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Abstract

Hypertension is a disease with high incidence and prevalence characterized by its central role in retinal vas-
cular damage, known as hypertensive retinopathy. Retinal vascular changes seen in fundus images can be
employed as biomarkers to measure generalized vessels constrictions through the Arteriolar-to-Venular Ra-
tio (AVR). Advances in Artificial Intelligence and straightforward medical image acquisition have allowed
the development of innovative support systems for the automatic diagnosis of eye diseases.

This work presents an automatic system that uses a U-net-based neural network to classify arteries, veins,
and the optic disc from fundus images through semantic segmentation to calculate the AVR and determine
whether a patient has abnormal results and thus the disease. The system was tested on three datasets. Two
are publicly available: DRIVE and INSPIRE-AVR, each consisting of 40 fundus images; the third database
was created with the INDEREB aid. It has two versions with 105 photos in total and will be accessible to
the public. The A/V classification results achieved with the proposed method are 95.74% accuracy, 97.37%
specificity, and 93.85% sensitivity on DRIVE, 95.15% accuracy, 97.88% specificity, and 92.27% sensitivity
on INSPIRE-AVR. Additionally, AVR results from the proposed system were compared against experts with
no significant statistical differences.

Keywords: hypertensive retinopathy, Artificial Intelligence, AVR, automatic diagnosis, U-net, A/V clas-
sification, semantic segmentation.
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Resumen

La hipertensión es una enfermedad de alta incidencia y prevalencia caracterizada por su papel central en
el daño vascular retiniano, conocido como retinopatı́a hipertensiva. Los cambios vasculares de la retina
que se observan en las imágenes de fondo de ojo pueden emplearse como biomarcadores para medir las
constricciones generalizadas de los vasos a través de la Relación Arteriola-Venula (AVR). Los avances en
la Inteligencia Artificial y la fácil adquisición de imágenes médicas han permitido el desarrollo de sistemas
innovadores de apoyo para el diagnóstico automático de enfermedades oculares.

Este trabajo presenta un sistema automático que utiliza una red neuronal basada en la U-net para clasi-
ficar arterias, venas y el disco óptico a partir de imágenes de fondo de ojo con segmentación semántica para
calcular el AVR y determinar si un paciente tiene resultados anormales y, por tanto, la enfermedad. El sis-
tema se probó con tres conjuntos de datos. Dos de ellos están disponibles públicamente: DRIVE e INSPIRE-
AVR, cada uno de los cuales consta de 40 imágenes de fondo de ojo; la tercera base de datos se creó con
la ayuda del INDEREB. Esta tiene dos versiones con 105 fotos en total y será accesible al público. Los
resultados de la clasificación A/V obtenidos con el método propuesto son: 95,74% de precisión, 97,37% de
especificidad y 93,85% de sensibilidad en DRIVE, 95,15% de precisión, 97,88% de especificidad y 92,27%
de sensibilidad en INSPIRE-AVR. Además, los resultados de AVR del sistema propuesto se compararon con
los de los expertos, sin que hubiera diferencias estadı́sticas significativas.

Palabras clave: retinopatı́a hipertensiva, Inteligencia Artificial, AVR, diagnóstico automático, U-net,
clasificación A/V, segmentación semántica.
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Symbols and Abbreviations

γ Focal loss coefficient∑
Summing junction

φ Activation function

ADAM Adaptative Moment Estimation

AI Artificial Intelligence

ANN Artificial Neural Network

AVR Arteriolar-to-Venular Ratio

A/V Artery/Vein

CDF Cumulative Distribution Function

CLAHE Contrast Limited Adaptive Histogram Equalization

CNN Convolutional Neural Network

CRAE Central Retinal Artery Equivalent

CRVE Central Retinal Vein Equivalent

CWF Category-attention Weighted Fusion

DD Disc Diameter

DL Deep Learning

DRIVE Digital Retinal Images for Vessel Extraction

FCN Fully Convolutional Network

FN False Negative

FOV Field of View

FP False Positive

GPU Graphics Processing Unit
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H Height

HR Hypertensive Retinopathy

INDEREB Instituto de la Retina del Bajı́o

INSPIRE-AVR Iowa Normative Set for Processing Images of the Retina for Arteriolar-to-Venular Ratio

ML Machine Learning

OD Optic Disk

RBF Radial Basis Function

ReLU Rectified Linear Unit

RF Random Forest

RGB Red Green Blue

ROI Region of Interest

SH Systemic Hypertension

SVM Support Vector Machine

TN True Negative

TP True Positive

VSR Vascular Structure Reconstruction

W Width

WHO World Health Organization
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CHAPTER 1

Introduction

1.1 Artificial Intelligence in Medicine

Artificial intelligence (AI) is a broad term referring to computers able to simulate intelligent behavior with
a minimum of human involvement [4]. John McCarthy first mentioned the word AI during a conference in
1956. However, Alan Turing is the one who defined the term as the ability of machines to mimic human
performance in cognitive tasks. Since then, researchers have investigated the possible applications of AI in
every medical field [5].

Knowledge and experience are the most important factors when delivering a successful diagnosis. In
humans, this usually comes with time, which simultaneously is a limitation along with the amount of in-
formation the human mind can retain. Modern medicine requires gathering and analyzing a vast volume of
data to solve challenging clinical problems [6]. Hence, the development of AI in medicine has aimed to aid
health care workers in formulating an accurate diagnosis, making decisions, and predicting outcomes.

AI has significantly impacted the ophthalmology field since constant improvements in diagnostic tools
have offered an exceptional insight into the retina condition and ocular diseases of patients. Digital fundus
images allow the AI to evaluate rapidly and non-invasively millions of morphological features in diverse
datasets. Methodologies based on machine learning (ML) and deep learning (DL) can detect and quantify
pathological characteristics in almost every retinal disease [7].

Nowadays, computer capabilities allow the processing and evaluating of large amounts of data in real-
time. State-of-the-art systems include ANNs (Artificial Neural Networks), fuzzy logic, genetic algorithms,
and hybrids.

1.1.1 Fundus Images

Retinal fundus images have allowed specialists to diagnose medical conditions due to the use of vascular
changes as biomarkers [8] since the vessel tortuosity and its calibre can be associated with specific diseases,
one of those is the hypertension retinopathy [9, 10].

In the past few years, fundus digital images have gained popularity to study microvascular changes in
retinas. This is due to its non-invasive approach, low cost and straightforwardness to perform. Furthermore,

1



most eye lesions are visually seen in this type of image [11]. Figure 1.1 shows a normal fundus image and
another one with advanced hypertensive retinopathy (HR).

(a) (b)

Figure 1.1: Digital Fundus images. (a) Healthy fundus, (b) Fundus with HR symptoms.

1.2 Hypertension

Systemic Arterial Hypertension is often asymptomatic, thus considered as a silent killer since it rarely causes
symptoms in the early stages, without treatment it could advance until reaching severe conditions [12]. It
causes persistent high blood pressure, leading to multi-systemic effects such as retinopathy and death in
extreme cases [13, 14].

In a healthy person, each heartbeat pumps blood from the heart into the blood vessels through all the
body. Blood pressure is created by the blood being pushed against the artery walls as it is pumped by
the heart. Hence, the higher the pressure, the harder the heart has to work to pump blood and if it is left
uncontrolled, hypertension can lead to heart attacks, strokes, kidney failure and blindness. Most people are
diagnosed until they may not have access to treatment or are not able to control their illness over the long
term [15]. The grades of hypertension according to blood pressure ranges in adults can be found in Table
1.1.

Grade Systolic Diastolic
Normal 120 - 129 mmHg 80 - 84 mmHg

1 140 - 159 mmHg 90 - 99 mmHg
2 160 - 179 mmHg 100 - 109 mmHg
3 >180 mmHg >110 mmHg

Table 1.1: Classification of hypertension based on blood pressure in adults.
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1.2.1 Hypertensive Retinopathy

Hypertension has a main role in retinal vascular damage, which is known as hypertensive retinopathy, this
condition causes a series of retinal microvascular changes in several parts of the eye in response to the high
blood pressure [16].

This disease usually manifests in sequential phases of damage and although there exist several classifi-
cations, the most widely used is the hypertensive retinopathy grading system which was created in 1939 by
Keith-Wagener-Barker [17], shown in Table 1.2 along with its systemic associations.

1.2.2 Stages of the disease

Grade Signs Systemic Association
1 Mild generalized retinal arteriolar narrowing or sclerosis None
2 Definite focal narrowing and arteriovenous crossings Modest association with risk of clinical stroke,

Moderate to marked sclerosis of the retinal arterioles subclinical stroke, coronary heart disease.
Exaggerated arterial light reflex

3 Definite focal narrowing and arteriovenous crossings Strong association with risk of clinical stroke,
Exudates subclinical stroke, cognitive decline,
Cotton wool spots death from cardiovascular causes.
Sclerosis and spastic lesions of retinal arterioles

4 Grade III signs and papilledema Strong association with death.

Table 1.2: Keith-Wagener-Barker Classification of Hypertensive Retinopathy

Hypertensive retinopathy starts with evident retinal arteries narrowing due to vasospasm and vasocon-
striction, as shown in Figure 1.2a. Eventually, the high blood pressure leads to arteries thickening over veins
where both cross between them as shown in Figure 1.2b.

(a) (b)
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(c) (d)

Figure 1.2: Retinal fundus images of hypertensive retinopathy grades. (a) Grade 1, (b) Grade 2, (c) Grade
3, (d) Grade 4 [1].

The third phase occurs if the hypertension continues uncontrolled, here the blood-retinal barrier is dis-
rupted causing exudates, cotton wool spots, vessel endothelial changes (microaneurysms) and hemorrhages
into the retina, as shown in Figure 1.2c. The last stage occurs with chronic hypertension, where the optic
nerve and macula are damaged, as shown in Figure 1.2d. [18]

The study between retinal micro- and macro-circulation are key for diagnosis of certain diseases that
cause early retinal vascular changes, such as vessel and arteriolar widths alterations. Arteriolar narrowing
is related to initial damage caused by hypertension and venular widening is associated with hyperglycemia
and obesity [19].

