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Presenta:

Ulises Mondragón Cárdenas

Dirigido por:

Dr. Suresh Thenozhi

Dr. Antonio Concha Sánchez

SINODALES

Dr. Suresh Thenozhi
Presidente Firma

Dr. Antonio Concha Sánchez
Secretario Firma

Dr. Juvenal Rodŕıguez Reséndiz
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Suplente Firma

Dr. Manuel Toledano Ayala Dra. Ma. Guadalupe Flavia Loarca Piña
Director de la Facultad Director de Investigación y Postgrado

Centro Universitario
Querétaro, QRO
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Abstract

This thesis studies the identification, state estimation, and control of a nonlinear mechanical sys-
tem. The system used corresponds to a forced bistable Duffing oscillator. The work developed is
composed of four main sections: first, the design, construction, and validation of an experimental
prototype; second, the estimation of the model parameters through the use of an identification al-
gorithm; third, through the use of an observer, the unknown states of the oscillator are estimated;
and fourth, the control of the tracking of a desired trajectory obtained from a reference model.

The state-of-the-art design of other experimental devices served as the basis for the design of the
prototype used in this project. In this case, it was decided to use an elastic aluminum beam, and to
achieve the attraction effect, magnets were placed at its tip. To validate the prototype, experiments
were carried out on the three characteristic behaviors—inter-well, intra-well, and chaotic of the
bistable Duffing oscillator. The prototype was able to successfully maintain the aforementioned
behaviors.

The identification process was performed using the discrete recursive least squares method
(LSM) with forgetting factor. To obtain the parameterization, necessary to apply the LSM, three
types of filters were applied, in continuous time, discrete time, and integrals. The results could
be repeated in several experiments, and show a correct estimation of the system parameters. The
validation of the obtained results was performed by testing the persistent excitation of the input
signal during identification, and experimentation where simulations of the estimated parameters
converged to the same type of behavior as the one presented by the prototype with the same
excitation signal.

The state of the art design of other experimental devices served as the basis for the design of the
prototype used in this project. In this case, it was decided to use an elastic aluminum beam, and to
achieve the attraction effect, magnets were placed at its tip. To validate the prototype, experiments
were carried out on the three characteristic behaviors—inter-well, intra-well, and chaotic of the
bistable Duffing oscillator. The prototype was able to successfully maintain the aforementioned
behaviors.

The controller was designed using the back-stepping strategy; the control law uses the states
estimated by the observer. The performance of the controller in simulations is good; it achieves
adequate tracking of the reference model. Due to the control signal, only adequate results were
achieved experimentally in the behavior between wells. The details of the causes are presented in
the chapter concerning the controller. Finally, there are the final conclusions of the thesis, as well
as improvements and future work on the reported project.
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Resumen

En esta tesis se estudia la identificación, estimación de estados y control de un sistema mecánico
no lineal, el sistema utilizado corresponde a un oscilador Duffing biestale forzado. El trabajo de-
sarrollado se compone de cuatro secciones principales, primero, el diseño, construcción y validación
de un prototipo experimental, segundo, la estimación de los parámetros del modelo mediante el
uso de un algoritmo de identificación, tercero, por medio del uso de un observador se estiman los
estados no conocidos del oscilador, cuarto, el control del seguimiento de una trayectoria deseada
obtenida de un modelo de referencia.

El estado del arte de otros aparatos experimentales sirvió como base para el diseño del prototipo
utilizado en este proyecto. En este caso se optó por utilizar una viga elástica de aluminio, y
para lograr el efecto de atracción se colocaron imanes en su punta. Para validar el prototipo
se realizaron experimentos de los tres comportamientos caracteŕısticos; entre pozos, intrapozo, y
caótico; del oscilador Duffing biestable. Se logró que el prototipo mantuviera los comportamientos
mencionados de forma exitosa.

El proceso de identificación se realizó utilizando el método de mı́nimos cuadrados (LSM) recur-
sivo discreto con factor de olvido. Para obtener la parametrización, necesaria para aplicar el LSM,
se aplicaron tres tipos de filtros, en tiempo continuo, tiempo discreto, e integrales. Los resultados se
pudieron repetir en varios experimentos, y muestran una correcta estimación de los parámetros del
sistema. La validación de los resultados obtenidos se realizó por medio comprobar la excitación per-
sistente de la señal de entrada durante la identificación, y de experimentación donde simulaciones
de los parámetros estimados convergieron al mismo tipo de comportamiento que el que presentaba
el prototipo con la misma señal de excitación.

Se diseñó e implementó un Observador No lineal Integral Extendido de Estados (NIESO) para
estimar la velocidad e incertidumbre del sistema. Se probó teóricamente su estabilidad y las simula-
ciones mostraron un desempeño adecuado para la experimentación. Los resultados del observador
aplicado se compararon con otro observador extendido similar, el error cuadrático medio fue menor
al usar el observador NIESO.

El controlador se diseñó mediante la estrategia de back-stepping, la ley de control utiliza los
estados estimados por el observador. El desempeño del controlador en simulaciones es bueno,
logra un adecuado seguimiento del modelo de referencia. Debido a la señal de control, se logró
que experimentalmente, únicamente se consiguieran resultados adecuados en el comportamiento
entre pozos, los detalles de las causas se presentan en el caṕıtulo que concierne al controlador.
Finalmente, se tienen las conclusiones finales de la tesis, aśı como de mejoras y trabajo futuro del
proyecto reportado.
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CHAPTER 1

Introduction

Chaos theory is the concept that a slight change in the beginning can result in an enormous change
in the future [1–3]. The study of chaotic systems is of great interest since they represent a very
attractive topic due to the great variety of systems with this behavior. The chaos phenomenon
occurs in important dynamic systems or processes, mainly in nonlinear systems, such as the Van
Der Pool oscillator, the Predator-Prey system, and the Duffing oscillator, among others [4–6]. The
study of nonlinear mechanical systems has gained great importance in recent decades, and many
methods have been proposed to extract and analyze their characteristics, performance, solutions,
and applications [7–9].

The Duffing oscillator is a system with a cubic nonlinearity that can have chaotic behavior [10].
Just to mention some areas of research related to this system, multiple works and investigations
have been carried out to study it, search for solutions to the Duffing equation, and apply and
validate methods for identifying nonlinear systems [11, 12]. Authors have focused on their use
for the detection of electrical or mechanical signals [13], on characterizing mechanisms such as a
Duffing oscillator, and studies have been carried out on chaos control and the synchronization of
oscillators [14]. Also, there are works on its application in energy harvesting and in its use as a
reference for the chaosification of systems. Its chaotic behavior can be used in engineering solutions
to improve different sensors, such as metal detectors, optical fields, or magnetic fields. For example,
in [15], they investigate the application of a Duffing oscillator to build inductive sensors. Other
authors have focused on mathematical analysis related to the Duffing equation; for example, Feng
et al. [16] used the qualitative theory of flat systems to analyze it, and Zivieri et al. [17] presented
analytical and numerical solutions to the Duffing equation. It is known that the behavior of a
Duffing oscillator is continuous and has multiple equilibrium points, some of which are unstable.
In [11,12,18], they presented some of the equilibrium and stability point configurations of a Duffing
oscillator.

The prototype design presented in this thesis is based on the experimental apparatus used by
Moon and Holmes [8] and is shown in Figure 1.1. The prototype was mounted on a vibrating
table to apply the input force to the system. A laser sensor was used to measure the position of
the elastic beam. The system was analyzed through simulations, and the natural frequency of the
structure was obtained.
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Elastic

Beam

Magnets

Sinusoidal input

force
Figure 1.1: Experimental system proposed by Moon and Holmes, where the direction of gravity is
in the direction of negative z.

1.1 Motivation

From the previous section, it is clear that many physical phenomena involving nonlinear oscillations
are modeled using the Duffing oscillator. There are many works dedicated to the study of the
behavior of these systems or their control.

In terms of control, most of the works consider only the simulation. The motivation of the work
is to address the aforementioned problems, through:

• Useful prototype for experimentation and investigation of multiple stability configurations of
the Duffing oscillator, for research and experimentation of chaotic nonlinear systems, and for
future research in the area of energy harvesting.

• One of the objectives of the development of energy harvesting systems is to replace other
power sources of autonomous technologies, mainly batteries.

• The possibility of replacing batteries with this type of system proposes a less polluting device
power model compared to batteries.

• The prototype will be useful in didactic use for the study of nonlinear systems.

1.2 Problem Formulation

The main problem to solve can be divided into three sections. First, the development of a functional
prototype of a bistable Duffing oscillator; second, the estimation of the parameters and the states
of the system; and third, the close-loop control of the Duffing oscillator.
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1.2.1 Experimental prototype

To understand the real behavior of Duffing systems, it is important to carry out simulation and
experimental studies. Numerical simulation can be easily done by implementing the mathematical
model (4.1) in software such as MATLAB®. On the other hand, one challenge is to build an
experimental prototype that behaves like the Duffing-Holmes system. The design includes the
properties of the beam and its instrumentation. A working prototype will also be built to allow
experimentation with a wide variety of beams, frequencies, and excitation forces.

1.2.2 Parameters and state estimation

A laser sensor makes it possible to determine the beam’s position, but since its speed cannot be
determined, a controller must be installed in the system. State estimators, including sliding mode,
high-gain, and extended state observers, to mention a few, can be utilized for this. A controller’s
performance will be enhanced by using the Non-linear Integral Extended State Observer (NIESO)
technique to estimate system states and uncertainty.

Conversely, the Duffing-Holmes oscillator’s parameters are a mystery. These parameters can be
identified with minimum effort and are helpful in enhancing control performance.

1.2.3 Control of the system

Research on the control of chaotic systems is of interest. The behavior of these systems has been
demonstrated in numerous articles, most of which report on work with bistable oscillators that are
characterized by the Duffing equation. Still, the majority of these works have been simulation-
based. Moreover, the majority of the works make the assumption that the system’s states and
parameters are known.

The main objective is to ensure that the oscillator follows a smooth path. This desired trajectory
is generated from a reference model that is described below. It is also important to remember that
the reference model will be constructed using the data from the parameter estimates, and that the
controller will make use of the estimates that NIESO has provided.

To achieve the desired performance, the system will be simulated using the finite element
approach in order to determine the structure’s natural frequency. Frequencies that are near to
those that will be employed in the experiments will be avoided.

By using a nonlinear integral extended state observer (NIESO) to accurately estimate the system
states, a controller built using the backstepping method is able to track the reference trajectory for
periodic behavior. The thin aluminum bar used in the experiment is fastened within a stiff frame
and has magnets embedded in its tip. It holds up two magnets, whose attractive forces cancel out
the elastic forces that would keep the beam straight. When there are no outside forces acting on
the beam, the tip of the beam rests near one or the other of the magnets. Additionally, there exists
a position of unstable center equilibrium where the magnetic forces cancel out.

The development of this platform implies not only its usefulness for investigations and experi-
mentation of control and estimation tools for nonlinear systems with chaotic behavior, but it will
also promote a useful prototype for teaching. The proposed design seeks to provide a flexible pro-
totype to expand the range of study beams and frequencies, as well as modifications to study some
of the applications of a bistable Duffing oscillator, such as energy harvesting, fault detection and
prevention in mechanical systems, and electrical and telecommunications.
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1.3 Objectives

Design, simulate, validate and build a prototype of a bistable Duffing oscillator system for its
application in experimentation on chaos theory and nonlinear oscillations.

1.3.1 Specific Objectives

The specific objectives of this project are as follows:

• Modeling and simulation of the bistable Duffing oscillator.

• Design and construction of the prototype.

• Identification of the mechanical parameters of the system.

• Design of the NIESO (simulation and experimental validation).

• Proportional Derivative Control (simulation and experimental validation).

1.4 Thesis Structure

The thesis is organized as follows:

• Chapter 1 presents the state of the art of the topics to be dealt with in this text, the reason for
studying them, as well as the description of the problem to be solved. Based on the problem,
the objectives that must be achieved to generate a possible solution to the aforementioned
problem are presented.

• Chapter 2 presents the information collected from the research carried out, including, but not
limited to, key concepts, a description of the system and its mathematical model, comparative
tables, and a summary of the state of the art. Applications that are being investigated at the
time of writing this text.

• In Chapter 3 there is a description of the method that was used for the development of the
project and the solution of the problem presented.

• Chapter 4 presents the mathematical model of the system developed, for which the equilibrium
points and the dynamics of the oscillator were obtained so that it was possible to generate
simulations of the system, which were subsequently carried out for their physical application
and the compilation of the data obtained.

• Chapter 5 describes the process and the results of the identification, obtaining the parameters
of the prototype of the system in such a way that it was possible to estimate the model of
the system.

