

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO

FACULTAD DE QUÍMICA

"MEDICIÓN DE IMPUREZAS EN AGUA PARA MEDICIÓN ELEMENTAL POR ESPECTROMETRÍA DE MASAS CON PLASMA ACOPLADO INDUCTIVAMENTE"

TESIS

QUE PARA OBTENER EL TÍTULO DE

ING. QUÍMICO EN MATERIALES

PRESENTA

CARLOS AUSENCIO BAUTISTA GARCÍA

DIRIGIDA POR

M. EN C. MARIA DEL ROCIO ARVIZU TORRES DRA. SANDRA ANDREA MAYÉN HERNÁNDEZ

SANTIAGO DE QUERÉTARO, QUERÉTARO, 2018.

iî.

UNIVERSIDAD AUTÓNOMA DE QUERÉTARO

FACULTAD DE QUÍMICA

"MEDICIÓN DE IMPUREZAS EN AGUA PARA MEDICIÓN ELEMENTAL POR ESPECTROMETRÍA DE MASAS CON PLASMA ACOPLADO INDUCTIVAMENTE"

TESIS

QUE PARA OBTENER EL TÍTULO DE

ING. QUÍMICO EN MATERIALES

PRESENTA

CARLOS AUSENCIO BAUTISTA GARCIA

DIRIGIDA POR

M. EN C. MARÍA DEL ROCÍO ARVÍZU TORRES

DRA. SANDRA ANDREA MAYÉN HERNÁNDEZ/

M. en C. María del Rocio Arvízu Torres DIRECTOR Dra. Sandra Andrea Mayén Hernández CO-DIRECTOR M. en C. Edith Valle Moya SINODAL Dr. José Santos Cruz SINODAL

SA ofen Hder

ÍNDICE GENERAL

Contenido	Página
ÍNDICE GENERAL	i
ÍNDICE DE CUADROS	iv
ÍNDICE DE FIGURAS	viii
RESUMEN	

1. A	NTECEDENTES	1
1.1	Centro Nacional de Metrología	2
1.2	Importancia de la metrología y sus campos de aplicación	2
1.3	Sistema de distribución y purificación	3
1.4	Tipos de agua	5
1.5	Tipos de impurezas	6
1.6	Medición de elementos químicos en agua ultrapura	8
1.7	Espectrometría de masas con plasma acoplado inductivamente	9
	1.7.1 Separador másico de sector magnético	11
1.8	Material de referencia y material de referencia certificado	13
2. H	IPÓTESIS	15
3. O	BJETIVOS	16
3.1	General	16
3.2	Objetivos específicos	16
4. M	IETODOLOGÍA	17
4.1	Material	17
4.2	Reactivos	17
4.3	Materiales de referencia	17
4.4	Instrumentos y equipos	18
4.5	Diseño Experimental	18
	4.5.1 Revisión de información	18
	4.5.2 Producción de agua doble subdestilada	18

	4.5.3	Limpieza de material	21			
		4.5.3.1 Limpieza de material de botellas de teflón para	21			
		mediciones a niveles de traza				
	4.5.3.2 Limpieza de material de vasos de precipitados de teflón					
	para mediciones a niveles de traza					
		4.5.3.3 Limpieza de viales de teflón para mediciones a niveles	22			
		de traza				
	4.5.4	Muestreo	23			
	4.5.5	Preparación de muestras	24			
	4.5.6	Preparación de disoluciones calibradores, material de	27			
		referencia de control y medición de las impurezas en el				
		espectrómetro ICP-SFMS				
	4.5.7	Identificación de interferencias	29			
	4.5.8	Secuencia de medición y parámetros instrumentales	29			
		4.5.8.1 Optimización de los parámetros instrumentales	31			
		4.5.8.2 Medición en el espectrómetro de masas con plasma	33			
		acoplado inductivamente				
	4.5.9	Análisis de datos para la determinación de la fracción de masa	35			
		de las impurezas				
		4.5.9.1 Criterios para la evaluación de impurezas elementales	35			
	4.5.9.2 Determinación de la fracción de masa de los elementos					
		químicos medidos en la muestra				
		4.5.9.3 Evaluación del límite de detección	37			
		4.5.9.4 Verificación del método para la evaluación de medición	39			
		de impurezas				
	4.5.10	Comparación entre sistemas de purificación	40			
5. R	ESULT	ADOS	41			
5.1	Revisi	ión de información y producción de agua doble subdestilada	41			
5.2	Limpie	eza de material	41			
5.3	Muest	reo	41			

5.4	Preparación de muestras	44
5.5	Preparación de disoluciones calibradoras y materiales de referencia	18
	de control	40
5.6	Identificación de interferencias	58
5.7	Medición en el espectrómetro de masas con plasma acoplado	59
	inductivamente	50
5.8	Análisis de datos para el cálculo de la fracción de masa de las	58
	impurezas	50
5.9	Comparación entre sistemas	71
6. D	ISCUSIÓN DE RESULTADOS	80
7. C	ONCLUSIONES	85
8. R	EFERENCIAS	86
9. Al	NEXOS	88

Índice de cuadros		Página
Cuadro		
1.	Características físicas y químicas de los cuatro diferentes	5
	tipos de agua según la ASTM D1193-06 (2011)	
2.	Elementos presentes en los calibradores utilizados para la	27
	medición de trazas elementales por ICP-MS.	
3.	Elementos contenidos en los materiales de referencia	28
	certificados de control.	
4.	Secuencia de medición utilizada en el estudio de muestras	30
	de agua.	
5.	Parámetros instrumentales del espectrómetro de masas con	32
	plasma acoplado inductivamente.	
6.	Lugares de muestreo para la evaluación de impurezas	42
	elementales en agua.	
7.	Relación de identificación y pesaje de las muestras de agua	45
	para su análisis.	
8.	Valores de dilución para las muestras más concentradas de	46
	pozo y de la planta desmineralizadora	
9.	Factores de dilución de cada una de las muestras medidas.	47
10.	Preparación 1 de la disolución calibradora A.	48
11.	Preparación 1 de la disolución calibradora B.	49
12.	Preparación 1 de la disolución calibradora C.	49
13.	Preparación 1 de la disolución calibradora D.	50
14.	Preparación 1 de la disolución calibradora E.	50
15.	Preparación 1 de la disolución calibradora F.	51
16.	Datos obtenidos para la preparación 2 y 3 de la disolución	52
	calibradora A utilizada en la medición.	
17.	Datos obtenidos para la preparación 2 y 3 de la disolución	53
	calibradora B utilizada en la medición.	
18.	Datos obtenidos para la preparación 2 y 3 de la disolución	53

calibradora C utilizada en la medición.

19.	Datos obtenidos para la preparación 2 y 3 de la disolución	54
	calibradora D utilizada en la medición.	
20.	Datos obtenidos para la preparación 2 y 3 de la disolución	54
	calibradora E utilizada en la medición.	
21.	Datos obtenidos para la preparación 2 y 3 de la disolución	55
	calibradora F utilizada en la medición.	
22.	Datos obtenidos para el mercurio y la plata adicionados a los	55
	calibradores A y C respectivamente.	
23.	Datos de preparación de los MRC de control HP-ICP-MSSC	56
	y 1643f para trazas en agua.	
24.	Fracciones de masa correspondientes al MRC de control	57
	1643f para trazas en agua.	
25.	Fracciones de masa de los elementos contenidos en el MRC	59
	de control HP-ICP-MSSC.	
26.	Valores de los límites de detección utilizados para cada	60
	criterio aplicado.	
27.	Fracciones de masa de los isótopos más críticos medidos en	62
	las muestras de agua de pozo para los 3 criterios usados.	
28.	Fracciones de masa de los isótopos medidos en las	63
	muestras de agua de salida de la planta desmineralizadora	
	para los 3 criterios usados.	
29.	Fracciones de masa de los isótopos medidos en las	64
	muestras de agua del recorrido desde la planta	
	desmineralizadora hasta la entrada al módulo de	
	electrodesionización para los 3 criterios usados.	
30.	Fracciones de masa de los isótopos medidos en las	65
	muestras de agua en recirculación en la tubería de	
	polipropileno, posterior al proceso de electrodesionización,	
	para los 3 criterios usados.	

31.	Fracciones de masa de los isótopos medidos en las	66
	muestras de agua del Equipo MilliQ Advantage A10 especial	
	para trazas, para los 3 criterios usados.	
32.	Fracciones de masa de los isótopos medidos en las	67
	muestras de agua en el equipo MilliQ Advantage A10	
	especial para ultratrazas, ubicado en cuarto limpio, para los	
	3 criterios usados.	
33.	Fracciones de masa de los isótopos medidos en las	68
	muestras de agua en el equipo MilliQ Gradiente A10, para	
	los 3 criterios usados.	
34.	Fracciones de masa de los isótopos medidos en las	69
	muestras de agua tomadas del sistema de doble	
	subdestilación de cuarzo, para los 3 criterios usados.	
35.	Fracciones de masa de los isótopos medidos en las	70
	muestras de agua tomadas del sistema de doble	
	subdestilación de teflón, para los 3 criterios usados.	
36.	Comparación entre elementos críticos del agua de pozo del	71
	estudio realizado en el año 2013.	
37.	Comparación entre elementos críticos del agua de la planta	72
	desmineralizadora del estudio realizado en el año 2013.	
38.	Comparación entre elementos críticos del agua antes de	73
	entrar al laboratorio Q015 del estudio realizado en el año	
	2013.	
39.	Comparación entre elementos críticos del agua de	74
	recirculación del loop del estudio realizado en el año 2013.	
40.	Comparación entre elementos críticos del agua obtenida del	75
	equipo para trazas elementales MilliQ Advantage A10, del	
	estudio realizado en el año 2013.	
41.	Comparación entre elementos críticos del agua obtenida del	76
	equipo para trazas elementales MilliQ Gradiente A10, del	

estudio realizado en el año 2013.

42.	Comparación entre elementos críticos del agua obtenida del	77
	equipo para trazas elementales MilliQ Advantage especial	
	para el análisis de ultratrazas, del estudio realizado en el año	
	2013.	
43.	Comparación entre elementos críticos del agua obtenida del	78
	sistema de doble subdestilación de cuarzo, del estudio	
	realizado en el año 2013.	
44.	Comparación entre elementos críticos del agua obtenida del	79
	sistema de doble subdestilación de teflón, del estudio	
	realizado en el año 2013.	
45.	Especificación especial para la fracción de masa de algunos	81
	elementos en el agua producida por los equipos MilliQ.	
46.	Fracciones de masa obtenidas para las especificaciones	82
	requeridas de los equipos purificadores.	
47.	Cantidad de impurezas encontradas y en el límite de	83
	detección para cada uno de las etapas de purificación.	

	DE FIGURAS	Página
Figura		
1.	Diagrama del loop de polipropileno instalado en el edificio Q	4
	en las instalaciones del CENAM	
2.	llustración de la extracción y aceleración del haz de iones	11
	formados por el plasma en un ICP-MS.	
3.	Esquema Niehr-Johnson inverso de un espectrómetro de	13
	masa de sector magnético con doble enfoque.	
4.	Diagrama sobre la recolección y preparación de las	20
	muestras de agua, así como su blanco de muestreo.	
5.	llustración de los puntos de muestreo del edificio Q.	24
6.	Diagrama sobre la preparación de las muestras de agua, así	26
	como su blanco de muestreo.	
7.	Gráfica de impurezas encontradas en las diferentes etapas	84
	del proceso de purificación.	
8.	Gráfica de impurezas en el límite de detección en las	84
	diferentes etapas del proceso de purificación.	

RESUMEN

La demanda de análisis químicos rigurosos ha ido incrementando con el paso del tiempo, la tecnología ha permitido acercarnos cada vez más al análisis de trazas. Hoy en día esto es posible gracias a instrumentos analíticos muy sensibles como la espectrometría de masas con plasma acoplado inductivamente. En el Centro Nacional de Metrología (CENAM) se ha implementado un nuevo sistema de purificación y distribución de agua, con el fin de obtener niveles de detección bajos de los elementos presentes en el agua. Esto ha generado el uso de diversos métodos de purificación de agua, desde filtros de grava y arena, filtros de carbón activado, el uso de resinas iónicas que aseguran niveles bajos de iones presentes en el agua, ósmosis inversa y por último, la electrodiálisis; estos sistemas de purificación hacen posible la obtención de agua tipo II, esta agua tipo II pasa a través equipos de purificación fina para convertirla en agua tipo I o ultra pura. En el CENAM se ha implementado la doble subdestilación del agua para la reducción de impurezas, técnica que ha sido utilizada por otros centros de metrología como el NIST (National Institute of Standards and Technology) en estados unidos, desde hace más de 30 años, así mismo nuevas tecnologías como la desionización. La técnica de ICP-MS nos permite realizar análisis elementales e isotópicos con gran capacidad para discriminar entre masas de isótopos de diferentes elementos, sin embargo, esto depende en gran medida de la calidad del agua utilizada en la preparación de muestras.

1. ANTECEDENTES

Durante los últimos años las mediciones de impurezas elementales a nivel de trazas se han ido sensibilizando debido a la creciente mejora en la tecnología utilizada, así como los procesos empleados para la preparación de muestras. Actualmente se cuenta con la tecnología formada por técnicas y métodos analíticos para llevar a cabo mediciones de mayor exactitud, sin embargo, existe una dependencia en cuanto a reactivos de alta pureza; como los ácidos y el agua utilizados en la preparación de muestras que ayudan en la certificación de materiales de referencia, como lo pueden ser disoluciones monoelementales y calibradoras.

El uso de reactivos o de agua ultra pura se ha utilizado en instituciones como el NIST (National Institute of Standards and Technology) quienes por más de 30 años han utilizado el método de doble subdestilación de agua, ácido fluorhídrico y ácido clorhídrico (Paulsen, y col., 1989). El uso de agua ultra pura es de gran importancia para la metrología química, para las ciencias de la tierra, la industria farmacológica, la industria alimenticia ya que se utiliza en la medición de parámetros de calidad.

Los análisis de alta sensibilidad dependen en gran medida de la alta pureza del agua, especialmente cuando hay que medir directamente concentraciones muy bajas o cuando se dispone de pequeñas cantidades de muestras, siendo necesarias diluirlas antes del análisis. El uso de agua ultra pura minimiza los niveles base, permitiendo a los investigadores obtener resultados de alta sensibilidad en los análisis de trazas (Whitehead, 2011).

La metrología como la ciencia de las mediciones y sus aplicaciones incluye todos los aspectos teóricos y prácticos de las mediciones, cualesquiera que sean su incertidumbre de medida y su campo de aplicación (VIM, 2008). Hoy en día, la metrología y su estructura son utilizadas ampliamente para medir las características de los productos en las fases intermedias de los procesos industriales, en servicios de salud, seguridad y protección del medio ambiente, y juega un papel fundamental

en la experimentación científica, así como en los procesos de desarrollo tecnológico (DOF, 2014).

1.1 Centro Nacional de Metrología

El Centro Nacional de Metrología (CENAM) es un organismo descentralizado, cuyo objetivo es llevar a cabo funciones de alto nivel técnico en materia de metrología, según el Diario Oficial de la Federación (DOF, 2013) dichas funciones se pueden resumir en las siguientes actividades:

Metrología primaria: establecer y mantener patrones nacionales de medición y sistemas de referencia; desarrollar y certificar materiales de referencia.

Servicios para ofrecer trazabilidad a las mediciones: poner a la disposición de todos los usuarios las referencias nacionales de medición a través de servicios de calibración y medición, así como la venta de materiales de referencia certificados.

Apoyo al Sistema Nacional de Metrología: contribuir a las actividades de normalización en materia de metrología, al establecimiento, fortalecimiento y acreditación de laboratorios secundarios y a la difusión de la metrología.

Transferencia de tecnología: asesorar a los sectores industriales, técnicos y científicos en relación con problemas de medición; ofrecer servicios de capacitación y realizar proyectos de desarrollo tecnológico.

1.2 Importancia de la metrología y sus campos de aplicación

El Diario Oficial de la Federación (DOF, 2013) señala que en los últimos treinta años, la tendencia a la globalización del comercio mundial, los acuerdos de libre comercio, la co-manufactura de productos industriales y la creciente preocupación por la salud de la población así como la protección del ambiente, han impulsado el desarrollo de infraestructuras nacionales de calidad, que pongan al alcance de productores, consumidores y gobiernos los medios para comprobar y mejorar la calidad de productos y servicios, de acuerdo con los lineamientos establecidos por las organizaciones internacionales especializadas. Así mismo el Diario Oficial de la Federación (DOF, 2013) menciona que una gran cantidad de actividades en las que se emplea la tecnología dependen de las mediciones y, por ende, de la metrología (Ciencia de las mediciones). Entre los muchos ejemplos de actividades que requieren mediciones se pueden mencionar:

- Producción industrial (industrias extractivas, de transformación, de la construcción, agroalimentarias, etc.)
- Servicios de telecomunicaciones (radio, televisión, internet y telefonía)
- Comercio de productos y servicios que se venden por unidad de medida (Derivados de hidrocarburos-gasolina, energía eléctrica, materiales de construcción, alimentos, telefonía por servicio medido, tiempo de viajes en taxis con taxímetro, etc.)
- Investigación en ciencias físicas, químicas e ingeniería
- Diagnósticos y tratamientos médicos
- Medidas de protección ambiental
- Generación, transmisión y distribución de energía eléctrica
- Actividades militares y de seguridad pública
- Cartografía

1.3 Sistema de distribución y purificación de agua para medición

El sistema de purificación y distribución de agua en la dirección de metrología de materiales inorgánicos en el CENAM se mantuvo en uso durante más de 15 años; sin embargo, debido a esto y al uso continuo el material se fue deteriorando. En noviembre del año 2015 se realizó la actualización de los sistemas de purificación y distribución de agua, se llevó a cabo la instalación de un nuevo loop de polipropileno natural, este material se eligió debido a la resistencia del material y a la baja probabilidad de contaminación del agua que estará contenida en él. Este sistema se encuentra en constante circulación para evitar la sedimentación y la posible formación de moho, esto mediante una bomba de recirculación y a la estructura del loop. En la Figura 1 se encuentra ilustrado el nuevo sistema.

Figura 1. Diagrama del loop de polipropileno instalado en el edificio Q en las instalaciones del CENAM. (CENAM, 2015)

Entre los materiales disponibles como conductos o contenedores de agua o de sustancias puras se encuentra el polipropileno, Billmeyer (2004) menciona que el polipropileno es el más ligero de los plásticos importantes. Su alta cristalinidad le proporciona una elevada resistencia a la tracción, rigidez y dureza. El elevado punto de fusión del polipropileno permite que las piezas bien moldeadas sean esterilizables y el polímero conserva una alta resistencia a la tracción a temperaturas elevadas.

El polipropileno posee excelentes propiedades eléctricas y el carácter químico inerte y la resistencia a la humedad típicos de los polímeros de hidrocarburos. Se halla completamente libre de cuarteamiento por tensiones ambientales (Billmeyer, 2004).

En el CENAM se ha implementado el uso del sistema Milli-Q[®] Advantage A10 en la purificación de agua, este sistema a través de diversos mecanismos de purificación como el intercambio iónico, columna de carbón activo y membrana de ultrafiltración

convierte el agua tipo II en agua para medición o tipo I, la cual se utiliza en la certificación de materiales de referencia, asegurando la exactitud de los materiales de referencia certificados (MRC) para los usuarios finales. El agua tipo I se usa también en comparaciones de patrones a nivel internacional con otros institutos nacionales metrológicos, lo que contribuye significativamente a respaldar los servicios que el CENAM ofrece, con mejores niveles de exactitud, y por consiguiente, un mayor impacto para los usuarios en la obtención de mediciones y análisis más exactos.

1.4 Tipos de agua

Existen diferentes tipos de agua utilizada en los laboratorios, éstas han sido clasificadas por la American Society for Testing Materials (ASTM) en la norma ASTM D1193-06 (2011) principalmente en cuatro tipos, según la siguiente tabla:

Cuadro 1. Características físicas y químicas de los o	cuatro diferentes tipos de agua
según la ASTM D1193-06 ((2011).

Tipo	Conductividad eléctrica µS/cm	Resistividad eléctrica MΩ•cm	TOC μg/L (max)	Sodio µg/L (max)	Sílice total µg/L (max)
Ι	0.0555	18	50	1	3
=	1.0	1.0	50	5	3
III	0.25	4.0	200	10	500
IV	5.0	0.2	-	50	-

Cada tipo de agua es utilizada en diversos procesos, siendo el agua tipo I más empleada en procesos químicos analíticos, biológicos, alimenticios y farmacéuticos donde la calidad del agua es muy importante ya que es parte fundamental de la obtención de resultados de medición confiables.

El agua tipo 1 se produce a través de agua tipo 2 mediante un proceso adicional del agua, ya sea por ósmosis inversa o desionización seguida de una filtración por una

membrana con tamaño de poro de 0.22 µm para retener partículas y microorganismos como las bacterias.

1.5 Tipos de impurezas

El agua natural posee gran variedad de contaminantes que afectan directamente la calidad del agua de medición, por lo tanto, a la aplicación que se le dé a esta agua. Algunas de las principales impurezas son:

lones inorgánicos. Los iones inorgánicos suelen estar presentes en el agua como cationes, el sodio, magnesio, calcio y hierro en mayor abundancia, y como aniones los cloruros y sulfatos principalmente derivados de tuberías de PVC o de cobre. Sustancias orgánicas. Las moléculas orgánicas disueltas en el agua de grifo son fundamentalmente de origen biológico. Las sustancias orgánicas disueltas son susceptibles de afectar experimentos biológicos como el cultivo celular y perturbar las técnicas analíticas (Millipore Corporation, 2008).

Partículas y coloides. El agua natural suele contener partículas blandas (residuos vegetales) y duras (arena y roca), así como coloides que pueden interferir con el funcionamiento de los instrumentos (Millipore Corporation, 2008).

Bacterias y productos derivados. Las bacterias contaminan el agua natural, especialmente las aguas superficiales. Las bacterias pueden alterar los resultados de los experimentos de laboratorio, tanto directamente como a través de sus productos derivados (Millipore Corporation, 2008).

Gases. El agua natural contiene gases disueltos como el nitrógeno, oxígeno y dióxido de carbono. La concentración de oxígeno es susceptible de afectar algunas reacciones bioquímicas específicas, y el nitrógeno puede formar burbujas que son nocivas para determinados procesos como el recuenta de partículas y las mediciones espectrofotométricas (Millipore Corporation, 2008).

En el CENAM se emplearon diversos sistemas de purificación de agua, como filtración a partir de camas de grava y arena, las cuales retienen la materia sólida de mayor tamaño, seguido por un proceso adsorción a través de carbón activado

por el cual se eliminan algunas impurezas orgánicas. La siguiente etapa en el proceso de purificación, es la desmineralización o ablandamiento del agua que, según Henry y Heinke (1999), "es una proceso que quita la dureza, causada por la presencia de iones metálicos divalentes, principalmente Ca²⁺ y Mg²⁺ como consecuencia del contacto con los suelos y rocas, en particular la piedra caliza, en presencia de CO₂." La desmineralización se logra mediante intercambio iónico, las cuales extraen el Ca²⁺ y Mg²⁺ del agua y libera iones Na⁺.

El agua proveniente es tratada para su desionización, mediante tanques de resinas catiónicas y aniónicas colocados de manera consecutiva. Fuentes, Castiñeiras y Queraltó (1998) mencionan que "en este tratamiento se produce el intercambio de iones hidroxilo e hidrógeno, localizados en la superficie de la resina, por las impurezas catiónicas o aniónicas presentes en el agua". El agua resultante de este proceso es almacenada en un tanque de 10 m³ y es bombeada a través de una tubería de polipropileno natural, donde se le dará otro proceso de purificación.

Posterior a la desmineralización el agua pasa a través de un sistema Elix[®] 70 donde el agua es filtrada por un sistema de ósmosis inversa, en la cual pasa a través de una membrana semipermeable rechazando un porcentaje importante de iones del agua, además de la gran parte de bacterias y materia orgánica. En este sistema se encuentra un módulo Elix[®] el cual utiliza la electrodiálisis para eliminar iones disueltos utilizando electrodos y membranas iónicas, concentrando los iones en una región específica para su posterior rechazo. Por último, posee una lámpara de rayos ultravioleta que actúa emitiendo una luz de 254 nm destruyendo las bacterias restantes de los procesos anteriores.

El agua que se obtiene de este proceso es denominada agua tipo II, ésta es bombeada y recirculada a través de un loop de polipropileno natural. Adicionalmente se tienen equipos Millipore[®] de purificación final en los laboratorios, donde el agua pasa a través de una resina de intercambio iónico especial, un filtro de carbón activado y una membrana de ultrafiltración de 0.22 µm. El agua obtenida de este proceso se denomina agua tipo I o ultra pura.

En el CENAM se han implementado dos sistemas de doble subdestilación, uno de material de cuarzo y otro de teflón PFA, el principio de estos sistemas es evaporar agua por debajo de su punto de ebullición, evitando el traslado de impurezas a través de la evaporación, para la obtención de agua ultrapura con el menor número de impurezas posibles.

1.6 Medición de elementos químicos en agua ultrapura

Las impurezas elementales en el agua tipo I o ultrapura pueden causar, según la University of Cape Town (2012), interferencias en los análisis químicos de trazas elementales, las impurezas de origen orgánico afectan a elementos de menor número atómico (< 50), mientras que los elementos de mayor número atómico se ven afectados por moléculas formadas con el gas de muestra, por ejemplo, argón (Ar).

En las mediciones de trazas elementales las interferencias complican el análisis debido a que las señales de los analitos de interés son muy bajas respecto a las interferencias causadas por contaminantes que pueden provenir del agua utilizada en la preparación de muestras, del material usado en la medición de las muestras, de los reactivos empleados así como del ambiente en el que se tomó la muestra.

Los análisis elementales de concentraciones del orden de mg/kg en el ICP-MS se encuentran interferencias que complican el análisis de trazas elementales, que son relativamente pocas en número comparada con otras técnicas analíticas, generalmente son predecibles y pueden ser corregidas, o disminuidas optimizando las condiciones de operación del instrumento, incluso algunas son insignificantes. Los tres tipos de interferencias que pueden ocurrir son isobáricas, molecular o poli atómicas e interferencias (iónicas) doblemente cargadas. Las interferencias isobáricas ocurren por isótopos de diferentes elementos con igual masa. La mejor manera para evitarlas es eligiendo un isótopo no interferido, si se encuentran disponibles. Dado el conocimiento de las abundancias naturales de los isótopos, las interferencias isobáricas son fácilmente corregidas midiendo la intensidad de otro isótopo del elemento interferido y sustrayendo el factor de corrección apropiado de la intensidad del isótopo interferido (University of Cape Town, 2012). Las interferencias isobáricas se pueden corregir, siempre y cuando la intensidad de la interferencia no sobrepase el 5 % de la intensidad del elemento a medir, ya que las correcciones causarían mayor sesgo e incertidumbre en la medición del elemento de interés.

Las interferencias moleculares o poli atómicas son debidas a la recombinación de la muestra y iones en la matriz con argón u otros componentes de la matriz por ejemplo: O, N o Cl. La mayoría de los iones moleculares, en algunos casos, son predecibles y pueden ser corregidos aplicando factores de corrección determinados, mediante el análisis de la disolución que contenga los elementos químicos interferentes. En algunos casos se pueden reducir o incluso eliminar usando métodos de introducción de muestra más apropiados u optimizando las condiciones de operación del instrumento (University of Cape Town, 2012).

Las interferencias iónicas de doble carga son debidas a la matriz, que produce en el plasma iones de doble carga, es decir iones con la mitad de masa/carga del isótopo interferente. La formación de las especies de doble carga, son generalmente minimizadas optimizando las condiciones de operación del instrumento (University of Cape Town, 2012).

1.7 Espectrometría de masas con plasma acoplado inductivamente

Desde la introducción de los primeros instrumentos de espectrometría de masa de plasma acoplado inductivamente en 1983, la técnica ha ganado una rápida y amplia aceptación en muchos laboratorios analíticos. Este tipo de instrumento es ahora utilizado para una gran variedad de disciplinas como la geología, ciencias ambientales, análisis de aguas, medicina, biología, metalurgia, nuclear y muestras industriales. Sin embargo, usar un ICP-MS es una experiencia limitada, debido a la cantidad de laboratorios que poseen uno.

Este sistema consta de un sistema de introducción de muestra, el cual se puede utilizar para el análisis de disoluciones acuosas a través de un capilar y un nebulizador, posteriormente pasa la antorcha, la cual es una celda de cuarzo en donde se genera el plasma mediante una descarga en un gas (generalmente argón) a presión atmosférica, mantenida por energía acoplada a ella por un generador de radiofrecuencias, generando una temperatura de 7 000 a 10 000 K; la muestra que logra pasar por medio del nebulizador avanza hacia un cono de muestreo, pasando a través de una interfase con un vacío del orden de 10⁻⁴ torr y posteriormente a un cono skimmer. El vacío en la interfase ubicada entre el cono de muestreo y el cono skimmer es logrado mediante una bomba de vacío mecánica.

Para que el haz de iones pueda ser analizado se necesita de un alto vacío después del cono skimmer, del orden de 10⁻⁷ torr, el cual es alcanzado por el uso de bombas de vacío turbomoleculares, una vez alcanzado este vacío la muestra pasa al interior del instrumento donde se encuentran lentes de aceleración, a los que se les aplica un voltaje negativo de donde viene el haz de iones y uno positivo en el lado contrario, en dirección al analizador de masa, de esta manera los iones negativos se repelen, los iones positivos son atraídos y posteriormente acelerados como se muestra en la Figura 2.

Los iones positivos acelerados atraviesan una rendija de entrada, donde pasan al analizador, dependiendo del espectrómetro puede ser un analizador magnético, electrostático o alguna combinación de ellos, en esta sección del instrumento los iones serán separados mediante su masa o su relación masa carga dependiendo el analito de interés y el analizador que se tenga. El haz de iones de interés pasará a través de la rendija de salida, dirigiéndose al detector.

Existen diferentes tipos de detectores, entre ellos se encuentra el multiplicador de electrones secundarios (SEM por sus siglas en inglés) es uno de los más utilizados en espectrometría de masas, su funcionamiento consiste en la amplificación de electrones mediante dínodos, el haz de iones choca contra un dínodo de conversión provocando la emisión de un número elevado de electrones, los cuales inciden sobre el segundo dínodo liberando el doble de electrones sucesivamente en cada dínodo, este tipo de detectores necesitan un alto vacío para operar; copa de

Faraday, el cual consiste, según Bermúdez (1993), en un simple electrodo en forma de copa o caja, que recibe el impacto de los iones a detectar, los iones se neutralizan por transferencia de electrones, y la señal se mide como una corriente analógica igual o superior a la corriente iónica original, dependiendo de la forma del electrodo; el detector Channeltron posee un funcionamiento similar al SEM, este detector consiste en un tubo de vidrio en forma de corneta recubierto de óxido de plomo semiconductor con características especiales, este tipo de detector se puede utilizar para analizar iones positivos y negativos dependiendo el voltaje que se aplique, y a diferencia del SEM éste puede operar a presión atmosférica.

Figura 2. Ilustración de la extracción y aceleración del haz de iones formados por el plasma en un ICP-MS.

1.7.1 Separador másico de sector magnético

A pesar de que los analizadores de masas de cuadrupolo representan más del 90 % de todos los espectrómetros de masa con plasma acoplado inductivamente (ICP-MS) instalados alrededor del mundo, las limitaciones en su capacidad de resolución han llevado al desarrollo de espectrómetros de alta resolución basados en el diseño de sector magnético con doble enfoque (Thomas, 2001).

Un ICP-MS basado en el sistema de cuadrupolo típicamente ofrece una resolución de 300, que equivale a obtener de 0.7 – 1.0 u. Estos espectrómetros de masa de sector magnético con plasma acoplado inductivamente, ofrecen una capacidad de resolución tan alta como 10000, que equivale a obtener de (0.01 a 0.001) u (Thomas, 2001).

La instrumentación de hoy en día está basada en dos enfoques distintos, comúnmente referidos como geometría Niehr-Johnson estándar o inversa, en la Figura 3 se puede observar la geometría inversa Niehr-Johnson. Con este enfoque, los iones se obtienen convencionalmente del plasma y son acelerados en la región óptica de iones a pocos kilovoltios antes de entrar en el analizador de masas. El campo magnético, el cual es dispersivo respecto a la carga/masa del ion, enfoca todos los iones mediante el movimiento con ángulos divergentes para el slit de entrada (Thomas, 2001).

El analizador electrostático (ESA), el cual sólo dispersa respecto a la carga de los iones, enfoca a los iones en la rejilla (slit) de salida, donde se encuentra posicionado el detector. Si la energía de dispersión del magneto y del ESA son iguales en magnitud pero opuestos en dirección, enfocarán ambos ángulos del ion (primer enfoque) y las energías del ion (segundo enfoque o doble enfoque), cuando se combinan. Cambiando el campo eléctrico en la dirección opuesta durante el ciclo de tiempo del magneto (en términos de que la masa pase al slit de salida) tiene el efecto de congelar la masa para la detección (Thomas, 2001).

Figura 3. Geometría inversa Niehr-Johnson de un espectrómetro de masa de sector magnético con doble enfoque (Thomas, 2001).

1.8 Material de referencia y material de referencia certificado

Un material de referencia según el Vocabulario Internacional de Metrología (2008) es un "material suficientemente homogéneo y estable con respecto a propiedades especificadas, establecido como apto para su uso previsto en una medición o en un examen de propiedades cualitativas".

Se le denomina material de referencia certificado al material de referencia acompañado por la documentación emitida por un organismo autorizado, que proporciona uno o varios valores de propiedades especificadas, con incertidumbres y trazabilidades asociadas, empleando procedimientos válidos (VIM, 2008).