1.2.3 AVR Calculation

Retinal vascular alterations can be monitored to determine the stage and severity of the disease. Several met-
rics have been developed for that purpose, being the Arteriolar-to-Venular Ratio (AVR) the most commonly
used. It measures generalized arteriolar constriction, which is the first early sign of hypertensive retinopathy
[20]. However, relevant vascular alterations are trouble-some to be manually assessed in practice as the
method is arduous and time-consuming [21]. To accurately compute it is necessary to first select the six
largest arterioles and six largest venules passing through a previously defined region, as seen in Figure 1.3.

Since the AVR is commonly used as a biomarker, a formula was created to measure the vessels width.
It is computed as shown in equation 1.1, where CRAE corresponds to central retinal artery equivalent and
CRVE to central retinal vein equivalent [22].

AV R =
CRAE

CRV E
(1.1)

However, the AVR measurement is not a straightforward task. First, vessels are classified into arteries
and veins to then be measured in an area concentric to the optic disc. However, experts do not use all retinal
vessels and have to decide which ones are appropriate for calculus [23].
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(a) (b)

Figure 1.3: The proposed approach for AVR computation. (a) Original image, (b) Image after its prepro-
cessing and semantic segmentation, where the CRAE and CRVE were measured.

The most used method to calculate both CRAE and CRVE was proposed by Knudtson et al., which
provides two equations [24].

Wartery = 0.88
√
W 2

1 +W 2
2 (1.2)

Wvein = 0.95
√

W 2
1 +W 2

2 (1.3)

The Knudtson method consists of selecting the 6 largest arterioles and venules to then apply the corre-
sponding equation 1.2 or 1.3 to the first pair of vessels, where W1 represents the narrowest artery and W2
the widest, the process is repeated until a remaining vessel is carried over to the final iteration to derive the
CRAE or CRVE and finally the equation 1.1 is applied.

Current computer software tools make it possible to leverage digital fundus images by measuring the
retinal vessels calibre to evaluate objective-wise the degree of arteriolar narrowing. Yet, the vast majority of
software available is semi-automated, therefore needing human interaction to estimate accurately calibres
[25, 26, 27].
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Figure 1.4: Example of retinal image used for AVR

1.3 Hypothesis

A deep learning based system, that uses leveraging salient regions to segment and classify veins and arteries,
can be used to accurately and reliably compute the arteriovenous ratio (AVR) from fundus images to aid
retinologist determine whether or not a patient has grade 1 hypertensive retinopathy.

1.4 Objectives

1.4.1 General Objective

To develop a deep learning based system through leveraging salient regions to segment and classify veins
and arteries to compute the AVR biomarker.

1.4.2 Specific Objectives

• To select two public databases and fundus images from INDEREB database with detailed annotations
for retinal blood vascular patterns.

• To label and pre-process fundus images with algorithms for enhancement and luminosity normaliza-
tion to be able to segment retinal blood vessels and arteries to measure AVR.

• To develop a neural network system able to automatically locate the optic disc and to segment and
classify blood vessels to compute AVR.

• To train and test the developed system with both public and private datasets to evaluate and report
results.
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CHAPTER 2

Justification

Hypertension complications are responsible for 9.4 million deaths worldwide every year. There is a sig-
nificant gain in global health and economy in the early detection and adequate control of hypertension.
However, its prevention and supervision are quite complex, especially in low and middle income countries
[15]. In Mexico, the disease has a high incidence as well as prevalence, about 30.7% of adult population
have it. However, only 1 out of 3 is aware of it and half of them receive treatment [28].

Eyes can be affected by hypertension in several ways, the most damaging is the development of retinopa-
thy. Additionally, they are the only organ in the human body that can display in vivo the vascular changes
due to systemic hypertension. A person’s overall health and mortality have a short and long-term correlation
with hypertensive retinopathy symptoms and its severity [29]. Hypertensive retinopathy grading is shown in
Table 1.2 and fundus images of the four grades of HR can be seen in Figure 1.2 .

In order to get people diagnosed with hypertensive retinopathy it is necessary to have a specialized in-
spection from an experienced ophthalmologist. However, with the number of eye diseases increasing, most
health facilities cannot keep up with rapid diagnosis. Thus, delaying a timely detection of hypertensive
retinopathy which may generate complications. This problematic is majorly seen in third world countries.

Non-invasive visualization of retinal structures, such as fundus images, give an unprecedented solution
in modern medicine as the most powerful real-time diagnostic tool. Currently, imaging diagnostic is the
most efficient application of AI, since it can use algorithms to detect and learn features from large volumes
of imaging data, recognize disease-specific patterns and correlate features to gain innovative scientific in-
sight [7].

Nowadays, there are several AI methods based on machine learning (ML) and deep learning (DL) that
can detect diabetic retinopathy, glaucoma, age-related macular degeneration and other retinal diseases. How-
ever, the field of hypertensive retinopathy detection, being not as popular as the other diseases, still has much
potential to investigate and develop new innovative methods.

One of the major advantages of artificial intelligence in retina is the possibility of working with the AVR
in a more precise and faster way than any retinologist could perform manually. Hence, AVR measurement
offers experts aid when doing an early detection of hypertensive retinopathy, allowing patients to get a timely
treatment and avoid complications.
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CHAPTER 3

Problem Description

Most countries suffer from low doctor to patient ratio, which overburns the patient care system, causing
diagnosis and proper treatment become error prone and time intensive. Additionally, a great amount of data
is generated every day in clinics and hospitals, but it is rarely made public and even less employed for com-
puter aided diagnostics [30].

In recent years, with the availability of fundus digital cameras and the consequent interest of retinal
images classification for medical diagnosis, several state-of-the-arts methods have appeared in the literature.
However, the challenge of recognizing microvascular lesions in retinal eye images, which are caused by
high blood pressure, still remains because of the fundal variability of each patient [31].

Current AI methods for retinal analyses differ greatly in their applicability, interpretability and reliabil-
ity in different datasets and diseases but its overall potential prevails, from automated detection, diagnostic
grading to therapy guidance. The potential benefit of AI in retina is further expanded by enabling large
scale management prediction and prognostic, thus empowering ophthalmologists to provide rapid and high-
quality diagnosis, and successfully dealing with the 21st century complexity of ophthalmology [7].

Present methodologies are divided in several steps, the first one consists of detecting the region of inter-
est, then a general vessel segmentation is made to classify the prediction’s results into veins and arteries to
finally measure the AVR. This makes the overall algorithm quite extensive.

The AVR is crucial for HR diagnosis, since the ratio between the arteries and veins estimates the arteri-
olar narrowing objectively. Therefore, fundus image segmentation is necessary for AI methods to be able to
detect those biomarkers. Unfortunately, large datasets are not available which affects greatly the deep learn-
ing process to recognize the pattern of the data in real life application. To be able to improve the current
state-of-the-art models this investigation worked closely with the INDEREB to create a larger dataset and
support our results with their medical expertise.
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CHAPTER 4

Theoretical Foundation

McCulloch and Pitts made the first approach to AI in 1943 by trying to simulate the function of a single
neuron. They proposed a learning model comparable to the process in neurons in the human brain based on
True/False statements that used a threshold to output a value [32].

As models continued to develop, Alan Turing created a methodology to evaluate their intelligence in
1950 [33]. The Turing Test questions whether an interrogator could discern between human and machine
responses [34]. However, AI was formally introduced as a term and science by Marvin Minsky and John
McCarthy in 1956 at a Dartmouth College conference [35].

Due to the exponential growth in the last decade, AI has advanced to create complex algorithms capable
of performing tasks similar to a human brain and will continue to impact health care, including vision and
eye care, significantly. However, AI diagnosis-based results need to be fully comprehended by retina spe-
cialists. To achieve it, experts must become familiar with the ML and DL decision methods used to make
clinical diagnostics.

Thanks to advances in AI and growing interest in its applications, ophthalmology has been able to lever-
age fundus images, due to the clarity of morphological areas such as the retina, by combining them with
computer vision. Three main applications have been developing in recent years, as seen in the following
Table.

Technique Examples Application
Classification Disease Type Automated diagnosis

Disease Stage
Detect lesion

Segmentation Measure features Creation of biomarkers
Calculate shape or volume
Value of another measure

Prediction Blood pressure Disease prognosis
Visual acuity

Table 4.1: Main applications of AI in Ophthalmology.
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ML is a subset of AI that represent the set of algorithms that are trained on data, learn from it and
improve with experience, while DL is a subset of ML, it attempts to solve problems as a human would
do, this is achieved by using multi-layered structures of algorithms called neural networks [7]. This can be
better understood as shown in Figure 4.1.

Figure 4.1: Artificial Intelligence and its subdivisions.

4.1 Machine Learning

It is an application of artificial intelligence where a machine learns from experience and makes future pre-
dictions. The techniques are used to automatically find patterns within complex data and use the knowledge
about a specific problem to predict future events.

The algorithms are categorized into supervised learning, where human intervention is required, unsu-
pervised learning, where no intervention is needed and reinforcement learning.

In supervised learning, the machine learns from labeled data. The labels help the algorithm to correlate
the features and modify the model accordingly. In unsupervised learning, the algorithm tries to discover
patterns with unclassified and unlabeled data. In reinforcement learning, the algorithm looks for the most
significant reward through trial and error. It has three components: learner, environment, and actions [36].

4.2 Deep Learning

It is inspired by the structure of the human brain. It uses artificial neural networks, which are a multi-layered
structure of several activation functions that mimic human decision making process.

The layers in neural networks are able to learn an implicit representation of the raw data on their own
since the feature extraction is already part of the process [37]. For instance, an image can be represented in
a variety of ways, either as a vector of intensity values per pixel or as a set of edges and regions of a specific
shape.
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An ANN may consist of two sets of neurons, one receives an input and the other sends an output. The
algorithm have an input layer that modifies the input and passes it to the next layer and can use several pro-
cessing layers to create multiple linear and non-linear transformations [38]. Figure 4.2 shows a biological
neuron and an ANN.

(a)

(b)

Figure 4.2: Representation of a (a) Biological Neuron and an (b) Artificial Neural Network.

The main advantage of DL is the ability to replace handmade features with efficient unsupervised or
semi-supervised feature learning techniques. In the field of computer vision, neural networks have shown
that they can outperform ML algorithms on tasks like object recognition. The main difference between
Machine Learning and Deep Learning can be seen in Figure 4.3.
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(a)

(b)

Figure 4.3: Difference between (a) Machine Learning and (b) Deep Learning.