• Chapter 6 presents the development and work carried out for the design of the state estimator
and the control law for the generation of the experimental results.

• Chapter 7 presents the general conclusions of the project, as well as the difficulties that arose
during the development of the project and the result of the method used to solve the problem
presented.

4



CHAPTER 2

Methodology

The suggested approach and the ethical issues surrounding the project’s development are covered
in the section that follows. The overall work approach is shown in Figure 2.1. The subsequent
sections provide a more detailed description of this methodology, highlighting the key components
of the diagram, procedures, and tasks.

Prototype Identification Observer Controller

Design

Experimental

validation

Construction

Parametrization

Simulation

Parameter

identification

& validation

Design

Simulation

Experiments

Design

Simulation

Experiments

Figure 2.1: Proposed methodology.

2.1 System modeling and simulation

In order to evaluate the model presented in (2.1), it was necessary to find the equilibrium points,
after that, the model will be simulated in the MATLAB® software environment to study the dy-
namics of the system.

mq̈(t) + cq̇(t)− klq(t) + knq
3(t) = −mp̈(t) (2.1)

where m is the effective mass of the beam, c is the viscous damping coefficient, kl and kn are the
linear and non-linear stiffness coefficients respectively, q(t), q̇(t) and q̈(t) are the beam position,
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velocity and acceleration, and v̈(t) is the input acceleration for the system excitation.

2.2 Design and construction of the prototype

The design of a rigid frame was made, where the magnets that will be used will be mounted. It
will also be necessary to carry out a frame frequency study to confirm that the natural frequency
of the structure is not close to the one that will be used for excitation of the system. The beam
will be designed based on the calculation of the natural frequency ωn.

Prior to the construction of the prototype, its design was carried out in the CAD software
SolidWorks®. In addition to the main elements that are part of a bistable Duffing oscillator, it
was decided to allow the final prototype to be reconfigurable, that is, mobile, so that it can be used
to carry out tests with different sizes of beams. It will also be necessary to be able to move the
magnets of the frame to modify the equilibrium points of the system. The prototype design was
made based on the horizontal configuration with magnets in the structure. To avoid the effects of
gravity, the prototype was oriented in such a way that the movement of the beam is normal to the
direction of the force of gravity, as shown in Figure 2.2.

Laser

sensor

Shake table

Frame

Elastic

beam

Magnets

Figure 2.2: Block diagram of the proposed identification method, where the direction of gravity is
in the direction of negative z.

2.3 System parameterization

To control the system, it is necessary to know the values of the damping coefficient (c), the linear
stiffness (kl), and the non-linear stiffness (kn); for this, different strategies and parameter estimation
algorithms were used. First, these values were obtained analytically, making use of the formulas
and theory presented by Sanguiresu et al. [19] and by Kanamaru [20] that are described in Chapter
4.

Other identification techniques were employed in order to compare and contrast the obtained
results in order to obtain a better approximation of the developed prototype model, as (2.1) is only
an approximate model of the system. Using the online implementation of the offline Least Squares
Method (LSM), a direct technique was used to carry out the identification.
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Figure 2.3: Block diagram of the proposed identification method.

Since there were only access to the longitudinal position of the beam tip and the angular position
of the vibrating table motor, it was necessary to apply a filter to the output and input of the system
in order to apply the LSM. In Chapter 4, the process of filtering the output and input signals of
the oscillator is described. Three types of filters were used so that the values obtained could be
compared and verified, as well as the performance of the LSM. First, it was decided to apply filters
in continuous time to the frequency. Discrete-time filters, which use the same filter in continuous
time in discrete time, were employed since the signal is discrete.Finally, the Integral-Based Filtering
Method (IBFM) was used for identification. Figure 2.3 shows the proposed identification method,
which is based on two main stages: the filtering of the measured signals and the least mean squares
method. When obtaining the estimated values of the parameters, a validation of the results was
carried out by comparing simulations of the system with the estimated values and the real system,
using the same excitation force and similar initial conditions.

2.4 Design and simulation of the Observer

Since the measurements made could only determine the beam’s position, it was suggested to utilize
an extended-state linear observer to determine the beam’s speed from its position. The observer
algorithm was simulated and then applied to the real system to confirm that it was operating as
intended.

2.5 Observer-based Controller Design

After having obtained the values of the aforementioned parameters, as well as the position and
speed, we proceeded to develop a controller that allows the reaching of a desired position trajectory.
This project suggested using a controller that was designed using the back-stepping technique.
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2.6 Observer experimentation

After carrying out the identification of the system, verifying the performance of the designed NIESO
observer, and selecting its gain, experiments of the system using the observer were carried out, and
the results validated the correct design of the observer. In addition to this, further experiments
with the system were performed using different extended-state observers, including a non-linear
(NESO) observer.

2.7 Controller experimentation

Once the observer estimated the states of the system with sufficient accuracy, the controller could
be applied, making tests so that the system achieves the desired behavior. First, tests were run to
see if the desired behavior can be obtained from a starting state. Tests were then run to adjust the
behavior when an alternative has been implemented.

2.8 Experimental validation

In order to evaluate the correct performance of the state observer and the controller, experimental
tests were done with different initial conditions for the position of the beam; the objective was
to get the system to achieve the type of behavior selected, whether it was interwell, intrawell, or
chaotic, that is, the components shown in Figure 3.6. Since the Matlab tool Simulink® allows
modifying values during the execution of the models, it was possible to make the desired behavior
change.
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CHAPTER 3

Prototype design and building

In this chapter, it is described the procedure for the design and building of the prototype used for the
experimentation and the results obtained from this project. First, the design of the experimental
prototype in computer-aided design (CAD) is described. Second, the construction process, the
materials used for it, and the amplifier circuit construction are detailed. Technical drawings of the
designed parts are included in the appendices.

3.1 Main references in the literature

The classical Duffing oscillator design consists of a ferromagnetic beam, cantilevered with two sym-
metrically spaced magnets serving as attractors, and sometimes carrying a mass at the tip of the
beam [18]. The majority of earlier research has examined and studied this kind of oscillator in re-
lation to energy harvesting [21]. A comparison table of the various oscillators that various authors
have investigated can be seen below. Many studies have investigated how the use of nonlinearities
extends the frequency spectrum to extend the bandwidth, activate nonlinear resonances, and facili-
tate tuning, despite the fact that research over the past ten years has concentrated on its operation
in a linear regime [21].

Various oscillator designs have been used by different writers to describe their findings; Erturk
and Inman [22] report the beam’s range of motion using a prototype that is based on the Moon
and Holmes design. While other authors have presented a horizontal configuration in which a
permanent magnet is located at the free end of the beam and in front of it is a second magnet
seeking to obtain bistable behavior, [21, 27] Studies carried out on harmonically excited systems
show that a large amplitude response is robust to [21] parameter variations.

Below is a table that includes the configurations that different authors have reported:

Table 3.2: Oscillator Configuration Comparison.

Magnet at the tip Magnets in the structure

Horizontal [21] [34] [35] [36] [35] [36]
[37] [38] [23] [39]

Vertical Not reported in considered references. [8] [18] [22]
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Table 3.1: Parameters used for bistable oscillators.

Beam Excitation Excitation
size (cm) frequency (Hz) acceleration (g)

Kumar et al. [18] 9.61× .95 4− 13 N/R
B. P. Mann [21] N/R 3− 8 0.6

Erturk e Inman [22] 14.5× N/R 10 0.36
Moon y Holmes [8] 18.8× 0.95 2− 10 N/R
Ibrahim et al. [23] 7.2× 1 15− 17 0.5
Wu et al. [24] 14× 1.27 19.5 N/R

Alevras et al. [25] 14.15× N/R 14− 16 N/R
Diankun Pan [26] 10× 4 22 2
Arrieta et al. [27] 20× 20 8.6 3
Betts et al. [28] 19× 19 18 2
Arrieta et al. [29] 18× 9.5 20.5 2.3
Betts et al. [30] 20× 20 54 0.25
Li et al. [31] 15× 5 59 10

Harris et al. [32] 25× 6 8.4 31
Diankun et al. [33] 10× 4 36− 38 6

g: acceleration of gravity on Earth (9.81 m/s2 approximately).
N/R: Not reported.

Beam

Magnets

(a)

Beam

Magnets

(b)

Beam

Magnets

(c)

Beam

Magnets

(d)

Figure 3.1: Different configurations of the oscillators. a) Horizontal configuration with a magnet at
the tip. b) Horizontal configuration with magnets in the structure. c) Vertical configuration with
a magnet at the tip. d) Vertical configuration with magnets in the structure.

When a configuration with magnets is presented in the structure, two permanent magnets are
placed, as shown in Figures 3.1b and 3.1d, and the beam material used can be ferromagnetic, while
When the beam material does not have this characteristic, it is common to use a permanent magnet
at the tip and a second magnet in the structure installed symmetrically in relation to the beam, as
shown in Figures 3.1a and 3.1c.

3.2 Dynamics of a Duffing-Holmes system

Consider a bistable The Duffing oscillator is excited using an external vibration force, as shown in
Figure 2.2, which is constructed by attaching one end of a ferromagnetic elastic beam to the rigid
base. When this base is subjected to external vibration, the free end of the elastic beam oscillates
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due to the magnetic field generated by two permanent magnets. As mentioned in Chapter 2, this
system can be represented by the expression (2.1) and has three equilibrium points, which can be
obtained when the excitation force of the system is zero; therefore, you have to:

mq̈(t) + cq̇(t)− klq(t) + knq
3(t) = 0 (3.1)

for the previous expression the equilibrium points are found as:

q(−kl + knx
2) = 0 (3.2)

−kl + knx
2 = 0 (3.3)

from the previous expressions we have:

q∗1 = 0 (3.4)

q∗2,3 = ±
√
kl
kn

(3.5)

On the other hand, the three equilibrium points of q̇ are at 0. Therefore, the three equilibrium
points can be described in vector form of the form q∗ = [q∗, q̇∗]T, that is:

q∗
1 = [0, 0]T (3.6)

q∗
2,3 =

[
±
√
kl
kn
, 0

]T

(3.7)

The potential energy U(x) of the system (4.1) can be found using its nonlinear rigidity force as
follows:

U(q) =

∫ q

0
(knq

3 − klq)dq =
1

4
knq

4 − 1

2
klq

2 (3.8)

Figure 3.2: Double potential well energy with three equilibrium points.

The behavior of U(q) is shown in Figure 3.2, where the existence of the three equilibrium points
can be seen, of which the point equilibrium at q∗

1 = [0, 0]T is unstable, while the remaining two
equilibrium points are stable; Due to this, this system is called a bistable oscillator. The existence
of two wells in the potential energy around the equilibrium points q∗

2 and q∗
3 is also observed.
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Due to the existence of the two potential energy wells of the stable equilibrium points it is
possible to have three different behaviors of the oscillator. When the position of the beam shows
movements jumping from one potential well to the other, it is known as an interwell behavior,
while when the value of the measured position rotates around one of the stable points it is known
as intrawell. The third type of behavior is known as chaotic [40].

The behavior of the system depends on the value of the parameters α, β and γ, as well as the
initial conditions x(0) = [x(0), ẋ(0)]T and the magnitude and frequency of the excitation force.
Figure 3.3(a) shows the phase graph of the interwell behavior; It can be seen that the response of
the system moves between stable equilibrium points, jumping from one potential well to the other.
Figure 3.3(b) corresponds to the displacement amplitude. In this behavior the greatest amplitude
can be obtained over time.
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Figure 3.3: Interwell dynamics. (a) Phase diagram. (b) Position in time.

In the intrawell behavior shown in Figure 3.4(a), the response of the system falls within one
of the potential energy wells. Depending on the initial conditions, the obtained behavior can be
described by the response in blue or red. The displacement amplitude is small compared to the
previous behavior; This is because the position surrounds only one of the balance points, as seen
in Figure 3.4(b).
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Figure 3.4: Intrawell dynamics. (a) Phase diagram. (b) Position in time.

The third and final type of behavior is chaotic, so it presents a response similar to a combination
of the previous two. Its repeatability is difficult and complicated to deduce. Despite what can be
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seen in Figure 3.5(b), the amplitude of the displacement varies on multiple occasions over time, to
show in a correct way chaos of a system it is commonly used a Poincare map, Figure 3.5(c) shows
the map of a simulation of the Duffing oscillator.

A characteristic of chaotic systems is that they depend significantly on the initial conditions. An
insignificant change in the starting conditions is amplified and propagates exponentially throughout
the system [41]. This means that the trajectories of the variables (states) of the system, with certain
initial conditions, are very different from the trajectories corresponding to a small change in said
initial conditions [4].
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Figure 3.5: Chaotic dynamics. (a) Phase diagram. (b) Position in time. (c) Poincare map.