Los materiales de referencia certificados son de gran importancia en el sector de la química analítica ya que con ellos se llevan a cabo calibraciones de instrumentos, validación de métodos, para obtener mediciones de alta exactitud, en los que el valor emitido será determinante.

El CENAM cuenta con un programa de desarrollo de materiales de referencia para las diversas mediciones analíticas, con la finalidad de producir y certificar materiales de referencia que apoye el establecimiento de trazabilidad al sistema internacional de unidades (SI) de las mediciones elementales que realizan los laboratorios analíticos en cualquier tipo de muestra como: materiales ferrosos y no ferrosos, en materiales de alta pureza; vidrios, cerámicos; minerales y materiales geológicos; materiales de matriz inorgánica y orgánica de interés ambiental, salud e higiene industrial; así como materiales de interés en la industria de los alimentos, industria los sectores químico y agrícola (CENAM, 2013)

2 HIPÓTESIS

El nuevo sistema de purificación de agua para medición del Edificio Q y C, Dirección de Análisis Inorgánico del CENAM, que consiste en un pretratamiento electrodesionizador, seguido de un loop de polipropileno natural para la distribución de agua a los equipos purificadores finales de desionización, purifican y proveen de agua con la calidad necesaria para el análisis de trazas elementales con niveles de detección bajos.

3 OBJETIVO

3.1 General

Evaluar la calidad del agua en el nuevo sistema de purificación, a través de la medición de las impurezas elementales a nivel de trazas presentes en el agua ultrapura utilizada en la certificación de materiales de referencia, mediciones de químicas de alta exactitud en el Centro Nacional de Metrología mediante la técnica de espectrometría de masas con plasma acoplado inductivamente.

3.2 Objetivos específicos

- Preparación de agua doble subdestilada, recopilacón y análisis de las interferencias utilizando el software "ELEMENT 2 Demo Versión 3.2" de Thermo Electron Corporation
- Determinar los puntos de muestreo, preparación de muestras de agua
- Medir las muestras de agua del edificio Q y C en el ICP-MS
- Analizar los datos para la evaluación de la fracción de masa para la medición de impurezas
- Evaluar la calidad de agua entre sistemas de purificación de agua por medición de elementos químicos

4 METODOLOGÍA

4.1 Material

- Bolsas ziplock
- Botellas de 2 L de teflón PTFE
- Botellas de 500 mL de teflón PFA
- Botellas de polietileno de baja densidad de 30, 60, 125 y 250 mL
- Matraces de 50 mL de teflón PFA
- Pipetas de transferencia de 3 mL
- Rack para viales
- Traje para cuarto limpio
- Vasos de 250 mL de teflón PFA con sus vidrios de reloj de teflón
- Vasos de 125 mL de teflón PFA con sus vidrios de reloj de teflón
- Viales de 1 mL de teflón PFA con tapa
- Viales de 2 mL de felón PFA con tapa

4.2 Reactivos

- Ácido nítrico grado reactivo y doble subdestilado
- Ácido clorhídrico
- Ácido perclórico
- Agua doble subdestilada
- Materiales de referencia certificados

4.3 Materiales de referencia

- Disoluciones calibradoras multielementales
- Disoluciones monoelementales de referencia
- HP-ICP-MSSC Disolución multielemental
- SRM-1643 Elementos traza en agua

4.4 Instrumentos y equipos

- Campana de extracción
- Espectrómetro de masas de sector magnético con plasma acoplado inductivamente
- Módulos de flujo laminar
- Placas de calentamiento
- Sistema de doble sub-destilación de cuarzo
- Sistema de doble sub-destilación de teflón
- Sistema de purificación de agua Milli Q® Advantage A10 y Elix®

4.5 Diseño Experimental

4.5.1 Revisión de información

Para la realización del proyecto se leyeron los siguientes documentos, los cuales son necesarios para el desarrollo del proyecto:

- 600-AC-IT.008 Limpieza de material utilizado en la Dirección General de Metrología de Materiales.
- 620-AC-P.011 Determinación de masa por peso.
- 620-AC-P.027 Operación del sistema de doble subdestilación de ácido nítrico y agua.
- 620-AC-IT.052 Medición de masa a través del pesado por diferencia.
- 620-AC-IT.055 Operación y cuidados de las balanzas analíticas.
- 620-AC-IT.059 Reglamento interno del Laboratorio Cuarto Limpio Q018.
- 620-AC-P.436 Preparación de muestras y medición de impurezas de elementos químicos, usando la técnica de Espectrometría de Masas de sector magnético con plasma acoplado inductivamente.
- 620-AC-P.553 Calificación de operación y de funcionamiento para el espectrómetro de masas marca Finnigan Element.

4.5.2 Producción de agua doble subdestilada

La obtención de agua doble subdestilada se llevó a cabo en una cabina de subdestilación, equipada con un sistema de inyección de aire limpio tipo flujo laminar con un filtro HEPA clase ISO 5 y sistema de extracción, manteniendo una presión positiva y la calidad del aire en la cabina.

El ingreso a la cabina de subdestilación se hizo vistiendo ropa especial para áreas limpias, doble cofia, cubre boca, cubre zapato, botas, escafandra y un traje Tyvek[®] para evitar la contaminación de la cabina.

El sistema consta de dos sistemas de doble subdestilación, un sistema de teflón PFA y un sistema de cuarzo, cada uno equipado con un sistema de control de temperatura, una bomba peristáltica para la alimentación de los equipos y un sistema de enfriamiento tipo recirculador de agua para el sistema de cuarzo. Para la producción de agua se encendió el sistema de inyección de aire dos días antes de iniciar el proceso de doble subdestilación, para acondicionar el área limpia.

Para el sistema de cuarzo, el sistema de recirculación de agua de enfriamiento se ajustó a una temperatura de 10 °C con un flujo aproximado de 24 L/min. El sistema de subdestilación de cuarzo consta de dos sistemas de subdestilación consecutivos, entrada de alimentación, llave de residuo, y está equipado con un sistema de calentamiento mediante una resistencia, un sensor de fibra óptica para el control de la temperatura y un sistema de condensado mediante dedo frío.

El sistema de teflón consta de dos recipientes consecutivos de teflón PFA con entrada de alimentación, llave de residuo y una chaqueta de calentamiento. En la Figura 4 se observan estos sistemas.

Figura 4. Sistemas de doble subdestilación, a la izquierda el sistema de teflón PFA y a la derecha el sistema de cuarzo.

Se colocaron recipientes de teflón PFA para la obtención del agua doble subdestilada, así como recipientes para contener el residuo. Se produjo agua en los dos sistemas, los sistemas fueron alimentados con agua tipo I obtenida de un equipo MilliQ Advantage A10 con un microfiltro de 0.22 µm hasta alcanzar un volumen aproximado de 300 mL con una alimentación suficiente para mantener el volumen inicial de agua. La temperatura del primer destilador para ambos sistemas se fijó de 85 °C, cuando se tuvo un volumen de 300 mL en el segundo destilador se encendió el sistema de calentamiento, fijando la temperatura a 75 °C. Se ajustaron los flujos de residuo en ambos sistemas, con una tasa de una gota de residuo de 10 a 15 segundos para el primer destilador y con una tasa de una gota de 15 a 20 segundos para el segundo destilador.

La obtención del primer lote de agua se desechó para limpiar el sistema, eliminando posible contaminación. El agua obtenida después de este proceso, se vació en recipientes de teflón PFA de 2 L.

4.5.3 Limpieza de material

El material empleado en el análisis de trazas elementales fue de teflón PFA, este material llevó el siguiente proceso de limpieza dentro de un cuarto limpio:

4.5.3.1 Limpieza de material de botellas de teflón para mediciones a niveles de traza

- a. Se enjuagó el material con agua de medición (desionizada) cinco veces.
- b. Se llenó el material con una disolución de ácido clorhídrico grado reactivo en una fracción de volumen del 20 % y se colocó en una charola de plástico dentro de la campana de extracción.
- c. Se mantuvo el material por un tiempo de 7 días en la campana de extracción.
- d. La disolución se transfirió y se colocó en un recipiente indicando el número de uso.
- e. El material se enjuagó con agua de medición (desionizada) cinco veces, el primer enjuague se dispuso a residuos.
- f. Se llenó el material con una disolución de ácido nítrico grado reactivo en una fracción de volumen del 50 % y se colocó en una charola de plástico dentro de la campana de extracción.
- g. Se mantuvo el material por un tiempo de 7 días en la campana de extracción.
- h. La disolución se transfirió y se colocó en un recipiente indicando el número de uso.
- i. El material se enjuagó con agua de medición cinco veces, el primer enjuague se dispuso a residuos.
- j. El material se llenó completamente con agua de medición (desionizada) y se dejó reposar por durante 7 días. Una vez trascurrido este tiempo se desechó el agua y se enjuagó cinco veces con agua de medición (desionizada).
- k. Se le dio dos últimos enjuagues con agua doble subdestilada dentro de la campana de flujo laminar.
- El material se colocó en charolas de plástico con papel parafilm previamente enjuagado con agua de medición (desionizada) para su secado.

4.5.3.2 Limpieza de material de vasos de precipitados de teflón para mediciones a niveles de traza

- a. Se enjuagó el material con agua de medición cinco veces.
- b. En el vaso se colocó la siguiente mezcla de ácidos grado reactivo con el cuidado de no llevar a sequedad:
- 5 mL de ácido nítrico
- 5 mL de agua de medición
- 3 mL de ácido clorhídrico
- 3 gotas de ácido perclórico
- c. Estos vasos se cubrieron con vidrios de reloj y se colocaron a reflujo por un tiempo de 12 horas en placa de calentamiento a una temperatura entre 80 y 90 °C dentro de la campana de extracción. Una vez trascurrido ese tiempo la mezcla se desechó en un contenedor de residuos.
- d. El material se enjuagó con agua de medición cinco veces, el primer enjuague se dispuso a residuos.
- e. Se les dieron dos últimos enjuague con agua doble subdestilada dentro de la campana de flujo laminar.
- f. El material se colocó en charolas de plástico con papel parafilm previamente enjuagado con agua de medición (desionizada) para su proceso de secado.

4.5.3.3 Limpieza de viales de teflón para mediciones a niveles de traza

- Los viales y sus tapas se enjuagaron con agua de medición 5 veces en un vaso de precipitados
- b. El vaso de precipitados se llenó con una disolución de ácido nítrico grado reactivo en una fracción de volumen del 50 % y se colocó en la campana de extracción.
- c. Se mantuvo el material tapado con papel parafilm por un tiempo de 1 día.

- d. La disolución se transfirió y se colocó en un recipiente indicando el número de uso.
- e. El material se enjuagó con agua de medición 5 veces, el primer enjuague se dispuso a residuos.
- f. El material se mantuvo en agua y se dejó reposar durante 1 día cubierto con papel parafilm. Una vez transcurrido este tiempo se desechó el agua y se enjuagó cinco veces con agua de medición (desionizada).
- g. Se les dieron dos últimos enjuagues con agua doble subdestilada dentro de la campana de flujo laminar.
- h. El material se colocó en charolas de plástico con papel parafilm para su secado.

4.5.4 Muestreo

Los puntos de muestreo fueron establecidos en base al nuevo sistema de purificación instalado, se revisó el proceso de purificación desde el agua de alimentación hasta el agua final purificada. El proceso consta de las siguientes etapas ilustradas en la Figura 5.

Los puntos fueron establecidos de tal manera que se pudiera observar la calidad de agua obtenida en cada etapa del proceso de purificación. Se acordaron los lugares de muestreo siendo los siguientes:

- Pozo
- Planta desmineralizadora
- Planta de ósmosis inversa, electrodesionización y lámpara UV (Q015)
- Loop de distribución (Q019)
- Equipo Milli Q® Advantage A10 para análisis espectroscópicos (Q002)
- Equipo Milli Q® Gradiente A10 (Edificio C)
- Milli Q® Advantage A10 especial para análisis de ultratrazas (Q018)
- Agua doble subdestilada obtenida del sistema de cuarzo (Edificio C)
- Agua doble subdestilada obtenida del sistema de teflón (Edificio C)

Figura 5. Ilustración de los puntos de muestreo del edificio Q.

Una vez establecidos estos puntos de muestreo se procedió a tomar las muestras, para cada lugar se tomaron 2 muestras de 500 mL en botellas de teflón PFA de 500 mL, previo a la toma de muestra se destapó una botella con el fin de captar cualquier contaminación proveniente del ambiente en el que se tomó la muestra, la cual se le identificó como blanco de muestreo, la botella fue tapada al momento de terminar la toma de muestras, este proceso se llevó a cabo para cada punto de muestreo, a excepción de las muestras de los sistemas de teflón, cuarzo y de la muestra tomada del equipo Milli Q[®] Advantage A10 especial para análisis de ultratrazas, ya que el blanco de muestreo fue el mismo debido a que se encuentran en zona de cuarto limpio.

4.5.5 Preparación de muestras

La preparación de muestras se llevó a cabo en un cuarto limpio con sistema híbrido clase HEPA ISO 5/ISO 7. Las muestras se prepararon gravimétricamente, con el método de pesado por diferencia, se aplicó adicionalmente el método de preconcentración, para incrementar el contenido de impurezas de niveles ultratrazas, mediante un proceso de evaporación del agua en una campana de extracción con inyección de aire limpio con filtro HEPA Clase 3, para evitar la contaminación de las muestras.

Se anotaron las condiciones ambientales de temperatura, humedad y presión, así como los datos de certificado de las balanzas y de las pesas utilizadas para su calibración para posteriores correcciones.

El procedimiento que se utilizó para preparar las muestras, fue el pesado por diferencia de la siguiente manera:

- Se estableció la balanza de trabajo y se hizo una calibración interna del equipo.
- Se verificó la balanza con pesas certificadas cercanas a los valores de trabajo.
- Posteriormente se pesó el recipiente en la balanza, dejando un tiempo de estabilización de 15 a 30 segundos entre cada pesaje.
- Anotar el valor de la masa del vaso y tarar la balanza.
- Se adicionaron aproximadamente 100 g de muestra y dejar estabilizar la balanza y anotar el valor de la masa.
- Retirar el recipiente con la muestra y tarar la balanza
- Volver a colocar el recipiente con la muestra en el recipiente de carga, dejar estabilizar y anotar el valor de la masa.
- Obtener el valor de la masa real de la muestra restando el valor de la masa del recipiente vacío al valor de la masa obtenida del recipiente con la muestra.

Para cada blanco de muestreo se le adicionó aproximadamente 100 g de agua doble subdestilada del sistema de teflón, posteriormente de cada una de las botellas se pesaron aproximadamente 100 g de agua en un vaso de precipitados de teflón en una balanza analítica Mettler Toledo XP-1203. Las muestras pesadas se trasladaron cubiertas por un vidrio de reloj de teflón desde el área de módulos de flujo laminar hasta la campana de extracción con sistema de inyección de aire
limpio, con filtro HEPA clase ISO 3, donde se colocaron 3 placas de calentamiento previamente a una temperatura superficial entre (85 - 95) °C, medida con un termómetro de superficie. Las muestras se acomodaron en cada placa removiendo el vidrio de reloj de teflón para su preconcentración, los vasos con muestra se dejaron aproximadamente durante 16 h en calentamiento, con el cuidado de no llevar a sequedad, una vez que las muestras alcanzaron un volumen aproximadamente de 1 gota se retiraron de la placa de calentamiento y se trasladaron al área del módulo de flujo laminar cubiertas por su vidrio de reloj de teflón. El volumen resultante de la preconcentración se transfirió a matraces Erlenmeyer de 50 mL de teflón, donde las muestras se aforaron a una masa total de 10 g utilizando una disolución de ácido nítrico (HNO₃) al 1 % en fracción de volumen, esta disolución fue preparada con agua doble subdestilada del sistema de teflón y con HNO₃ de ultra alta pureza, doble subdestilado. En la Figura 6 se ilustra el proceso de preparación de las muestras de agua.

Figura 6. Diagrama sobre la preparación de las muestras de agua, así como su blanco de muestreo.

4.5.6 Preparación de disoluciones calibradoras y materiales de referencia de control.

Se prepararon 6 disoluciones calibradoras multielementales identificadas como (A, B, C, D, E y F), a partir de materiales de referencia certificados (MRC), cada disolución contiene diferentes elementos elegidos para tener la menor cantidad de interferencias posibles durante la medición. Los elementos contenidos en cada una de las disoluciones se muestran en el Cuadro 2. La preparación de estas disoluciones se hizo gravimétricamente, tomando alícuotas de 1 g con una concentración aproximada de 1 000 mg/L en una botella de 125 mL de polietileno de baja densidad y aforados con una disolución de HNO₃ preparado al 1 % en fracción de volumen con agua doble subdestilada a una masa de 100 g dando como resultado una fracción de masa de 10 mg/kg aproximadamente para cada elemento. A partir de la disolución con una fracción de masa de 10 mg/kg se hicieron 2 diluciones seriales, tomando 2 mL y llevando a una masa de 60 g con una disolución de HNO₃ preparada al 1 % en fracción de volumen con agua doble subdestilada, para obtener una fracción de masa aproximada de 10 µg/kg de cada elemento.

Cuadro 2. Elementos presentes en los calibradores utilizados para la medición de trazas elementales por ICP-MS.

Disolución	ELEMENTOS				
Calibrador A	Al, As, B, Bi, Fe, Hg, In, Mn, Nd, Pb, Sb, Si, Sn, Ti, Tl, V, y Zn				
Calibrador B	Cd, Co, Cu, Cr, Ga, Ge, La, Ni, Sc, y Se				
Calibrador C	Au, Ag, Mo, Nb, Pd, Pt y Rh				
Calibrador D	Ba, Be, Ca, Cs, K, Li, Mg, Na, Rb, y Sr				
Calibrador E	Ce, Er, Eu, Ho, Te, Th, Yb, W y Zr				
Calibrador F	Y, Dy, Gd, Hf, Lu, P, Pr, Re, Sm, Ta, Tb, Tm, Ir, Ru y Os				

Se eligieron dos MRC multielementales como controles durante la medición. Estos materiales de referencia identificados como HP-ICP-MS Standard Calibration con

número de lote 829519 y fecha de caducidad del 18/03/2010 y el MRC de control del NIST con número de lote 1643f para trazas en agua, poseen los elementos presentes en el Cuadro 3. Estos MRC fueron utilizados como control comparando las fracciones de masa obtenidas durante la medición y los valores certificados contenidos en cada material de referencia. Para la preparación del MRC HP-ICP-MSSC se hicieron dos diluciones seriales, a partir de una disolución de 10 mg/kg, tomando 2 g de disolución y llevándose a una masa total de 60 g con la disolución de HNO3 al 1 % antes mencionada, obteniendo una fracción aproximada de 333 µg/kg, repitiéndose de nuevo la primer dilución son la nueva disolución para obtener una fracción de masa de 10 µg/kg, esta última disolución fue usada como control en las mediciones para todos los calibradores. Para la preparación del MRC 1643f (trazas en agua) se hizo una dilución de 5 g de disolución en una masa total de 50 g utilizando una disolución de HNO₃ al 1 % esta disolución se utilizó como control para los calibradores A, B, C, E y F, para el calibrador D se hizo otra disolución tomando 3 q de la última disolución y llevada a una masa total de 30 q con una disolución de HNO₃ al 1 %.

Cuadro 3. Elementos contenidos en los materiales de referencia certificados de control.

MRC de control	Elementos contenidos					
HP-ICP-MSSC	Li, Be, B, Na, Mg, Al, Ca, Se, V, Cr, Mn, Co, Ni, Cu, Zn, As					
	Sc, Sr, Mo, Ag, Cd, Sb, Ba, La, Eu, Ho, Yb, Tl, Pb, Th y U.					
1643f (Trazas	Al, Sb, As, Ba, Be, Bi, B, Cd, Ca, Cr, Co, Cu, Fe, Pb, Li					
en agua)	Mg, Mn, Mo, Ni, K, Rb, Se, Ag, Na, Sr, Te, Tl, V y Zn.					

4.5.7 Identificación de interferencias

Se identificaron interferencias isobáricas, poliatómicas y especies doblemente cargadas para cada uno de los elementos presentes en las disoluciones calibradoras. Esto se hizo usando el software de Thermo Electron Corporation "ELEMENT 2 Demo Version 3.2", en el cual se presenta información sobre las posibles interferencias para cada isótopo de cada elemento en la tabla periódica, mostrando la abundancia de formación de la interferencia, así como el valor de resolución en la que es posible separar los picos de las señales de cada unidad de masa atómica unificada (u).

Una vez registradas las interferencias se establecieron los isótopos de los 68 elementos a medir como impurezas, se elaboró una tabla de identificación de interferencias para cada calibrador, durante la identificación se optó por elegir isótopos que no tuvieran interferencias de tipo isobáricas y con el menor número de interferencias o en su defecto, que las interferencias tuvieran una abundancia mínima.

4.5.8 Secuencia de medición, parámetros instrumentales y medición en el espectrómetro de masas con plasma acoplado inductivamente

Con base al procedimiento interno, la secuencia de medición incluye al inicio los blancos de muestreo, los calibradores, las muestras y MRC de control; la secuencia de medición se realiza en bloques en donde se aplica la calibración por interpolación, al medir: el calibrador CAL, la muestra blanco de calibrador BCO-CAL, la muestra blanco de muestra BCO-M, las muestras M y el material de referencia de control, con una numeración progresiva ascendente, que intercala la disolución calibradora y se concluye con la medición de la disolución blanco; como se puede observar en el Cuadro 4.

	Secuencia								
1	Agua doblesub-R1	20	CAL-R4	38	BCO-CAL-R8				
2	Agua doblesub-R2	21	BCO-CAL-R5	39	M-TEFLON-2				
3	BCO-CAL-R1	22	M-Q018-1	40	M-Q018-2				
4	CAL-R1	23	M-Q15-1	41	M-C001-2				
5	BCO-CAL-R2	24	M-POZO-1	42	M-Q15-2				
6	BCO-Q002-R1	25	M-DES-1	43	CAL-R8				
7	BCO-Q015-R1	26	CAL-R5	44	BCO-CAL-R9				
8	BCO-Q018-R1	27	BCO-CAL-R6	45	M-CUARZO-2				
9	BCO-Q019-R1	28	M-Q002-1	46	M-Q19-2				
10	CAL-R2	29	M-C001-1	47	M-DES-2				
11	BCO-CAL-R3	30	M-Q19-1	48	M-POZO-2				
12	BCO-C001-R1	31	HP-MULTI-D2-R2	49	CAL-R9				
13	BCO-POZO-R1	32	CAL-R6	50	BCO-CAL-R10				
14	BCO-DES-R1	33	BCO-CAL-R7	51	HP-MULTI-D2-R3				
15	CAL-R3	34	M-CUARZO-1	52	SRM-1643-D1-R3				
16	BCO-CAL-R4	35	M-Q002-2	53	CAL-R10				
17	M-TEFLON-1	36	SRM-1643-D1-R2	54	BCO-CAL-R11				
18	HP-MULTI-D2-R1	37	CAL-R7	55	Agua doblesub-R3				
19	SRM-1643-D1-R1								

Cuadro 4. Secuencia de medición utilizada en el estudio de muestras de agua.

Para establecer la secuencia de medición, se tomó en cuenta que los instrumentos de medición pueden presentar fenómenos como el efecto de memoria y pérdida de intensidad, durante la medición, entre otros.

Se estableció una secuencia de medición para cada método, estas secuencias son similares a la descrita anteriormente y que se muestra en el Cuadro 4. La medición se realizó intercalando las muestras entre las mediciones de los calibradores para obtener mejor repetibilidad en la medición de las muestras. El estudio se llevó a cabo midiendo cada día un calibrador diferente. El tiempo de análisis para cada

muestra fue aproximadamente de 2 min con un tiempo de enjuague de 60 s, o hasta cerciorase de la limpieza correcta del sistema de introducción y un tiempo de introducción de muestra de 60 s previo a la medición.

4.5.8.1 Optimización de los parámetros instrumentales

Una vez establecida la secuencia de medición se procedió a la optimización de los parámetros instrumentales, los cuales son, principalmente, las posiciones X, Y y Z de la antorcha en donde se genera el plasma, seguido del flujo de gas argón, ya sea para el flujo de gas de muestra o el flujo de gas auxiliar. A continuación de muestran los parámetros instrumentales en el Cuadro 5.

La optimización del instrumento se hizo de la siguiente manera:

- Se encendió el plasma mediante el software del instrumento Element 2.
- Se dejó estabilizar durante 30 segundos, introduciendo una disolución de HNO3 al 2 %.
- Una vez transcurrido este tiempo se cambió la disolución de enjuague por una disolución multielemental identificada como tunning, la cual contiene 1 µg/kg de litio, boro, sodio, potasio, escandio, hierro, cobalto, galio, rodio, indio, bario, lantano, lutecio, talio y uranio en una matriz de ácido nítrico con una fracción en volumen del 2 %, elementos que en términos de u, se encuentran en el intervalo de trabajo del instrumento.
- Se abrió la ventana Tune para la evaluación de la señal en la magnitud intensidad, I (cuentas/segundo, cps), en el intervalo de trabajo de la unidad de masa atómica unificada (u), considerando el 7Li, 115In y el 238U en modo baja resolución.
- Se modificaron las posiciones de la antorcha y posteriormente el flujo de gas auxiliar y de muestra ya que son el siguiente parámetro de mayor ajuste.
- En este paso se debe verificó que la señal en la magnitud intensidad (I) en cps desplegadas para el 115In fuera mayor a una intensidad de 1x106 cps.

• Se optimizaron los lentes de rotación y enfoque para mejorar la forma e intensidad del pico de cada elemento 7Li, 115In y el 238U.

Cuadro 5. Parámetros instrumentales del espectrómetro de masas con plasma
acoplado inductivamente.

Parámetro	Valor	Unidad
Resolución	Baja (300), Media	
	(4 000), Alta (10 000)	
Compensación de enfoque	40	%
Ua/Ub	0.095	%
Gas de enfriamiento	16.0	L/min
Gas Auxiliar	0.80 ± 0.2	L/min
Gas de muestra	1.0 ± 0.5	L/min
Poder del plasma	1200	Watt
Extracción	-2000	V
Enfoque	-860	V
Desviación en X	-3.74	V
Desviación en Y	-0.14	V
Forma	93.50	V
Rotación de cuadrupolo 1	3.65 ± 0.50	V
Rotación de cuadrupolo 2	-2.30 ± 0.50	V
Enfoque de cuadrupolo 1	3.94	V
Enfoque de cuadrupolo 2	0.00	V
Placa MATSUDA	131.97	V
Desviación SEM	-82.00	V
SEM	1500-2500	V
Posición X de la antorcha	5.900 ± 0.4	mm
Posición Y de la antorcha	1.200 ± 0.4	mm
Posición Z de la antorcha	-4.400 ± 0.4	mm
Velocidad de la bomba peristáltica	4.00	rpm

- Se ajustó el valor del SEM para alcanzar esta intensidad, conforme se aumenta el valor del voltaje del SEM la intensidad se incrementa.
- Se evaluó la estabilidad a corto plazo durante 10 minutos, donde se obtuvo una desviación estándar relativa menor a 2 %.
- Se evaluó la cantidad de iones doblemente cargados usando la disolución multielemental antes descrita, se creó un método de medición para verificar la relación de intensidades I (137Ba++)/I (137Ba). Se optimizó el instrumento para que la formación de especies doblemente cargadas fuera menor a 0.03 % ajustando el gas de muestra y el sistema de nebulización.
- Se evaluó la formación de especies poli-atómicas (óxidos) empleando la relación I (138Ba16O)/ I (138Ba), se verificó que el valor de esta relación de intensidad fuera menor a 0.2 % ajustando el gas de muestra.
- Se llevó a cabo la evaluación del modo media resolución, usando la disolución multielemental antes mencionada, se realizó un barrido de masa atómica unificada (u) de (55.90 - 55.98) u para verificar la separación y definición de los picos obtenidos por I (56Fe) y I (40Ar16O).
- La evaluación del modo en alta resolución se realizó monitoreando la señal de intensidad del 39K en la disolución multielemental preparada, en un intervalo de masa atómica unificada de (38.90 – 40.05) u para verificar la definición de los espectros obtenidos por el 39K y 38Ar1H.

4.5.8.2 Medición en el espectrómetro de masas con plasma acoplado inductivamente

Una vez optimizado el instrumento se desarrolló un método de medición para cada disolución calibradora en el que se establecieron los isótopos a medir con ayuda de la identificación de interferencias, así como la resolución en la que se midieron.

Una vez establecido el método de medición se procede a la optimización del método la cual consiste en los siguientes pasos:

- Se inició la aplicación del método para establecer los isótopos elementales a medir con sus respectivas resoluciones.
- Se capturó un valor de ventana de masa de 800 para todos los isótopos elementales en el método.
- Se capturó un valor de ventana de búsqueda de 100 para los isótopos de los elementos del método.
- En la columna mass offset se capturó un valor de cero para los isótopos.
- Se introdujo la disolución calibradora correspondiente para la medición, monitoreando la intensidad de cada uno de los isótopos presentes en el método.
- Se verificó que en la ventana de búsqueda se encontrara el isótopo del elemento correspondiente.
- Se llevaron a cabo calibraciones de la unidad de masa atómica unificada ajustando el mass offset para que la intensidad obtenida correspondiera con la unidad de masa unificada exacta del isótopo del elemento de estudio.
- Una vez optimizado el método se evaluó que las desviaciones estándar relativas de cada medición de intensidad para cada isótopo del elemento correspondiente fueran menores al 2 % con el fin de obtener una buena repetibilidad durante la medición.

Para la medición de las muestras de agua, dentro de cuarto limpio se vació 1 mL de cada una de ellas en viales de teflón con el fin de no contaminar los matraces que las contenían. Una vez optimizado el instrumento el método y establecida la secuencia de medición, se procedió a medir en el espectrómetro de masas con plasma acoplado inductivamente. Las mediciones se realizaron con un calibrador independiente cada día (ver Cuadro 2). Es importante durante la medición estar revisando la intensidad obtenida para la disolución calibradora, con la finalidad de obtener mediciones repetibles durante la secuencia.

4.5.9 Análisis de datos para el cálculo de la fracción de masa de las impurezas

4.5.9.1 Criterios para la evaluación de impurezas elementales

Los criterios para la evaluación de resultados de la medición de impurezas fueron los siguientes:

- Si el valor encontrado de la impureza del elemento E medido en la muestra X, tiene un valor mayor al límite de detección, se consideró que es una impureza medida en fracción de masa w(IE).
- Si el valor de la impureza encontrada se encontró dentro del intervalo de confianza del 95 % con respecto al valor del límite de detección, entonces se consideró como elemento detectado como fracción de masa de límite de detección w(LD).
- Si el valor de la impureza encontrada es menor que el intervalo de confianza del límite de detección entonces se consideró como impureza no detectada w(ND).

Así las fracciones de masa de cada muestra se marcaron como impureza encontrada (IE), impureza en el límite de detección (LD) e impureza no detectada (ND).

4.5.9.2 Determinación de la fracción de masa de los elementos químicos medidos en la muestra

Para determinar el valor de la fracción de masa de una impureza encontrada como factible de medirse en una muestra $j w_{IE j}$, se usa la ecuación 4.

$$w_{IE j} = \left[w_{(I-B)} \right] * \left[\frac{m_{d1}}{m_{m1}} \right] * \left[\frac{m_d}{m_m} \right]$$
(4)

donde:

- $w_{(I-B)}$ Fracción de masa de la impureza a medir en la muestra en disolución con la corrección del blanco del calibrador (mg/kg).
- m_{d1} Masa total de aforo de la dilución de la muestra (g).
- m_{m1} Masa de la alícuota de la disolución de la muestra empleada en la dilución (g).
- m_{d} Masa de aforo de la dilución de la muestra (g).
- $m_{\rm m}$ Masa de la muestra (g).

La fracción de masa, de un elemento wz (E), que se usa como calibrador se calcula a partir de la disolución preparada gravimétrica empleando un material de referencia certificado (MRC). En el proceso de preparación gravimétrica de la disolución calibradora, se pueden involucrar varias diluciones seriales de dicha disolución calibradora.

El tratamiento de datos para las muestras se hizo utilizando los blancos de muestreo, a los cuales, primero, se evaluaron con los criterios de evaluación de impurezas como se describe en la sección 4.4.9.2 [w(IE), w(LD) o w(ND)]. Posteriormente a los valores de intensidad de los blancos de muestreo se les sustrajo el valor de la intensidad obtenida de las muestras de agua que fueron producidas por los sistemas de doble subdestilación de teflón ya que a estas muestras se les agregaron 100 g de agua doble subdestilada del sistema de teflón y fueron tratadas de la misma manera, así se obtuvo la contaminación que el medio ambiente aportó en la toma de las muestras.

Para las muestras con un criterio de:

- impureza encontrada como w(IE), se le restó la fracción de masa de su blanco de muestreo, siempre y cuando sea menor que la fracción de masa de la muestra.
- Para los valores de los elementos en las muestras obtenidos como límite de detección y no detectado, no se tomó en cuenta la sustracción de fracción de

masa de su blanco de muestreo A las muestras resultantes como w(IE), se les aplicaron los factores de dilución correspondientes a la preparación de las muestras para obtener las fracciones de masa reales contenidas en las muestras.

4.5.9.3 Evaluación del límite de detección

La fracción de masa correspondiente al límite de detección de un analito, se determina como el promedio de la respuesta de una disolución de blanco de calibrador, más tres veces su desviación estándar, de acuerdo a la ecuación 1:

$$w_{\rm ILD} = \overline{w_{\rm B}} \pm 3s_{w\rm B}$$
 (1)

donde:

- w_{ILD} Fracción de masa perteneciente al límite de detección, superior o inferior en mg/kg.
- $\overline{w_{\rm B}}$ Promedio de la fracción de masa del blanco calibrador en mg/kg.
- *s*_{wB} Desviación estándar de los valores obtenidos de la señal del blanco del calibrador.