4.2.1 Computer Vision

Deep learning has enabled computer vision to advance rapidly in recent years. It is an interdisciplinary field
of AI that allows computers and systems to derive meaningful information from digital images, videos, and
other visual inputs.

It works much like human vision, with the difference that humans have the advantage of a lifetime of
context to train how to distinguish objects, if they move and if there is something wrong with an image.
There are several levels of understanding, and for each of these, there is a defined problem, Figure 4.4.

(a) (b)
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(c) (d)

Figure 4.4: Computer vision. (a) Original image, (b) Classification + localization, (c) Object detection and
(d) Semantic segmentation.

4.2.1.1 Classification

Given an image, the computer is expected to predict a discrete label of the main object. In image classifica-
tion, it is assumed that there is only one object, as shown in Figure 4.3.

4.2.1.2 Classification + localization

The algorithm defines the discrete label and locates where exactly the object is in the image. It is imple-
mented using a bounding box. It is assumed that there is only one object per image, as shown in Figure
4.4b.

4.2.1.3 Object detection

The detection is not limited to a single object but may contain multiple objects. The task is to classify and
locate all objects in the image, as shown in Figure 4.4c.

4.2.1.4 Semantic segmentation

It is the process of dividing an image into multiple segments of specific regions. The objective is to label
each pixel of an image with the class corresponding to what is being represented. Each pixel of the image is
predicted, commonly known as dense prediction.

The objective is to take an image of size W x H x 3 and generate a W x H matrix containing the class IDs
corresponding to all pixels [39]. The semantic segmentation is different from object detection in that it does
not predict any bounding boxes around the objects. Furthermore, it does not distinguish between different
instances of the same object, as shown in Figure 4.4d.
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4.2.2 Neural Networks

In 1980, a model to simulate the human visual system was proposed by Fukushima, a simpler version of
this technique is considered a Convolutional Neural Network (CNN). LeCun et al. developed a CNN called
LeNet in 1989, which has five layers: one input, three hidden and one output. The input layer consists of a
16x16x9 pixel image, the three hidden layers involve two convolutional layers, a pooling layer and one fully
connected layer [2]. A general architecture of a CNN can be seen in Figure 4.5.

Figure 4.5: Architecture of a Convolutional Neural Network [2].

The Convolutional Neural Network (CNN) is one of the most popular artificial neural network (ANN)
architectures, mostly used to solve difficult image-driven pattern recognition. The neurons within CNNs are
organized in three dimensions, height and width, which are the dimensionality of the input and the depth.
However, depth does not denote the number of layers within the neural network. CNNs contain three types
of stacked layers, convolutional, pooling and fully-connected.

CNN architecture can be further explained as follows: the input layer consists of the image’s pixel val-
ues. The convolutional layer uses learnable kernels, which are small in dimension and extends along the
input’s depth. Hence, when data encounters a convolutional layer, the last one convolves each filter over the
spatial dimensionality of the input, creating a 2D activation map.

Figure 4.6 explains how the convolutional layer works. The pooling layer down samples the spatial
dimensionality of the input, therefore reducing the number of parameters within the activation. The fully-
connected layers produce scores to be used for classification. The rectified linear unit (ReLu) can be used
between these layers to improve performance [40].
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Figure 4.6: Convolution operation on a matrix of size 5×5 with a kernel of size 3×3.

4.2.2.1 U-net

Deep learning applications in medical imaging gained interest in recent years. However, researchers were
primarily interested in automatically recognizing and segmenting lesions in images. A breakthrough so-
lution was proposed by Ronnberger et al. [3] in 2015 at the MICCAI conference, a Fully Convolutional
Network named U-Net. The network consists of three main sections: an encoder, a bottleneck and a de-
coder. Due to its U-shape, it is capable of training at high speed with only a small amount of data needed.

In segmentation tasks, the image not only needs to be converted into a vector but also to be reconstructed
from it, which is precisely the task of the U-Net. The Figure 4.7 shows the network’s structure.

Figure 4.7: Architecture of traditional U-net neural network [3]
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Traditionally, it is two-dimensional which allows working with fewer training images than other net-
works while still obtaining a more accurate segmentation. The central idea is to use sequential layers while
the pooling operation is linked to the downsampling operator. As a result, those layers increase the output
resolution. For localization, the contracted path’s high resolution is mixed with the upsampled output so se-
quential convolutional layers can focus on fine features and produce a more accurate segmentation [41, 42].

The encoder is constructed with four down-sampling blocks of 3x3 convolutions, each with a ReLU as
activation function and a 2x2 max pooling. Hence, the resolution is reduced by half during each down-
sampling. The decoder consists of four up-sampling blocks of 3x3 convolutions using ReLU, and a 2x2
transposed convolution. The result is then concatenated with its corresponding feature map resolution
through a skip connection. In consequence, features from the encoder are sent to the decoder at differ-
ent resolution levels, producing a more thorough outcome.

4.3 Image Preprocessing

Nowadays fundus images are commonly used in the diagnosis of retinal diseases. However, the images often
have problems with either low contrast or noise. The aim of image pre-processing is to have an image that
is more suitable than the original for further analysis such as segmentation or classification of retinal blood
vessels.

Usually, images do not have uniform illumination due to factors such as the pupil not being fully dilated,
differences in retinal pigmentation, and camera specifications and limitations. In addition, the digitization
process can cause low-intensity white noise. Thus, preprocessing is an essential step in medical image
processing, as it helps remove the noise present in the image and improve some image characteristics.

4.3.1 Color spaces

A color space is a specific organization of colors, usually in three dimensions, that allows us a reproducible
representation of colors, both digitally and analogically. In general, color can be measured by its brightness,
hue, lightness, luminance, chroma, and saturation. There are many color spaces, some are better for certain
applications. In this research, three-color spaces were used: RGB, Lab, and HSV.

(a) (b) (c)

Figure 4.8: Color spaces: (a) RGB, (b) Lab and (c) HSV.
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4.3.1.1 RGB

RGB is an acronym for Red, Green, and Blue, its representation can be seen in Figure 4.8a. It describes a
chromatic model consisting of a mix of only those primary colors. However, the RGB model is not able to
deliver an accurate description of the three colors representing its essence. It is because several shades of
red, green, and blue can be used in RGB models, hence the additive synthesis may vary.

4.3.1.2 Lab

In this color space, there is one channel for L (Luminosity) and two other color channels a and b, known as
chromaticity layers. The a layer indicates where the color falls along the red-green axis, while the b layer
indicates where the color falls along the blue-yellow axis, this can be appreciated in Figure 4.8c.

4.3.1.3 HSV

This space is intended to be easily interpretable and readable by a human since it uses more familiar terms
when talking about color, it is shown in Figure 4.8b. H stands for color intensity (hue), it is an angle in the
range [0, 2π] with red at angle 0, green at angle 2π

3 , blue at angle 4π
3 , and red again at angle 2π. S stands

for saturation, which describes the purity of the hue according to a white reference. V stands for value, a
percentage ranging from 0 to 100.

4.3.2 CLAHE

Contrast-Limited Adaptive Histogram Equalization is a method that improves the problem of low contrast
in digital images, especially in medical images. Figure 4.9 shows an original image and the CLAHE result.

It basically operates by limiting the contrast by clipping the histogram at a predefined value before
calculating the cumulative distribution function (CDF). This limits the slope of the CDF and hence of the
transformation function. The value to which the histogram is clipped depends on the normalization of the
histogram and thus on the size of the neighborhood region [43].

(a) (b)

Figure 4.9: Preprocessing on (a) Original image with (b) CLAHE.
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4.3.3 Histogram Equalization

This technique is a non-linear process that aims to enhance image brightness in a way that is especially
suitable for human visual analysis. It seeks to modify an image in such a way as to produce one with a
flatter histogram, in which all levels are equiprobable [44].

Its performance can be compelling, as it matches well the properties of human vision. However, noise in
the image acquisition process will affect the shape of the original histogram and thus the equalized version,
which is its weakness. In Figure 4.10 the Histogram Equalization can be appreciated along with the original
image.

(a) (b)

Figure 4.10: Preprocessing on (a) Original image with (b) Histogram Equalization.

4.3.4 Gamma Correction

The gamma correction is simply a power-law transformation, except for low luminances, where it is linear
to avoid having an infinite derivative at zero luminance. An example of this technique can be seen in Figure
4.11.

The image pixel intensities must be scaled from [0, 255] to [0, 1]. From there, the following equation is
applied to obtain a gamma-corrected image:

O =
I

1
G

255
· 255 (4.1)

Where I is the input image and G is the gamma value. The output image O is reduced to the range [0;
255]. Gamma values < 1 will shift the image to the darker end of the spectrum, while gamma values > 1
will make the image appear lighter [45].
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(a) (b)

Figure 4.11: Preprocessing on (a) Original image with (b) Gamma Correction.

4.4 State of the Art

Several automatic systems to detect retinal abnormalities have been previously proposed in the past. How-
ever, the early detection of hypertensive retinopathy has not been widely explored.

An automated retinopathy detection through digital image analysis presents significant benefits since
it requires less time to process numerous images and offers less subjectivity than existing observer-based
systems [46]. Hence, to develop a reliable system based on AVR measurements, it is necessary to have an
accurate A/V classification, and the location of the optic disc (OD) in each image to measure the vessels
width inside the determined diameters from the OD.

However, several works have focused only on retinal blood vessels segmentation, while the classification
of those vessels into arteries and veins is not as explored in current literature. Usually, the A/V classification
is considered a two steps job, where a general vessel segmentation is made first. Then, another technique
is used to determine which vessel is either artery or vein from the previous result. The downside of that
method is that if the obtained segmentation were poor, not all veins and arteries would be classified. The
automated classification remains as an unexploited area in the field of retinal image processing [46], opening
the possibility to be further improved. Nevertheless, with the advances in Deep Learning, a new challenging
approach has surfaced, attempting to segment and classify arteries and veins simultaneously.

Traditionally, the A/V classification is only made after the blood vessels have been segmented. Hence,
as a first step, it is necessary to have available segmentation masks, manually annotated vessels pixels or an
own automatic vasculature segmentation of each fundus image [47].