3.3 Prototype design

The basic materials proposed for the construction of the prototype are listed below, as shown in
the enumeration of Figure 3.6:

1. Square structural aluminum profile 30× 30 mm.

2. 166× 390 mm thick acrylic plate.

3. 120× 80 mm thick aluminum plate.

4. M6 screws 60 mm cylindrical head.
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5. Base for the support of the flexible beam 1× 2 inches.

6. Two neodymium magnets with a diameter of 12 mm and a caliber of 5 mm.

7. Panasonic® HG-C1400-P laser sensor.

8. QUANSER I-40 vibrating table and QUANSER VoltPAQ-X1 amplifier.

9. QUANSER Q2-USB signal acquisition card.

10. Computer with MATLAB® and QUARC software.

Signal conditioning

Control signal

Laser

sensor

Frame

Elastic

beam

10

9

4

1

7

3

5

8

2

6

Figure 3.6: Diagram of the proposed system, Where the direction of gravity is in the direction of
negative z.

It was determined, based on earlier prototypes that were put out, to position the device so that
the direction of gravity’s effect was transverse to the beam’s displacement, allowing for the system’s
identification to ignore it. For a bistable system represented by (2.1), the Duffing equation may
therefore be used to simulate the suggested experimental system depicted in Figure 3.8.

The material considered for the design was six-millimeter-thick acrylic because it is light and
sufficiently resistant. The main base on which the system’s frame was mounted and which will be
attached to the I-40 vibrating table is a sheet of acrylic. To complete the frame, a thirty-millimeter
square aluminum structural profile was used, along with a machined aluminum piece to assemble
the section that will hold the elastic beam as well as to modify the dimensions of the frame. The
lower frame of the prototype consists of three layers of acrylic, in such a way that a rail is created
through which the magnet bases can be moved; these bases are also made of acrylic, so that the
distance of the magnets on the rail can be modified. In this way, it can be adapted to different
sizes of beams.

The laser sensor was installed on a twenty-millimeter square aluminum structural profile in a
second structure. This base can be adjusted to shift the sensor closer or farther away from the
primary structure. The primary base also housed this second building.
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Figure 3.7: Experimental developed prototype.

Figure 3.8: Final prototype design, in Appendix A you can find the CAD designs of the parts used
to build the prototype.
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3.3.1 Shake Table I-40

To generate the force that excites the system, a vibrating table was used on which the system
was mounted. This equipment was used to carry out the experimentation of the identification
processes and the implementation of the observer and the controller. The Shake Table I-40 is a
single-axis motion simulator from Quanser with multiple advantages, including its low-maintenance
and open-architecture structure, easy operation with stand-alone Quarq software, and a plug-in for
Matlab® Simulink®. It is focused on the simulation of seismic activity for topics related to civil
and geotechnical engineering. However, in this case, it has been used successfully for control issues
and its application in non-linear oscillators [42]. To use this equipment, it is necessary to have other
Quanser brand components, which are the VoltPAQ-X1 voltage amplifier and a data acquisition
card. To generate movement, a signal of maximum ±2 [cm] and 10 [Hz] must be introduced. Table
3.3 summarizes some equipment specifications that must be taken into account for its operation.

Table 3.3: Shake table I-40 specifications.

Shake Table I-40 specifications [42]

Parameter Description / Value

Dimensions (L×W×H) 57.5 [cm] × 12.7 [cm] × 7.62 [cm]
Maximun travel (end to end) 40 [mm]
Maximun paload at 1.0 g 1.5 [kg]
Maximun acceleration with 1.5 kg payload 1.0 [g]
Operational bandwidth 10 [Hz]
Effective stage position resolution 1.22 [µm]
Maximum continuous current 3.0 [A]
Linear Guide Misumi LX3010C-B1-T3056.4-150
DC Motor Magmotor S23 Brushed Servo Motor

3.3.2 Shake Table PD Controller

The Shake Table I-40 model is given by the following transfer function

Xs(s) =
1

kfs2
Im(s), kf =

mtpb
kt

(3.9)

where Xs(s) is the Laplace of the stage position, Im is the Laplace of the applied motor current, kf
is the model gain, mt is the total mass being moved by the motor, pb is the pitch of the lead-screw,
and kt is the current-torque of the motor [42]. The current applied to the motor is

Im =
Vm(s)− kmsΘm(s)

rm
(3.10)

where Vm is Laplace of the applied voltage, km and rm are the back-emf parameter and the resistance
of the motor respectively, and, Θm(s) denotes the lead-screw angle.

The Laplace of the proportional-derivative feed-forward control UPD(s) used to regulate the
shake table position has the following structure

UPD(s) = Vm(s) = kp(Xsd(s)−Xs(s)) + kds(bsdXsd(s)−Xs(s)) (3.11)
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where kp = 4874 [V/m] and kd = 4.387 [V-s/m] are the proportional and derivative control
gains respectively. Substituting (3.9) into (3.11) and solving for Xs(s)/Xsd(s) gives the closed loop
transfer function [42]

Xs(s)

Xsd(s)
=

kp + bsdkds

KfPbrm

(
s2 + 2Kmπ+Pbkd

Kf
s+

kp
KfRm

) (3.12)

3.3.3 Laser Distance Sensor

A laser distance sensor was employed to determine the oscillator beam’s displacement. The Pana-
sonic HG-C1440-P, which has a linear analog output of 0-+5 [V] and a measuring range of 400±200
[mm], was the distance sensor used. In Figure 3.9, it can be seen that when the measurement goes
out of the measurement range, there is a constant output of +5.2 [V] of direct current. Some
characteristics of the sensor used are summarized in Table 3.4.

5.2 [V]
5.0 [V]

2.5 [V]

 0 [V]
200 400 600

Measurement center Measurement far pointMeasurement near point

Measurement distance [mm]

Figure 3.9: Analog voltage output of HG-C1400-P sensor.

Table 3.4: HG-C1400-P distance laser sensor specifications.

Specifications [43]

Measurement Repeatability Beam Supply Analog Response
range diameter voltage output time

Value 400± 200 300-800 500 12-24 ± 10% 0-5[V] 1.5, 5,
[mm] [µm] [µm] [V DC] 4-20 [mA] and 10 [ms]

3.3.4 Signal conditioning circuit

Since the analog output of the HG-C1400-P sensor is 0 - +5 [V] and the Q2-USB data acquisition
board supports a ±10 [V] input with 12-bit resolution, an amplification A circuit was used to take
advantage of the analog readout characteristics of the Q2-USB board. Amplification was provided
by the AD620 Instrumentation Amplifier, which is a low-cost, high-precision instrumentation am-
plifier that allows gains of 1 to 10,000 times. Thus, the measurement range was achieved to be
±7 [V]. The general schematic of the conditioning circuit is presented in Figure 3.10, while Figure
3.10 shows the approximate range of the sensor output signal compared to the output signal of the
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circuit of amplification. Finally, in Table 3.5, the main characteristics of the AD620 amplifier are
listed.

Table 3.5: Instrumentation amplifier AD620 specifications.

Specifications [44]

Supply Input Input Bias Input Operating Gain
voltage voltage current impedance temperature range

Value ±18 ±10 0.5 - 2.0 10 ∥ 2 −40 - +85 1 - 10000
[V] [V] [nA] [GΩ pF] 4-20 [°C]

Power supply 
Instrumentation

amplifier

[AD-620]

Position sensor (lasser)

[HG-C1400-P]

Q2-USB 

Data Acquisition 

Device10 DC [V] 7 DC [V]

0 -  5 DC [V]

Figure 3.10: Signal conditioning circuit schema.
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CHAPTER 4

System Identification

4.1 Introduction

Nonlinear behavior can be found in different engineering topics and applications. For example, in
mechanics, stiffness effects, damping, and nonlinear interconnections are just a few examples of
problems in vibration testing, where resonant frequencies are generated. Given the rich dynamics
of nonlinear systems, their models have different levels of complexity in a high-dimensional space.
In the identification process of this type of system, the structural errors of the model become
more important. This problem is often inevitable and affects important areas of the identification
process, such as the design of the experiment and the selection of the cost function. [45,46].

Chaotic systems have been studied in recent decades in different areas of science, and given
the close relationship between nonlinearity and chaos, what has already been mentioned must be
considered in their study. For the control and synchronization applications of these systems, a
proper identification process is of great importance. For these types of cases, experimental data are
usually used to create the most appropriate estimator [45, 47]. Some commonly used methods are
classified into different categories, for example: linearization, time and frequency domain methods,
modal methods, time-frequency analysis, black box modeling, and structural model updating [48].

Any linearization is only valid for a given excitation level. Some examples of the use of the lin-
earization method are described below. Caughey [49–51] proposed to replace a nonlinear oscillator
with external Gaussian excitation with a linear one with the same excitement. However, it is well
known that equivalent linearization does not correctly predict the response of strongly nonlinear
random oscillators.

In time domain methods, the data considered during the identification process takes the form of
series signals, for example, the restoring force surface (RFS) approach [52]; and a parallel approach
called force-state mapping. An extension of the technique has been devised to cover hysteresis and
chaotic systems [53–55]. Orthogonal estimation algorithms [56] have also been used, which allow
the model parameters to be estimated sequentially.

A method is said to be a frequency domain method if the data considered during the identifi-
cation process takes the form of a frequency response function (FRF) or spectra. One attempt to
exploit data in the frequency domain was the Volterra and Wiener series. These series allow the
generalization of the concepts of impulse response function and FRF to nonlinear systems [45,57].

Multiple works have been carried out focused on the identification of chaotic systems. In [47],
the importance of correct identification in the control of chaotic systems is presented. The authors
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in [58] present the implementation of a swarm-type algorithm of chaotic ants for identification
purposes. This type of approach was also applied in [59], where a particle swarm algorithm was
used. Optimized artificial bee colony or particle swarm algorithms [60] have been used for the
identification of Van Der Pol-Duffing oscillators [46], and the authors of [61] proposed the use of
an extreme learning machine to identify a Duffing oscillator.

This thesis addresses the problem of identifying a Duffing oscillator, a system with cubic non-
linearity, using a combination of the offline least squares method with forgetting factor and is
complemented by using different filtering methods for the input and system output. The results
obtained are compared and validated to verify the correct estimation of the oscillator parameters.
The identification method used is described in detail below.

4.2 Mathematical model of the Duffing oscillator

The behavior of a Duffing oscillator is continuous and has multiple equilibrium points, some of which
are unstable, in the case of this work, the considered system has only 3 unexcited equilibrium points,
two of which are stable and one unstable, as will be defined later.

The above system can be represented by the following equation:

mq̈(t) + cq̇(t)− klq(t) + knq
3(t) = −mp̈(t) (4.1)

where m is the effective mass of the beam, c is the viscous damping coefficient, kl and kn are the
linear and non-linear stiffness coefficients respectively, q(t), q̇(t) and q̈(t) are the beam position,
velocity and acceleration, v̈(t) is the input acceleration for the system excitation, and u(t) is the
control signal.

4.3 Direct physical modeling

In order to obtain the mass m and linear stiffness kl of the real system, we can consider the beam
behavior without the influence of the magnets in the frame. The Figure 4.1 represents an equivalent
diagram of the beam.

In order to calculate the linear stiffness kl, it is necessary to obtain the effective mass of the
beam, as shown below.