Para la evaluación de la fracción de masa se debe realizar la corrección de muestra por blanco del calibrador, por haberse utilizado en el aforo de las muestras, de tal manera que se obtuvo un promedio de las 11 intensidades que proporcionó el blanco del calibrador. También, el promedio de los valores medidos en términos de fracción de masa del blanco calibrador, se utilizó para la evaluación del límite de detección utilizado en el análisis. Para la obtención de este promedio, se utilizaron 3 criterios:

- El criterio del procedimiento interno del CENAM
- Utilizando la prueba estadística de Grubbs y
- Grubbs modificado

El criterio del procedimiento interno del CENAM

Consiste en hacer gráficos de los valores medidos de intensidad, obtenidas por el blanco del calibrador, el agua doble subdestilada, las muestras medidas y sus blancos de muestreo, los valores de la intensidad medida de los MRC de control y de la disolución calibradora. Una vez que se hicieron estos gráficos se identificaron los valores de intensidad del blanco en las que se tenían variaciones muy altas, estas señales se analizaron y donde se encontró una causa de contaminación, se descartaron para reducir la variabilidad del promedio de las 11 señales obtenidas.

El criterio de Grubbs

Consiste en realizar un promedio de todos los valores de intensidad del blanco del calibrador así como de su desviación estándar entre los datos, a partir de estos resultados se evaluó cada valor de intensidad utilizando la ecuación 2:

$$T = |\chi_o - \bar{\chi}|/s \qquad (2)$$

donde:

- T Valor obtenido de la operación, el cual es comparado con un valor establecido para determinado número de datos en la prueba de Grubbs.
- X_0 Valores obtenidos de la intensidad del blanco del calibrador.
- \overline{X} Promedio de las mediciones de intensidad del blanco calibrador.
- *S* Desviación estándar de los valores obtenidos de la intensidad del blanco del calibrador.

Para una prueba con un número de 11 datos, para un nivel de significancia de 0.05 % el valor de rechazo para la prueba fue de 2.23, es decir, los valores que obtuvieron un valor mayor a 2.23 se descartaron para la obtención del promedio que se utilizó para la obtención del límite de detección.

Grubbs modificado

El último criterio fue empleando la misma metodología que para la de Grubbs, sin embargo, el valor de rechazo que se estableció fue de 1.5, con el fin de obtener la

menor variación posible entre las señales de los blancos, como propuesta para este proyecto.

El valor de intensidades promedio se sustrajo de la intensidad de las disoluciones calibradoras así como de los MRC que se utilizaron como control, para obtener un el valor de intensidad real de las disoluciones empleadas como MR.

Adicionalmente, se obtuvieron las fracciones de masa que provee cada una de las señales del blanco del calibrador mediante la ecuación 3:

$$w_B = (I_B \cdot w_B) / promedio(I_{\text{cal i}} + I_{\text{cal f}})$$
(3)

donde:

- $w_{\rm B}$ Fracción de masa del blanco del calibrador en mg/kg.
- *I*_B Intensidad del blanco del calibrador en cps.
- *w*_{cal} Fracción de masa para un elemento E del MR calibrador
- $I_{\text{cal }i}$ Intensidad inicial del calibrador, en el bloque en el que se encuentra la señal del blanco en cps.
- *I*_{cal f} Intensidad final del calibrador, en el bloque en el que se encuentra la señal del blanco en cps.

Una vez obtenidas las fracciones de masa para cada repetición del blanco del calibrador se obtuvo un promedio, para cada criterio y se obtuvieron los valores del límite de detección.

4.5.9.4 Verificación del método para la evaluación de medición de impurezas

Para la evaluación del método de medición se estimó el sesgo del valor medido del MRC de control, para cada uno de los elementos medidos experimentalmente contenidos en dichos materiales, respecto a los valores certificados de los elementos, empleando la ecuación 5:

 $Sesgo = (w_{MRC experimental} - w_{MRC certificado})$ (5)

donde:

WMRC experimental	Fracción de masa del elemento E medido en la disolución								
	del material de referencia empleado como control (mg/kg).								
WMRC certificado	Fracción	de	masa	del	elemento	Ε	certificado	en	la
	disolución	n del	materia	al de	referencia e	emp	leado como	cont	rol
	(mg/kg).								

Adicional al estimar el sesgo, se calculó el % de sesgo para cada elemento presente en el MRC de control el cual no debe ser mayor al 20 % utilizando la siguiente ecuación:

% sesgo_{MRCc} =
$$\frac{(w_{MRC experimental} - w_{MRC certificado})}{w_{MRC certificado}}$$
 (6)

4.5.10 Comparación entre sistemas de purificación

Una vez obtenidas las fracciones de masa para cada uno de los 68 elementos se compararon los sistemas de purifiación, desde el agua de alimentación, hasta los filtros finales y el agua doble subdestilada obtenida de los sistemas de cuarzo y de teflón.

Se elaboraron tablas para poder comparar cada uno de los elementos e ilustrar de manera objetiva la disminución de los contaminantes en cada una de las etapas de purificación.

También se comparó contra el sistema de purificación de agua anterior, para evaluar la mejora de la instalación del nuevo sistema de purificación de agua de medición.

5 RESULTADOS

5.1 Revisión de información y producción de agua doble subdestilada

A partir de los documentos proporcionados, las inducciones a los sistemas de doble subdestilación, reglas de trabajo en cuarto limpio y en cabina de subdestilación, se prepararon 50 L de agua para la limpieza del material de teflón así como para la preparación de la disolución de HNO₃ al 1 % en fracción de volumen, que fue utilizada para aforar las disoluciones empleadas como materiales de referencia.

5.2 Limpieza de material

Con base a los procedimientos de limpieza de material de teflón para mediciones a niveles traza se obtuvo la siguiente cantidad de material empleado en el proyecto:

- 30 botellas de teflón PFA de 500 mL
- 25 matraces de teflón de 50 mL
- 7 botellas de teflón de 125 mL
- 3 botellas de teflón de 60 mL
- 17 vasos de pp de teflón con vidrio de reloj de 250 mL
- 14 vasos de pp de teflón con vidrio de reloj de 125 mL
- 50 viales de teflón de 1 mL con tapa
- 100 pipetas Pasteur de 1 mL
- 100 botellas de 30 mL de LDPE
- 100 botellas de 60 mL de LDPE

5.3 Muestreo

Con base al sistema de purificación de agua establecido se determinaron los puntos críticos de muestreo con el fin de observar la calidad del agua obtenida en cada etapa del proceso de purificación del agua. En el siguiente cuadro se pueden

observar los lugares de muestreo y su ubicación, así como la fecha y la hora en la que se tomaron las muestras:

Cuadro 6. Lugares de muestreo para la evaluación de impurezas elementales en

Punto de muestreo	Toma de muestra Martes 23 agosto de 2016	Muestras obtenidas	Imagen
Pozo	Llave de agua ubicada a un costado del edificio Q. 9:50 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	
Planta desmineraliz adora	Llave posterior al proceso de resinas iónicas. 9:40 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	PLATE Standards Standard Standards Standards Standards Standards Standards S
Laboratorio Q015	Antes de la entrada al módulo Elix. 10:00 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	
Laboratorio Q019	Llave directa del loop de polipropileno de distribución. 10:15 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	

agua.

Continuación Cuadro 6.

Laboratorio Q002	Del sistema de purificación MilliQ Advantage A10 10:30 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	
Laboratorio C001	Del sistema MilliQ Gradiente A10 10:45 a.m.	Un blanco de muestreo Dos muestrasde 500 mL	
Laboratorio C001	Sistema de doble subdestilación de cuarzo 11:00 a.m.	Dos muestrasde 500 mL	
Laboratorio C001	Sistema de doble subdestilación de teflón 11:05 a.m.	Dos muestrasde 500 mL	
Cuarto limpio	Del sistema Milli Q Advantage A10 especial para análisis de ultratrazas	Dos muestrasde 500 mL	

Nota: Se tomó una muestra blanco representativa para las muestras de los sistemas de doble subdestilación y del cuarto limpio, por la calidad de área similar de los lugares de muestreo.

Se recogieron 2 muestras de un volumen aproximado de 500 mL cuidando que la parte inferior de la tapa no tocase ninguna superficie que pudiera contener una contaminación que posteriormente se pudiera transferir a la muestra. Se recogió el blanco de muestreo para obtener información sobre el ambiente en el que las muestras fueron tomadas. Para cada punto de muestreo se obtuvieron 3 muestras, las cuales se colocaron en una bolsa ziplock de cierre hermético y posteriormente en otra bolsa con cierre hermético para su traslado a cuarto limpio, se tomó un solo blanco de muestreo para el área de los destiladores y cuarto limpio ya que se consideró una zona de limpieza similar debido a que se tiene la misma calidad de área en cuarto limpio.

5.4 Preparación de muestras

Una vez obtenidas las muestras con sus respectivos blancos de muestreo se procedió a trasladarlas a un cuarto limpio donde se prepararon mediante la técnica de preconcentración por evaporación.

Se tomó una alícuota de muestra de 100 g aproximadamente, se pesó en una balanza Mettler Toledo XP-1203, con las condiciones ambientales iniciales de 20.02 °C, 803.26 hPa y 43.22 % de humedad y condiciones finales de 20.57 °C, 802.11 hPa y 41.04 % de humedad. Las muestras fueron pesadas en vasos de precipitados de teflón y puestos a calentamiento donde las muestras fueron llevadas a un volumen menor a 1 mL y fueron aforadas posteriormente a 10 g en matraces de 50 mL en una balanza Mettler Toledo AX205, con las condiciones ambientales iniciales y finales siguientes: 21.26 °C – 21.44 °C, 804.87 hPa – 804.43 hPa y 51.00 % - 52.93 % de humedad.

En el siguiente cuadro se ilustra el número de muestras, el peso de cada una de las muestras, así como la relación de identificación del material utilizado para cada muestra tomada: Cuadro 7. Relación de identificación y pesaje de las muestras de agua para su análisis.

	ID	ID	Alícuota	Masa	ID		Masa
ID Muestra	Botella	Vaso	(g)	corregida*	Matraz	Aforo (g)	corregida (a)
	A 24	10	100.021	(9)	10	10 20670	(9)
BC0 P020	A31	12	100.031	100.112	10	10.30679	10.31532
M1 Pozo	A9	13	100.197	100.277	18	10.03885	10.04718
M2 Pozo	A8	18	100.044	100.127	6	10.02203	10.03048
Bco Desm	A23	ЗA	100.037	100.117	22	10.02127	10.02958
M1 Desm	A01	105	100.735	100.818	7	10.02645	10.02648
M2 Desm	A10	10A	100.489	100.571	2	10.07246	10.08117
Bco Q015	A22	1A	100.0.35	99.485	4	10.04864	10.05696
M1 Q015	A29	6A	100.284	100.667	19	10.00309	10.01150
M2 Q015	A21	15ac	100.388	100.472	8	10.02990	10.03817
Bco Q019	A11	14	100.302	100.383	14	10.02703	10.03581
M1 Q019	A17	7A	100.238	100.320	11	10.00317	10.01145
M2 Q019	A18	17	100.890	100.973	23	10.01824	10.02653
Bco Q002	A12	10ac	100.166	100.248	16	10.00147	10.00981
M1 Q002	A5	16ac	100.886	100.969	3	10.02121	10.02956
M2 Q002	A13	7ac	100.382	100.465	13	10.00870	10.01698
Bco C001	A25	18ac	100.367	100.449	9	10.00753	10.01585
M1 C001	A26	9ac	100.694	100.785	15	10.02162	10.02993
M2 C001	A2	9A	100.425	100.508	1	10.05219	10.05989
Bco Q018	A27	8ac	100.183	100.266	21	10.04281	10.05125
					Botella		
M1 Q018	A7	8A	100.990	100.421	de	10.03911	10.04742
					teflón		
M2 Q018	A14	9bco	100.446	100.530	5	10.03689	10.04536
M1 Cuarzo	A1	19ac	100.310	100.395	25	10.03580	10.03426
M2 Cuarzo	A3	4A	100.194	100.177	20	10.04613	10.09347
M1 Teflón	A15	2A	100.676	100.759	24	10.02592	10.04412

Continuación cuadro 7

M2 Teflón	A20	20ac	100.919	101.002	12	10.08513	10.05434
* * * * * * * * * * * * * * * * * * * *							

* Masa corregida por el empuje de aire

Para las muestras de agua, identificadas como pozo y planta desmineralizadora se les aplicó un proceso de dilución de 1 g de la muestra aforada en el matraz en 100 g en una botella de 125 mL de teflón, debido a que se tenía el conocimiento de que las muestras contenían una fracción de masa mayor a la de las demás muestras por su origen. En el siguiente cuadro se observan los valores de las masas empleadas en la dilución de las muestras de pozo y de la planta desmineralizadora:

Cuadro 8. Valores de dilución para las muestras más concentradas de pozo y de la planta desmineralizadora

Muestra	Alícuota (g)	Aforo (g)
M1 Pozo	1.00285	100.10645
M2 Pozo	1.16680	100.15749
M1 Desm	1.01063	100.19935
M2 Desm	1.19644	100.32112

El procedimiento para el cálculo de los factores de dilución que fueron aplicados a las muestras se ilustra en la siguiente ecuación:

$$fd = \frac{m_{aforo}}{m_{alicuota}} \tag{7}$$

De esta manera se calculó el factor de dilución correspondiente para cada una de las muestras. Para las muestras de pozo y planta desmineralizadora se obtuvieron dos factores de dilución, los valores de las muestras se muestran en el cuadro 9:

Nº muestra	Muestra	Factor de	
iii macsua	Mucolla	dilución	
1	BCO POZO	0.10304	
2	M1 POZO	10.00156	
3	M2 POZO	8.59920	
4	BCO DES	0.10018	
5	M1 DES	9.86016	
6	M2 DES	8.40507	
7	BCO Q019	0.09998	
8	M1 Q019	0.09979	
9	M2 Q019	0.09930	
10	BCO Q015	0.10109	
11	M1 Q015	0.09975	
12	M2 Q015	0.09991	
13	BCO Q002	0.09985	
14	M1 Q002	0.09933	
15	M2 Q002	0.09971	
16	BCO C001	0.09971	
17	M1 C001	0.09952	
18	M2 C001	0.10009	
19	BCO Q018	0.10025	
20	M1 Q018	0.10005	
21	M2 Q018	0.09992	
22	M1 TEFLÓN	0.09959	
23	M2 TEFLÓN	0.09993	
24	M1 CUARZO	0.10005	
25	M2 CUARZO	0.10037	

Cuadro 9. Factores de dilución de cada una de las muestras medidas.

5.5 Preparación de disoluciones calibradoras y materiales de referencia de control

Se prepararon 5 disoluciones calibradoras multielementales, identificadas como A, B, C, D, E y F, estas disoluciones se prepararon tomando aproximadamente 1 mL de cada una de las disoluciones monoelementales de un MRC con una fracción de masa aproximada de 1000 mg/kg y aforando a un peso aproximado de 100 g con HNO₃ al 1 %, a partir de esa disolución se hicieron dos diluciones seriales para cada uno de los calibradores, con el fin de obtener una fracción de masa cercana a la que podrían contener las muestras de agua. A continuación, se muestran los datos de la preparación de cada uno de los calibradores (Cuadros 10 a 15):

No	Analita	w ma/ka	masa	aforo final	WB
NO	Ananto	w _B mg/kg	alícuota (g)	(g)	(mg/kg)
1	AI	992.60	1.04523		9.924
2	As	999.57	1.02227		9.774
3	Bi	989.90	0.99993	_	9.468
4	В	1000.30	0.99998		9.568
5	In	1008.50	1.00679		9.712
6	Fe	990.91	1.02331		9.700
7	Pb	997.20	1.02279		9.756
8	Mn	992.42	1.00598	104 54180	9.550
9	TI	989.20	1.02629	104.04100	9.711
10	Sn	918.20	1.06361		9.342
11	Ti	991.00	1.04142		9.872
12	V	1005.76	1.00921		9.709
13	Sb	1001.61	1.01800		9.753
14	Nd	990.30	1.03293	-	9.785
15	Zn	1002.90	1.01581		9.658
16	Si	1047.40	1.02009		10.220
17	Hg	-	-	-	-

Cuadro 10. Preparación 1 de la disolución calibradora A.

La preparación del calibrador A lleva mercurio, sin embargo éste se adicionó directamente a la disolución final que se utilizó para medir ya que el mercurio es inestable en disolución de baja concentración.

No	Analito	<i>w_B</i> mg/kg	masa alícuota (g)	aforo final (g)	[₩] B (mg/kg)
1	Со	998.75	0.99475		9.924
2	Ga	1099.70	1.02004		11.205
3	Ge	995.67	1.00621		10.008
4	La	998.94	1.05817		10.559
5	Ni	999.52	1.00493	100 10827	10.034
6	Se	986.52	1.01567	100.10027	10.009
7	Cd	997.70	1.01223		10.088
8	Sc	989.12	0.99842		9.865
9	Cr	995.38	1.01915		10.134
10	Cu	998.50	1.01062		10.080

Cuadro 11. Preparación 1 de la disolución calibradora B.

Para el calibrador C se utilizó plata, sin embargo, al igual que el mercurio, por su inestabilidad en disolución, se adicionó a la disolución final que se utilizaría para la medición de las muestras, debido que la plata se degrada con la luz.

Cuadro 12. Preparación 1 de la disolución calibradora C.

No	Analita	w ma/ka	masa alícuota	oforo final (g)	w _B
NO	Ananto	w _B mg/kg	(g)	aloro Illiai (g)	(mg/kg)
1	Мо	990.82	1.01676		10.066
2	Nb	990.10	1.01640		10.055
3	Ag	-	-		-
4	Rh	1022.00	1.02445	100.08099	10.462
5	Pt	997.91	1.03155		10.286
6	Paladio (Pd)	943.69	1.00942		9.518
7	Au	973.88	1.01516		9.878

Para la preparación del calibrador D se usó una fracción de masa adicionada del calcio mayor, debido a que el agua posee contenidos de calcio altos, por lo que decidió adicionar más de este elemento.

No	Analito	w- ma/ka	masa alícuota	aforo final (g)	WB
NO	Ananto	WB IIIG/KG	(g)	aloro Intal (g)	(mg/kg)
1	Ва	987.80	1.03720		10.234
2	Be	985.50	1.00480		9.891
3	Ca	1000.10	5.02616		50.211
4	Cs	993.26	1.01660		10.086
5	Li	996.30	1.01842	100 11186	10.135
6	Mg	1000.30	1.01670	100.11100	10.159
7	K	1001.20	1.01384		10.139
8	Na	1005.40	1.00633		10.106
9	Sr	991.20	1.01914		10.091
10	Rb	1008.39	1.02065		10.281

Cuadro 13. Preparación 1 de la disolución calibradora D.

Cuadro 14. Preparación 1 de la disolución calibradora E.

No	Analito	w- ma/ka	masa alícuota	aforo final (g)	WB
	Ananto	WB IIIG/KG	(g)	aloro Intal (g)	(mg/kg)
1	Ce	996.80	1.01374		10.095
2	Er	991.39	1.00205		9.924
3	Eu	990.41	1.01862		10.079
4	Но	992.37	1.01446		10.057
5	Te	989.93	1.00518	100.09996	9.941
6	W	974.37	1.01012		9.833
7	Yb	989.42	1.02860		10.167
8	Th	993.37	1.00958		10.019
9	Zr	990.91	1.01198		10.018

No	Analito	<i>w_B</i> mg/kg	masa alícuota (g)	aforo final (g)	^w [₿] (mg/kg)
1	Y	999.90	0.99937		9.9585
2	Dy	991.37	0.9945		9.853
3	Gd	990.10	1.01561		10.048
4	Hf	988.74	1.00553		9.935
5	Lu	989.12	1.03033		10.183
6	Р	1001.41	1.00631		10.070
7	Pr	992.31	1.00969	-	10.012
8	Re	992.38	1.02477	100.07639	10.162
9	Sm	992.35	1.01860		10.100
10	Та	991.97	1.00662		9.978
11	Tb	988.49	1.00971		9.973
12	Tm	994.35	1.01877	-	10.122
13	lr	997.04	1.00239		9.987
14	Ru	997.74	1.00445		10.014
15	Os	975.58	1.01638		9.908

Cuadro 15. Preparación 1 de la disolución calibradora F.

A partir de estas disoluciones se realizaron dos diluciones seriales de cada uno de los calibradores para que las disoluciones finales tuvieran una fracción de masa aproximada de 10 µg/kg. Estas diluciones se hicieron siguiendo el procedimiento de pesado por diferencia mencionado en el punto 4.4.5 "Preparación de muestras" en la parte de metodología. A continuación se muestran los datos obtenidos de las diluciones, así como las fracciones de masa finales para cada uno de los calibradores utilizados en las mediciones.

Fracción de masa inicial del analito		Dilución 1			Dilución 2 Fracción de masa final			
Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	^w ₀ (mg/kg)	
AI	9.924			0.334232			0.011281	
As	9.774			0.329188			0.011111	
Bi	9.468			0.318877		60.14726	0.010763	
В	9.568			0.322243			0.010876	
In	9.712			0.327096			0.011040	
Fe	9.700			0.326666			0.011026	
Pb	9.756			0.328572			0.011090	
Mn	9.550	2 02315	60 07256	0.321621	2 03010		0.010855	
TI	9.711	2.02010	00.07230	0.327052	2.03010		0.011039	
Sn	9.342			0.314617			0.010619	
Ti	9.872			0.332476			0.011222	
V	9.709			0.326992			0.011037	
Sb	9.753			0.328479	-		0.011087	
Nd	9.785			0.329533			0.011122	
Zn	9.658			0.325266			0.010978	
Si	10.220			0.344201			0.011617	

Cuadro 16. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora A utilizada en la medición.

Fracción de masa inicial del analito		[Dilución 1		Dilución 2 Fracción de masa final		
Analito	^w ₀ (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	^w в (mg/kg)
Со	9.924			0.33366		CO 44000	0.01126
Ga	11.205			0.37673			0.01271
Ge	10.008			0.33647			0.01135
La	10.559			0.35500			0.01198
Ni	10.034	2 02066	60 10154	0.33733			0.01138
Se	10.009	2.02000	00.10154	0.33651	2.02902	00.11000	0.01135
Cd	10.088			0.33917			0.01144
Sc	9.865			0.33166			0.01119
Cr	10.134			0.34069			0.01149
Cu	10.080			0.33890			0.01143

Cuadro 17. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora B utilizada en la medición.

Cuadro 18. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora C utilizada en la medición.

Fracc masa ir ana	ión de nicial del alito		Dilución 1 Dil Fracción		Dilución 2 ión de mas	Dilución 2 on de masa final	
Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)
Мо	10.066			0.34007			0.011437
Nb	10.055			0.33971			0.011424
Ag	0.000			0.0000			0.000000
Rh	10.462	2.03048	60.10201	0.35343	2.02061	60.08318	0.011886
Pt	10.286			0.34749			0.011686
Pd	9.518			0.32156	1		0.010814
Au	9.878			0.33373			0.011224

Fracción de masa inicial del analito		[Dilución 1		Dilución 2 Fracción de masa final		
Analito	^w в (mg/kg)	masa alícuota (g)	Analito	^w ₀ (mg/kg)	masa alícuota (g)	Analito	^w в (mg/kg)
Ba	10.234			0.34185		60.07547	0.01147
Be	9.891			0.33040	2.01522		0.01108
Ca	50.211			1.67718			0.05626
Cs	10.086			0.33691			0.01130
Li	10.135	2 00647	89890.09	0.33855			0.01136
Mg	10.159	2.00047	00.00000	0.33933	2.01525		0.01138
K	10.139		-	0.33868			0.01136
Na	10.106			0.33758			0.01132
Sr	10.091			0.33705			0.01131
Rb	10.281			0.34341			0.01152

Cuadro 19. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora D utilizada en la medición.

Cuadro 20. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora E utilizada en la medición.

Frac masa del a	Fracción de masa inicial Dilución 1 del analito Fracc		Dilución 2 ión de masa final				
Anali to	^w ₀ (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)
Ce	10.095			0.33867			0.01139
Er	9.924			0.33295			0.01120
Eu	10.079			0.33812			0.01137
Ho	10.057			0.33740			0.01135
Те	9.941	2.01571	60.08354	0.33349	2.02139	60.09741	0.01122
W	9.833			0.32987			0.01110
Yb	10.167			0.34109			0.01147
Th	10.019			0.33612			0.01131
Zr	10.018			0.33608			0.01130

Fracción de masa inicial del analito		[Dilución 1		Dilución 2 Fracción de masa final			
Analito	^w ₀ (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	masa alícuota (g)	Analito	[₩] в (mg/kg)	
Y	9.985			0.33666			0.01127	
Dy	9.853			0.33220			0.01112	
Gd	10.048			0.33878			0.01135	
Hf	9.935			0.33496			0.01122	
Lu	10.183			0.34335			0.01150	
Р	10.070			0.33951			0.01137	
Pr	10.012			0.33756			0.01130	
Re	10.162	2.02645	60.10265	0.34262	2.01161	60.06792	0.01147	
Sm	10.100			0.34055	1		0.01140	
Та	9.978			0.33642			0.01127	
Tb	9.973			0.33626			0.01126	
Tm	10.122			0.34129	1		0.01143	
lr	9.987]		0.33672]		0.01128	
Ru	10.014			0.33764			0.01131	
Os	9.908			0.33407			0.01119	

Cuadro 21. Datos obtenidos para la preparación 2 y 3 de la disolución calibradora F utilizada en la medición.

Cuadro 22. Datos obtenidos para el mercurio y la plata adicionados a los calibradores A y C respectivamente.

Fracción de masa inicial del analito		Dilución 1			Dilución 2 Fracción de masa final		
Analito	^w в (mg/kg)	masa alícuota (g)	aforo final (g)	[₩] в (mg/kg)	masa alícuota (g)	aforo final (g)	^w ₀ (mg/kg)
Hg	34.924	2.00087	60.08593	1.16299	10.03801	30.07028	0.38822
Ag	32.963	2.02327	60.09267	1.11361	10.04751	30.09235	0.37182
Dilución 3							
Hg	0.38822	2.03561	60.14726				
Ag	0.37182	2.00330	60.08318				

Al calibrador A y C se les adicionó mercurio y plata respectivamente, debido a que el mercurio y la plata son inestables, a partir de un MRC de 1000 mg/kg de mercurio y un MRC de 988.2 mg/kg de plata se prepararon dos disoluciones, para el mercurio tomando 2.06272 g en una masa total de 59.06235 resultando en una fracción de masa de 34.924 mg/kg y para la plata se tomaron 2.00532 g en una masa total de 60.11784 g resultando en una fracción de masa de 32.96 mg/kg. A partir de estas disoluciones se hicieron dos diluciones seriales de cada una, con los datos mostrados en el siguiente cuadro, donde la dilución 3 se realizó en conjunto con la disolución de los cuadros 16 y 18 respectivamente.

Para la preparación de los MRC de control HP-ICP-MSSC y 1643f trazas en agua, se hicieron dos diluciones seriales, los elementos contenidos en el MRC HP se encuentran en la misma fracción de masa en la disolución por lo que se puede obtener una fracción de masa para todos los elementos, sin embargo, para el 1643f los elementos contenidos varían por lo que en el Cuadro 23 se observan solamente los datos de su preparación:

Cuadro 23. Datos de preparación de los MRC de control HP-ICP-MSSC y 1643f
para trazas en agua.

MRC	^w в (mg/kg)	masa alícuota (g)	aforo final (g)	^w в (mg/kg)	masa alícuota (g)	aforo final (g)	^w в (mg/kg)
HP-ICP-	9 92	2 01584	60 07176	0.33249	2 00455	60 06871	0.01110
MSSC	0.02	2.01001				00.0001	0.01110
1643f							
trazas en	-	5.01866	50.07871	-	3.00672	30.03882	-
agua							

Las fracciones de masa para cada uno de los elementos contenidos en el MRC 1643f se muestran en el Cuadro 24.

	Fracción de	Incertidumbre	Dilución 1	Dilución 2	
Elemento	masa en µg/kg	<i>U</i> (<i>w_E</i>) (mg/kg)	Fracción de masa en µg/kg	Fracción de masa en pg/kg	
AI	132.5	0.00120	0.013279	0.001329	
Sb	54.9	0.00039	0.005502	0.000551	
As	56.86	0.00037	0.005698	0.000570	
Ba	513.2	0.00730	0.051431	0.005148	
Be	13.53	0.00011	0.001356	0.000136	
Bi	12.5	0.00010	0.001253	0.000125	
В	150.8	0.00660	0.015112	0.001513	
Cd	5.83	0.00013	0.000584	0.000058	
Ca	29147.	0.32	2.920981	0.292374	
Cr	18.25	0.00010	0.001829	0.000183	
Со	25.06	0.00017	0.002511	0.000251	
Cu	21.45	0.00070	0.002150	0.000215	
Fe	92.53	0.00077	0.009273	0.000928	
Pb	18.308	0.00008	0.001835	0.000184	
Li	16.42	0.00035	0.001646	0.000165	
Mg	7382.	0.05800	0.739791	0.074049	
Mn	36.78	0.00058	0.003686	0.000369	
Мо	114.2	0.00170	0.011445	0.001146	
Ni	59.2	0.00140	0.005933	0.000594	
K	1913.8	0.00900	0.191792	0.019197	
Rb	12.51	0.00012	0.001254	0.000125	
Se	11.586	0.00008	0.001161	0.000116	
Ag	0.096	0.00001	0.000010	0.000001	
Na	18645.0	0.24000	1.868518	0.187028	
Sr	311.0	0.01800	0.031167	0.003120	
Те	0.967	0.00001	0.000097	0.000010	
TI	6.825	0.00003	0.000684	0.000068	
V	35.72	0.03572	0.003580	0.000358	
Zn 73.7		0.00170	0.007386	0.000739	

Cuadro 24. Fracciones de masa correspondientes al MRC de control 1643f para trazas en agua.

El MRC de control 1643f se utilizó para las mediciones de todos los calibradores con la primera dilución, excepto para el calibrador D, debido a la fracción de masa del calcio se encuentra muy concentrada y se podían contaminar las muestras al medir este MRC de control. Las fracciones de masa para cada uno de los elementos contenidos en el MRCC HP-ICP- MSSC se encuentran en el Cuadro 25.

5.6 Identificación de interferencias

Usando el software de Thermo Electro Corporation "Element 2 Demo Version 3.2" se identificaron las interferencias de mayor importancia durante la medición de impurezas elementales por ICP-MS, a continuación se muestra las interferencias más importantes para cada uno de los isótopos medidos:

La tabla de interferencias para los 68 isótopos se muestra en el Anexo 1.

5.7 Medición en el espectrómetro de masas con plasma acoplado inductivamente

Se obtuvieron datos de calificación de desempeño del instrumento, hojas de datos sobre la calibración de los métodos de medición, así como las intensidades, fecha y hora de cada uno de los isótopos medidos.

Las hojas con las intensidades de cada uno de los elementos presentes en las muestras de agua se registraron de acuerdo al procedimiento interno 620-AC-P.436 y se encuentran en el expediente del laboratorio de ICP-MS bajo la Dirección de Análisis Inorgánico.

5.8 Análisis de datos para el cálculo de la fracción de masa de las impurezas

Para realizar el análisis sobre las fracciones de masa se obtuvieron intervalos de límites de detección para el criterio del CENAM, de Grubbs y el de Grubbs modificado, los valores de estos límites se muestran en el Cuadro 25:

Elemento Fracción de masa en mg/kg al 20160824		<i>U</i> (<i>w_E</i>) incertidumbre en mg/kg	Dilución 1 Fracción de masa mg/kg	Dilución 2 Fracción de masa mg/kg	
Li	9.92	0.05945	0.332	0.01110	
Be	9.92	0.09908	0.33249	0.01110	
В	9.92	0.04954	0.332	0.01110	
Na	9.92	0.04954	0.332	0.01110	
Mg	9.92	0.04954	0.332	0.01110	
Al	9.92	0.04954	0.332	0.01110	
Ca	9.92	0.04954	0.332	0.01110	
Se	9.92	0.09908	0.332	0.01110	
V	9.92	0.05945	0.332	0.01110	
Cr	9.92	0.04954	0.332	0.01110	
Mn	9.92	0.04954	0.332	0.01110	
Со	9.92	0.04954	0.332	0.01110	
Ni	9.92	0.04954	0.332	0.01110	
Cu	9.92	0.04954	0.332	0.01110	
Zn	9.92	0.04954	0.332	0.01110	
As	9.92	0.09908	0.332	0.01110	
Sc	9.92	0.05945	0.332	0.01110	
Sr	9.92	0.04954	0.332	0.01110	
Мо	9.92	0.05945	0.332	0.01110	
Ag	9.92	0.04954	0.332	0.01110	
Cd	9.92	0.04954	0.332	0.01110	
Sb	9.92	0.05945	0.332	0.01110	
Ва	9.92	0.05945	0.332	0.01110	
La	9.92	0.04954	0.332	0.01110	
Eu	9.92	0.04954	0.332	0.01110	
Ho	9.92	0.04954	0.332	0.01110	
Yb	9.92	0.04954	0.332	0.01110	
TI	9.92	0.04954	0.332	0.01110	
Pb	9.92	0.05945	0.332	0.01110	
Th	9.92	0.05945	0.332	0.01110	
U	9.92	0.04954	0.332	0.01110	

Cuadro 25. Fracciones de masa de los elementos contenidos en el MRC de control HP-ICP-MSSC.