Most A/V classification methods use machine learning techniques to learn local features. The structural
information from the vascular tree is frequently used to improve the classification [14, 48]. Another ap-
proach for tracing branches in the vascular tree has been graph-based analysis with global topology criteria
[8].

Akbar et al. [14] extracted features from a complete vascular map as input to a support vector machine
(SVM) with a radial basis function (RBF) classifier. Srinidhi et al. [48] disentangled the vascular tree into
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many subtrees, illustrating the vascular systems’ topological and spatial connection and labeled them using
hand-crafted features trained with a random forest (RF) classifier. Huang et al. [8] used a feature selection
technique based on a genetic search to find the best feature subset for a supervised classifier.

Despite significant advancements in graph-based approaches, retinal A/V separation remains a chal-
lenge. To optimally leverage the underlying structural properties of a vascular network, most techniques
rely on the geometrical study of vessel key points. Nevertheless, it usually requires a large computing cost
and a long run time.

In recent years, deep-learning-based semantic segmentation techniques, essentially pixel-level classi-
fication, have been used for fundus image analysis obtaining impressive results in lesions and vascular
segmentation, as well as A/V classification. Some works have approached the task as a three-class semantic
segmentation [49, 21, 50, 51] (1) artery, (2) vein and (3) background, while others [52] have added a fourth
class denominated as (4) uncertain.

Xu et al. [49] normalized images with histogram matching and improved a fully convolutional network
(FCN) to simultaneously segment retinal arterioles and venules. Girard et al. [21] implemented a convolu-
tional neural network (CNN) to identify vessels into arteries and veins by segmenting and classifying them
together, followed by propagation of the output into a graph representation of the retinal vasculature. Ma
et al. [50] designed a multi-task neural network with a spatial activation to perform a simultaneous ves-
sel segmentation and A/V classification to enhance results. Kang et al. [50] integrated a category-attention
weighted fusion (CWF) module into a segmentation network and employed a graph-based vascular structure
reconstruction (VSR) to decrease noisy inconsistencies.

A novel method has been proposed to decompose the classification into three individual semantic seg-
mentation of an artery, vein, and vascular tree. This multi-segmentation (MS) approach developed by
Morano et al. [47] uses an FCN that delivers accurate segmentation masks for the three target vascular
trees.

A summary of the previously mentioned contributions is shown in Table 4.2. It presents the authors along
with their used techniques and the results achieved in each of the public databases this thesis is working with.

In this thesis, the main contribution is a system that computes a reliable AVR for hypertension retinopa-
thy detection, which involves an automatic A/V and OD semantic segmentation through a U-net that uses
colored retinal fundus images. Furthermore, we implemented a novel loss function that allows the model to
concentrate more on learning difficult instances.
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Metrics
Autor Year Technique Database Sensitivity Specificity Accuracy
Akbar et al. [14] 2018 SVM + RBF INSPIRE-AVR 94.25 % 95.47 % 95.10%
Huang et al. [8] 2018 Feature selection DRIVE 70.90 % 73.80 % 72 %

with genetic search INSPIRE-AVR 89.60 % 91.30 % 92 %
Xu et al. [49] 2018 FCN DRIVE 87 % 98 % 83.20 %
Srinidhi et al. [48] 2019 Vascular tree + RF DRIVE 96.60 % 92.90 % 94.70 %

INSPIRE-AVR 96.90 % 96.60 % 96.80 %
Galdran et al. [52] 2019 CNN with semantic DRIVE 89 % 90 % 89 %

segmentation INSPIRE-AVR 82 % 78 % 80 %
Girard et al. [21] 2019 CNN DRIVE 86.30 % 86.60 % 86.50 %
Ma et al. [50] 2019 Multi-task ANN DRIVE 93.40 % 95.50 % 94.50 %

with spatial activation INSPIRE-AVR 92.40 % 91.30 % 91.60 %
Kang et al. [51] 2020 CWF + VSR DRIVE 88.30 % 92.71 % 90.62 %
Morano et al. [47] 2021 Multisegmentation DRIVE 87.47 % 90.89 % 89.24 %

Table 4.2: Brief summary of the current state-of-the-art.
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CHAPTER 5

Methodology

The proposed method consists of 5 main stages, Figure 5.1 shows the proposed system’s flow diagram, as
well as its submodules.

The first step is the Image acquisition, where two public databases were selected, and another one was
created with the INDEREB aid. It is comprised of two versions, the first one consists of 46 images and
the second one of 59 images, both can be found in the Appendix. Next, Preprocessing entails enhancing
retinal fundus images as well as data augmentation. It is followed by the critical stage: Processing, which
is where the U-net uses semantic segmentation for the identification of arteries, veins, and optic disc. Then
the AVR is computed during the Post-Processing to finally compare results against experts evaluations in
the last stage.

Figure 5.1: Proposed approach of a fully unsupervised system for hypertension retinopathy detection.
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5.1 Image acquisition

This research works with fundus images of human eyes. There are several public databases available online
that enable comparative studies on segmentation of blood vessels in retinal images. However, the selected
public databases are: DRIVE [53] and INSPIRE-AVR [54].

DRIVE [53] (Digital Retinal Images for Vessel Extraction) is a dataset for retinal vessel segmentation,
widely used to enable comparative studies. It comprises a total of 40 color fundus photos, with a resolution
of 584 x 565 pixels. The images were collected using a Canon CR5 non-mydriatic 3CCD camera with FOV
equivalent to 45 degrees. The ground truth for the A/V classification of the dataset has been provided [55],
which is based on the original DRIVE’s 2nd manual vessel reference. Besides, a manual annotation of the
OD was created for training purposes of the proposed network. An example of the DRIVE dataset can be
seen in Figure 5.2.

(a) (b) (c) (d) (e)

Figure 5.2: DRIVE Database. (a) Fundus image, Ground Truths: (b) OD, (c) Arteries, (d) Veins, (e) Areter-
ies and Veins.

INSPIRE-AVR [54] (Iowa Normative Set for Processing Images of the REtina) consists of 40 color pho-
tographs centered at the optic disc. It also provides a reference standard for the AVR, based on the average
of two experts’ evaluations. Each image has a resolution of 2392x2048 pixels. The ground truth for the A/V
classification of the dataset has also been provided [46]. An example of the INSPIRE-AVR dataset can be
seen in Figure 5.3.

(a) (b) (c) (d) (e)

Figure 5.3: INSPIRE-AVR Database. (a) Fundus image, Ground Truths: (b) OD, (c) Arteries, (d) Veins, (e)
AVR.
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Besides the public datasets, a private one was created with a total of 105 images centered at the optic
disc that were provided by the INDEREB. This new database is divided in two versions.

INDEREB version 1 consists of 46 images centered at the optic disc with a resolution of 1620 x 1444
pixels. The images were obtained using a camera Carl Zeiss, visucam nm/fa mydriatic with 45 and 30
degrees and a FOV of 30 degrees. The ground truth for A/V classification were provided by experts and
manually annotated using Photoshop. Besides, a manual annotation of the OD was created for training
purposes of the proposed network. The complete database can be found in the Appendix E.1 and an example
of the dataset is shown in 5.4.

(a) (b) (c) (d) (e)

Figure 5.4: INDEREB Version 1 Database. (a) Fundus image, Ground Truths: (b) OD, (c) Arteries, (d)
Veins, (e) Areteries and Veins.

Fundus images in INDEREB version 1 were selected with the following exclusion criteria:

• Smokers

• Diabetics

• Cataracts

• > +2.00 Diopters

INDEREB version 2 consists of 59 images centered at the optic disc with a resolution of 3912 x 3910
pixels. The camara used to capture the fundus images is a ZEISS CLARUS 700, which has an incorporated
tool named Caliper that allows experts to take an accurate measure of blood vessels widths. The A/V ground
truth was provided by experts and manually labeled using Krita. Likewise, a manual annotation of the OD
was created for training purposes of the proposed network. The complete database can be seen in Appendix
E.2 and an example of the dataset is shown in 5.5.

Figure 5.5: INDEREB Version 2 Database. (a) Fundus image, Ground Truths: (b) OD, (c) Arteries, (d)
Veins, (e) Systemic Hypertension presence and AVR.
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Fundus images in INDEREB version 2 were selected with the following exclusion criteria:

• Smokers

• Diabetics

• Cataracts

• Glaucoma

• Myopia

• > +6.00 Diopters

• Systemic disease

• Previous eye surgery

• Vasoconstrictor medication

This database was created with the intention of having balanced data, hence almost half of the images
belong to patients who have Systemic Hypertension, as seen on Figure 1.2. Unfortunately, it is not an easy
task to find enough Males that pass the exclusion criteria, which is why there are more Females fundus
images in the database, Figure 5.6b.

(a) (b)

Figure 5.6: INDEREB Version 2. Distribution on (a) Gender (b) Systemic Hypertension.

Additionally, the patient’s Age was considered an important criteria in the creation of this database. It
was determined to establish the range from 17 to 75 years old. The Age density against Gender can be
appreciated in Figure 5.7a and against the disease diagnostic in Figure 5.7b.

(a) (b)

Figure 5.7: INDEREB Version 2. Age distribution against (a) Gender (b) Systemic Hypertension.
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The detailed information of the database INDEREB Version 2 can be found in Table 5.1. It includes
the file name, as well as its corresponding Gender, Age, whether the fundus image belongs to a patient with
Systemic Hypertension or not, and the AVR gold standard provided by experts.

File Gender Age
Systemic

Hypertension
Expert
AVR

Image001 Male 32 No 0.400
Image002 Male 51 No 0.531
Image003 Male 51 No 0.518
Image004 Male 64 Yes 0.719
Image005 Female 50 Yes 0.602
Image006 Female 50 Yes 0.554
Image007 Male 63 Yes 0.500
Image008 Male 63 Yes 0.648
Image009 Female 75 Yes 0.722
Image010 Female 75 Yes 0.655
Image011 Female 65 Yes 0.632
Image012 Female 48 Yes 0.610
Image013 Female 48 Yes 0.590
Image014 Female 47 Yes 0.660
Image015 Female 47 Yes 0.612
Image016 Female 49 No 0.578
Image017 Female 49 No 0.631
Image018 Female 31 No 0.497
Image019 Female 31 No 0.471
Image020 Male 33 No 0.584
Image021 Male 33 No 0.647
Image022 Male 35 No 0.528
Image023 Male 35 No 0.486
Image024 Female 28 No 0.443
Image025 Female 28 No 0.490
Image026 Male 17 No 0.557
Image027 Male 17 No 0.606
Image028 Male 41 No 0.534
Image029 Male 41 No 0.622
...