Figure 4.1: Diagram Deflection of the cantilever.
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4.3.1 Effective mass

In this case, there are two main mass to consider, the beam and the magnets mass, which are
mounted in the tip of the beam. The total effective mass m is given by:

m = mm +meq (4.2)

where mm is the mass of the magnets and meq is the equivalent mass of the beam. To obtain the
equivalent mass meq of the beam, we can use the equivalent diagram of a cantilever to describe it,
as shown in Figure 4.1. To calculate meq we will use the deflection q and the maximum deflection
qmax of the cantilever. In [19] the author shown that qmax is given by:

qmax =
Pll

3

3EIb
. (4.3)

where l is the length, E is the Young’s modulus, Ib is the moment of inertia, and, Pl is a punctual
load due to the mass of the beam. Singiresu [19] presented that static deflection is given by :

q(Ix) =
Pll

2
x

6EIb
(3lb − lx) =

qmaxl
2
x

2l3b
(3lb − lx) (4.4)

The maximum kinetic energy Tmax of the beam itself is given by [19]:

Tmax =
1

2

∫ 1

0

mb

lb
{q̇(lx)}2 dlx =

1

2
meq q̇

2
max (4.5)

where mb is the total mass of the beam and (mb/lb) is the mass per unit length. Deriving (4.4)
with respect to time prduces:

q̇(lx) =
q̇max

2l3b
(3l2xlb − l3x) (4.6)

Tmax =
1

2

∫ 1

0

mb

lb

{
q̇max

2l3b

}2

dlx =
1

2

(
33

140
mb

)
q̇2max (4.7)

Replacing (4.6) in (4.7):
1

2
meq q̇

2
max =

1

2

(
33

140
mb

)
q̇2max (4.8)

hence, the equivalent mass of the beam is:

meq =
33

140
mb (4.9)

4.3.2 Linear and non-linear stiffness

The deflection of the beam is given by (4.3). So the linear stiffness (kl) of the beam is given by:

kl =
3EIb
l3b

(4.10)

Figure 4.2 shows a diagram of the shape of the beam, so, the moment of inertia of the beam can
be calculated as [62]:

Ib =
bbh

3
b

12
(4.11)
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And the natural frequency of the beam is:

ωn =

√
kl
m

(4.12)

To calculate the non-linear stiffness of the system, it is necessary to obtain the equilibrium
points of (4.1). For mv̈ = 0 the system converges to one of the equilibria, so mq̈ = 0, then (4.1)
can be written as:

q(−kl + knq
2) = 0 (4.13)

solving for q, we have:

q1 = 0 (4.14)

q2,3 = ±
√
kl
kn

(4.15)

where qi and qe are the unstable and stable equilibrium points. So, all three equilibrium points
of q̇ are at 0. Therefore, the three equilibrium points can be described in vector form of the form
q∗ = [q∗, q̇∗], that is:

q∗
1 = [0, 0]

[
q
q̇

]
(4.16)

q∗
2,3 =

[
±
√
kl
kn
, 0

] [
q
q̇

]
(4.17)

The linear stiffness factor can be obtained from (4.10). From position measurements is possible
to know the equilibria q∗

e, so kn can be obtained from (4.15):

kn =
kl
q∗e

2 (4.18)

Figure 4.2: Moment of inertia diagram for a rectangular shape.
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Figure 4.3: Logarithmic decrement diagram.

4.3.3 Damping coefficient

To calculate the system’s damping, the logarithmic decrement method [19] is used, defined as
the natural logarithm of the ratio of any two consecutive amplitudes of an underdamped free
vibration system. Figure 4.3 shows the characteristic shape of a free vibrating system without
constant excitation [19]. Let t1 and t2 denote the times corresponding to two successive measured
amplitudes, X1 and X2. Knowing both times and amplitudes, the next ratio is formed:

X1

X2
=
X0 exp

−ξωnt1 cos(ωdt1 − ϕ0)

X0 exp−ξωnt2 cos(ωdt2 − ϕ0)
(4.19)

where, τd = 2π/ωd and ωd are the period and the frequency of the underdamped oscillation re-
spectively, ωn is the natural frequency of the cantilever, X0 is the amplitude at t = 0. However,
because t1 and t2 are the times of the consecutive amplitudes, t2 = t1 + τd. Hence:

cos(ωdt2 − ϕ0) = cos(2π + ωdt1 − ϕ0) = cos(ωdt1 − ϕ0) (4.20)

So (4.19) can be written as:

X1

X2
=

exp−ξωnt1 X0 cos(ωdt1 − ϕ0)

exp−ξωn(t1+τd)X0 cos(ωdt1 − ϕ0)
=

exp−ξωnt1

exp−ξωn(t1+τd)
(4.21)

The logarithmic decrement δ can be obtained from (4.21) as:

δ = ln
X1

X2
=

2πξ√
1− ξ2

(4.22)

The value of δ is dimensionless, and the damping ratio ξ can be obtained from (4.22):

ξ =
δ√

(2π)2 + δ2
, (4.23)

so the viscous damping parameter is given by:

c = 2ξωnm. (4.24)
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4.4 Least Mean Squares Algorithm

The least squares algorithm is probably the most popular and one of the most used in practice [63].
The servomechanism’s input and output signals are used as inputs by the constructed algorithm,
which employs the direct identification approach. The LMS algorithm, as well as others related to
it, are widely used in various applications of adaptive filtering. The convergence speed of the LMS
is shown to be dependent on the eigenvalue spread of the input signal correlation matrix [64].

Finding the model parameters that provide an estimated model with N observations that best
fits the actual system is the current task. Gauss originally accomplished this goal in 1795 by
deriving the least squares method. First, the observation error, defined as [65], was introduced in
order to determine the best fit.

error = real system output− estimated system output

It is necessary to parametrize the system as follows:

z(t) = ϕT(t)θ (4.25)

where z ∈ R is a measurable signal, ϕ = [ϕ1, ϕ2, · · · , ϕn]T ∈ Rn×1 is a vector of measurable signals,
and θ = [θ1, θ2, · · · , θn]T ∈ Rn×1 is the vector of parameters to be estimated.

4.4.1 Offline Least Mean Squares

The Least Mean Squares generates a vector θ̂ that minimizes the following function:

J(θ̂) =

N∑
k=1

(
z(k)− ϕT(k)θ̂

)2
, J(θ̂) ∈ R (4.26)

where N is the number of samples. The J(θ̂) function can be written in a matrix form as:

J(θ̂) = (zk −Φkθ̂)
T(zk −Φkθ̂) (4.27)

where zk = [z(k), z(k + 1), · · · , z(N)]T and Φk = [ϕ(1),ϕ(2), · · · ,ϕ(k)]T, N ≥ 2.
The function J(θ̂) that minimizes the LMS can be written as:

J(θ̂) = zTk zk − 2θ̂
T
ΦT
k zk + θ̂

T
ΦT
kΦkθ̂ (4.28)

J(θ̂) is a convex function. The partial derivative of J(θ) with respect to θ is given by:

∂

∂θ̂
J(θ̂) =

∂

∂θ̂

[
zTk zk

]
− ∂

∂θ̂

[
2θ̂

T
ΦT
k zk

]
+

∂

∂θ̂

[
θ̂
T
ΦT
kΦkθ̂

]
. (4.29)

The minimum of J(θ̂) is obtained by applying the gradient ∇J(θ̂) and setting it equal to zero.

∇J(θ̂) = −2ΦT
k zk + 2ΦT

kΦkθ̂ = 0 (4.30)

so:
ΦT
k zk = ΦT

kΦkθ̂, (4.31)
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hence
θ̂ =

[
ΦT
kΦk

]−1
ΦT
k zk. (4.32)

Writing (4.32) in the form of sums:

θ̂ =

[
N∑
k=1

ϕ(k)ϕ(k)T

]−1 [ N∑
k=1

ϕ(k)z(k)

]
(4.33)

The offline LSM is represented by the above equation; N samples of ϕ, z are acquired, and then
an estimate of θ̂ is made. As will be demonstrated in Section 4.4.2, a model’s parameters can also
be estimated online, meaning that the estimated θ̂ can be updated each time a sample is collected.

Theorem 1 (Convergence of the Parameter Estimation of a Non-Linear Static Process). The
parameters θ of a time-invariant non-linear system can be estimated by the LSM method if the
following conditions are met:

• The input signal is measurable.

• det
(
ΦT
kΦk

)
̸= 0

• The disturbance is stationary and has zero mean.

• The input signal is not correlated with the disturbance

4.4.2 Online Recursive Least Squares Method (RLSM) with forgetting factor

The online discrete least squares method with forgetting factor is given by the following expressions:

θ̂(k) = θ̂(k − 1) + L(k)e(k) (4.34)

L(k) =
P(k − 1)ϕ(k)

λff (k) + ϕT(k)P(k − 1)ϕ(k)
(4.35)

P(k) =
1

λff (k)

[
P(k − 1)− P(k − 1)ϕ(k)ϕT(k)P(k − 1)

λff (k) + ϕT(k)P(k − 1)ϕ(k)

]
(4.36)

ei(k) = z(k)− ẑ(k) = z(k)− ϕT(k)θ̂(k − 1) (4.37)

where θ̂(k) is an estimate of θ from parameterization (4.45), ϕ(k) is the regressor, P(k) is the gain
matrix, z(k) is the output signal from parameterization, ei(k) is the prediction error and λff (k) is
the forgetting factor. For systems with time-varying parameters, it is known that the most common
way to choose the forgetting factor is as a positive constant, always chosen slightly less than or
equal to one.

Theorem 2 (Persistency excitation [63,66]). For the vector of estimated parameters θ̂ to converge
to the vector of real parameters θ, the regression vector ϕ(k) of the identification algorithm that
estimates θ̂ must satisfy the following persistent excitation condition [66]:

lim
k→∞

Ωk = lim
k→∞

λmin

[
N∑
k=1

ϕ(k)ϕT(k)

]
= ∞ (4.38)

where λmin [·] is the smallest eigenvalue of
∑N

k=1 ϕ(k)ϕ
T(k) for every iteration.
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4.5 Bistable Duffing oscillator model parametrization

The values of the viscous damping coefficient c, the linear stiffness kl, and the non-linear stiffness
kn must be known in order to control the system; various filtering techniques used for parameter
estimation are used for these reasons. First, using the formulas and theories given in Section 4.3,
these parameters were determined analytically.

A better approximation of the built prototype model was obtained because (4.1) is an ap-
proximate model of the system, and different parametrization methods were used to compare and
contrast the results. Recursive Least Mean Squares (RLMS) with the forgetting factor was used to
carry out the identification, allowing for online implementation.

Reference

Position 

++_++ Least Mean

Squares

PD

Controller

Servomechanism

(Shake table)

Filter

Filter

Duf ing

Oscillator

Obtained

Model

Identi ied

Parameters

++++
++++

Proposed algorithm

Shake table

Figure 4.4: Block diagram of the proposed identification method.

Identifying the parameters of an uncertain system requires parameterization, and it consists of
writing (4.1) in the form of (4.25).

Consider the system model described by (4.1), it can be written as:

q̈(t) + αq̇(t)− βq(t) + γq3(t) = −p̈(t) (4.39)

where m is known, α = c/m, β = kl/m, and γ = kn/m. Supposing the control signal and initial
conditions are equal to zero, the Laplace transform of (4.39) is given by:

s2Q(s) = −sαQ(s) + βQ(s)− γL{q3} − s2P (s) (4.40)

where L is the Laplace operator.

The parameterization process consists of multiplying both sides of the previous equation by a
filter F (s) in order to estimate the parameters via measurements from the position q(t) and the
input acceleration ẅ(t), obtaining the following expression:

s2F (s)Q(s) + s2F (s)P (s) = −sαF (s)Q(s) + βF (s)Q(s)− γF (s)L{q3(t)} (4.41)
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4.5.1 Continuous filter parametrization

Consider the following filter: Fc(s) = λ2/(s
2 + λ1s + λ2). Applying the filter Fc(s) previously

defined to (4.41), we have:

s2λ2
s2 + λ1s+ λ2

Q(s) = −α sλ2
s2 + λ1s+ λ2

Q(s) + β
λ2

s2 + λ1s+ λ2
Q(s)

−γ λ2
s2 + λ1s+ λ2

L{q3} − λ2s
2

s2 + λ1s+ λ2
P (s)

(4.42)

By defining Qf (s) = Q(s)Fc(s) and Pf (s) = P (s)Fc(s), equation (4.42) in the time domain is
given by:

q̈f (t) = −αq̇f (t) + βqf (t)− γq3f (t)− p̈f (t) (4.43)

where the subscript f means filtered quantities. Changing the variable of (4.43) gives us:

z(t) = −ζϕ1(t) + klϕ2(t)− knϕ3(t) (4.44)

where z(t) = q̈f (t) + p̈f (t), ϕ1(t) = q̇f , ϕ2(t) = qf and ϕ3(t) = q3f . With the model described now
with (4.44) we can write (4.39) as (4.25):

z(t) = ϕT(t)θ (4.45)

where z(t) = q̈f (t) + p̈f (t), ϕi = [ϕ1(t), ϕ2(t), ϕ3(t)]
T, and θ = [α, β, γ]T.

4.5.2 Discrete filter parametrization

The discrete filters were obtained getting the Z-transform of (4.42) using Tustin method.

z(kTs) = ϕT(kTs)θ (4.46)

where ϕ =
[
q̇f (kTs), qf (kTs), q

3
f (kTs)

]T
, θ = [α, β, γ]T, Ts is the sampling period, k = 1, 2, · · · , N ,

and N is the number of samples.

