. Named
after William Froude, the Froude number is based on the speed/length ratio as defined by him.

The Froude number is defined as:

Fr =

Where V is a characteristic velocity , and c is a characteristic water wave propagation velocity. The
Froude number is thus analogous to the Mach number. The greater the Froude number, the
greater the resistance.
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Some uses are:

Ship hydrodynamics

For a ship, the Froude number is defined as:

Fr =

Where V is the velocity of the ship, g is the acceleration due to gravity, and L is the length of the
ship at the water line level, or Lwl in some notations. It is an important parameter with respect to
the ship's drag, or resistance, including the wave making resistance.

Shallow water waves

For shallow water waves, like for instance tidal waves and the hydraulic jump, the characteristic
velocity V is the average flow velocity, averaged over the cross-section perpendicular to the flow
direction. The wave velocity, c, is equal to the square root of gravitational acceleration g, times
cross-sectional area A, divided by free-surface width B:

C=

So the Froude number in shallow water is:

Fr=

For rectangular cross-sections with uniform depth d, the Froude number can be simplified to:

Fr=

For Fr < 1 the flow is called a subcritical flow, further for Fr > 1 the flow is characterised as
supercritical flow. When Fr ≈ 1 the flow is denoted as critical flow.

An alternate definition used in fluid mechanics is

Fr =
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Where each of the terms on the right have been squared. This form is the reciprocal of the
Richardson number.

Stirred tanks

In the study of stirred tanks, the Froude number governs the formation of surface vortices. Since
the impeller tip velocity is proportional to Nd, where N is the impeller speed (rev/s) and d is the
impeller diameter, the Froude number then takes the following form:

Fr =

Densimetric Froude number

When used in the context of the Boussinesq approximation the densimetric Froude number is
defined as

Fr =

Where g' is the reduced gravity:

g´= g

The densimetric Froude number is usually preferred by modelers who wish to nondimensionalize a
speed preference to the Richardson number which is more commonly encountered when
considering stratified shear layers. For example, the leading edge of a gravity current moves with a
front Froude number of about uni
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6. ORIFICES AND WEIRS

6.1. Orifices
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Cha 6 Fig 1 Orifices flow

The orifice equation is defined as:

Q=CA 2gH

Where:

Q = Flow (m3/sec., ft3/sec.)
C = Orifice coefficient
A = Flow area (m2, ft2 )
g = Gravitational acceleration (m/sec.2, ft/sec.2 )
H = Head (m, ft)

6.1.1. Orifice Coefficients

Although these coefficients vary with shape, size, and head depth, an average C coefficient of 0.60
is often used for storm water orifice openings. A list of orifice coefficients for various heads and
sizes of circular, square, rectangular, and triangular shapes can be found in the Handbook of
Hydraulics, by Brater et Al

6.1.2. Sluice Gate

Gates have the hydraulic properties of orifices. Therefore, the discharge through a
sluice gate is:

Q= CA
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Where :

Q = Flow (m3/sec., ft3/sec.)
C = Orifice coefficient
A = Flow area (m2, ft2 )
g = Gravitational acceleration (m/sec.2, ft/sec.2 )
H = Head (m, ft)

Model a sluice gate by using the Generic Orifice in FlowMaster, entering the appropriate
coefficient.

6.2. Weirs

Sharp-crested and non-sharp-crested weirs are the two profiles generally associated with weir

flow.

Sharp-crested weirs are usually used for measuring a discharge, based on the water height.

Non-sharp-crested weirs are usually part of a hydraulic structure, such as an overflowing

embankment or roadway.

6.2.1. Sharp-Crested Weirs

A sharp-crested weir has a sharp upstream edge formed so that the water flows clear of the crest.
Flow Master handles weir calculations for unsubmerged (free discharge) and submerged
(backwater effect) sharp-crested weirs.

Rectangular sharp 3 Crested Weir

Note: An error message will be displayed if the input data doses not satisfy these requirements
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Cha 6 Fig 2 Rectangular sharp 3 Crested Weir

The discharge over an unsubmerged rectangular sharp-crested weir is defined as:

Q=C(L−0.1iH)

Where :
Q = Discharge over weir (m3/sec., ft3/sec.)
C = Weir coefficient (typical values for this kind of weir are C = 1.84 SI and C = 3.33 U.S. customary)
L = Weir opening width (m, ft)
i = Number of contractions (i = 0, 1, or 2)
H = Head above bottom of opening (m, ft)

i = 0 corresponds to the case of a suppressed rectangular weir, for which the channel width is equal
to the weir opening length, and yields the equation:

Q= CL

i = 2 corresponds to the case of a contracted rectangular weir.

6.2.2. Broad Crested Weir

A broad-crested weir has a crest that extends horizontally in the direction of flow far enough to
support the nappe (sheet of water flowing over the crest of the weir) so that hydrostatic pressures
are fully developed for at least some short distance.

In order to model Embankment or Roadway overtopping, the Federal Highway Administration
(FHWA) has developed a methodology that can be found in the manual FHWA, HDS No. 5,
Hydraulic Design of Highway Culverts, 1985, which uses the general broad-crested weir equation.
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Q=

Where:

Q = Discharge over weir (m3/sec., ft3/sec.)
Cd = Weir coefficient
L = Length of roadway crest (m, ft)
Hr = Overtopping depth (m, ft)

Cha 6 Fig 3 Broad Crested Weir

The overtopping discharge coefficient Cd is a function of the submergence using the equation:

Cd= KtCr

The variables Kt and Cr are defined in the following figures, reproduced from the manual FHWA,
HDS No.5, Hydraulic Design of Highway Culverts, 1985. The first two figures are used by Flow
Master to derive the base weir coefficient Cr resulting from deep and shallow overtopping,
respectively. The submergence correction Kt is determined implicitly using the third figure.
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Cha 6 Fig 4Discharge Coefficient Cr, for Hr/L > 0.15

Cha Fig 5 Discharge Coefficient Cr, for Hr/L ≤ 0.15
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Cha 6 Fig 6 Submergence Factor, k
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