...
...

File Gender Age
Systemic

Hypertension
Expert
AVR

...
...

...
Image030 Female 54 No 0.638
Image031 Female 40 No 0.694
Image032 Female 40 No 0.694
Image033 Female 46 No 0.596
Image034 Male 51 No 0.497
Image035 Male 51 No 0.475
Image036 Female 45 No 0.530
Image037 Female 45 No 0.720
Image038 Female 75 Yes 0.654
Image039 Female 50 Yes 0.591
Image040 Female 50 Yes 0.565
Image041 Female 74 Yes 0.561
Image042 Female 74 Yes 0.509
Image043 Female 49 Yes 0.618
Image044 Female 49 Yes 0.509
Image045 Female 49 No 0.746
Image046 Female 49 No 0.628
Image047 Female 27 No 0.540
Image048 Female 27 No 0.595
Image049 Female 72 Yes 0.673
Image050 Female 72 Yes 0.627
Image051 Female 59 Yes 0.607
Image052 Female 41 Yes 0.532
Image053 Female 41 Yes 0.554
Image054 Male 68 Yes 0.547
Image055 Male 68 Yes 0.542
Image056 Female 35 No 0.585
Image057 Female 51 Yes 0.508
Image058 Male 57 Yes 0.528
Image059 Male 57 Yes 0.496

Table 5.1: Database INDEREB version 2.
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5.2 Pre-processing

5.2.1 Color and Size adjustment

Since this research works with several different databases, it is necessary to enhancing the color of all fundus
images and adjusting the size at 512 x 512 pixels. This stage is brief but critical.

The selected techniques for this experimentation seek to highlight the inherent characteristics of retinal
blood vessels, such as color, since arteries tend to present a lighter tone than veins. Additionally, the aim
is to mitigate illumination variations to obtain a more robust segmentation. It was determined to prove the
techniques: CLAHE, Histogram Equalization and Gamma Correction in three color spaces: Lab, HSV, and
RGB.

First, CLAHE is applied in an fundus image with medium brightness. In LAB, Figure 5.8b, it clearly
highlights the blood vessels, while in HSV, Figure 5.8c, it creates more contrast in the blood vessels, yet
the smaller ones are not very detailed. Finally, the Figure 5.8d shows the image preprocessed in each of its
channels in RGB. Here, the difference between veins and arteries is appreciated, but it also adds noise as
green color which may results in a poor classification.

(a) (b)

(c) (d)

Figure 5.8: CLAHE. (a) Original, (b) Lab, (c) HSV, (d) RGB.

The next technique to evaluate is Histogram Equalization in a low brightness image. In Lab, Figure 5.9b,
it permits an acceptable appreciation of the retinal vessels, even smaller ones. While in HSV would seem to
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have a superior performance, its disadvantage is that the edges of the fundus image end up being very dark
and thus, harder to classify. Finally, applying preprocessing to each channel is not a good approach for this
method, as shown in the Figure 5.9d.

(a) (b)

(c) (d)

Figure 5.9: Histogram Equalization. (a) Original, (b) Lab, (c) HSV, (d) RGB.

Finally, Gamma Correction is applied for an image with high brightness. In Lab the image brightness
increases, which makes the vessels at the darker ends noticeable, yet causing less color difference between
arteries and veins, Figure 5.10b. It can be seen that in HSV the technique has no significant influence, Figure
5.10c. On the other hand, applying the preprocessing to each channel in RGB, Figure 5.10d, does not benefit
us in terms of image interpretability.

(a) (b)
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(c) (d)

Figure 5.10: Gamma Correction. (a) Original, (b) Lab, (c) HSV, (d) RGB.

Image preprocessing can improve the quality, as well as the accuracy of classification models or con-
tribute nothing when an incorrect technique or color space is used. In this experimentation three methods
were shown, however, it is observed that CLAHE brings a great potential in the Lab color space since is
able to highlight the retinal vessels without adding too much luminosity. Hence, this research uses CLAHE
in the Lab color space to preprocess all databases.

It has been demonstrated the importance of having an adequate fundus image preprocessing for retinal
vessel segmentation and classification using deep learning techniques. This is because, by highlighting the
intrinsic characteristics of the images, in this case arteries and veins, the algorithm used for retinal vessel
prediction will be able to improve its results in terms of sensitivity, specificity and accuracy.

5.2.2 Data augmentation

It is used when there is limited data or small amounts of it. Since the three databases used in this research
have less than 100 images each, it can be considered as a problem of insufficient information, which may
difficult the DL model task to correctly learn without over-fitting.

The premise of data augmentation is to create new data via random realistic alterations to the existing
dataset, such as cropping, flipping, stretching, among others. An example can be seen in Figure 5.11.
Luckily, Tensorflow offers several libraries that allows us to increase the diversity of each dataset by applying
transformations into images, which are the ones used in this research.

(a) (b) (c) (d)

Figure 5.11: Data augmentation via random transformations. (a) Original, (b) Crop, (c) Flip, (d) Stretch.
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5.3 Processing

5.3.1 Network architecture

This research uses an improved U-net model [3] that allows simultaneously segmentation in three-channel
images of arterioles and venules, and in a separate instance, optic discs. An illustration of the proposed
model can be seen in Figure 5.12. The network is constructed with two main paths denominated as contract-
ing (encoder) and expanding (decoder), including skip connections through concatenation.

The encoder is constructed with four down-sampling blocks of 3x3 convolutions, each with a ReLU
as an activation function and a 2x2 max pooling. Hence, the resolution is reduced by half during each
down-sampling. The decoder consists of four up-sampling blocks of 3x3 convolutions using ReLU, and a
2x2 transposed convolution. The result is then concatenated with its corresponding feature map resolution
through a skip connection. In consequence, features from the encoder are sent to the decoder at different
resolution levels, producing a more thorough outcome.

The input is configured to receive a three-channel RGB image of size 3x512x512. The output segmen-
tation map is adjusted at the expanding path, where the softmax activation is used to allow predictions for
three classes: ’artery’,’vein’, and ’background’. In contrast to the U-Net model, which crops the images
after each convolution, our model produces a segmented image of the same size as the input.

Figure 5.12: Architecture of a U-net neural network

5.3.1.1 Hyperparameters

In ML, the way an artificial neural network is trained to learns is controlled by its hyperparameters, such as
learning rate, optimizer, batch size, loss function and so on. A brief summary of the hyperparameters used
in the proposed network can be seen in Table 5.2.
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Hyperparameter Value
U-Net depth 4
Activation function ReLU
Learning rate 1x10−3

Batch size 32
Optimizer ADAM
Loss function Focal Tversky
No. training epochs 200

Table 5.2: Hyperparameters of proposed network.

This work was implemented in Python 3 (v3.7.0) using Tensorflow (v2.8.0). Training and testing were
performed on a 2.30 GHz Intel® Xeon with an NVIDIA Tesla P100-PCIE-16GB. Primary libraries required
for the development of the algorithm can be found in Appendix A.

Activation function

The activation functions purpose is to transform an ANN output signal into an input for the next layer in
the architecture, which inherently affects the accuracy of the prediction. Its primary use is to introduce
non-linearity in models [56, 57]. Therefore, it is crucial to select the optimal type for the specific situation
in Deep Learning models.

Figure 5.13: ReLU activation function

There are several activation functions being used in the literature, and this work will use Relu, Figure
5.13 shows the line plot. It is unique and perfect for this research because not all neurons are activated
simultaneously, unlike its counterparts.

Optimizer

Almost all challenges in ML and DL face a minimization problem in the weights of an ANN. Since most
objective functions are stochastic, Kingma et al. [58] develop an efficient method to optimize. Its innovation
resides in only needing first-order gradients along with small memory requirements. As its name states,
ADAM (Adaptive moment estimation) adapts individual learning rates from estimations of gradients’ first
and second moments.
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Loss function

The proposed method uses a non-traditional loss function to address the inherent problem of unbalanced
classes in fundus images. This is due to most of the pixels belonging to the ’background’ and only the
minority of them representing the vasculature of the retina. Selecting the most suitable loss is critical as it
initiates the neural network’s learning process.

The Focal Tversky Loss weights down easy examples to focus on hard ones using a γ coefficient ranging
from [1,3] as shown in equation 5.1, where TI indicates the Tversky index [59].

FTL =
∑
c

(1− TIc)
γ (5.1)

The TI, shown in equation 5.2, can be considered as a generalization of the Dice score that improves the
flexibility in balancing False Positives (FP) and False Negatives (FN).

TIc =

∑N
i=1 picgic + ϵ∑N

i=1 picgic + α
∑N

i=1 picgic̄ + β
∑N

i=1 picgic̄ + ϵ
(5.2)

where, pic represents the predicted label and gic the ground truth. Furthermore, pic corresponds to the
pixel i probability of being class c, pic̄ corresponds to the pixel i probability of being class c̄. The hyperpa-
rameters α and β can be tuned to improve the sensitivity rate in unbalanced classes.

The proposed approach in [60] was to use a γ > 1 so the loss function can focus on missclassifications.
The best performance used γ = 4

3 and a higher α value to improve the model convergence. Thus, this paper
uses the same γ value with an α = 0.7 and β = 0.3.

5.3.1.2 Training

The neural network was initialized with a learning rate at 1x10−4, the selected optimizer is Adam with both
decay rates as-is from the original work in [58] (β1 = 0.9, β2 = 0.999). Moreover, early stopping is intro-
duced when the loss function does not change after 25 interactions.

The model was trained for 200 epochs. However, since each dataset contains less than 50 images,
patches were augmented from training images during each sampling. The data augmentation techniques
employed were elastic deformations such as horizontal and vertical flips, width and height shifts, random
rotation and zoom.
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5.3.2 Semantic segmentation

After the proposed improved U-Net has been trained, it is used to create semantic segmentation for the reti-
nal A/V vasculature (artery and vein) in each of the four available databases. However, the OD segmentation
was not implemented on the DRIVE dataset since is not centered on the OD, thus it can no be successfully
segmented in all cases.