4.5.3 Linear Integral filter parametrization

Consider the following integrator operator:

In{ρ(t)} =
gi
δni

∫ t

t−δ

∫ τ1

τ1−δ
· · ·

∫ τ1

τn1−δ
ρ(τn)dτn · · · dτ1 (4.47)

where gi is a user-defined gain, δ is a time window that depends on the sampling period (Ts), and
n is the number of integrals to apply to the function ρ(t). In this case, gi/δ

n serves as the filter
gain. The following formula provides the value of δ:

δi = rTs (4.48)
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where Ts is the sampling period and r is the filter’s length factor. To approximate the frequency of
the system under study, the value of r for the filter’s bandwidth should be selected. The integral
operator’s Laplace transform is defined as follows:

L [In{ρ(t)}] = gi

(
1− e−δis

δis

)n
L{ρ(t)} (4.49)

As a pre-filter from measured signals, the integral operator In{ρ(t)} is helpful in removing
offsets and measurement noise [66,67]. Using I1 as an operator on (4.1) produces:

gi
δi

[∫ t

t−δ
q̈(τ)dτ +

∫ t

t−δ
p̈(τ)dτ = −

∫ t

t−δ
αq̇(τ)dτ +

∫ t

t−δ
βq(τ)dτ −

∫ t

t−δ
γq(τ)dτ

]
(4.50)

gi
δi

[
q̇(t)− q̇(t− δi) + ṗ(t)− ṗ(t− δi) = α[q(t)− q(t− δi)] + β

∫ t

t−δi
q(τ)dτ − γ

∫ t

t−δi
q(τ)dτ

]
(4.51)

So, if we apply the operator I4{ρ(t)} on (4.1) we have:

gi
δ4i

[∫ t

t−δi

∫ τ1

τ1−δi
[q(τ2)− 2(τ2 − δi) + q(τ2 − 2δi)dτ2dτ1]+

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi

∫ τ3

τ3−δi
v̈(τ4)dτ4dτ3dτ2dτ1 =

− α

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi
[q(τ3)− q(τ3 − δi)] dτ3dτ2dτ1 + β

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi

∫ τ3

τ3−δi
q(τ4)dτ4dτ3dτ2dτ1

−γ
∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi

∫ τ3

τ3−δi
q3(τ4)dτ4dτ3dτ2dτ1

]
(4.52)

Defining Fi(s) = L[I4ρ(t)], hence, the Laplace transform of (4.52) can be written as:

s2Fi(s)Q(s) + s2Fi(s)P (s) = −sαFi(s)Q(s) + βFi(s)Q(s)− γFi(s)L{q3(t)} (4.53)

where F (s) is the following fourth-order filter:

Fi(s) =
gi
δ4i

(
1− eδis

s

)4

, (4.54)

whose magnitude and cut-off frequency are given by the following expressions:

mag[Fi(s)] = |Fi(jω)| =
gi
δ4i

∣∣∣∣δi sin(πω/ω0)

πω/ω0

∣∣∣∣4 , ω0 =
2π

δi
, (4.55)

from (4.53) the filters Fi1 , Hi2 and Hi3 can be defined as:

Fi1 = Fi(s), Fi2 = sFi(s), and Fi3 = s2Fi(s) (4.56)

The inverse Laplace transform of (4.53) is given by: defining Qf (s) = Q(s)F (s) and Pf (s) =
P (s)F (s), where the subscript f indicates filtered quantities

gi
δ4
z(t) =

gi
δ4

[
ϕT(t)θ

]
(4.57)
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where z(t) = L−1 [I4{q̈(t) + p̈(t)}], ϕi = [ϕi1(t), ϕi2(t), ϕi3(t)]
T, and θ = [α, β, γ]T. The parametriza-

tion signals are:

ϕi1(t) =− α

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi
[q(τ3)− q(τ3 − δi)] dτ3τ2dτ1 (4.58)

ϕi2(t) =β

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi

∫ τ3

τ3−δi
q(τ4)dτ4dτ3dτ2dτ1 (4.59)

ϕi3(t) =− γ

∫ t

t−δi

∫ τ1

τ1−δi

∫ τ2

τ2−δi

∫ τ3

τ3−δi
q3(τ4)dτ4dτ3dτ2dτ1 (4.60)

4.6 Results

This section presents the results of the identification process of the built prototype, as well as the
design and calculations of the methods used in this chapter. In this order, direct physical modeling
is presented; the design of the filters used for the parameterization of the system, as well as its
frequency response; the results of the identification by LSM; and the validation of the estimated
parameters.

4.6.1 Direct physical modeling

The modeling of the real system is then obtained. The magnets at the tip have a mass of mm =
0.0228 [kg], and the beam has a mass of mbeam = 0.0206 [kg]. The equivalent mass of the beam is
determined from Section 4.3.1; hence, meq = 0.0049 [kg]. The effective mass that results is therefore
m = 0.027[kg].

Figure 4.5: Dimensions of the beam.

Equations from Section 4.3.2 were used to calculate the linear and non-linear stiffness; Figure
4.5 shows the dimensions of the beam of the prototype, which were used to calculate its second
moment of inertia. Using (4.11) Ix = 1.6 × 10−12 [m4]. The beam is mainly made of aluminum,
so Young’s modulus of aluminum is E = 6.3 × 1010 [N/m2]. It was used (4.10) to calculate the
linear stiffness kl of the beam, obtaining kl = 10.7 [N/m]. Since the equilibrium points are given by
(4.15), the non-linear stiffness can be calculated from the magnitude of (4.15), so kn = 1.106× 104

[N/m3]. For the next identification experiments, it is necessary to know the natural frequency of
the beam, from (4.12) ωn = 3.13 [Hz]
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The logarithmic decrement method outlined in Section 4.3.3 was utilized to obtain the viscous
damping. The experimental result of the beam oscillating freely without any magnetism on the
structure is shown in Figure 4.6; this behavior is comparable to that of Figure 4.3. Equations (4.22)
through (4.24) from Section 4.3.3 were applied to determine the viscous damping coefficient for the
two consecutive amplitudes shown in the figure below.

The two consecutive amplitudes are X1 = 0.00781624 [m] and X2 = 0.00759612 [m], so δ =
0.028566, then calculating ξ, obtaining ξ = 0.0045463, finally the viscous damping coefficient value
obtained is c = 0.004947, and ζ = c/m = 0.17889 [N·m/s·kg].

Figure 4.6: Logarithmic decrement experiment.

4.6.2 Filters frequency response

The continuous filter designed for identifications experiments used the following values for λ1 = 40
and λ2 = 400, so:

Fc(s) =
400

s2 + 40s+ 400
(4.61)

The frequency response of the filters used is shown in Figure 4.7.

(a) (b) (c)

Figure 4.7: Magnitude of the frequency response of continuous filters.

The discrete filters used for identification experiments were obtained by getting the z transform
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of the continuous filters Fc(s), sFc(s), and s
2Fc(s):

Fz1(z) = Z {Fc(s)} = Z
{

400

s2 + 40s+ 400

}
=

0.000779z + 0.0007585

z2 − 1.922z + 0.9231
(4.62)

Fz2(z) = Z {sFc(s)} = Z
{

400s

s2 + 40s+ 400

}
=

−0.7686z + 0.7686

z2 − 1.922z + 0.9231
(4.63)

Fz3(z) = Z
{
s2Fc(s)

}
= Z

{
400s2

s2 + 40s+ 400

}
=

400z2 − 799.7z + 399.7

z2 − 1.922z + 0.9231
(4.64)

The frequency response of the filters used is the same as the continuous filters, because what was
changed was their representation. So Figure 4.7 represents the same response for this filters.

From Section 4.5.3, the equations (4.54) to (4.56) are used to obtain the frequency response of
the filters based on integrals Fi1 , Fi2 , and Fi3 whose response is shown in Figure 4.8.

(a) (b) (c)

Figure 4.8: Magnitude of the frequency response of integral filters.

4.6.3 Parameters identification

For identification, the position of the shake table was given by the addition of two harmonic signals:
0.5 [cm] magnitude and 3 [Hz] frequency, and 0.2 [cm] magnitude and 2 [Hz]. Thus, the acceleration
of the shake table is:

p̈(t) =
d2

dt2
[0.5 sin 6π + 0.2 sin 2π] [m/s2] (4.65)

The system exhibits a frequency-rich behavior given its excitation. The fast Fourier transform,
as illustrated in Figure 4.9, can be used to observe that while the frequency of 3 [Hz] is predominant,
the effects of 2, 4, 6, 8, and 9 [Hz] are also discernible. This further indicates that there are several
resonance frequencies in the system.
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Figure 4.9: Fast Fourier transform from measured position during identification.

Figures 4.10, which display three graphs illustrating the behavior of the estimated values of each
parameter and a comparison of the filtering techniques, display the results of the identification of
each parameter. It is possible to distinguish between the various approaches. It is important to
emphasize that the values found using the analytical modeling of the system are most similar to the
results obtained using the discrete filters. Section 4.6.5 presents a comparison of the identification
validation carried out with each method.

The result of identifying the viscous damping coefficient is shown in Figure 4.10; this parameter
was found to be the most different from the value obtained analytically (Figure 4.10). b. The
linear stiffness of the beam’s obtained result is shown. It is simpler to understand the variations in
the outcomes for each of the filtering techniques in this graph. Moreover, one can observe that the
identification with integral filters converges a little bit quicker.

Table 4.1 summarizes the outcomes for all of the applied filtering and identification techniques.
It is simpler to understand the disparity between the values obtained in this way. The values in
the table are those that were used for the experimental validation of the suggested identification,
observer states, and controller in the ensuing experiments.

Table 4.1: Identified parameters from the four parametrization methods.

Method
Identified values

ζ/m [N·m/s·kg] kl/m [N/m·kg] kn/m [N/m3·kg]

Physical 0.1789 387.0638 4.0012× 105

Integral 0.3757 462.1897 5.8881× 105

Continuous 0.3862 527.9839 6.4535× 105

Discrete 0.4372 366.3472 5.3209× 105
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(a)

(b)

(c)

Figure 4.10: Identification results. a) Damping coefficient identification. b) Linear stiffness coeffi-
cient identification. c) Non-linear stiffness coefficient identification.
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4.6.4 Persistency excitation validation

The persistent excitation described in Theorem 2 was employed to verify the convergence of the
values found for the parameters α, β, and γ. Figures 4.11 from a) to c) display the outcome of
applying the equation (4.38) to the data collected during the experiment. The graphs in all three
scenarios show that the LSM used for identification is convergent, despite their slow growth rates.

(a) (b) (c)

Figure 4.11: Results: Persistence of excitation (PE) condition validation for a) continuous
parametrization, b) discrete parametrization, and c) integral parametrization.

4.6.5 Validation

A summary of the identification results validation process is shown in Figure 4.12. Essentially, four
models are constructed with the estimated parameters and applied with the same excitation as the
actual system. For every type of behavior, similar initial conditions were taken into account. Given
that the aforementioned conditions yield the same kind of behavior, it was determined that the
estimated parameters are accurate enough.The process was carried out for the interwell behavior
shown in Figure 4.13; Figures 4.14 and 4.15 show the validation for both wells of attraction of the
intrawell behavior; for the chaotic case, the characteristics of this type of system must be considered;
small changes cause very different results; however, despite the difference in the trajectories, they
are all chaotic, as shown in Figure 4.16, thus validating the estimated parameters with each filtering
and identification method.

Identified

Parameters

Duffing

Oscillator

Input

force
Position

Estimated

Model
Validation

Figure 4.12: Validation proposed method.

The direct estimated model exhibits a larger beam movement amplitude than the others, as seen
in Figure 4.13. This effect is also observed in the remaining validation experiments. Nonetheless, it
is the model that most closely approximates the system’s actual equilibrium points when it comes
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to intrawell behavior. In addition, it is easier to see the measurement disturbances caused by the
laser position sensor in the graphs presented in Figures 4.14 and 4.15.

Figure 4.13: Interwell behavior validation.

Figure 4.14: Chaos behavior validation.

Figure 4.15: Intrawell behavior validation for the right equilibrium point.
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Figure 4.16: Intrawell behavior validation for the left equilibrium point.

Table 4.2: Parameters used for validation experiments.

Experiment

Harmonic Harmonic Initial
signal 1 signal 2 conditions

Amplitude Frequency Amplitude Frequency q0(t) q̇0(t)
[cm] [Hz] [cm] [Hz] [m] [m/s]

Interwell 0.4 3 0.1 2 0.005 0.1
Intrawell 0.3 3 0.05 2 0.033 0
Chaos 0.41 5.4 0.1 2 0.005 0

4.7 Conclusion

As was indicated at the beginning of the chapter, the identification of Duffing oscillators, also
known as nonlinear oscillators, is the subject of multiple works, each of which offers solutions
varying in complexity. Two approaches were offered in this instance to estimate the parameters of
the prototype that was in use. First, parameters obtained with the second proposed method were
sufficiently close to those obtained through analytical estimation using the presented formulas.