Comparación límites de detección							
	CEN	MAI	GRU	BBS	GRUBBS N	BS Modificado	
	LD	LD	LD	LD	LD .	LD	
	superior	interior	superior	interior			
Elemento	4 4000	0.0754	µg/	kg	4.0.470	0.0047	
B11(MR)	1.4909	0.0754	1.5178	-0.4508	1.3476	-0.3917	
AI27(MR)	0.1674	0.1081	0.2278	0.0748	0.1821	0.1003	
Si28(MR)	9.3652	5.0211	11.8478	2.4689	11.8478	2.4689	
Ti47(MR)	0.0978	-0.0402	0.1256	-0.0585	0.1256	-0.0585	
V51(MR)	0.0034	0.0005	0.0079	-0.0022	0.0062	-0.0012	
Mn55(MR)	0.0086	0.0033	0.0086	0.0033	0.0084	0.0037	
Fe56(MR)	0.1894	0.0962	0.1923	0.0972	0.1923	0.0972	
In115 corr	0.0027	0.0003	0.0034	-0.0006	0.0030	-0.0004	
Sn118(MR)	0.0422	0.0122	0.0457	0.0118	0.0447	0.0146	
Sb121(MR)	0.1507	-0.0412	0.1780	-0.0830	0.1470	-0.0683	
Nd142(MR)	0.0626	0.0423	0.0626	0.0423	0.0607	0.0430	
Hg202(MR)	0.3119	0.0036	0.3262	-0.1227	0.2904	-0.1109	
TI205(MR)	0.0028	0.0005	0.0038	-0.0010	0.0031	-0.0006	
Pb208(MR)	0.0056	0.0012	0.0067	0.0009	0.0060	0.0012	
Bi209(MR)	0.0095	-0.0009	0.0192	-0.0077	0.0157	-0.0059	
Zn66(HR)	0.1583	0.1030	0.1643	0.0921	0.1583	0.1031	
As75(HR)	0.0111	-0.0011	0.0113	-0.0048	0.0113	-0.0048	
Sc45(MR)	0.0160	0.0043	0.0237	-0.0031	0.0197	0.0006	
Cr52(MR)	0.1017	0.0811	0.1017	0.0811	0.1012	0.0827	
Co59(MR)	0.0035	0.0002	0.0055	-0.0002	0.0055	-0.0002	
Ni60(MR)	0.0297	0.0151	0.0351	0.0109	0.0312	0.0147	
Cu63(MR)	0.0305	0.0090	0.0382	0.0052	0.0333	0.0078	
Ge72(MR)	0.0273	0.0112	0.0332	0.0056	0.0273	0.0112	
Se77(MR)	0.5269	-0.0006	0.8126	-0.3078	0.6298	-0.2057	
Cd114 corr	0.0048	0.0013	0.0057	-0.0015	0.0052	-0.0014	
La139(MR)	0.0177	0.0036	0.0181	0.0024	0.0164	0.0041	
Ga69(HR)	0.0033	0.0009	0.0036	0.0005	0.0036	0.0005	
Nb93(MR)	0.0595	0.0413	0.0635	0.0367	0.0614	0.0406	
Mo95(MR)	0.0116	0.0062	0.0173	-0.0010	0.0173	-0.0010	
Rh103(MR)	0.0013	0.0001	0.0021	-0.0005	0.0021	-0.0005	
Pd105(MR)	0.0059	0.0023	0.0080	0.0006	0.0080	0.0006	

Cuadro 26. Valores de los límites de detección utilizados para cada criterio aplicado.

Ag107(MR)	0.0294	0.0128	0.0276	-0.0204	0.0294	0.0128
Pt195(MR)	0.0039	0.0010	0.0045	0.0002	0.0041	0.0004
Au197(MR)	0.0961	0.0546	0.1138	0.0376	0.1021	0.0438
Li7(MR)	0.1036	0.0314	0.1825	0.0011	0.1680	0.0059
Be9(MR)	0.0071	0.0024	0.0095	-0.0005	0.0076	0.0013
Na23(MR)	5.0594	0.6467	6.9078	0.1326	6.9078	0.1326
Mg24(MR)	0.5994	0.3715	1.3215	-0.0954	1.1412	-0.0101
Ca44(MR)	3.8143	1.6676	5.0029	-0.2404	4.9830	-0.2395
Rb85(MR)	0.0221	0.0045	0.0262	-0.0009	0.0226	0.0029
Sr88(MR)	0.0133	0.0092	0.0261	0.0018	0.0242	0.0024
Cs133(MR)	0.0051	0.0021	0.0094	-0.0013	0.0078	0.0002
Ba138(MR)	0.0148	0.0097	0.0148	0.0097	0.0145	0.0104
K39(HR)	2.7904	0.9286	3.5861	0.8185	3.5861	0.8185
Zr90(MR)	0.0423	0.0260	0.0489	0.0177	0.0429	0.0230
Te125(MR)	0.0292	0.0154	0.0348	0.0075	0.0316	0.0090
Ce140(MR)	0.0108	0.0085	0.0113	0.0084	0.0113	0.0084
Eu153(MR)	0.0031	0.0021	0.0038	0.0016	0.0031	0.0021
Ho165(MR)	0.0028	0.0019	0.0032	0.0018	0.0032	0.0018
Er166(MR)	0.0025	0.0017	0.0033	0.0010	0.0027	0.0015
Yb172(MR)	0.0027	0.0014	0.0032	0.0009	0.0030	0.0013
W182(MR)	0.0375	0.0145	0.0427	0.0093	0.0375	0.0121
Th232(MR)	0.0148	0.0089	0.0161	0.0061	0.0147	0.0076
P31(MR)	0.1451	0.0625	0.2017	0.0294	0.1451	0.0625
Y89(MR)	0.0050	0.0013	0.0068	0.0008	0.0063	0.0010
Pr141(MR)	0.0031	0.0016	0.0052	0.0002	0.0036	0.0011
Sm147(MR)	0.0039	0.0024	0.0047	0.0007	0.0047	0.0007
Gd157(MR)	0.0039	0.0011	0.0039	0.0009	0.0039	0.0009
Tb159(MR)	0.0025	0.0016	0.0033	0.0009	0.0033	0.0009
Dy163(MR)	0.0024	0.0010	0.0044	-0.0002	0.0041	-0.0001
Tm169(MR)	0.0025	0.0010	0.0029	0.0008	0.0029	0.0008
Lu175(MR)	0.0026	0.0010	0.0034	0.0004	0.0034	0.0004
Hf178(MR)	0.0770	0.0445	0.0958	0.0229	0.0761	0.0421
Ta181(MR)	0.0097	0.0044	0.0117	0.0025	0.0097	0.0044
Re185(MR)	0.0019	0.0004	0.0037	-0.0009	0.0032	-0.0007
Os189(MR)	0.0055	0.0015	0.0092	-0.0003	0.0080	0.0004
Ir193(MR)	0.0105	0.0062	0.0126	0.0034	0.0119	0.0051
Ru101(HR)	0.0039	0.0003	0.0044	-0.0017	0.0038	-0.0015

Continuación Cuadro 26.
Las fracciones de masa para cada uno de los elementos, de mayor importancia, en cada etapa de purificación se muestran a continuación en los Cuadros del 26 a 33 donde se colocó una columna con la fracción de masa para impurezas medidas y otra para las fracciones de masa encontradas como límite de detección. Las tablas completas con los datos de las 68 impurezas, así como la pureza del agua medida se encuentran en el Anexo 2. En estos cuadros se encuentran las sumatorias de las impurezas encontradas y las impurezas en el límite de detección, así como la pureza del agua en función de las impurezas encontradas.

Роzо								
	CENAM		GRUBBS		GRUBBS modificado			
Elemento	w _{EI} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	w _{iLD} µg/kg	w _{El} μg/kg	w _{i∟D} µg/kg		
AI27(MR)	3.61		3.55		3.53			
Si28(MR)	2829		788		3044			
Fe56(MR)	3.67		3.67		3.67			
Pb208(MR)	0.10		0.11		0.11			
Zn66(HR)		0.79		0.82		0.79		
Cr52(MR)	1.04		1.02		1.03			
Cu63(MR)		0.92			0.91			
Li7(MR)	16.47		16.79			1.68		
Na23(MR)	21575		22266		22266			
Mg24(MR)	6502		6594		6567			
Ca44(MR)	14092		14228		14173			
Sr88(MR)	120		121		121			
K39(HR)	4957		5113		5113			
P31(MR)	3.47		3.68		3.47			

Cuadro 27. Fracciones de masa de los isótopos más críticos medidos en las muestras de agua de pozo para los 3 criterios usados.

Desmineralizadora								
	CEN	IAM	GRUBBS		GRUBBS	modificado		
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	w _{ILD} µg/kg		
AI27(MR)	1.78			2.08	1.80			
Si28(MR)	263.54		276.81		276.81			
Fe56(MR)	2.32		2.33		2.33			
Pb208(MR)	0.13		0.13		0.13			
Zn66(HR)		0.82	0.82		0.82			
Cr52(MR)	4.88		4.86		4.87			
Cu63(MR)	0.79		0.78		0.78			
Li7(MR)	1.03			1.67		1.53		
Na23(MR)	192.61		209.05		209.05			
Mg24(MR)	7.82			12.07		10.42		
Ca44(MR)	41.83			45.69	46.40			
Sr88(MR)	0.060			0.24		0.22		
K39(HR)	158.51		156.23		156.23			
P31(MR)	2.23		2.13		2.23			

Cuadro 28. Fracciones de masa de los isótopos medidos en las muestras de agua de salida de la planta desmineralizadora para los 3 criterios usados.

Cuadro 29. Fracciones de masa de los isótopos medidos en las muestras de agua
del recorrido desde la planta desmineralizadora hasta la entrada al módulo de
electrodesionización para los 3 criterios usados.

Antes del proceso de electrodesionización, ósmosis inversa y lámpara UV							
	CENAM		GR	GRUBBS		GRUBBS modificado	
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	w _{iLD} µg/kg	
AI27(MR)	0.19		0.19		0.27		
Si28(MR)	6088		6610		6610		
Fe56(MR)	0.16		0.16		0.64		
Pb208(MR)	0.10		0.10		0.10		
Zn66(HR)	4.96		4.96		4.96		
Cr52(MR)	0.030		0.019		0.020		
Cu63(MR)	0.19		0.19		1.80		
Li7(MR)	20.02		20.06		20.05		
Na23(MR)	8350		8664		8664		
Mg24(MR)	14.54		14.83		14.65		
Ca44(MR)	36.53		36.78		36.67		
Sr88(MR)	0.30		0.30		0.30		
K39(HR)	237.95		245.44		245.44		
P31(MR)	0.064		0.062		0.064		

Cuadro 30. Fracciones de masa de los isótopos medidos en las muestras de agua en recirculación en la tubería de polipropileno, posterior al proceso de electrodesionización, para los 3 criterios usados.

Tubería de recirculación de polipropileno natural, después del módulo de									
electrodesionización									
	CEN	MAM	GR	UBBS	GRUBBS	modificado			
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	w _{iLD} µg/kg			
Al27(MR)	0.39		0.39		0.39				
Si28(MR)	29.31		31.44			31.44			
Fe56(MR)	0.19		0.19		0.33				
Pb208(MR)	0.019		0.019		0.031				
Zn66(HR)	0.31		0.31		0.31				
Cr52(MR)	0.013		0.013		0.013				
Cu63(MR)	0.19		0.19		0.19				
Li7(MR)		0.010		0.018		0.017			
Na23(MR)	3.37		3.60		3.60				
Mg24(MR)	0.089		0.060		0.070				
Ca44(MR)	1.44		1.35		1.39				
Sr88(MR)	0.14		0.14		0.14				
K39(HR)	0.33		0.27		0.27				
P31(MR)	0.10		0.10		0.10				

MilliQ Advantage A10 para trazas elementales								
	CENAM		GR	UBBS	GRUBBS	modificado		
Elemento	w _{EI} µg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	w _{iLD} µg/kg	w _{El} μg/kg	w _{iLD} µg/kg		
AI27(MR)	0.096		0.30		0.30			
Si28(MR)	1.02			1.17		1.18		
Fe56(MR)	0.14		2.01		2.01			
Pb208(MR)	0.013		0.029		0.029			
Zn66(HR)	0.121		0.121		0.121			
Cr52(MR)	0.01079		0.000066		0.00021			
Cu63(MR)	0.028		0.027		0.063			
Li7(MR)		0.010		0.018		0.017		
Na23(MR)	1.93		1.97		1.97			
Mg24(MR)	0.15		0.13		0.14			
Ca44(MR)	1.94		1.90		1.92			
Sr88(MR)	0.0035		0.0033		0.0034			
K39(HR)	0.77		0.76		0.76			
P31(MR)	0.10		0.10		0.10			

Cuadro 31. Fracciones de masa de los isótopos medidos en las muestras de agua del Equipo MilliQ Advantage A10 especial para trazas, para los 3 criterios usados.

Cuadro 32. Fracciones de masa de los isótopos medidos en las muestras de agua en el equipo MilliQ Advantage A10 especial para ultratrazas, ubicado en cuarto limpio, para los 3 criterios usados.

MilliQ Advantage A10 especial para ultratrazas								
	CE	NAM	GRU	IBBS	GRUBBS	modificado		
Elemento	w _{EI} µg/kg	w _{iLD} µg/kg	w _{EI} µg/kg	w _{ILD} μg/kg	w _{El} μg/kg	w _{iLD} µg/kg		
Al27(MR)	0.15		0.15		0.15			
Si28(MR)		0.94	1.18		1.18			
Fe56(MR)	0.125		0.125		0.125			
Pb208(MR)	0.0051		0.0050		0.0051			
Zn66(HR)	0.068		0.068		0.068			
Cr52(MR)		0.010		0.010		0.010		
Cu63(MR)								
Ge72(MR)		0.0027		0.0033		0.0027		
Li7(MR)		0.010		0.018		0.017		
Na23(MR)		0.51		0.69	1.12			
Mg24(MR)		0.060		0.13	0.17			
Ca44(MR)	0.64		0.59		1.03			
Sr88(MR)	0.0022		0.0025		0.0024			
K39(HR)		0.28		0.36	0.20			
P31(MR)	0.086		0.084		0.086			

MilliQ Gradiente A10								
	CENAM		CENAM GRUBBS		JBBS	GRUBBS modificado		
Elemento	w _{El} µg/kg	w _{ILD} μg/kg	w _{El} μg/kg	w _{ILD} μg/kg	w _{El} μg/kg	w _{iLD} µg/kg		
AI27(MR)	0.13		0.13		0.13			
Si28(MR)	1.022			1.18		1.18		
Fe56(MR)	0.12		0.12		0.12			
Pb208(MR)	0.011		0.010		0.011			
Zn66(HR)	0.18		0.18		0.18			
Cr52(MR)	0.014		0.014		0.014			
Cu63(MR)	0.020		0.023		0.020			
Li7(MR)		0.010		0.018		0.017		
Na23(MR)	2.43		1.54		1.54			
Mg24(MR)	0.094			0.13	0.11			
Ca44(MR)	1.60		1.98		2.00			
Sr88(MR)	0.0064		0.0062		0.0062			
K39(HR)	0.69		0.68		1.23			
P31(MR)	0.083		0.082		0.083			

Cuadro 33. Fracciones de masa de los isótopos medidos en las muestras de agua en el equipo MilliQ Gradiente A10, para los 3 criterios usados.

Sistema de soble subdestilación de cuarzo								
	CE	NAM	GRU	BBS	GRUBBS	modificado		
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	w _{EI} μg/kg	w _{iLD} µg/kg	w _{EI} μg/kg	w _{iLD} µg/kg		
Al27(MR)	0.093		0.091		0.092			
Si28(MR)	0.48		1.22		1.22			
Fe56(MR)	0.23		0.23		0.23			
Pb208(MR)	0.012		0.012		0.012			
Zn66(HR)	0.12		0.12		0.12			
Cr52(MR)	0.010		0.010		0.010			
Cu63(MR)	0.012		0.012		0.012			
Li7(MR)		0.010		0.018		0.017		
Na23(MR)	0.86		0.85		0.85			
Mg24(MR)	0.14		0.13		0.84			
Ca44(MR)	0.88		0.78		0.82			
Sr88(MR)	0.0056		0.0053		0.0054			
K39(HR)	0.67		0.66		0.66			
P31(MR)	0.098		0.096		0.098			

Cuadro 34. Fracciones de masa de los isótopos medidos en las muestras de agua tomadas del sistema de doble subdestilación de cuarzo, para los 3 criterios usados.

Sistema de doble subdestilación de teflón								
	CEN	NAM	GRU	JBBS	GRUBBS	GRUBBS modificado		
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	w _{ILD} µg/kg		
Al27(MR)	0.062		0.060		0.061			
Si28(MR)	0.54		0.60		0.60			
Fe56(MR)	0.16		0.16		0.21			
Pb208(MR)	0.0083		0.0083		0.0083			
Zn66(HR)	0.12		0.12		0.12			
Cr52(MR)								
Cu63(MR)	0.015		0.014		0.014			
Li7(MR)		0.010		0.018		0.017		
Na23(MR)	0.65		0.73		0.73			
Mg24(MR)	0.074			0.13		0.11		
Ca44(MR)	0.19		0.087		0.13			
Sr88(MR)	0.0023		0.0026		0.0026			
K39(HR)	0.46		0.49		0.49			
P31(MR)	0.097		0.096		0.097			

Cuadro 35. Fracciones de masa de los isótopos medidos en las muestras de agua tomadas del sistema de doble subdestilación de teflón, para los 3 criterios usados.

5.9 Comparación entre sistemas

Se obtuvieron cuadros comparativos entre las impurezas medidas en el año 2013 y las medidas en el presente proyecto, a continuación se muestran los cuadros comparativos, del 35 al 43, para los elementos más críticos en la medición de impurezas elementales.

Los cuadros con los isótopos medidos en el presente estudio en comparación con el estudio llevado a cabo en el año 2013 se encuentran en el Anexo 3.

Cuadro 36. Comparación entre elementos críticos del agua de pozo del estudio realizado en el año 2013.

Medición de impurezas del sistema viejo			Medición de impurezas del sistema nuevo				
	(2013)		(2016)				
Elemento	w _{El} μg/kg	w _{iLD} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg		
AI27(MR)		193.2	AI27(MR)	3.61			
Si28(MR)	38977.3		Si28(MR)	2830.0			
Fe56(MR)		206.5	Fe56(MR)	3.67			
Zn66(MR)		190.6	Zn66(MR)		1.54		
Pb208(MR)		14.9	Pb208(MR)	0.10			
Li7(MR)	22.8		Li7(MR)	16.47			
Na23(MR)	37398.7		Na23(MR)	21575.4			
Mg24(MR)	8548.1		Mg24(MR)	6502.1			
Ca44(MR)	18537.3		Ca44(MR)	14092.1			
Sr88(MR)		248.4	Sr88(MR)	120.9			
K39(HR)		10225.8	K39(HR)	4957.2			
Cr52(MR)	1.033		Cr52(MR)	1.040			
Cu63(MR)	0.39		Cu63(MR)		0.92		
P31(MR)	1.54		P31(MR)	3.47			

Medición de impurezas del sistema viejo			Medición de impurezas del sistema nuevo				
	(2013)		(2016)				
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg		
AI27(MR)		186.4	AI27(MR)	1.78			
Si28(MR)	850.2		Si28(MR)	263.54			
Fe56(MR)		199.2	Fe56(MR)	2.32			
Zn66(MR)		183.9	Zn66(MR)		0.82		
Pb208(MR)		14.3	Pb208(MR)	0.13			
Li7(MR)		11.98	Li7(MR)	1.031			
Na23(MR)		9713.8	Na23(MR)	192.61			
Mg24(MR)		1749.8	Mg24(MR)	7.82			
Ca44(MR)		11699.2	Ca44(MR)	41.83			
Sr88(MR)		239.6	Sr88(MR)	0.060			
K39(HR)		9864.2	K39(HR)	158.51			
Cr52(MR)		0.012	Cr52(MR)	4.88			
Cu63(MR)		0.034	Cu63(MR)	0.79			
P31(MR)		0.54	P31(MR)	2.23			

Cuadro 37. Comparación entre elementos críticos del agua de la planta desmineralizadora del estudio realizado en el año 2013.

Medición de	impurezas del	sistema viejo	o Medición de impurezas del sist		del sistema
	(2013)				
Elemento	w _{El} μg/kg	w _{iLD} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} μg/kg
Al27(MR)		192.8	Al27(MR)	0.19	
Si28(MR)	17323.2		Si28(MR)	6088.7	
Fe56(MR)	109.3		Fe56(MR)	0.16	
Zn66(MR)		190.2	Zn66(MR)	4.96	
Pb208(MR)		14.84	Pb208(MR)	0.10	
Li7(MR)	10.67		Li7(MR)	20.019	
Na23(MR)		10048.8	Na23(MR)	8351.0	
Mg24(MR)		1810.1	Mg24(MR)	14.54	
Ca44(MR)		12102.6	Ca44(MR)	36.53	
Sr88(MR)		247.88	Sr88(MR)	0.30	
K39(HR)		10204.36	K39(HR)	237.95	
Cr52(MR)	0.198		Cr52(MR)	0.030	
Cu63(MR)	1.48		Cu63(MR)	0.19	
P31(MR)	0.66		P31(MR)	0.064	

Cuadro 38. Comparación entre elementos críticos del agua antes de entrar al laboratorio Q015 del estudio realizado en el año 2013.

Medición de	impurezas del s	sistema viejo	Medición	ledición de impurezas del sistema		
	(2013)					
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	Elemento	w _{El} μg/kg	w _{iLD} μg/kg	
Al27(MR)	409.8		Al27(MR)	0.39		
Si28(MR)	16573.2		Si28(MR)	29.31		
Fe56(MR)	210.9		Fe56(MR)	0.19		
Zn66(MR)	175.6		Zn66(MR)	0.32		
Pb208(MR)		14.77	Pb208(MR)	0.019		
Li7(MR)	10.15		Li7(MR)		0.010	
Na23(MR)		10002.27	Na23(MR)	3.37		
Mg24(MR)		1801.76	Mg24(MR)	0.089		
Ca44(MR)		12046.6	Ca44(MR)	1.44		
Sr88(MR)		246.73	Sr88(MR)	0.14		
K39(HR)		10157.1	K39(HR)	0.33		
Cr52(MR)	0.23		Cr52(MR)	0.013		
Cu63(MR)	1.32		Cu63(MR)	0.19		
P31(MR)	0.92		P31(MR)	0.10		

Cuadro 39. Comparación entre elementos críticos del agua de recirculación del loop del estudio realizado en el año 2013.

Cuadro 40. Comparación entre elementos críticos del agua obtenida del equipo para trazas elementales MilliQ Advantage A10, del estudio realizado en el año 2013.

Medición de	Medición de impurezas del sistema viejo			Medición de impurezas del sistema			
(2013)			nuevo (2016)				
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	Elemento	w _{EI} μg/kg	w _{ILD} µg/kg		
Al27(MR)		1.060	Al27(MR)	0.096			
Si28(MR)		6.13	Si28(MR)	1.017			
Fe56(MR)		0.63	Fe56(MR)	0.14			
Zn66(MR)		0.41	Zn66(MR)	0.13			
Pb208(MR)		0.49	Pb208(MR)	0.013			
Li7(MR)		0.012	Li7(MR)		0.010		
Na23(MR)	0.69		Na23(MR)	1.93			
Mg24(MR)		0.44	Mg24(MR)	0.15			
Ca44(MR)		7.60	Ca44(MR)	1.94			
Sr88(MR)		0.013	Sr88(MR)	0.0035			
K39(HR)	0.43		K39(HR)	0.77			
Cr52(MR)		0.000012	Cr52(MR)	0.011			
Cu63(MR)		0.033	Cu63(MR) 0.028				
P31(MR)		0.52	P31(MR)	0.10			

Medición de impurezas del sistema viejo			Medición de impurezas del sistema			
(2013)			nuevo (2016)			
Elemento	w _{El} μg/kg	w _{i∟D} µg/kg	Elemento	Elemento w _{EI} µg/kg		
Al27(MR)		1.067	Al27(MR)	0.13		
Si28(MR)		6.17	Si28(MR)	1.022		
Fe56(MR)		0.64	Fe56(MR)	0.12		
Zn66(MR)	0.60		Zn66(MR)	0.085		
Pb208(MR)		0.50	Pb208(MR)	0.011		
Li7(MR)		0.012	Li7(MR)		0.010	
Na23(MR)	0.54		Na23(MR)	2.43		
Mg24(MR)		0.44	Mg24(MR)	0.094		
Ca44(MR)		7.65	Ca44(MR)	1.60		
Sr88(MR)		0.013	Sr88(MR)	0.0064		
K39(HR)		1.26	K39(HR)	0.69		
Cr52(MR)	0.016		Cr52(MR)	0.014		
Cu63(MR)		0.033	Cu63(MR)	0.020		
P31(MR)		0.53	P31(MR)	0.083		

Cuadro 41. Comparación entre elementos críticos del agua obtenida del equipo para trazas elementales MilliQ Gradiente A10, del estudio realizado en el año 2013. Cuadro 42. Comparación entre elementos críticos del agua obtenida del equipo para trazas elementales MilliQ Advantage especial para el análisis de ultratrazas, del estudio realizado en el año 2013.

Medición de	impurezas del	sistema viejo	Medición de impurezas del sistema		sistema nuevo
	(2013)		(2016)		
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg
AI27(MR)		1.058	AI27(MR)	0.15	
Si28(MR)		6.12	Si28(MR)		0.94
Fe56(MR)		0.63	Fe56(MR)	0.13	
Zn66(MR)		0.41	Zn66(MR)	0.071	
Pb208(MR)		0.49	Pb208(MR)	0.0051	
Li7(MR)		0.012	Li7(MR)		0.010
Na23(MR)			Na23(MR)		0.51
Mg24(MR)	0.44		Mg24(MR)		0.060
Ca44(MR)	7.58		Ca44(MR)	0.64	
Sr88(MR)		0.013	Sr88(MR)	0.0022	
K39(HR)			K39(HR)		0.28
Cr52(MR)		0.000012	Cr52(MR)		0.010
Cu63(MR)		0.000032	Cu63(MR)		
P31(MR)		0.52	P31(MR)	0.086	

Medición de impurezas del sistema viejo			jo Medición de impurezas del sistem			
	(2013)			(2016)		
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	Elemento	w _{El} μg/kg	w _{i∟D} µg/kg	
Al27(MR)		1.058	Al27(MR)	0.093		
Si28(MR)		6.12	Si28(MR)	0.48		
Fe56(MR)		0.63	Fe56(MR)	0.23		
Zn66(MR)		0.41	Zn66(MR)	0.13		
Pb208(MR)		0.49	Pb208(MR)	0.012		
Li7(MR)		0.012	Li7(MR)		0.010	
Na23(MR)		1.90	Na23(MR)	0.86		
Mg24(MR)		0.438	Mg24(MR)	0.14		
Ca44(MR)		7.58	Ca44(MR)	0.88		
Sr88(MR)		0.0134	Sr88(MR)	0.0056		
K39(HR)		1.25	K39(HR)	0.67		
Cr52(MR)		0.012	Cr52(MR)	0.010		
Cu63(MR)		0.032	Cu63(MR)	0.012		
P31(MR)		0.52	P31(MR)	0.098		

Cuadro 43. Comparación entre elementos críticos del agua obtenida del sistema de doble subdestilación de cuarzo, del estudio realizado en el año 2013.

Cuadro 44. Comparación entre elementos críticos del agua obtenida del sistema de doble subdestilación de teflón, del estudio realizado en el año 2013.

Medición de impurezas del sistema viejo		Medición de impurezas del sistema nuevo			
	(2013)		(2016)		
Elemento	w _{ει} μg/kg	w _{iLD} µg/kg	Elemento	w _{EI} μg/kg	w _{ILD} µg/kg
AI27(MR)		1.06	AI27(MR)	0.062	
Si28(MR)		6.13	Si28(MR)	0.54	
Fe56(MR)		0.63	Fe56(MR)	0.16	
Zn66(MR)		0.41	Zn66(MR)	0.050	
Pb208(MR)		0.49	Pb208(MR)	0.0083	
Li7(MR)		0.012	Li7(MR)		0.010
Na23(MR)	1.30		Na23(MR)	0.65	
Mg24(MR)	0.49		Mg24(MR)	0.074	
Ca44(MR)	5.049		Ca44(MR)	0.19	
Sr88(MR)		0.013	Sr88(MR)	0.0023	
K39(HR)	0.63		K39(HR)	0.46	
Cr52(MR)		0.012	Cr52(MR)		
Cu63(MR)		0.033	Cu63(MR)	0.015	
P31(MR)		0.52	P31(MR)	0.097	

6 DISCUSIÓN DE RESULTADOS

Las diversas etapas de purificación del agua presentes en este estudio, muestran que los contaminantes se reducen significativamente después de la etapa de electrodesionización, esto se debe a los procesos que se ubican en esta etapa, además de la electrodesionización, se tiene un proceso de ósmosis inversa que remueve las partículas coloidales de silicio, una lámpara UV de una longitud de onda de 254 nm para la eliminación de bacterias, un filtro de venteo con trampa para gases orgánicos y CO₂. La pureza del agua obtenida en esta etapa se asegura en un tanque de 350 L que es bombeada por una tubería de polipropileno natural de alta pureza. Esta tubería está diseñada para que no se forme una capa denominada "biofilm" como producto de agua estancada, el flujo a través de esta tubería especial permite la recirculación constante de toda el agua, obteniendo la misma calidad en todo este sistema.

Para los nuevos sistemas de purificación evaluados se obtuvieron datos de impurezas menores en cada uno de los procesos, excepto en la etapa entre la salida de la planta desmineralizadora y la entrada al módulo de electrodesionización, esto se puede deber a que en el transcurso existe algún tipo de contaminación, el cual puede provenir del material de la tubería en la que se transporta el agua, los principales elementos que se encuentran en mayor cantidad en esta etapa es el sodio y el silicio, elementos muy abundantes en el agua con una fracción de masa de 6.1 mg/kg y 8.4 mg/kg respectivamente, sin embargo, en el proceso posterior a la ósmosis inversa y electrodesionización el agua obtenida disminuye considerablemente su contenido en estos elementos a una fracción de masa de 0.029 mg/kg para el silicio y de 0.0034 mg/kg para el sodio, lo que demuestra que la contaminación del agua por estos elementos durante el transcurso al módulo de electrodesionización es eliminada casi en su totalidad por este nuevo proceso.

Los procesos nuevos de purificación final en el equipo MilliQ utilizan el intercambio catiónico y aniónico, a través de una resina polimérica de estireno con

divinilbenceno con grupos químicos cargados: grupos cuaternarios de amonio para las resinas aniónicas y grupos sulfónicos en las resinas aniónicas, lo que asegura la remoción de contaminantes catiónicos y aniónicos. Posterior a este proceso, para el equipo MilliQ para análisis de ultratrazas se encuentra un lecho de material polimérico de estireno con divinilbenceno con grupos funcionales N-metilglutamina y oxhidrilo que garanticen la remoción específica del boro y silicio.

Los requerimientos principales para los equipos MilliQ para trazas elementales y ultratrazas se muestran en el Cuadro 45

Elementos Críticos	Si	Ca	Na	Mg	K	Fe	AI	Pb
Fracción de masa (µg/kg)	≤ 4.0	≤ 1.0	≤ 1.0	≤ 0.4	≤ 0.4	≤ 0.2	≤ 0.2	≤ 0.006
Fracción de masa (µg/kg)	≤ 2.0	≤ 0.5	≤ 0.5	≤ 0.2	≤ 0.2	≤ 0.1	≤ 0.1	≤ 0.003

Cuadro 45. Especificación especial para la fracción de masa de algunos elementos en el agua producida por los equipos MilliQ.

Como se puede observar en el Cuadro 35 y 36 se tienen resultados para la comparación entre los requerimientos necesarios que el equipo purificador debe proveer y los resultados obtenidos de la medición en el ICP-MS. En el Cuadro 36 se observa que el silicio es aceptable en las mediciones obtenidas por los dos equipos, al igual que el magnesio. El hierro se cumple para el equipo MilliQ para trazas elementales, más no para el especial para ultratrazas, esto se puede deber a que estos dos equipos cuentan con diferentes filtros, o una posible contaminación exterior o del recipiente en el cual se contuvo la muestra durante la medición, para el equipo de trazas, mientras que para ultratrazas se obtiene una cantidad cercana a la especificación de igual manera que el sodio, estos elementos, debemos recordar, que siempre estarán presentes en el agua en mayor cantidad, junto con el silicio.

Cuadro 46. Fracciones de masa obtenidas para las especificaciones requeridas de los equipos purificadores.

	Fracciones de masa obtenidas			Fraccio	nes de mas	a obtenidas
Elemento/	del eq	uipo MilliQ p	oara trazas	del equip	o MilliQ par	a ultratrazas
Isótopo		elemental	es		elemental	es
medido/			GRUBBS		CDUBBS	GRUBBS
Resolución			MODIFICADO			MODIFICAD
	(µg/кg)	(µg/kg)	(µg/kg)	(µg/кg)	(µg/кg)	O (µg/kg)
Al27(MR)	0.096	0.30	0.30	0.15	0.15	0.15
Si28(MR)	1.02	1.17	1.18	0.94	1.18	1.18
Fe56(MR)	0.14	0.13	0.13	0.125	0.125	0.125
Pb208(MR)	0.013	0.012	0.012	0.0051	0.0050	0.0051
Na23(MR)	1.93	1.97	1.97	0.51	0.69	1.12
Mg24(MR)	0.15	0.13	0.14	0.060	0.13	0.17
Ca44(MR)	1.94	1.90	1.92	0.64	0.59	1.03
K39(HR)	0.77	0.76	0.76	0.28	0.36	0.20

En las tablas comparativas, se observa que el sistema de purificación ha mejorado de manera considerable al sistema anterior que llevaba aproximadamente 15 años de uso continuo.