(a) (b) (c)

Figure 5.14: Semantic Segmentation on the DRIVE database. (a) Original, A/V: (b) Ground truth, and (c)
Model prediction.

The semantic segmentation predictions done with the proposed network for the DRIVE database can be
seen in Figure 5.14, while the results on the INSPIRE-AVR are shown in Figure 5.15. The predictions made
for the INDEREB are visible in Figure 5.16 for version 1, and Figure 5.17 for version 2.

(a) (b) (c)

(d) (e)

Figure 5.15: Semantic Segmentation on the INSPIRE-AVR database. (a) Original, A/V: (b) Ground truth,
(c) Model prediction, OD: (d) Ground truth, (e) Model prediction.
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(a) (b) (c)

(d) (e)

Figure 5.16: Semantic Segmentation on the INDEREB v1 database. (a) Original, A/V: (b) Ground truth, (c)
Model prediction, OD: (d) Ground truth, (e) Model prediction.

(a) (b) (c)

(d) (e)

Figure 5.17: Semantic Segmentation on the INDEREB v2 database. (a) Original, A/V: (b) Ground truth, (c)
Model prediction, OD: (d) Ground truth, (e) Model prediction.
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5.4 Post-processing

In this stage, the model’s prediction of A/V is used to estimate arteries and veins width using a technique
named convex hull at [1 DD - 1.5 DD] from the OD prediction. Then equations 1.2, 1.2 are used with the
width results to then employ equation 1.1 to obtain the AVR measurement.

5.4.1 AVR computation

As stated before, an automatic calculation requires a system capable of As stated before, an automatic calcu-
lation requires a system capable of delivering an accurate A/V classification along with OD localization to
determine where the diameters will be located, also known as the region of interest (ROI), to then proceed to
measure vessels’ widths and finally compute the AVR. Figure 5.18 shows a brief summary of the workflow
on the INSPIRE-AVR dataset.

(a) (b) (c)

(d) (e)

Figure 5.18: Proposed method on INSPIRE-AVR dataset. (a) Input image, (b) A/V classification, (c) OD
location, (d) ROI and (e) AVR measure in 0.1 steps.

The ROI is the area that delimits where the vessels’ width will be measured. It comprises two defined
diameters centered at the OD, as shown in Figure 5.18d. The proposed method uses the same diameters as
Niemeijer et al. [54], from 1 DD (Disk Diameter) to 1.5 DD, to maintain a golden standard and to have
comparable results. The width of arteries and veins crossing at the established circumferences are measured
in steps of 0.1 from the lower diameter to the upper one, as can be seen in Figure 5.18e. It is important
to note that since all vessels have been classified, the system measures them all with a technique named
Convex Hull.
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During each step, the system compares all resulting widths and selects the 6 widest arteries for CRAE
calculation using equation 1.2, and then selects the 6 widest veins for CRVE calculation using equation 1.3.
After both CRAE and CRVE have been calculated, an AVR measure is computed using equation 1.1. Once
all steps have been completed, each corresponding AVR result is averaged to deliver a final value.

5.4.1.1 Convex Hull

In computational geometry, a convex hull represents the smallest possible convex polygon, without inward
bents, that contains a set of points in low dimensional Euclidean spaces, as seen in Figure 5.19.

There have been proposed plenty of algorithms that can construct the convex hull on a collection of
points. This thesis works with the function implemented in OpenCV, which is based on Sklansky’s [61]
algorithm.

(a) (b)

Figure 5.19: (a) Set of points and its (b) Convex Hull.

ROI

The bounding circles of the measurement area are created with OpenCV, however, to create them it is
necessary to know which coordinates correspond to the center of the OD, as well as its diameter. First, the
predicted image is binarized, then it is determined where the highest concentration of white exists, and from
these, the center of mass is estimated to obtain the centroid (x̄, ȳ) of the figure through its moments using
equations 5.3, 5.4, and 5.5.

Mij =
∑
x

∑
y

xiyiI(x, y) (5.3)

x̄ =
M10

M00
(5.4)

ȳ =
M01

M00
(5.5)
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Then, the convex hull is applied to the ovoid figure, this technique returns a collection of pixels that form
the perimeter. The Euclidean distance of each pixel is calculated against all the others to create a matrix of
distances. The maximum distance recorded is taken, which is the one that corresponds to the diameter of
the OD. These values will allow the circles to be drawn at the correct distance and size. An example can be
seen in Figure 5.20.

(a) (b) (c) (d)

Figure 5.20: Diameter estimation through measuring the Euclidian distance of each pixel against the others.
(d) Longest distance (diameter) obtained from random examples: (a), (b) and (c).

Vessel width

Thanks to the semantic segmentation, the prediction for the A/V classification is made up of three
colors, as seen in Figure 5.21a, where R represents the arteries, G the background, and B the veins. A
self-explanatory flow of blood vessel selection to be measured can be seen in Figure 5.21.

From the predicted image, two disks are drawn, one at 1 DD and the other at 1.5 DD from the OD, an
example over the original image is shown in figure 5.21c. Then, a new image is created with the pixels in
the R and B matrix of the original image that overlaps with the circumferences, it can be seen in Figure 5.21d.

(a) (b)
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(c) (d)

Figure 5.21: Blood vessel selection. (a) A/V prediction (b) over original image, (c) A/V pixels overlapping
the circumferences (d) in original image.

The resulting image is conformed by small sections of pixels that intersected with the disks, as shown in
Figure 5.22a. The convex hull is calculated for each of those, and again, the Euclidean distance of each pixel
is calculated against the others. A close-up can be seen in Figure 5.22b, to obtain the maximum distance
from the edge of the retinal blood vessel to the edge of itself, which corresponds to the width of the vein or
artery.

(a) (b)

Figure 5.22: Convex Hull for width estimation. (a) Image conformed by pixels that intersected with the
disks, (b) Close-up at Euclidian distance calculation for each pixel.
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5.4.1.2 Software

An application to calculate the AVR measurement at 1-1.5 DD in a fundus image was created using Stream-
lit [62]. It is a Python open-source framework commonly used to create and easily share custom web apps
for machine learning and data science.

This software runs local and can be seen in your browser at http://localhost:8501.

The main app is shown in Figure 5.23. It has a sidebar with instructions on how to use the tool, Figure
5.24a shows it expanded, it also has a display option for the user, whether or not to show the images used to
calculate the AVR, which can be seen in Figure 5.24b. Likewise, it has an About section that mentions that
the tool was created for this thesis, as seen in Figure 5.24c.

Figure 5.23: AVR calculation webapp.

This tool needs the original fundus image, the OD label and the A/V classification that the model pre-
viously predicted. After all images have been uploaded and the user has decided if all images are to be
displayed, the user only need to click on Calculate to obtain the results. An example of this can be appreci-
ated in Figure 5.25.
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(a) (b) (c)

Figure 5.24: Sidebar options. (a) How to use the tool, (b) Display uploaded images, (c) About.

Figure 5.25: AVR calculation preparation.
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Figure 5.26a shows the AVR results on a random image that belongs to the INDEREB dataset with the
display uploaded images activated, while Figure 5.26b shows the results without the uploaded images.

(a)

(b)

Figure 5.26: AVR Results. (a) Displaying and (b) Without displaying uploaded images.
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CHAPTER 6

Results

This chapter covers obtained results for blood vessel classification using the proposed U-net on three
databases: DRIVE, INSPIRE-AVR, and INDEREB. Additionally, it compares the obtained metrics against
the state-of-the-art works. Finally, the AVR results on INSPIRE-AVR and INDEREB are compared against
those delivered by experts to analyze the proposed system.

6.1 Evaluation metrics

It is crucial to select the correct metrics to evaluate the model’s performance against the current state-of-the-
art after building it. Most works have employed sensitivity, specificity and accuracy, which calculation is
based on four possible outcomes of the data.

TP -Positive classified correctly.
TN - Negative classified correctly.

FP - Negative classified as positive.
FN - Positive classified as negative.

Sensitivity, also known as Recall, expresses how well the model can detect the class, meaning from all
the positive classes, how many were predicted correctly. It is calculated as in equation 6.1.

Sensitivity =
TP

TP + FN
(6.1)

Specificity, also known as Precision, defines how reliable a model is in determining whether an element
belongs to that class. In easier terms, from all classes predicted as positive, how many are actually positive.
It is calculated as equation 6.2.

Specificity =
TP

TP + FP
(6.2)
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Accuracy determines how many positive and negative observations were successfully classified, calcu-
lated as in the equation 6.3.

Accuracy =
TP + TN

TP + TN + FP + FN
(6.3)

6.2 A/V classification

The retinal blood vessel classification was completed using a proposed U-net previously described in Chap-
ter 5. This chapter compares this research’s results against recent works, from 2018 up to 2022, in two
public databases and reports the results obtained in the dataset created with INDEREB aid.

The A/V classification was first implemented on DRIVE since that database has been used a compara-
tive standard from several years now. Table 6.1 shows a comparison between state-of-the-art works and its
results against the proposed method.

It can be appreciated that the sensibility was successfully improved up to 93.85% due to the focal Tver-
sky loss implementation while maintaining satisfactory results regarding its specificity of 97.37%, and a
higher accuracy than other works have achieved at 95.74%. This is due to having predictions with both
sensibility and specificity similarly high, it improved the overall accuracy.

Method Year Sens. Spec. Acc.
Xu et al. [49] 2018 87 % 98 % 83.2 %
Huang et al. [8] 2018 70.90 % 73.80 % 72 %
Girard et al. [21] 2019 86.3 % 86.6 % 86.5 %
Galdran et al. [52] 2019 89 % 90 % 89 %
Ma et al. [50] 2019 93.4 % 95.5 % 94.5 %
Srinidhi et al. [48] 2019 96.60 % 92.90 % 94.70 %
Kang et al. [51] 2020 88.30 % 92.71 % 90.62 %
Morano et al. [47] 2021 87.47 % 90.89 % 89.24 %
Proposed 2022 93.85 % 97.37 % 95.74%

Table 6.1: Comparison with the state of the art for A/V Classification in the Drive dataset.