The use of the LMS method was useful to make a relatively fast identification of the system,
but the results varied depending on the flitting method used for signal preprocessing. However,
the validation shows that the estimated parameters are sufficiently close to the real values of the
system, obtaining similar behaviors. It is important to take into account the use of Theorem 1 to
ensure proper identification of the system, in addition to avoiding harmonic frequencies during this
process because it can alter the results significantly.
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CHAPTER 5

Non-linear Integral Extended State
Observer

5.1 Introduction

Sometimes, in practice, there is no possibility of knowing the states of a system; that is, they cannot
be measured. This may be due to economic or physical limitations related to the system or the
inexistence of technology capable of performing such measurements. Due to this, state estimation
methods have been studied and proposed. Estimating the unknown states of a system is essential
for different activities or applications, decision-making, monitoring, or system control. One of the
most widely used estimation methods is the state observer, since it can use information from sensors
to approximate unknown values [68–70]. A correct selection and design of a state observer improve
the performance of the applied controller [68,70].

However, it is also necessary to consider that systems present uncertainties and disturbances
that can be significant and also unknown. The estimation of uncertainties and disturbances is
important since it is difficult to measure them [71]. It is possible to apply state and disturbance
observers [72]. Because of this, the extended state observer (ESO) is a promising technology, as it
can estimate both internal uncertainty and perturbations [72]. Basically, the ESO, in addition to its
usefulness in estimating system states, takes uncertainties and disturbances as general uncertainties
and encompasses them as a new extra state. The state observer can be considered an extended
high-gain observer. Thus, the output of the extended observer and the total uncertainty of the
system can be compensated by a controller, increasing its robustness [73]. In the literature, the use
of an ESO is often presented in active disturbance rejection control (ADRC) [73]. For example,
different applications and variations of ESO have been described and successfully implemented in
systems such as flight control, chemical processes, robot control, or motion control [72,74,75].

However, despite the advantages of an extended state observer, it has limitations in the face
of high-frequency noise in the measurements, and spikes occur during the transient period [73].
However, several solutions to these problems have been developed [73,76].

For this project, a nonlinear integral extended state nonlinear extended state observer (NIESO)
was proposed based on the observer designed and described in [70]. The position is obtained from
the laser sensor measurements, and the parameters estimated during identification were used, so
the system is partially known. Therefore, the proposed NIESO is intended to estimate the velocity,
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the remaining parameters, and the unmodeled dynamics, i.e., the uncertainty, of the constructed
Duffing oscillator. In the next section, the design of the proposed observer is presented.

5.2 Observer Design

Consider the Duffing-Holmes system (4.39). By defining x1 = q and x2 = q̇ its state-space form is

ẋ1 = x2

ẋ2 = βx1 − γx31 − αx2 + p̈
(5.1)

For this, it is considered that the position of the system is known, available to be measured
using a laser distance sensor. Since in the previous chapter the identification of the system was
made for the parameters α, β, and γ, their estimated values are known, so the previous equation
can be rewritten as:

ẋ1 = x2

ẋ2 = β̂x1 − γ̂x31 − α̂x2 + (β − β̂)x1 − (γ − γ̂)x31

− (α− α̂)x2 + χ+ p̈

y = x1 + d

(5.2)

where α̂, β̂, and γ̂ are estimated values of the system parameters, χ is the unmodeled system
dynamics, y is the position measurement output, and d is the bounded measurement noise from
the position sensor.

Assumption 1. The system parameters θ = [α, β, γ]T and its estimates θ̂ =
[
α̂, β̂, γ̂

]T
satisfy the

following conditions:

α, α̂ ∈ Ωα ≜ {α : 0 < αmin < α < αmax}

β, β̂ ∈ Ωβ ≜ {β : 0 < βmin < β < βmax}
γ, γ̂ ∈ Ωγ ≜ {γ : 0 < γmin < γ < γmax}

(5.3)

hence, the corresponding parameter estimation errors (α− α̂), (β − β̂), and (γ − γ̂) are constants
and bounded.

Assumption 2. The unmodeled system dynamics χ is a smooth bounded function, hence χ̇ is also
bounded.

By defining the new extended states x0 =
∫ t
0 ẋ1(τ)dτ , ψ(x) = β̂x1 − γ̂x31 − α̂x2, and x3 =

χ+ (β − β̂)x1 − (γ − γ̂)x31 = g, their dynamics ẋ0 = x1 + d, and ẋ3 = ġ, (5.2) becomes:

ẋ0 = x1 + d

ẋ1 = x2

ẋ2 = x3 + ψ(x) + p̈

ẋ3 = ġ

(5.4)
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where the integral state x0 is used to obtain robustness of the observer and controller designs toward
the measurement noise d, and x3 represents the uncertainty of the system. Consider the following
nonlinear integral extended state observer (NIESO) design for the system represented in (5.4):

˙̂x0 = x̂1 + 4ωo(x0 − x̂0) + d

˙̂x1 = x̂2 + 6ω2
o(x0 − x̂0)

˙̂x2 = x̂3 + ψ(x) + p̈+ 4ω3
o(x0 − x̂0)

˙̂x3 = ω4
o(x0 − x̂0)

(5.5)

where ωo is the only tuning parameter of the observer, it also represents the bandwidth of the
observer.

5.3 States estimation convergence

Defining the state estimation error ei = xi− x̂i, where i = 0, ..., 3, the error dynamics of the systems
(5.4) and (5.5) becomes:

ė0 = e1 − 4ωoe0 + d

ė1 = e2 − 6ω2
oe0

ė2 = e3 + ψ(x)− ψ(x̂)− 4ω3
oe0

ė3 = ġ − ω4
oe0

(5.6)

Representing (5.6) in the following matrix form:

ė = Ae(t) +Ψ(x, x̂, t) +∆(t) (5.7)

where e = [e0, e1, e2, e3]
T,

A =


−4ωo 1 0 0
−6ω2

o 0 1 0
−4ω3

o 0 0 1
−ω4

o 0 0 0

 , Ψ =


0
0

ψ(x)− ψ(x̂)
0

 , and ∆ =


d
0
0
ġ

 .
Proposition 1. The boundedness of ∆.

Proof. The boundedness of the signal ∆.

ġ = χ̇+ (β − β̂)− 3(γ − γ̂)x21x2 − (α− α̂)ẋ2 (5.8)

is shown below:

• According to the Assumption 1, the terms (α − α̂), (β − β̂), and (γ − γ̂) are constants and
bounded, and as per Assumption 2, χ̇ is bounded.

• Due to the system dynamics and structure, the states of (5.4), for F = 0 converge to any of the
stable equilibrium points, and for F ̸= 0 oscillates around any of the two stable equilibrium
points (x∗1, x

∗
2) = (±

√
β/γ, 0). Then the signals x1, x2, and ẋ2, are bounded.
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• The measurement noise d is a bounded signal related to sensor tolerance reported by the
manufacturer [43] and physical limitations from the sensor and environment.

So, it can be concluded that ||∆|| ≤ ∆, in other words, ∆ is bounded.

The characteristic polynomial of the matrix A is p(s) = (s + ωo)
4, and for any ωo > 0, A is

Hurwitz, obtaining four repeated eigenvalues in λej = −wo < 0, j = 1, ..., 4. The analysis of the
convergence of the error of the a observer is based on the work done by the authors in [70] in
which a NESO observer is studied for a bistable Duffing observer. In this case, use was made of
the Gronwall-Bellman inequality described below.

Lemma 1 (Gronwall-Bellman Inequality). There are two continuous functions h1(t) : [0, t1] →
R and h2 : [0, t1] → R+. For a continuous function po(t) : [0, t1] → R that satisfies:

po(t) ≤ h1(t) +

∫ t

0
h2(τ)po(τ)dτ, 0 ≤ t ≤ t1 (5.9)

for the same interval p(t) satisfies:

po(t) ≤ h1(t) +

∫ t

0
h1(τ)h2(τ) exp

∫ t
0 h2(s)ds dτ (5.10)

Theorem 3. The solution of the error dynamics (5.3) is:

e(t) = expAt e(0) +

∫ t

0
expA(t−τ)Ψ(x, x̂, τ)dτ +

∫ t

0
expA(t−τ)∆(τ)dτ (5.11)

Proof. Now, for every ϵo > 0 and ρo = (ωo − ϵo) > 0, there exist a constant µ > 0 that satisfies:

|| expAt || ≤ µ exp−ρt, t ≥ 0 (5.12)

Both vectors Ψ(x, x̂, t) and satisfies the Lipschitz condition as shown in [70], then, there exist
an Lipschitz constant L that satisfies:

|ψ(x)− ψ(x̂)| ≤ L||x− x̂|| = L||e(t)||, ∀{x, x̂} ⊂ Ωx, (5.13)

where Ωx = {x, x̂ ∈ Rn : ||x|| ≤ r, ||x̂|| ≤ r}. This Lipschitz constant satisfies L ≤ sup
x∈Ωx

∥∥∥∂ψ(x)∂x

∥∥∥
∞
,

and leads to:

L = βmax + 3γmaxr
2 + αmax (5.14)

Using (5.12) and (5.13), (5.11) satisfies:

∥e(t)∥ ≤ µ exp−ρt ∥e(0)∥+ ∆̄µ

ρ

(
1− exp−ρt

)
+ exp−ρt

∫ t

0
µL ∥e(τ)∥ expρτ dτ, (5.15)

where ∆̄ is the upper bound value of the vector ∆, by multiplying (5.15) with expρt yields:

∥e(t)∥ expρt ≤ µ ∥e(0)∥+ ∆̄µ

ρ

(
expρt−1

)
+

∫ t

0
µL ∥e(τ)∥ expρτ dτ, (5.16)
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to apply Gronwall-Bellman inequality, the following are defined:

h1(t) = µ||e(t)||+ ∆̄µ

ρo

(
expρot−1

)
, h2(t) = µL, and po(t) = ||e(t)|| expρot (5.17)

Replacing the expressions of (5.17) into (5.10) yields:

||e|| expρot ≤ µ||e(0)||+ ∆̄µ

ρo
(expρot−1) +

∫ t

0

[
µ||e(0)||+ ∆̄µ

ρo
(expρot−1)

]
µL expµL(t−τ) dτ (5.18)

Splitting the integral:

||e(t)|| expρot ≤ µ||e(0)||+ ∆̄µ

ρo
(expρot−1) +

∫ t

0
µ2L||e(0)|| expµLt exp−µLτ dτ

+
∆̄µ

ρo

[∫ t

0
µL expµL(t−τ) expρot dτ −

∫ t

0
µL expµL(t−τ) dτ

] (5.19)

Simplifying after integration the following expression is obtained:

||e(t)|| expρot ≤ µ||e(0)|| expµLt+Λ(expρot− expµLt), (5.20)

where:

Λ =
∆̄µ

ρo

(
1− µL

(ρo − µL)

)
, (5.21)

which is a positive constant. By multiplying (5.21) with exp−ρot it yields:

||e(t)|| ≤ exp(µL−ρo)t(µ||e(0)|| − Λ) + Λ, t ≥ 0 (5.22)

Now, by choosing ρ > µL, the estimation error e(t) is bounded and the estimated state vector
x̂ converges bounded inside a ball with radius Λ around the system state vector x.

Notice, first, that 0 < (ωo− ϵ) < µL, second, that the bigger ωo gets, yields a faster convergence
and a smaller radius Λ [70].

5.4 Poincare map

Using the time series of their states, nonlinear systems’ dynamics can be identified and examined
using Poincare maps. The geometry and topology of the data serve as the foundation for the
analysis of these maps. Trajectories that represent the entirety of the dynamics of a system in a
stable regime are known as attractors [77]. These trajectories can present specific structures of the
system.

To construct these maps, a section surface that cuts the trajectory under study must be selected,
and the points at which it passes through said section will be recorded. This process can be done
with different trajectories, and depending on the behavior of the system, specific patterns will be
generated. For example, a limit cycle is a trajectory that will always pass through the same point
in the section [78,79].
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5.5 Experimental results

The experimentation process followed a similar protocol to the experimental validation protocol
outlined in Section 4.6.5. The parameters estimated in Section 4.6.3 were used to compare the
various NIESO observers produced with those parameters. The parameters used for the experiments
are displayed in Table 4.1 to obtain the different behaviors of the oscillator.

Since the NIESO observer uses the values of the system parameters, experiments were carried
out using the different estimated values for each parameter in such a way that the results could be
compared and the most accurate observer could be used. Figures 5.1 a) to d) are the results of the
observers’ experiment for each behavior of the system. In addition, the table 5.1 shows the RMS
error for each experiment. The observer that presents the best results compared to the rest is the
one that uses the parameters estimated with the discrete filters. From now on, when the observer
is used with NIESO in simulations and experiments, we will talk about the one that uses the values
obtained with the discrete filters.