En los cuadros del Anexo 2 se pueden observar las sumatorias de las impurezas encontradas, así como las impurezas en el límite de detección, la sumatoria de las impurezas en el límite de detección corresponde a la mitad debido a que, al encontrarse en el límite de detección existe un 50 % de probabilidad que se encuentre en la parte más baja o en la parte más alta, de manera que sólo se contabiliza el 50 % en la sumatoria.

En el siguiente cuadro se encuentran las cantidades de impurezas encontradas y en el límite de detección para cada etapa en el proceso de purificación de agua:

	Cantidad	Cantidad	Porcentaje de pureza (%)		
Etapa de purificación	de IE	de ILD		CPUBBS	GRUBBS
	(µg/kg)	(µg/kg)	CLINAW	GRODDS	MOD.
1. Pozo	50157.0	5.63	94.98%	95.08%	94.86%
2. Desmineralizadora	693.8	10.47	99.93%	99.93%	99.93%
3. Antes de la	14776.2	0.038	98 52%	98 44%	98 44%
electrodesionización	14770.2	0.030	90.5270	30.4470	30.4470
4. Recirculación					
posterior a la	42.5	0.07	99.996%	99.996%	99.997%
electrodesionización					
5. Equipo MilliQ					
Advantage A10	7.55	0.05	99.9992%	99.9988%	99.9982%
especial para trazas					
6. Equipo MilliQ					
Advantage A10	6 95	0.08	00 0008%	00 0007%	99 9995%
especial para análisis	0.00	0.00	33.333070	99.9997%	99.9990%
de ultratrazas					
7. Equipo MilliQ	1 / 3	0.94	00 0003%	00 000/%	00 0003%
Gradiente A10	1.40	0.04	00.000070	00.000+70	00.000070
8. Sistema de doble					
subdestilación de	4.45	0.08	99.9995%	99.9995%	99.9994%
cuarzo					
9. Sistema de doble					
subdestilación de	2.94	0.07	99.9997%	99.9997%	99.9997%
teflón					

Cuadro 47. Porcentaje de pureza y cantidad de impurezas encontradas y en el límite de detección para cada uno de las etapas de purificación.

En la Figura 7 la cantidad de impurezas en cada una de las etapas del proceso de purificación. En la Figura 8 podemos observar la cantidad de impurezas en el límite de detección para las diferentes etapas del proceso de purificación

Figura 7. Gráfica de impurezas encontradas en las etapas del proceso de purificación de agua.

Figura 8. Gráfica de impurezas en el límite de detección en las diferentes etapas del proceso de purificación.

7 CONCLUSIONES

Se logró evaluar la calidad del agua de medición del Edificio Q y C, a través de la medición de 68 impurezas elementales mediante el método de calibración por interpolación y la técnica de espectrometría de masas con plasma acoplado inductivamente, en diferentes etapas del proceso de purificación, observándose como la calidad del agua se va mejorando a través de cada una de las etapas de tratamiento de purificación.

El nuevo sistema de purificación instalado, así como las tecnologías como la electrodesionización proveen una calidad de agua tipo I mejorada que el sistema anterior, para la fabricación y certificación de materiales de referencia.

El agua obtenida de este proceso de purificación contribuye a la medición y procedimientos metrológicos de alta exactitud, de tal manera que es apta para el uso en comparaciones internacionales.

En la comparación entre los criterios utilizados se puede notar que no existe gran diferencia entre el criterio de Grubbs modificado y el criterio del CENAM, por lo que se recomienda su uso para una mayor sistematización y control.

Se logró obtener una base de datos de las interferencias que posee cada uno de los isótopos medidos, para tener un mejor sistema de medición en base a las posibles interferencias.

8 REFERENCIAS

ASTM. American Society for Testing Maerials Standard specification for reagent water. ASTM D1193-06 (Reapproved **2011**). Pennsylvania, United States.**2011**; 2 **Barros H,** Castro de Esparza M, L Wong M, Mori V. Espectrometría de masas con plasma inductivamente acoplado. **2009**; 113-121

Bermudez L. La espectrometría de masas en imágenes. ACK Editores. México. 1993.

Billmeyer F. Ciencia de los polímeros. España: Editorial Reverté, 2004; 385-394.

Centro Nacional de Metrología. 600-AC-IT.008 Limpieza del material utilizado en la Dirección General de Metrología de Materiales. Documento no publicado. **2015**.

Centro Nacional de Metrología. 600-AC-P.011 Determinación de masa por peso. Documento no publicado. **2014**.

Centro Nacional de Metrología. 620-AC-IT.027 Operación del sistema de doble subdestilación para ácido nítrico y agua. Documento no publicado. **2011**.

Centro Nacional de Metrología. 620-AC-IT.052 Medición de masa a través del pesado por diferencia. Documento no publicado. **2016**.

Centro Nacional de Metrología. 620-AC-IT.055 Operación y cuidados de las balanzas analíticas. Documento no publicado. **2015**.

Centro Nacional de Metrología. 620-AC-IT.059 Reglamento interno del Laboratorio Cuarto Limpio Q018. Documento no publicado. **2011**.

Centro Nacional de Metrología. 620-AC-P.436 Preparación de muestras y medición de impurezas de elementos químicos, usando la técnica de Espectrometría de Masas de sector magnético con plasma acoplado inductivamente. Documento no publicado. **2011**.

Centro Nacional de Metrología. 620-AC-P.553 Calificación de operación y de funcionamiento para el espectrómetro de masas marca Finnigan Element. Documento no publicado. **2011**.

Darbouret D, Kano I. Ultrapure water for elemental analysis down to ppt levels. The R & D Notebook. A publication of the laboratory water division of Millipore. Francia.1999.

86

Diario Oficial de la Federación. Programa Institucional del Centro Nacional de Metrología. México, **2013-2018**. 2-5.

Fuentes X., Castiñeiras M., Queraltó J. Bioquímica clínica y patología molecular. Segunda edición. España: Editorial Reverté. **1998**; 135-137

Henry G., Heinke G. Ingeniería ambiental. Segunda edición. Prentice Hall, México, 1999; 397-408

Kano I, Darbouret D. Ultrapure water for boron and silica sensitive laboratory applications. The R & D Notebook. A publication of the laboratory water division of Millipore. Francia. **1998**.

Millipore Corporation. PURIFICACIÓN DE AGUA. Guía de selección. Advancing Life Science Together. Estados Unidos. **2008**. 5-12

Paulsen P, Beary, E., Bushee, D., and Moody, J. Analysis of Ultrapure Reagents form a Large Sub-Boiling Still made of Teflon PFA. Analytical Chemistry, **1989**; 61(8), 827-830.

Thomas R. A beginner's guide to ICP-MS. Spectroscopy tutorial. 2001; 11:22-27.

Vocabulario Internacional de Metrología (VIM). Conceptos y fundamentales. México: 2008; 57-58

Whitehead P., CChem, Director de laboratorios FRSC, ELGA R&D Facility. Cómo conseguir los mejores resultados con agua ultrapura. Técnicas de Laboratorio.
2011. N° 364, 1-6. <u>http://www.veoliawatertechnologies.es/vwst-iberica/ressources/documents/1/18156,Tecnicas-de-Laboratorio_Sept2011.pdf</u>

9 Anexos

9.1 Anexo. Revisión de interferencias

Cuadro 47. Revisión de interferencias para el calibrador A.

Elemento	Interferencia	Abundancia	Resolución	Resolución de
	Interferencia	7154114411614	para eliminar	instrumento
¹¹ B		11.00931		
	22Ne++	9.22	807	Media
	23Na++	100	23	Baja
²⁷ AI		100		
	11B16O	79.908	1190	Media
	55Mn++	100	56	Baja
	54Cr++	2.37	2228	Media
	54Fe++	5.8	2298	Media
	9Be18O	0.2	906	Media
²⁸ Si		92.23		
	56Fe++	91.72	2956	Media
	12C16O	98.663	1557	Media
	14N2	99.261	958	Media
	11B17O	0.032	888	Media
	10B18O	0.0398	796	Media
⁴² Ca		0.65		
	84Kr++	57	14644	Doble carga
	84Sr++	0.56	22024	Doble carga
	26Mg16O	10.984	2222	Media
	85Rb++	72.17	85	Baja
	4He38Ar	0.06	6254	Alta
	2H40Ar	0.0199	2350	Media
	6Li36Ar	0.0255	1745	Media
	24Mg18O	0.158	1641	Media
	24Na18O1H	0.2	1101	Media
⁴⁷ Ti		7.3		
	94Mo++	9.25	59812	Doble carga
	94Zr++	17.38	33537	Doble carga
	31P16O	99.76	2777	Media
	7Li40Ar	92.13	1764	Media
	14N16O2 1H	99.142	959	Media
	9Be38Ar	0.06	2029	Media
	11B36Ar	0.2723	1871	Media
	15N16O2	0.3682	1231	Media

	14N16O17O	0.0795	1036	Media
⁴⁸ Ti		73.8		
	96Mo++	16.68	10923	Doble carga
	48Ca	0.19	10469	Isobárica
	96Ru++	5.52	8197	Alta
	96Zr++	2.8	7753	Alta
	32S16O	97.792	2520	Media
	12C36Ar	0.3363	2447	Media
	31P17O	0.04	1923	Media
	10B38Ar	0.0119	1730	Media
	14N16O18O	0.3976	975	Media
	15N16O2 1H	0.3682	963	Media
	14N16O2 2H	0.0198	813	Media
⁵¹ V		99.75		
	102Ru++	31.6	6202	Alta
	35CI16O	75.588	2573	Media
	11B40Ar	79.78	1838	Media
	103Rh++	100	101	Baja
	102Pd++	1.02	5760	Alta
⁵⁵ Mn		100		
	110Cd++	12.49	4084	Alta
	111Cd++	12.8	107	Baja
	110Pd++	11.72	3780	Media
	39K16O	93.036	2671	Media
	37CI18O	0.0485	2034	Media
	38Ar16O1H	0.0599	2004	Media
	19F36Ar	0.34	1970	Media
⁵⁶ Fe		91.72		
	112Cd++	24.13	3403	Media
	40Ar16O	99.361	2503	Media
	40Ca16O	96.707	2480	Media
	112Sn++	0.97	3202	Media
	20Ne36Ar	0.3077	2233	Media
	40K16O	0.01	2334	Media
	39K17O	0.0373	2005	Media
	113In++	4.3	109	Baja
⁶⁴ Zn		48.6		
	64Ni	0.91	54176	Isobárica
	48Ti16O	76.623	4663	Alta

Continuación Cuadro 47.

	Contain			
	24Mg40Ar	78.674	3500	Media
	128Te++	31.69	2770	Media
	28Si36Ar	0.3136	4171	Alta
	48Ca16O	0.1895	3496	Media
	128Xe++	1.91	2827	Media
	129Xe++	26.4	123	Baja
	46Ti18O	0.016	2824	Media
	23Na217O1H	0.04	1115	Media
	23Na216O2H	0.02	1077	Media
	14N18O16O2	0.5949	1017	Media
⁶⁶ Zn		27.9		
	28Si38Ar	0.0553	4841	Alta
	30Si36Ar	0.0105	4315	Alta
	50Ti16O	5.387	4827	Alta
	49Ti17O	0.0022	3146	Media
	48Ti18O	0.1476	3129	Media
	50Cr16O	4.3396	4419	Alta
	50V16O	0.2494	4113	Alta
	26Mg40Ar	10.966	3481	Media
	132Xe++	26.9	2533	Media
	132Ba++	0.1	2490	Media
	36Ar14N16O	0.3379	1670	Media
	133Cs++	100	126	Baja
⁷⁵ As		100		
	150Sm++	7.4	2023	Media
	59Co16O	99.76	11509	Corregir
	35Cl40Ar	75.467	7781	Alta
	150Nd++	5.64	1929	Media
	37Cl38Ar	0.0145	10658	Corregir
	39K36Ar	0.3171	7756	Alta
	58Ni17O	0.0273	5817	Alta
¹¹⁵ ln		95.7		
	115Sn	0.36	212783	Isobárica
	99Ru16O	12.67	37921	Corregir
	97Mo18O	0.0191	88388	Corregir
	75As40Ar	99.6	5773	Alta
	79Br36Ar	0.1723	6386	Alta
¹¹⁵ Sn		0.36		
	115In	95.7	212784	Isobárica

Continuación Cuadro 47.

	e e i i i i			
	99Ru16O	12.67	46144	Corregir
	97Mo18O	0.0191	62448	Corregir
	75As40Ar	99.6	5934	Alta
	79Br36Ar	0.1723	6583	Alta
¹¹⁸ Sn		24.22		
	235U++	0.72	309	Media
	82Kr36Ar	0.0394	5727	Alta
	78Kr40Ar	0.3486	6260	Alta
	78Se40Ar	23.506	5375	Alta
	80Se38Ar	0.0298	5271	Alta
	100Ru18O	0.0252	66612	Corregir
	102Ru16O	31.524	50169	Corregir
	102Pd16O	1.0176	108165	Corregir
	100Mo18O	0.0193	23487	Corregir
¹¹⁷ Sn		7.68		
	81Br36Ar	0.1677	6116	Alta
	79Br38Ar	0.0304	3541	Alta
	77Se40Ar	7.5696	5657	Alta
	99Ru18O	0.0254	54374	Corregir
	102Ru17O	0.0126	699432	Corregir
	100Ru17O	0.005	292258	Corregir
	234U++	0.01	995	Media
¹²¹ Sb		57.3		
	81Br40Ar	49.113	4806	Alta
	85Rb36Ar	0.2454	4939	Alta
	105Pd16O	22.276	31566	Corregir
	103Rh18O	0.2	143934	Corregir
¹⁴² Nd		27.13		
	142Ce	11.08	93361	Isobárica
	104Ru38Ar	0.0112	3584	Media
	102Ru40Ar	34.474	3460	Media
	102Pd40Ar	1.0159	3569	Media
	106Pd36Ar	0.0929	3865	Media
	126Te16O	18.905	14920	Corregir
	126Xe16O	0.0898	16615	Corregir
	124Sn18O	0.0116	43001	Corregir
¹⁴³ Nd		12.18		
	105Pd38Ar	0.0134	3400	Media
	103Rh40Ar	99.6	3406	Media

Continuación Cuadro 47.

	Contain			
	107Ag36Ar	0.1763	3843	Media
	127 160	99.76	13700	Corregir
	125Te18O	0.0143	22974	Corregir
¹⁴⁵ Nd		8.3		
	105Pd40Ar	22.241	3210	Media
	107Ag38Ar	0.0311	3237	Media
	109Ag36Ar	0.1637	3596	Media
	129Xe16O	26.337	11241	Corregir
	128Te17O	0.0127	16118	Corregir
	127 180	0.2	16208	Corregir
²⁰² Hg		29.8		
	162Dy40Ar	25.398	2478	Media
	164Dy38Ar	0.0169	2564	Media
	162Er40Ar	0.1394	2540	Media
	166Er36Ar	0.1142	2774	Media
	186Os16O	1.5762	9234	Alta
	186W16O	28.531	9463	Alta
	184W18O	0.0613	9841	Alta
	185Re17O	0.015	10904	Corregir
²⁰⁵ TI		70.48		
	165Ho40Ar	99.6	2507	Media
	167Er38Ar	0.0138	2573	Media
	169Tm36Ar	0.34	2821	Media
	189Os16O	16.061	9604	Alta
	187Re18O	0.1252	10521	Corregir
²⁰⁸ Pb		52.4		
	168Er40Ar	26.693	2539	Media
	168Yb40Ar	0.1295	2587	Media
	172Yb36Ar	0.0745	2859	Media
	192Pt16O	0.7881	10055	Corregir
	192Os16O	40.902	10274	Corregir
	109Os18O	0.0528	10933	Corregir
	191lr17O	0.0149	12298	Corregir
²⁰⁶ Pb		24.1		
	166Er40Ar	33.466	2517	Media
	168Er38Ar	0.0161	2594	Media
	170Er36Ar	0.0507	2882	Media
	170Yb36Ar	0.0104	2854	Media
	1880s180	0.0266	10588	Corregir

Continuación Cuadro 47.

	1890s170	0.0064	11995	Corregir			
²⁰⁹ Bi		100					
	169Tm40Ar	99.6	2493	Media			
	173Yb36Ar	0.0548	2799	Media			
	193lr16O	62.55	9270	Alta			
	191lr18O	0.0746	10128	Corregir			
	1920s170	0.0164	10569	Corregir			
¹⁹⁹ Hg		16.84					
	159Tb40Ar	99.6	2469	Media			
	161Dy38Ar	0.0113	2530	Media			
	163Dy36Ar	0.0847	2763	Media			
	183W16O	14.266	8608	Alta			
	182W17O	0.0105	9514	Alta			
	181Ta18O	0.2	9428	Alta			

Continuación Cuadro 47.

Cuadro 48. Revisión de interferencias para el calibrador B.

			Resolución	
Elemento	Interferencia	Abundancia	para	Resolución de instrumento
			eliminar	
⁴⁵ Sc		100		
	90Zr++	51.45	12644	Corregir
	29Si16O	4.6588	2901	Media
	28Si17O	0.0369	2232	Media
	7Li38Ar	0.0555	1971	Media
	9Be36Ar	0.34	1888	Media
	27Al18O	0.2	1814	Media
	13C16O2	1.0947	1207	Media
	12C16O17O	0.0789	1180	Media
	12C16O2 1H	98.146	1078	Media
	14N2 17O	0.0397	911	Media
	91Zr++	11.22	91	Baja
⁵² Cr		83.79		
	104Pd++	11.14	4515	Alta
	105Pd++	22.33	102	Baja
	104Ru++	18.7	4258	Alta
	36S16O	0.02	2419	Media
	12C40Ar	98.504	2375	Media
	36Ar16O	0.3392	2367	Media
	14N38Ar	0.0598	2054	Media

		Contantaaolon	ouddio io.	
	35CI17O	0.0303	1891	Media
⁵⁹ Co		100		
	118Sn++	24.22	3348	Media
	119Sn++	8.58	114	Baja
	43Ca16O	0.1397	2878	Media
	23Na36Ar	0.34	2444	Media
	19F40Ar	99.6	2137	Media
	41K18O	0.0135	2121	Media
	40Ar18O1H	0.1992	1630	Media
⁶⁰ Ni		26.1		
	120Sn++	32.59	2951	Media
	44Ca16o	2.085	3058	Media
	120Te++	0.1	2825	Media
	24Mg36Ar	0.2686	2750	Media
	20Ne40Ar	90.148	2494	Media
	121Sb++	57.3	116	Baja
⁶³ Cu		69.17		
	126Te++	18.95	2854	Media
	47Ti16O	7.2825	3687	Media
	27Al36Ar	0.34	3229	Media
	126Xe++	0.09	2792	Media
	23Na40Ar	99.6	2791	Media
	45Sc187O	0.2	2471	Media
	23Na2 16OH	99.75	1195	Media
	15N16O3	0.3673	1140	Media
	14N16O217O	0.119	1009	Media
	127l++	100	121	Baja
⁶⁹ Ga		60.1		
	53Cr16O	9.4772	6907	Alta
	52Cr17O	0.0335	4903	Alta
	31P38Ar	0.06	6318	Alta
	29Si40Ar	4.6513	5183	Alta
	51V18O	0.1995	3930	Media
	138Ba++	71.7	2550	Media
	138Ce++	0.25	2514	Media
	138La++	0.09	2464	Media
	139La++	99.91	131	Baja
⁷¹ Ga		39.9		
	55Mn16O	99.76	8587	Alta

Continuación Cuadro 48.

		Continuación	Ouuuro 40.	
	31P38Ar	0.06	6318	Alta
	35Cl36Ar	0.2576	6062	Alta
	23Cr18O	0.019	4694	Alta
	142Nd++	27.13	2432	Media
	142Ce++	11.08	2371	Media
	40Ar14N17O	0.0397	1779	Media
	40Ar15N16O	0.3676	2169	Media
	143Nd++	12.18	134	Baja
⁷² Ge		27.4		
	144Nd++	23.8	2182	Media
	145Nd++	8.3	135	Baja
	26Fe16O	91.5	9257	Alta
	54Fe18O	0.0116	4310	Alta
	32S40Ar	94.64	5815	Alta
	55Mn17O	0.04	4764	Alta
	144Sm++	3.1	2121	Media
	40Ar14N18O	0.1985	1692	Media
⁷⁷ Se		7.6		
	61Ni16O	1.1273	12694	Corregir
	60Ni17O	0.0104	76850	Alta
	39K38Ar	0.056	11780	Corregir
	41K36Ar	0.0229	8123	Alta
	37Cl40Ar	24.133	9190	Alta
	59Co18o	0.2	6179	Alta
	36Ar40Ar1H	0.6772	4310	Alta
	154Gd++	2.18	1898	Media
	154Sm++	22.7	1867	Media
	155Gd++	14.8	143	Baja
⁸² Se		9.2		
	82Kr	11.6	25360	Isobárica
	42Ca40Ar	0.6474	19095	Corregir
	46Ti36Ar	0.0272	23608	Corregir
	66Zn16o	27.833	19320	Corregir
	64Zn18O	0.0972	7062	Alta
	65Cu17O	0.0123	8024	Alta
	40Ar2H	0.0198	3699	Media
	164Dy++	28.2	1711	Media
	164Er++	1.61	1711	Media
	1655Ho++	100	150	Baja

Continuación Cuadro 48.

		Continuacion		
¹¹⁴ Cd		28.73		
	114Sn	0.65	196384	Isobárica
	78Se36Ar	0.0802	6152	Alta
	74Se40Ar	0.8964	6155	Alta
	74Ge40Ar	36.354	5751	Alta
	98Ru16O	1.8755	36044	Corregir
	96Ru18O	0.011	33501	Corregir
	98Mo16O	34.072	37467	Corregir
	96Mo18O	0.0334	237299	Corregir
¹¹¹ Cd		12.8		
	73Ge38Ar	0.0047	6163	Alta
	71Ga40Ar	39.74	6484	Alta
	75As36Ar	0.34	7377	Alta
	95Mo16O	15.882	32332	Corregir
	94Mo17O	0.0037	2772605	Corregir
¹¹⁸ Sn		24.22		
	235U++	0.72	309	Media
	82Kr36Ar	0.0394	5727	Alta
	78Kr40Ar	0.3486	6260	Alta
	78Se40Ar	23.506	5375	Alta
	80Se38Ar	0.0298	5271	Alta
	82Se36Ar	0.0313	6794	Alta
	102Ru16O	31.524	50169	Corregir
	100Ru18O	0.0252	66612	Corregir
	102Pd16O	1.0176	108165	Corregir
	100Mo18O	0.0193	23487	Corregir
¹¹⁹ Sn		8.58		
	81Br38Ar	0.0296	4894	Alta
	79Br40Ar	50487	5262	Alta
	83Kr36Ar	0.0391	5496	Alta
	103Rh16O	99.76	41000	Corregir
	102Ru17O	0.0126	699432	Corregir
	101Ru18O	0.034	83150	Corregir
¹³⁹ La		99.91		
	99Ru40Ar	12.649	3650	Media
	101Ru38Ar	0.0102	3649	Media
	103Rh36Ar	0.34	4169	Alta
	123Sb16O	42.598	19211	Corregir
	121Sb18O	0.1146	41095	Corregir

Continuación Cuadro 48.

Continuación	Cuadro	48.
--------------	--------	-----

	123Te16O	0.9078	19372	Corregir		

Cuadro 49. Revisión de interferencias para el calibrador C.

			Resolución	
Elemento	Interferencia	Abundancia	para	Resolución de instrumento
02			eliminar	
⁹³ Nb		100		
	187Re++	62.6	163	Baja
	55Mn38Ar	0.06	16589	Corregir
	53Cr40Ar	9.462	27732	Corregir
	77Se16O	7.5818	11008	Corregir
	75As18O	0.2	6461	Alta
	186Os++	1.58	1317	Media
	1870s++	1.6	163	Baja
	186W++	28.6	1313	Media
⁹⁵ Mo		15.92		
	189Os++	16.1	164	Baja
	190Os++	26.4	1294	Media
	55Mn40Ar	99.6	17541	Corregir
	59Co36Ar	0.34	18644	Corregir
	79Br16O	50.568	12808	Corregir
	77Se18O	0.0152	7174	Alta
	190Pt++	0.01	1281	Media
	191lr++	37.3	166	Baja
⁹⁷ Mo		9.55		
	59Co38Ar	0.06	9603	Alta
	57Fe40Ar	2.1912	11759	Corregir
	61Ni36Ar	0.0038	13076	Corregir
	81Br16O	49.192	18708	Corregir
	79Br18O	0.1014	8442	Alta
	80Se17O	0.0199	10063	Corregir
	194Pt++	32.9	1287	Media
	195Pt++	33.8	169	Baja
¹⁰⁵ Pd		22.33		
	65Cu40Ar	30.707	7034	Alta
	69Ga36Ar	0.2043	8777	Alta
	89Y16O	99.76	24338	Corregir
	88Sr17O	0.033	317893	Corregir
	87Sr18O	0.014	35322	Corregir
	•	•		· · · · · · · · · · · · · · · · · · ·
		Continuación		
-------------------	-----------	--------------	--------	-----------
	87Rb18O	0.0557	32180	Corregir
¹⁹⁶ Pt		25.3		
	196Hg	0.14	227867	Isobárica
	156Gd40Ar	20.388	2435	Media
	158Gd38Ar	0.0149	2507	Media
	160Gd36Ar	0.0743	2784	Media
	156Dy40Ar	0.0598	2502	Media
	180Hf16O	35.016	8345	Alta
	178Hf18O	0.0546	8874	Alta
	180W16O	0.1297	8405	Alta
¹⁹⁵ Pt		33.8		
	155Gd40Ar	14.741	2442	Media
	157Gd38Ar	0.0094	2495	Media
	159Tb36Ar	0.34	2710	Media
	177HfO18	0.0372	8702	Alta
	178Hf17O	0.0109	8881	Alta
	179Hf16O	13.597	8105	Alta
¹⁹⁷ Au		100		
	157Gd40Ar	15.587	2454	Media
	159Tb38Ar	0.34	2710	Media
	161Dy36Ar	0.0643	2731	Media
	181Ta16O	99.75	8330	Alta
	179Hf18O	0.0273	9130	Alta
	180Hf17O	0.014	9436	Alta

Continuación Cuadro 49.

Cuadro 50. Revisión de interferencias para el calibrador D.

Elemento	Interferencia	Abundancia	Resolución para eliminar	Resolución de instrumento
⁷ Li		92.5		
	14N++	99.63	484	Media
⁹ Be		100		
	180++	0.2	714	Media
	19F++	100	19	Baja
²³ Na		100		
	45Sc++	100	46	Baja
	46Ti++	8	1707	Media
	47Ti++	7.3	48	Baja
	7Li16O	92.278	1088	Media

	78.99		
48Ti++	73.8	2166	Media
49Ti++	5.5	50	Baja
48Ca++	0.19	2732	Media
6Li18O	0.015	821	Media
7Li17O	0.037	798	Media
	93.26		
78Se++	23.6	7699	Alta
78Kr++	0.35	11099	Corregir
1H38Ar	0.06	5689	Alta
23Na16O	99.76	1859	Media
16O18O5H	0.3988	561	Media
79Br++	50.69	79	Baja
	2.09		
88Sr++	82.58	16461	Corregir
4He40Ar	99.6	4627	Alta
28Si16O	92.009	2687	Media
27Al17O	0.04	1745	Media
26Mg18O	0.022	1673	Media
12C16O2	98.426	1281	Media
14N2 16O	99.023	965	Media
89Y++	100	89	Baja
	72.17		
170Yb++	3.05	1528	Media
171Yb++	14.3	153	Baja
49Ti36Ar	0.0187	23457	Corregir
45Sc40Ar	99.6	13084	Corregir
69Ga16O	59.956	9772	Alta
170Er++	14.9	1518	Media
	82.58		
48Ti40Ar	73.505	18664	Corregir
72Ge16O	27.334	7732	Alta
177Hf++	18.61	156	Baja
176Lu++	2.59	1338	Media
52Cr36Ar	0.2849	36027	Corregir
48Ca40Ar	0.1892	9463	Alta
70Ge18O	0.041	4942	Alta
71Ga17O	0.016	4828	Alta
176Hf++	5.21	1351	Media
	48Ti++ 49Ti++ 48Ca++ 6Li18O 7Li17O 78Se++ 78Kr++ 1H38Ar 23Na16O 16O18O5H 79Br++ 88Sr++ 4He40Ar 28Si16O 27AI17O 26Mg18O 12C16O2 14N2 16O 89Y++ 170Yb++ 170Yb++ 171Yb++ 49Ti36Ar 45Sc40Ar 69Ga16O 170Er++ 48Ti40Ar 72Ge16O 177Hf++ 176Lu++ 52Cr36Ar 48Ca40Ar 70Ge18O 71Ga17O 176Hf++	78.99 48Ti++ 73.8 49Ti++ 5.5 48Ca++ 0.19 6Li18O 0.015 7Li17O 0.037 93.26 78Se++ 23.6 78Kr++ 0.35 1H38Ar 0.06 23Na16O 99.76 16O18O5H 0.3988 79Br++ 50.69 2.09 88Sr++ 88Sr++ 82.58 4He40Ar 99.6 28Si16O 92.009 27Al17O 0.04 26Mg18O 0.022 12C16O2 98.426 14N2 16O 99.023 89Y++ 100 72.17 70Yb++ 3.05 171Yb++ 14N2 16O 99.62 69Ga16O 59.956 170Er++ 14.3 49Ti36Ar 0.0187 45Sc40Ar 99.6 69Ga16O 59.956 170Er++ 14.9 82.58	78.99 48Ti++ 73.8 2166 49Ti++ 5.5 50 48Ca++ 0.19 2732 6Li18O 0.015 821 7Li17O 0.037 798 93.26 93.26 78Se++ 23.6 7699 78Kr++ 0.35 11099 1H38Ar 0.06 5689 23Na16O 99.76 1859 16O18O5H 0.3988 561 79Br++ 50.69 79 2.09 28Sr++ 82.58 16461 4He40Ar 99.6 4627 28Si16O 92.009 2687 27Al17O 0.04 1745 26Mg18O 0.022 1673 12C16O2 98.426 1281 14N2 16O 99.023 965 89Y++ 100 89 72.17 170Yb++ 3.05 1528 171Yb++ 14.3 153 49Ti36Ar 0.01

Continuación Cuadro 50.

	176Yb++	12.7	1339	
¹³³ Cs		100		
	97Mo36Ar	0.0325	4170	Alta
	93Nb40Ar	99.6	3623	Media
	117Sn16O	7.6616	17555	Corregir
	116Sn17O	0.0058	29144	Corregir
	115In18O	0.1914	55607	Corregir
¹³⁷ Ba		11.23		
	97Mo40Ar	9.5118	3657	Media
	101Ru36Ar	0.0578	4187	Alta
	121Sb16O	57.162	19308	Corregir
	120Sn17O	0.013	30490	Corregir
	119Sn18O	0.0172	40866	Corregir
¹³⁵ Ba		6.59		
	95Mo40Ar	15.856	3601	Media
	97Mo38Ar	0.0057	3652	Media
	99Ru36Ar	0.0432	4191	Alta
	119Sn16O	8.5594	18107	Corregir
	118Sn17O	0.0097	27363	Corregir
	117Sn18O	0.0154	37893	Corregir

Continuación Cuadro 50.

Cuadro 51. Revisión de interferencias para el calibrador E.

Elemento	Interferencia	Abundancia	Resolución para eliminar	Resolución de instrumento
⁹⁰ Zr		51.45		
	50Cr40Ar	4.3326	24168	Corregir
	54Cr36Ar	0.0081	52271	Corregir
	52Cr38Ar	0.0503	61158	Corregir
	54Fe36Ar	0.0197	36696	Corregir
	50Ti40Ar	5.3784	36547	Corregir
	50V40Ar	0.249	18614	Corregir
	74Ge16O	36.412	7901	Alta
	72Ge18O	0.0548	5439	Alta
	74Se16O	0.8978	7091	Alta
	180Hf++	35.1	1312	Media
	180W++	0.13	1310	Media
	180Ta++	0.01	1303	Media
	181Ta++	99.99	158	Baja

⁹¹ Zr		11.22		
	53Cr38Ar	0.0057	40222	Corregir
	51V40Ar	99.351	129866	Corregir
	74Ge17O	0.0146	6197	Alta
	73Ge18O	0.0156	5354	Alta
	182W++	26.3	1328	Media
	183W++	14.3	160	Baja
	55Mn36Ar	0.34	2272639	Corregir
	75As16O	99.76	8363	Alta
¹²⁵ Te		7.14		
	87Sr38Ar	0.0042	3804	Media
	87Rb38Ar	0.0167	3838	Media
	85Rb40Ar	71.881	4126	Alta
	89Y36Ar	0.34	4024	Alta
	108Pd17O	0.0106	87959	Corregir
	109Ag16O	48.044	26129	Corregir
	107Ag18O	0.1037	693912	Corregir
¹³⁰ Te		33.8		
	130Xe	4.1	47758	Isobárica
	130Ba	0.11	2598125	Isobárica
	90Zr40Ar	51.244	3318	Media
	92Zr38Ar	0.0103	3376	Media
	94Zr36Ar	0.0591	4013	Alta
	92Mo38Ar	0.0089	3539	Alta
	94Mo36Ar	0.0315	3866	Alta
	114Sn16O	0.6484	15210	Corregir
	112Sn18O	0.0019	57735	Corregir
	114Cd16O	28.661	16318	Corregir
	112Cd18O	0.0483	30139	Corregir
	113Cd17O	0.0049	48112	Corregir
¹⁴⁰ Ce		88.48		
	100Ru40Ar	12.55	3601	Media
	102Ru38Ar	0.019	3646	Media
	104Ru36Ar	0.0363	4307	Alta
	100Mo40Ar	9.5915	3930	Media
	104Pd36Ar	0.0379	4130	Alta
	124Te16O	4.8084	18168	Corregir
	122Te18O	0.0052	43447	Corregir
	124Sn16O	5.7761	26596	Corregir

Continuación Cuadro 51.