An example of an obtained prediction on the DRIVE dataset is shown in Figure 6.1. It can be appreci-
ated that in smaller retinal blood vessels there can be a misclassification between artery and vein. However,
in most cases, it consists of only a minor portion of pixels around the endpoints. Hence, why the metrics are
not significantly affected. Besides, all state-of-the-art works face this type of problem.
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(a) (b) (c)

Figure 6.1: A/V Classification results on DRIVE. (a) Ground Truth, (b) Prediction, (c) Misclassification in
prediction.

Similar behavior can be observed in Table 6.2, where works on the INSPIRE-AVR dataset for A/V clas-
sification are compared. The proposed method achieves a state-of-the-art value for the specificity at 97.88%,
while providing great results for its sensibility at 92.27%. The accuracy is among the top three at 95.15%.

Method Year Sens. Spec. Acc.
Akbar et al. [14] 2018 94.25 % 95.47 % 95.10 %
Huang et al. [8] 2018 89.60 % 91.30 % 92 %
Srinidhi et al. [48] 2019 96.90 % 96.60 % 96.80 %
Galdran et al. [52] 2019 82 % 78 % 80 %
Ma et. al [50] 2019 92.4 % 91.3 % 91.6 %
Proposed 2022 92.27 % 97.88 % 95.15 %

Table 6.2: Comparison with the state of the art for A/V Classification in the INSPIRE-AVR dataset.

Figure 6.2 enables a visual assessment of the INSPIRE-AVR dataset’s resulting prediction. As in the
previous database, smaller blood vessels are difficult to predict correctly for the neural network, as seen in
Figure 6.2c. However, it is essential to note that since this thesis is focused on calculating the AVR near the
OD, those edge cases do not impact the methodology and expected results.

(a) (b) (c)

Figure 6.2: A/V Classification results on INSPIRE-AVR. (a) Ground Truth, (b) Prediction, (c) Misclassifi-
cation in prediction.
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Most importantly, obtained metrics on DRIVE and INSPIRE-AVR demonstrate that the proposed method
has high reliability across different datasets, even though their differences are apparent, one centered at the
macula and the other at the Optic Disc.

Finally, the neural network was tested on both versions of the created INDEREB dataset, which will be
publicly available along with the ground truth provided by an expert. Table 6.3 shows the results obtained
on the INDEREB version 1, while Table 6.4 displays the metrics on the version 2.

Method Year Sens. Spec. Acc. FPR
Proposed 2022 90.55 % 96.93 % 93.97% 3.07%

Table 6.3: A/V Classification results obtained on the private dataset INDEREBv1.

Method Year Sens. Spec. Acc. FPR
Proposed 2022 90.15 % 95.82 % 92.54% 4.18%

Table 6.4: A/V Classification results obtained on the private dataset INDEREBv2.

It can be seen that both versions have similar metrics regarding its results. Figure 6.3 shows the main
problem in the predictions, the end of the vascular trees are harder to predict and classify due to their small
size. Something similar happens in Figure 6.4, corresponding to version 2. However, in this dataset, the
misclassification is more obvious where the vessels are crossing between classes.

(a) (b) (c)

Figure 6.3: A/V Classification results on INDEREBv1. (a) Ground Truth, (b) Prediction, (c) Misclassifica-
tion in prediction.
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(a) (b) (c)

Figure 6.4: A/V Classification results on INDEREBv2. (a) Ground Truth, (b) Prediction, (c) Misclassifica-
tion in prediction.

6.3 AVR against experts

The proposed algorithm for vessels width estimation was previously described on Chapter 5. It is capable
of calculating each artery and vein width from the neural network predictions, to then select the 6 widest
vessels to provide a final AVR measure.

Table 6.4 shows a summary of results obtained for the INSPIRE-AVR dataset. The ground truth was
first presented by Niemeijer et. al [54] and it is conformed with results from their proposed approach as
well as two experts. For comparison, Observer 1 was determined as gold standard and used as reference to
calculate errors. The complete comparison of AVR results for each image can be found on Appendix B.

Obs. 1 Obs. 2 Niemeijer et al. Proposed
AVR AVR Error AVR Error AVR Error

Mean 0.67 0.66 0.05 0.67 0.06 0.67 0.07
STD 0.08 0.08 0.05 0.07 0.04 0.09 0.04
Min 0.52 0.45 0 0.55 0.01 0.50 0
Max 0.93 0.85 0.29 0.81 0.15 0.87 0.15

Table 6.5: Comparison with the stare of the art for AVR calculation on the INSPIRE-AVR dataset.

To evaluate the proposed system, a Mann-Whitney U test was implemented under the null hypothesis
H0 that both distributions of populations, Observer 1 and proposed, are equal (p-value = 0.488). The same
applies using Observer 2 (p-value = 0.473) and with Neimeijer’s method (p-value = 0.338).

Furthermore, the results obtained were compared against Observer 1, Observer 2, and Niemeijer’s
method through Bland-Altman plots [63, 64], as shown in Fig. 6.5. Those graphs, unlike correlation,
measure the agreement between data and allow visual inspection of the difference between methods against
its mean.
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(a)

(b)

(c)

Figure 6.5: Bland-Altman plots on the INSPIRE-AVR dataset for proposed results against (a) Observer 1,
(b) Observer 2, and (c) Niemeijer’s method.
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The main limitation in the dataset INDEREBv1 is that experts only gave A/V labels to be considered
as ground truth, there is no AVR reference to compare with. However, both previous Mann-Whitney U test
and Bland-Altamn plots have demonstrated that the proposed system is reliable across different datasets.

The AVR results on INDEREBv1 are summarized in Table 6.6, however, the complete results for each
fundus image can be found on Appendix C.

Mean STD Min Max
AVR 0.66 0.13 0.45 0.91

Table 6.6: Summarized results of AVR calculation on the INDEREBv1 dataset.

The newest version of the INDEREB dataset does have an AVR gold standard, which was measured
using Caliper, an incorporated tool in the ZEISS CLARUS 700 camera used to capture the fundus images.
The results obtained with the proposed system are compared against them, as can be seen in Table 6.7. The
complete results for each image can be seen on Appendix D.

AVR
Expert Proposed Error

Mean 0.58 0.59 0.1
Std dev 0.08 0.12 0.09
Min 0.40 0.39 0
Max 0.75 0.86 0.33

Table 6.7: Comparison of AVR results on the INDEREBv2 dataset against expert.

Additionally, the results obtained were compared through a Bland-Altman plot, to visually asses the data
agreement against its mean. This can be seen in Figure 6.6.

Figure 6.6: Bland-Altman plot on the INDEREBv2 dataset for results with proposed system against Expert.
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6.4 Early Hypertensive detection through AVR

Several works determined an AVR of 0.66 up to 0.7 corresponds to a healthy fundus, while anything below
that metric is a sign of Hypertensive Retinopathy. This assumption is based on the first sign of the disease,
where retinal blood vessels narrow. However, there is not a scientific study that supports that asseveration.

Since public datasets specially made for AVR purposes usually only have one or two experts delivering
an AVR measurement for each image, there is no information regarding which one corresponds to a patient
that suffers from Hypertensive Retinopathy. Hence, there is not enough empirical evidence that supports
establishing a 0.66 AVR value as a rule of thumb.

This thesis had its main purpose of furthering the investigation by creating the dataset INDEREBv2,
where a diagnostic made by retina specialists is available along with its corresponding AVR. The first step
was to demonstrate it is not possible to establish a strong division between healthy and unhealthy eyes by
only a metric without considering more factors such as Gender and Age.

Figure 6.7 shows how the AVR is distributed along with the diagnosis of the disease. It is obvious that
0.66 does not separate both classes, having the disease and not, since there are fundi with a lower AVR and
yet are considered healthy. In contrast, fundi with a higher AVR value can also have the disease.

(a) (b)

Figure 6.7: AVR distribution with HR diagnosis for (a) Expert results and (b) Proposed system results.

The next step was to analyze the AVR values regarding Gender, as can be seen in Figure 6.8. However,
the problem remains since there is no clear separation between classes, neither for women nor men. Nev-
ertheless, it is important to note that both distributions are notably different. Thus, using only one factor
instead of several is not enough to decide how the AVR measurements are related to early hypertensive
detection.
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(a)

(b)

Figure 6.8: AVR distribution regarding Gender with HR diagnosis for (a) Expert results and (b) Proposed
system results.

Then, a 3D scatter plot was created using Age, Gender, AVR, and the HR diagnosis to evaluate all avail-
able factors, as shown in Figure 6.9. It seems that older males are more easily differentiated than those with
the disease. While something similar happens with older females, there is still a problematic area between
those in their 30-40s.

Finally, to leverage AI and its applications, several Machine Learning techniques were implemented to
the INDEREBv2 data to find the best classifier to predict early Hypertensive Retinopathy with available at-
tributes: AVR, Age, and Gender. Since the diagnosis label is known, metrics of the results can be compared.

The library used for this experimentation is PyCaret [65], an open-source that automates ML workflows.
It has a module specialized in Classifications for binary o multiclass problems with over 18 ready-to-use al-
gorithms. It has a useful function named Compare Models, which trains and evaluates the performance of
all methods available using cross-validation. As shown in Table 6.8, only the best five algorithms will be
reported for this investigation.
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(a) (b)

Figure 6.9: AVR distribution regarding Age and Gender with HR diagnosis for (a) Expert results and (b)
Proposed system results.

Model Sensitivity Specificity Accuracy
Random Forest Classifier 91.67 % 92.50 % 88 %
Ridge Classifier 90 % 89.33 % 86 %
Gradient Boosting Classifier 90 % 85.83 % 85.50 %
Extra Trees Classifier 91.67 % 89.17 % 85.50%
Logistic Regression 90 % 84.33 % 83.50 %

Table 6.8: Comparison of ML models metrics for Early Hypertensive Retinopathy detection.