(a) (b)

(c) (d)

Figure 5.1: Comparison of the x1 estimation performance of the NIESO observer with each group of
parameters estimated in Chapter 4, where the subscripts P, D, C, and I refer to Physical, Discrete,
Continuous and Integral, referring to the filtering or parameter estimation methods.. a) Interwell
Behavior. b) Chaotic behavior. c) Intrawell behavior left equilibrium point. d) Intrawell behavior
of right equilibrium point.

Experiments were conducted with the prototype for each of the dynamic behaviors of the Duffing
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Table 5.1: Root mean square error.

Method
RMSE [m]

Interwell Chaos Right Intrawell Left Intrawell

Physical 1.8968× 10−4 1.9960× 10−4 2.2157× 10−4 2.1919× 10−4

Integral 1.8818× 10−4 2.0677× 10−4 2.3594× 10−4 2.1829× 10−4

Continuous 1.8798× 10−4 2.098× 10−4 2.4135× 10−4 2.1815× 10−4

Discrete 1.8830× 10−4 2.0442× 10−4 2.3179× 10−4 2.1836× 10−4

oscillator to verify that the designed observer was functioning as intended. The performance of
the Linear Integral Extended State Observer (LIESO), whose representation in the state space is
(5.23), was also compared to that of the NIESO observer (5.5).

˙̂x0 = x̂1 + 4ωo(x0 − x̂0) + d

˙̂x1 = x̂2 + 6ω2
o(x0 − x̂0)

˙̂x2 = x̂3 + p̈+ 4ω3
o(x0 − x̂0)

˙̂x3 = ω4
o(x0 − x̂0).

(5.23)

All observers used identical position and acceleration data, making comparisons simple. The pa-
rameters used in each experiment are compiled in Table 5.2. Various experiments were conducted
for every oscillator behavior. The results obtained for a duration of 10 seconds are displayed in the
figures. Table 5.3 displays the root mean square error (RMSE). It is evident that the nonlinear
integral observer with extended states exhibits a marginally smaller error than the other observer
under study. This error is small enough to justify the use of the observer in the design of the oscil-
lator controller. However, since the estimation error is very small, the use of any of the observers is
acceptable here, and they are precise enough to be able to apply any of them both for the controller
and in different situations.

Table 5.2: Parameters used for validation experiments.

System behavior

Interwell Chaos Right Intrawell Left Intrawell

Amplitude [cm] 0.4 0.41 0.2 0.2
Frequency [Hz] 3 5.4 4 4

x1(0) [cm] -3.17 3.1 3.52 -3.2
x2(0) [m/s] 0 0 0 0

The state observer experiments were conducted using a methodology akin to that employed in
the preceding chapter for the validation of the estimated parameters presented in Section 4.6.5.
Table 4.2 displays the experiment parameters that were used to produce the various oscillator
behaviors. The position of the system was measured using the HG-C1400-P laser sensor, which
has a response time of 1.5 [ms]. This measurement is used to compare the estimate x̂1 of the
state x1 of the state observers. One observer was implemented for each set of parameters obtained
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in the identification process, which are compiled in Table 4.1, because the NIESO observer uses
the estimated parameters of the system. For each observer, the same gain value (ω0 = 500) was
utilized. The comparison between the estimated and measured values of the position is displayed in
Figures 5.2 through 5.4. The four plots demonstrate how accurate the estimate x1 is—so accurate
that there is no discernible difference between the measurements and the output of the observer.

Figure 5.2: Interwell estimated and real position.

Figure 5.3: Chaos estimated and real position.

Given that measurements cannot determine the velocity of the beam q̇(t), an estimate of the
velocity was obtained by applying the derivative filter (5.24) to the measured position. The output
of Fder was compared with the estimated velocity of the observer ̂̇q(t). The results of the estimation
of q̇(t) are displayed in Figures 5.5 to 5.7; it is noted that the estimates are fairly similar in these,
even when considering the output of the (5.24) filter. It is important to remember that the filter
does not attenuate the high-frequency noise because, in contrast to the observer, it functions as a
high-pass filter.

Fder =
500s

s+ 500
(5.24)
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(a)

(b)

Figure 5.4: Intrawell estimated and real position. a) Right equilibrium point. b) Left equilibrium
point.

Regression analysis is a useful tool for assessing how well a regression model fits the actual data
set by enabling one to comprehend and measure the relationship between the predicted values of
the model and the actual values obtained from a data set. The standard deviation of the prediction
or estimation error is known as the root mean square error (RMSE); Put another way, it can be
thought of as the average error of the model predictions compared to the actual data. As a result,
the better the estimate fit, the lower the RMSE value. The following formula can be used to
determine the RMSE:

RMSE =

√√√√ 1

N

N∑
i=1

[x1(i)− x̂1(i)]
2 (5.25)

where N is the total number of samples.

The RMSE results for each observer used for experimentation are found in Table 5.3, here it
should be noted that both for the studied observers, regardless of the oscillator behavior, have very
similar, and small, RMSE values. Just as in Figures 5.5 to 5.7, one has an accurate estimate.
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Figure 5.5: Interwell estimated velocity.

Figure 5.6: Chaos estimated velocity.

Table 5.3: Root mean square error of position in meters.

Observer
RMSE

Interwell Chaos Right Intrawell Left Intrawell

LIESO 5.4642× 10−4 4.7643× 10−4 4.3348× 10−4 4.8946× 10−4

NIESO 5.4322× 10−4 4.7443× 10−4 4.317× 10−4 4.865× 10−4

Finally, figures 5.8 a) to c) show the Poincare maps of the chaotic behavior for a sine excitation
given by v(t) = (0.51/100) sin (8 ∗ 2πt). In all figures, the characteristic shape obtained for the
chaotic behavior in the Duffing oscillator is obtained. The experiment was repeated three times,
obtaining very similar results.
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(a)

(b)

Figure 5.7: Intrawell estimated velocity. a) Right equilibrium point. b) Left equilibrium point.

(a) (b)

Figure 5.8: Poincare map of chaotic behavior experimental results.
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5.6 Conclusions

The stability of the observer was demonstrated by the Gronwall-Bellman inequality, thus ensuring
its correct functioning. The use of a large gain allowed rapid convergence and high accuracy in
estimating system states. For the experiment, a large gain wo = 500 was used; both observers have
errors less than 0.1 [mm], that is, less than 0.1× 10−3 [m]. Since the controller uses the states x0
and the nonlinearities of the system as presented in Chapter 6, the use of the NIESO observer was
chosen.

There was a comparison between the performance of NIESO and LIESO observers. Comparing
the two, significant variations are observed in the estimation of the states x1, x2, and x3. On the
other hand, the NIESO-type observer has a lower RMSE error and allows the global uncertainty
of the system to be estimated. For the controller used in the next chapter, it is useful to use the
extended states x̂0 and x̂3.

Finally, the Poincaré maps in Figures 5.8 a) to c) were produced using the state observer
estimates. Since the shapes formed in all three cases are indicative of chaos in the Duffing bistable
oscillator, it was possible to confirm that the built prototype, shown in Chapter 3, was designed,
modeled and operated correctly.
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CHAPTER 6

Observer based controller

6.1 Introduction

The last ten years have seen a rise in the amount of research on chaotic system control, particularly
on nonlinear oscillators like the Duffing oscillator. The fact that these systems are highly dependent
on the starting conditions and can be significantly altered by small control actions is one of the
factors that makes them interesting to control [80]. Additionally, the benefits of using chaotic
systems have been investigated recently in a variety of fields, including flexible robotics, quantum
transition, sensor development, precision measurements, energy harvesting, system chaos, signal
amplification and detection, and energy harvesting [13,15,81–83].

Since it was presented, multiple strategies for controlling the Duffing oscillator have been stud-
ied, to a large extent. Thanks to the increasing computing power of current equipment, the viability
and performance of the proposed controllers have been demonstrated numerically and analyti-
cally [80–88]. Multiple studies focused on the control of the Duffing oscillator have been carried
out; for example, Sifakis and Elliott [80] propose four different control strategies: continuous de-
layed feedback (CDF), occasional proportional feedback, Ott, Grebogi, and Yorke (OGY), which
were validated using numerical simulations. Cunli Wu [84] presented the simulation of the imple-
mentation of a feedback-free noise phase addition controller for the control of the chaotic behavior of
a Duffing oscillator. While simulations check the feasibility of using a robust slider mode controller
and a class of optimal polynomial controller to expand the stability region of the system [83] In [81],
a phase controller was applied in its experiments to estimate the parameters of the experimental
platform used. Bedri Bahtiyar [87] used a predictive fuzzy controller to classify systems using the
Duffing oscillator as a reference. Huang and Ji [82] applied a vibration controller to coupled Duffing
oscillators representing flexible junction manipulators using a Quanser® experimental platform. In
other cases, what is sought is to suppress the effect of chaos. Vińıcius Piccirillo [88] numerically
verified the use of a linear vibration absorber to suppress the chaotic behavior of a duffing oscillator.

Harb et al. [86] presented and validated the use of a recursive back-stepping controller through
simulations for the control of duffing oscillators, concluding that robustness can be added to the
controller by using state or parameter estimators to reduce the effect of model uncertainties. For
example, Yao et al. [85] used an Extended State Observer (ESO) to mitigate the effect of structured
and unstructured uncertainties in the control of DC motors together with an Adaptive Robust
Controller. For the design of the controller implemented in this project, tools such as those presented
in the two aforementioned works were used. Here, a controller based on a non-linear integral
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extended state observer (NIESO) was designed using the backtracking technique.

6.2 Control Objective

The objective is to design a controller such that the system position x1 → xd, i.e., the controller
design is focused on tracking a desired trajectory xd given by the non-linear reference model (6.1),
where the desired position is a smooth bounded function.

ẋd =
d

dt
xd

ẍd = β̂xd − γ̂x3d − α̂ẋd + p̈

(6.1)

For the control of the system studied in this thesis (5.1), the back-stepping technique is used
to obtain a stable closed-loop system with the desired dynamics. To compensate for the present
uncertainty, the designed controller will be based on the estimated states of the observer x̂1, x̂3 and
x̂3. The back-stepping control technique is based on a recursive design process that, in summary,
disassembles the nonlinear control problem into simpler control elements, focusing on achieving
global asymptotic stability of feedback systems [89,90].

6.3 Observer-based Controller Design

The back-stepping technique was applied to design the controller for the system (5.1). For that,
let us define the following new state variables

z1 =x̂1 − xd (6.2)

z2 =x̂2 − ν (6.3)

where z1 is the tracking errors, and ν is a virtual control input that will be chosen later.
The dynamics of z1 is calculated as

ż1 = ˙̂x1 − ẋd = z2 + ν + 6ω2
oe0 − ẋd, (6.4)

choosing ν as follows
ν = ẋd − k1z1 − 6ω2

oe0, (6.5)

where k1 is one control gain, the equation (6.5) becomes

ż1 = −k1z1 + z2. (6.6)

The dynamics of z2 is given by

ż2 = ˙̂x2 − ν̇

=x̂3 + ψ(x̂) + u+ 4ω3
oe0 − ν̇

(6.7)

where

ν̇ =ẍd − k1ż1 − 6ω2
o ė0

=ẍd − k1ż1 − 24ω3
oe0 − 6ω2

o(e1 + d).
(6.8)
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Since e1 = x1 − x̂1 = (y − d)− x̂1, then

ν̇ = ẍd − k1ż1 − 24ω3
oe0 − 6ω2

o(y − x̂1) (6.9)

where all the signals are available. Finally, the proposed control law u is:

u = −z1 − k2z2 − x̂3 − ψ(x̂)− 4ω3
oe0 + ν̇, (6.10)

it yields:

ż2 = −z1 − k2z2 (6.11)

The closed-loop dynamics of the system consisting of (6.6) and (6.11) is expressed as the z-
system is an LTI system:

d

dt

[
z1
z2

]
=

[
−k1 1
−1 −k2

] [
z1
z2

]
(6.12)

which is Hurwitz i.e. stable for positive controller gains k1 and k2. Then the position tracking error
goes to zero asymptotically, hence the z1 is bounded and depends on the observer estimation error.

6.4 Controlling Duffing oscillator via shake table

The system operates, as described in Chapter 4, by feeding a reference position signal vd to the
shaking table and feeding the Duffing oscillator with the acceleration v̈ caused by the table move-
ment. In actual use, the table’s position is managed independently of its acceleration. In other
words, the vibrating table system, depicted in Figure 6.1, is in a closed loop.

++

_
++

PD

Controller
Shake Table

Reference

Position Duf ing

Oscillator

Figure 6.1: General open-loop operation of the prototype system.