	122Sn18O	0.0093	49261	Corregir
	124Xe16O	0.0998	31723	Corregir
	123Sb17O	0.0171	66939	Corregir
¹⁵³ Eu		52.2		
	113In40Ar	4.2828	2789	Media
	115In38Ar	0.0574	2798	Media
	113Cd40Ar	12.171	2806	Media
	117Sn36Ar	0.0261	3012	Media
	137Ba16O	11.203	7454	Alta
	136Ba17O	0.0031	8712	Alta
	135Ba18O	0.0132	9317	Alta
¹⁶⁵ Ho		100		
	125Te40Ar	7.1114	2595	Media
	127I38Ar	0.06	2611	Media
	129Xe36Ar	0.0898	2842	Media
	149Sm16O	13.767	9046	Alta
	148Sm17O	0.0045	10074	Corregir
	147Sm18O	0.03	10142	Corregir
¹⁶⁶ Er		33.6		
	126Te40Ar	18.874	2566	Media
	128Te38Ar	0.019	2627	Media
	130Te36Ar	0.1149	2934	Media
	128Xe38Ar	0.0011	2589	Media
	126Xe40Ar	0.0896	2605	Media
	130Xe36Ar	0.0139	2799	Media
	150Sm16O	7.3822	9161	Alta
	148Sm18O	0.0226	10166	Corregir
	149Sm17O	0.0055	11859	Corregir
	150Nd16O	5.6265	11442	Corregir
	148Nd18O	0.0115	11643	Corregir
¹⁶⁷ Er		22.95		
	127I40Ar	99.6	2559	Media
	129Xe38Ar	0.0158	2585	Media
	131Xe36Ar	0.0721	2807	Media
	151Eu16O	47.685	9653	Alta
	149Sm18O	0.0276	10624	Corregir
	150Sm17O	0.003	10672	Corregir
¹⁷² Yb		21.9		Ŭ
	132Xe40Ar	26.792	2640	Media

Continuación Cuadro 51.

	134xe38Ar	0.0062	2517	Media
	136Xe36Ar	0.0303	2789	Media
	132Ba40Ar	0.0015	2484	Media
	134Ba38Ar	0.0996	2491	Media
	136Ba36Ar	0.0267	2673	Media
	154Gd18O	0.0044	10514	Corregir
	155Gd17O	0.0059	11751	Corregir
	156Gd16O	20.421	8884	Alta
	156Dy16O	0.0599	10001	Corregir
	154Sm18O	0.0454	11453	Corregir
¹⁷³ Yb		16.12		
	133Cs40Ar	99.6	2455	Media
	135Ba38Ar	0.004	2475	Media
	137Ba36Ar	0.0382	2665	Media
	157Gd16O	15.612	8940	Alta
	156Gd17O	0.0082	10195	Corregir
	155Gd18O	0.0296	10524	Corregir
¹⁷¹ Yb		14.3		
	131Xe40Ar	21.115	2480	Media
	133Cs38Ar	0.06	2506	Media
	135Ba36Ar	0.0224	2707	Media
	155Gd16O	14.764	9091	Alta
	153Eu18O	0.1044	10722	Corregir
¹⁸² W		26.3		
	142Nd40Ar	27.021	2328	Media
	144Nd38Ar	0.0143	2412	Media
	146Nd36Ar	0.0584	2682	Media
	142Ce40Ar	11.036	2374	Media
	144Sm38Ar	0.0019	2474	Media
	166Er16O	33.519	7906	Alta
	164Er18O	0.0032	9160	Alta
	164Dy18O	0.0564	9146	Alta
	165Ho17O	0.04	9692	Alta
¹⁸³ W		14.3		
	143Nd40Ar	12.131	2343	Media
	145Nd38Ar	0.005	2440	Media
	147Sm36Ar	0.051	2697	Media
	167Er16O	22.895	7857	Alta
	166Er17O	0.0134	8790	Alta

Continuación Cuadro 51.

	165Ho18O	0.2	8811	Alta
²³² Th		100		
	192Pt40Ar	0.7868	2023	Media
	194Pt38Ar	0.0197	2058	Media
	196Pt36Ar	0.086	2197	Media
	1920s40Ar	40.836	2031	Media

Cuadro 52. Revisión de interferencias para el calibrador F.

Elemento	Interferencia	Abundancia	Resolución	Resolución de
³¹ ח		100	para eliminar	Instrumento
P		100		
	62Ni++	3.59	3230	Media
	13C18O	0.0022	1078	Media
	12C18O1H	0.1978	933	Media
	15N16O	0.3691	1457	Media
	14N17O	0.0399	1090	Media
	14N16O1H	99.381	967	Media
	15N2 1H	0.0014	904	Media
	63Cu++	69.17	64	Baja
⁸⁹ Y		100		
	178Hf++	27.3	1348	Media
	179Hf++	13.63	157	Baja
	51V38Ar	0.0598	107116	Corregir
	53Cr36Ar	0.0323	37994	Corregir
	49Ti40Ar	5.478	20252	Corregir
	73Ge16O	7.7813	7107	Alta
	72Ge17O	0.011	5792	Alta
	71Ga18O	0.0798	4940	Alta
¹⁰¹ Ru		17		
	202Hg++	29.8	1266	Media
	63Cu38Ar	0.0415	7614	Alta
	65Cu36Ar	0.1048	9853	Alta
	61Ni40Ar	1.1255	8310	Alta
	85Rb16O	71.997	89297	Corregir
	84Kr17O	0.0228	19942	Corregir
	83Kr18O	0.023	13088	Corregir
	203TI++	29.52	174	Baja
⁹⁹ Ru		12.7		

	59Co40Ar	99.6	9545	Alta
	63Cu36Ar	0.2352	11251	Corregir
	83Kr16O	11.472	31906	Corregir
	82Kr17O	0.0046	14829	Corregir
	81Br18O	0.0986	10401	Corregir
	198Hg++	10.02	1278	Media
	199Hg++	16.84	172	Baja
	198Pt++	7.2	1269	Media
¹⁴¹ Pr		100		
	101Ru40Ar	16.932	3548	Media
	103Rh38Ar	0.06	3572	Media
	105Pd36Ar	0.0759	4021	Alta
	125Te16O	7.1229	16955	Corregir
	124Te17O	0.0019	24719	Corregir
	123Te18O	0.0018	33389	Corregir
¹⁴⁷ Sm		15		
	107Ag40Ar	51.662	3096	Media
	111Cd36Ar	0.0435	3401	Media
	131Xe16O	21.149	9845	Alta
	130Xe17O	0.0016	11972	Corregir
	129Xe18O	0.0528	13391	Corregir
¹⁵⁷ Gd		15.65		
	117Sn40Ar	7.6493	2675	Media
	119Sn38Ar	0.0051	2707	Media
	121Sb36Ar	0.1948	2982	Media
	141Pr16O	99.76	7331	Alta
	140Ce17O	0.0354	8087	Alta
	139La18O	0.1998	8504	Alta
¹⁵⁹ Tb		100		
	119Sn40Ar	8.5457	2662	Media
	121Sb38Ar	0.0344	2701	Media
	123Sb36Ar	0.1452	2965	Media
	123Te36Ar	0.0031	2968	Media
	143Nd16O	12.151	7706	Alta
	142Nd17O	0.0109	8594	Alta
	141Pr18O	0.2	8575	Alta

Continuación Cuadro 52.

¹⁶³ Dy		24.9		
	123Sb40Ar	42.529	2620	Media
	123Te40Ar	0.9064	2623	Media
	125Te38Ar	0.0043	2645	Media
	127I36Ar	0.34	2872	Media
	147Sm16O	14.964	8610	Alta
	145Nd18O	0.0166	9583	Alta
	146Nd17O	0.0069	9885	Alta
¹⁶⁴ Dy				
	164Er	1.61	5464306	Isobárica
	148Nd16O	5.7462	9436	Alta
	146Nd18O	0.0344	9704	Alta
	124Te40Ar	4.8007	2561	Media
	126Te38Ar	0.0114	2595	Media
	128Te36Ar	0.1077	2866	Media
	124Sn40Ar	5.7668	2663	Media
	124Xe40Ar	0.0996	2700	Media
	128Xe36Ar	0.0065	2820	Media
	148Sm16O	11.273	8431	Alta
	147Sm17O	0.006	10826	Corregir
¹⁶⁹ Tm		100		
	129Xe40Ar	26.294	2517	Media
	131Xe38Ar	0.0127	2542	Media
	133Cs36Ar	0.34	2757	Media
	153Eu16O	52.075	9342	Alta
	151Eu18O	0.0956	11105	Corregir
	152Sm17O	0.0107	10997	Corregir
¹⁷⁵ Lu		97.41		
	135Ba40Ar	6.5636	2404	Media
	137Ba38Ar	0.0067	2420	Media
	139La36Ar	0.3397	2614	Media
	159Tb16O	99.76	8520	Alta
	157Gd18O	0.0313	9905	Alta
	158Gd17O	0.0099	9967	Alta
¹⁸¹ Ta		99.99		
	141Pr40Ar	99.6	2319	Media

Continuación Cuadro 52.

	143Nd38Ar	0.0073	2396	Media
	145Nd36Ar	0.0282	2664	Media
	165Ho16O	99.76	7945	Alta
	136Dy18O	0.048	9170	Alta
	137Dy17O	0.0113	8996	Alta
¹⁸⁵ Re		37.4		
	145Nd40Ar	8.2668	2369	Media
	147Re38Ar	0.009	2453	Media
	149Re36Ar	0.0469	2709	Media
	169Tm16O	99.76	7757	Alta
	167Er18O	0.0459	8498	Alta
	168Er17O	0.0107	8613	Alta
¹⁸⁹ Os		16.1		
	149Sm40Ar	13.745	2403	Media
	151Eu38Ar	0.0287	2499	Media
	153Eu36Ar	0.1775	2722	Media
	173Yb16O	16.081	7548	Alta
	171Yb18O	0.0286	8337	Alta
	172Yb17O	0.0088	8345	Alta
¹⁹³ lr		62.7		
	153Eu40Ar	51.991	2431	Media
	155Gd38Ar	0.0089	2486	Media
	157Gd36Ar	0.0532	2700	Media
	177Hf16O	18.565	7779	Alta
	176Hf17O	0.0021	8617	Alta
	175Lu18O	0.1948	8392	Alta
	176Lu17O	0.001	9135	Alta
¹⁷⁷ Hf		18.61		
	137Ba40Ar	11.185	2357	Media
	139La38Ar	0.0599	2385	Media
	141Pr36Ar	0.34	2600	Media
	161Dy16O	18.855	8275	Alta
	159Tb18O	0.2	9451	Alta

Continuación Cuadro 52.

9.2 Anexo 2. Cuadros con los 3 criterios de las impurezas medidas en el

espectrómetro de masas con plasma acoplado inductivamente.

Cuadro 53. Fracciones de masa de los isótopos medidos en las muestras de agua de pozo para los 3 criterios usados.

Pozo						
	CE	NAM	GRI	JBBS	GRU modi	JBBS ficado
Elemento	w _{El} μg/kg	w _{iLD} µg/kg	w _{El} μg/kg	Elemento	w _{El} µg/kg	w _{iLD} µg/kg
B11(MR)	27.62		29.13		29.45	
Al27(MR)	3.61		3.55		3.53	
Si28(MR)	2829.99		788.91		3044.41	
Ti47(MR)		0.91		1.17		1.17
V51(MR)		0.034		0.079		0.062
Mn55(MR)	0.15		0.15			0.15
Fe56(MR)	3.67		3.67		3.67	
In115 corr		0.025		0.032		0.028
Sn118(MR)		0.39		0.42		0.42
Sb121(MR)		1.40		1.66		1.37
Nd142(MR)	2.25		1.99		2.00	
Hg202(MR)		2.90		3.03		2.70
TI205(MR)	0.028			0.036	0.029	
Pb208(MR)	0.10		0.11		0.11	
Bi209(MR)		0.088		0.18		0.15
Zn66(HR)		0.79		0.82		0.79
As75(HR)	0.88		0.88		0.88	
Sc45(MR)	0.16		0.26		0.25	
Cr52(MR)	1.04		1.02		1.03	
Co59(MR)	0.036			0.051		0.051
Ni60(MR)		0.57			0.57	
Cu63(MR)		0.92			0.91	
Ge72(MR)	0.36		0.39		0.36	
Se77(MR)	11.04		12.19		11.56	
Cd114 corr		0.021		0.053		0.048
La139(MR)		0.076		0.078		0.071
Ga69(HR)		0.014		0.033		0.033
Nb93(MR)						
Mo95(MR)	0.40		0.48		0.48	
Rh103(MR)		0.012		0.019		0.019
Pd105(MR)				0.074		0.074
Ag107(MR)		0.15		0.26		0.15

Continuación C	uadro 53.
----------------	-----------

Pt1	95(MR)		0.036		0.042		0.038
Au1	197(MR)		0.41		0.49		0.44
Li	7(MR)	16.47		16.79			1.68
Be	e9(MR)				0.088		0.038
Na	23(MR)	21575.37		22266.99		22266.99	
Mg	24(MR)	6502.06		6594.83		6567.22	
Ca	44(MR)	14092.13		14228.74		14173.61	
Rb	85(MR)		0.22	6.45		6.43	
Sra	88(MR)	120.87		121.01		121.00	
Cs1	I33(MR)	0.15		0.19		0.18	
Ba1	I38(MR)		1.85	1.85		1.85	
Ka	39(HR)	4957.16		5113.19		5113.19	
Zr	90(MR)						
Te1	l25(MR)						
Ce1	140(MR)	8.00		8.00		8.00	
Eu1	I53(MR)		0.013		0.016		0.013
Ho1	165(MR)		0.012		0.014		0.014
Er1	66(MR)		0.011		0.014		0.012
Yb1	172(MR)		0.012		0.014		0.013
W1	82(MR)		0.16		0.18		0.16
Th2	232(MR)				0.069		0.063
P3	31(MR)	3.47		3.68		3.47	
Y8	39(MR)		0.022		0.029		0.027
Pr1	41(MR)		0.016		0.048		0.018
Sm	147(MR)				0.020		0.020
Gď	157(MR)		0.036		0.036		0.036
Tb1	159(MR)				0.014		0.014
Dy1	163(MR)		0.011		0.041		0.038
Tm	169(MR)		0.011		0.013		0.013
Lu1	75(MR)		0.011		0.031		0.031
Hf1	78(MR)				0.412		
Ta1	181(MR)		0.042		0.050		0.042
Re1	185(MR)		0.017		0.034		0.030
Os1	189(MR)		0.051		0.086		0.074
Ir1	93(MR)						
Ru′	101(HR)		0.017		0.041		0.035
Imp	ourezas	50157.01	5.63	49204.47	4.89	51361.18	5.060
To imp	otal de ourezas		50162.65		49209.36		51366.24

Continuación Cuadro 53.

_				
	Pureza	94.98%	95.08%	94.86%

Cuadro 54. Fracciones de masa de los isótopos medidos en las muestras de agua de salida de la planta desmineralizadora para los 3 criterios usados.

Desmineralizadora							
	CE	NAM	GRI	JBBS	GRI modi	JBBS ficado	
Elemento	w _{El} µg/kg	w _{ILD} µg/kg	w _{El} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg	
B11(MR)		13.62		13.86		12.31	
Al27(MR)	1.78			2.08	1.80		
Si28(MR)	263.54		276.81		276.81		
Ti47(MR)		0.89		1.15		1.15	
V51(MR)	0.032			0.072		0.056	
Mn55(MR)		0.042					
Fe56(MR)	2.32		2.33		2.33		
In115 corr		0.025		0.031		0.027	
Sn118(MR)		0.39		0.42		0.41	
Sb121(MR)		1.38		1.63		1.34	
Nd142(MR)	0.21		0.21		0.22		
Hg202(MR)		2.85		2.98		2.65	
TI205(MR)		0.026		0.035		0.029	
Pb208(MR)	0.13		0.13		0.13		
Bi209(MR)		0.087		0.18		0.14	
Zn66(HR)		0.82	0.82		0.82		
As75(HR)		0.10		0.10		0.10	
Sc45(MR)	0.12		0.20		0.17		
Cr52(MR)	4.88		4.86		4.87		
Co59(MR)	0.09		0.10		0.10		
Ni60(MR)	0.49		0.49		0.49		
Cu63(MR)	0.79		0.78		0.78		
Ge72(MR)		0.25		0.30		0.25	
Se77(MR)	10.94		12.05		11.45		
Cd114 corr		0.020		0.052		0.047	
La139(MR)		0.074		0.076		0.069	
Ga69(HR)		0.017		0.033		0.033	
Nb93(MR)							
Mo95(MR)		0.049		0.16		0.16	
Rh103(MR)		0.012		0.019		0.019	

Pd105(MR)		0.025		0.073		0.073
Ag107(MR)				0.25		
Pt195(MR)		0.035		0.041		0.037
Au197(MR)						
Li7(MR)	1.03			1.67		1.53
Be9(MR)				0.086		0.038
Na23(MR)	192.61		209.05		209.05	
Mg24(MR)	7.82			12.07		10.42
Ca44(MR)	41.83			45.69	46.40	
Rb85(MR)	0.49		0.46		0.46	
Sr88(MR)	0.060			0.24		0.22
Cs133(MR)		0.046		0.086		0.071
Ba138(MR)	0.17		0.17		0.17	
K39(HR)	158.51		156.23		156.23	
Zr90(MR)						
Te125(MR)						
Ce140(MR)	3.76		3.75		3.75	
Eu153(MR)				0.016		
Ho165(MR)						
Er166(MR)				0.014		
Yb172(MR)		0.011		0.014		0.013
W182(MR)						
Th232(MR)						
P31(MR)	2.23		2.13		2.23	
Y89(MR)		0.021		0.029		0.027
Pr141(MR)		0.028		0.047		0.033
Sm147(MR)				0.020		0.020
Gd157(MR)		0.035		0.036		0.036
Tb159(MR)				0.014		0.014
Dy163(MR)		0.010		0.041		0.037
Tm169(MR)				0.012		0.012
Lu175(MR)				0.031		0.031
Hf178(MR)						
Ta181(MR)				0.049		
Re185(MR)		0.017		0.034		0.029
Os189(MR)		0.050		0.084		0.073
Ir193(MR)						
Ru101(HR)		0.017		0.041		0.035
Impurezas	693.83	10.468	670.58	41.92446	718.25	15.77243

Continuación Cuadro 54.

Continuación Cuadro 54.

_				
	Total de	704 30	712 50	734 03
	impurezas	704.30	712.50	754.05
	Pureza	99.93%	99.93%	99.93%

Cuadro 55. Fracciones de masa de los isótopos medidos en las muestras de agua del recorrido desde la planta desmineralizadora hasta la entrada al módulo de electrodesionización para los 3 criterios usados.

Antes de entrar a	Antes de entrar al proceso de electrodesionización, ósmosis inversa y lámpara UV						
	CE	NAM	GRU	JBBS	GRI modi	JBBS ficado	
Elemento	w _{El} µg/kg	w _{ILD} µg/kg	w _{El} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg	
B11(MR)	20.12		19.75		19.67		
Al27(MR)	0.19		0.19		0.27		
Si28(MR)	6088.73		6610.16		6610.16		
Ti47(MR)	0.016		0.017		0.017		
V51(MR)	0.021		0.021		0.021		
Mn55(MR)	0.22		0.22		0.22		
Fe56(MR)	0.16		0.16		0.64		
In115 corr		0.00027		0.00034		0.00030	
Sn118(MR)	0.013		0.013		0.013		
Sb121(MR)		0.015		0.018		0.015	
Nd142(MR)	0.0041		0.0041		0.0042		
Hg202(MR)		0.031		0.033		0.029	
TI205(MR)	0.00019		0.00039		0.00020		
Pb208(MR)	0.10		0.10		0.10		
Bi209(MR)		0.00095		0.0019		0.0016	
Zn66(HR)	4.96		4.96		4.96		
As75(HR)	0.016		0.016		0.016		
Sc45(MR)	0.0020		0.0024		0.0020		
Cr52(MR)	0.030		0.019		0.020		
Co59(MR)	0.00039			0.00055		0.00055	
Ni60(MR)		0.0030		0.0035		0.0031	
Cu63(MR)	0.19		0.19		1.80		
Ge72(MR)		0.0027		0.0033		0.0027	
Se77(MR)	0.11		0.12		0.12		
Cd114 corr	0.00078		0.0011		0.0010		
La139(MR)		0.00088		0.00090		0.00082	
Ga69(HR)		0.00033		0.00036		0.00036	
Nb93(MR)							

Mo95(MR)	0.0025		0.0024		0.0024	
Rh103(MR)		0.00013		0.00021		0.00021
Pd105(MR)		0.00030		0.00079		0.00079
Ag107(MR)		0.0029		0.0028		0.0029
Pt195(MR)		0.00039		0.00045		0.00041
Au197(MR)	0.065		0.065		0.066	
Li7(MR)	20.02		20.06		20.05	
Be9(MR)				0.00095		0.00038
Na23(MR)	8350.97		8664.59		8664.59	
Mg24(MR)	14.54		14.83		14.65	
Ca44(MR)	36.53		36.78		36.67	
Rb85(MR)	0.59		0.59		0.59	
Sr88(MR)	0.30		0.30		0.30	
Cs133(MR)	0.023		0.023		0.023	
Ba138(MR)	0.25		0.25		0.25	
K39(HR)	237.95		245.44		245.44	
Zr90(MR)		0.0042		0.0049	0.011	
Te125(MR)						
Ce140(MR)	0.013		0.013		0.013	
Eu153(MR)		0.00016		0.00019		0.00016
Ho165(MR)		0.00028		0.00032		0.00032
Er166(MR)				0.00033		0.00014
Yb172(MR)		0.00027		0.00032		0.00030
W182(MR)	0.013		0.013		0.014	
Th232(MR)		0.0007		0.0016		0.0015
P31(MR)	0.064		0.062		0.064	
Y89(MR)		0.00050		0.00068		0.00063
Pr141(MR)	0.00020			0.00052	0.00036	
Sm147(MR)		0.00039		0.00047		0.00047
Gd157(MR)		0.00039		0.00039		0.00039
Tb159(MR)		0.00025		0.00033		0.00033
Dy163(MR)		0.00012		0.00044		0.00041
Tm169(MR)		0.00012		0.00029		0.00029
Lu175(MR)		0.00026		0.00034		0.00034
Hf178(MR)		0.0077		0.0096		0.00761
Ta181(MR)		0.00097		0.0012		0.00097
Re185(MR)		0.000093		0.00037		0.00032
Os189(MR)		0.00055		0.00092		0.00079
Ir193(MR)						

Continuación Cuadro 55.

Continuación Cuadro 55.

Ru101(HR)		0.00039		0.00044		0.00038
Impurezas	14776.21	0.038	15618.96	0.044959	15620.76	0.036558
Total de		1/1776 25		15619.00		15620 79
impurezas		14770.25		13013.00		15020.75
Pureza		98.52%		98.44%		98.44%

Cuadro 56. Fracciones de masa de los isótopos medidos en las muestras de agua en recirculación en la tubería de polipropileno, posterior al proceso de electrodesionización, para los 3 criterios usados.

	Tubería de recirculación de polipropileno natural							
	CE	NAM	GRU	JBBS	GRUBBS modificado			
Elemento	w _{El} µg/kg	w _{ILD} µg/kg	w _{El} µg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg		
B11(MR)	6.17		6.08		6.07			
Al27(MR)	0.39		0.39		0.39			
Si28(MR)	29.31		31.44			31.44		
Ti47(MR)	0.015		0.014		0.014			
V51(MR)	0.0018		0.0017		0.0017			
Mn55(MR)	0.0091		0.0091		0.0091			
Fe56(MR)	0.19		0.19		0.33			
In115 corr		0.00027		0.00034		0.00029		
Sn118(MR)	0.0032		0.0028		0.0032			
Sb121(MR)		0.015		0.018		0.015		
Nd142(MR)								
Hg202(MR)		0.031		0.032		0.029		
TI205(MR)		0.00028		0.00038		0.00031		
Pb208(MR)	0.019		0.019		0.031			
Bi209(MR)		0.00095		0.0019		0.0016		
Zn66(HR)	0.31		0.31		0.31			
As75(HR)	0.0013		0.0014		0.0014			
Sc45(MR)		0.00080		0.0024		0.0020		
Cr52(MR)	0.013		0.013		0.013			
Co59(MR)	0.0052		0.0051		0.0051			
Ni60(MR)	0.053		0.053		0.053			
Cu63(MR)	0.19		0.19		0.19			
Ge72(MR)		0.0027		0.0033		0.0027		
Se77(MR)		0.052		0.081		0.063		
Cd114 corr	0.0026		0.0027		0.0027			
La139(MR)		0.0018		0.0018		0.0016		

Continuación Cuadro 56.

-				1		
Ga69(HR)	0.00037		0.00037		0.00036	
Nb93(MR)						
Mo95(MR)		0.0012		0.0017		0.0017
Rh103(MR)		0.00013		0.00021		0.00021
Pd105(MR)		0.00059		0.00079		0.00079
Ag107(MR)		0.0029		0.0028		0.0029
Pt195(MR)		0.00038		0.00045		0.00040
Au197(MR)		0.0096		0.0113		0.010
Li7(MR)		0.010		0.018		0.017
Be9(MR)		0.000		0.00094		0.00038
Na23(MR)	3.37		3.60		3.60	
Mg24(MR)	0.089		0.060		0.070	
Ca44(MR)	1.44		1.35		1.39	
Rb85(MR)		0.0022		0.0026		0.0022
Sr88(MR)	0.14		0.14		0.14	
Cs133(MR)		0.00050		0.00094		0.00077
Ba138(MR)	0.24		0.24		0.24	
K39(HR)	0.33		0.27		0.27	
Zr90(MR)		0.0021		0.0024		0.0021
Te125(MR)		0.0015		0.0017		0.0016
Ce140(MR)	0.024		0.024		0.024	
Eu153(MR)		0.00016		0.00019		0.00016
Ho165(MR)		0.00014		0.00016		0.00016
Er166(MR)		0.00012		0.00032		0.00014
Yb172(MR)		0.00014		0.00032		0.00015
W182(MR)	0.0093		0.0094		0.0095	
Th232(MR)				0.00080		
P31(MR)	0.10		0.10		0.10	
Y89(MR)		0.00050		0.00068		0.00063
Pr141(MR)		0.00015		0.00052		0.00036
Sm147(MR)		0.00019		0.00047		0.00047
Gd157(MR)		0.00038		0.00039		0.00039
Tb159(MR)				0.00033		0.00033
Dy163(MR)		0.00024		0.00044		0.00041
Tm169(MR)				0.00029		0.00029
Lu175(MR)		0.00013		0.00033		0.00033
Hf178(MR)		0.0038		0.0095		0.0038
Ta181(MR)				0.0012		
Re185(MR)		0.00018		0.00037		0.00032

	Continu	Jación	Cuadro	56.
--	---------	--------	--------	-----

Os189(MR)		0.00054		0.00092		0.00079
Ir193(MR)				0.0013		
Ru101(HR)				0.00044		0.00038
Impurezas	42.45	0.072	44.52	0.102074	13.26	15.80117
Total de impurezas		42.52		44.62		29.07
Pureza		99.996%		99.996%		99.997%

Cuadro 57. Fracciones de masa de los isótopos medidos en las muestras de agua del Equipo MilliQ Advantage A10 especial para trazas, para los 3 criterios usados.

MilliQ Advantage A10 para trazas elementales							
	CE	NAM	GRU	JBBS	GRI modi	GRUBBS modificado	
Elemento	w _{EI} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg	
B11(MR)	1.11		0.82		6.66		
Al27(MR)	0.096		0.30		0.30		
Si28(MR)	1.02			1.18		1.18	
Ti47(MR)		0.010		0.013		0.013	
V51(MR)		0.00034		10.26		10.26	
Mn55(MR)	0.002		0.035		0.035		
Fe56(MR)	0.14		0.14		0.14		
In115 corr		0.00027		0.00034		0.00029	
Sn118(MR)	0.0055		0.0030		0.0031		
Sb121(MR)		0.015		0.018		0.015	
Nd142(MR)							
Hg202(MR)		0.031		0.032		0.031	
TI205(MR)	0.00065		0.00083		0.00080		
Pb208(MR)	0.013		0.013		0.013		
Bi209(MR)		0.00094		0.0019		0.0016	
Zn66(HR)	0.121		0.121		0.121		
As75(HR)		0.0011		0.0011		0.0011	
Sc45(MR)		0.0016		0.0024		0.0020	
Cr52(MR)	0.01079		0.000066		0.00021		
Co59(MR)	0.00085		0.00079		0.00079		
Ni60(MR)	0.0037		0.0036		0.0036		
Cu63(MR)	0.028		0.027		0.063		
Ge72(MR)		0.0027		0.0033		0.0027	
Se77(MR)	0.075		0.088		0.081		
Cd114 corr	0.00055		0.00060		0.00058		

La139(MR)		0.0018		0.0018		0.0016
Ga69(HR)	0.00049		0.00050		0.00049	
Nb93(MR)				0.0032		
Mo95(MR)		0.0012		0.0017		0.0017
Rh103(MR)	0.00016			0.00021		0.00021
Pd105(MR)	0.0020		0.0024		0.0024	
Ag107(MR)		0.0015		0.0028		0.0015
Pt195(MR)		0.00038		0.00045		0.00040
Au197(MR)		0.0095		0.011		0.010
Li7(MR)		0.010		0.018		0.017
Be9(MR)		0.00070		0.00094		0.00076
Na23(MR)	1.93		1.97		1.97	
Mg24(MR)	0.15		0.13		0.14	
Ca44(MR)	1.94		1.90		1.92	
Rb85(MR)		0.0022		0.0026		0.0022
Sr88(MR)	0.0035		0.0033		0.0034	
Cs133(MR)		0.00050		0.00094		0.00077
Ba138(MR)	0.0088		0.0088		0.0088	
K39(HR)	0.77		0.76		0.76	
Zr90(MR)	0.0048		0.0050		0.0050	
Te125(MR)				0.0017		0.0016
Ce140(MR)	0.016		0.011		0.011	
Eu153(MR)				0.00019		
Ho165(MR)		0.00014		0.00016		0.00016
Er166(MR)		0.00025		0.00032		0.00027
Yb172(MR)		0.00014		0.00032		0.00030
W182(MR)	0.015		0.015		0.015	
Th232(MR)		0.00074		0.00080		0.00073
P31(MR)	0.10		0.10		0.10	
Y89(MR)	0.00095		0.0010		0.00099	
Pr141(MR)		0.00031		0.00052		0.00036
Sm147(MR)		0.00039		0.00047		0.00047
Gd157(MR)		0.00038		0.00039		0.00039
Tb159(MR)		0.00025		0.00033		0.00033
Dy163(MR)		0.00024		0.00044		0.00041
Tm169(MR)		0.00024		0.00029		0.00029
Lu175(MR)		0.00026		0.00033		0.00033
Hf178(MR)		0.0076		0.0095		0.0076
Ta181(MR)		0.00096		0.0012		0.00096

Continuación Cuadro 57.

_							
	Re185(MR)	0.00019			0.00037		0.00032
	Os189(MR)		0.00054		0.00092		0.00079
	Ir193(MR)				0.00062		
	Ru101(HR)				0.00044		0.00038
	Impurezas	7.55	0.05	6.46	5.79	12.34	5.78
	Total de impurezas		7.61		12.24		18.12
	Pureza		99.999%		99.999%		99.998%

Continuación Cuadro 57.

Cuadro 58. Fracciones de masa de los isótopos medidos en las muestras de agua en el equipo MilliQ Advantage A10 especial para ultratrazas, ubicado en cuarto limpio, para los 3 criterios usados.