It has been proven that using only AVR measurements is not enough to determine whether a patient has
or not early hypertensive retinopathy. However, a more accurate classifier can be developed when using
multiple factors. Random Forest is the best method with this data, delivering good results but still having
less than 90% accuracy. Maybe by increasing the number of features in the model, such as blood pressure
and genetic predisposition, the prediction’s accuracy may improve.
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CHAPTER 7

Conclusion

This investigation proposed a comprehensive methodology that successfully retrieves veins and arteries from
fundus images to compute a reliable and accurate AVR, since it produces results no statistically different
from the experts. Furthermore, it demonstrated that the AVR by itself is not sufficient to grant an automatic
early hypertensive retinopathy detection. However, by adding the Age and Gender variables, a Random
Forest Classifier detected the early stages of the disease with a 88% accuracy.

This work created a new dataset with 59 fundus images centered at the OD and its corresponding A/V
classification, AVR measurement, and a diagnosis, all made by experts. Likewise, a web application was
developed to facilitate users’ non-familiar with the whole process of obtaining an AVR measure from a fun-
dus image.

It is essential to point out that a standard method for AVR computation needs to be established for re-
liability and repeatability prognosis in different datasets. In this thesis, the work proposed by Neijmar et
al. was used as a golden standard. However, several works still determine where the vessels are measured
almost arbitrarily, thus complicating future analysis and comparative improvements under the same method-
ology.

The proposed approach first enhances the fundus images with CLAHE. It then leverages deep learning
capabilities by combining A/V classification, through semantic segmentation, with OD segmentation results
using a U-Net. Finally, it automatically determines the ROI and measures the ratio between the arterioles
and venules from 1-1.5 DD.

The most critical step while correctly calculating the AVR is having an accurate A/V classification as an
initial point since the width of predicted vessels needs to be measured. The analysis made in this investiga-
tion has shown that the semantic segmentation can be significantly improved by using the Focal Tversky loss.

In conclusion, it has been proven that the proposed method could aid ophthalmologists in delivering
consistent early hypertensive retinopathy diagnoses through a compilation of variables such as Age, Gender,
and AVR measurements, but further investigation is needed.
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APPENDIX A

Python Libraries

keras==2.8.0
Keras-Preprocessing==1.1.2
keras-vis==0.4.1
matplotlib==3.2.2
numpy==1.21.6
nvidia-ml-py3==7.352.0
opencv-contrib-python==4.1.2.30
opencv-python==4.1.2.30
pandas==1.3.5
Pillow==7.1.2
plotly==5.5.0
PyCaret==2.3.6
scikit-image==0.18.3
scikit-learn==1.0.2
scipy==1.4.1
seaborn==0.11.2
sklearn-pandas==1.8.0
statsmodels==0.10.2
streamlit==1.9.0
tensorboard==2.8.0
tensorflow==2.8.0
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APPENDIX B

Complete results on INSPIRE-AVR dataset

Exp. 1 Exp. 2 Niemeijer et al. Proposed
Image AVR AVR Error AVR Error AVR Error
image001 0.7 0.71 0.01 0.62 0.08 0.8 0.1
image002 0.76 0.75 0.01 0.81 0.05 0.71 0.05
image003 0.66 0.69 0.03 0.81 0.15 0.58 0.08
image004 0.75 0.75 0 0.76 0.01 0.70 0.05
image005 0.53 0.61 0.08 0.59 0.06 0.63 0.1
image006 0.93 0.76 0.17 0.8 0.13 0.87 0.06
image007 0.63 0.68 0.05 0.7 0.07 0.75 0.12
image008 0.7 0.65 0.05 0.59 0.11 0.6 0.1
image009 0.65 0.64 0.01 0.68 0.03 0.5 0.15
image010 0.78 0.75 0.03 0.74 0.04 0.68 0.1
image011 0.65 0.65 0 0.58 0.07 0.66 0.01
image012 0.67 0.65 0.02 0.74 0.07 0.74 0.07
image013 0.64 0.71 0.07 0.68 0.04 0.67 0.03
image014 0.69 0.76 0.07 0.77 0.08 0.79 0.1
image015 0.56 0.85 0.29 0.57 0.01 0.53 0.03
image016 0.64 0.74 0.1 0.7 0.06 0.63 0.01
image017 0.57 0.62 0.05 0.6 0.03 0.57 0
image018 0.62 0.58 0.04 0.59 0.03 0.73 0.11
image019 0.64 0.61 0.03 0.67 0.03 0.59 0.05
image020 0.68 0.68 0 0.67 0.01 0.72 0.04
image021 0.52 0.45 0.07 0.55 0.03 0.52 0
image022 0.62 0.63 0.01 0.58 0.04 0.72 0.1
image023 0.67 0.63 0.04 0.71 0.04 0.59 0.08
image024 0.71 0.62 0.09 0.67 0.04 0.6 0.11
image025 0.57 0.58 0.01 0.59 0.02 0.68 0.11
image026 0.72 0.76 0.04 0.74 0.02 0.64 0.08
image027 0.65 0.64 0.01 0.63 0.02 0.59 0.06
image028 0.56 0.49 0.07 0.69 0.13 0.54 0.02
image029 0.73 0.61 0.12 0.6 0.13 0.78 0.05
image030 0.64 0.63 0.01 0.66 0.02 0.72 0.08
image031 0.63 0.68 0.05 0.61 0.02 0.65 0.02
image032 0.72 0.7 0.02 0.68 0.04 0.8 0.08
image033 0.59 0.61 0.02 0.61 0.02 0.7 0.11
image034 0.61 0.59 0.02 0.71 0.1 0.57 0.04
image035 0.65 0.61 0.04 0.68 0.03 0.59 0.06
image036 0.74 0.64 0.1 0.59 0.15 0.7 0.04
image037 0.69 0.62 0.07 0.64 0.05 0.65 0.04
image038 0.82 0.79 0.03 0.72 0.1 0.87 0.05
image039 0.61 0.64 0.03 0.7 0.09 0.67 0.06
image040 0.74 0.62 0.12 0.81 0.07 0.83 0.09

54



APPENDIX C

Complete results on INDEREBv1 dataset

Image AVR System
image001 0.68
image002 0.69
image003 0.71
image004 0.54
image005 0.89
image006 0.85
image007 0.90
image008 0.47
image009 0.52
image010 0.91
image011 0.90
image012 0.70
image013 0.77
image014 0.69
image015 0.55
image016 0.60
image017 0.75
image018 0.79
image019 0.48
image020 0.79
image021 0.58
image022 0.85
image023 0.68
...

...

Image AVR System
...

...
image024 0.82
image025 0.55
image026 0.52
image027 0.73
image028 0.68
image029 0.55
image030 0.57
image031 0.75
image032 0.48
image033 0.47
image034 0.53
image035 0.50
image036 0.60
image037 0.56
image038 0.55
image039 0.64
image040 0.70
image041 0.68
image042 0.81
image043 0.68
image044 0.45
image045 0.55
image046 0.63
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APPENDIX D

Complete results on INDEREBv2 dataset

AVR
Image Gender Age SH Expert Proposed Error
image001 M 32 NO 0.40 0.69 0.29
image002 M 51 NO 0.53 0.68 0.15
image003 M 51 NO 0.52 0.52 0.00
image004 M 64 YES 0.72 0.41 0.31
image005 F 50 YES 0.60 0.65 0.05
image006 F 50 YES 0.55 0.66 0.11
image007 M 63 YES 0.50 0.39 0.11
image008 M 63 YES 0.65 0.63 0.02
image009 F 75 YES 0.72 0.80 0.08
image010 F 75 YES 0.65 0.79 0.14
image011 F 65 YES 0.63 0.59 0.04
image012 F 48 YES 0.61 0.70 0.09
image013 F 48 YES 0.59 0.53 0.06
image014 F 47 YES 0.66 0.75 0.09
image015 F 47 YES 0.61 0.86 0.25
image016 F 49 NO 0.58 0.48 0.10
image017 F 49 NO 0.63 0.45 0.19
image018 F 31 NO 0.50 0.54 0.04
image019 F 31 NO 0.47 0.79 0.32
image020 M 33 NO 0.58 0.43 0.16
image021 M 33 NO 0.65 0.45 0.19
image022 M 35 NO 0.53 0.63 0.10
image023 M 35 NO 0.49 0.48 0.01
image024 F 28 NO 0.44 0.50 0.06
image025 F 28 NO 0.49 0.75 0.26
image026 M 17 NO 0.56 0.54 0.02
image027 M 17 NO 0.61 0.51 0.09
image028 M 41 NO 0.53 0.54 0.01
image029 M 41 NO 0.62 0.53 0.09
...

...
...

AVR
Image Gender Age SH Expert Proposed Error
...

...
...

image030 F 54 NO 0.64 0.67 0.03
image031 F 40 NO 0.69 0.49 0.20
image032 F 40 NO 0.69 0.66 0.03
image033 F 46 NO 0.60 0.66 0.07
image034 M 51 NO 0.50 0.67 0.17
image035 M 51 NO 0.47 0.43 0.05
image036 F 45 NO 0.53 0.73 0.20
image037 F 45 NO 0.72 0.65 0.07
image038 F 75 YES 0.65 0.74 0.09
image039 F 50 YES 0.59 0.55 0.04
image040 F 50 YES 0.57 0.56 0.00
image041 F 74 YES 0.56 0.57 0.01
image042 F 74 YES 0.51 0.47 0.04
image043 F 49 YES 0.62 0.52 0.10
image044 F 49 YES 0.51 0.49 0.02
image045 F 49 NO 0.75 0.86 0.11
image046 F 49 NO 0.63 0.58 0.05
image047 F 27 NO 0.54 0.49 0.05
image048 F 27 NO 0.60 0.45 0.14
image049 F 72 YES 0.67 0.46 0.21
image050 F 72 YES 0.63 0.60 0.03
image051 F 59 YES 0.61 0.70 0.09
image052 F 41 YES 0.53 0.40 0.14
image053 F 41 YES 0.55 0.58 0.02
image054 M 68 YES 0.55 0.58 0.04
image055 M 68 YES 0.54 0.45 0.09
image056 F 35 NO 0.58 0.64 0.05
image057 F 51 YES 0.51 0.47 0.04
image058 M 57 YES 0.53 0.57 0.04
image059 M 57 YES 0.50 0.83 0.33

56



APPENDIX E

INDEREB Database

E.1 Version 1

https://github.com/mzamarron/INDEREB
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E.2 Version 2

https://github.com/mzamarron/INDEREBv2
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