The control signal (6.10) is in terms of acceleration; however, in this case, it is necessary to
generate the control signal (6.10) in such a way that it is in terms of the position of the table [91].
To do this, consider that the desired position of the table is given by

pd =

∫ t

0

∫ τ1

0
u(τ2)dτ2dτ1 (6.13)

Figure 6.2 is the block diagram representation of the previous expression, so that it can be
implemented in the Simulink® environment. However, the drawback of using pure integrators,
Fii = 1/s, to obtain ẋd and xd is that the low frequency components of u will be amplified,
which will generate a signal xd that can be increasing. This phenomenon is known as drift and
can cause xd to take values larger than the allowed limits [92, 93]. To avoid this problem, the
following integrating filter (6.14) is used, called drift-free-integrator, which does not integrate very
low frequency components or offsets, thus preventing xd from taking on high values.
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Figure 6.2: Control signal double integration block diagram.

Fdfi =
s2

s3 + 10.77s2 + 10.56s
(6.14)

Figure 6.3 shows the Bode plot of the integrating filter, which is compared to the Bode plot
of a pure integrator. Note that the integrating filter attenuates low-frequency components, lower
than ω = 10 [rad/s] or f = 1.59 [Hz]. For frequencies greater than this value, Fdfi behaves as a
pure integrator.

Figure 6.3: Bode diagrams of drift-free-integrator Hnd and pure integrator Hp.

The diagram in Figure 6.4 can be used to resume the implementation of the controller. It should
be noted that the controller uses the reference model states xd, ẋd, and ẍd, and that p̈ should equal
u. Additionally, the controller makes use of the estimated states x̂, the error e0, and the controller
itself, as well as the vibration table designed by the equipment supplier Quanser®. Finally, the
good performance of the shake table p ≈ pd implies p̈ ≈ u.
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Figure 6.4: Implementation of the proposed control scheme.

6.5 Results

The findings from the controller simulations and the experiments conducted on the experimental
system are shown in this section. The simulations and their parameters are displayed first, followed
by the experiments that were conducted and their parameters.

6.5.1 Simulations

This section shows the results of the simulations of the controller applied to each of the behaviors
of the Duffing oscillator. The parameters used for the reference model and the state observer are
the parameters estimated using the integral filters, and for the simulation of the real system, the
values obtained with the discrete filters were used from Table 4.1. The observer gain is ωo = 500,
and the controller gains used are k1 = 600 and k2 = 250. The initial position of the simulated
real system depends on its behavior as well as the input force. v̈, for interwell x1(0) = 0.006
[m], and p̈ = 1.7765 sin(6πt); for left intrawell x1(0) = 0.031 [m], and p̈ = 1.0659 sin(6πt); for
right intrawell x1(0) = 0.032 [m], and p̈ = 1.0659 sin(6πt); and for chaotic x1(0) = 0.035 [m], and
p̈ = 4.9288 sin(5.1πt).

In the simulations, the controller shows correct tracking of the reference trajectory, obtaining
small z1 values. Figure 6.5 (a) shows the tracking of the position in the interwell behavior, in which
it even manages to follow the reference in the transient prior to reaching the desired behavior. Figure
6.5 (b) shows the error z1 obtained.Figures 6.6 (a) and 6.7 (a) show the simulation of the controller
for intrawell simulations. For either experiment, the control action produces an acceptable tracking
position. It is difficult to tell the difference between xd and x1. The resulting error is shown in
Figures 6.6 (b) and 6.7 (b), where the error amplitude is less than 0.6× 10−4 [m]. After validating
the correct operation of the controller through the simulations carried out, it was possible to move
on to experimental validation using the built prototype. The results of the experimentation are
presented below.
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(a) (b)

Figure 6.5: Interwell controller position tracking simulation result. (a) Position tracking. (b)
Position tracking error z1.

(a) (b)

Figure 6.6: Right intrawell controller position tracking simulation result. (a) Position tracking. (b)
Position tracking error z1.

(a) (b)

Figure 6.7: Left intrawell controller position tracking simulation result. (a) Position tracking. (b)
Position tracking error z1.
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(a) (b)

Figure 6.8: Chaos controller position tracking simulation result. (a) Position tracking. (b) Position
tracking error z1.

6.5.2 Experiments

Experiments were carried out to check the performance of the controller; for this, they were applied
to each of the oscillator behaviors. The parameters used for the reference model and the state
observer are the parameters estimated using the integral filters.

(a) (b)

(c)

Figure 6.9: Interwell controller position tracking experimental results. (a) System behavior with
control applied. (b) System behavior without control applied. (c) Controller application until
t = 120 [s].

The observer gain is ωo = 500, and the controller gains used are k1 = 600 and k2 = 250. The
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initial position of the reference model on the interwell behavior was x1(0) = 0.006 [m], and the
input force to both the reference model and the real system was v̈ = −1.7765 sin(18.8496t), so the
reference signal has a 3 [Hz] frequency. In this way, the control signal will have this frequency and
can be correctly integrated using the integrating filter (6.14). For the Interwell behavior control,
the mean absolute and relative errors between the measured and desired positions were calculated.
Table 5 presents both errors in the case of the uncontrolled system and the controlled system. The
use of (6.15) was made to calculate the mean absolute and mean relative errors, respectively.

ϵ =
1

N

N∑
i=1

|x1(i)− xd(i)|, ϵr =
1

N

N∑
i=1

[
|x1(i)− xd(i)|

xd(i)
× 100

]
(6.15)

where N is the total number of samples.

Table 6.1: Controller performance.

System
Controller position error

Absolute mean error ϵ [m] Relative mean error ϵr [%]

Uncontrolled 0.0218 94.5237
Controlled 0.0052 15.4779

(a) (b)

(c)

Figure 6.10: Interwell controller position tracking error z1 experimental results. (a) System behavior
with control applied. (b) System behavior without control applied. (c) Controller application until
t = 120 [s].
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(a) (b)

(c)

Figure 6.11: Interwell table input voltage experimental results. (a) System behavior with control
applied. (b) System behavior without control applied. (c) Controller application until t = 120 [s].

(a) (b)

(c)

Figure 6.12: Interwell control signal [m] experimental results. (a) System behavior with control
applied. (b) System behavior without control applied. (c) Controller application until t = 120 [s].
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6.6 Conclusions

The experiments and simulations of the controller demonstrate its correct performance to track
the reference trajectory xd. However, the output of the controller is in terms of acceleration, and
to control the shake table, it is necessary to use a reference position. It was necessary to apply a
drift-free integrator, which allowed experimentation to be carried out. Due to the characteristics
of the integrating filter used, it was not possible to obtain valid results for the intrawell and
chaotic behaviors since the controller output for both cases presents low frequencies, and they are
attenuated by the Hnd filter. Experimentally, it was possible to apply the controller appropriately
for the Interwell behavior. The results show that x1 properly tracks the reference xd, and that both
the voltage consumed by the table and the error between the reference position and the measured
position are significantly reduced compared to when the designed controller is not applied to the
system. Due to this problem, you can choose to use a method that allows you to control the
table by taking advantage of the acceleration signal or, using the appropriate equipment, apply the
controller to any dynamics of the system as demonstrated in the simulations.
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CHAPTER 7

Conclusion

ADuffing oscillator prototype was created in order to make up for the elastic beam’s non-ferromagnetic
composition. Two neodymium magnets were used at the tip to make up for this. This made it pos-
sible to validate the system’s behavior through experimentation. We were able to confirm through
these experiments that the prototype’s dynamics matched the theoretical description. In compar-
ison to merely using the HG-C1400P sensor’s typical output range, more accurate measurements
could be obtained by better utilizing the resolution of the analog reading of the Q2-USB card
because the amplification circuit functioned as intended.

Because the Quanser brand equipment has pre-designed and pre-defined tools for both digital
coupling of the analog DAQ readings and vibration table calibration and control, the experimenta-
tion was completed quickly and effectively. Its use is nevertheless subject to certain software and
hardware limitations, as with any experimental platform.

Both analytical techniques produced values that were comparable to the outcomes of the least
squares method, and the systems identification methods produced reasonable estimated values.
Three sets of estimated parameters make up the LMS results. These values are relatively similar
to one another because the system’s input and output signals were filtered using three different
techniques.

The validation process was carried out in a hybrid way, that is, as a combination of experi-
ments and simulations. The experimental excitation signal was injected into simulations with the
parameter estimates. The validation was successful since the dynamics of the system were similar
in each case compared to the experimental data; for each type of behavior, the same was obtained
in both the experiment and the simulation. It was also verified that the identification convergence
requirement was met.

The designed state observer allowed the state x1 of the system to be accurately estimated, and,
therefore, the rest of the estimates are considered to have small errors. Since the observer uses the
estimated parameters in the identification, tests were carried out with each group of parameters to
be able to choose the one that had the best results, resulting in the choice of the parameters obtained
with the discrete filtering method. The observer used (NIESO) was compared with another similar
observer (LIESO), and although the performance of both turned out to be very similar, the first
showed to have less error in the estimation of x1.

Once the state x2 of the system could be estimated, it was possible to construct the Pincaré
map of the chaotic behavior of the oscillator, which shows the characteristic form of the chaotic
dynamics of the Duffing oscillator, demonstrating again that the constructed prototype is described
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by the Duffing equation.
The design of the controller was carried out using the back-stepping technique and considered the

use of the state observer for its design, so it was important to choose it appropriately. Experiments
and simulations of the controller show that it works correctly and allows tracking of a reference
trajectory with a small error. Here it is important to return to the physical limitations of the
Shake Table I40 equipment, since the reference signal must be position in [m] and has a movement
limit of ± 2 [cm]. However, because the controller output is given in terms of acceleration [m/s2],
it was necessary to use two drift-free integration filters so that the control signal could be sent
to the actuator. However, by attenuating the low-frequency elements of u, it was not possible to
obtain successful results in experimentation for the intrawell and chaotic behaviors. Despite this
limitation, in the case of Interwell behavior, favorable results were obtained, managing to follow the
reference xd with a relatively small error and low voltage consumption by the vibration table, thus
demonstrating the correct performance of the controller despite the limitations of the experimental
equipment.

7.1 Future work

In this work, there are areas of opportunity in which work can be done to improve the project
presented in this thesis. The amplification circuit can be modified to achieve a range of ± 12 [V],
thus taking advantage of the full resolution of the DAQ’s analog readout. Regarding identification,
you can choose to use other methods or approaches to compare the results to find a method that
can obtain a more accurate estimate, which will improve the performance of the proposed state
observer. Regarding the state estimation method, an improvement process similar to that described
for the identification method can be carried out. Regarding the controller, it can be redesigned to
obtain an output in position, use another method of controlling the vibration table, or use another
design technique for the controller in order to obtain successful results in experimentation with the
complete dynamics of the system.
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APPENDIX A

Prototype reference drawings

In this annex, you can find the schematic drawings of the parts designed for the construction of the
experimental prototype developed for this thesis. All measurements are in millimeters [mm]. The
manufacturing material is specified in each piece; to identify the parts, you can use the figures in
Chapter 3 as a reference. The schematics are to scale; this is specified in the description of each
drawing.
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Figure A.1: CAD assembly of the designed parts of the experimental prototype.

The elements shown in Figure A.1 are listed below:

1. Main base: this part connects to the shake table plate.

2. Bottom base: this part is the base for rails and magnets bases.

3. Back wall: This is an structural part, it is used to hold the auxiliary support base for alu-
minium tubes.

4. Auxiliary support base: this base helps to hold the aluminium tubes.

5. Aluminium tubes: square shape with 30× 30 [mm] dimensions.
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6. Magnet bases: This bases moves all over the rail created by the structured formed by the
Base rails and Milimetric rails.

7. Milimetric rail: This is the upper rail that has millimeter marks to correctly locate the
magnets base in a desired position.

8. Base rail: this rail helps to create an space where the magnets base can move.

9. Beam holder base: This aluminium structure is mobile, it travels on the aluminium tubes.

10. Beam holder base auxiliary: helps to hold the Beam holder base in the desired place using
screws.

11. Beam holder: This part and its auxiliary holds the experimental beam using screws.

12. Beam holder auxiliary.
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Figure A.2: 1. Main base: 1:4 scale, transparent acrylic.
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Figure A.3: 2. Bottom base: 1:2 scale, transparent acrylic.
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Figure A.4: 3. Back wall: 1:2 scale, transparent acrylic.
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Figure A.5: 4. Auxiliary support base: 1:1.5 scale, transparent acrylic.
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Figure A.6: 6. Magnet base: 1:1 scale, transparent acrylic.
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Figure A.7: 7-8. Milimetric and base rail 1:3 scale, transparent acrylic.
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Figure A.8: 9. Beam holder base: 1:2 scale, aluminium.
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Figure A.9: 10. Beam holder base auxiliary: 1:2 scale, aluminium.
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Figure A.10: 11. Beam holder: 1:1 scale, aluminium.
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Figure A.11: 12. Beam holder auxiliary: 1:1 scale, aluminium.
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