MilliQ Advantage A10 especial para ultratrazas							
	CENAM GRUBBS (modificado	
Elemento	w _{El} μg/kg	w _{i∟D} µg/kg	w _{EI} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg	
B11(MR)	0.16		0.18		0.18		
Al27(MR)	0.15		0.15		0.15		
Si28(MR)		0.94	1.18		1.18		
Ti47(MR)		0.010		0.013		0.013	
V51(MR)	0.00045			0.00079		0.00062	
Mn55(MR)	0.0018		0.0018		0.0018		
Fe56(MR)	0.125		0.125		0.125		
In115 corr		0.00027		0.00034		0.00030	
Sn118(MR)	0.0066		0.0064		0.0066		
Sb121(MR)		0.015		0.018		0.015	
Nd142(MR)							
Hg202(MR)		0.031		0.033		0.029	
TI205(MR)		0.00028		0.00038		0.00031	
Pb208(MR)	0.0051		0.0050		0.0051		
Bi209(MR)		0.00095		0.0019		0.0016	
Zn66(HR)	0.068		0.068		0.068		
As75(HR)		0.0011		0.0011		0.0011	
Sc45(MR)	0.0013		0.0025		0.0023		
Cr52(MR)		0.010		0.010		0.010	
Co59(MR)	0.0023		0.0023		0.0023		
Ni60(MR)				0.0035			
Cu63(MR)							
Ge72(MR)		0.0027		0.0033		0.0027	

-	Se77(MR)	0.13		0.15		0.14	
	Cd114 corr		0.00024		0.00057		0.00052
	La139(MR)		0.0018		0.0018		0.00082
	Ga69(HR)	0.00045		0.00046		0.00045	
	Nb93(MR)						
	Mo95(MR)		0.00058		0.0017		0.0017
	Rh103(MR)		0.00013		0.00021		0.00021
	Pd105(MR)	0.00078		0.00087			0.00087
	Ag107(MR)		0.0029		0.0028		0.0029
	Pt195(MR)		0.00039		0.00045		0.00041
	Au197(MR)		0.0096		0.011		0.010
	Li7(MR)		0.010		0.018		0.017
	Be9(MR)		0.00035		0.00095		0.00076
	Na23(MR)		0.51		0.69	1.12	
	Mg24(MR)		0.060		0.13	0.17	
	Ca44(MR)	0.64		0.59		1.03	
	Rb85(MR)		0.0022		0.0026		0.0023
	Sr88(MR)	0.0022		0.0025		0.0024	
	Cs133(MR)		0.00025		0.00094		0.0008
	Ba138(MR)	0.010		0.010		0.010	
	K39(HR)		0.28		0.36	0.20	
	Zr90(MR)				0.0024		
	Te125(MR)				0.0017		0.0016
	Ce140(MR)	0.024		0.024		0.024	
	Eu153(MR)		0.00031		0.00038		0.00031
	Ho165(MR)						
	Er166(MR)				0.00016		0.00014
	Yb172(MR)		0.00027		0.00032		0.00030
	W182(MR)	0.0039			0.0043	0.0040	
	Th232(MR)				0.00080		
	P31(MR)	0.086		0.084		0.086	
	Y89(MR)		0.00050		0.00068		0.00063
	Pr141(MR)		0.00031		0.00052		0.00036
	Sm147(MR)	0.00031		0.00056		0.00056	
	Gd157(MR)	0.0039		0.0039		0.0039	
	Tb159(MR)		0.00025		0.00033		0.00033
	Dy163(MR)		0.00024		0.00044		0.00041
	Tm169(MR)		0.00012		0.00015		0.00015
	Lu175(MR)		0.00026		0.00034		0.00034

Continuación Cuadro 58.

Hf178(MR)		0.0038		0.0096		0.00380
Ta181(MR)				0.0012		
Re185(MR)		0.00019		0.00037		0.00032
Os189(MR)		0.00055		0.00092		0.00080
Ir193(MR)				0.0013		
Ru101(HR)		0.00020		0.00044		0.00038
Impurezas	1.43	0.944	2.59	0.67	4.52	0.061
Total de impurezas		2.37		3.26		4.58
Pureza		99.9998%		99.9997%		99.9995%

Continuación Cuadro 58.

Cuadro 59. Fracciones de masa de los isótopos medidos en las muestras de agua en el equipo MilliQ Gradiente A10, para los 3 criterios usados.

MilliQ Gradiente A10							
	CE	CENAM GRUBBS				modificado	
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{EI} μg/kg	Elemento	w _{El} μg/kg	w _{i∟D} µg/kg	
B11(MR)	0.32		0.36		0.36		
Al27(MR)	0.13		0.13		0.13		
Si28(MR)	1.022			1.18		1.18	
Ti47(MR)		0.010		0.013		0.013	
V51(MR)	0.00046			0.00079		0.00061	
Mn55(MR)	0.0013		0.0013		0.0013		
Fe56(MR)	0.12		0.12		0.12		
In115 corr		0.00027		0.00034		0.00030	
Sn118(MR)	0.0062		0.0060		0.0062		
Sb121(MR)		0.015		0.018		0.015	
Nd142(MR)	0.0018		0.0018		0.0019		
Hg202(MR)		0.031		0.033		0.029	
TI205(MR)		0.00028		0.00038		0.00031	
Pb208(MR)	0.011		0.010		0.011		
Bi209(MR)		0.0009		0.0019		0.0016	
Zn66(HR)	0.18		0.18		0.18		
As75(HR)		0.0011		0.0011		0.0011	
Sc45(MR)		0.00080		0.0024		0.0020	
Cr52(MR)	0.014		0.014		0.014		
Co59(MR)	0.014		0.014		0.014		
Ni60(MR)	0.17		0.17		0.17		

Cu63(MR)	0.020		0.023		0.020	
Ge72(MR)		0.0027		0.0033		0.0027
Se77(MR)		0.053		0.081		0.063
Cd114 corr	0.0041		0.0041		0.0041	
La139(MR)		0.0018		0.0018		0.0016
Ga69(HR)		0.00033		0.00036		0.00036
Nb93(MR)						
Mo95(MR)	0.0012			0.0017		0.0017
Rh103(MR)		0.00013		0.00021		0.00021
Pd105(MR)		0.00030		0.00079		0.00079
Ag107(MR)		0.0029		0.0028		0.0029
Pt195(MR)		0.00039		0.00045		0.00041
Au197(MR)		0.0048		0.011		0.010
Li7(MR)		0.010		0.018		0.017
Be9(MR)		0.00035		0.00094		0.00076
Na23(MR)	2.43		1.54		1.54	
Mg24(MR)	0.094			0.13	0.11	
Ca44(MR)	1.60		1.98		2.00	
Rb85(MR)		0.0022		0.0026		0.0023
Sr88(MR)	0.0064		0.0062		0.0062	
Cs133(MR)				0.00094		0.00078
Ba138(MR)	0.0046		0.0046		0.010	
K39(HR)	0.69		0.68		1.23	
Zr90(MR)		0.0021		0.0049		0.0043
Te125(MR)						
Ce140(MR)	0.015		0.015		0.015	
Eu153(MR)				0.00019		
Ho165(MR)						
Er166(MR)				0.00016		0.00014
Yb172(MR)		0.00014		0.00016		0.00015
W182(MR)	0.0078		0.0079		0.0080	
Th232(MR)				0.00080		
P31(MR)	0.083		0.082		0.083	
Y89(MR)		0.00050		0.00068		0.00063
Pr141(MR)		0.00016		0.00052		0.00036
Sm147(MR)		0.00020		0.00047		0.00047
Gd157(MR)		0.00039		0.00039		0.00039
Tb159(MR)		0.00012		0.00033		0.00033
Dy163(MR)		0.00024		0.00044		0.00041

Tm169(MR)		0.00012		0.00015		0.00015
Lu175(MR)		0.00013		0.00034		0.00034
Hf178(MR)		0.0077		0.0048		0.0038
Ta181(MR)				0.0012		
Re185(MR)		0.00019		0.00037		0.00032
Os189(MR)		0.00055		0.00092		0.00079
Ir193(MR)				0.00063		
Ru101(HR)		0.00039		0.00044		0.00038
Impurezas	6.95	0.076	5.35	0.764065587	6.05	0.680921156
Total de impurezas		7.02		6.12		6.73
Pureza		99.999%		99.999%		99.999%

Continuación Cuadro 59.

Cuadro 60. Fracciones de masa de los isótopos medidos en las muestras de agua tomadas del sistema de doble subdestilación de cuarzo, para los 3 criterios usados.

Sistema de soble subdestilación de cuarzo								
	CE	NAM	GRUBBS		GRUBBS modificado			
Elemento	w _{El} μg/kg	w _{ILD} µg/kg	w _{El} μg/kg	Elemento	w _{El} μg/kg	w _{iLD} µg/kg		
B11(MR)	0.55		0.58		0.59			
Al27(MR)	0.093		0.091		0.092			
Si28(MR)	0.48		1.22		1.22			
Ti47(MR)		0.0098		0.013		0.013		
V51(MR)	0.0005			0.00079		0.00062		
Mn55(MR)	0.0014		0.0014		0.0013			
Fe56(MR)	0.23		0.23		0.23			
In115 corr		0.00027		0.00034		0.00030		
Sn118(MR)	0.0083		0.0081		0.0083			
Sb121(MR)		0.015		0.018		0.015		
Nd142(MR)	0.0084		0.0084		0.0084			
Hg202(MR)		0.031		0.033		0.029		
TI205(MR)		0.00028		0.00038		0.00031		
Pb208(MR)	0.012		0.012		0.012			
Bi209(MR)	0.0011			0.0019		0.0016		
Zn66(HR)	0.12		0.12		0.12			
As75(HR)	0.0014		0.0015		0.0015			
Sc45(MR)		0.0016		0.0024		0.0020		
Cr52(MR)	0.010		0.010		0.010			
Co59(MR)	0.028		0.028		0.028			
Ni60(MR)	0.18		0.18		0.18			

Continuación Cuadro 60.

Cu63(MR)	0.012		0.012		0.012	
Ge72(MR)		0.0027		0.0033		0.0027
Se77(MR)		0.053		0.081		0.063
Cd114 corr		0.00048		0.00057		0.00052
La139(MR)		0.0018		0.0018		0.0016
Ga69(HR)		0.00034		0.00036		0.00036
Nb93(MR)				0.0064		
Mo95(MR)	0.0028		0.0036		0.0036	
Rh103(MR)		0.00013		0.00021		0.00021
Pd105(MR)		0.00059		0.00080		0.00080
Ag107(MR)		0.0029		0.0028		0.0029
Pt195(MR)		0.00039		0.00045		0.00041
Au197(MR)		0.0096		0.011		0.010
Li7(MR)		0.010		0.018		0.017
Be9(MR)	Ī	0.00035		0.00095		0.00076
Na23(MR)	0.86		0.85		0.85	
Mg24(MR)	0.14		0.13		0.84	
Ca44(MR)	0.88		0.78		0.82	
Rb85(MR)		0.0022		0.0026		0.0023
Sr88(MR)	0.0056		0.0053		0.0054	
Cs133(MR)		0.00025		0.00095		0.00078
Ba138(MR)	0.017		0.017		0.017	
K39(HR)	0.67		0.66		0.66	
Zr90(MR)	0.011		0.011		0.011	
Te125(MR)				0.0035		0.0032
Ce140(MR)	0.0082		0.0081		0.0081	
Eu153(MR)		0.00031		0.00038		0.00031
Ho165(MR)				0.00032		0.00032
Er166(MR)		0.00012		0.00033		0.00014
Yb172(MR)		0.00027		0.00032		0.00030
W182(MR)	0.016		0.016		0.016	
Th232(MR)				0.00081		
P31(MR)	0.098		0.096		0.098	
Y89(MR)		0.00051		0.00068		0.00064
Pr141(MR)				0.00052		0.00036
Sm147(MR)		0.00020		0.00047		0.00047
Gd157(MR)		0.00039		0.00039		0.00039
Tb159(MR)		0.00025		0.00033		0.00033
Dy163(MR)		0.00025		0.00045		0.00041

Tm169(MR)		0.00025		0.00029		0.00029
Lu175(MR)		0.00026		0.00034		0.00034
Hf178(MR)		0.00770		0.0096		0.0076
Ta181(MR)		0.00097		0.0012		0.00097
Re185(MR)		0.00019		0.00037		0.00032
Os189(MR)		0.00055		0.00093		0.00080
Ir193(MR)				0.0013		
Ru101(HR)		0.00040		0.00044		0.00038
Impurezas	4.45	0.078	5.09	0.11	5.86	0.091
Total de impurezas		4.53		5.20		5.95
Pureza		99.9995%		99.9995%		99.9994%

Continuación Cuadro 60.

Cuadro 61. Fracciones de masa de los isótopos medidos en las muestras de agua tomadas del sistema de doble subdestilación de teflón, para los 3 criterios usados.

Sistema de doble subdestilación de teflón								
	CE	CENAM GRUB		JBBS	GRI modi	JBBS ficado		
Elemento	w _{El} µg/kg	w _{iLD} µg/kg	w _{El} µg/kg	Elemento	w _{El} µg/kg	w _{iLD} µg/kg		
B11(MR)	0.49		0.52		0.53			
Al27(MR)	0.062		0.060		0.061			
Si28(MR)	0.54		0.60		0.60			
Ti47(MR)		0.010		0.013		0.013		
V51(MR)	0.00041			0.00079		0.00061		
Mn55(MR)	0.0047		0.0047		0.0047			
Fe56(MR)	0.16		0.16		0.21			
In115 corr		0.00027		0.00034		0.00030		
Sn118(MR)	0.0068		0.0066		0.0068			
Sb121(MR)		0.015		0.018		0.015		
Nd142(MR)								
Hg202(MR)		0.031		0.033		0.029		
TI205(MR)		0.00028		0.00038		0.00031		
Pb208(MR)	0.0083		0.0083		0.0083			
Bi209(MR)		0.00095		0.0019		0.0016		
Zn66(HR)	0.12		0.12		0.12			
As75(HR)		0.0011		0.0011		0.0011		
Sc45(MR)		0.0008		0.0024		0.0020		
Cr52(MR)								
Co59(MR)	0.00044			0.00055		0.00055		

Continuación Cuadro 61.

Ni60(MR)	0.024		0.024		0.024	
			••••	1	0.021	
Cu63(MR)	0.015		0.014		0.014	
Ge72(MR)		0.0027		0.0033		0.0027
Se77(MR)		0.053		0.081		0.063
Cd114 corr		0.00048		0.00057		0.00051
La139(MR)		0.0018		0.0018		0.0016
Ga69(HR)		0.00033		0.00036		0.00036
Nb93(MR)				0.0032		
Mo95(MR)		0.0012		0.0017		0.0017
Rh103(MR)		0.00013		0.00021		0.00021
Pd105(MR)		0.00059		0.00079		0.00079
Ag107(MR)		0.0029		0.0028		0.0029
Pt195(MR)		0.00039		0.00045		0.00041
Au197(MR)				0.0057		0.0051
Li7(MR)		0.010		0.018		0.017
Be9(MR)		0.00035		0.00094		0.00038
Na23(MR)	0.65		0.73		0.73	
Mg24(MR)	0.074			0.13		0.11
Ca44(MR)	0.19		0.087		0.13	
Rb85(MR)		0.0022		0.0026		0.0022
Sr88(MR)	0.0023		0.0026		0.0026	
Cs133(MR)		0.00025		0.00094		0.00078
Ba138(MR)	0.0062		0.0062		0.0062	
K39(HR)	0.46		0.49		0.49	
Zr90(MR)		0.0042		0.0049		0.0043
Te125(MR)				0.0017		0.0016
Ce140(MR)	0.024		0.024		0.024	
Eu153(MR)		0.00031		0.00038		0.00031
Ho165(MR)				0.00032		0.00032
Er166(MR)		0.00025		0.00033		0.00027
Yb172(MR)		0.00014		0.00032		0.00015
W182(MR)		0.0037		0.0042		0.0037
Th232(MR)						
P31(MR)	0.097		0.096		0.097	
Y89(MR)	0.00060		0.00068		0.00064	
Pr141(MR)	0.00044		0.00053		0.00045	
Sm147(MR)	0.00043		0.00069		0.00068	
Gd157(MR)	0.00051		0.00051		0.00052	
Tb159(MR)	0.00037		0.00041		0.00041	

Dy163(MR)	0.00047		0.00052		0.00051	
Tm169(MR)	0.00039		0.00041		0.00041	
Lu175(MR)	0.00042		0.00046		0.00046	
Hf178(MR)				0.0096		
Ta181(MR)		0.00048		0.0012		0.00048
Re185(MR)	0.00038		0.00045		0.00044	
Os189(MR)	0.00056			0.00092		0.00079
Ir193(MR)		0.0011		0.0013		0.0012
Ru101(HR)		0.00020		0.00044		0.00038
Impurezas	2.94	0.073	2.96	0.18	3.07	0.14
Total de impurezas		3.01		3.14		3.21
Pureza		99.9997%		99.9997%		99.9997%

Continuación Cuadro 61.

9.3 Anexo 3. Cuadros comparativos del sistema de purificación anterior con el actual.

Cuadro 62. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua de pozo, utilizando el criterio del CENAM.

Pozo	wIE (mg/kg)	wLD (mg/kg)	Pozo	wEI mg/kg	wILD mg/kg
B11(MR)		215.50	B11(MR)	27.62	
Al27(MR)		193.19	Al27(MR)	3.61	
Si28(MR)	38977.34		Si28(MR)	2829.99	
Ti48(MR)	97.69		Ti48(MR)		0.63
V51(MR)	20.58		V51(MR)		0.034
Mn55(MR)	2.16		Mn55(MR)	0.15	
Fe56(MR)		206.47	Fe56(MR)	3.67	
Zn66(MR)		190.64	Zn66(MR)		1.54
As75(MR)	1.35		As75(MR)	0.88	
In115(MR)corr	0.072		In115 corr		0.025
Sn118(MR)	3.72		Sn118(MR)		0.39
Sb121(MR)		1.20	Sb121(MR)		1.40
Nd142(MR)		0.76	Nd142(MR)	2.25	
Nd143(MR)		0.24	Nd143(MR)		0.069
Hg202(MR)	4.00		Hg202(MR)		2.90
TI205(MR)		0.22	TI205(MR)	0.028	
Pb208(MR)		14.87	Pb208(MR)	0.10	
Bi209(MR)		2.11	Bi209(MR)		0.088

Continuación C	uadro 62.
----------------	-----------

As75(HR)	1.36		As75(HR)	0.88	
Li7(MR)	22.78		Li7(MR)	16.47	
Be9(MR)		0.82	Be9(MR)		
Na23(MR)	37398.66		Na23(MR)	21575.37	
Mg24(MR)	8548.07		Mg24(MR)	6502.06	
Ca44(MR)	18537.35		Ca44(MR)	14092.13	
Rb85(MR)		9.82	Rb85(MR)		0.22
Sr88(MR)		248.40	Sr88(MR)	120.87	
Cs133(MR)	0.22		Cs133(MR)	0.15	
Ba137(MR)		93.43	Ba137(MR)		1.83
Ba138(MR)		94.39	Ba138(MR)		1.85
K39(HR)		10225.75	K39(HR)	4957.16	
Sc45(MR)	0.00069		Sc45(MR)	0.16	
Cr52(MR)	1.03		Cr52(MR)	1.040	
Co59(MR)		0.023	Co59(MR)	0.036	
Ni60(MR)		5.65	Ni60(MR)		0.57
Cu63(MR)	0.39		Cu63(MR)		0.92
Ga69(MR)	0.0050		Ga69(MR)		0.035
Ge72(MR)	0.26		Ge72(MR)	0.36	
Se77(MR)	0.40		Se77(MR)	11.044	
Se82(MR)	0.24		Se82(MR)		0.63
Cd114(MR)		0.0056	Cd114 corr		0.021
La139(MR)		0.00076	La139(MR)		0.076
Ga71(HR)	0.0039		Ga71(HR)		0.015
Nb93(MR)		0.0069	Nb93(MR)		
Mo95(MR)	0.61		Mo95(MR)	0.40	
Rh103(MR)	0.0013		Rh103(MR)		0.012
Pd105(MR)	0.018		Pd105(MR)		
Ag107(MR)		0.0052	Aa107(MR)		0.15
Pt195(MR)		0.00043	Pt195(MR)		0.036
Pt196(MR)		0.00043	Pt196(MR)		0.034
Au197(MR)	0.0058		Au197(MR)		0.41
Zr90(MR)		0.011	Zr90(MR)		
Te125(MR)		0.0011	Te125(MR)		
Te130(MR)	0.013		Te130(MR)		
Ce140(MR)		0.018	Ce140(MR)	8.00053	
Eu153(MR)		0.0013	Eu153(MR)		0.013
Ho165(MR)		0.00048	Ho165(MR)		0.012
Er166(MR)		0.00042	Er166(MR)		0.011
Yb172(MR)		0.00088	Yb172(MR)		0.012
W182(MR)	0.59		W182(MR)		0.16
	0.00	1			0.10

Th232(MR)		0.0045	Th232(MR)		
P31(MR)	1.54		P31(MR)	3.47	
Y89(MR)	0.0012		Y89(MR)		0.022
Ru101(MR)	0.00022		Ru101(MR)		0.011
Pr141(MR)		0.00028	Pr141(MR)		0.016
Sm147(MR)		0.00025	Sm147(MR)		
Gd157(MR)		0.00018	Gd157(MR)		0.036
Tb159(MR)		0.00011	Tb159(MR)		
Dy163(MR)		0.00008	Dy163(MR)		0.011
Dy164(MR)	0.00009		Dy164(MR)		0.015
Tm169(MR)		0.000024	Tm169(MR)		0.011
Lu175(MR)		0.00038	Lu175(MR)		0.011
Hf178(MR)		0.060	Hf178(MR)		
Ta181(MR)		0.0038	Ta181(MR)		0.042
Re185(MR)	0.00033		Re185(MR)		0.017
Os189(MR)		0.00033	Os189(MR)		0.051
Ir193(MR)		0.019	Ir193(MR)		
Ru101(HR)	0.00039		Ru101(HR)		0.017
Gd157(HR)		0.00026			
Tb159(HR)		0.00026			
Dy163(HR)		0.000087			
Tm169(HR)					
Lu175(HR)		0.000044			
Hf178(HR)		0.049			
Ta181(HR)		0.0034	Ta181(HR)		0.041
Re185(HR)	0.00030				
Ir193(HR)		0.016			

Continuación Cuadro 62.

Cuadro 63. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua de la planta desmineralizadora, utilizando el criterio del CENAM.

Desmineralizadora	wIE (mg/kg)	wLD (mg/kg)	Desmineralizadora	wEI mg/kg	wILD mg/kg
B11(MR)		207.88	B11(MR)		13.62
Al27(MR)		186.36	Al27(MR)	1.78	
Si28(MR)	850.25		Si28(MR)	263.54	
Ti48(MR)		17.85	Ti48(MR)		0.58
V51(MR)		1.36	V51(MR)	0.032	
Mn55(MR)	2.37		Mn55(MR)		0.042
Fe56(MR)		199.17	Fe56(MR)	2.32	

Zn66(MR)		183.90	Zn66(MR)		0.82
As75(MR)		0.44	As75(MR)		0.048
In115(MR)corr			In115 corr		0.025
Sn118(MR)	10.41		Sn118(MR)		0.39
Sb121(MR)		1.16	Sb121(MR)		1.38
Nd142(MR)		0.73	Nd142(MR)	0.21	
Nd143(MR)		0.23	Nd143(MR)		0.068
Hg202(MR)		3.99	Hg202(MR)		2.85
TI205(MR)		0.22	TI205(MR)		0.026
Pb208(MR)		14.34	Pb208(MR)	0.13	
Bi209(MR)		2.03	Bi209(MR)		0.087
As75(HR)		0.34	As75(HR)		0.10
Li7(MR)		11.98	Li7(MR)	1.031	
Be9(MR)		0.79	Be9(MR)		
Na23(MR)		9713.82	Na23(MR)	192.61	
Mg24(MR)		1749.80	Mg24(MR)	7.82	
Ca44(MR)		11699.15	Ca44(MR)	41.83	
Rb85(MR)		9.47	Rb85(MR)	0.49	
Sr88(MR)		239.62	Sr88(MR)	0.060	
Cs133(MR)	0.41		Cs133(MR)		0.046
Ba137(MR)		90.13	Ba137(MR)	0.19	
Ba138(MR)		91.06	Ba138(MR)	0.17	
K39(HR)		9864.20	K39(HR)	158.51	
Sc45(MR)		0.0012	Sc45(MR)	0.12	
Cr52(MR)		0.012	Cr52(MR)	4.88	
Co59(MR)	0.067		Co59(MR)	0.094	
Ni60(MR)		5.72	Ni60(MR)	0.49	
Cu63(MR)		0.034	Cu63(MR)	0.79	
Ga69(MR)		0.00023	Ga69(MR)	0.026	
Ge72(MR)		0.0021	Ge72(MR)		0.25
Se77(MR)		0.0090	Se77(MR)	10.94	
Se82(MR)	0.0072		Se82(MR)		0.61
Cd114(MR)	0.013		Cd114 corr		0.020
La139(MR)	0.00085		La139(MR)		0.074
Ga71(HR)		0.00024	Ga71(HR)		
Se78(HR)					
Nb93(MR)		0.0070	Nb93(MR)		
Mo95(MR)		0.015	Mo95(MR)		0.049
Rh103(MR)		0.0005	Rh103(MR)		0.012
Pd105(MR)	0.0024		Pd105(MR)		0.025
Ag107(MR)		0.0052	Ag107(MR)		

Continuación Cuadro 63.

Pt195(MR)		0.00044	Pt195(MR)		0.035
Pt196(MR)		0.00044	Pt196(MR)		0.033
Au197(MR)		0.0055	Au197(MR)		
Zr90(MR)		0.011	Zr90(MR)		
Te125(MR)		0.0011	Te125(MR)		
Te130(MR)		0.0080	Te130(MR)		
Ce140(MR)		0.018	Ce140(MR)	3.76	
Eu153(MR)		0.0014	Eu153(MR)		
Ho165(MR)		0.00048	Ho165(MR)		
Er166(MR)		0.00043	Er166(MR)		
Yb172(MR)		0.00089	Yb172(MR)		0.011
W182(MR)		0.042	W182(MR)		
Th232(MR)		0.0045	Th232(MR)		
P31(MR)		0.54	P31(MR)	2.23	
Y89(MR)	0.0021		Y89(MR)		0.021
Ru101(MR)		0.00025	Ru101(MR)		0.024
Pr141(MR)	0.00020		Pr141(MR)		0.028
Sm147(MR)		0.00026	Sm147(MR)		
Gd157(MR)		0.00018	Gd157(MR)		0.035
Tb159(MR)		0.00011	Tb159(MR)		
Dy163(MR)	0.00014		Dy163(MR)		0.010
Dy164(MR)	0.00010		Dy164(MR)		
Tm169(MR)		0.000024	Tm169(MR)		
Lu175(MR)		0.00038	Lu175(MR)		
Hf178(MR)		0.061	Hf178(MR)		
Ta181(MR)		0.0038	Ta181(MR)		
Re185(MR)		0.00011	Re185(MR)		0.017
Os189(MR)		0.0022	Os189(MR)		0.050
Ir193(MR)		0.020	lr193(MR)		
Ru101(HR)		0.00039	Ru101(HR)		0.017
Gd157(HR)		0.00026			
Tb159(HR)		0.000088			
Dy163(HR)					
Tm169(HR)		0.000067			
Lu175(HR)		0.000044			
Hf178(HR)		0.049			
Ta181(HR)		0.0035	Ta181(HR)		
Re185(HR)		0.000084			
Ir193(HR)		0.016			

Q-015	wIE (mg/kg)	wLD (mg/kg)	Q-015	wEI mg/kg	wILD mg/kg
B11(MR)		215.05	B11(MR)	20.12	
Al27(MR)		192.78	AI27(MR)	0.19	
Si28(MR)	17323.21		Si28(MR)	6088.73	
Ti48(MR)		18.47	Ti48(MR)	0.18	
V51(MR)	0.92		V51(MR)	0.021	
Mn55(MR)	22.60		Mn55(MR)	0.22	
Fe56(MR)	109.26		Fe56(MR)	0.16	
Zn66(MR)		190.24	Zn66(MR)	4.96	
As75(MR)		0.46	As75(MR)	0.018	
In115(MR)corr		0.23	In115 corr		0.00027
Sn118(MR)	9.08		Sn118(MR)	0.013	
Sb121(MR)		1.20	Sb121(MR)		0.015
Nd142(MR)	0.38		Nd142(MR)	0.0041	
Nd143(MR)	0.29		Nd143(MR)	0.00081	
Hg202(MR)		4.13	Hg202(MR)		0.031
TI205(MR)		0.22	TI205(MR)	0.00019	
Pb208(MR)		14.84	Pb208(MR)	0.10	
Bi209(MR)		2.10	Bi209(MR)		0.00095
As75(HR)		0.35	As75(HR)	0.016	
Li7(MR)	10.67		Li7(MR)	20.019	
Be9(MR)		0.82	Be9(MR)		
Na23(MR)		10048.79	Na23(MR)	8350.97	
Mg24(MR)		1810.14	Mg24(MR)	14.54	
Ca44(MR)		12102.58	Ca44(MR)	36.53	
Rb85(MR)		9.80	Rb85(MR)	0.59	
Sr88(MR)		247.88	Sr88(MR)	0.30	
Cs133(MR)	0.40		Cs133(MR)	0.023	
Ba137(MR)		93.24	Ba137(MR)	0.25	
Ba138(MR)		94.20	Ba138(MR)	0.25	
K39(HR)		10204.36	K39(HR)	237.95	
Sc45(MR)		0.0011	Sc45(MR)	0.0020	
Cr52(MR)	0.20		Cr52(MR)	0.030	
Co59(MR)		0.022	Co59(MR)	0.00039	
Ni60(MR)		5.50	Ni60(MR)		0.0030
Cu63(MR)	1.48		Cu63(MR)	0.19	
Ga69(MR)	0.0043		Ga69(MR)	0.0044	
Ge72(MR)	0.23		Ge72(MR)		0.0027

Cuadro 64. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua antes de entrar al módulo de electrodesionización, utilizando el criterio del CENAM.

Se77(MR)	0.025		Se77(MR)	0.11	
Se82(MR)	0.0068		Se82(MR)	0.095	
Cd114(MR)		0.0055	Cd114 corr	0.00078	
La139(MR)	0.0011		La139(MR)		0.00088
Ga71(HR)	0.0029		Ga71(HR)	0.00019	
Se78(HR)	51.92				
Nb93(MR)		0.0067	Nb93(MR)		
Mo95(MR)	0.012		Mo95(MR)	0.0025	
Rh103(MR)		0.00049	Rh103(MR)		0.00013
Pd105(MR)		0.00091	Pd105(MR)		0.00030
Ag107(MR)		0.0050	Ag107(MR)		0.0029
Pt195(MR)		0.00042	Pt195(MR)		0.00039
Pt196(MR)		0.00042	Pt196(MR)		0.00037
Au197(MR)		0.0053	Au197(MR)	0.065	
Zr90(MR)		0.011	Zr90(MR)		0.0042
Te125(MR)		0.0010	Te125(MR)		
Te130(MR)		0.0077	Te130(MR)		0.0060
Ce140(MR)		0.017	Ce140(MR)	0.013	
Eu153(MR)		0.0013	Eu153(MR)		0.00016
Ho165(MR)		0.00047	Ho165(MR)		0.00028
Er166(MR)		0.00041	Er166(MR)		
Yb172(MR)		0.00085	Yb172(MR)		0.00027
W182(MR)		0.040	W182(MR)	0.013	
Th232(MR)		0.0044	Th232(MR)		0.00074
P31(MR)	0.66		P31(MR)	0.064	
Y89(MR)	0.00085		Y89(MR)		0.00050
Ru101(MR)		0.00024	Ru101(MR)		0.00027
Pr141(MR)	0.00022		Pr141(MR)	0.00020	
Sm147(MR)		0.00025	Sm147(MR)		0.00039
Gd157(MR)	0.00018		Gd157(MR)		0.00039
Tb159(MR)		0.00011	Tb159(MR)		0.00025
Dy163(MR)	0.00012		Dy163(MR)		0.00012
Dy164(MR)	0.00011		Dy164(MR)		0.00034
Tm169(MR)		0.000023	Tm169(MR)		0.00012
Lu175(MR)		0.00037	Lu175(MR)		0.00026
Hf178(MR)		0.059	Hf178(MR)		0.0077
Ta181(MR)		0.0037	Ta181(MR)		0.00097
Re185(MR)		0.00010	Re185(MR)		0.000093
Os189(MR)		0.0021	Os189(MR)		0.00055
Ir193(MR)		0.019	Ir193(MR)		
Ru101(HR)		0.00038	Ru101(HR)		0.00039

Continuación Cuadro 64.

Continuación Cuadro 64.

Cd157(HP)		0.00025		
Guis/(IIK)		0.00025		
Tb159(HR)		0.000085		
Dy163(HR)				
Tm169(HR)		0.000064		
Lu175(HR)		0.000043		
Hf178(HR)		0.048		
Ta181(HR)		0.0033	Ta181(HR)	0.00048
Re185(HR)	0.000086			
Ir193(HR)		0.016		

Cuadro 65. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua proveniente del loop de recirculación posterior al módulo de electrodesionización, utilizando el criterio del CENAM.

