Please use this identifier to cite or link to this item: http://ri-ng.uaq.mx/handle/123456789/3362
Title: Extracción y clasificación automática de características de glaucoma en imágenes de retina
metadata.dc.creator: Hiram José Sandoval Cuellar
Keywords: INGENIERÍA Y TECNOLOGÍA;CIENCIAS TECNOLÓGICAS;CIENCIA DE LOS ORDENADORES
metadata.dc.date: 3-Nov-2021
Description: El glaucoma es una enfermedad que afecta la visión de quienes lo padecen, provocando una pérdida irreversible de este sentido. La relación copa disco es una de las características más importantes y utilizadas para diagnosticar este padecimiento. Las imágenes del fondo de ojo son ampliamente utilizadas por los oftalmólogos para evaluar la retina y detectar el glaucoma, que es, según estudios de la Organización Mundial de la Salud (OMS), la segunda causa de ceguera en el mundo. En esta tesis se estudian algoritmos de Redes Neuronales Convolucionales para la evaluación del glaucoma mediante imágenes de fondo de ojo. Primero se propone un método basado en una clasificación a nivel imagen, es decir, clasifica si un paciente tiene glaucoma o no. Este método consiste en proponer una arquitectura nueva para realizar dicha tarea. Esta red consta de 15 capas para lograr una mejor extracción de las características buscadas. Aunado a eso, se obtiene un mapa de características de cada imagen, esto con el fin de poder visualizar en que parte se está centrando la red para realizar una clasificación, ayudando a comprobar que tan buena es la arquitectura. Un paso importante para lograr un buen desempeño en cualquier tipo de red es el preprocesamiento de las imágenes, dentro de este paso esta la ubicación del área de interés. Se propone una nueva técnica para localizar el disco óptico, y de esa manera, recortar la imagen para lograr disminuir el tiempo de procesamiento, además de enfocarnos únicamente en el área de interés. La base de datos utilizada fue ORIGA, que contiene 650 imágenes anotadas por especialistas. De esta base de datos se realizó una segmentación manual en conjunto con el Instituto Mexicano de Oftalmología, de 100 imágenes de disco y 50 de copa, para poder entrenar la segunda red propuesta. En la segunda arquitectura se propone una variación en la alimentación de la red que se encarga de realizar una clasificación a nivel píxel. Este cambio consiste en convertir las imágenes a coordenadas polares, logrando disminuir el desbalance de clases, y aumentando el desempeño de la red. La arquitectura utilizada fue la ya conocida U-Net y se le agregaron bloques residuales. Este algoritmo se encarga de segmentar el disco y la copa óptica."
URI: http://ri-ng.uaq.mx/handle/123456789/3362
Other Identifiers: Glaucoma
Redes Neuronales Convolucionales
Disco óptico
Copa óptica
Clasificación de imágenes
Appears in Collections:Tesis

Files in This Item:
File Description SizeFormat 
IGMAC-290827-1121-1121-Hiram José Sandoval Cuellar -A.pdf2.26 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.