Q-019	wIE (mg/kg)	wLD (mg/kg)	Q-019	wEI mg/kg	wILD mg/kg
B11(MR)	, , , ,	214.05	B11(MR)	6.17	
Al27(MR)	409.79		Al27(MR)	0.39	
Si28(MR)	16573.21		Si28(MR)	29.31	
Ti48(MR)	16.67		Ti48(MR)	0.023	
V51(MR)	0.92		V51(MR)	0.0018	
Mn55(MR)	9.72		Mn55(MR)	0.0091	
Fe56(MR)	210.93		Fe56(MR)	0.19	
Zn66(MR)	175.55		Zn66(MR)	0.32	
As75(MR)	0.26		As75(MR)	0.0015	
In115(MR)corr		0.23	In115 corr		0.00027
Sn118(MR)	9.42		Sn118(MR)	0.0032	
Sb121(MR)	1.30		Sb121(MR)		0.015
Nd142(MR)		0.76	Nd142(MR)		
Nd143(MR)	0.21		Nd143(MR)		0.00074
Hg202(MR)		4.11	Hg202(MR)		0.031
TI205(MR)		0.22	TI205(MR)		0.00028
Pb208(MR)		14.77	Pb208(MR)	0.019	
Bi209(MR)	2.15		Bi209(MR)		0.00095
As75(HR)		0.35	As75(HR)	0.0013	
Li7(MR)	10.15		Li7(MR)		0.010
Be9(MR)			Be9(MR)		0.00035
Na23(MR)		10002.27	Na23(MR)	3.37	
Mg24(MR)		1801.76	Mg24(MR)	0.089	
Ca44(MR)		12046.55	Ca44(MR)	1.44	
Continuación	Cuadro	65.			
--------------	--------	-----			
--------------	--------	-----			

Rb85(MR)		9.75	Rb85(MR)		0.0022
Sr88(MR)		246.73	Sr88(MR)	0.14	
Cs133(MR)		0.55	Cs133(MR)		0.00050
Ba137(MR)		92.81	Ba137(MR)	0.24	
Ba138(MR)		93.76	Ba138(MR)	0.24	
K39(HR)		10157.11	K39(HR)	0.33	
Sc45(MR)		0.0011	Sc45(MR)		0.00080
Cr52(MR)	0.23		Cr52(MR)	0.013	
Co59(MR)		0.022	Co59(MR)	0.0052	
Ni60(MR)		5.51	Ni60(MR)	0.053	
Cu63(MR)	1.32		Cu63(MR)	0.19	
Ga69(MR)	0.0040		Ga69(MR)		0.00038
Ge72(MR)	0.24		Ge72(MR)		0.0027
Se77(MR)	0.018		Se77(MR)		0.052
Se82(MR)		0.070	Se82(MR)		0.015
Cd114(MR)		0.0055	Cd114 corr	0.0026	
La139(MR)	0.0016		La139(MR)		0.0018
Ga71(HR)	0.0032		Ga71(HR)	0.00040	
Se78(HR)					
Nb93(MR)		0.0067	Nb93(MR)		
Mo95(MR)		0.014	Mo95(MR)		0.0012
Rh103(MR)		0.00049	Rh103(MR)		0.00013
Pd105(MR)		0.00091	Pd105(MR)		0.00059
Ag107(MR)		0.0050	Ag107(MR)		0.0029
Pt195(MR)		0.00042	Pt195(MR)		0.00038
Pt196(MR)		0.00042	Pt196(MR)		0.00036
Au197(MR)		0.0053	Au197(MR)		0.0096
Zr90(MR)		0.011	Zr90(MR)		0.0021
Te125(MR)		0.0010	Te125(MR)		0.0015
Te130(MR)		0.0077	Te130(MR)		0.0030
Ce140(MR)		0.017	Ce140(MR)	0.024	
Eu153(MR)		0.0013	Eu153(MR)		0.00016
Ho165(MR)		0.00047	Ho165(MR)		0.00014
Er166(MR)		0.00041	Er166(MR)		0.00012
Yb172(MR)		0.00086	Yb172(MR)		0.00014
W182(MR)		0.040	W182(MR)	0.0093	
Th232(MR)		0.0044	Th232(MR)		
P31(MR)	0.92		P31(MR)	0.10	
Y89(MR)	0.0010		Y89(MR)		0.00050
Ru101(MR)		0.00024	Ru101(MR)		0.00027
Pr141(MR)	0.00042		Pr141(MR)		0.00015

Sm147(MR)		0.00025	Sm147(MR)	0.00019
Gd157(MR)	0.00018		Gd157(MR)	0.00038
Tb159(MR)		0.00011	Tb159(MR)	
Dy163(MR)	0.000075		Dy163(MR)	0.00024
Dy164(MR)	0.00012		Dy164(MR)	0.00034
Tm169(MR)		0.000023	Tm169(MR)	
Lu175(MR)		0.00037	Lu175(MR)	0.00013
Hf178(MR)		0.059	Hf178(MR)	0.0038
Ta181(MR)		0.0037	Ta181(MR)	
Re185(MR)		0.00010	Re185(MR)	0.00018
Os189(MR)		0.0021	Os189(MR)	0.00054
Ir193(MR)		0.019	Ir193(MR)	
Ru101(HR)		0.00038	Ru101(HR)	
Gd157(HR)		0.00025		
Tb159(HR)		0.000085		
Dy163(HR)				
Tm169(HR)		0.000064		
Lu175(HR)		0.000043		
Hf178(HR)		0.048		
Ta181(HR)		0.0033	Ta181(HR)	0.00048
Re185(HR)		0.000081		
Ir193(HR)		0.016		

Continuación Cuadro 65.

Cuadro 66. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua proveniente del equipo MilliQ especial para trazas, utilizando el criterio del CENAM.

Q-002	wIE (mg/kg)	wLD (mg/kg)	Q-002	wEI mg/kg	wILD mg/kg
B11(MR)		8.84	B11(MR)	1.11	
Al27(MR)		1.06	Al27(MR)	0.096	
Si28(MR)		6.13	Si28(MR)	1.017	
Ti48(MR)		0.032	Ti48(MR)	0.0086	
V51(MR)		0.0014	V51(MR)		0.00034
Mn55(MR)		0.011	Mn55(MR)	0.0019	
Fe56(MR)		0.63	Fe56(MR)	0.14	
Zn66(MR)		0.41	Zn66(MR)	0.13	
As75(MR)	0.0015		As75(MR)		0.00052
In115(MR)corr		0.00026	In115 corr		0.00027
Sn118(MR)		0.038	Sn118(MR)	0.0055	
Sb121(MR)		0.0036	Sb121(MR)		0.015

Nd142(MR)		0.0089	Nd142(MR)		
Nd143(MR)		0.0012	Nd143(MR)	0.00085	
Hg202(MR)		0.011	Hg202(MR)		0.031
TI205(MR)		0.00029	TI205(MR)	0.00065	
Pb208(MR)		0.49	Pb208(MR)	0.013	
Bi209(MR)		0.0095	Bi209(MR)		0.00094
As75(HR)		0.00084	As75(HR)		0.0011
Li7(MR)		0.012	Li7(MR)		0.010
Be9(MR)		0.0010	Be9(MR)		0.00070
Na23(MR)	0.69		Na23(MR)	1.93	
Mg24(MR)		0.44	Mg24(MR)	0.15	
Ca44(MR)		7.60	Ca44(MR)	1.94	
Rb85(MR)	0.00049		Rb85(MR)		0.0022
Sr88(MR)		0.013	Sr88(MR)	0.0035	
Cs133(MR)		0.00054	Cs133(MR)		0.00050
Ba137(MR)		0.014	Ba137(MR)	0.0085	
Ba138(MR)		0.014	Ba138(MR)	0.0088	
K39(HR)	0.43		K39(HR)	0.77	
Sc45(MR)		0.0011	Sc45(MR)		0.0016
Cr52(MR)		0.012	Cr52(MR)	0.011	
Co59(MR)		0.022	Co59(MR)	0.00085	
Ni60(MR)		5.51	Ni60(MR)	0.0037	
Cu63(MR)		0.033	Cu63(MR)	0.028	
Ga69(MR)		0.00022	Ga69(MR)	0.00082	
Ge72(MR)		0.0021	Ge72(MR)		0.0027
Se77(MR)		0.0086	Se77(MR)	0.075	
Se82(MR)		0.070	Se82(MR)	0.055	
Cd114(MR)		0.0055	Cd114 corr	0.00055	
La139(MR)	0.00089		La139(MR)		0.0018
Ga71(HR)		0.00023	Ga71(HR)	0.00068	
Se78(HR)	63.52				
Nb93(MR)		0.0067	Nb93(MR)		
Mo95(MR)		0.014	Mo95(MR)		0.0012
Rh103(MR)		0.00049	Rh103(MR)	0.00016	
Pd105(MR)		0.00091	Pd105(MR)	0.0020	
Ag107(MR)		0.0050	Ag107(MR)		0.0015
Pt195(MR)		0.00042	Pt195(MR)		0.00038
Pt196(MR)		0.00042	Pt196(MR)		0.00036
Au197(MR)		0.0053	Au197(MR)		0.0095
Zr90(MR)		0.011	Zr90(MR)	0.0048	
Te125(MR)		0.0010	Te125(MR)		

Continuación Cuauro

Te130(MR)		0.0077	Te130(MR)	0.0097	
Ce140(MR)		0.017	Ce140(MR)	0.016	
Eu153(MR)		0.0013	Eu153(MR)		
Ho165(MR)		0.00047	Ho165(MR)		0.00014
Er166(MR)		0.00041	Er166(MR)		0.00025
Yb172(MR)		0.00086	Yb172(MR)		0.00014
W182(MR)		0.040	W182(MR)	0.015	
Th232(MR)		0.0044	Th232(MR)		0.00074
P31(MR)		0.52	P31(MR)	0.10	
Y89(MR)		0.00037	Y89(MR)	0.00095	
Ru101(MR)		0.00024	Ru101(MR)		0.00013
Pr141(MR)		0.00027	Pr141(MR)		0.00031
Sm147(MR)		0.00025	Sm147(MR)		0.00039
Gd157(MR)		0.00018	Gd157(MR)		0.00038
Tb159(MR)		0.00011	Tb159(MR)		0.00025
Dy163(MR)		0.000078	Dy163(MR)		0.00024
Dy164(MR)		0.00011	Dy164(MR)		0.00034
Tm169(MR)		0.000023	Tm169(MR)		0.00024
Lu175(MR)		0.00037	Lu175(MR)		0.00026
Hf178(MR)	0.081		Hf178(MR)		0.0076
Ta181(MR)		0.0037	Ta181(MR)		0.00096
Re185(MR)		0.00010	Re185(MR)	0.00019	
Os189(MR)		0.0021	Os189(MR)		0.00054
Ir193(MR)		0.019	Ir193(MR)		
Ru101(HR)		0.00038	Ru101(HR)		
Gd157(HR)		0.00025			
Tb159(HR)		0.000085			
Dy163(HR)					
Tm169(HR)		0.000064			
Lu175(HR)		0.000043			
Hf178(HR)	0.059				
Ta181(HR)		0.0033	Ta181(HR)	0.0032	
Re185(HR)		0.000081			
Ir193(HR)		0.016			
· · ·			-		-

C-001	wIE (mg/kg)	wLD (mg/kg)	C-001	wEI mg/kg	wILD mg/kg
B11(MR)		8.90	B11(MR)	0.32	
Al27(MR)		1.067	AI27(MR)	0.13	
Si28(MR)		6.17	Si28(MR)	1.022	
Ti48(MR)	0.036		Ti48(MR)	0.0084	
V51(MR)	0.00025		V51(MR)	0.00046	
Mn55(MR)	0.0062		Mn55(MR)	0.0013	
Fe56(MR)		0.64	Fe56(MR)	0.12	
Zn66(MR)	0.60		Zn66(MR)	0.085	
As75(MR)		0.0025	As75(MR)		0.00052
In115(MR)corr		0.00026	In115 corr		0.00027
Sn118(MR)		0.038	Sn118(MR)	0.0062	
Sb121(MR)		0.0036	Sb121(MR)		0.015
Nd142(MR)		0.0090	Nd142(MR)	0.0018	
Nd143(MR)		0.0012	Nd143(MR)		0.00074
Hg202(MR)		0.011	Hg202(MR)		0.031
TI205(MR)		0.00029	TI205(MR)		0.00028
Pb208(MR)		0.50	Pb208(MR)	0.011	
Bi209(MR)		0.0095	Bi209(MR)		0.00095
As75(HR)		0.00084	As75(HR)		0.0011
Li7(MR)		0.012	Li7(MR)		0.010
Be9(MR)		0.0010	Be9(MR)		0.00035
Na23(MR)	0.54		Na23(MR)	2.43	
Mg24(MR)		0.44	Mg24(MR)	0.094	
Ca44(MR)		7.65	Ca44(MR)	1.60	
Rb85(MR)		0.0015	Rb85(MR)		0.0022
Sr88(MR)		0.013	Sr88(MR)	0.0064	
Cs133(MR)		0.0005	Cs133(MR)		
Ba137(MR)		0.014	Ba137(MR)	0.011	
Ba138(MR)		0.014	Ba138(MR)	0.0046	
K39(HR)		1.26	K39(HR)	0.69	
Sc45(MR)		0.0011	Sc45(MR)		0.00080
Cr52(MR)	0.016		Cr52(MR)	0.014	
Co59(MR)	0.018		Co59(MR)	0.014	
Ni60(MR)		5.55	Ni60(MR)	0.17	
Cu63(MR)		0.033	Cu63(MR)	0.020	
Ga69(MR)		0.00022	Ga69(MR)		0.00019
Ge72(MR)		0.0021	Ge72(MR)		0.0027

Cuadro 67. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua proveniente del equipo MilliQ Gradiente A10, utilizando el criterio del CENAM.

Se77(MR)		0.0087	Se77(MR)		0.053
Se82(MR)		0.070	Se82(MR)		0.015
Cd114(MR)		0.0055	Cd114 corr	0.0041	
La139(MR)		0.00075	La139(MR)		0.0018
Ga71(HR)		0.00023	Ga69(HR)		0.00033
Se78(HR)			Ga71(HR)		0.00034
Nb93(MR)		0.0068	Nb93(MR)		
Mo95(MR)		0.014	Mo95(MR)	0.0012	
Rh103(MR)		0.00049	Rh103(MR)		0.00013
Pd105(MR)		0.00091	Pd105(MR)		0.00030
Ag107(MR)		0.0051	Ag107(MR)		0.0029
Pt195(MR)	0.00024		Pt195(MR)		0.00039
Pt196(MR)		0.00042	Pt196(MR)		0.00037
Au197(MR)		0.0053	Au197(MR)		0.0048
Zr90(MR)		0.011	Zr90(MR)		0.0021
Te125(MR)		0.0011	Te125(MR)		
Te130(MR)		0.0077	Te130(MR)		
Ce140(MR)		0.018	Ce140(MR)	0.015	
Eu153(MR)		0.0013	Eu153(MR)		
Ho165(MR)		0.00047	Ho165(MR)		
Er166(MR)		0.00042	Er166(MR)		
Yb172(MR)		0.00086	Yb172(MR)		0.00014
W182(MR)		0.040	W182(MR)	0.0078	
Th232(MR)		0.0044	Th232(MR)		
P31(MR)		0.53	P31(MR)	0.083	
Y89(MR)		0.00037	Y89(MR)		0.00050
Ru101(MR)		0.00024	Ru101(MR)		0.00027
Pr141(MR)		0.00027	Pr141(MR)		0.00016
Sm147(MR)		0.00025	Sm147(MR)		0.00020
Gd157(MR)		0.00018	Gd157(MR)		0.00039
Tb159(MR)		0.00011	Tb159(MR)		0.00012
Dy163(MR)		0.000079	Dy163(MR)		0.00024
Dy164(MR)		0.00011	Dy164(MR)		0.00034
Tm169(MR)		0.000023	Tm169(MR)		0.00012
Lu175(MR)		0.00037	Lu175(MR)		0.00013
Hf178(MR)		0.059	Hf178(MR)		0.0077
Ta181(MR)		0.0037	Ta181(MR)		
Re185(MR)		0.00011	Re185(MR)		0.00019
Os189(MR)		0.0021	Os189(MR)		0.00055
Ir193(MR)		0.019	Ir193(MR)		
Ru101(HR)		0.00038	Ru99(HR)		0.00016
\ /			\ /		

Continuación Cuadro 67.

Gd157(HR)	0.0002	25	
Tb159(HR)	0.0000	86	
Dy163(HR)			
Tm169(HR)	0.0000	65	
Lu175(HR)	0.0000	43	
Hf178(HR)	0.048	3	
Ta181(HR)	0.003	4 Ta181(HR)	0.00096
Re185(HR)	0.0000	82	
Ir193(HR)	0.016	6	

Cuadro 68. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua proveniente del equipo MilliQ especial para ultratrazas, utilizando el criterio del CENAM.

Q-018	wIE (mg/kg)	wLD (mg/kg)	Q-018	wEI mg/kg	wILD mg/kg
B11(MR)		8.82	B11(MR)	0.16	
Al27(MR)		1.058	Al27(MR)	0.15	
Si28(MR)		6.12	Si28(MR)		0.94
Ti48(MR)		0.032	Ti48(MR)	0.011	
V51(MR)	0.00047		V51(MR)	0.00045	
Mn55(MR)		0.011	Mn55(MR)	0.0018	
Fe56(MR)		0.63	Fe56(MR)	0.13	
Zn66(MR)		0.41	Zn66(MR)	0.071	
As75(MR)		0.0025	As75(MR)		0.00052
In115(MR)corr		0.00026	In115 corr		0.00027
Sn118(MR)	0.022		Sn118(MR)	0.0066	
Sb121(MR)		0.0036	Sb121(MR)		0.015
Nd142(MR)		0.0089	Nd142(MR)		
Nd143(MR)		0.0012	Nd143(MR)	0.0045	
Hg202(MR)	0.0040		Hg202(MR)		0.031
TI205(MR)		0.00029	TI205(MR)		0.00028
Pb208(MR)		0.49	Pb208(MR)	0.0051	
Bi209(MR)	0.0056		Bi209(MR)		0.00095
As75(HR)		0.00084	As75(HR)		0.0011
Li7(MR)		0.012	Li7(MR)		0.010
Be9(MR)		0.0010	Be9(MR)		0.00035
Na23(MR)			Na23(MR)		0.51
Mg24(MR)	0.44		Mg24(MR)		0.060
Ca44(MR)	7.58		Ca44(MR)	0.64	
Rb85(MR)			Rb85(MR)		0.0022

Sr88(MR)		0.013	Sr88(MR)	0.0022	
Cs133(MR)		0.00054	Cs133(MR)		0.00025
Ba137(MR)		0.014	Ba137(MR)	0.0080	
Ba138(MR)		0.014	Ba138(MR)	0.010	
K39(HR)			K39(HR)		0.28
Sc45(MR)		0.0011	Sc45(MR)	0.0013	
Cr52(MR)		0.012	Cr52(MR)		0.010
Co59(MR)		0.022	Co59(MR)	0.0023	
Ni60(MR)		5.50	Ni60(MR)		
Cu63(MR)		0.032	Cu63(MR)		
Ga69(MR)		0.00022	Ga69(MR)		0.00038
Ge72(MR)		0.0021	Ge72(MR)		0.0027
Se77(MR)		0.0086	Se77(MR)	0.13	
Se82(MR)		0.070	Se82(MR)		0.015
Cd114(MR)		0.0055	Cd114 corr		0.00024
La139(MR)		0.00074	La139(MR)		0.0018
Ga71(HR)		0.00023	Ga69(HR)	0.00045	
Se78(HR)	47.43		Ga71(HR)		0.00034
Nb93(MR)		0.0067	Nb93(MR)		
Mo95(MR)		0.014	Mo95(MR)		0.00058
Rh103(MR)		0.00049	Rh103(MR)		0.00013
Pd105(MR)		0.00091	Pd105(MR)	0.00078	
Ag107(MR)		0.0050	Ag107(MR)		0.0029
Pt195(MR)		0.00042	Pt195(MR)		0.00039
Pt196(MR)		0.00042	Pt196(MR)		0.00037
Au197(MR)		0.0053	Au197(MR)		0.0096
Zr90(MR)		0.011	Zr90(MR)		
Te125(MR)		0.0010	Te125(MR)		
Te130(MR)		0.0077	Te130(MR)		
Ce140(MR)		0.017	Ce140(MR)	0.024	
Eu153(MR)		0.0013	Eu153(MR)		0.00031
Ho165(MR)		0.00047	Ho165(MR)		
Er166(MR)		0.00041	Er166(MR)		
Yb172(MR)		0.00085	Yb172(MR)		0.00027
W182(MR)		0.040	W182(MR)	0.0039	
Th232(MR)		0.0044	Th232(MR)		
P31(MR)		0.52	P31(MR)	0.086	
Y89(MR)		0.00037	Y89(MR)		0.00050

0.00024

0.00027

0.00025

Ru101(MR)

Pr141(MR)

Sm147(MR)

0.00031

Continuación Cuadro 68.

Ru101(MR)

Pr141(MR)

Sm147(MR)

0.00027

0.00031

Gd157(MR)	0.00018	Gd157(MR)	0.0039	
Tb159(MR)	0.00011	Tb159(MR)		0.00025
Dy163(MR)	0.00008	Dy163(MR)		0.00024
Dy164(MR)	0.00011	Dy164(MR)		0.00034
Tm169(MR)	0.000023	Tm169(MR)		0.00012
Lu175(MR)	0.00037	Lu175(MR)		0.00026
Hf178(MR)	0.059	Hf178(MR)		0.0038
Ta181(MR)	0.0037	Ta181(MR)		
Re185(MR)	0.00010	Re185(MR)		0.00019
Os189(MR)	0.0021	Os189(MR)		0.00055
Ir193(MR)	0.019	Ir193(MR)		
Ru101(HR)	0.00038	Ru99(HR)		
Gd157(HR)	0.00025			
Tb159(HR)	0.000085			
Dy163(HR)				
Tm169(HR)	0.000064			
Lu175(HR)	0.000043			
Hf178(HR)	0.048			
Ta181(HR)	0.0033	Ta181(HR)		0.00048
Re185(HR)	0.000081			
Ir193(HR)	0.016			

Continuación Cuadro 68.

Cuadro 69. Fracciones de masa de los isótopos medidos en las muestras de agua del sistema anterior y el sistema nuevo del agua proveniente del sistema de doble subdestilación de cuarzo, utilizando el criterio del CENAM.

Sistema de	wIE	wLD	Sistema de	wEl ma/ka	wILD
cuarzo	(mg/kg)	(mg/kg)	cuarzo	willing/kg	mg/kg
B11(MR)		8.82	B11(MR)	0.55	
Al27(MR)		1.058	Al27(MR)	0.093	
Si28(MR)		6.12	Si28(MR)	0.48	
Ti48(MR)		0.032	Ti48(MR)	0.011	
V51(MR)		0.0014	V51(MR)	0.00053	
Mn55(MR)		0.011	Mn55(MR)	0.0014	
Fe56(MR)		0.63	Fe56(MR)	0.23	
Zn66(MR)		0.41	Zn66(MR)	0.13	
As75(MR)		0.0025	As75(MR)	0.00091	
In115(MR)corr		0.00026	In115 corr		0.00027
Sn118(MR)		0.038	Sn118(MR)	0.0083	
Sb121(MR)		0.0036	Sb121(MR)		0.015
Nd142(MR)		0.0089	Nd142(MR)	0.0084	

Nd143(MR)	0.0012	Nd143(MR)	0.00083	
Hg202(MR)	0.011	Hg202(MR)		0.031
TI205(MR)	0.00029	TI205(MR)		0.00028
Pb208(MR)	0.49	Pb208(MR)	0.012	
Bi209(MR)	0.0095	Bi209(MR)	0.0011	
As75(HR)	0.00084	As75(HR)	0.0014	
Li7(MR)	0.012	Li7(MR)		0.010
Be9(MR)	0.0010	Be9(MR)		0.00035
Na23(MR)	1.90	Na23(MR)	0.86	
Mg24(MR)	0.44	Mg24(MR)	0.14	
Ca44(MR)	7.58	Ca44(MR)	0.88	
Rb85(MR)	0.0015	Rb85(MR)		0.0022
Sr88(MR)	0.013	Sr88(MR)	0.0056	
Cs133(MR)	0.00054	Cs133(MR)		0.00025
Ba137(MR)	0.014	Ba137(MR)	0.018	
Ba138(MR)	0.014	Ba138(MR)	0.017	
K39(HR)	1.25	K39(HR)	0.67	
Sc45(MR)	0.0011	Sc45(MR)		0.0016
Cr52(MR)	0.012	Cr52(MR)	0.010	
Co59(MR)	0.022	Co59(MR)	0.028	
Ni60(MR)	5.50	Ni60(MR)	0.18	
Cu63(MR)	0.032	Cu63(MR)	0.012	
Ga69(MR)	0.00022	Ga69(MR)		0.00038
Ge72(MR)	0.0021	Ge72(MR)		0.0027
Se77(MR)	0.0086	Se77(MR)		0.053
Se82(MR)	0.069	Se82(MR)		0.015
Cd114(MR)	0.0055	Cd114 corr		0.00048
La139(MR)	0.00074	La139(MR)		0.0018
Ga71(HR)	0.00023	Ga71(HR)	0.00039	
Se78(HR)	-12.4958			
Nb93(MR)	0.0067	Nb93(MR)		
Mo95(MR)	0.014	Mo95(MR)	0.0028	
Rh103(MR)	0.00049	Rh103(MR)		0.00013
Pd105(MR)	0.00090	Pd105(MR)		0.00059
Ag107(MR)	0.0050	Ag107(MR)		0.0029
Pt195(MR)	0.00042	Pt195(MR)		0.00039
Pt196(MR)	0.00042	Pt196(MR)	0.00046	
Au197(MR)	0.0053	Au197(MR)		0.0096
Zr90(MR)	0.011	Zr90(MR)	0.011	
Te125(MR)	0.0010	Te125(MR)		
	0.0077			

|--|

Ce140(MR)	0.017	Ce140(MR)	0.0082	
Eu153(MR)	0.0013	Eu153(MR)		0.00031
Ho165(MR)	0.00047	Ho165(MR)		
Er166(MR)	0.00041	Er166(MR)		0.00012
Yb172(MR)	0.00085	Yb172(MR)		0.00027
W182(MR)	0.040	W182(MR)	0.016	
Th232(MR)	0.0044	Th232(MR)		
P31(MR)	0.52	P31(MR)	0.098	
Y89(MR)	0.00037	Y89(MR)		0.00051
Ru101(MR)	0.00024	Ru101(MR)		0.00027
Pr141(MR)	0.00027	Pr141(MR)		
Sm147(MR)	0.00025	Sm147(MR)		0.00020
Gd157(MR)	0.00018	Gd157(MR)		0.00039
Tb159(MR)	0.00011	Tb159(MR)		0.00025
Dy163(MR)	0.000078	Dy163(MR)		0.00025
Dy164(MR)	0.00011	Dy164(MR)		0.00034
Tm169(MR)	0.000023	Tm169(MR)		0.00025
Lu175(MR)	0.00037	Lu175(MR)		0.00026
Hf178(MR)	0.059	Hf178(MR)		0.0077
Ta181(MR)	0.0037	Ta181(MR)		0.00097
Re185(MR)	0.00010	Re185(MR)		0.00019
Os189(MR)	0.0021	Os189(MR)		0.00055
Ir193(MR)	0.019	Ir193(MR)		
Ru101(HR)	0.00038	Ru101(HR)		0.00040
Gd157(HR)	0.00025			
Tb159(HR)	0.000085			
Dy163(HR)				
Tm169(HR)	0.000064			
Lu175(HR)	0.000043			
Hf178(HR)	0.048			
Ta181(HR)	0.0033	Ta181(HR)		0.00096
Re185(HR)	0.000081			
Ir193(HR)	0.016			

Cuadro 70. Fracciones de masa de los isótopos medidos en las muestras de agua
del sistema anterior y el sistema nuevo del agua proveniente del sistema de doble
subdestilación de teflón, utilizando el criterio del CENAM.

Sistema de teflón	wIE (ma/ka)	wLD (mg/kg)	Sistema de teflón	wEI mg/kg	wILD mg/kg
B11(MR)	(119/119)	8.84	B11(MR)	0.49	
AI27(MR)		1.06	Al27(MR)	0.062	
Si28(MR)		6.13	Si28(MR)	0.54	
Ti48(MR)		0.032	Ti48(MR)	0.0093	
V51(MR)		0.0014	V51(MR)	0.00041	
Mn55(MR)		0.011	Mn55(MR)	0.0047	
Fe56(MR)		0.63	Fe56(MR)	0.16	
Zn66(MR)		0.41	Zn66(MR)	0.050	
As75(MR)		0.0025	As75(MR)	0.00060	
In115(MR)corr		0.00026	In115 corr		0.00027
Sn118(MR)		0.038	Sn118(MR)	0.0068	
Sb121(MR)		0.0036	Sb121(MR)		0.015
Nd142(MR)		0.0089	Nd142(MR)		
Nd143(MR)		0.0012	Nd143(MR)		0.00074
Hg202(MR)	0.0043		Hg202(MR)		0.031
TI205(MR)		0.00029	TI205(MR)		0.00028
Pb208(MR)		0.49	Pb208(MR)	0.0083	
Bi209(MR)		0.0095	Bi209(MR)		0.00095
As75(HR)		0.00084	As75(HR)		0.0011
Li7(MR)		0.012	Li7(MR)		0.010
Be9(MR)		0.0010	Be9(MR)		0.00035
Na23(MR)	1.30		Na23(MR)	0.65	
Mg24(MR)	0.49		Mg24(MR)	0.074	
Ca44(MR)	5.049		Ca44(MR)	0.19	
Rb85(MR)	0.00059		Rb85(MR)		0.0022
Sr88(MR)		0.013	Sr88(MR)	0.0023	
Cs133(MR)		0.00054	Cs133(MR)		0.00025
Ba137(MR)		0.014	Ba137(MR)	0.0066	
Ba138(MR)		0.014	Ba138(MR)	0.0062	
K39(HR)	0.63		K39(HR)	0.46	
Sc45(MR)		0.0011	Sc45(MR)		0.00080
Cr52(MR)		0.012	Cr52(MR)		
Co59(MR)		0.022	Co59(MR)	0.00044	
Ni60(MR)		5.51	Ni60(MR)	0.024	
Cu63(MR)		0.033	Cu63(MR)	0.015	
Ga69(MR)		0.00022	Ga69(MR)		0.00038
Ge72(MR)		0.0021	Ge72(MR)		0.0027

Continuación Cuadro 70.

Se77(MR)	0.0077		Se77(MR)		0.053
Se82(MR)	0.0066		Se82(MR)		0.015
Cd114(MR)		0.0055	Cd114 corr		0.00048
La139(MR)		0.00075	La139(MR)		0.0018
Ga71(HR)		0.00023	Ga71(HR)		0.00034
Se78(HR)	53.18				
Nb93(MR)		0.0067	Nb93(MR)		
Mo95(MR)		0.014	Mo95(MR)		0.0012
Rh103(MR)		0.00049	Rh103(MR)		0.00013
Pd105(MR)	0.065		Pd105(MR)		0.00059
Ag107(MR)	0.044		Ag107(MR)		0.0029
Pt195(MR)	0.00017		Pt195(MR)		0.00039
Pt196(MR)	0.00013		Pt196(MR)		0.00037
Au197(MR)		0.0053	Au197(MR)		
Zr90(MR)		0.0109	Zr90(MR)		0.0042
Te125(MR)		0.0010	Te125(MR)		
Te130(MR)	0.0080		Te130(MR)		
Ce140(MR)		0.017	Ce140(MR)	0.024	
Eu153(MR)		0.0013	Eu153(MR)		0.00031
Ho165(MR)		0.00047	Ho165(MR)		
Er166(MR)		0.00041	Er166(MR)		0.00025
Yb172(MR)		0.00086	Yb172(MR)		0.00014
W182(MR)	0.31		W182(MR)		0.0037
Th232(MR)		0.0044	Th232(MR)		
P31(MR)		0.52	P31(MR)	0.097	
Y89(MR)		0.00037	Y89(MR)	0.00060	
Ru101(MR)			Ru101(MR)	0.00034	
Pr141(MR)		0.00027	Pr141(MR)	0.00044	
Sm147(MR)		0.00025	Sm147(MR)	0.00043	
Gd157(MR)		0.00018	Gd157(MR)	0.00051	
Tb159(MR)		0.00011	Tb159(MR)	0.00037	
Dy163(MR)		0.000078	Dy163(MR)	0.00047	
Dy164(MR)		0.00011	Dy164(MR)	0.00037	
Tm169(MR)		0.000023	Tm169(MR)	0.00039	
Lu175(MR)		0.00037	Lu175(MR)	0.00042	
Hf178(MR)		0.059	Hf178(MR)		
Ta181(MR)		0.0037	Ta181(MR)		0.00048
Re185(MR)		0.00010	Re185(MR)	0.00038	
Os189(MR)		0.0021	Os189(MR)	0.00056	
Ir193(MR)		0.019	Ir193(MR)		0.0011
Ru101(HR)		0.00038	Ru101(HR)		0.00020
· /			, ,		1

Continuación Cuadro 70.

Gd157(HR) 0.00025 Image: Constraint of the system Tb159(HR) 0.000085 Image: Constraint of the system Image: Constraint of the system Dy163(HR) 0.000064 Image: Constraint of the system Image: Constraint of the system Tm169(HR) 0.000064 Image: Constraint of the system Image: Constraint of the system Hf178(HR) 0.000043 Image: Constraint of the system Image: Constraint of the system Hf178(HR) 0.0033 Ta181(HR) 0.0009 Re185(HR) 0.000081 Image: Constraint of the system Ir193(HR) 0.016 Image: Constraint of the system					
Tb159(HR) 0.000085 Dy163(HR) Tm169(HR) 0.000064 Lu175(HR) 0.000043 Hf178(HR) 0.048 Ta181(HR) 0.0033 Ta181(HR) 0.0009 Re185(HR) 0.00081 Ir193(HR) 0.016	Gd157(HR)	0.00025			
Dy163(HR) 0.000064 Tm169(HR) 0.000064 Lu175(HR) 0.000043 Hf178(HR) 0.048 Ta181(HR) 0.0033 Re185(HR) 0.00081 Ir193(HR) 0.016	Tb159(HR)	0.000085			
Tm169(HR) 0.000064 Lu175(HR) 0.000043 Hf178(HR) 0.048 Ta181(HR) 0.0033 Ta181(HR) 0.0009 Re185(HR) 0.00081 Ir193(HR) 0.016	Dy163(HR)				
Lu175(HR) 0.000043 Hf178(HR) 0.048 Ta181(HR) 0.0033 Ta181(HR) 0.0009 Re185(HR) 0.00081 Ir193(HR) 0.016	Tm169(HR)	0.000064			
Hf178(HR) 0.048 0.0033 Ta181(HR) 0.0009 Ta181(HR) 0.000081 0.0009 0.0009 Re185(HR) 0.016 0.016 0.016	Lu175(HR)	0.000043			
Ta181(HR) 0.0033 Ta181(HR) 0.0009 Re185(HR) 0.000081	Hf178(HR)	0.048			
Re185(HR) 0.000081 Ir193(HR) 0.016	Ta181(HR)	0.0033	Ta181(HR)	0.00096	
Ir193(HR) 0.016	Re185(HR)	0.000081			
	Ir193(HR)	0.016			